Stanford Artificial Intelligence Laboratory July 1978
Memo AIM-3 14

Computer Science Department
Report No. STAN-(X-78-678

Program Verification Group

REASONING ABOUT RECURSIVELY DEFINEDDATA STRUCTURES
by

Derek C. Oppen

Research sponsored by

National Science Foundation

COMPUTER SCIENCE DEPARTMENT
Stanford University

REASONING ABOUT RECURSIVELY DEFINED DATA STRUCTURES

by

Derek C. Oppen

Artificial Intelligence Laboratory
Computer Science Department
Stanford University
Stanford, California

Abstract

A decision agorithm is given for the quantifier-free theory of recursively defined data
structures which, for a conjunction of length n, decides its satisfiability in time linear in n. The
first-order theory of recursively defined data structures, in particular the first-order theory of LISP
list structure {the theory of CONS, CAR and CDR), is shown to be decidable but not elementary

recursive.

A preliminary version of this paper appeared in the Proceedings of the Fifth ACM Symposium
on Principles of Programming Languages, 1978. This research was supported &y the National Science
Foundation under contract MCS 76-000327.

1. Introduction

We are interested in the problem of reasoning about data structures and the operations
associated with them. Fast techniques (if they exist) for reasoning about data structures are useful in
program verification, program manipulation, program optimization; and in proving that
implementations of data Structures satisfy their abstract definition. More generaly, knowledge of the
complexity of reasoning about particular classes of data structures gives us some intuition as to their
in herent complexity.

We will explore in detail the question of reasoning about a particular class of data structures,
the recursively defined data structures. These are essentidly the recursive data structures proposed by
[Hoare1975] as a structured aternative to pointers. Most programming languages support such data
structures either explicitly or implicitly (they can be mimicked by arrays), but the best known
example of them is LISP list structure, with constructor CONS and selectors CAR and CDR.

More precisely, recursively defined data structures are data structures which have associated
with them one constructor function ¢, and k selector functionss,,...s, with the following abstract
structura properties:

[. (Congtruction)
c(sl(x), sz(x), . sk(x)) =X

. (Selection)
sl(c(x 1,...,xk)) =X
s2(c(x 1 ,...,xk)) =X,

sk(c(x 1,...,xk)) =X,
I (Acyclicity)

sl(x) * X

sz(x) * X

sk(x) * X

sl(sl(x)) * X
sl(sz(x)) ® X

We consider first order theories (with equaity) axiomatized by schemata of the above form.

We give a decision procedure for the quantifier-free theory of recursively defined data
structures, which, for a conjunction of equalities and disequalities, determines its satisfiability in
linear time. The procedure has possible applications in any theorem prover which handles such data
structures, for instance, Boyer and Moore’s prover for recursively defined functions [Boyer and
Moore 1977], Guttag and Musser’s prover for abstract data types [Guttag, Horowitz and Musser
1976], or the smplifier we are developing [Nelson and Oppen 1978bJ.

It follows that the quantifier-free DNF theory of recursively defined data structures (that is,
the quantifier-free theory in which every formula is in digunctive normal form) is decidable in
linear time and therefore that the (full) quantifier-free theory of recursively defined data structures
is in NP (and hence NP-complete).

We next consider theories in which quantification is alowed, in particular the first order
theory of LISP list structure. Our basic decision procedure can be modified to form the basis for a
guantifier-elimination method for this theory However, the decidability of this theory and its
complexity can be derived from existing results in logic. In particular, the constructor ¢ (CONS) may
be treated as the structura-anaogue of what is called in logic a “pairing function”. There are results
in the literature on theories of pairing functions and part of the purpose of this paper is to point
out their applicability, We will use these results to show that the first order theory of list structure
(recursively defined data structures) is decidable but not elementary recursive. That is, athough glwe

theory is decidable, there cannot exist a decison procedure for it which always hdts in time 22"
for any fixed number of 2's (n is the length of the formula).

The question of the decidability of the first order theory of list structure has recently been
raised by John McCarthy [McCarthy 1978}, by the above it is decidable. McCarthy shows that if
one includes the predicate SUBEXPR(X,Y), which asserts that x is a subexpression (subtree) of y,
then the theory is undecidable.

If one drops the acyclicity axiom schema l11, different results obtain. [Nelson and Oppen
1978aJ give a decision procedure for the quantifier-free theory of possibly-cyclic list structure which,
for a conjunction of equalities and disequalities of length n, decides its satisfiability in time O(n?).
A variant of this procedure has been implemented in our simplifier [Nelson and Oppen 1978b].
[John502n and Tarjan1977] have improved the underlying graph algorithm to run in time
O(n 1og“n).

2. Decision Procedure for the Quantifier-Free Theory
2.1 Int roduction

The language of the theory consists of variables, function symbolsc, s,, . .. Sy and the
predicate =. The decision procedure described in this section determines the satisfiability of a
con junction of atomic literas in time linear in the length of the conjunction.

Assume we are given a conjunction. The basic strategy of the procedure is to construct a
directed graph whose vertices represent the terms of the conjunction and an equivalence relation on
the vertices of the graph representing all the equalities that are entailed by the conjunction. The
procedure then checksif any asserted disequality conflicts with any of these equalities or if any of
the acyclicity axioms are violated. If so, the conjunction is unsatisfiable; otherwise, it is satisfiable.

The agorithm represents terms in the conjunction by (the equivalence classes of) vertices in a
directed, acyclic graph possibly with multiple edges. A vertex in the graph may have outdegree zero
or outdegree k (corresponding to the k selector functions). The edges leaving a vertex are ordered. If
uisavertex, then, for 1 <i < outdegree(let ulil denote the ith successor of u, that is, the vertex to
which the ith edge of u points. Since multiple edges are alowed, possibly ulil = uljlfori «j.

Every term in the conjunction is either an atomic symbol or an expression of one of the forms
s{thore(t;,t,,....t)wheret,t;,t,, ...t areterms An atomic term x will be represented by a vertex
labelled X. A term of the form s(t) will be represented by a vertex v such that v = uli] for some

vertex u representing t. (If necessary, “dummy” successors of u are added to represent the sj(t),j 1,

if these do not appear in the formula.) A term of the form c(t,, t,,, t,) will be represented by a
node with K successors representing respectively t,t,, t,. To represent the fact that two terms are

equal, we will merge, that is, make equivaent the vertices that represent them.

The first step taken by the decision procedure is to construct the graph representing the terms
in the conjunction. Vertices representing terms asserted equa in the conjunction are then merged.
Vertices representing the same atomic symbol (that is, vertices having the same label) are also
merged.

The main work of the algorithm is to close the graph under all entailed equivalences of
vertices, checking as it does so that no cycles are being introduced into the graph (since such cycles
would violate the acyclicity condition). First, if two vertices u and v are equivalent and both have
non-zero outdegree, then the equivalence classes of their corresponding successors must be merged
(since x =y» sl(x) =S|(NA ... Aslx)= s(y)). Secondly, if al the corresponding successors of two
vertices u and v with non-zero outdegree are equivalent, then the equivalence classes of u and v
must be merged (since s,(x)= S(Y)A. .. A5 (x)=5s(y) 2X=Y).

The following fragment of an procedure carries out the above step, but does not check for
cycles.

1. For dl pairs of vertices u, v with nonzero outdegree

if uand v are equivalent
then (if any corresponding successors of u and v are not equivaent
then merge the corresponding successors
aso restart step 1)
else if al the corresponding successors of u and v are equivaent
then merge u and v
also restart step 1.

2. Return.

This algorithm is' non-linear. In the next section we will describe a linear algorithm for
computing what will be cdled the bidirectional closure of a graph and in the following section show
how this graph agorithm gives a linear decison procedure.

2.2 Bidirectional Closure

Let G = (V, E) be a directed graph possibly with multiple edges such that the edges leaving
each vertex are ordered. If R is an equivaence relaion on the vertices of G, then G is acyclic under
R if there is no sequence of vertices uo,uo’,ul,ul’, S ug=Ug of G, p> 0, such that <ui,ui’>e R
and <u:", U, >e EforOs<i<p.

) Let R be an equivalence relation on the vertices. of G. Define the congruence closure Rt of R
on G to be the unique minima extenson of R such that 1. R1 is an equivalence relaion and 2. any
two vertices u and v with equal, nonzero outdegree are equivalent under Rt if al their
corresponding successors are equivalent under Rt If G under Rt is acyclic, there are linear
algorithms for constructing Rt ([Downey and Sethi1977], [Johnson and Tarjan1977]); these
agorithms abort if G under RT is not acyclic.

Let R be an equivalence relation on the vertices of G. Define the unification ciosure R4 Of R
on G to be the unique minimal. extension of R such that 1. Rl is an equivalence relation and 2. if
any two vertices u and v with equal, nonzero outdegree are equivalent under R{, then all their
corresponding successors are equivalent under R!. If G under R! is acyclic, there are linear
algorithms for constructing R{ (for instance, the linear unification algorithm of [Paterson and
Wegman 1977]); this algorithm aborts if G under R{ is not acyclic.

We use the notation Rt and R! to suggest the directiona duality of the two notions of closure.

Let R be an equivaence relation on the vertices of G. Define the bidirectional closure R¢ of R
on G to be the unique minimal extension of R such that 1. Rt is an equivalence relation and 2. for
any two vertices u and v with equal, nonzero outdegree, u and v are equivalent under Rt if and
only if al their corresponding successors are equivalent under R3.

Consider now the problem of congtructing the bidirectiona closure. First, it is apparent that if
a congruence closure agorithm and a unification closure algorithm are run aternately enough times
over G that eventually G will be bidirectionally closed. That is, RiTi1... = R3. However, if Gissuch
that the outdegree of each vertex is ether 0 or k, for some fixed k, then one pass of each agorithm
is sufficient, by the following lemma.

Lemma: Let G =(V,E) be adirected graph with multiple edges such that the edges leaving
each vertex are ordered. Assume that the outdegree of each vertex in G is either O or k for some
fixed k. Let R be an equivalence reation on the vertices of G. Then RT=RI1.

Proof:
It suffices to prove that Rit is unification closed.

We first need a property of unification closed relations. Let R be a unification closed relation
on G. Let uand v be apair of verticesin G with outdegree k such that <ulilv(il>¢R for al 1<
< k. Then we claim that the minimal equivalence relation R, containing R, and <u,v> is also
unification closed. Note first that R, isR1 except that the equivaence classes of u and v have been
merged. Consider any pair of vertices x and y with outdegree k such that <x,y>¢R,,. If <x,y>¢R |
then certainly <x[ilylil>eR, for all 1 <i< k. So suppose <x,y> is not in R,. Then <x,u>eR, and
<y,v> ¢ R (or <x,v> and <yu> are in R,). It follows that, for all I<i <k, <x[iluli}>e R and
<ylilvlil>e R (since R is unification closed and the outdegree of al the vertices x, vy, u, v is k),
and thus that <x[ilylil>€R, since <uli},vli]> ¢ R, by assumption. Thus, merging u and v did not
affect the unification closure property.

Therefore, starting out with RI and making equivalent any two vertices with outdegree k, dl
of whose corresponding sons are equivalent, leaves the resulting minimal equivalence relation
unification closed. By induction, it follows that Ri1 is unification closed.

It isimportant for this proof that the vertices have the same outdegree if they have nonzero
outdegree. Otherwise, in the above proof it is not necessarily the case that if <x,u>¢R, then all
their corresponding successors are equivaent.

The order of the passes is also important; RTd is not necessarily equal to R$.

If G under Rt is acyclic, there is therefore a linear algorithm for constructing R$. One first
constructs Rl using a linear unification closure algorithm and then closes R4 under congruences
(that is, constructs RiT) using a linear congruence closure algorithm. If G under R$ is not acyclic,
one of these agorithms will abort. "

2.3 The Decision Procedure

We will now state more precisely the decision procedure described informally in Section 2.1.
We start by describing the data structures manipulated by the procedure.

First, corresponding to every term tin a formula, there is a directed, acyclic graph G(t). G(t)
will contain a vertex V gt representing” t.

1. If tis an atomic symbol, G(t) has a single vertex with zero outdegree labelled with t. Vit
will be this vertex.

2. If tis of the form s(w), then G(t) will be G(a) and Vg (B) will be V() for all
subexpressions 6 of a. However, if Vi ,,(8) has outdegree 0, we will add k sucCessors to V g (a)
(each successor will be a new unlabelled vertex with outdegree zero). In either case, Vg (t) will be
the ith successor of V g¢(@.

3.1f tis of the form e(x,, a), then G(t) is the digaint union of G(«,), Glat,) together
with a new vertex u with k successors. Forall 1 <i <k, ulilis VG(oe,)("‘i)'VG(t)(‘) is u. (In taking
the digoint union, we will adways assume that the label of any vertex in the union is its old label in
the graphs whose union we are taking. Similarly, for any term 8, if V5 04;)(5) exists in G(a), then
v at)® will be the same vertex.)

Notice that the only labelled vertices are those representing atomic terms, and that al vertices
either have outdegree O or outdegree k.

In what follows, we may refer to V(t) instead of VGm(t).
Decision Procedure

This agorithm determines the satisfiability of aconjunction F of the form:

V, =W, A.. 6 AV =W A
r r

171
X Y A - AX =Y

1. Construct G, the digjoint union of G(vl), .. 'G("r)' G(wl), .. .G(wr), G(xl), .. .G(xs),
Gy ... Gly,). Let R be {(V(v), V(w))|1<i<r}U{(a f)]aand @ are vertices in G with the
same label}. That is, the initial equivalence relation R makes equivalent vertices representing terms
asserted equa in F and vertices representing the same atomic term in F.

2. Construct R3, the bidirectional closure of R on G. Let [u]] denote the equivalence class of
vertex u in G under Re. If G under R? is not acyclic, return UNSATISFIABLE.

3. For i from 1 to s, if [[V(xi)]]-[[V(yi)]], return UNSATISFIABLE. Otherwise, return
SATISFIABLE.

2.4 Correctness of the Decision Procedure

It is straightforward to verify that the algorithm is correct if it returns UNSATISFIABLE.
Suppose that it returns SATISFIABLE; we will construct an interpretation satisfying F.

LetR, be the partition of the vertices of G corresponding to the final equivalence relation
R?. We define k functions S10 %0 from a subset of RytOR,, and a function N from a subset of
Ro"‘ toR,. For 1<i <k, an equivalence class Q is in the domain of s, if Q contains a vertex u
with outdegree k; in this case, 5i0(Q = [uli]] (Since every vertex in G has outdegree either 0 or K,
Q isin the domain of a particular Sio if and only if it isin the domain of Sio foral 1<i<k)A
k-tuple(Q,,....Q,) of equivalence classes is in the domain of ¢, if there exists a vertex u with
outdegree k such that uliJeQ, for 1<i <k; in this case, (Q,. Q) =[ull Note that c,,s,, . . .-
S0 A€ well-defined, since G is- bidirectionally closed. and every vertex in G has outdegree ether O
or k. However, these functions are not necessarily defined over the whole of Rok and R, To
construct an interpretation, we must extend these functions; in the process we will construct an
infinite domain for the interpretation. We now describe this construction.

Let G, = G. Construct as above the tuple Gy Ry S S0 - - - S0 Suppose we have
constructed the first j t | tuples (G R €S0+ - Skoh - - - .(Gj, R.,chls i ...,skj,), Construct

(G R to be the following extension of (Gj,R ceals)

j+11 j“‘l’ Cj+1’slj+1,..., sk]+1) j’cj,slj’

1. For each equivalence class Qof Rj which is not in the domain of any S choose any vertex
uin Q (u therefore has outdegree O in Gj). In Gj+1’ add k new vertices as successors to u, each in
an equivaence class of its own in RM. Let cj”([ult]]} ., [ulk]]) = Q and sml(Q) = [uli]]), for 1
<i < k. By this congtruction, the domain of Sija1 is Rj.

2. For each tuple (Q, . . . Q) of guivalence classes of Rj not in the domain of < add a new

vertex u to Gj+| in an equivaence class of its own in RJ+1' Let u have outdegree k and, for 1 <i <

k, letuli]=v for somevin Q. (Snce(Q,,.... Q) is not in the domain of € there is no other vertex
win GJ+| with outdegree k such that wii] e Q. for1<isk.) Let CM(QI, s Q) = [u} and, for 1
si<k, let s””([[u]])-Qi. By this congtruction, the domain of Ciat isR].

G4y isthusGj except for the new verticesu,,. .. Uy added in steps 1 and 2 above. ler1 is RJ.
together with the additional singleton equivalence classes [[“11]" . .[[up]]. Civp Spjap = Skja1 ATE ot
S1j S extended as described in steps 1 and 2 above. The extensons are well-defined, Notice in
particular that if any siM(Q) is defined, then al the sij+1(Q) are defined.

Lemma: Suppose Q... .. Q, are equivalence classes of RJ.. Then the following hold:

1. If Qisinthe domain of 5 for 1sisk, then (slj(Q). e skj(Q)) isin the domain of ¢;and
cj(sl j(Q)t eeey skj(Q)) = Q,

2. If (Ql. Q) isin the domain of < then cj(Ql, - .Qk) is in the domain of S and
s. (cJ(Ql L QN=Q,forlsisk.

3. Gj under Rj is acyclic.
Proof:

Base step: j = 0. If Q isin the domain of the 5;o» then there exists a vertex u in G, with
outdegree k. Therefore (s, 4(Q).. . . . 5,4(Q)) isin the domain of ¢, and c4(s, o(Q). S0l =Q. S0
the first clause of the lemma holds. If (Q,,....Q,) isin the domain of ¢, then there is a vertex u
with outdegree k such that ¢,(Q,, Qk)=[[u]], and, for 1<i <Kk, u[i]eQi. Therefore, for 1 <i <
k, CO(Q-I’ o Q) isin the domain of Sior and siO(CO(Q-l’ e Qk)) =[[ulil] = Q; So the second clause
of the lemma holds. Since G, under R, is acyclic, the third clause holds.

Suppose the lemma holds for j; we show it aso holds for j t 1.

Proof of clause 1. If Q isin the domain of one (and hence al) of Spjpeee kj,then the result
follows from the induction hypothesis and the fact that (GM, j+1’cj+1’ TS S; +1)extends
(Gj. Rj, i S1p q) If Qisnot in the domain of the s, ,then in constructing (GM,, i+17 Se1

Spje1r 5kj+1) we added k vertices as successors to some vertex u in Q and defined ¢, +1(51j+1(Q)'
skj+1(Q)) = cj+1([ul11] .., [ulk]]))=Q,

Proof of clause 2. If (Q,, Q,) isin the domain of ¢ then the result follows from the
induction hypothesis and the fact that (Gm, l+1'CJ+1' ISUEE .skj+1) extends (Gj,ljz,,Jc.,ls p o
J) Otherwise, in constructing (G. e +1’CJ+1’ TSRRRRL" +1) we added a vertex u such that [u]]

= ;+1(Q1' .. Q) and u[x]leor 1< i <k °j+1(Q1’ c .Qk)) is thus in the domain of ;j+12nd

Sij +1(°j +1(Qy - Q) = Q; for 1s i< k. The second clause therefore holds.
The third clause holds from the construction.

Let R" be the union of theR.. Let s(Q) be sij(Q) for thefirst j such that sij(Q) is defined. Let
¢’ be defiried similarly. It follows that ¢'s,’,. ... 5, sdtisfy the axioms and are defined on dl of R,

We will now define an interpretation which satisfies F. ¢ interprets c, Spee e S asc, sl’, e
s - It follows that thisinterpretation satisfies the axioms. It remains to show that ¢ satisfiesF. It is
straightforward to show that for every term t in the formula, y(t) = [V(t)]. But V(‘i) and V(wi)
have been merged, for 1 <i <r, so ¥ satisfies the equalities in F. V(xi) and V(yi) are in different
equivalence classes since Step 3 returned SATISFIABLE, so ¢ satisfies the disequdities in F.

2.5 Linearity of the Decision Procedure

G can be congtructed in severd ways, but some care must be taken if it is to be constructed in
linear time, that is, in time O(n) where n is the length of the formula F. We describe one way of
doing so.

Step 1. For each term t in the formula, we construct G(t). We do not bother to identify
common subexpressions, distinct occurrences of similar subterms of t will be represented by distinct
vertices in G(t). However, we keep a list of pairs <t,V(t)> for each term Vo W X, and Y in the
formula. We also keep alist of pairs <a, V(a)> for each occurrence of each atomic symbol ain the
formula. We then form G, the digoint union of these graphs. The number of vertices and edges in
G is O(n) and the time required to congtruct G is aso O(n).

Step 2. We next add to the graph the equalities asserted in the formula by merging vertices
V(vi) and V(wi) for each equality V=W, in the formula. Since in Step 1 we kept track of each V("i)
and V(w), we can do Step 2 in time O(n).

Step 3. We now make equivalent al vertices with the same label. Each such vertex represents
an aomic symbol in the origina formula and so appears in the list of pairs <a, V(a)> constructed in
Step 1. Under areasonable model, we can sort thislist on the first argument of each pair <a,V(a)>
in time O(n) using lexicographic sorting. We then scan through thislist; for each pair of adjacent
element5<a1, V(a1)> and <a, V(32)> in this list, if a =a, then we make equivalentV(al)and
V(a,). This step again takes time O(n).

(In practice, this elaborate method would not be used. Instead, we would use a hash table to
store V(@) for each a, and would never create two vertices with the same label. Languages such as
LISP support this very efficiently.)

10

Step 4. Finally we construct G, the bidirectional closure of the relation on G, constructed in
the previous steps. Again we can do this in linear time, as shown in Section 2.2. Notice that in
constructing the bidirectional closure, we will automatically identify (make equivalent) all common
subexpressions.

3. The First-order Theory

For concreteness, we will consider the first order theory of list structure (with function symbols
CONS, CAR and CDR and predicate symbols = and ATOM).

Firgt, the decison procedure given in the previous section for quantifier-free conjunctions can
be modified to be the basis for a quantifier-dimination method for this theory, However, it is more
interesting to derive the decidability and complexity of this theory from existing resultsin logic on
theories of pairing functions.

A pairing function on aset Sisaoneonemap J: Sx S-»S. An example of a pairing
function over the natural numbers is the function J(x,y)=2"3".

Associated with each pairing function J are its projection functions K and L. These are
partial functions S » S satisfying K(J(x,y)) = x and L(J(x,y)) = y. Since K and L are partial, we will

formaly consder al functions as relations but will continue to write, for instance, K(z)= x instead
of K(z,x). (An aternative would be to make all functions total by introducing L, the undefined

element, in to the logic.)

K and L satisfy the axioms

1. Vx Vy 312[K(z) = x A L(z) = y]

2.Vz[3x (K(2) =x Vv L(2) =x)>33y (K(Z) =XxAL@)=y)]

. The pairing function Jis defined in terms of K and L by J(x,y)=z=K(2) =xAL(2) =y.

The first order theory of pairing functions (the first order theory with these axioms) is
undecidable (unpublished results by Hanf, Scott, and Morley). However, with appropriate additional
axioms, the theory is decidable. These additiona restrictions on K and L correspond to the acyclicity
condition we put on our recursively defined data structures together with the decidability of the

theory of atoms.

First, we partition the set S into two digoint parts, the set A of atom and the set S- A of

11

non-atoms. ATOM(x) holds if and only if x is an atom.

The following infinite axiom schema requires that the pairing function be acyclic on all
non-atoms.

3. (A cyclicity)

Vz[-~ATOM(2) A3X (K(2)=x)>K(2) = z]
Vz[~ ATOM(2) a3X (L(z)=Xx)>L(z)= 2]
Vz[- ATOM(2) a3x (K(L(z)) = X) 2 K(L(z)) » Z]

Next, if z is not an atom, it must have projections.

4. Vz[-~ ATOM(2) > 3 (K(2) =x)]
Vz[~ ATOM(2) > 3x (L(2) =x)]

Findly, once an dement z liesin A, alliterations of projection functions from z (as long as
they are defined) must lie in A.

5 vzl ATOM(2) A3x (K(2) =x)>ATOM(K(z)) AATOM(L(z))]
A pairing function satisfying these axioms is defined to be acyclic except for A.

If A isempty, the first order theory with the above as axioms is decidable ([Ma’cev 1961,
1962)). If A is non-empty, the theory may or may not be decidable: [Tenney 1972, 1977] reduced the
guestion of decidability to the decidability of the theory restricted to the atoms; if the latter is
decidable then s0 is the former. It is the latter result that we now use.

Consider the first-order theory of list structure. CONS is the pairing function J, CAR is the
left projection K, CDR is the right projection L, Sis the set of s-expressions, and A is the set of
atoms. By the above, the first order theory of list structure is decidable if the theory of atoms under
CAR, CDR and = is decidable.

There are many possible choices for A and its associated theory. First, A might be infinite (as
in LISP) or consist of the single atom NIL (asin Boyer and Moore's original prover). Secondly,
CAR and CDR may or may not be defined on all or some of the atoms. If defined, CAR and CDR
may be cyclic or acyclic (for instance, we might choose CAR(NIL) and CDR(NIL) to be NIL asin
MACLISP). Regardless of the choice, as long as the theory of atoms is decidable, so is the overlying
theory of list structure. For a reasonable choice of the theory of atoms, its decidability is apparent.

12

Therefore, for any “reasonable” axiomatization of the theory of LISP list structure, its first
order theory is decidable. Unfortunately, an efficient decison procedure for the theory cannot exist.

[Rackoff 1975] has shown that no theory of pairing funczt}?ns admits an elementary recursive

decision procedure, that is, one which dways hdts in time 22" for any fixed number of 2's (nis
the length of the formuld). It follows that any decision procedure for the theory of list structure must
be very inefficient in the worst case.

Although Tenney proved his result for pairing functions Sx S » S, his argument holds as
well for k-ary pairing functions, that is pairing functions s* 5 S which satisfy the obvious
generaization of the above axioms. Similarly, Rackoff proves that hislower bound also appliesto
any k-ary pairing function. It follows that, given a recursive data structure with constructor ¢ and
selectors Sy 8y satisfying the obvious generdization of the above axioms, the associated first order
theory is decidable but not elementary recursive.

Acknowledgments

| am indebted to Greg Nelson, Dave Stevenson and Bob Tarjan for numerous helpful
discussions.

References

[Boyer and Moore 19771 R. Boyer and J Moore, “A Lemma Driven Automatic Theorem Prover for
Recursive Function Theory”, Proceedings of the Fifth 1JCAI, 1977.

(Downey and Sethi1977] P. Downey and R. Sethi, “Finding Common Subexpressions’, submitted
for publication,

[Guttag, Horowitz, Musser 19761 J. Guttag, E. Horowitz and D. Musser, “Abstract Data Types and
Software Validation”, Technical Report 1SI/RR-76-48, Information Sciences Indtitute, University of
Southern California, August 1976, to appear CACM.

[Hoare1975] C. A. R. Hoare, “Recursive Data Structures’, International Journal of Computer and
Information Sciences, June 1975.

[Johnson and Tarjan1977] D. S. Johnson and R. E. Tarjan, “Finding Equivaent Expressons’,
manuscript.

[Mal’cev 1961 A. Md’cev, “On the Elementary Theories of Locally Free Universal Algebras’,
Soviet Mathematics - Doklady, 1961.

13

[Madl’cev 1962] A. Mal’ cev, “Axiomatizable Classes of Certain Types of Locally Free Algebras”,
Sibirskii Matematicheskii Zhurrial, 1962. '

[McCarthy 1978]) J. McCarthy, “Representation of Recursive Programs in First Order Logic’, to be
presented at International Conference on Mathematical Studies of Information Processing, K yoto,

Japan.

[Nelson and Oppen 1978a) C. G. Nelson and D. C. Oppen, “Fast Decison Procedures based on
Congruence Closure”, Al Memo AIM309, CS Report No. STAN-CS-77-646, Stanford University,

[Nelson and Oppen 1978b] C. G. Nelson and D. C. Oppen, ‘“*Simplification by Cooperating Decision
Procedures’, Proceedings of the Fifth ACM Symposium on Principles of Programming Languages,
1978 (aso Stanford CS report AIM 311).

[Paterson and Wegman 19771 M. Paterson and M. Wegman, “Linear Unification”, to appear JCSS.

[Rackoff 19751 C. Rackoff, “ The Computational Complexity of some Logical Theories’, Ph. D.
thesis, M. I. T., 1975.

[Tenney 19721 R. Tenney, “Decidable Pairing Functions’, Ph. D. thesis, Cornell University, 1972.

[Tenney 19771 R. Tenney, “Decidable Pairing Functions’, submitted for publication.

14

