
INFORMATION BOUNDS ARE WEAK IN THE
SHORTEST DISTANCE PROBLEM

by

Ronald  L. Graham,  Andrew C. Yaoand F, Frances  Yao

STAN-CS-78-670
SEPTEMBER  1978

COMPUTER SCIENCE DEPARTMENT
School of Humanities  and Sciences

STANFORD  UNIVERSITY





Information Bounds are Weak in the Shortest Distance Problem f
*

Ronald I,. Graham+, Andrew C. #Yao , and F. Frances Yao#

Abstract.

In the all-pair shortest distance problem, one computes the matrix

D = (dij) where d. .
iJ

is the minimum weighted length of any path from

vertex i to vertex j in a directed complete graph with a weight on

each edge. In all the known algorithms, a shortest path p..
13

achieving

dij is also implicitly computed. In fact, log3 f(n) is an information-

theoretic lower bound where f(n) is the total number of distinct

patterns (pij) for n-vertex graphs. As f(n) potentially can be

as large as
=,3
2 , it is hopeful that a non-trivial lower bound can be

derived this way in the decision tree model. We study the characterization

and enumeration of realizable patterns, and show that f(n) < C n2 .

Thus no lower

We prove as a
n

( >3

bound greater than Cn2 can be derived from this approach.

corollary that the Triangular polyhedron T ( >n , defined in

E- by d.. > 0 and the triangle inequalities
13 - dij+d.

Jk -
> dik,

2
has at most Cn faces of all dimensions, thus resolving an open question

- in a similar information bound approach to the shortest distance problem.
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1. Introduction.

Let G be a directed complete graph on n vertices vpv29 l l 4☺n .,

with a nonnegative distance d..
iJ

associated with each edge (vi,vj) . In

the all-pair shortest distance problem, one wishes to compute the nxn shortest

distance matrix D*= (drj)
*

, where d..
1J

is the minimum total length of any

path from vi to v.
3

(see for example El]). Efficient algorithms for this

problem were devised by Dantzig [2], Dijkstra [3], and Floyd [5]. All these

methods require at least 3Cn time in the worst case. More recently,

Fredman [6] gave an algorithm with running time 3O(n (log log n/log n) 113) f

which is slightly better than O(n3) . Substantial improvements over 3O(n ) ,

however, are yet to be found. On the other hand, no lower bound better than

Cn2 is known to the all-pair shortest paths problem for programs with-_

branching instructions. (Kerr [9] proved that 3Cn steps are necessary

for straightline programs with operations {min,+] .)

A natural model incorporating branching instructions is the decision tree

model which is used, for example, in the study of many sorting type problems

mm. Indeed, all the existing shortest paths algorithms mentioned

above can be properly modeled by linear decision trees, where the primitives

are ternary comparisons " f({d..))
13

$0 11 with linear functions f . An

apparently promising approach to obtaining lower bounds for linear decision

trees was suggested by Yao, Avis, and Rivest [13]. It was shown that, in

this model, Cn' log n comparisons are necessary to compute the shortest

distance matrix if a certain polyhedron T n( > in (E) -dimensional Euclidean

space (see Section 2.3) has at least exp(Cn2 log n) "edges", i. e.,

f*l-dimensional faces. An interesting question is thus to determine if

Tn( > in fact has that many edges.

y It was incorrectly claimed in [13] that Tn could be shown to have

exp(Cn2 log n) edges, which would then imply the 0(n2 log n) lower

bound. A revised version of [13] will appear as [lb].
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While counting the number of cmparisons  made in a decision tree tends

to underestimate the "true" complexity of computing shortest distances

(for example, Fredman [6] showed that for any given n , there exists a

linear decision tree with O(n2.5 ) comparisons), it seems to be at present

the only hope for obtaining nontrivial lower bounds. In this paper, we

examine an approach based on information-theoretic arguments. As will

become clear, a natural information lower bound is 10% \P(n))-n2 , where

P(n) is defined as follows. For any n xn matrix D = (dij) with

nonnegative entries, let pattern(D) denote the nxn matrix (pij) ,

where p..
13

is the set of all shortest paths from vertex vi to v. in
J

the graph G associated with D . We define P(n) to be the collection

of all distinct patterns obtainable this way. As the cardinality of P(n)
3

is potentially large m
n lgn

> even if we require each p.. to consist
1J

of a unique path), it appears hopeful that strong lower bounds could be

established. However, we will show that in fact log\P(n)\  = O(n2) ;

therefore no lower bounds better than Cn2 can be derived from this

approach. The enumeration of P(n) is based on a study of "connection

matrices", as described in the next paragraph.

Let D = (dij) , D' = (dij) be two nxn matrices with nonnegative

- entries, then the connection matrix CD D, for D and D' has as entries
9

CD ,,[i,j] = [a 11 <a < n, dia+dAj = min(dik+sj)j  for l< i,j < n .
J - - -

k

In Sections 2 -5, we will develop characterizations for R(n) , the set of

all "realizable" connection matrices. As a result, JR(n)\ is shown to be

of the order C
n2

(here again, rather short of its 2
d

potential). In

Section 6, we apply the scheme used in AHU [1, p. 2041 for reducing shortest

distances computation to [min,+) matrix multiplication to establish a



recurrence relation involving \R(n)l and \P(n)l , and thereby show
q

that IP(n)\ 5 Cn' . .

In another application of the concept of connection matrices, we show

that, somewhat unexpectedly, each face of the polyhedron T ( 1n mentioned

earlier corresponds naturally to a unique nXn connection matrix (see

( >
2

Section 2.3). Therefore, T n has no more than Cn edges, which

resolves the question in the polyhedron approach [13] as well.



2. Connection Matrix, Information Bounds, and Triangular Polyhedron.

2.1 The @in, +) Matrix Multiplication.

A distance matrix is a matrix of nonnegative real numbers. For two

nxn distance matrices D = (dij) and D' = (d! .) , define their sum

A = (aij) = DaD' and product B = (bij) = D8DrJ, respectively, by

a ij = min{d..,
iJ

dijj and b.. = min{dik+d
13

;Zj \lzksn]. The multiplicative

operation @ is also called the [min,+j matrix multiplication. It is

well known ([1],[4],[ll])  that the complexity of {min, +) matrix

multiplication is closely related to that of finding all-pair shortest

distances, i.e., computing the transitive closure D* = (dlj) of a

* *
matrix D , where d.. = 0 and d.. =

1 1 iJ
(DSD~&+ l =.> ij for i f j .

CD
i *= D1-l @ID -by definition.) We will first focus attention on the

{m.in,+ ] matrix multiplication for its conceptual simplicity. The

discussions are then extended to the computation of shortest distances

in Section 6.

We shall consider the computation of {min, +I -product for two nxn

matrices in the decision tree model. An algorithm in this model is a ternary

tree. Each internal node contains a test " f(D,D') : 0 " for some non-constant

rational function f of 2n2 arguments. Each leaf of the tree contains a

set of rational functions {q. i < i,j < nl
.lj' - -2 on the 2n2 variables

Cdij>dij3 ' For any input (W') Y the algorithm moves from the root down

the tree, at each node testing and then branching according to whether

f(D,D') is > 0 , = 0 , or < 0 , until a leaf is reached. At that point,

the product B = DBD' is given by b.. =
1J S,j(D,D�)  l The cost of the

algorithm is defined to be the height of the tree. The complexity L(n)
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in this model is the minimum cost over all such algorithms. When all the

functions f ,
%

are restricted to be linear functions, the model is

called the linear decision tree model, and the corresponding complexity

is denoted by Lo(n) . Trivially, L(n) 5. Lo(n) .

We shall be interested in a natural information-theoretic bound on

L(n) and Lo(n) .

2.2 Connection Matrices and Information Bounds.

The concept of a connection matrix has been defined in Section 1.

We now give some illustrations and examine the relationship between

connection matrices and {min, +] -multiplication.

Consider the following interpretation of the product B = (bij) = D@D'

(see e.g. Ill). Let X = {xl,x2,...,xn] ) Y = (yl,y2,...,yn] , and

z Cy-2’““q= be three disjoint sets of cities, with dik and d.k.
3

being the distances from xi to yk , and from yk to z. , respectively.
J

Then b
ij

is the "shortest distance" from xi to z. via some intermediate
J

city in Y . This suggests another way of representing the product D@D' .

Namely, we can list for each pair Ljl the set of all connecting cities

yk for which dik+ dk.
3

achieves the minimum b. . . Such information can
1J

be tabulated into an nxn matrix CD D, , whose Ljl -entry is the set
9

of integers {a I d. + d' = min(d
x2 CXj +d' )] . Clearly,

'D,D' is the
k ik kj

connection matrix for D and D' as defined earlier.

Example 1. For the graph shown in Figure 1, we have D = ( 2o 3' and
10 15 >

15 20
D� = (10 10) l

The connection matrix
'D,D' is (

1 112
>1,2 2 '



Figure 1. An example of a connection matrix.

Not all matrices can be realized as connection matrices for some D and DT

as the following example shows.

Example 2. There do not exist 2 x2 distance matrices D and D' whose

connection matrix 1 2
'D,D' is 2 1( 1 l

Proof. Otherwise, let CD Dt = (i T) for some D = (d..
> 1J

We have then four inequalities

dl1 + dil < d12 + d;l t

dl;l + d;2 < dll + di2 9

d +d' < d
22 21 21 + dil 9

and

d21 + di2 < d22 + dh2 .

> and D' = (d!.
1J

Adding the above four inequalities together, one obtains 0 < 0 ; a contra-

-diction. a

Definition 1. An n-ary matrix M is a matrix where each entry M[i,j]

is a subset of Cl 29 ,**.,n)  l An n-ary matrix is said to be simple if

IM[i,jlI = 1 forall i,j.
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A connection matrix
'D,D' is an n-ary matrix of dimension mxp

if D and D' have dimensions mxn and nxp respectively. For

simplicity, we will only consider the case m = p = n , while noting that

all discussions have immediate generalizations to rectangular matrices.

Thus, when there is no danger of confusion, an nxn n-ary matrix will

simply be called an n-ary matrix.
3

As illustrated in Example 2 above, not all of the 2n nxn n-ary

matrices are connection matrices.

Definition 2. An n-ary matrix M is said to be realizable (as a connection

matrix) if M = CD Df for some distance matrices D , D' .
7

Let R(n)

denote the family of all nxn realizable n-ary matrices M .

A subfamily of R(n) deserves special attention.

Definition 3. Let SR(n) be the subset of R(n) consisting of all

simple n-ary matrices.

We now give lower bounds to the complexity of {min,+} -multiplication

in terms of ☯R(n)  \ and pe-4 1 l It is plausible that to compute the

shortest distance between x
i and z., one has to find out the best

J

connecting cities 'k ' Thus there must be as many leaves as p(n) 1

( or \sR(n) \ > in a decision tree. The logarithm of the number of leaves

then gives a lower bound to the height of a tree, which is usually

referred to as the information-theoretic bound.

Theorem 1. L(n) 2 log21SR(n)I for aJ.l n 2 1 .

Proof, Let A be any decision tree algorithm computing the {min ,+] -product

of nxn matrices D@D' . Let & be the set of input pairs (D,D') with

8



all their entries strictly positive and for which the test result is

never zero at any internal point, i.e., n fi(D,DT) # 0 where fi
ieA

is the test functions at internal node i . Clearly & is an open set

in the Euclidean space
E2n2

' and is dense in the positive quadrant (all

coordinates 20 >= For each element ME SR(n) , choose DM , Dl;r such

that CDM,Di =
M and (DMGMt ) E R Y which can be done since, for any

distance-matrix pair (D,D' > with CDDt =M,
'

all (DMyDb) ~0nR

satisfy C
DM' Di

= M where 0 is a sufficiently small neightborhood of

(D,D') in
E2n2 . For any such (DM,DM,) , the computation will end

at some leaf lM
without taking an equality branch at any internal node.

Let M[i,j] = [kijj , then in some sufficiently small open set oc b around

(DM4$ Y the shortest distance from xi to z.
J

(1 < i,j < n) is through
- -

'k uniquely for each (W') ~0 Y and furthermore, every (W') ~0
ij

leads to the same leaf lM . Since two rational functions agreeing in an

open set must be identical, we know that the set of output functions
"lJ3

. .

at lM
must be qij(D,D') = di,k

ij
'd;,

ij'
j . It follows that no two distinct

ME SR(n) can have the same lM . Now if we prune all the equality branches

from the tree A , we have a binary tree with at least \SR(n)\ leaves.

The height of A is therefore at least log2 \SR(n)l , which implies

L(n) > log21SR(n)I . 0-

The above argument does not apply when SR(n) is replaced by R(n) ,

since for ME R(n) I the set of (D,D') satisfying CD Dt = M in general
'

does not contain an open set. However, in the more restricted model of linear

decision trees, R(n) does provide a lower bound.

Theorem 2. Do(n) > lo$)R(n)I - 2n2 .-



Proof. Let A be an optimal linear decision tree for computing the nxn

matrix product D@D' . Consider the algorithm A'

sequence of 2n2 tests {d..:O, d! :O,l< i,j <
1J lj - -

exactly as algorithm A, ignoring the outcomes of the

Represented as a linear decision tree, the algorithm

Lo(n) + 2n2 . We will show that, for algorithm A' ,

reaching the same leaf must have the same connection
n

which begins with a

n] , and then proceeds

first 2n2 tests.

A' has height

all input pairs (D,D')

matrix C
D,D' l

T h i s

will prove Lo(n)+2nC > log31~(n)\ , hence the theorem.-

Let I be any leaf with output functions
&L 3. . . Let

J

g = {g, < 0, g2 < 0, ..*, g, < 0 , hl = 0, h2=0, . . ..h t = O] be the

system of linear inequalities and equalities obtained along the path from

the root to R . men for any 1 < i,j,k < n ,- - q.j(D,D') < dik+d;r.
J

must be a consequence of the system g . Because of the Farkas Lemma (for

inhomogeneous systems) (see e.g. [l2, Theorem 1.4.$]), one can obtain

qj(D,D') < dik+ d.k.
3

by taking convex linear combinations of formulas

in the system ⌧u {o < 1) l But this process actually yields either

" < " or " = " explicitly. Thus we actually know at leaf 1 if

sij(D,DT) < dik+dk.
J

or if q.j(D,DT) = dik+d;l;. for all i, j,k .
J

This proves that the connection matrix is determined at each leaf,

as was to be shown. a

We regard the two preceding theorems as information bounds on L(n)
2

and -Lo(n) respectively. As there are nn simple n-ary matrices, and
7;

2n' n-ary matrices, of which SR(n) and R(n) are subsets respectively,

Theorems 1 and 2 could potentially give lower bounds of the order n2 log n

or higher. The characterization and enumeration of SR(n) and R(n) will

be the subject of Sections 3 -5. Before that, we define the

Triangular polyhedron T(n) and relate it to our present approach.
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2.3 The Triangular Polyhedron T n .( >

A set Z in EN is a polyhedron if Z = {??I hE?, a (2) <o,
i -

i = 1,2,...,m] , where m is an integer, x" = (xpp-•, 5) ' and

ai(x') = c
l<j<n

cijxj - cf for real numbers

- -

J c (1,2,...,m] (possibly empty), let FJ(Z)

ii(Z) = 0 for each i&J] . We call FJ(Z) a

Cij ’ c! .
1

To each subset

= [Z 1 Ii(Z) < 0 for each iEJ;

face of dimension t of Z

if FJ(Z) # fi and the smallest subspace of EN containing FJ(Z) has

dimension t . Let $$,(Z) be the set of faces of dimension t of Z ,

for l<-

The

Let fi =

t<N. (For more information on polyhedra, faces, etc., see [7],[U].)

Triangular polyhedron T n( > is a polyhedron in EN for N=(E).

{(i,j)-( 15 i < j 5 n] , and c = ((i,j,k) 1 (i,j)cv f l< k < n- -

andkfi, k#j]. Writeavectorin $ as x"= (x
ijY Ljh) l

Then T n( > is defined by

Tn ={;lx..( ) > 0 for (i,j)Efl ;, "ij 5 Xik+Xkj for (i,j,k) Cc] l

1J -

where we interpret xik to be Xki if i > k .

Theorem 3. , where N = (E) .

Corollary. ( >ISl(T n ) \ 5 \P(n)( 4

N
Proof. It suffices to establish a one-to-one mapping q from U Ft(T(n))  ,

t=o

i.e., the set of all faces of T n , into R(n) .( >

Write R ijk (x") = x..-x
=J ik-Xkj for (i,j,k) E c . Let F be a face

of T ( >n , specified by a partition of fl into T$ufl, , c into zlUC2 ,

such that

ll



F = c Ix” xij > 0 if (i,j)c fil, eijk < 0 if (i,j,k)Exl ,
andx.. =

1J
0 if (iyj) E l-f,, lijk = 0 if (i,j,k)Ex2} .

We now define (p(F) to be the nxn n-ary matrix M , given by

M[i,jl = M[j,i] = {k \ Lj,k)  E X23 if i<j,

and M[i,i] = Ck 1 C(w%  WI] nrr, # $]u {i] .

The mapping cp is one-to-one, as x2 and n2 can be reconstru?t,ed

from q(F) .

To complete the proof of the theorem, it remains to show that v(F)

defines a realizable m&trix M , Choose x" = (xijyl<i< j Ln) tobe any

point on F . Define a distance matrix D = (dij) from x" by letting

d
ij
=d

ji
= x.

lj
for l<i<j<n,- -

a n d  d..=O
11

for l<i<n .- -

It is easy to check that D@D = D . It follows that the connection matrix

'D,D is given bY

C
DY D

a
and c [D, D

i,jl = CD ,[j,i] = {k I I..
1Jk

(x") = 0 , 1 < k 2 n] if i<j,
'

i,i] = {k I xik = 0 or Xki = 0 , l<kznl .

This proves that q(F) '3 M = CD D . The proof of the theorem is complete. a
'



3. A Characterization of Simple Connection Matrices.

We will give a necessary and sufficient condition for a simple n-ary

matrix to be a connection matrix. We first define some useful concepts.

Definition 4. The weight distribution W(M) of an n-ary matrix M is

the integer matrix defined by W(M)i,j = IM[i,j]I . The sum

c \M[i,jl \ is called the total weight of M , denoted by w(M) .
iy j

Example3. Let M = (l,i,3 ';? 'r) . The weight distribution of M

is W(M) = with total weight w(M) = 13 .

Definition5. Let M be an n-ary matrix of dimension mxp . For

l<i<m, the i-th row signature of M is the vector- -
-4
r ( > = (,(i),,(i)

1 2 '...'rn(i)) where rii) is the number of times

integer ! appears in the i-th row. For 15 j < p , the j-th column
.

signature c" (J) = (,(j),Jj) (j)) of M1 2 J'.'JCn is defined in a similar
.

way, i.e., (J)
5.

is the number of occurrences of I in the j-th column.

-0) 42)The sequence of m+p vectors (r ,r t***, $4 ' ~O),W '***' $P))-

is then called the signature of M, denoted by s(M) l

In Example 7 above, the row signatures of M are r-O) = (1'2'2) '

.3

r (2) = (2,l'O) , and ;C3) = (1'2'2) ; the column signatures are

c”@) = (2,1,2) , ?(2) = (2,1,1) , and ?(3) = (0,3,1) .

Definition 6. An n-ary simple matrix M is said to be s-unique if no

other n-ary simple matrix MT can have the same signature as M .
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We will

s-uniqueness

a connection

Theorem 4.

show that, for a simple n-ary matrix M , the property of

is the answer to the question of whether M is realizable as

matrix.

Let M be an nxn simple n-ary matrix. Then ME SR(n)

if and only if M is s-unique.

Proof. Necessity.

Let M be a simple n-ary matrix such that M = CD Dt for distance
'

matrices D = (a..) and D' = (dij) . Assume that there exists another
1J

simple n-ary matrix M' f M with s(M') = S(M) . We will show that this

leads to a contradiction.

Write M = (mij) and M' = (mij) . We have

d. + d'
i,m.. m

1J
..,j -< di mt + dAt for 1 < i,j < n- - (1)
13 ' ij ij' j

by the definition of the connection m&&ix CD Dt . Furthermore, the inequality
'

(1) is strict if mii f rn;; . Adding up the n* inequalities in (l), we

obtain

c Cd.
- i j l~mij

' ~ rdim'
i j ' ij

xrd’ .
j i mij,J

xrd' .
j i mij,J (2)

where the inequality is strict since m.. # m!
1J lj

for some i, j . Now, by
. .

the definition oftherow and column signatures r" ' ,( > c"(J) of M, and
.

r"' ( >i ' 2' (J) of M' , respectively, (2) is equivalent to

14



C Crji) dil + r Z cij) d;j
i & 3 1

< z z ’ cijd
.

i 1 5
(J)

i1
+~~c' d'

3 1
a tj l

(3 >

But by asswnption  M and MT have the same signature, so the left hand

side of (3) is equal to the right hand side, a contradiction. This proves

the necessity of s-uniqueness for a simple connection matrix.

Sufficiency. We next show that if a simple n-ary matrix M is s-unique,

then there exist distance matrices D and DT suchthat M= CDDt .

What we look for are D = (dij) and D' = (dij) that satisfy thh following

system of inequalities

gi,j,a,~(D'D') = (dia+d&) - (dig+d~j) ~ 0 ,

for a = m..
1J

, f3 # a, l.< i,j < n ,

(4

hi,j,a,a(D,D') = (dia+ dc;lj) 0 (dia'd~j) = 0 ,

for a = m..
13
,l<i,jLn .

Assume that the system (Pp) has no solution. We will show that this

implies M is not s-unique. First note that (pp) contains at least-

one strict inequality g.
bj,a,B CO' for n > 2 . By the theorem of-

Kuhn-Fourier (see [12, Theorem 1.1.93)' (J) is not solvable only if there

exist non-negative numbers A.
lyjy%P

such that

15



c h +
Xil<i,j<n %MW giyjya,B 'i j,a,a h*l<i,j<n ' b j,%a- -

CX=m..
13

CX=m..
1J

= (O*a, + l ..+O*d. .+
1J

l .+O*dnn) + (O~d;l+...+O*d~j+.~.+O~d~) (4)

where A.
1, jy% B

> 0 for the coefficient of some g.
bWyB  l

We can scale

the coefficients in (4) so that every h is < l/n , except for h
i, j,a,CX l

The values of A. (1-C i,j < n, CX = m..)1, j&a - - 1-J
can be chosen freely in

0 since h.
bjyaya f 0' and we shall choose them so that for any fixed

i,j, and a=m..,
1J

C hi j,a,B = ' '
l<p<n '- -

Let us rewrite (4) as

c 22 A.. ’ (dig+ d&j >
lli,j<n l<p<n l'J'a'B- -
a=m..

1J

- = c
lLi,jrn l<@<n l'J,a'B lB

~ h. . (d. +d~j) .
- -

BY Equation (5)' the left hand s5de of (6j is

~ (dia+ d~j) Y
lzi,j<n-

(5 >

CX=m.
13

or equivalently,

16



z 22 ( 1
lfi<n l<l<n 5

i dil + r, (J)
c l dij

l<j<n l<B<n c1
- - - - - -

(7)

where ( >i .

5
(J

' %!
> are the row and column signatures of M . By comparing

the coefficient of each variable d, p , d\, in (7) with that in the right

hand side of (6)’ we obtain

c h ( >i for
l<j<n i.,j,a,AJ = 5
- -

a=m..
1J

c A..
l<i<n 'YJY~Y~
- -
a=m..

1J --

The eqUditieS i n

network flow problem.

.
= (J)

Y!
for

(8) and (9) are

Let p(M) be a

l<i<n,l<&<- -

l<j<n,l<,!<- - - -

best represented in

network with source
3

term of a

s ' sink T,

and in between three levels of nodes, with nL nodes on each level

n ’

.
(Figure 2). ( >The nodes on the first level are, Rpl (1 5 i,I < n) , on-

.
the second level V..

1J (l<_i,j p-4 Y and on the third level C (J)
I

(1 < j,1 < n) . Each Rki) is connected with the source and the n

nodes Vij (1 < j < n) ; each Cij) is connected with the sink and the
s

n nodes Vij (1 < i < n) . We shall consider maximum flows in "/7(M)- -

subject to the following capacity constraints on the nodes (cf. [7]):

( )
Rl

i
.

node ( >
.

( >
.

has capacity ril , node CgJ has capacity (J)cL , and

v. *
13

has capacity 1 .

17
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( >

Rnn

vl'l

vl,2

Figure 2. Network "/7(M) .

Vn,n- $A'
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The value of a maximum flow in p(M) is clearly at most

y y rii) = C x c{"' =n2 , if all nodes are saturated to their
ia j 1

capacities. We will demonstrate two flow functions y* and y that

can achieve this maximum. Each function assigns the sme value to both
.

arcs ( >(Rgl ' (J)Vij) and (Vij , Cg' ) l We will denote this value by

y*(i, j,P) and y(i,j,a) respectively.

In the first maximum flow y* , we let

y*(W, 1) =

{

1 if 1 = 112..
1J

00)
0 otherwise.

There is 1 unit of flow through every node V.. . Furthermore, each

node (
Rl

i) -(j)
1J

' 3 is balanced and saturated by definition of the capacities

( >i
1-j

( >
7 CL

j
l

The other flow function y makes the assignment

where a = m.. . The amount of flow through V. is
13 lj

z f(i,j,!) = 1
l<&<n- -

.-
by Equation (5). ( >The total flow out of node Rll is

c
l<j<n

iG&a> = x pi j,a,a
l<j<n '- - - -
a=m..

1J

by Equation (8 \- similarly the total flow into node C (j/ 3 R

(11)

> is

19



lr Y(iJ, a> =
l<i<n

C hi, j,a, 1

l<i<n- - - -
a=m.

lj

by Equation (9). Therefore $ also defines a maximum flow in 6/1(M) .

Note that y* and g are in fact two distinct flow functions. This is

so because A.
1, j,%B

> 0 for some i, j , cx = m.. , and p # a when we
iJ

formed Equation (4); it then follows from definitions of y* and y in
.

(10) and (ll) that, to the particular arc (R i( >
R

,V
ij

) with R = p 9 we

have

y*(i,j& = 0 I y(i,j,l) > 0 . (12)

We are now ready to derive a contradiction that M could not be

.s-unique. Formulate the maximum flow problem for "/2(M) as a linear

program in the standard way (for example, [8, Chapter 81):

maximize Z = c*y

subject to A*y = b , Y_>O

with suitable vectors b , c , and matrix A . It is known ([8,

-Theorem 8.81) that in the -present case, when A is unimodular and b

is an integer vector (representing the capacity constraints in p(M) ),

the-bounded -polyhedron Y defined by Ay = b , y 2 0 has the property

that all of its extreme points have integer components. Let us write i

as a convex linear combination of the extreme points of y (this is always

possible, see [l2, Theorem 2.12.2]),

i = E aIcyk where a.pO, Cak=l .-

20



i

Since 7 # y* , we must have ak > 0 for some extreme point yk with

Yk f Y* l Denote this yk by yt . Because of (12), we can f'urther

assume that y' is‘chosen such that

Y'W~~) > 0 03)

for the particular triple (i,j,l) in (12). By the theorem quoted above,

Y' has integer components. Furthermore, since z is a concave function

of y , that is,

c*T = C'( GoakYk)

= c
ak>O

aJc*YJJ

< max cay
k I

ak>O

the fact that z is maximized at $ implies that it must be maximized at

a11 Yk with ak > 0 . In summary, we know: (i> Y' is a maximum flow

for 6/1(M) > distinct from y* and satisfying (13), (ii) yt has integer

assignments to all arcs in R(M) ; in fact the assignments are O-l valued

since the total flow through any V. is 1 .
lj

We now define a

by letting m! = 1 ,
lj

simple n-ary matrix Mt = (mij) corresponding to yt

where R is the unique integer with y'(i,j,B)  = 1 .

(
.

The fact that all nodes RI1
.

and CJ( )
&

are saturated under yt implies
.

that M' ( >has row and column signatures as given by rli
.

and c (J)
& l

Note that Mt # M since m!
xl

= R by (13)9 while mij # I by (10) and (12),

for some triple (iAd) . But this contradicts the assumption that M is

s-unique. We therefore conclude that the system (Op) can be solved to find

D,D' suchthat M=CDD, . The proof of Theorem 4 is thus complete. u
.,
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4. Bounds on the Number of Simple Connection Matrices.

Based on the characterization derived in the previous section, we

shall find bounds on the number of nxn n-ary simple matrices that are

realizable.

Theorem 5. (c/n> n/2 hn2 < \SR(n)I 2 42n2 , for some constant C > 0 .

We first show the upper bound. By Theorem 4, an nxn n-ary simple

matrix M is in SR(n) only if M has a unique signature among simple

matrices. Therefore, \SNn) 1 cannot be greater than the total number of

such distinct signatures. In a signature

Y ‘0.9 ,“(n) , $),,-(2) 9 44). ..JC > each component

-+i
r ( > (,(i),,(i) = (i)= 1 2 J.-Jrn > can be viewed as a partition of integer n

.
into n labelled parts. Thus, each r" '( > can take at most ("',";',  < bn

different values. It follows that the total number of distinct signatures

(for simple matrices) is at most n 2n
(4 > = 42n2

. This -proves

\SR(n)\ 5 42n2 .

The rest of this section is devoted to the proof of

p(n) \ 2 (c/n> d2 4n2 . We define a class of matrices, called row-ordered

matrices, and show that they have the -property of being s-unique. It follows-

from Theorem 4that they are all in SR(n) . A demonstration that there are

at least ( c/n>
n/2 4n2 such rcw-ordered matrices then completes the -proof.

Definition 7* A simple n-ary matrix is row-ordered if the entries are

non-decreasing along each row.

ordered.

1 1 2

1 3 4
2 2 2

1 2 3

For example, the following matrix is row-

3
4

3

3 1
22



Theorem 6. A row-ordered matrix is s-unique.

.

Proof of Theorem 6: Let M be a row-ordered matrix, and let (? ' ) ,( >

( z(j)) its row and column signatures. We shall show that M is the only

-4( )
.

simple n-ary matrix whose signatures are (r ) and ( c’ ).(J)

.
Let 2 be any simple n-ary matrix with signatures (?I ) and

( >
.

(2(J) ) .

Clearly % must have the same dimensions as M . We shall now prove that

the signatures determine which entries of 5 contain a 1 , which entries

contain a 2 , . . . , etc.

Let a be the smallest integer that appears in $ . Note that a is

uniquely determined by the signatures. We first show that the -positions

(i,j) in fi-- where a occurs are determined by the signatures.

.
Lemma 1. ( >fi[i,j] = (a] , if and only if ral 2 j .

Proof of Lemma 1. As (;(i)) , (z(j)) are signatures arising from the

row-ordered matrix M , we have

c (1) = Ic Ii ra
Ci) zl]\ ,
a

and in general,

.
C (J) = Ic Ii r

a

w

(15 >

We can now -prove the lemma by induction on j .

j=l. The only positions (i, 1) in the first column of fi where
.

a may appear are those with r ' > 1 .( )
a - But bY WY we must actually

place a Ys in all such positions in order to satisfy the requirement of

(1)having ca a's in the first column.
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Induction step. Suppose the

prove it for j = jo+l l Consider

induction hypothesis, each row i

lemma is true for all j 5 j, . We will

the jo+l -stcolumnof fi. By the
.

( >has had exactly min{ral ,j,) a's

appearing in co!,umn 1 through column j, . Therefore, only those rows i
.

with r1( >
a 2 j$l could have a's appearing in the jo+l -st column. By

(15), all such rows must actually have a's in the jo+l -st column in order

to satisfy (15). This completes the induction step of the lemma. c1

Now, we complete the proof of Theorem 6 by induction on a , the smallest

integer that occurs in i? , for a = n,n-l,.,.,l . When a = n , 3 has

integer n in every entry, and this is obviously uniquely determined from

the signature. Suppose it is true that I? = M whenever a > aO+l , we will

prove it for a = a0 . By the preceding lemma, the positions in j!l where

“0. occurs are only dependent on the signature. Therefore M and i? have

"0
at exactly the same positions. Now, replace the a03 in both M and

G by aO+l , and call the new matrices M' and fi' respectively. Clearly

this transformation still leaves M' and MT with the same signature, and

M' is again a row-ordered matrix. By the induction hypothesis, since the

smallest integer in M' is ao+l Y we must have fir = M' . But this

imblies that, before replacing a0 by aO+l , it must be true that

ii = M . This proves Theorem 6. ig

It is easy to see that any matrix which can be transformed into a

row-ordered matrix through row and column permutations is also s-unique.
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We now count the nuriber of row-ordered matrices. As demonstrated

.
earlier, the number of dhoices of r' ' is (( > 2n-1

n-l > = i(F) =

1

2&z
4n(l + 0(1/n)) > (c/n)1/2 4n- for some c > 0 . Therefore, the

number of possible signatures (;o),+) r-+>,***t > is at least

(C/n> n/2 4n' .
Since every such signature can be achieved by some

row-ordered matrix, we have established that there are at least

(c/n> n/2 4n2 row-ordered matrices, and hence

This completes the proof of Theorem 5. u

IN4 \ 2 (c/n >42 4n2 l
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5. Enumeration and Characterization of General Connection Matrices.

We extend the preceding results about SR(n) to R(n) , the set of

all connection matrices. In Section 5.1, we introduce the notion of

"spanning matrices" and discuss their properties. The results are used
2

in Section 5.2 to derive an upper bound of' cn on lR(n)I , which by

Theorem 3 is also an upper bound on the number of edges of the Triangular

polyhedron T n .( > Finally, a characterization of R(n) similar to

Theorem 4 is given in Section 5.3.

5.1 Spanning Matrices.

Let M be any nxn n-ary matrix. Define +I to be the following.

induced system of linear equations.

'M l

l h
i,j,a,@ = Cdia 'd~j) - (diB+d~j) = 0 ,

for a,@~M[i,j] , a f p , 1 < i,j < n .- - (16)

As there are only 2n2 variables d.
lj

and d! . , at most 2n2 of these
J-J

equations can be linearly independent. For any maximal independent

subset 2 of ~~ (clearly \L\ < 2n2 ),- we define an n-ary matrix H bY

Mb, jl if \M[i,j]( = 1 , (17)

c Ia h.1, j,% B = 0 is in x for some 83

" iID 1 hi, j,CX,f3 = 0 is in J for some a} if
lMb,jl\  > 1 l (18)

An n-ary matrix H obtained this way is called a spanning matrix for M .

The total weight of H clearly satisfies w(H) < n2+ 21x1 < 5n2 .- -

A basic property of H is the following. For a pair of distance matrices
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D and D' , if it is known that min{dik+ dij \ 1 5 k < nj is achieved

by every a~ H[i,j] (for all 1 < i,j < n ), then it is also achieved by

every aeM[i,j] . Formally, we have the following lemma.

Definition 8. For two n-ary matric!.es M and MT , we say M' c M if-

M'[i,j] 5 M[i,j] for all i, j .

Lemma 2. Let H be a spanning matrix of an nxn n-ary matrix M .

If M' eR(n) is a connection matrix and H c Mt , then MC Mt .

Proof. Let Mt = CE et . By the assumption that H c Mt , we have for
Y

sip . < FL + q. ,
aJ - lk J

l<k<n, CXeH[i,j] .- - (19)

This implies hi,j,a,p(',") = 0 Y 15 iyj <n Y Q&eH[i,j] , a # B . As

H is derived from a maximal independent subset of dM in (16), we have

hi,j,~,B(�D�)  = 0 Y 1 < i,j 5 n , %B~M☯iyjl  9 a f B l

Formulas (19) and

La+ d' .
QJ

-

) imply that, if \M[i,j] \ > 1 , then

dik+ d' l< k <n, aeM[i,j] ,
kj' --

and therefore, M[i,j] c M'[i,j] .

If l~b,jll = 1 y then M[i,j] = H[i,j] c M'[i,j] , 0

(20)

Theorem 7. Let H and H' be spanning matrices for connection matrices

M and M' , respectively. If H and H1 have the same weight distribution

and the same signature, then M = M' .
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If a connection matrix M is simple, the only spanning matrix for M

is itself. In this case the above theorem becomes a weaker form of the

s-uniqueness condition for M in Theorem 4 (weaker because I$ is assumed

to be a connection matrix).

Proof. Since H and H' have the same weight distribution,

\H[i,j]l = IH'[i,j] I for all i, j . Let us match the elements of

H[i,j] and H'[i,j] in disjoint pairs as &i j = C(~YB)? , where

adid , B~H'bd y and .j = IH[i,j]I .1% 1

Let 14 = CD Dl
Y

for D = (dij) and D' = (dfj) , we can write down

the following set of inequalities,

g: diw+dAj 5 diB+dbj for (a,@) E (&j , 1 < i,j < n ,- -

with equality only if @ e M[i,j] .

When we add up the w(H) inequalities in y, we obtain

C c rci) diL + x r c(j) dhj < r 7 r'(i) di2 + x F C'(j)
1 d' 2

i 1 I -
j 1 i 3 i j 1

1 lj ' ( 1)

with equality holding only if H' c 14 , where (r b> , ,jj)) and (r'(i), ,'(j)
P 1 1 )

are-the signatures of H and H' , respectively. Since by assumption

H and H' have the same signature, the two sides in Equation (21) are

Therefore, H' c M . By Lemma 2,- this implies f4' c 14 .

A similar argument shows X c ?.I' . Hence 14 = Mt . L

5.2 -4 cn” Bound for
pb-4 1 l

2
We will show that there are at most C"

n3

connection matrices (out

2 n Xn n-ary matrices).

equal.

of the
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Theorem 8. IR(n)( 5 C”’ for some constant C .

( > 2
Corollary. I U '3,(Tn)\ 5 Cn .

OLsg;)

Proof. For each MeRo(n) , choose a spanning matrix HM l

By Theorem 7,

all the weight distribution-signature pairs of s , i.e., W-Q Y so-q ) Y

are distinct. Furthermore, the total weight of HM satisfies

n2 5 w(HM) 5 5n2 . Therefore, p(n) \ is bounded by the product uav ,

where u is the number of ways for distributing a total

n2 < A < 5n2 , to the n2 entries in the nxn matrix,- -

upper bound onthe maximum number of distinct signatures

weight distribution (with total weights n2 LAz5n2 ).

weight A ,

and v isan

under any fixed

We will show

that u 5 (64)
n2 and v<c

n2 for some constant c , which then implies

the theorem.

The number u is bounded by the number of ways of partitioning

integer 5n
2

into n2+l labelled parts, where the last part specifies

5n2-A . Therefore,

5n2+n
2

u <-( 1n2
5 26n2 = (64) n2

l

To estimate v , let bW be the total number of distinct row signatures

.(
-0) +n
r -42),r , l �at r ( >

> subject to a fixed weight distribution W . It then

follows that v 5 max(bw)2 , where we have restricted W to those with total
W

weight n2 < A < 5n2 . For any such W , suppose the sum of weights- -

distributed to individual rows are w1,w2, l . ., wn , with c wi = A . Then
.

the i-th row signature ? '( > is a partition of w. into n
1

W (i>labelled parts (rl ,r2 Ye**, rLi)) . Therefore,
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(22)

Write

n

TI-
wi+n-l

( 1

(w.+n-l)! (w.+n)!
=

i=l n-l it * 5 ,ir w:!n! '=

Taking logarithms avid using Stirling's formula

In ml = (m -t $) In m - m f O(1)

we obtain from (22) and (23),

hbW <
- z:>A

wi >o

< max
-zwi=A

wi > 0

F [( Tdi+$)h(l+q)

( 3)2

I -

+

(~~+:>h wi-( n+$Ln n+O(l)]

(n+Qn( l+:)] + o(n) .

If we let wi = ain , then '; < ai, avid c cp$<5n.-
l<i<n-

Equation (24) becomes

- -

In. bW -< 2n SUP

- (

c
Eli < 5n l<i<n

yrl 1+$

( 0i- -

+ 2n SUP
CCXi< 5n (

c + O(n
l<i<n

In(l+cL)
- - - >

) l (25)

ai >l/n-
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Since for x > 0 and ln(l+x) is concave, the

first sum in (25) is 5 n and the second sum is maximized by taking all

ai = 5 9 i.e., <dn6. Therefore,

ln bW 5 2(1+1n 6)n2 + O(n) .

This proves bW < (6e)
2n2+ O(n)

Y and hence v 5 max(bW)2 5 (6e)4n2+ '(In) .
W

This completes the proof of the theorem. The corollary follows immediately

from Theorem 3. Cl

5.3 Characterization of Connection Matrices.
- 4

We will state a necessary and sufficient condition for an n-ary matrix

to be a member of R(n) . The proof is a slight extension of that given for

Theorem 4, and hence will not be repeated.

Definition 9. A multiset U is analogous to a set except that an element

may appear more than once in U . We use UI I to denote the total number of

elements appearing in U . Thus \v\ = 6 for U = {1,2,2,2,3,3) .

-

Definition 10. An n-ary multi-matrix M is a matrix where each entry

M[i,j] is a multiset whose elements are drawn from {1,2,...,n)  , with

. \MLjl I < n .

The concepts of weight distribution and signature defined in Section 3

can also be generalized to an n-ary multi-matrix in the obvious way.

31



Definition l-l. For two n-ary multi-matrices M and M' , we say Mt c M

if every element that appears in the multiset M'[i,j] also occurs at

least once in M[i,j] , for 1 < i,j < n .

We generalize the definition of s-uniqueness to n-ary matrices as

follows.

Definitionl2. An n-ary matrix M is said to be s-unique if for any

n-ary multi-matrix M' with the same weight distribution,

implies that M' c M .

s(M') = s(M)

Theorem 9. Let M be an nxn n-ary matrix. Then MeR(n) if and only

if M is s-unique. --
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6. Enumeration of the Patterns of Shortest Paths.

In this section, we examine an information bound based directly on

the solution space of computing shortest distances. Let G be a directed

complete graph on n vertices Iv ,v
1 2

,...,vn) , with a nonnegative

distance d..
1J

assigned to each edge
CviYvj)  ' A path from vi to v.

3
is a finite sequence of vertices (i= koy5Jk2y •~ykm,lykm  = 5) t
not necessarily all distinct, The length of such a path is

- -

We shall also consider the sequence of a single point (i) to be a path from

i to i, called a null path, with length 0 . The entry d*
ij

in the

transitive closure D* is then the minimum length of any path from i to j ,

For any i, j , let p..
1J

be the set of all shortest paths in G from vi

to v. .
J

(The sit p..
1J

may be infinite.) We denote by pattern(D) the

nxn matrix . .
(%J)

associated with the distance matrix D = (dij) . Let

P(n) be the collection of all distinct patterns induced by nxn distance

matrices. By an argument similar to that used in Theorem 2, one can show

that any linear decision tree for computing the shortest distance matrix D* ,

given D , requires at least 10% IP( - n2 comparisons in the worst case.

This, intuitively, is probably the best information lower bound one can hope

for; the previous approach using connection matrices can be regarded as a
-

special case with the vertices divided into three disjoint sets X
0' Xl'x2y

such that all edges except those from
xO to x1 and from X1 to X2 are

effectively 03 .

The rest of this section is devoted to proving the following theorem,

which states that no nontrivial lower bound can be obtained even in the

present version of the information-theoretic approach.

Theorem 10. for some constant C > 0 .
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We first generalize the notion of a connection matrix to that for

m+l consecutive sets of "cities"
XoI⌧lY  l l l ☺Xm l Assuming that

D (I) = (d(j))
ij

defines the distances between any pairs of cities in

X R 1 x x1 I -then c
D (1) D

(m) by j 1 is to be the set of best connecting
Y l .*,

paths from city ieXO to city j eXm . Formally, if (D (1),D(2) Y l 0.t D(m))

is a sequence of m nxn matrices, then their m-connection matrix

C
(1) ( >

is defined by
D Y l **, Drn

C
D (1)

(,)[i,jl = ((~l,~2y...,~m~l) \ 11 aI < n for an I , and
t'*'Y D

d (1) + d ( >
i.CX

2 + ( >
Va2

l +dm . =
a min (1)
m-lJ

Cd (2)
1

kl, l l �Ykm,l

ikl
+

!klk2
+ l .0 + dp .)) .

m-lJ

This definition reduces to the connection matrix defined previously,  hen m = 2.

Let %A )n denote the set of all possible nxn m-connection matrices.

Lemma 3. \R,(n)) < IR(n)I for m > 2 .- -

Proof. We will show that, for m > 2 , C
D (1)

is determined
,***t Drn( >

by- C,(l) ,, cm-l>
and C

A,D m( >
, where A = D @) @Dc2) 8.. . QD(~-') .

Y l **,

This will imply that IR,(n)I < IR,-,(n)I*  IR2(n) I . The lemma then-

follows by induction, observing that IR2(n)  1 = p(n) 1 l

(1) (2)Let A= D @ D @ *ae @ D b-1 > , Since

min Cd (1)i
+

kl, "'Ykm-l 5
l *. + $!lj) = Fn (

m-l 5

mink
Y'b'Y m-2

(diq + ..* + #-'i )
m-2 m-l

+dm .),( >

km-1J
an alternative description of C

0)
(,)[bjl is the set of

D Y l l l I D
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(5, � l l yam-2yam-l 1
such that am-l’CA D(m)[i,jI  9 and

Y

(9 '**'"I,-2) ",(l) ,(m-1) [iyam-, ' This proves that
Y l l l ,

C is determined by C and C . u
D (1) ( ) (1)

1 l **, Drn D ,***, D cm-l) A,D m( >

Proof of Theorem 10. We shall derive a recurrence relation on
pw 1 l

We use the idea employed in [l] for reducing the shortest paths problem

to [min, + ] multiplication. Let X be any 2n x 2n distance matrix

on vertices Cl 2, ,...,2n) . We write it in the form of few: nxn blocks

x = (y” D”) .

The shortest distances matrix

formula [l, p. 204],

x* =
EY

D*@Y@E
*

where E = (A@ (B@D*@Y)) .

X* then satisfies the following recurrence

E*@BzD*

)

(27)

D*O(D*BY*E*~S B 63 ~'f

Actually, implicit in the derivation of

(27) is an enumeration of all possible shortest paths between any two

of the 2n vertices, in terms of quantities involving only nxn matrices.

We now make this statement precise in a lemma.
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Definition 13. Let & and et be the nxn matrices of O's and +1's

defined below:

r -1

@i; = 0Ad
L 1

<

if (A) ij = (BC~D*~Y)~~

>

if (D
*

<

1 ij
= (D*BY~IE~BBD*

>

> ij

Define the counting vector ,(X) , for X as in (26), to be
-_

p(x) = (pattern(D)  y Pattern(E) , CE* B D* , CD*, v EX ,
Y Y -LY

CD* y E* B D* ,
YY YY

'B,D*,Y ' &, et) *

Lemma4. The matrix pattern(X) is determined by the counting vector p(X) .

Proof. We shall show that the (i,j) -th entry of pattern(X) is determined

bY ,(x> for all i, j .

First we assume 1 < i,j < n . Following the original argument-a

[l, p. 2041 leading to (27), any path from vertex i to vertex j can

be written uniquely as

where each ka E [1,2,...,n3 , and each aI is a sequence of vertices

(possibly empty) in {n+l,n+2, . . ..2n3 . (m may be 0 when i = j .)

A shortest path from i to j is characterized by the following conditions:
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(a) Each kp lcIkR is among the shortest such paths from k
1-l

to kl >l denote this length by leng(ke-l,kp) .

(b) The k's satisfy the condition that ~leng(kL-l,kl) is minimum
&

for all possible choices of the k's.

We can restate the conditions as follows. Let Q = .pattern(E) ,

4, = U
(bh’) &CB D* ,b,tj

[pattern(D) lh h7 yY
Y Y

if

if

if

and r the n x n matrix defined by

&st = -1 Y

est =l ,

e 0,st =

where we use h for the null sequence. Then condition (b) is equivalent

-to (~>~>***,km)  E Qij Y and condition (a) is equivalent to up c rk
I!-lkL

for lLI<m. But this implies that the (i,j) -th entry of pattern(X) ,-

i.e., the set of all shortest paths from i to j , is determined by Q

and r , and hence by pattern(E), pattern(D), CB,D*,Y , and & . This

proves the lemma for the case 15 i,j < n .
-

Similarly, one can show that the set of shortest paths from i to j

is determined by pattern(E), CB D* Y , & and, in addition,
Y Y

r
C*E ,B,D*

and pattern(D) if l<i<n,n+l<j<2n,- -

'D*,Y,E*
and pattern(D) if n+l<i<2n,l<j<n,- c - -

'D*,Y,&B,D
* pattern(D) , and &' if n+l<i,j <2n.

L

We omit the details. 0

37



To complete the proof of Theorem 10, we note that by Lemma 4, the

number of distinct patterns is bounded by the number of distinct counting

vectors. This leads to

by Definition 13 and Lemma 3.

I2 l \R(n) \ 4* IR(n)I ? _i2n2

Writing f(n) for p(n) \ and using Theorem 8, we obtain

f(2n) 5 (f(n))2 Cd for some constant C . ( 8)2

Taking logarithms,

--
ln f(2n) < 2 ln f(n) + n2 ln C .-

For n = 2
k

, this leads to (noting that f(1) = 2 )*f

In f(2n) 5 IIn C (n2 + 2(n/2)2 + 22(n/22)2 + l .* + 2k(n/2k)2+2k+11nf(l))

< 4n2 ln C .-

2
This proves f(n) < Cn- if n is a power of 2.

- For general n , one can easily show f(n) 5 f(2r1g "') by adding

extra points with effectively 03 distances between these points and the
2

other vertices. This leads to f(n) SC4n immediately. The proof of

Theorem 10 is thus complete. a

*
J When n = 1 ) pattern(D) = (pll) , where pll= C(l)] if dll > 0

and p
u_ = {(1> 9 (Ll) Y (LW) t (1☺☺☺)  1 l .) if� dU = o .
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