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Abstract.

In the all-pair shortest distance problem one conputes the matrix
D = (dij) where d. 3 i's the mninmumweighted length of any path from
vertex i to vertex j in a directed conplete graph with a weight on
each edge. In all the known algorithns, a shortest path p.l.J achi evi ng
dij is also inplicitly computed. In fact, 1o0g3 f(n) is an information-
theoretic lower bound where f(n) is the total number of distinct
pat t er ns (pij? 3f or n-vertex graphs. As f(n) potentially can be
as large as 2% it s hopeful that a non-trivial |ower bound can be
derived this way in the decision tree nmodel. W study the characterization
and enuneration of realizable patterns, and show that f(n) < en
Thus no |ower bound greater than cn® can be derived from this appr oach.
W prove as a corollary that the Triangular polyhedron T(”) . defined in
(3)

g 3 S , , .
by le E 0 and the triangle inequalities dij+djk > d, s

has at nost ¢ faces of all dinensions, thus resolvi ng an open question

in a simlar information bound approach to the shortest distance problem
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1. [ ntroduction.

Let G be a directed conplete graph on n vertices VooV L esV
with a nonnegative distance d.l.J associated with each edge (vi,vj) . In

the all-pair shortest distance problem one w shes to compute the nyxn shortest

di stance matrix D = (dij) , Where d.l.J is the mininumtotal length of any

path from v, to Ve, (see for exanple [1]). Efficient algorithns for this

probl em were devised by Dantzig [2], Dijkstra [3], and Floyd [5]. All these
methods require at |east Cn3 tine in the worst case. Mre recently,

Fredman [6] gave an algorithmwith running tine O(n3(log log n/log n)l/3) s
which is slightly better than o(nB). Substantial inprovements over CXn?’),
however, are yet to be found. On the other hand, no |ower bound better than
cn® i's known to the_all-pair shortest paths problem for progranms wth
branching instructions. (Kerr [9] proved that cnd steps are necessary

for straightline prograns with operations {min,+}.)

A natural nodel incorporating branching instructions is the decision tree

nodel which is used, for exanple, in the study of many sorting type problens

([10]). Indeed, all the existing shortest paths algorithms mentioned

above can be properly nodeled by linear decision trees, where the primtives

are ternary conparisons " f({di.j}) go "with linear functions f . An
apparently pronising approach to obtaining |ower bounds for |inear decision
trees was suggested by Yao, Avis, and Rivest [13]. |t was shown that, in

this nodel, c¢n” log n conparisons are necessary to compute the shortest

o)

space (see Section 2.3) has at least exp(cn® log n) "edges", i. e.,

distance matrix if a certain polyhedron T(n) in ( -di mensi onal Eucl i dean

| - di mensi onal faces. i An interesting question is thus to deternmine if

T(n> in fact has that many edges.

x It was incorrectly clainmed in [13] t hat T, coul d be shown to have
exp(Cn® log n) edges, which would then inply the aln® log n) |ower
bound. A revised version of [13] will appear as [1L].
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Wiile counting the nunber of comparisons nmade in a decision tree tends
to underestimate the "true" conplexity of conputing shortest distances
(for example, Fredman [6] showed that for any given n , there exists a

linear decision tree with an's)

conparisons), it seenms to be at present
the only hope for obtaining nontrivial |ower bounds. In this paper, we
exam ne an approach based on information-theoretic arguments. As will
become clear, a natural information |ower bound is log;5 lP(n)\-n2 , where
P(n) is defined as follows. For any n xn matrix D = (dij) with
nonnegative entries, let pattern(D) denote the nyn matrix (pij) ,
wher e P 5 is the set of all shortest paths fromvertex v, to v.J in
the graph G associated with D. W define P(n) to be the collection
of all distinct patterns obtainable this way. As the cardinality of P(n)
is potentially large (o(2n3 ! 9Ny even if we require each P to consist
of a unique path), it appears hopeful that strong |ower bounds could be
oF

therefore no |ower bounds better than Cne can be derived fromthis

established. However, we will show that in fact log|P(n)| = 0(n

approach.  The enuneration of P(n) is based on a study of "connection
matrices", as described in the next paragraph.

Let D = (dij) , D' = (dij) be two nxn matrices with nonnegative

entries, then the connection matrix Cp. pr for D and D' has as entries
2
. L] — 1 . O 1 . -
CD)D,[I:J} ={a]1<a<n, Qo+ 8y = m;n<dik+dkj)} for 1<i,j<n.

In Sections 2 -5, we will develop characterizations for R(n) , the set of
all "realizable" connection matrices. As a result, |R(n)| is shown to be
of the order Cr12 (here again, rather short of its 2" potential). In
Section 6, we apply the scheme used in AHU [1, p. 20L4] for reducing shortest

di stances conputation to {min,+} matrix nultiplication to establish a



recurrence rel atign involving |R(n)| and |P(n)|, and thereby show
that |p(n)| < ¢

In another application of the concept of connection matrices, we show
that, somewhat unexpectedly, each face of the polyhedron T(n) ment i oned
earlier corresponds naturally to a unique nxn connection matrix (see
Section 2.3). Therefore, T(n) has no nore than an edges, which

resol ves the question in the polyhedron approach [13] as wel .



2. Connection Matrix, |Information Bounds, and Triangul ar Pol yhedron.

2.1 The {min, +} Matrix Miltiplication.

A distance matrix is a matrix of nonnegative real nunbers. For two

nxn distance matrices D = (dij) and D' = (d!"%-a” define their sum

D®D' , respectively, by

A = (ai,j) = D®D' and product B = (b, )

iJ
ajj = min{dij,djz_j} and b.l.J = mln{dik+dl'§j |1 <k <n}. The miltiplicative
operation ® is also called the {min,+} matrix nultiplication. |t is

wel | known ([1],[4],[11]) that the conplexity of fmin, +} matrix
mul tiplication is closely related to that of finding all-pair shortest

di stances, i.e., conputing the transitive closure D = (d;j) of a

matrix D, where dji = 0 and d.; = (D@D2®D5+ o :.>ij for i #]
(Di - p* gD by definition.) W wll first focus attention on the
{min, + } matrix multiplication for its conceptual sinplicity. The
discussions are then extended to the conputation of shortest distances
in Section 6.

V¢ shall consider the conputation of f{min, +} -product for two nxn

matrices in the decision tree nodel. An algorithmin this nmodel is a ternary

tree. Each internal node contains a test " £(p,p'): 0 " for some non-constant

rational function f of 2n2

argunents. Each leaf of the tree contains a
set of rational functions {qij,i <i,5<n} on the 2n® variables
{dij,dij} . For any input (D,D') , the algorithmnoves fromthe root down
the tree, at each node testing and then branching according to whether
f(0,D')is >0, =0, or <0, until a leaf is reached. At that point,
the product B = D®D' is given by b.l.J = q_lj(D,D') . The cost of the

algorithmis defined to be the height of the tree. The conplexity L(n)



in this model is the mnimm cost over all such algorithms. \Wen all the
functions f | % are restricted to be linear functions, the nodel is

called the linear decision tree nodel, and the corresponding conplexity

i s denoted by Lo(n) . Trivially, L(n) < Lo(n) )

W shall be interested in a natural infornmation-theoretic bound on

L(n) and Lo(n) .

2.2 Connection Matrices and Information Bounds.

The concept of a connection matrix has been defined in Section 1.
W now give sone illustrations and exam ne the relationship between
connection matrices and {min, +} -nultiplication.

Consider the following interpretation of the product B = (bij) = D®D!
(see e.g. [1]1). Let X = {Xl’XQ"°"Xn} , Y = {yl,yg,...,yn} , and

Z = {z yees2.} be three disjoint sets of cities, wth ds e and dl'{j

1’ %2
bei ng the distances from X, to Vi and from ¥, to z. i respectively.

Then bij is the "shortest distance" from xi to z.J via some internediate

city inY . This suggests another way of representing the product D®D'.

Namely, we can list for each pair [i,3] the set of all connecting cities
for which a, + ar. i i Ni ' i

Yy Tk d’k.g achieves the mnimmb 13 Such information can

be tabulated into an nxn matrix Cp.pr whose [i,3] -entry is the set
s A

of integers {o | d.* %j = min(di k“%('j)} . Qearly, Cp,pr 1S the

connection matrix for D and D as defined earlier.

Exanple 1. For the graph shown in Figure 1, we have D = ( %8 157’(3 and

15 20 . .
z The connection matrix ¢ is

Dt
10 lO>° D, D’ (1,2 2 ) -



50 0

Vi

15 10

Figure 1. An exanmple of a connection matrix.

Not all matrices can be realized as connection matrices for sone D and D' s

as the follow ng exanple shows.

Exanpl e 2. There do not exist 2 x2 distance matrices D and D' whose

, , . 12
connection matrix CD’D, is 2( 1) .

: 12
Proof . Qtherwise, et CD,D' = (2 1) for sone D = (d.iJ) and D (d!l.J) .

Ve have then four inequalities

1 1
Y1+ 91 <% * 9y o

1 1
dip + dop < dyy 4+ Ay

Oyp+ dgq < dyy + dfy 5
and

1] 1
Aoy + 4o < Ay + 4,

Addi ng the above four inequalities together, one obtains 0 < 0 ; a contra-

-diction. O

Definition 1. An n-ary matrix Mis a matrix where each entry Mi,j]

is a subset of {1,2,...,n} . An n-ary matrix is said to be sinple if

|M[i,5]| =1 forall i, j.



A connection matrix CD,D' is an n-ary matrix of dinension mxp
if D and D' have dinmensions mxn and nxp respectively. For
sinplicity, we will only consider the case m=p =n, while noting that
all di scussions have imediate generalizations to rectangular natrices.
Thus, when there is no danger of confusion, an nyn n-ary matrix will
sinply be called an n-ary matrix.

As illustrated in Exanple 2 above, not all of the 2" nxn n-ary

matrices are connection matrices.

Definition 2. An n-ary matrix Mis said to be realizable (as a connection

matrix) if M=cy D" for sone distance matrices D, D'. Let R(n)
2

denote the family of all nxn realizable n-ary natrices M.
A subfamly of R(n) deserves special attention.

Definition 3, Let SR(n) be the subset of R(n) consisting of all

sinple n-ary matrices.

Ve now give |ower bounds to the conplexity of {min, +} -multiplication
interms of |R(n) | and |sR(n) | . 1t is plausible that to conpute the
shortest distance between X and zJ, one has to find out the best
connecting cities y, . Thus there nust be as many |eaves as |R(n) |
(or |SR(n) | ) in a decision tree. The logarithmof the number of |eaves

then gives a | ower bound to the height of a tree, which is usually

referred to as the information-theoretic bound.
Theorem 1. L(n) > log2|SR(n)| for a1 n > 1 .

Proof Let A be any decision tree algorithm conputing the {min ,+} -product

of nxn matrices DgD'. Let 5 be the set of input pairs (D,D') with



all their entries strictly positive and for which the test result is

never zero at any internal point, i.e., ] £;(D,D') # O where f,
icA
is the test functions at internal node i . Cearly 5 is an open set
2

in the Euclidean space o , and is dense in the positive quadrant (all

coordinates >0 ). For each element Mt SR(n) , choose Dy v Dy such

that Cy o, M and (D ,D , ) € B , which can be done since, for any
MM = MM
di stance-matrix pair (D,D') wth CD,D' =M, all (DM’DD'/I) eONs
satisfy CD o = M where ¢ is a sufficiently small neightborhood of
W M
2
(D,D') in 2% For any such (DM,DM.) , the conputation will end

at sone | eaf Iy

Let Mi,j] = {kij} , then in some sufficiently small open set ¢c s around

without taking an equality branch at any internal node.

(DM’DB'/I> , the shortest distance from x, to z. (1 <i,j <n) is through

J

Ng uni quely for each (D,D') e@ , and furthernore, every (D,D') e

k..
I
| eads to the sane |eaf Iy - Since two rational functions agreeing in an

open set nust be identical, we know that the set of output functions {qij}

at 2., nust be qij(D,D')=

M %4k

+d_}'§ . It follows that no two distinct
i i

Me SR(n) can have the sane ¢ Now if we prune all the equality branches

K
fromthe tree A, we have a binary tree with at |east |SR(n)\ | eaves.

The height of A is therefore at |east log, |SR(n)|, which inplies

L(n) > logg‘SR(n)l .0

The above argunent does not apply when SR(n) is replaced by R(n) ,

since for Me R(n) , the set of (D,D') satisfying C = Min general

D,D’
does not contain an open set. However, in the nore restricted nodel of Iinear

decision trees, R(n) does provide a |ower bound.

Theorem 2. Ly(n) >_log5lR(n)| - onf



Proof.  Let A be an optinmal |inear decision tree for conputing the nxn
matrix product D®D'. Consider the algorithm A° which begins with a
sequence of 2n° tests {(:iLj“' : 0, di!J_: 0,1 < 1,J <n}, and then proceeds
exactly as algorithm A ignoring the outcomes of the first 2n° tests.
Represented as a |inear decision tree, the algorithm A  has height
Lo(n) + 20° . Ve will show that, for algorithmA , all input pairs (p,D)
reaching the sanme |eaf nust have the same connection matrix CD,D, .
will prove Lo(n)+2n£ >_1og5|R(n)\ , hence the theorem

Let ¢ be any leaf with output functions {qij.}. Let
£={gl<0,g2<0, ...,gs<0, hl:O, h2=o,. . .,ht = 0} be the
system of linear inequalities and equalities obtained along the path from
the root to ¢ . Then for any 1 <i,j,k <n, qij(D,D') < Gy dl'{:]
nust be a consequence of the systemg . Because of the Farkas Lemm (for
i nhombgeneous systens) (see e.g. [12, Theorem 1.Lk.4]), one can obtain
qij(D,D') S Ayt dl'{‘j by taking convex |inear conbinations of fornulas
in the system gy {0 <1} . But this process actually yields either
"< "or "=" explicitly. Thus we actually know at leaf s if
qij(D,D') < dgt d}'{_Ji or if qij(D,D') = g + d'l’{.‘]] for all i, j,k .
This proves that the connection matrix is determned at each |eaf,

as was to be shown. O

W regard the two preceding theorems as information bounds on L(n)
and 'Lo(n) respectively. As there are n® i nple n-ary matrices, and

3
o n-ary matrices, of which SR(n) and R(n) are subsets respectively,

Theorens 1 and 2 could potentially give |ower bounds of the order n° log n

or higher. The characterization and enuneration of SR(n) and R(n) will

be the subject of Sections 3 -5. Before that, we define the

Triangular polyhedron T(n) and relate it to our present approach.
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2.3 The Triangul ar Pol yhedron 79

Aset Zin B is a polyhedron if Z = xlerN a(x ) <0,

-

i =1,2,...,m}, where m is an integer, x = (Xl’XE’“"XN , and

Zi(x) = l<§<n cinj - ci for real nunbers cij s ci . To each subset
J c {1,2,...,m} (possibly enpty), let Fi(z) = {%|4(X) <0 for each ieJ;
zi(SZ) = 0 for each i&J] . W& call FJ(Z) a face of dinensiont of Z

i f FJ(Z) # p and the smal |l est subspace of ' cont ai ni ng FJ(Z) has
dinension t . Let ?t(z) be the set of faces of dinension t of g,

for 1<t <n. (For nore information on polyhedra, faces, etc., see [7],[12].)

N

The Triangul ar pol yhedron 7 s a pol yhedron in E° for N=(E).

Let T = {(i,d)|1<i<j<n}, and £ = {(1,4,k) | (d,3)em , 1<k <n
and k # 1, k£ j} . Witeavectorin B as ¥ = (xij, (i,3)em)

Then T s defined by

T(n> = {X| X35 2 0 for (i,j)eﬂ',xijixik+xkjf0r (i,d,k)ex} .

where we interpret X; o be Xy s if i >k .
N (n) n
Theor em 3. | U # ()] < [R()|, where N =(3).
t=0 B
Corol l ary. |?1(T ) | < |R(@)] .
" (@)
Proof . It suffices to establish a one-to-one mapping ¢ from u &*t(T ),
t=0
i.e., the set of a11 faces of T2, into R(n)
Wite gijk(i') = Xj 5 Xy = Xy for (i,j,k) e ¢ . Let F be a face

of T(n> , specified by a partition of minto mum,, < into UL,

such that



F=({X| Xij >0 if (i,3)¢ My 2 4555

andx.l.J = 0 if (i,3) € My, s /zijk = Q0 if (i,j,k)ezg}

<0 if (i,j,k)ezl ,

W now define ¢(F) to be the nxn n-ary matrix M, given by

ML, 31 = Mlg,1) = {k | (1,3,k)e5,}  if 1<,

and  M[1,i] = {k|{(i,k), (1)} NM, # PIU {1}
The mapping ¢ is one-to-one, as % and T, can be reconstructed

fromo(F) .

To conplete the proof of the theorem it remains to show that o(F)

defines a realizable matrix M, Choose ¥ = (X,.,1<i<| <n)tobe any
ij - -

point on F. Define a distance matrix D=(dij> fromx by letting
dij = dji = Xy for 1<i<j<n ,
and d;; =0 for 1<i<n.
It is easy to check that D@D =D . It follows that the connection matrix
Cp,p 1S given by
Cpp 231 = Cp pl8sil = k] g, (F) =0, 1<k<n) if i<j,
and Cp, plisil = {k | =, =0 or %; =0, 1<kg<n)
This proves that ¢(F) = M = Chop The proof of the theoremis conplete. 3
J



3, A Characterization of Sinple Connection Matrices.

V¢ will give a necessary and sufficient condition for a sinple n-ary

matrix to be a connection matrix. W first define some useful concepts.

Definition ¥,  The weight distribution WM of an n-ary matrix Mis

the integer matrix defined by w(M); j= |M[i,3]| . The sum
)

2 |M[i,3]1 | is called the total weight of M, denoted by wW(M .

3 1,2 2,3
Example 3. Let M = 1 1 2 . The weight distribution of
1,2,3 3 2

is WM = , Wth total weight (M = 13 .

W
= oD
H oD

Definition5. Let Mbe an n-ary matrix of dinension mxp . For

1<i<m, the i-th rowsignature of Mis the vector

=2(3) _ (i), (i (1) 1) -
r = (£) 2( ),...,rn ) where r, is the nunber of tines
integer ¢ appears in the i-th row For 1<) <p, the j-th colum
signature E(j> = (c:(Lj)écsj),...,cr(lj)) of M is defined in a simlar
(3)
L
—D( — - e — —
The sequence of mt+p vect ors**(%>,r(2),...,r(m) s c(l),c(2>,...,c(P))

way, i.e., ¢ i's the nunber of occurrences of | in the j-th colum.

is then called the signature of M denoted by s(M) .

In Exanple 7 above, the row signatures of M are F(l> =(122,

~;(2> = (2,1,0) , and ?(5) = (1'2"2) ; the colum signatures are
E'(l> = (2,1,2) , €(2> = (2,1,1) , and 3(5) = (0,3,1) .

Definition 6. An n-ary sinple matrix Mis said to be s-unique if no

other n-ary sinple matrix M' can have the sane signature as M.

13



W will showthat, for a sinple n-ary matrix M, the property of
S-uniqueness is the answer to the question of whether Mis realizable as

a connection matrix.

Theorem 4. Let Mbe an nxn sinple n-ary matrix. Then Me SR(n)

if and only if Mis s-unique.

Proof . Necessity.

Let Mbe a sinple n-ary matrix such that M= Cy pr for distance
J

matrices D = (dij) and D' = (dij> . Assune that there exists another
sinple n-ary matrix M'# Mwith s(M)=SM . W will showthat this
| eads to a contradiction.

Wite M= (mij) and M = (mij) . W have

d':L,m.. * dIm..,j <4 m!. dy,n:.,j for 1 <i,j <n (1)
£y 1 N i

by the definition of the connection matrix Chopr Furthernore, the inequality

J

(1) is strict if m,,#m!,. Adding up the n° inequalities in (1), we
Ly L

obtain
Z szi,m ?’ 2 a4 s d
i 1J J 1 1d
<T XA e 2 2 (2)
i Ij i i i3
where the inequality is strict since ml.J # mij for some i, ) . Now, by
the definition oftherow and col um signatures 5’(1), ) of M and

;,(W , () of M , respectively, (2) is equivalent to

14



i . { £3
J
< 20X '.(i) - v (I
= rl di£+? ?ca(}j 05 ) (3)

But by assumption M and M' have the sane signature, so the |eft hand
side of (3)is equal to the right hand side, a contradiction. This proves

the necessity of s-uniqueness for a sinple connection matrix.

Sufficiency. W next show that if a sinple n-ary matrix Mis s-unique,

then there exist distance matrices D and D' such that M = Cp, pr
’

What we look for are D = (dij) and D' = (dJI_J.) that satisfy the follow ng

system of inequalities

f
- D,D') =(d, +da'.) - (d,,+d'.) <
gl,J,OC,B( 2 ) ( ic aJ> ( 18 BJ) 0 1
for a=m. B#a,1l<i,j<n,
) ¢
' — t - t —_
Ny, 5,0,0(DD") = [+ &5 5) - (dgq+dy5) = 0,
L fora=ml.3,l§1,35n

Assune that the system (#) has no solution. W will show that this
inplies Mis not s-unique. First note that () contains at |east

one strict inequality 94 <0, for n>2 . By the theorem of

)j}a)B
Kuhn- Fourier (see [12, Theorem 1.1.9]), («*) 1S not solvatke only if there

exi st non-negative nunbers M, 3,0,8 such that
IJI2Y)

15



Z .. . +
1<i,j<n }\1:3:@:5 gl:j;a:ﬁ <i,j<n )\i;j;a;Oé hi; J,0Q
A=m. . =
i3 G=m, .
B
= . . (r(r € gﬁr . L4 oo e od!t .
= (0 dll+ DA %Jﬁ .+0fdnn) + (0 di1+ +0 dij+ oot 0 dllm) (%)
where . . > 0 for the coefficient of sone
M, 50 8 95,5,0,p . V€ can scale
the coefficients in (4) so that every) is <I/n, except for ,
1, J,Oﬂ,OC.
The val ues of . . ( i =m. i
xl’ 3,oc,ocl <l1l,] £n « ml-J) can be chosen freely in
(4) since h.. . = 0, and we shall choose themso that for any fixed
1y 3,00
l)J k) and o = mij ’
Z )\ . = l .
1<g<nt A®E (5)
Let us rewite (4) as
> 2. < fd o+ ar. )
1<i,j<n 1<f<n 1, J,C, B QaJ
A=mnm. .
ij
= Z T >\._-- » d.: s +d' ) . 6
lSl,JSn lSBSn 1)J}a)l(—> lB BJ ( )
a=m, .,
1J

By Equetion (5), the left hand side of (6] is
2 (a..+ a.)
lii’anlOé o ’
d=m,

iJ

or equivalently,

16



5 3 r(i) i+ Z s ) g 1)

1<i<n 1<g<n fH £oH

wher e rg” s céj) are the row and columm signatures of M. By conparing

the coefficient of each variable de s s %‘,.Lﬂ in (7)with that in the right

hand side of (6), we obtain

1ja2=r§|) for 1<i<n,1<2<n , (8)
lSjS Y dJda2V)
a=m,,
13
i.._az—céJ) for 1<j<n,l<s<n . (9)
lfif 2 ds X,
=m,. .
iy

The equalitiesi n (8) and (9) are best represented in terms of a
network flow problem Let 7(M) be a network with source S, sink T,
and in between three |evels of nodes, wth nSL nodes on each |evel
(Figure 2). The nodes on the first level are, Rsl) (1 <iyg<n), on
t he second | evel V‘1‘J (1 <i,j <n), and on the third level c(d)
(1 <34,2<n) . Each R§i> is connected with the source and the n
nodes Vi(j (1 <j <n); each ng) is connected with the sink and the
n nodes Vij (1<i <n) . W shall consider maximumflows in 7(M)
subject to the follow ng capacity constraints on the nodes (cf. [7]):

‘a

node Rgi) has capacity r, node CEJ) has capacity céj) , and

Vs has capacity 1 .

17



Figure 2.

Net wor k 7n(M) .
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The value of a maximumflow in n(M)is clearly at nost

2 2 rg” =2 2 cg‘]) = n°, if all nodes are saturated to their
i ¢ J o1
capacities. We will denonstrate two flow functions y* and y that

can achieve this maximum Each function assigns the same value to both
(1)
1

y*(i, i, 2) and y(i,3,2) respectively.

(J - -
arcs (R , Vij) and (Vij . C, ). W will denote this value by

In the first maxirrumfIOWy*, we | et

. ..
y (1,3, 1) = o (10)
0 ot her wi se.

There is 1 unit of flow through every node V'ig' Furthermore, each

node R§i> s cg‘j) is balanced and saturated by definition of the capacities

(i) (@)

r (6]
Ty

The other flow function y nmakes the assignnent

B_r(i) j’ E) = >\i, j)a) E (ll)

where o = m._ . The amount of flow through V.iJ. is
z  y(,d0) =1
by Equation (5). The total flow out of node Rgl) is

2 y(sd0) = Za

1<j<n 1<j<n 2B

by Equation (8); simlarly the total flow into node ng) is
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2 y(i,3, 1) = PO W
1<i<n 1<i<n? V91
d=m, .
iJ
(3)

by Equation (9). Therefore y also defines a maxi num flow in n(M) .
Not e t hat y* and y are in fact two distinct flow functions. This is
so because M, 5,08 >0 for sone i, | , a= m. . and g £ a when we
formed Equation (4); it then follows fromdefinitions of y* and 7 in
(10) and (Il) that, to the particular arc (R]Ei) ,Vij) Wwth 1 =8, we
have

y (i,3,4) = 0 y(i,3,2) > 0 . (12)

W are now ready to derive a contradiction that M could not be
.s-unique. Formulate the maxi num flow problemfor (M) as a |inear

program in the standard way (for example, [8, Chapter 8]):

maxi m ze z = cey
subject to Ay=Db, y>o0
with suitable vectors b, ¢, and matrix A. It is known ([8&,

-Theorem 8.8]) that in the -present case, when A is uninmodular and b
IS an integer vector (representing the capacity constraints in 7(M)),

t he- bounded - pol yhedron Y defined by Ay =b , y > 0 has the property

that all of its extreme points have integer conponents. Let us wite y

as a convex linear conbination of the extrene points of y (this is always

possi bl e, see [12, Theorem 2.12.2]),

{;:Zakyk wher e ak_>_o,2ak=1
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. - * . .
Since y #y , we nust have a_ > 0 for some extreme point yk wth

K
* .
v #v . Denote this yk by y'. Because of (12), we can further

assume that y' is‘chosen such that
y'(i,3,4) > 0 (13)

for the particular triple (i,3,2) in (12). By the theorem quoted above,
y' has integer conponents. Furthernmore, since z s a concave function

of y , that is,

CO&' = . 2 a
(8

i a.z;O ak(c‘yk)
k

< max c-yk 3
ak>O

the fact that z is maximzed at y inplies that it nust be maxinized at
all y, wth &, >0 . Insummary, we know (i) y' is a maxinum flow
for n(M) , distinct from y* and satisfying (13), (ii) y' has integer
assignments to all arcs in (M), in fact the assignments are O val ued
since the total flowthrough any }/j is 1.

Ve now define a sinple n-ary matrix M' = (mij) corresponding to y'
by letting ni1j= £, where g is the unique integer with y'(i,j,2) =1 .
The fact that all nodes szi) and cij) are saturated under y' inplies

that M' has row and col um signatures as given by rél) and cgj)

.

Note that M'# M since mij = £ by (13), while m, 5 £ ¢ by (10) and (12),
for some triple (i,3,2) . But this contradicts the assunption that M is
s-unique. W therefore conclude that the system () can be solved to find

D, D' such that M= C The proof of Theorem¥ is thus conplete. ]

D.p'
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4, Bounds on the Nunber of Sinple Connection Matrices.

Based on the characterization derived in the previous section, we
shall find bounds on the nunber of nxn n-ary sinple matrices that are

realizable.

n/2 n® on®
Theorem5.  (¢/n)/“4" < |sR(n)| < & , for sonme constant C > 0 .

Ve first show the upper bound. By Theoreml, an nxn n-ary sinple

mtrix Mis in SR(n) only if Mhas a unique signature anong sinple

matrices. Therefore, ISR(n)| cannot be greater than the total nunber of
such distinct signatures. In a signature
(F(l),f’(g), e, 1) 2) ..,E’(n)) , each conponent

F(i> = (riigrﬁi),...,}g)) can be viewed as a partition of integer n

into n lsbelled parts. Thus, each F':) can take at most (™271) < )

n-1
different values. It follows that the total nunber of distinct signatures
(for sinple matrices) is at nost (hn)zn = h2n2 . This -proves
|sR(n) ]| < e

The rest of this section is devoted to the proof of
|SR(n) | > (C/n)n/e hng - W define a class of matrices, called row ordered

matrices, and show that they have the -property of being s-unique. 1t follows
from Theoremk that they are all in SR(n) . A denonstration that there are

2
at | east (c/n)n/2 4 such rcwordered matrices then conpletes the -proof.

Definition 7. A sinple n-ary matrix is rowordered if the entries are

non-decreasing along each row.  For exanple, the following matrix is row-

or der ed.

H N R
DN W R
(OO SR N N
W W oW
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Theorem 6. A rowordered matrix is s-unique.

Proof of Theorem 6: Let Mbe a rowordered matrix, and |et (?(1)) ,

(8(3)) its row and colum signatures. W shall show that Mis the only

sinple n-ary matrix whose signatures are (?(1)) and (E(J)) .
Let M be any sinple n-ary matrix with signatures ((z'-'\)l ) and (E(J))-

Clearly M nust have the sanme dinensions as M. W shall now prove that
the signatures deternine which entries of M contain a 1 , which entries
contain a 2, , etc.

Let a be the snallest integer that appears in M . Note that a is
uni quely deternined by the signatures. Ve first show that the -positions

(i,j) in M where a occurs are determned by the signatures.
Lemma 1. M[i,3) = (a] , if and only if rgl)zj

Proof of Lemma 1. As (F(i)) , (6'(3)) are signatures arising from the

row-ordered matrix M, we have

e o gy 23 20y (1)
and in general,
e = i =) 5 5y . (15)

Ve can now -prove the |emma by induction on j

j=1. The only positions (i, 1) in the first colum of M where

(1)

a may appear are those with ry/> 1 . But by (1k), we nust actually

place a 's in all such positions in order to satisfy the requirenent of

havi ng c§l> a'sin the first colum.

25



| nduction step. Suppose the lemma is true for all j < Jo - Ve will

prove it for j = j,+1. Consider the j +1 -st column of . By the

i nduction hypothesis, each row i has had exactly min{lr;\l ,jo} a's
appearing in colunn 1 through colum j, . Therefore, only those rows i
with réi) > Jgrl could have a's appearing in the Jotl -st col um. By
(15), all such rows nust actually have a's in the Jgtl -st colum in order

to satisfy (15). This conpletes the induction step of the lemma. O

Now, we conplete the proof of Theorem 6 by induction on a , the snallest
integer that occurs in M, for a = n,n-1,...,1 . Wien a = n , ¥ has
integer n in every entry, and this is obviously uniquely deternined from
the signature. Suppose it is true that i = M whenever a > 2 tl , we Wil |
prove it for a = a - By the preceding | enma, the positions in I where

« occurs are only dependent on the signature. Therefore M and ¥ have

at exactly the sane positions. Now, replace the a.'s in both Mand

"0 0

M by agtl and call the new matrices M and M' respectively. Cearly
this transformation still leaves ' and M' wth the sane signature, and
M' is again a rowordered matrix. By the induction hypothesis, since the
snmal lest integer in M'is aytl , We must have M' = M' . But this
implies that, before replacing 3, by agtl it nust be true that

M =M. This proves Theorem 6. [

It is easy to see that any matrix which can be transformed into a

row-ordered matrix through row and colum permutations is also s-unique.
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W now count the number of rowordered natrices. as denonstrated

earlier, the nunber of choices of () jg (20-1y _ L eny
n-1 T2 n /T

241rrn WL+ o(1/n) > (/2% ¥ tor some ¢ > 0 . Therefore, the
number of possible signatures (}'(l),";@)“”,;(n)) is at |east
(C/n)n/2 hnz "~ Since every such signature can be achieved by some
row-ordered matrix, we have established that there are at |east
(C/ﬂ)n/2 hne row-ordered matrices, and hence |p(n) | > (C/n)n/Q hﬂg

This conpletes the proof of Theorem 5. 0
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5. Enuneration and Characterization of General Connection Matrices.

W extend the preceding results about SR(n) to R(n) , the set of
all connection matrices. In Section 5.1, we introduce the notion of
"spanning matrices" and discuss their properties. The results are used
in Section 5.2 to derive an upper bound of' ¢ on |R(n)| , which by
Theorem 3 is also an upper bound on the nunber of edges of the Triangul ar
pol yhedr on T< n). Finally, a characterization of R(n) simlar to

Theorem L4 is given in Section 5.3.

5.1 Spanning Matri ces.

Let Mbe any nyxn n-ary matrix. Define Sy 10O be the follow ng

i nduced system of |inear equations.

S, - h = (a

+d' ) - Y -
Mo 08 4450 - (dyp+di) =0,

ia o BJ
for a,peMi,jl, a#¢p, 1 <ij<n. (16)

As there are only on®  vari abl es d.i(j and d!“. , at nost on®  of these
equations can be linearly independent. For any naxi mal independent

subset ¢ of 4, (clearly l£] <_2n2 ), we define an n-ary matrix H by

('

M[1, 3] ifoMii, 3] = 1, )
H[i,3] =
, g {a|h.1,j’a’5=0isin£for sone g}
9 U{B|hi, 50,8 - Oisingfor some a} if |M[i,j]|>1 . (18)

An n-ary matrix H obtained this way is called a spanning matrix for M.

The total weight of Hclearly satisfies W(H < 0+ 2] g §5n2.

A basic property of His the following. For a pair of distance matrices
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D and b, if it is known that min{d,, + dfcjllfk < n} is achieved

by every ae H[i,j] (for all 1 < i,j<n), thenit is also achieved by

every aeM[i,j] . Formally, we have the follow ng |emm.

Definition 8. For two n-ary matrices Mand M', we say M'c M if
M'[1,3] < M[1,3] for all i, j

Lemma 2. Let H be a spanning matrix of an nxn n-ary matrix M.

If M' e¢R(n) is a connection matrix and Hc M', then Mc M' .

Proof . Let M' = Cs 51 - By the assunption that Hc ™', we have for
2

any 1,3,
dioa+ac;t3‘—< A * dJkj », l<k<n, aeH[i,j] . (19)

This inplies h. . (D)D) =0, 1<i,j<n, ,BeH[i,jl, @ # B . As

His derived froma naxi mal independent subset of Sy in (16), we have

i,j’a,B(D)f)') . 0,1 _<_ i,j _<_ n a,ﬁeM[i’j] , % B . (20)

Formulas (19) and (20) inply that, if |M[i,31]> 1, then

1 = 1 . .
a dozg < dik+dkj , 1< k <n, xeMi,j] ,

and therefore, M[i,j] c M'[i,3].

If |M[i,3]| = 1, then M[i,J] = H[i,j] ¢ M'[i,5] , O
Theorem 7. Let H and H' be spanning matrices for connection matrices
M and M' , respectively. |If H and H' have the same weight distribution

and the same signature, then M= M'.
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If a connection matrix Mis sinple, the only spanning matrix for M
is itself. In this case the above theorem becones a weaker form of the
s-uni queness condition for Min Theorem! (weaker because M' s assumed

to be a connection matrix).

Pr oof . Since H and H' have the sane weight distribution,

|#li, 31| = |#'[1,4] | for all i, j . Let us match the elenents of
H[i,j] and H'[1,5] in disjoint pairs as Qs = {(%p)}, where
@eHl1,5] , BeH'[1,3] , and o, £ |6[1,5]]
Let ¥ =¢C, ,, for D=(d,,) and D' =(d!,), we can wite down
b 1] 1J
the followng set of inequalities,

¥ d. +d

sat gy < d; +déj for (@,B8) € Qu , 1 <4,3<n,

B

with equality only if 5 ¢ Mi,3].
Wien we add up the w(H) inequalities in %, we obtain

Sy (i>d, +ZZc<j>d"<Z?r'(i) d.H+ZZc'(j> '
S AL A T A S S, g (B

with equality holding only if #' < , where (r,(zi) , cga'>> and (r'fi), cvﬁ(:ﬁ)o>
are-the signatures of H and H', respectively. Since by assunption
H and H' have the same signature, the two sides in Equation (21) are equal .
Therefore, 5" < M. By Lemma 2, this inplies u'c M.

A simlar argunent shows ¥ c'. Hence M = M' . =

~

5.2 & c¢®  Bound for |IR(n) | .

2
W will show that there are at nmost ¢ connection natrices (out of the

n .
2 n xn n-ary matrices).
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2

Theorem 8. |r(n)| < ¢® for sone constant C.
(n) o’
Corol lary. | U ?S(T )| < ¢
0<s<(3)
Proof . For each MeRO(n) , choose a spanning matrix Hy By Theorem 7,

all the weight distribution-signature pairs of g, , i.e., (W(HM) s S(HM) ),
are distinct. Furthernmore, the total weight of Hy satisfies

n® < w(Hy,) < sn° . Therefore, |R(n) | is bounded by the product w:v
where u is the nunber of ways for distributing a total weight A,

2 2 2

n” < A<5n", tothe n”™ entries inthe nyn mtrix, and v is an

upper bound on the maxi mum nunber of distinct signatures under any fixed
weight distribution (with total weights n® §A§5n2 Yo Ve wll show
that u < (64) n” and v<cr12 for some constant ¢ , which then inplies
the theorem

The nunber u is bounded by the nunber of ways of partitioning
i nt eger 5n2 into n°+1 labelled parts, where the last part specifies

5n2-A . Therefore,

2, .2
Sn"+n 2 2
u < <2 . (64"

To estimate v , let b be the total nunber of distinct row signatures

;"(l ) #(2) .M,F(n)) subject to a fixed weight distribution W. It then

follows that v < ma.x(bw)2 . where we have restricted Wto those with total
T W

wei ght n° <A §_5n2 . For any such W, suppose the sum of weights

distributed to individual rows are WpsWos ooy W

n H

~ wichwi=A. Then
the i-th row signature ?(1) Is a partition of Wy into n

labelled parts (r (1),...,rr(li)). Therefore,
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n wi+n-l
oW < max -ﬂ' . (22)
Z Wi = i=1 n-1

w, >0
Wite
ﬁ' w,+n-1 i ﬁ (W.1+n-|)!, g _ﬂ__(\l\é_ﬂﬂ,!_ o)
3121\ n-l LTI O TR L A

Taking logarithnms and using Stirling's fornula
In m! = (m+%—)ln m- m+ Q1)
we obtain from (22) and (23),

1 1 1
lan < Zf;jiA 12;_‘[(wi+n+-§)]_n(wi+n)-(wi+§)ln wi-(n+_)ln n+O(l):]

w, >0
i

w o+ L n 1 %
o, Bl (o) (a2 2)]
1
w, >0
1
(2k)
vaveletwi=ozin,thenlﬁ<ai,and 2 ai=§§5n.
) 1<i<n
Equation (24) becones
In b, < 2n sup 2, oL
‘ Ta, <Sn\ 1<i<n ©
a; > 1/n
+2n  sup 2 In(l+a)) +Qn) | (25)
ZociS_Sn 1<i<n
%, >1/n
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Since xln(l+ -;%) <1 for x >0 and In(1+x) i s concave, the

first sum in (25) is < n and the second sumis maxinized by taking all

a; =5 ,i.e., <niln 6 . Therefore,

In b, <2(1+1n 6)n° + Q(n)

W

o0 + Qn) hn® + o(n)

, and hence v < max(bw)2 < (6e)

Thi s proves b, < (6e)
W

This conpletes the proof of the theorem The corollary follows imediately

from Theorem 3. O

5.3 Characterization of Connection Mtrices.

W will state a necessary and sufficient condition for an n-ary matrix
to be a menber of R(n) . The proof is a slight extension of that given for

Theorem 4, and hence will not be repeated.

Definition 9. A multiset U is analogous to a set except that an el ement

may appear nmore than once in U. W use |U| to denote the total nunber of

elenents appearing in U. Thus |U| =6 for U= {1,2,2,2,3,3} .

Definition 10. An n-ary multi-matrix Mis a matrix where each entry

M[i,j] is a mudtiset whose el enents are drawn from{1,2,...,n} , Wth

Mli,5] < n .

The concepts of weight distribution and signature defined in Section 3

can also be generalized to an n-ary multi-matrix in the obvious way.
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Definition 11, For two n-ary multi-matrices Mand M', we say M'c M

if every elenent that appears in the multiset M'[i,j] al so occurs at

| east once in M[i,j]1, for 1 <i,j<n .

Ve generalize the definition of s-uniqueness to n-ary matrices as

foll ows.

Definition12, An n-ary matrix Mis said to be s-unique if for any

n-ary nulti-matrix M' wth the sanme weight distribution, s(M')=s(M

implies that M c M.

Theorem 9. Let Mbe an nxn n-ary matrix. Then MeR(n) if and only

if Mis s-unique. --
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6. Enuneration of the Patterns of Shortest Paths.

In this section, we examne an information bound based directly on
the solution space of conputing shortest distances. Let G be a directed
conplete graph on n vertices {vl,v sees v} wWith a nonnegative
di st ance d':.'J assigned to each edge (vi,vJ.) . A path from A to v.J
is a finite sequence of vertices (i = ko ks Ky, ook k= i)

not necessarily all distinct, The length of such a path is 2z dk .
1<e<m =172

Ve shall also consider the sequence of a single point (i) to be a path from
i to i, called a null path, with length 0 . The entry d’i‘j in the
transitive closure D* is then the minimumlength of any path fromi toj ,
For any i, , let p.l.J be the set of all shortest paths in G from A
to v, . (The set P, My be infinite.) W denote by pattern(D) the
nxn matrix (pij) associated with the distance matrix D = (dij) . Let
P(n) be the collection of all distinct patterns induced by nyxn di stance
matrices. By an argunment simlar to that used in Theorem 2, one can show
that any |inear decision tree for conputing the shortest distance matrix D* ,
given D, requires at |east log§ |P(n)| - n° conparisons in the worst case.
This, intuitively, is probably the best information |ower bound one can hope
for; the previous approach using connection matrices can be regarded as a
special case with the vertices divided into three disjoint sets XO' X s Xy

such that a1l edges except those from X. to X, and from X1 to X2 are

0 1

effectively « .
The rest of this section is devoted to proving the followi ng theorem
whi ch states that no nontrivial |ower bound can be obtained even in the

present version of the information-theoretic approach.

2
Theor em 10. |P(n)| < c¢®  for sone constant C> 0 .
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W first generalize the notion of a connection matrix to that for

m+l consecutive sets of "cities" x ® . Assuning that

O’Xl’ .o

D<’Z> = (d.f(jf)) defi nes the distances between any pairs of cities in

X X Xf , then C (i,j1 1is to be the set of best connecting

! * D(l))o A= D(m)
paths fromcity ieX, to city | €eX - Formally, if (D(l>,D(2),.;§,‘,D(m))

is a sequence of m nxn matrices, then their mconnection matrix

C is defined by
D(l)) o D(m)

CD(l)’.“’D(m)[i’j] = {(Oﬂlyag;...,am_:L) l 1 < Oﬁf < n for all ¢ , and

W), 4@ . ¢ 220 ) ), .(2) (n
d.>’ +d + z d. .
Y N% n1? ok, ,r_n.?km_l( S RN

This definition reduces to the connection matrix defined previously,whenm=2,

Let Rm(n) denote the set of all possible nxn mconnection matrices.

Lemma 3. |R_(n)| < |R(n) ™t for m> 2 .
Proof . W will show that, for m> 2 , ¢ i's determ ned
— 0@, o
’v--,
by C and C , Where A = D(l) ®D(2) Q- - ®D(m'1) ‘
D(l), . ::JD (m_:L) A’D(m>
This will inply that [R (n)| <|R _;(n)|*|R,(n)|. The Iemma then
foll ows by induction, observing that |R2(n) | . |R() | .
let A= DYg DB ... @ D®L)  gnce
nin (gl e ke ) )= min ( min (@l s i&gm-l) )
L 1Y kL K.k, T 2 I

(m) - ot
d .
+ J) » an alternative description of CD(1>, ;@,D(m

3L

)[i,j] is the set of



(ocl,.“,am_E,am_l) such that a ,ecC (m)[i’j] » and
A, D
(al,. .,ocm_g) ecD(l) D(m'l) [i,ozm_l]. This proves that
Jeo® (=

CD(l) N D(m) is determned by C 1)
) e

e D) ...p ¢ and € L C

n-1) A,D

Proof of Theorem 10. ¢ shal | derive a recurrence relation on |P(n)| ,

V& use the idea enployed in [1] for reducing the shortest paths problem
to {min, + } multiplication. Let X be any 2n x 2n distance matrix
on vertices {1,2,...,2n} = W wite it in the formof four nyn blocks

X = (3 1) - (26)

The shortest distances matrix X then satisfies the followi ng recurrence

fornmula [1, p. 20L4],

* ¥*
E E ®BRD"

X = « (27)
* *
D’eYeE Do (0*eY@ER B® D)

where E = (A® (B®D*®Y)) . Actually, inplicit in the derivation of

(27) is an enuneration of all possible shortest paths between any two

of the 2n vertices, in terms of quantities involving only nxn matrices.

Ve now make this statenment precise in a |emm.
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Definition 13. Let & and &' be the nxn matrices of 0's and +1's

defined bel ow

I-l <
*
€ s = 0 it @)y - (ede),),
Ls .

-1 <
1 — H * — * *
&5 = 0 it (D), = (D ®YSE®BED i

1 >

Define the counting vector ,(X), for X as in (26), to be

X) = attern(D attern(E C_¥ * C_* * * *
w® = (p (D) » (B), Cg* g% OpF w5t O E apt
Cp,pe,y > €2 €D -
Lemm4. The matrix pattern(X) is determned by the counting vector p(X) .

Proof . W shall show that the (i,j) -th entry of pattern(X) is determ ned

by w(X) for all i, |
First we assune 1 <i,j<n . Following the original argument

[1, p. 204] leading to (27), any path fromvertex i to vertex j can

be witten uniquely as
(i= kO’ 99 kl’ 02,1{2, ---:k£_11 szkg) cees O km'-'—' J)

where each kz e {1,2,...,n}, and each g, is a sequence of vertices
(possibly enpty) in {ntl,n+2, . . .,20}. (mmay be O when i =] .)

A shortest path fromi to j is characterized by the followi ng conditions:
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(a) Each k 19,k

k is among the shortest such paths from kz-l

to k, ,denote this length by leng(kﬂ_l,kﬂ) :

(b) The k's satisfy the condition that Zleng(kz-l’kz) i'S mninm
f.

for all possible choi

ces of the k's.

We can restate the conditions as follows. Let Q = pattern(g) ,

[pattern(D) ]h n and © the nx n matrix defined by

D = U
St <h)h'> ECB,D*,Y[S’t]
4 .
) i f
N} ulg i f
\

£

€

e

st= -1
st =1
st=9 >

where we use 3 for the null sequence. Then condition (b) is equivalent

to (ko,kl,...,km) € Qij , and condition (a) is equivalent to 9,eTl,

1-1"2

for L<4<m. But thisinplies that the (i,j) -th entry of pattern(X) ,

i.e., the set of all shortest paths fromi

and r , and hence by pattern(E), pattern(D),

proves the lemma for the case 1<i,j <n.

toj , is determned by Q

CB,D*,Y , and & . This

Simlarly, one can show that the set of shortest paths fromi to j

is determned by pattern(E), ¢

r
CE*, B, D and

*
< Co% v, 5 and

c *

D*YE*BD
L )0

\.

W onit the details. O

y Y, & and,
pattern(D)
pattern(D)

pattern(D) , and &'
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in addition,

if 1<i<n, nl<j<on,
if ml<i<en, 1<j<n,

if ntl<i,j<on.



To conplete the proof of Theorem 10, we note that by Lemma L, the
nunber of distinct patterns is bounded by the nunber of distinct counting

vectors. This leads to
P | < )P R P (@) LRG| fmem) 2 2

by Definition 13 and Lemma 3.

Witing f(n) for |P(n) | and using Theorem 8, we obtain

2
f(2n) < (f(n))2 ct for some constant C . (28)

Taki ng |ogarithns,

In £(2n) < 2 In f(n) + n° In C .

For n = 2k , this leads to (noting that f(1) =2 )f/

In £f(2n) < In C (n2 + e(n/:z)2 + 22(:f1/22)2 + 0%+ ek(n/ek)2+ oL
< kn® 1n C .
2
This proves f(n) < ¢ if nis a power of 2.

For general n, one can easily show f(n) < f(2rlg rﬂ) by addi ng

extra points with effectively o distances between these points and the

4n2

other vertices. This leads to f(n) <c i medi ately.  The proof of

Theorem 10 is thus conplete. a

In £(1))

*
Y Wen n =1, pattern(D = (pll) , Where Py = {3 if djq >0

and pll (v, @y, @,1,1), (1,1,1,1), . N R dll =

38
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