
Stanford Artificial Intelligence Laboratory
Memo AIM-3 14

July 1978

Computer Science Department
Report No. STAN-(X-78-678

Program Verification Group

REASON!NG ABOUT RECURSIVELY DEFINED DATA STRUCTURES

bY

Derek C. Oppen

Research sponsored by

National Science Foundation

COMPUTER SCIENCE DEPARTMENT
Stanford University

REASONING ABOUT RECURSIVELY DEFINED DATA STRUCTURES

Derek C. Oppen

Artificial Intelligence Laboratory

Computer Science Department

Stanford University

Stanford, California

AIM ract

A decision algorithm is given for the quantifier-free theory of recursively defined data

structures which, for a conjunction of length n, decides its satisfiability in time linear in n. The
first-order theory of recursively defined data structures, in particular the first-order theory of LISP

list structure {the theory of CONS, CAR and CDR), is shown to be decidable but not elementary
recursive.

A preliminary version of this paper appeared in the Proceedings of the Fifth ACM Symposium

on Principles of Programming Languages, 1978. This research was supported by the National Science
Foundation under contract MCS 76-000327.

1. Introduction

We are interested in the problem of reasoning about data structures and the operations
associated with them. Fast techniques (if they exist) for reasoning about data structures are useful in

program verification, program manipulation, program optimization; and in proving that
implementations of data structures satisfy their abstract definition. More generally, knowledge of the

complexity of reasoning about particular classes of data structures gives us some intuition as to their
in herent complexity.

We will explore in detail the question of reasoning about a particular class of data structures,
the recursively defined data structures. These are essentially the recursive data structures proposed by
[Hoare 19751 as a structured alternative to pointers. Most programming languages support such data

structures either explicitly or implicitly (they can be mimicked by arrays), but the best known

example of them is LISP list structure, with constructor CONS and selectors CAR and CDR.

More precisely, recursiveby defined data structures are data structures which have associated
with them one constructor function c, and k selector functions s l,...,~k with the following abstract
structural properties:

I. (Construction)

qd, S&X)’ ‘*a, Sk(X)) - x

II. (Selection)

Slk(X ,,...,x,)) = x 1
s#(x 1 ,...,x,)) - x2

qc(x ,,...,Q = Xk *

III. (Acyclicity)

qd f x
s&x) * x

Sk(X) # x
sl(qx)) z x
qqd) f x

. . .

We consider first order theories (with equality) axiomatized by schemata of the above form.

2

We give a decision procedure for the quantifier-free theory of recursively defined data

structures, which, for a conjunction of equalities and disequalities, determines its satisfiability in

linear time. The procedure has possible applications in any theorem prover which handles such data

structures, for instance, Boyer and Moore’s prover for recursively defined functions [Boyer and
Moore 19773, Guttag and Musser’s prover for abstract data types [Guttag, Horowitz and Musser

19761, or the simplifier we are developing [Nelson and Oppen 1978bJ.

It follows that the quantifier-free DNF theory of recursively defined data structures (that is,

the quantifier-free theory in which every formula is in disjunctive normal form) is decidable in
linear time and therefore that the (full) quantifier-free theory of recursively defined data structures

is in NP (and hence NP-complete).

We next consider theories in which quantification is allowed, in particular the first order
theory of LISP list structure. Our basic decision procedure can be modified to form the basis for a
quantifier-elimination method for this theory However, the decidability of this theory and its
complexity can be derived from existing results in logic. In particular, the constructor c (CONS) may

be treated as the structural-analogue of what is called in logic a “pairing function”. There are results
in the literature on theories of pairing functions and part of the purpose of this paper is to point
out their applicability, We will use these results to show that the first order theory of list structure
(recursively defined data structures) is decidable but not elementary recursive. That is, although the

theory is decidable, there cannot exist a decision procedure for it which always halts in time 22”
2”

for any fixed number of 2’s (n is the length of the formula).

The question of the decidability of the first order theory of list structure has recently been

raised by John McCarthy [McCarthy 19783; by the above it is decidable. McCarthy shows that if
one includes the predicate SUBEXPR(X,Y), which asserts that x is a subexpression (subtree) of y,
then the theory is undecidable.

If one drops the acyclicity axiom schema III, different results obtain. [Nelson and Oppen
1978aJ give a decision procedure for the quantifier-free theory of possibly-cyclic list structure which,
for a conjunction of equalities and disequalities of length n, decides its satisfiability in time O(n2).

A variant of this procedure has been implemented in our simplifier [Nelson and Oppen 1978131.
[Johnson and Tarjan 19773 have improved the underlying graph algorithm to run in time
O(n log2n).

2. Decision Procedure for the Quantifier-Free Theory

2.1 Int reduction

The language of the theory consists of variables, function symbols c, sl, sk, and the

predicate =. The decision procedure described in this section determines the satisfiability of a

con junction of atomic literals in time linear in the length of the conjunction.

Assume we are given a conjunction. The basic strategy of the procedure is to construct a

directed graph whose vertices represent the terms of the conjunction and an equivalence relation.on
the vertices of the graph representing all the equalities that are entailed by the conjunction. The
procedure then checks if any asserted disequality conflicts with any of these equalities or if any of
the acyclicity axioms are violated. If so, the conjunction is unsatisfiable; otherwise, it is satisfiable.

The algorithm represents terms in the conjunction by (the equivalence classes of) vertices in a
directed, acyclic graph possibly with multiple edges. A vertex in the graph may have outdegree zero
or outdegree k (corresponding to the k selector functions). The edges leaving a vertex are ordered. If

u is a vertex, then, for 1 I i < outdegree(let u[iJ denote the ith succcsso~ of u, that is, the vertex to
which the ith edge of u points. Since multiple edges are allowed, possibly u[il = u[j] for i z j.

Every term in the conjunction is either an atomic symbol or an expression of one of the forms

si(t) or c(tl, t2, tk) where t, tl, t2, tk are terms. An atomic term x will be represented by a vertex

labelled x. A term of the form si(t) will be represented by a vertex v such that v = u[iJ for some

vertex u representing t. (If necessary, “dummy” successors of u are added to represent the sj(t), j z i,
if these do not appear in the formula.) A term of the form c(tl, t2, tk) will be represented by a
node with k successors representing respectively tl, t2, tk. To represent the fact that two terms are
equal, we will merge, that is, make equivalent the vertices that represent them.

- The first step taken by the decision procedure is to construct the graph representing the terms
in the conjunction. Vertices representing terms asserted equal in the conjunction are then merged.
Vertices representing the same atomic symbol (that is, vertices having the same label) are also

merged.

The main work of the algorithm is to close the graph under all entailed equivalences of

vertices, checking as it does so that no cycles are being introduced into the graph (since such cycles
would violate the acyclicity condition). First, if two vertices u and v are equivalent and both have
non-zero outdegree, then the equivalence classes of their corresponding successors must be merged
(since x = y 2 s (x) = s1 ,(y) A . . . A Sk(X) = s,(y)). Secondly, if all the corresponding successors of two
vertices u and v with non-zero outdegree are equivalent, then the equivalence classes of u and v

must be merged (since sl(x) = s,(y) A . . . A S&X) = s,(y) = x = y).

The following fragment of an procedure carries out the above step, but does not check for
cycles.

1. For all pairs of vertices u, v with nonzero outdegree

if u and v are equivalent
then (if any corresponding successors of u and v are not equivalent

then merge the corresponding successors
also restart step 1)

else if all the corresponding successors of u and v are equivalent
then merge u and v
also restart step 1.

2. Return.

This algorithm is‘ non-linear. In the next section we will describe a linear algorithm for

computing what will be called the bidirectional closure of a graph and in the following section show

how this graph algorithm gives a linear decision procedure.

2.2 Bidirectional Closure

Let G = (V, E) b e a directed graph possibly with multiple edges such that the edges leaving

each vertex are ordered. If R is an equivalence relation on the vertices of G, then C is acyclic under
R if there is no sequence of vertices uO, uO’, ul, ul’, up = uO of G, p > 0, such that <ui, ui’> E. R
and CU.‘, uI i+l> E E for 0 I i < p.

- Let R be an equivalence relation on the vertices. of G. Define the congruence closure RT of R
on G to be the unique minimal extension of R such that 1. Rt is an equivalence relation and 2. any
two vertices u and v with equal, nonzero outdegree are equivalent under Rt if all their
corresponding successors are equivalent under Rt. If C under Rt is acyclic, there are linear
algorithms for constructing R7 ([Downey and Sethi 19773, [Johnson and Tarjan 19773); these

algorithms abort if G under Rt is not acyclic.

Let R be an equivalence relation on the vertices of G. Define the unification closure R.l. of R
on G to be the unique minimal. extension of R such.that 1. RS- is an equivalence relation and 2. if
any two vertices u and v with equal, nonzero outdegree are equivalent under RJ, then all their
corresponding successors are equivalent under RJ. If G under RS is acyclic, there are linear
algorithms for constructing RL (for instance, the linear unification algorithm of [Paterson and

Wegman 19771); this algorithm aborts if G under RL is not acyclic.

5

We use the notation Rt and RJ to suggest the directional duality of the two notions of closure.

Let R be an equivalence relation on the vertices of G. Define the bidirectional closure R5: of R

on G to be the unique minimal extension of R such that 1. RT is an equivalence relation and 2. for
any two vertices u and v with equal, nonzero outdegree, u and v are equivalent under R5 if and

only if all their corresponding successors are equivalent under R3.

Consider now the problem of constructing the bidirectional closure. First, it is apparent that if
a congruence closure algorithm and a unification closure algorithm are run alternately enough times
over G that eventually G will be bidirectionally closed. That is, R&M... = R$. However, if G is such
that the outdegree of each vertex is either 0 or k, for some fixed k, then one pass of each algorithm

is sufficient, by the following lemma.

Lemma: Let G = (V,E) be a directed graph with multiple edges such that the edges leaving
each vertex are ordered. Assume that the outdegree of each vertex in G is either 0 or k for some

fixed k. Let R be an equivalence relation on the vertices of G. Then R5 = R&l‘.

Proof:

It suffices to prove that RS-t is unification closed.

We first need a property of unification closed relations. Let Rl be a unification closed relation

on G. Let u and v be a pair of vertices in G with outdegree k such that <u[iJ,v[il> E R1 for all 1 I i
5 k. Then we claim that the minimal equivalence relation R2 containing R1 and cu,v> is also
unification closed. Note first that R2 is Rl except that the equivalence classes of u and v have been

merged. Consider any pair of vertices x and y with outdegree k such that <x,y> c R2. If cx,y> E R 1
-then certainly <x[il,y[il > c R2 for all 1 < i I k. So suppose <x,y> is not in RI. Then <x,u> E R1 and

<y,v> E R1 (or <x,v> and <y,u> are in RI). It follows that, for all 1 5 i I k, <x[iJ,u[iJ> E R 1 and

<y[iJ,v[iJ> E R 1 (since R 1 is unification closed and the outdegree of all the vertices x, y, u, v is k),

and thus that <x[iJ,y[iJ> c Rl, since <u[iJ,v[iJ> c R 1 by assumption. Thus, merging u and v did not
affect the unification closure property.

. Therefore, starting out with RS- and making equivalent any two vertices with outdegree k, all
of whose corresponding sons are equivalent, leaves the resulting minimal equivalence relation

unification closed. By induction, it follows that RS-t is unification closed.

It is important for this proof that the vertices have the same outdegree if they have nonzero
outdegree. Otherwise, in the above proof it is not necessarily the case that if <x,u> c R1 then all
their corresponding successors are equivalent.

The order of the passes is also important; RTS- is not necessarily equal to R5.

If G under R5: is acyclic, there is therefore a linear algorithm for constructing RZ. One first

constructs RL using a linear unification closure algorithm and then closes R.L under congruences

(that is, constructs R&t) using a linear congruence closure algorithm. If G under RZ is not acyclic,
. .

one of these algorithms will abort.

2 . 3 T h e D e c i s i o n P r o c e d u r e

We will now state more precisely the decision procedure described informally in Section 2.1.

We start by describing the data structures manipulated by the procedure.

First, corresponding to every term t in a formula, there is a directed, acyclic graph G(t). G(t)

will contain a vertex Vcct,(t) “representing” t.

1. If t is an atomic symbol, G(t) has a single vertex with zero outdegree labelled with t. VG,,,(t)

will be this vertex.

2. If t is of the form si(a), then G(t) will be G(a) and V&3) will be VG(&3) for all

subexpressions fl of a. However, if Qoc) (a) has outdegree 0, we will add k successors to VGtt)(a)

(each successor will be a new unlabelled vertex with outdegree zero). In either case, Vc($) will be

the ith successor of VGd)a .

c3. If t is of the form c(al, a,), then G(t) is the disjoint union of G(al), G(cc,) together

with a new vertex u with k successors. For all 1 5 i 5 k, u[il is VG(d)(ai). VG(t)(t) is u. (In taking

the disjoint union, we will always assume that the label of any vertex :n the union is its old label in
the graphs whose union we are taking. Similarly, for any term 0, if VGtd.,(p) exists in G(ai), thenI-
V,(,)(p) will be the same vertex.)

Notice that the only labelled vertices are those representing atomic terms, and that all vertices
either have outdegree 0 or outdegree k.

In what follows, we may refer to V(t) instead of V,(t)(t).

D e c i s i o n P r o c e d u r e

This algorithm determines the satisfiability of a conjunction F of the form:
V1 = WI A,, , A Vr = WY A

X1 + y1 A . . . A Xs,f’Y,

7

1. Construct G, the disjoint union of G(v$, . . . G(v,), G(w$, . . . G(wr), G(x$, . . . G(xs>,

G(y,>, . . . G(y,). Let R be ((‘(vi), V(wi)) 1 1 I i < r) U ((a, 0) 1 a and 0 are vertices in G with the

sa.me label}. That is, the initial equivalence relation R makes equivalent vertices representing terms
asserted equal in F and vertices representing the same atomic term in F.

2. Construct R5, the bidirectional closure of R on G. Let [Tun denote the equivalence class of

vertex u in G under R3. If G under R3 is not acyclic, return UNSATISFIABLE.

3. For i from 1 to S, if UV(Xi)n - IlV(yi)a return UNSATISFIABLE. Otherwise, return

SATISFIABLE.

2.4 Correctness of the Decision Procedure

It is straightforward to verify that the algorithm is correct if it returns UNSATISFIABLE.
Suppose that it returns SATISFIABLE; we will construct an interpretation satisfying F.

Let RO be the partition of the vertices of G corresponding to the final equivalence relation

R$. We define k functions slO, skO
k

from a subset of R. to Ro, and a function cO from a subset of

RO
to Ro. For 1 < i I k, an equivalence class Q is in the domain of sio if Qcontains a vertex u

with outdegree k; in this case, s,,ccr) - [rubI]. (Since every vertex in G has outdegree either 0 or k,
Q is in the domain of a particular sio if and only if it is in the domain of sio for all 1 5 i 5 k.) A

k-tuple (Ql, Q,$ of equivalence classes is in the domain of co if there exists a vertex u with
outdegree k such that u[iJ z ai for 1 I i I k; in this case, c o(Q1, q) = [Tul]. Note that co, slo,
skO are well-defined, since G is, bidirectionally closed. and every vertex in G has outdegree either 0

or k. However, these functions are not necessarily defined over the whole of Rok and Ro. To

construct an interpretation, we must extend these functions; in the process we will construct an

infinite domain for the interpretation. We now describe this construction.
-

Let Go = G. Construct as above the tuple (Go, Ro, co, sIo, skO). Suppose we have
constructed the first j t I tuples (Go, Ro, co, slo, skO), (Gj, R., c,, s s J,j j 1 j’ “” k~ Construct

(cj+ll Rj+l’ Cj+l, Slj+l* ...) Skj+l) to be the following extension of (Gj, Rj, cj, slj, skj) :

1. For each equivalence class Qof Rj which is not in the domain of any sij, choose any vertex

u in Q(u therefore has outdegree 0 in Gj). In Gj+l, add k new vertices as successors to u, each in
an equivalence class of its own in R j+l’ Let cj+l(KuClJa -8 UuEkJ~) = Qand Sij+1(4) = ~u[iJ~, for 1
I i I k. By this construction, the domain of s.. is R1!+1 j’

2. For each tuple (Q1, Q,) of e uivalence classes of Rj not in the domain of cj, add a newq

vertex u to G j+l in an equivalence class of its own in R j+l. Let u have outdegree k and, for 1 5 i s

8

. k, let u[iJ - v for some v in Q. (Since (Ql, Q,) is not in the domain of cj, there is no other vertex

w in G j+l with outdegree k such that w[il E q, for 1 I i I k.) Let c

I i 5 k, let s. I
i+l(?p -et C&) = UuJ, and, for 1

,l+1(EuJ) - Qi. By this construction, the domain of cj+l is R, .
1

G j+l is thus Gj except for the new vertices ul, up added in steps 1 and 2 above. R. is R
together with the additional singleton equivalence classes [Tu,J, [Tu,]. c.

J+l j
,+I* ‘lj+lP -7 ‘kj+l are ‘j,

‘lj> “‘) ‘kj extended as described in steps 1 and 2 above. The extensions are well-defined, Notice in

particular that if any sij+l <9> is defined, then all the sij+l(9) are defined.

Lemma: Suppose 9, Ql, Q+ are equivalence classes of Rj. Then the following hold:

1. If Q is in the domain of sij, for 1 s i I k, then (slj(Q), s,j(9)) is in the domain of cj and

‘j(‘1 j(Q)I “‘) ‘kj(q)) ‘= Q

2. If (Ql, C&> is in the domain of cj, then cj(Q~, q) is in the domain of sij, and
sij(cj(Ql, Qk)) = Q., for 1 I i I k.

3. Gj under Rj is acyclic.

Proof:

Base step: j = 0. If Q is in the domain of the so, then there exists a vertex u in GO with
outdegree k. Therefore (s,,(9), ~~$9)) is in the domain of co and c&~(~, s,&J) = Q So
the first clause of the lemma holds. If (Ql, Q,) is in the domain of co, then there is a vertex u

with outdegree k such that c,<ct,, Q,) = [ul], and, for 1 5 i I k, u[il E Q. Therefore, for 1 2 i I

k, co(Ql, a.., S.&j is in the domain of siO, and sio(co(Q~, Q+)) = [u[il] = q. SO the second clause

of the lemma holds. Since GO under RO is acyclic, the third clause holds.

- Suppose the lemma holds for j; we show it also holds for j t 1.

Proof of clause 1. If Q is in the domain of one (and hence all) of slj, skj, then the result
follows from the induction hypothesis and the fact that (Gj+l, Rj+l, c~+~, s~~+~, s~~+~) extends

(G., Rj-, Cj, Slj, ..‘) kj1
s >. If Q is not in the domain of the sij, then, in constructing (G.J+l’. R.

‘lj+l’ - ‘kj+l
), we added k vertices as successors to some vertex u in Q and defined

j+l’ ‘j+l’
c
j+l(‘l j+l(Qs

. . . .
'kj+l(Q)) = 'j+l (~4 I 13, ..:, aukIn) r Q

Proof of clause 2. If (cl,, Q+) is in the domain of cj, then the result follows from the
induction hypothesis and the fact that (Gj+l, Rj+l, cj+l, slj+l, skj+l) extends (Gj, R,, c., s

skj). Otherwise, in constructing (Gj+l, Rj+l, cj+l, slj+l, skj+l),
1 J 1 j’ *‘*’

we added a vertex u such that Ku]
= c~+~(Q~, Q+)), and u[i] c Q for 1 5 i I k. c~+~(Q~, Q,)) is thus in the domain of sij+l and

9

Sij+l(Cj+l(Ql, .‘.) s)) - Qi for 1 5 i I k. The second clause therefore holds.

The third clause holds from the construction.

Let R’ be the union of the Ri. Let si’(Q) be sij(Q) for the first j such that sij(Q is defined. Let

c’ be defiried similarly. It follows that c’, sI’, sk’ satisfy the axioms and are defined on all of R,‘.

We will now define an interpretation $ which satisfies F. $ interprets c, sl, sk as c’, sI’,

sk’. It follows that this interpretation satisfies the axioms. It remains to show that G satisfies F. It is
straightforward to show that for every term t in the formula, $(t) = [V(t)]. But V(ti) and V(wi)
have been merged, for 1 < i 5 r, so $ satisfies the equalities in F. V(xi) and V(yi) are in different

equivalence classes since Step 3 returned SATISFIABLE, so $ satisfies the disequalities in F.

2.5 Linearity of the Decision Procedure

G can be constructed in several ways, but some care must be taken if it is to be constructed in
linear time, that is, in time O(n) where n is the length of the formula F. We describe one way of

doing so.

Step 1. For each term t in the formula, we construct G(t). We do not bother to identify

cdmmon subexpressions; distinct occurrences of similar subterms of t will be represented by distinct
vertices in G(t). However, we keep a list of pairs <t,V(t>> for each term vi, wi, xi and yi in the

formula. We also keep a list of pairs <a, V(a)> for each occurrence of each atomic symbol a in the
formula. We then form G, the disjoint union of these graphs. The number of vertices and edges in

G is O(n) and the time required to construct G is also O(n).

Step 2. We next add to the graph the equalities asserted in the formula by merging vertices

V(vi) and V(wi) for each equality vi = wi in the formula. Since in Step 1 we kept track of each V(vi)
arid V(wi), we can do Step 2 in time O(n).

Step 3. We now make equivalent all vertices with the same label. Each such vertex represents

an atomic symbol in the original formula and so appears in the list of pairs <a, V(a)> constructed in
Step 1. Under a reasonable model, we can sort this list on the first argument of each pair <a,V(a)>
in time O(n) using lexicographic sorting. We then scan through this list; for each pair of adjacent

elements <a 1, v(a,b and <a2, V(a,)> in this list, if aI = a*, then we make equivalent V(a,) and
V(a,). This step again takes time O(n).

(In practice, this elaborate method would not be used. Instead, we would use a hash table to

store V(a) for each a, and would never create two vertices with the same label. Languages such as

LISP support this very efficiently.)

10

Step 4. Finally we construct G, the bidirectional closure of the relation on G0 constructed in

the previous steps. Again we can do this in linear time, as shown in Section 2.2. Notice that in

constructing the bidirectional closure, we will automatically identify (make equivalent) all common

subexpressions.

3. The First-order Theory

For concreteness, we will consider the first order theory of list structure (with function symbols

CONS, CAR and CDR and predicate symbols - and ATOM).

First, the decision procedure given in the previous section for quantifier-free conjunctions can

be modified to be the basis for a quantifier-elimination method for this theory, However, it is more

interesting to derive the decidability and complexity of ,this theory from existing results in logic on

theories of pairing functions.

A pairing functiofi- on a set S is a one-one map J : S x S -+ S. An example of a pairing

function over the natural numbers is the function J(x,y) = 2’3’.

Associated with each pairing function J are its projection functions K and L. These are

partial functions S + S satisfying K(J(x,y)) = x and L(J(x,y)) - y. Since K and L are partial, we will
formally consider all functions as relations but will continue to write, for instance, K(z) = x instead
of K(z,x). (An alternative would be to make all functions total by introducing 1, the undefined

element, in to the logic.)

K and L satisfy the axioms

1. Vx Vy 3!t [K(t) - x A L(z) - y]-

2. Vz [3x (K(z) = x v L(z) = x) 3 3!x 3!y (K(z) - x A L(z) = y)]

. The pairing function J is defined in terms of K and L by J(x,y) = z E K(z) = x A L(z) = y.

The first order theory of pairing functions (the first order theory with these axioms) is
undecidable (unpublished results by Hanf, Scott, and Morley). However, with appropriate additional
axioms, the theory is decidable. These additional restrictions on K and L correspond to the acyclicity

condition we put on our recursively defined data structures together with the decidability of the
theory of atoms.

First, we partition the set S into two disjoint parts, the set A of atom and the set S - A of

11

non-atoms. ATOM(x) holds if and only if x is an atom.

The following infinite axiom schema requires that the pairing function be acyclic on all

non-atoms.

3. (A cyclicity)
Vz [7 ATOM(z) A 3x (K(z) = x) 3 K(z) cc z 3
Vz [1 ATOM(z) A 3x (L(z) - x) 3 L(z) f z 1

Vz [7 ATOM(z) A 3x (K(L(z)) - x) 3 K(L(z)) z z]

they

Next, if z is not an atom, it must have projections.

4. Vz [9 ATOM(z) 2 3x (K(z) - x) 1
Vz [1 ATOM(z) 3 3x (L(z) = x) 1

Finally, once an element
are defined) must lie in A.

z lies in A, all iterations of projection functions from z (as long as

5. Vz [ATOM(z) A 3x (K(z) = x) =) ATOM(K(t)) A ATOM(L(z))]

A pairing function satisfying these axioms is defined to be acyclic except for A.

If A is empty, the first order theory with the above as axioms is decidable ([Mal’cev 1961,

19621). If A is non-empty, the theory may or may not be decidable: [Tenney 1972, 19773 reduced the
question of decidability to the decidability of the theory restricted to the atoms; if the latter is

decidable then so is the former. It is the latter result that we now use.

- Consider the first-order theory of list structure. CONS is the pairing function J, CAR is the

left projection K, CDR is the right projection L, S is the set of s-expressions, and A is the set of
atoms. By the above, the first order theory of list structure is decidable if the theory of atoms under

CAR, CDR and = is decidable.

There are many possible choices for A and its associated theory. First, A might be infinite (as
in LISP) or consist of the single atom NIL (as in Boyer and Moore’s original prover). Secondly,
CAR and CDR may or may not be defined on all or some of the atoms. If defined, CAR and CDR
may be cyclic or acyclic (for instance, we might choose CAR(NIL) and CDR(NIL) to be NIL as in
MACLISP). Regardless of the choice, as long as the theory of atoms is decidable, so is the overlying

theory of list structure. For a reasonable choice of the theory of atoms, its decidability is apparent.

12

Therefore, for any “reasonable” axiomatization of the theory of LISP list structure, its first
order theory is decidable. Unfortunately, an efficient decision procedure for the theory cannot exist.

[Rackoff 19751 has shown that no theory of pairing fun,c$ons admits an elementary recursive

decision procedure, that is, one which always halts in time 22” for any fixed number of 2’s (n is
the length of the formula). It follows that any decision procedure for the theory of list structure must
be very inefficient in the worst case.

Although Tenney proved his result for pairing functions S x S + S, his argument holds as
well for k-ary pairing functions, that is pairing functions Sk -) S which satisfy the obvious
generalization of the above axioms. Similarly, Rackoff proves that his lower bound also applies to
any k-ary pairing function. It follows that, given a recursive data structure with constructor c and

selectors s 1 , sk satisfying the obvious generalization of the above axioms, the associated first order

theory is decidable but not elementary recursive.

Acknowledgments

I am indebted to Greg Nelson, Dave Stevenson and Bob Tarjan for numerous helpful

discussions.

References

[Boyer and Moore 19771 R. Boyer and J Moore, “A Lemma Driven Automatic Theorem Prover for

Recursive Function Theory”, Proceedings of the Fifth IJCAI, 1977.

[Downey and Sethi 19771 P. Downey and R. Sethi, “Finding Common Subexpressions”, submitted
for publication,

[G-uttag, Horowitz, Musser 19761 J. Guttag, E. Horowitz and D. Musser, “Abstract Data Types and
Software Validation”, Technical Report ISI/RR-76-48, Information Sciences Institute, University of

Southern California, August 1976, to appear CACM.

[Hoare 19751 C. A. R. Hoare, “Recursive Data Structures”, International Journal of Computer and
Information Sciences, June 1975.

[Johnson and Tarjan 19771 D. S. Johnson and R. E. Tarjan, “Finding Equivalent Expressions”,
manuscript.

[Mal’cev 19611 A. Mal’cev, “On the Elementary Theories of Locally Free Universal Algebras”,
Soviet Mathematics - Doklady, 1961.

13

[Mal’cev 19621 A. Mal’cev, “Axiomatizable Classes of Certain Types of Locally Free Algebras”,

Sibirskii Matematicheskii Zhurrial, 1962. ,

[McCarthy 19781 J. McCarthy, “Representation of Recursive Programs in First Order Logic”, to be
presented at International Conference on Mathematical Studies of Information Processing, Kyoto,

Japan.

[Nelson and Oppen 1978al C. G. Nelson and D. C. Oppen, “Fast Decision Procedures based on

Congruence Closure”, AI Memo AIM309, CS Report No. STAN-CS-77-646, Stanford University,

[Nelson and Oppen 1978bJ C. (3. Nelson and D. C. Oppen, ‘*Simplification by Cooperating Decision

Procedures”, Proceedings of the Fifth ACM Symposium on Principles of Programming Languages,

1978 (also Stanford CS report AIM 311).

[Paterson and Wegman 19771 M. Paterson and M. Wegman, “Linear Unification”, to appear JCSS.

[Rackoff 19751 C. Rackoff, “The Computational Complexity of some Logical Theories”, Ph. D.

thesis, M. I. T., 1975.

[Tenney 19721 R. Tenney, “Decidable Pairing Functions”, Ph. D. thesis, Cornell University, 1972.

[Tenney 19771 R. Tenney, “Decidable Pairing Functions”, submitted for publication.

14

