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Abstract.

rowr St epl ength algorithms are presented for mnimzing a class
of nondifferentiable functions which includes functions arising from
4 and ¢ approxination problems and penalty functions arising
from constrained optimzation problenms. Two algorithns are given
for the case when derivatives are available wherever they exist
and two for the case when they are not available. W take the view
that although a sinple steplength algorithmmay be all that is required
to meet convergence criteria for the overall algorithm from the point
of view of efficiency it iS inportant that the step achieve as |arge
a reduction in the function value as possible, given a certain linit
on the effort to be expanded. The algorithms include the facility
for varying this limt, producing anything from an algorithm requiring
a single function evaluation to one doing an exact linear search.
They are based on univariate mnimzation algorithns which we present
first. These are normally at |east quadratically convergent when

derivatives are used and superlinearly convergent otherw se, regardless

of whether or not the function is differentiable at the m ni mum
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1. [ ntroduction.

Descent nethods for mnimzing a function F(x),

construct a sequence of estimates {x(k)} to the mninum such that

) (k) o+ a(k)p(k)

with

P By ¢ pplk)y

The vector p(k) i's known as the direction of search and oz(k) as

the steplength. G111 and Mirray [1] describe a reliable and efficient
algorithm for-determning the steplength o{(k) in the case that F(x)

is continuously differentiable. In this report we show how to construct

nornal |y

a steplength algorithm that is equally efficient when mninmzing certain

cl asses of nondifferentiable functions.

W will at first restrict ourselves to the case that F(x)is

ei t her

m
Fy(x) = 2 max (0,2, (x))
i=1

or

I
3
>
|_b
3

FM(X)

where the functions {fig are of the form

and are continuously differentiable. we assume that every tine the

(1.1)



function F(x) is evaluated the val ues fl(x),...,fm(x) are al so
made available. In Section 5 we will indicate how the algorithms

devel oped for F.(x) and F,(x) could be nodified to make them

applicable to a wider class of functions. Basically, the ideas to
be described here could be nodified to construct a steplength al gorithm

for any nondifferentiable function F(x) with the follow ng properties:

1

(1) F: r CE*» E is continuous on r.

(2) The directional derivative F'(x) (n) =

lim (F(x + hn) - F(x))

b0
exists for all n# 0 everywhere on r .

=

(3) Any point z where the derivative F'(z) does not exi st

satisfies an equation

CP('j) (z) = o
(1) @)

for some j , 1<j <J, where the functions 4 ~",...,0

r cE® o E1 are known and are continuously differentiable.

In order to prove convergence for descent nethods for nultivariate
mnimzation the steplength nust satisfy certain criteria. Such criteria
do not in general define a unique point, but a spectrum of val ues.
Although all points in a particular range may satisfy the criteria equally
well, they are not necessarily all of equal nerit with regard to the
efficiency of the method. Usually if two steps both neet the convergence
criteria, the one that achieves the greatest reduction in F(x) is to be
preferred. ~ The better the step, in this sense, the fewer iterations
usual ly required to obtain a satisfactory approximtion to the mnimm
The question we face, therefore, in designing a steplength algorithmis

not nerely how to choose a step which satisfies the required criteria for




convergence, but of the many that do how do we choose a "good" step.
At the same tinme, however, how good a step we can choose depends on
how much effort we are willing to expend, and hence all the algorithns
we present contain the facility for varying this limt on the expense,
producing anything from an algorithm requiring a single function

evaluation to one doing an exact linear search.

2. Not at i on.

As explained in the last section, we shall initially be concerned

with mnimzing functions of the form

or

where the functions f‘i(x) are continuously differentiable on EN

Ve denote the gradient vectors of £, (x) by v £ (x) and define

g (x) =Z vf, (x) , in the case that F = Fe

or

glx) = v fj(x)(x) , where j(x) is the smallest index

such that 7(x) = f.

()(x) . in the case that F = F .
] X M

Note that g(x) is the gradient of F(x) wherever the latter is defined,

and is one of the directional derivatives of F(x) at the points where



the gradient is not defined.
Let x be the current iterate and p be the direction of search
along which the ste-p is to be taken. \W& are now onitting the super-

script k for sinplicity. Then it is convenient to wite

fi(a): fi<X*oz‘p), i =1,...,m

and

F(Q/) = F(X + o p) .

It should always be clear form the context whether we are thinking of

fi or F as a function of a vector or of a steplength value . Then
-
Flog) = Z‘ max (O, fi(a)) in the case that F = Fe
i=1
or (2.1)
Flg) = max £, (o) if F=F
1 <i<m * M

We denote the derivative of fi(a) , Which is the projected gradient

of fi(x + o p) along p , by

T
£f1 () =v £. x + ap) P
i 1

and-denote the left and right derivatives of F(a) by F (o) and

F. (g) where

+4-

! . Floth) - Flo)
h

and FJ: (o) i's analagously defined.



W also define

1 T
F (o) = glx + o D) p.
Thus
' '
F (¢) = Z £, (@) , in the case that F = FS
i fi(o[)> 0 (2.2)
or

F (o) = £ (a)(a/)
where j(y) is the smallest index such that

5 () (@) , if F= F

Furthermore, ¥ (y) is the derivative of F(o) wherever the latter is

defined and otherwise is either the left or the right derivative of r(y) .

W also define ¥"(x) to be the second derivative of F(y) where
it exists.

A point where the derivative of F(y) does not exist will be
referred to as a point of derivative discontinuity, or just a discontinuity
for short. MNote that in the case F = FS the discontinuities occur at

the zeros of the fi("‘)' In the case F = FM, the discontinuities z

satisfy F(z) = £.(z) = £, (z) for some i £k .

The term "convergence rate" will be used to nean the R-order of
convergence in the sense of Ortega and Rheinbol dt [2,p.2%] . In each of
our theorems, the corresponding stronger Qorder result also follows
except in pathol ogical cases, but as pointed out by Brent [3,p.35], it is
often necessary to introduce rather artificial conditions to ensure this.

Thus, for sinplicity, we use only the R-order.



3. Univariate Mnimzation Methods.

In this section we present a nunber of algorithns to find a |oca
mninum of the univariate function F(x) , where Fly) is defined by
(2.1). There is no loss of generality if we assune F'(0) < 0 and
that there exists a local mnimm «>0 . Thisis a valid problemin
its own right, but in developing our algorithms we shall bear in mnd
their use for constructing steplength algorithns for mninmzing functions
of several variables. This aspect of their use will be discussed in

Section 4 .

The inappropriateness of using an algorithm which assunes F(y)
i's continuously diffgrentiable can be seen by examning Figure 1
Efficient methods for functions wth continuous derivatives usually
determne o iteratively by successively approximating F(w) by a
cubic or quadratic polynomal and taking as the next approxinmation to
§ the mnimum of this approximting polynonmial. The approximting
polynomialis matched to F(x) at the best known estimates to g
It is quite clear in case (iii) that the mninmum of an approxinmating
pol ynom al may bear no relationship to ;  In case (ii) the approach
isvalid only if the approximting points all Iie on the central portion
of the curve. Such a situation is unlikely to be true initially when
only a poor approximtion to & is known. Consequently, the initia
performance of such algorithns is poor even when the solution is not
a discontinuity. It will be seen that fromthe point of view of step-

length algorithms it is the initial performance which is crucial

The two types of minima possible for functions of the type (2.1)

illustrated in Figure 1 are enphasized in the statement of the necessary




(i)

o

A continuously differentiable function.

(ii)

o

A function of the type (2.1) but with ; not a discontinuity.

Fla)

(iii)

o
A function of the type (2.1) with o a discontinuity.

FIGQURE 1
I



and sufficient conditions for g to be a mininmmof F(a) :
Necessary condition: Either ¥ (&) = 0 with F'(a) non- negat i ve
*
if it exists, or « is a derivative discontinuity of

Flo) with 7(@) < 0 and 71@) > 0

Sufficient condition: Either F* <3§> = 0 and " (;) exi sts and
IS positive, or ¢ is a derivative discontinuity of F(y) with

7' (y) < 0 and F! @) >0 .

Two algorithns are described (one with |ow overhead and one with
hi gher overhead) with two variants (one which utilizes derivatives and
one which does not). The essential feature of all the algorithms is that

at each iteration the option of converging to either type of mninumis

kept open. The step taken may be an estimate of either type, depending
on which is considered nore |ikely and/or prudent. \Aen ; is not a
discontinuity the higher overhead algorithns are conparable in efficiency
(in terns of the number of function evaluations) to the algorithnms of
[1] applied to just the continuously differentiable function which coincides
wWith T(o) near & . Wen 4 is a discontinuity the algorithns are
comparable in efficiency to efficient rootfinding algorithnms applied
directly to the function of which 5 is a root.

~ Before describing the new algorithmin detail we shall review the
algorithnms of [1]. It is worth noting that because of the safeguards
built into themthey will work even if F(y) is not differentiable
al though for the reasons nentioned earlier their performance will wusually

be poor.



3.1 The Differentiable Case.

Here we present the basic ideas of the algorithns of G|l and Mirray
(1] for the univariate minimzation problem when F(x) is differentiable.
These ideas will be needed in Section 3.2. W do not nake any attenpt to
present all the details of the algorithnms and refer the reader to [1] for
t hese.

\\¢ assume that at each iteration of the mnimzation we know an
interval [a,b] in which the mni numf; is known to lie. The interval

[a,b] 1is called the interval of uncertainty and the points a and b

are said to bracket the mninum (Initially a is zero, but b is un-
known. This situation is handled later).

Two cases-are treated, the case where both the function values F(y)
and the derivatives F'(y) are used, and the case where the function

values only are used. The latter case may occur either because the
derivatives are not available, or because they are relativelyexpensi ve

to conpute. In the first case we assune that two points x and w gare
also known. The point x is the |owest point obtained so far, (i.e.

F(x) < F(o) for any value of o at which the function has been eval uated),
and w is either the second |owest or the |ast evaluation point. There

are four possible configurations for x, w,a and b :

(i) x=a and wa
(12) x=a and w=b
(iti) x=b and w= a (3.1)
(iv) x=b and w> b .

In the case that the derivatives are not used, we assume that three points
x, w and v are known, where X s the |owest point obtained so far,

w is the second lowest, and v is either the third |owest or else is the



nost recent point. Then a < x < b and the possible values for w

and v are :

(1) w=a and v<a

(ii) w=a and v=>b (3.2)

(iii) w=b and Vv =a

(iv> w=b and v>b

The basic strategy of the algorithmis to use successive polynon al
interpolation with safeguards. (W use interpolation to mean actually
either extrapolation or interpolation). Thus at each iteration, a new
poi nt { i's chosen as the minimm of a pol ynoni al approxi mating F(a)
at some of the points already evaluated. Provided { satisfies certain

conditions, u is set to f , but otherwise the point is rejected and

u is set to sonething different. The function is then evaluated at u .

In the case that derivatives are used, the polynomal is a cubic chosen
to agree in both function value and derivative with F(¢) and 7' (a) at
the points x and w , and in the case that derivatives are not used,
a quadratic is chosen to agree in function value with F(y) at the
"points x, wand v . Then uis set to 3 except in the follow ng

si tuations:

(1) @ lies outside the interval of uncertainty [a,b]. This
normal Iy only occurs in cases (i) or (iv) of (3.1) or (3.2)
when the step fromx to Lis an extrapol ation step.
However, because of round-off error, it could occur even in

an interpolation step. \Wenever i does not lie in [a,b]

10



(iii)

it isrejected and u is instead set to a point u
obtained by a function conparison method which is guaranteed
tolie in[a,pb]. The function conparison method used is

somewhat conplicated and will not be described here.

{ is obtained by extrapol ation and although flies in [a,b],

lies between £ and x . In this case too the point is

<

rejected and u is set to u instead. By extrapolation we
nmean that case (i) or (iv) applies in (3.1). Justifying this
woul d require going into details about the function conparison
met hod, but basically if G is not close to the best two poi nt's

but close to a known poor point some change woul d seem warranted.

The step from x to 4 is greater in magnitude than half of
the step taken at the iteration before last. Here too u is
instead set to u. The purpose of this restriction is to
ensure that the algorithm does not produce a sequence of points
oscillating back and forth at each iteration and reducing the

interval of uncertainty by very little.

The poi nt % lies too near one of the points already eval uated.

In this case u is instead set to another point which is
separated from those already evaluated by at least a certain

tolerance tol(x) defined by

tol (o) = elal + (3.3)

11



The function is then evaluated at u and the various points are

updated as fol | ows:

Case with derivatives:
If F(w) < F(x) then
if F*(u) <0 then a «u otherwise b «u
we x and x « u
ot herw se
if u<x then a «u otherwise b «u

we u.

Case without derivatives:

If F(w < F(x) then
if u>x then a « x otherwise b« x

vew, wex and x «u

ot herwi se

if u<x t hen a+u otherwise b «u
if Flu) < Flw) thenv «w and w e« u

otherwise v « u .

This. completes the description of one iteration of the algorithm

12



3.1.1. The initial strategy.

The initial case is normally handl ed by specifying in advance
a step length oy totry first. This then gives two initial values
0 and o, for x and w . In the case without derivatives, the
second step nust also be handled specially, using only the two points
for the polynom al approximation, but we do not consider the details
here. The point a is initially set to zero, but it may be several
iterations before we determne an upper bound on the interval of un-
certainty. The strategy in this case is to use polynonial extrapolation,
just as in the case where b is known and situation (i) in (3.1) or
(3.2) applies, but with u being set to 2 except in the followng
cases :
(1) the step from x to 4 goes across = , where & is
obtained by taking a step from x which is four times the
step taken in the previous iteration. Here u is set to u .
(ii) The poi nt % lies too close to or beyond a fixed upper bound

on « beyond which we are not permtted to evaluate the

function. Here u is set to a permssable point instead.

The function is then evaluated at the new point u and the other points

are updated as in the case that b is known.

3.1.2. Convergence Criteria.

V¢ conplete the basic description of the algorithms by specifying

that they termnate when the mninum is bracketed and

b - a < 2 tol(x) (case with derivatives)
or max(x-a,b-x) < 2 tol(x) (case without derivatives)

where tol(x) i s defined by (3.3).

15



3.1.3. Convergence Results.

Here we state the convergence results for what we may call the
theoretical procedures associated with the algorithnms described above.
By this we mean the algorithms with exact arithmetic applied to the
exact function F(y) , with the tolerances ¢ and r set to zero.
Since this mght produce a zero step fromx to 4 , We also specify
that if this happens u is instead set to u as defined by the function
conpari son method. W assune that an upper bound © has been found
on the interval of uncertainty.

W al so assune that F(y) is continuous on [0,b]. (W can obtain
convergence results even if Flo) is not differentiable, althought not

the same rate of convergence). Let us define a stationary-inflection

point as a point « , Where F'(y) exists and equals zero, and which
is neither a local maximumnor a local ninimumof F(a). W also define

a' generalized stationary-inflection point as a point ¢ where either

FL(O/) =0 or F'(y) = 0 and which is neither a local maxi mum nor a

|l ocal mnimumof F(g) . Note that by a local nininumwe nean either a

*
weak or a strong local mininum i.e. a point ¢ such that 3 § > 0 s.%t.

Fla) > F(o) for |o - &l < &. Ve then have the fol lowing result:

Theorem 1.
Let f{uk} be the sequence of points u generated by the
theoretical procedures. Then in both the cases with and without derivatives
the sequence {uk} converges to a point ; which is either a |ocal
mninmum or a generalized stationary-inflection point of F(¢) on [0,b]

Furthermore, suppose that F'(y) is positive, uk#z for all k, and
F**'(y) is Lipschitz continuous on [a,b] as defined by [2,p.6%].

Then the asymptotic convergence rate is quadratic, in the case with
derivatives, and is superlinear with order 1.324..., in the case wi thout

14



derivatives

W note that it is possible to modify the theoretical algorithmin
order to ensure convergence to a local mninum In practice this additional
conplication is not warranted since nunerically one cannot distinguish

between a stationary point and a m nimm

In order to prove the theorem we need several |enmas. In the
foll owing, we use U X Wosoa s, by etc. to denote the

various points at iteration k .

Lemma 1.

Suppose that the sequence of points {uk} contains a subsequence
{ujg with the property that ujk _ ujk for all k, i.e. all the points
in the subsequence are generated by the function conparison nmethod. Then
the sequence {uk} converges to a point U , and Uis alocal minimm
or generalized stationary inflection point (LM or GSIP)

Proof .

The proof that the sequence converges follows from a property of the
function conparison nethod that at each such step the length of the inter-
val of uncertainty is nultiplied by g where 0<g< 1. The rules for
updating the end points of the interval of uncertainty ensure that it

always contains a LM or GSIP, so we have 2 b wo 3:, and u is a IM

or GSIP.

Temma 2.
Suppose 3 K such that w is set to the point ﬁk for al
k >K, i.e. ultimtely no function conparison steps are needed. Then the

Lo * * *
sequence {uk} converges to a linmt u. Al so X, *u and W, *u .

15



Pr oof .

W nust have that for all k > K:

1
o - =l <5 Ty -l
as ot herw se the point 1/1\1 woul d be rejected. Assume wthout |oss of

generality that Kis even. Then

L E-X
Moy - Xl < ) 2 | uy - xl
and
k-K
1, 2
o1 © ol < G) Upiy - %y
For sinmplicity we wite
k
!uk— Xkl < (%)2 C

K
V\,hereC:Z2

Si nce X Is the |owest point so far and w, is the new point, we always

have either X, T w o, OF e Thus either there exists J

such t hat X, = xJ for k >J , i.e. no subsequent point W, is lower than

X; ., oOr there is a subsequence (x.Jk} such t hat >5k = u.jk_l for all k .
In the former case w_+ x;, so assume the latter.  Consider Wepr Yo
Let j, be the largest element of the subsequence such that J, < k, i.e.
X =¥ =0 :Xj:ujl-lz'lf j£+1 = k + 1 , i.e.
Xepp = U o t hen

k+1l

2

ey = el = luy - gl < %) ¢

16



O herw se Xep = x.J and we have

IA
no
e
|

INA

Using this result, we have that for any i >Kk

N e IR LIV TUPY I PRI A

LY

1y, 2 1,1

= =4+ =

< ) C(lez+g+. .2
k
= .2

1,2

S(‘é) C

Therefore for all & there exists M such that for i,k > M Iui - ukl <6,
and hence {uk} s a Cauchy sequence and converges. Cearly {xk} and
{wk} al so converge to the sane point.

The following lema is presented wthout proof.

Lemma 3.

If %wis not alLMor GSIP of Flo) , then there exists & > 0 such
that the interval (3 - 6, 1§+ §) contains no LM or GSIP and such that
cubic interpolation with at |east one of the two points in the interval,
or quadratic interpolation with at least two of the three points in the
interval, is good enough that the m ninum of the approximating polynomial

lies outside the interval.

17



The following lemma is presented in a nore general form than
needed here so that it can be used in the next section.
Lenma 4.

Assume that there is a subsequence (u.Jk} such that each point
in the subsequence is generated by polynonial approximation to F(q)
with, in the cubic case, x. as one of the two points where the fit

Ik

is made, or, in the quadratic case, Xy and ij as two of the three
*

points. Then, if {uk} s {xk} and {wk} all converge to U , uis
a LMor GSIP of F(y) .
Proof .

Let 6 be that of Lemma 3. Since the sequences all converge to

, there exists X- such that W X and w_ are all separated from

k
by at most 6 , for all k > K. Therefore the points used for the

Sk Cx

fit ultimately lie within & of % . Thus the result follows, since
otherwise we can apply Lemma 3 to show that the new point W satisfies

- ul > 6 , which is a contradiction.

Proof of Theorem 1.

Either there is a subsequence {ujk} all generated from function
conparison steps, or there exists K such that w = ﬁk for k>K.
In the former case the first part of the result follows from Lemma 1.

In the second case we can apply Lemmas 2 and 4 to concl ude that w 3 :
and. uis aLMor GSIP. This conpletes the proof of the first part of
the theorem and we writeﬁ =3

If the hypotheses of the second part of the theorem hold, we can
conclude that ultimately the points will be generated by successive

pol ynom al approxi mation alone. The superlinear convergence of order

1.324... for successive quadratic interpolation was shown by Jarratt [k4]

18



in 1967, and by Kowalik and GOsborne [5, p.20] i n 1968. I n 1973,

Brent [ 3,p.35] showed that their results for the Qorder (see Section 2)
were not true in certain pathological cases and showed how to introduce
extra assunptions to avoid these. He also showed that the R-order is
at least 1.%2k... in all cases. The rate of convergence for successive

cubic interpolation was shown to be quadratic (again except in patho-

| ogi cal cases) by Overten [6], using the synbolic manipulation system
MACSYMA [7]. This was independently rediscovered (al so using MACSYMA)
and a considerably sinplified proof for the R-order was presented by
Bj orstad and Nocedal [8].

Cearly the safeguards (i) to (iii) will no longer be involved
once the quadratic or superlinear convergence sets in. This conpletes the

proof of the theorem

Note that it does not make sense to talk about just any |ocal
mnimum of the function (o) which approxi mtes F(y) by cal cul ating
it on a finite machine, since such a function is really just a step.-function
and may have a lot of local nminima very close together (see Brent [3,p.63]).
Instead, we can say that the algorithm produces an approxinate |ocal

mnimumin the follow ng sense:

Theorem 2.

The algorithm applied to the computed function #(g) usi ng the
(comput ed) derivatives ;\' (@) , terninates with points a and b such
that a < b, and

(1) # () <0 and P'®) > 0 or $1(a) < 0 and F®) > fa)
oo f®)> 0 and fa) > P

19



and

(11) tol (x) < b - a < 2 tol(x)

(where x = a if #(a) < #@®) and othervise x = b) ,

Theorem 3.
The algorithm applied to the conputed function f(x) without
derivatives termnates with points a, x and b such that a < x < b

and

(i) %@ > P& and f&x) < f)
(ii) tol (x) < max (x-a, b-x) < 2 tol(x) .

As long as the tolerances ¢ and r are chosen so that tol &) is

a reasonable mninum distance to require between two points before
conmparing their function values, then the above is as near as we can get
to giving conditions for a "reasonable" local mninmumto satisfy. The

results are easily verified by examning the algorithm

3.2. The Nor-differentiable Case.

In this section we describe the changes that nust be made to the
al gorithm described in Section 3.1 to create our new algorithmfor uni-
variate ninimization when F(y) is given by (2.1). It is necessary to
nodify only one part of the algorithm namely the nethod used for
sel ecting the point 2. The saf eguards which when necessary reject 4
and set u to another point, and the nethod for updating the points
a,b,x,wand v, are all left unchanged. As nentioned earlier, the key
strategy of the new algorithmis to try to recogni ze whet her ; s a

di scontinuity or not, and to then sel ect & accordi ngly as either a
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direct estimate of the discontinuity, or as an estimate of the m ni num
of a polynomal approximting Fla) .

Several different cases are treated. W have already noted that
we are concerned with the two possibilities Flo) = Fqlo ) and
Flo) = ¥ (o) as defined by (2.1) . These will both be described
together as far as possible. W also consider both the case where
the function val ues fi(o/) and the derivatives £ (@) are used and
the case where function values only are used. Recall that we have
extended the definition of a derivative by defining F*(a) in (2.2)
For sinplicity we initially confine our attention to the case wth
derivatives. Finally we describe two versions of the algorithm a |ow
overhead version and a higher overhead version. The latter makes much
more use of all the information known but requires nore operations to
choose the new poi nt 'ﬁ . The two versions have simlar asynptotic
convergence properties but the higher overhead version should be nore
efficient in terms of the nunber of function evaluations required to
obtain sonme specified accuracy (especially for |ow accuracy requirenents).
The difference between the two nmethods is likely to be more significant
the higher the nunber of discontinuities is. In nost applications the
conputer time is domnated by the time spent evaluating the function,
so the higher overhead version is expected to be much the nore useful in
practice. However, for sinplicity we describe the |ow overhead version
first.

3.2.1 The Low Over head Version.

As in Section 3.1, we assume that at each iteration we have an
interval of uncertainty [a,b] and points x and w satisfying (3.1).

The process for determning 2 may be divided into a nunmber of parts:
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(i) The mininmum and maxi num discontinuities contained in the interval

[a,b] are estimated. |In the case that F = Fg this is done as foll ows.

The function val ues fi(a) and fi(b) are conpared, for each i from
ltom . If for some i , £, (a)and £, (b) have opposite signs then
there is a discontinuity between a and b given by the zero of fi(a).
This is estimated by the Newton step fromx . |f z; lies outside
la,b] it is replaced by the secant estimte (a fi(b) - b f.l(a))/

(fi(b) - fi(a)) which is guaranteed to lie in [a,b] . After this has

been done for all i , Zp is set to the mninmum of the Z and Zp

Is set to the maxinmum (it is not necessary to store the 1; 3 7 and

zp  can be updated as each Z is conputed). If there were no dis-

continuities located between a and b, i.e. £.(a) and £, (b) had
the same sign in every case, Zp is set to b and Zp is set to a .
Note that conparing fi(a) and fi(b) for all i will identify all the
di scontinuities between a and b if the functions fi are sufficiently
near linear, although it may not identify themall in general, since a

function may have a zero in [a,b] and still have the same sign at a

and b .

In the case that F = Ly the discontinuities z are no |onger

given by f£.(z) =0, but by £,(z) = £ (z) = F(z) for some i #k .

k

The estimate z of the mnimum discontinuity is then made as foll ows.

Let -j(a) be as defined in (2.2), i.e. normal ly j(a) is the index of the
only function which has the largest value at a . Then for each i # j(a)

the zero of £,, y(a) - £, (@) is estimated by the Newton step froma ,
J o

3
v/

. (a) - '
i.e. y % is set to a-[fj(a)(a) -£.(a)1/ (£} (a) () - £1(a)] .
Note that there is no reason to suppose that yia lies in [a,b]l. Then

ko and z, are defined by
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o (a) (a) (a)

z, = mn {ylﬂ.a‘: yia >a} = ¥,
I4

If none of the yi\a?

-

1
are greater than a then z_ is set to b and kL

L

is undefined. The estimte Zp of the maxi num discontinuity and the index

ko are simlarly defined by |ooking at the Newton step fromb to the zero

of £ (n) (@) - £, (o) for each i . Note that it is not necessary to store

all the yi_.(a) or y_.?b) .

However, iif F = FM, and kL:j(b) and k, = j(a), indicating that

Figure 2 illustrates the process.

there is only one discontinuity in [a,b], then in all subsequent conputations

of £ part (i) is onmtted and zp and z, are set to z as defined below
The reason for this is sinply to avoid estimating the zeros of all the other
fj(a)(oz) - 1, (@) and fj<b)(a) - £.(a) vhen it is unlikely that any of them
will have any relevance. Note that this is the only place in the algorithm
where any information need be retained from previous iterations other than
a,b,x,w and the function and derivative val ues.

(ii) Apoint z is defined as follows. In the case F = Fs’ z 1S
defined to be the average of all the estimates Z, of the discontinuities
| ocated in [a,b]. In the case F = FM z is set to an estimate of the zero

of fj (a)~ Ts( which nust lie in [a,b]. The sanme technique used in (i)

J b)
for estimating the zero of fi(a) is used, i.e. first the Newton estinmate

fromx is tried, and if this lies outside [a,b] it is replaced by the

secant estimate using a and b . This is illustrated in Figure 3.

If there do not appear to be any discontinuities in [a,b],i.e. F = Fg
and none of the fi(oz) differ in sign at a and b , or F=F,, and
j@) =j(b) , then z is undefined. If F = F, and z i s defined then

we insist that =z <z <z by setting z = min(zL, z) and

Zp - max(zR, z) . This may be necessary because of the different nethods

for making the three estimates.
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Estimating the leftnost discontinuity in [a,b] for F = Fyy -

FI GURE 2
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(iii) If w is not equal to a or b , i.e. situation (i) or
(iv) in (3.1) applies, then we wish to estinmate whether there are
any discontinuities between w and x . (If w equals a or b
this has already been done in (i) ). In the case that F = Fo this
is done by comparing f,(w) with £ (x) for each i and seeing
whet her they have opposite sign for any i . This can be done at the
same tinme as the z, are estimated in (i) . In the case that F = Ly
it is done sinply by seeing whether j(w) and j(x) are equal. No
attenpt is made to estimate any discontinuities.

(iv) Let us introduce some new notation. For a given point vy

we define
P (o) =§: . (o) T
i;fi(y) >0
(3.4)
or P ) - ()
i) ’

where j(a) is defined by (2.2) if F=F

Then F(y)(oz) Is a continuously differentiable function coinciding

with (o) in the interval containing y over which F(o) is

1

differentiable. W denote the derivative of F(y)(a) by F(y) (cd .

In this part then we compute the val ues F(a‘)(b), F(a)'(b),

(b)'(

F(b)(

a) and F a) . Again for F:FS this can be done at the
sane tine as the conputation of the Z; in (i) .
(v) W are now ready to make our first polynomal approximation,

The idea here is to fit a polynomal to a differentiable function coinciding

with F(a) in a certain interval and to take the nininum of the

polynomal as the new point u only if the step to it does not cross
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any of the estimates of the discontinuities. The ultinmate quadratic
convergence rate for successive cubic approximation quoted in Section
3.1.1 holds only if the approximation is nade at the |owest points
avail able, which do not necessarily bracket the mininum Thus ultimately
we would like each point ﬁ to be obtained by approximting F(o) at
x and win the case that ; is not a discontinuity. Therefore if
there were no discontinuities |ocated between w and x in (iv), or
in (i) if wsa Orf w =1b , the point s, is conputed as the minimm
of the cubic fitted to F(o) at x and w, i.e. agreeing in function
value and derivative with F(¢) and F'(¢) at x and w . However,
iIf there was at |east one discontinuity |ocated between X and w,
t hen s1 IS computed as the mnimumof the cubic fitted to F(X) (o)
at a and b using the values in (iv) (recall x=a or x=b). The
reason that a and b are used rather than x and w is that this
choice of fit cannot inpede the ultimate rate of convergence in the case
t hat ; s not a discontinuity since then eventually there can be no
discontinuities |located between x and w. |t is our view that this
strategy ,using an interpolation fit instead of an extrapolation fit while
still not near the solution, is slightly more reliable than if the fit
was nade to F(X)(a) at x and w regardless of whether there were
di scontinuities between the two points.

If s, lies in[a,b] and the step fromx to N does not cross

1

: L . < . _ :
any discontinuities, i.e. a < s; <z if X aorz <s <bif
A

Xx=b , then uis set to sy - QG herwise the step is rejected. This is
illustrated in Figure &4 .
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(vi) If the step is rejected in (v), a second cubic fit is tried,
this time fitting the cubic to F(b)(a) at a and b if x=a, or to
@) () at a and b if x=b . Thus for exanple in Figure & (i) ,

after the step to s, is rejected, the point s, is set to the mininum

1
of the cubic interpolating fe(oz) at a and b . This second cubic

fit may be of crucial inportance to the algorithms performanceaswill
be described later. Then as in (v), if s, lies in(ab]land the step
from x to S, does not cross any discontinuities, f is set to S,
QG herwise this step is rejected too.

(vii) If the steps in (v) and (vi) have both been rejected, this
inplies that the step froma to the estimate of the mninum of the
differentiable function coinciding with F(g)atacrossesthe
estimte of a discontinuity. The same is true of the step fromb
estimating the mnimum of the differentiable function coinciding with
F(o) at b . Hence the conclusion is drawn that 2 may be a dis-
continuity. Therefore ﬁis set to z as defined in (ii).

This conpletes the description of the choice of u when an interval
of uncertainty is known. W now describe the changes that nust be made
to the above when mininmum has not yet been bracketed. V& have x=a and
w<x. Then % is defined as follows.

(i) Here the nininumdiscontinuity is estimated. If F = Fg the
zero of each of the fi(oz) is estimated by the Newton step froma , and
z. is set to the smallest estimate greater than a . If F = Fy » then

L

zp is defined as in the case where b is known.

(ii) and (iii) are omtted.

(x)

(iv) Here we conpute F(X>(w) and F*'(w) as defined by (3.4).
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(v) The point s, 1S computed as the mininum of the cubic

A

fittedtorgkfatxandw. If x <s then u is set

1S 2

to s, otherwise the step is rejected.

(vi) If the step in (v) was rejected, a second cubic fit is made,
this time fitting to the differentiable function which is thought to
coincide with F(y) beyond the discontinuity which is estinmated by Zp
This is done by noting in (i) which function it is whose zero is estimated

by 2z - For exanple, if F = Fo and zp estimates the zero of

fl(a) , and fl(x) >0, then the differentiable function thought to
coincide with F(¢) beyond this zero would be F(a)(a) - fl((y) )
Consequently the value of this function and its derivative would be
computed at X and._ w in order to make the cubic fit. An exanple in

the case F = Fl\/l woul d be that . estimates the zero of fl(o‘) -

£,(@) and F(x) = fl(x) . Then the differentiable function in question

woul d be f2 and the val ue of f2 and its derivative at X and w

woul d be used for the cubic fit. Let S, be the mnimm of the cubic

> we set G“to S,
Sy 2 Zp g
rejected. The situation when F = FM is illustrated in Figure 5 .

thus defined. |f otherwi se the step is
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Det er m ni ng ﬁj for F =7, when the nminimumis not bracketed. The step to
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to s, the mnimumpredicted by the fit to £, .
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(vii) If the steps in (v) and (vi) were both rejected, this inplies
that the steps to the estimates of the nmnima of each of the differentiable
functions coinciding with F(o) on either side of the discontinuity
estimated by zy both go across the dicontinuity. Hence we conclude that

2 is likely to be at the discontinuity and set f to Zy -

3.2.2 Comrents on the Al gorithm

In the algorithm described the asynptotic rate of convergence will
usual ly be quadratic, irrespective of whether or not Z s a point of
discontinuity. This is because ultimately the points generated will either
be those resulting from successive cubic interpolation estimating the
mnimum of a differentiable function or from Newon's nethod estimating
the zero of a different differentiable function, and both processes normally
have a quadratic rate of convergence. Note that since zis an estimte
of the average of the discontinuities we mght expect the nunber of dis-
continuities between a and b to be halved at each step. Consequently
even on problems for which there is a large nunmber of discontinuities in
the region of interest the nunber within the interval of uncertainly wll

soon becone snal | .

To our know edge the only other univariate minimzation or line search
al gorithm which has been proposed for special nondifferentiable functions
is that of Charal anbous and Conn [9] for F = Fy - Their al gorithm does
not include the safeguards that we have described. Also, a basic iteration

of their algorithmis quite different fromours in a number of ways.

Suppose a is the |owest point x . Their algorithm estinmates the zeros

of £, - f, for each i by y.(a) as ours does. It then sinilarly
J(a) 1 1

estimates the val ues of fk at yi(a) for each i and k and hence
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(a) [

estimates the value of F at each y, - The poi nt yi\af with the
| onest estimted value of F is then chosen for the new point and a

function evaluation is made. Then a cubic interpolation step is taken
only if the new function value is higher than F(x). This approach is
quite different from ours where 8 is set to a discontinuity estinmate

only if the step to the cubic interpolation estinmate crosses a dis-

continuity estimate. Also we nake cubic fits only to differentiable

(a)(a) (b)(

(a)

the points estimated by yia

functions, i.e. to F or "' () rather than F(y) . Since
may not even be discontinuities, our
hi gher overhead version (to be described in the next section) presents
a better way to estimate the mninum supposing that is is at a dis-

continuity.

In sone situations the algorithmof [9] may converge to a point of
di scontinuity which is not a mininum This would also happen in our
algorithmif step (vi) were omtted, i.e. if f were set to z without
maki ng a second cubic fit when the step to the estimte of the m ni num of
the first interpolating polynomal used in (v) crosses a discontinuity
estimate. This is illustrated in Figure 6 for F = Fy Here z.= z.= z
as there is only one discontinuity between a and b and z <z< Sq

where Z is the exact zero of £ If no second fit is made in step

1~ O
- . . * .

(vi) but & is set to z the points generated will converge to z if
. - * . . . .

the points z converge to z fromthe left. This will happen in this

exanpl e if (fi(?) - f’é(;)) : (fi(;) - fé(z)) < 0 since Newton's nethod

to find the zero z of o(z) converges fromthe left if o' (z) 9 (z) < O .
Cearly what is needed is to generate a point between *z and b , and this
is done by stepping to the mninmumof the cubic fitted to f, at a and

bin step (vi).
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An example for F = Fy where successively setting u to z
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because s, is rejected causes convergence to z instead of o .

FI GURE 6
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An alternative strategy for avoiding this difficulty is to estimate
whether the gradient of F(o) changes sign at the discontinuity estimated
by z , and to set 8 toz only if this happens. However, the second
cubic fit is recommended since it can give a good estimte of the mninum
at the same time as rejecting the estimate of the discontinuity. In any
event if the gradient is thought not to change sign at the discontinuity

sone alternative step nust be conputed.

Anot her point worth noting is that it mght seemthat an alnmost as
efficient algorithm could be designed saving sonme storage by not requiring
the £, (w) to be available as well as £.(a) and £, () (and perhaps
the corresponding derivatives). In fact saving fi(w) requires no
extra storage as a third vector in addition to those for the function
values at a and b is required anyway for the evaluation of the function
values at the new point u , and since the neww is always either the
old a or the old b , the function values at w can be retained by
interchanging the new vector with the old vector that would otherw se be
overwitten. O course this is really only of academc interest since we

do not expect storage of a vector of length mto be significant.

3.2.3 The Hi gher Overhead Versi on.

W now describe a second version of the algorithm which requires
nore housekeeping operations and/or storage , but makes fuller use of
the information available. The basic difference between the two versions
Is that in the higher overhead version we do not restrict the number of
cubic fits to one or two, but allow up to m cubic fits. Consequently
6 Is always set to either the estimate of a mninum between two adjacent

discontinuity estimates or to a specific discontinuity estimate. The other
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difference between the two versions is that we now estimate the dis-
continuities by inverse cubic interpolation at two points. Thus the
estimate of the discontinuity is chosen as the zero of the inverse
cubic which agrees with the inverse of o(¢) in both function and
derivative values, where ¢(y) is the function whose zero is desired
Inverse interpolation is preferable to direct interpolation for this
purpose because the zero of the inverse cubic nust be unique whereas
the direct interpolating cubic may have several zeros. For further

details on inverse interpolation see Traub [10] .

As before we begin by assuming that the mninmumis bracketed by
a and b . It becomes necessary to consider the two possible forns
of F(y) separately. For sinplicity we assume that F(a) < F(b)
The conputation of f is then done as foll ows:

(a) F=F

(1) All discontinuities located in [a,b] are estimated by inverse

i nterpolation and the estimates z., are ordered and stored. If there is
at least one discontinuity located between x and w (i.e. there is

at |east one fi(a) with different sign at x and w) then the inverse
interpolation is done at a and b since this is the nost reliable
choice, but otherw se each estimate is first made by inverse interpolation
at the points X and w , and this is then replaced by the estimte
using a and b only if the first estimate lies outside [a,b]. Thisis
done because the good rates of convergence properties of successive inverse
interpolation apply only if the best points are used for each fit. Note
that although x and w are usually the two points with |owest values of

L N . - .
Fle) it is clear that if ¢ lies at a discontinuity with fk(§)= 0 , then
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ultimately x and wwll also be the two points with [owest value of
IfK(a)l. If a and b are not equal to x and w, then ultimtely
there cannot be any discontinuity between x and w even if the m nimm
; is a discontinuity, and hence this strategy cannot inpede the rate of
convergence. It is possible that the inverse interpolation estinate
using a and b lies outside [a,b]; if this happens, it is replaced

by the secant estimate.

(ii) For convenience we set vy to the value a and Yo to the small est
of the val ues {zi} . The points vy and v, represent the current
discontinuities as we examne themfromleft to right. W initially

(&) (@) as defined by (3.4). The function

define the function h(a) by F
h(y) is the differentiable function thought to coincide with F(o) between

the discontinuities estimted by v and Vs

(iii) The point s is set to the estimate of the nininumof h(a) using
(direct) cubic interpolation. As in the |ow overhead version, the cubic
interpolation is done at the points a and b if there is at |east one
di scontinuity |located between x and w , and otherw se is done at the
points x and w. If y, <s <y, , then @ is set tos .

If s is undefined, which will be the case if h(o) is linear, then s
is defined as either + « or -« by assuming h(o) is linear and
conparing its values at x and w or a and b . For exanple, if

n(a) < h(b) , then s is set to - = .

(iv) If s < vy then & is set to y, as then the differentiable
functions coinciding with F(y) on either side of vy each appear to

have their mnimumon the opposite side of vy -

(v) If s >y2then ylis set to Voo Vp is set to the next small est
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of the values of the {zi}, or to b if there are none greater than
Yo h(p) is set to the function thought to coincide with F(o) in
the new interval [yl, ye] , and steps (iii), (iv) and (v) are repeat ed.
The new function h(w) is obtained by adding to the old h(y) the

function + £,(a) , where z  is the old'value of y, and the sign

k
is the sign of fk(b). However, if the old value of y2 is b , the
process is termnated with'u set tob . Thisis illustrated in
Figure 7.
(b) F=F

(1) In this case in order to recognize the discontinuities it is necessary
to estimate themin stages. W therefore begin by setting vy to a and

k, to j(a) as defined by (2.2).

(ii) The point S is set to the estimate of the nininum of fy (@) using
1

(direct) cubic interpolation. As before, the interpolation is done at a
and b if at l|east one discontinuity is located between x and w , i.e.
if j(x)# j(&), and otherwise it is done at x and w. Aso if this

makes s undefined it is set to + « as before.

(i) If s <vy then # is set to vy and the process is term nated.

(iv) The zeros of the functions £, (o) - £, (a) for all i #k are
1 i 1

estimated by inverse interpolation. As in (ii> the points a and b are
used if j(x) # j(w) and otherwise x and w are used. Then Yo is

set to the mininumof those estimates which are greater than vy - | f
there are none greater than ¥y and less than b , then Vs is set to b .
Al so k, is defined such that Y, is the estimate of the zero of

fkl(a/) - sz(oz) s unless v, = b when k2 IS undefined. If s < Vo o
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Det er m ni ng ﬁj for F = Fo in the higher overhead version. The zeros
¢, (of f5>,g2 (of fl) and ¢ (of fu> are estimated first. Then the
polynomal fits to each function are successively made. Provided that
the mnimum predicted by the fit to f2+f5 lies between the estimtes of
¢, and ¢7, % is set to this point. The low overhead version woul d

J
have set 4 to the average of estimtes of .y €2 and g5

FI GURE 7
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then W is set to s and the process is term nated.

(v) If s > v, t hen k, is set to k, , y; is set to y, , and

steps (ii) to (v) are repeated, unless v, = b when the process is
terminated with & set to b . See Figure 8 for an illustration.

However if during the execution of the above k, is initially set
to j(b) in part (iv) , i.e. we have k, = j(a) and k, = j (b) indicating
only one discontinuity between a and b , then in all subsequent

conput ati ons of 4 part (iv) i s replaced by

(iv-2) If vy, = a t hen Yy is set to the estimate of the zero of

fJ. (a) - fj(b) , using inverse interpolation either at a and b or at

x and w , depending-on whether j(x) =j(w) as before. Since we know
there is a zero of this function in [a,b], We replace the estimate using
x and w,if it lies outside [a,b] , by the estimate using a and b ,
and replace the estimate using a and b if necessary by the secant
estimte. If ylyéa , then Y, is set to b . Note that estimating only
the zero of fj(a) - fj(b) is a safe strategy even though there may still
be nore than one discontinuity in [a,b]. An exanple of an unsafe strategy
would be to estimate only the zero of, say, f2- f3 , if & had been set
to.the estimate of the zero of this function several tines already. Also
note that the strategy may never be invoked since if the estimates con-
verge to 2 from one side the interval of uncertainty may always contain
nmore than one discontinuity. As in the |ow overhead version this is the
only place where the definition of f depends on retaining any information
fromthe previous iteration other than a,v,x,w and the function and

derivative val ues.

Notice that for F = Fy in part (iv) it would be *possible to exclude
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Det er mi ni ng Qfor F = Py in the higher overhead version. The zeros
Cl,gg, 63 are successively estimated and the polynom al fits sucessiely
- made to each function. Provided that the polynonial fit to f, is de-
creasing to the right of the estimte of ¢ and that to f3 i s decreasing
to the left of it, % is set to the estimate of ¢, The low overhead

version would have set { to an estimate of 7 .

FI GQURE 8

41



from consi deration those i such that kl =i for an old value of

k, Or such that the estinate of the zero of fkl(a) - £, (o) lies
outside [ab] for an old value of k,

It is worth noting that the choice of U in the hi gher overhead
version requires of the order of m.m operations in the case that F =T,
(in part (iv)), where m is the nunber of discontinuities in the interva
of uncertainty, but only of the order of moperations for F = F. .

If we were not permitted to store the {z, ]} in the case F = 7y, there
woul d al so be order m-m operations required for this case. However, it
does not appear possible to utilize storage in a sinmlar way to reduce
the operation count for F = F, since there are too many possible dis-
continuities to be stored in advance

In both the above descriptions for F = Fg and F = o we have
assumed that F(a) < F(b) but clearly when this is not true the roles
of a and b are sinply interchanged and the discontinuities are exam ned
fromright to left instead of left to right.

As in the | ow overhead version we end the section by considering the
case where 2 is not yet bracketed. The choice of 8 is made in nuch
the same way as in the case that F(a) < F(b) , except that x and w
are used for both the direct and inverse interpolations, and in the case
F = Fq the zeros of fiQﬂ for all i nust be estimated instead of
just those thought to lie in [a,b]. Cearly instead of termnating if

A

vy becomes b , the conputation of u nust termnate if vy becones

undefined and the safeguards will then choose a reasonable new u .

3.2.4 The case without derivatives

W do not describe this in any detail but outline the changes to be
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made to the [ow and higher overhead version for conputing & . v now

have the extra point v defined in Section 3.1. In the |ow overhead
version the Newton steps to the discontinuities are replaced by secant
steps. W use the points a and b when there are discontinuities

| ocated between w and v (and ; is bracketed) and switch to using

x and w when this is no longer true. In the higher overhead version
the inverse cubic interpolation is replaced by inverse quadratic inter-
polation at the points a, x and b initially (if gis br acket ed)

and the points x, w and v ultinately. In both versions the (direct)
cubic interpolation estimate of a mninmumis replaced by quadratic inter-

pol ation, again at a,x, and b, or at x,w and v .

3.2.5 Convergence Results.

W now give the convergence results for the theoretical procedures
associated with the algorithns described above. By theoretical procedures
Wwe mean exactly what was explained in Section 3.1.3.\W assune that
F(a) has one of the forms (2.1) and that an upper bound % on the interval
of uncertainty is known. .

Theorem 4.  The theoretical procedures corresponding to both the low and -

hi gher overhead versions described above for both F = F, and F = Fyp o

S
in the cases with and without derivatives, all produce a sequence of points
{u.k} converging to a point § which is either a local mnimmor generalized
stationary inflection point of F(w) on [0,b] . Furthernore if E‘?(a)
i's Lipschitz continuous on [a,b]) for 1 <i < m, and uk;é x for all k ,

then we have the following. If either

(a) F" (¢) exists and is positive, and it is not true that fi(z) =0

for some i if F=7F,, or that fi(gz):f () = F(o) for sone
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ifk if F:FM , or

() 7' (&) £ 0, F;_(;) £ 0, and fi(Z) = 0 for exactly one i , wth

£! (&) 40, if F= Fo . oOF fi(é) = fk(z) = 7(&) for exactly one

pair i #k, with fi(z)’éffq(g‘) ,if F=7F_, then the asynptotic

M
convergence rate is given by the follow ng table.

Al gorithm Convergence rate
Case (a) above Case (b) above
Low overhead with derivatives 2 2
Low overhead wi thout derivatives 1.324... 1.618...
H gher overhead with derivatives 2 2.732...
Hi gher overhead without derivatives 1.32k... 1.83%

In order to prove this theorem we need several more |enmas in addition
to those of Section 3.1.3. The first two are simlar to Lenmas 3 and 4 ,
and, as before, we present the first wthout proof.
Lemma 5.
| f é is not a zero of a differentiable function ¢(a) then 6 > 0 s.t.
the interval (1 -6 : % +6) contains no zero of o(e) and such that a
secant or Newton step to the zero of ¢(o) using a point inside the interval

i's good enough that the estimate of the zero lies outside the interval.

Lemma 6.

Assune each point in the subsequence {uJ. } is generated by either

k
a Newton or secant step to the zero of ola) using the point X, - | f
* * * . k
x, » U and u._-u, thenu is azeroof ola) .
Ik Ik
Pr oof .

| dentical to that for Lemma 4 using Lemma 5 instead of Lemma 3.
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Lenma 7.
Assume the hypotheses of Lemma 4 except that the approximating
polynomials are fitted to a continuously differentiable function §(x)

instead of F(y). Then if there is a sub-sequence of (u.J } , nanely

k
{u, }, s.t. F(u, ) = 8(u, ) Yk, the sane result holds as for Lenma 4.
1 1 i
k k k
Proof .

By Lenma & w nust be a LMor GSIP of &(a). Wthout loss of
general ity assune that a subsequence of {uj }, namely {ui }, converges
k k

* .
tou fromthe left. Since &(a) is continuously differentiable we

can wite *
M 3(u, ) - 3(u) "
3'(w) = lim 'k =F @ =0
k ¥ © *
u, -u
Tk

The fact that w must be a LMor GSIP of F(¢) follows from this and

the fact that Flu.) - 7(u) from above.
k
Proof of Theorem 4.

W restrict our attention to the |ow overhead version. Either there
is a subsequence {ujk} W th u.Jk: ﬁjk for all k , or there exists K
st w = {\Jk for k>K. In the former case as before we obtain the
first part of the result fromLemma 1. Therefore assume the latter case.
There nust be a subsequence (u.Jk} either (i) consisting entirely of points
generated by polynomal approximation fitting to a certain differentiable
function 8(a) , or else (ii) consisting entirely of points generated by
Newt on or secant steps to the zero of a differentiable function o) .
Case (i).

By Lemmas 2 and L , ujk—*f; with 2 a LMor GSIP of 3(a) . (Note
that the quadratic approximation always uses the two best points for two

of its three points and simlarly the cubic approximtion always uses the
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best point). Suppose there is a subsequence (ui } of {uj } such that
k
F(u; ) =8, ) for all k. Then by Lemma 7 u'is a LMor GSIP of
k- k-
F(lg). Oherwise ¥ K s.t.

Flu. ) 74 3 (u. ) for k > K . (3.5)
Ik K
Si nce x_.-»f; and w. -+ u we know either a_—»ﬁ or b. 4w .
J J 3 J
k k _ k - k
Wthout |oss of generality assume the forner, 1.e. a. u . Because of

.+
Ik
the way the fit is chosen in the |low overhead version, we have for each k

either Fa, ) =2 (a,) or F(b.J) = (. ). By taking subsequences (but

Ik k k Ik
not witing them explicitly), we can assume that either F(aj ) = @(aJ. )
k k
for all k > K, or F(bj ) = @(g.) for all k > K. The forner con-
k k
tradicts (3.5) , as we could wite (a.J } as a subsequence of {uJ.}
N k k

. * .
converging to U, so we assune the latter. Since ¢(a) and Flo) agree

at b.(j but not at uj , there must exist a discontinuity ¢ such that
k k
uy <6< by for all k > K, and hence §<(;. Now consider the
k k B

estimate of ¢ at each step, nanely Ej , Which results froma Newt on
k
or secant step using the best point x. . W have a. < z. < b, .
On the other hand, z. must lie outside [u., , b. ] or the step to
Iy I I

us woul d not be accepted as it crosses a discontinuity estimate. Thus
k

- - * . . .
a. z, <u, and z,->u . By Letma 5 this is not possible unless
Ik Ik 7k Ik

C=u. Ve therefore have that (o) agrees with 7(y) on an interval to the

IA

ri ght of and includi ngaﬁ , and hence that Fl(ﬁ) =oas s'@) =0 .
Si nce a.J 40 , we know F(x) is non-decreasing on the left of lT SO

k
2is alMor GSIP of Fla) (see Figure 9).

Case (ii).
V¢ have {uj } where each point is generated by a Newton or secant

k
step to the zero of a differentiable function ¢(¢). By Lemmas 2 and 5,
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A ,

X
X\X‘X‘xj/

*
a. o b
Jx

(a) Equation (3.5) does not hol d.

Xy

*
a . o b
Ik

(b) Equation (3.5 ) hol ds.

Two possibilities in case (i) of the proof of Theoremlk .

FI GURE 9



* * x

ug 40 and u nust be a zero of (o). Suppose u is not a LMor
k

GSIP, and without |oss of generality assume Fjr(l-);) <0. Let 3(x) be

the differentiable function coinciding with F(x) on the right side of 3

The algorithmwill not perm't u., to be set to the estinate z of the
k

zero of (o) if a point to the right of* z is produced by polynonial

approximation to the function thought to coincide with F(y) to the

right of z . In the low overhead version the function in question is
F(b)(a) , and since u.J is then always set to EJ. ultimately we

k k
nmust have Ej equal to a specific discontinuity estinmate and F(b)(o,) = 5(g).

k
(I'n the higher overhead case the function in question is clearly ultimately

equal to &(w).) Thus by Lemma 3 this fit is ultimtely good enough that
ajk cannot be set ti) the estimate of the zero of o(y) , which is a con-
tradiction. Hence u nmust be a LMor GSIP.

This conpletes the first part of the proof for the [ow overhead
version. W omt the proof for the higher overhead version since it is
simlar. The main difference is the replacement of the Newton and secant
results by anal ogous ones for successive inverse interpolation.

The hypotheses of the second part of the theorem ensure that ultimately

the points u_ are generated entirely by successive estinmates of a mninum

k
using (direct) cubic or quadratic interpolation or entirely by successive
estimates of a zero using the secant method, Newton's nethod, or inverse
cubic or quadratic interpolation. They also ensure that ultinately the
best points are used for the interpolation and hence that the rate of con-
vergence is not inpeded. The convergence rates for successive cubic or
quadratic interpolation were quoted in Section 3.1.3, those for the secant

met hod and Newton's method are well known, and those for inverse inter-

polation nmay be found in Traub [10,p.66]. This conpletes the proof of the
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theorem

Finally we note that as in the differentiable case it does not mnake
sense to talk about just any local mninmum of the conputed function Flo) .
It is easy to verify that Theorens 2 and 3 hold for the nondifferentiable
algorithnms as well, where @'(a) Is the quantity resulting from conputing

F'(¢) as defined in (2.2).

4, Steplength A gorithns.

(k)

In this section we discuss how to choose « (see Section 1), when

mnimzing an n dinensional function of the type given by (1.1). In order
to prove convergence for descent nethods the steplength has to meet certain
criteria. The function must be "sufficiently decreased" with respect to
the steplength, and the steplength nust not be too small (see Otega and
Rheinboldt [2,p.4%]). For differentiable functions a typical criterion to

ensure that the first condition is satisfied is

F<k)— F(X<k)+ oz(k)p) > - a(k)g<k) p (4.1)
where _, is a preassigned scalar, 0 <y <1. (W have now omtted
the superscript from p(k> , and have denoted F(x(k)) and g(x(k)) by
F(k) and g(k). ) As was nentioned in the introduction, such criteria do

not in general define a unique point. My elenentary algorithns have
been proposed which satisfy them However it is inportant to realize that
for a practical algorithm nmere convergence in the limt is only of academc
interest. W are interested in the finite sequence {x(k)}, k=1,...N,
where N is preferably snmall, and where x(N) is "close" to x . The
greater the reduction in F(x) per iteration usually the |ower the value

of N . It is necessary however to limt the effort expended on determning

49



oz(k) since this in itself could be an infinite process.

For algorithnms which are designed to mnimze differentiable
functions GI1 and Mirray [1] proposed choosing the steplength by
proceeding to conpute a local mninmm of f%x<k)+ o p) using the
al gorithm described in Section 3.1 and termnating this prematurely
(possibly after a single function evaluation). \Wen derivatives are

available the termnation condition is

(k)

F(x "'+ ¢ p) <F

(x)

and

lg(x(k)+ o p)Tpl <-ng (k) p h.2)

where nis a preassigned scalar, 0 <n <1 . Acheck is then made
as to whether this step satisfies (4.1) with 4, set to a small value
such as 10'4‘ The experience with such a procedure in the many cases
that were checked is that the resulting step always satisfied (4.1).

If (4.1) is not satisfied, the step is successively contracted by a factor
of one half until it satisfies (4.1). It is proved in [1]) that this

strategy is sufficient to ensure the overall convergence

Cearly the smaller the parameter nis, the greater the reduction
obtained in F(x) but the more evaluations of F(x) required. The
optimal choice of n will vary both with the algorithmwthin which the
procedure is incorporated and the problem being solved. Fortunately for
a particular algorithm a near optimal value of n can be predeternined
That different algorithms will require different choices of n arises
fromthe relative effort of conputing the search direction p and per-

formng additional iterations of the univariate search (recall that the
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nore accurate the univariate search, the fewer iterations of the nmulti-
di mensional algorithm required). [If for exanple in a Newton-type nethod
it was expensive to evaluate the Hessian matrix (required to conpute p
only) conpared to evaluating F(x) and g(x) then a snall value of n
would be warranted. Simlarly if n was large nmaking the housekeeping
operations of obtaining p significant, then again a small value of n
woul d be warranted. For nost algorithns, however, the optimal n under

most circunstances is in the range 0.5 - 0.9 .

The termination criterion (4.2) is clearly inappropriate for
nondi fferentiable functions since if z is a discontinuity there may
be no value of ¢ which satisfies it. To achieve a simlar objective
for nondifferentiable functions we propose the following. Let o be
the first point in the sequence generated by one of the mninzation

algorithnms with derivativesdescribed in Section 3.2 such that

(k) (k)

Flx'"'+ gp? < F
and either

Ig(x<k)+ 5 o) pl < - g(k)TP (4.3a)
or

oG s & p)l < n g (4. 50)

The test (4.3b) is done only if the generation of the next point

after o in the univariate search entails setting the new point u to

an estimate of a specific discontinuity, nanely the zero of the function
cp(xk + o p). The scalar 9, is the value of o(e) at the first point

at which we assune ?;to be the zero of (o) . The required steplength

a(k) is set to ¢ provided this satisfies any criteria such as (4.1)
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required for guaranteed convergence of the algorithm In the unlikely

event ¢ 1is not satisfactory oz(k) is set to the first satisfactory
menber of the sequence {(%)i al i =1,2....} .
In the case without derivatives, g(x(k)+ o p)T pin (k.3a) is
repl aced by
F(x(k)+ o p) - F(x(k)+ o D)

where o s the last point in the sequence obtained in the univariate
search which is less than 4 . W assune that an estimte of g(k) is
available as a result of determning p .

5. Extensions to a Wder dass of Functions.

Al though we have confined our attention so far to functions of the
type (1.1), the algorithms presented here can be extended to handle a
wider class of functions. Two conmon types of nondifferentiable functions

are those arising from the N and ’ approxi mation problens, nanely

m
Fl(x) :Z [fi (x)] and F (x) = max £, (x)|
i=1

Athird is the class of nondifferentiable penalty functions arising from

general minimzation problens subject to inequality or equality constraints

(see Conn and Pietrzykowski [I1] and Han [12]):
m

Ty o l?max(o,fi(x)) e, Z kS (x)|

i=1 i=ml+l

The functions ¥, (x) and ¥ (x) could be transforned to the type (1.1) ,

as could Fy(x) if a suitable positive termuere added to f£,(x) . However,
to do so is both artificial and unnecessary, and although the perfornance

of the steplength algorithms would be satisfactory, the transformation would
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be likely to introduce degeneracy into the n dinensional algorithm
It is therefore much more satisfactory to consider the follow ng two
types of functions:

Fag() = ) ol £, ()
i=1

where o (6., f.(x) is one of |f,(x)|, max(0,f. (x)), £. (x),
1 1 1 1 1 (5'1)
min(O,fi(X)), - Ifi(x)|, according to the value of 6, , and

F. (x) = max (max £, (x)|, max T, (x)).
1<i<m T m+t1l<i<m +

Note that there are functions of the type Fo (x) whi ch cannot be

S
transformed to the type (1.1). These two types of functions clearly have
their discontinuities defined in a simlar way to that described for the
functions Fg and Fhﬁ and it is easy to modify the algorithns to cope
with these nore general cases. Since the nodifications introduce little
addi tional overhead, our inplenmentations of the algorithns cope with these
wi der classes of functions

As indicated in Section 1, the ideas of these algorithms could be
extended to handle virtually any continuous function whose directiona
derivatives exist everywhere and whose discontinuities are given by the
roots of known differentiable functions. W believe however that nost
such functions arising in practice are either of the type (5.1) or else
could easily be transformed to this type

Finally we note that it would be possible to extend the algorithns
described above for use in mnimzing certain differentiable functions
with discontinuities in the second derivative. |If the mnimumis at a

point of discontinuity in the second derivative, the convergence rate

will normally be only linear for the differentiable case al gorithm
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described in [1], but if the mnimumis also a root of a differentiable
function, the good rates of convergence for the nondifferentiable
algorithms could be achieved if the algorithms were extended properly
An exampl e of such a function would be F(x) = ¥ on [0,) and

F(x) = % ¥ on (- ,0]

6. | npl ementation and Nunerical Results

The algorithns described in this paper have been inplenmented in
Fortran. They make use of the conputer prograns for the algorithns
described in [1], which are documented in [13] and form part of the
Nunerical Optimzation Software Library at the National Physical Laboratory.
Hence the safeguards are attended to by the existing prograns and the new
programs essentially compute % at each iteration and include the extra
steplength termnation criterion.

W present the results of sone test runs of the higher overhead step-
length algorithmfor F = Fq using derivatives, and conpare them wth
running the algorithmof [1], intended for differentiable functions, on
the same function. Although we have not yet had extensive nunerical ex-
perience with the new algorithms, the results illustrate their potential

advantages.  The univariate function is

F(x) = fl(x) + max(fg(x),o) + max(%(x),o)
wher e

fl(x) = . cOS X

fe(x) = 4 (x-1) and either
(a) f5(X) = - 10 sin(0.5(x-0.1)) or
() fB(x) = - 10 sin(0.5(x+0.1)) .
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The initial point is xo=-1.2, the direction of search is p =1,

and the initial step is ay =1 In case (a) the points of derivative
discontinuity are x = 0.1 and x = 1.0, and the mninumis at the
first of these. In case (b) the points of discontinuity are x =- 0.1

and x = 1.0 and the minimumis at X = 0.0 , where the function is

differentiable. Results are given for several values of n: n = 10‘6
for an "exact" line search, and n = 0.1 and 0.5 for "slack" searches.
-6

The tolerances < and + are set to 10 The results were obtained
on an | BM 370/168 using double precision, i.e. approxi mtely 14 deci nal
digits of accuracy. They appear in Table 1. The number of function
eval uations includes the evaluation F(xo g p).

The results illustrate that as well as being far nore efficient than
the algorithmof [1] for an exact line search where the minimumis at a
discontinuity, the new algorithm can also be significantly more efficient
for slack line searches where the mninum may or may not be at a discontin-
uity. In all cases for large n the new algorithmrequired |ess function
evaluations and in all but one also produced a lower point. |n case (a),
for n = 0.5 the algorithmtermnated with x = Xyt oy since it
determned that the best step to take next was to the zero of fB(x)
but that the step from Xy 10 %, + oy had al ready achieved a reduction

in |f.(x)| sufficiently large enough to allow it to stop. Note that in

3
case (a) if the left and right derivatives at the solution had been

sufficiently higher, the algorithm of (1] woul d have been unable to termnate

until the length of the interval of uncertainty was reduced to 2 tol (x)
even for large n, since it would be unable to reduce the gradient to

h-F' (xO> .
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7. Concl udi ng Remarks.

A fundanental part of algorithms and software for mninizing
differentiable functions of several variables is an efficient steplength
algorithm  The basic algorithns described by GII and Mirray [1] have
been incorporated in the inplementation of more than 50 different routines
for unconstrained and constrained optimzation. W believe that the sane
potential exists for devel oping software for nondifferentiable functions.
Al'though there is not as yet the same variety of routines for this class
of problens, the existence of a powerful steplength algorithmwll in
itself provide a stimulus. The routines should also prove useful when
nondi fferentiable functions are used as nmerit functions for solving con-

strained optinization problens.

Acknowledgements.

The authors would like to thank Dr. Philip E. GII for help with
nunerous points in preparing both the manuscript and the conputer prograns.
The second author would also like to thank the staff of the Division of
Nunerical Analysis and Conputer Science at the National Physical Laboratory
for their hospitality during his stay there and also to thank Professor
Gene H Golub for the opportunity to visit there while being supported at

Stanford University.

57






Ref er ences.

[1] GIl, P.E and Murray, W, Safeguarded steplength algorithns for
optim zation using descent nethods, National Physical Laboratory

Report NAC 37 (1974 ).

[2] Otega, J.M and Rheinboldt, WC., Iterative solution of nonlinear
equations in several variables, Academ ¢ Press, New York and London

(1970).

[3] Brent, R.P., Algorithnms for nininization without derivatives,
Prentice-Hall, Englewood Tiffs, NJ. (19/3).

(4] Jarratt, P., An iterative nethod for locating turning points,
Comp. J. | a (1967) 82-84.

[5] Kowal ik, J. and Gsborne, MR, Mthods for unconstrained
optim zation problenms, El sevier, New York (19687.

[6] Overton, M L., Rate of convergence of Davidon's algorithm for
finding-the mnimum of a function of one variable using successive
cubi ¢ Hermite interpol ation, manuscript, Conputer Science Dept.,
Stanford University (1977).

[7] MAcSYMA Reference Manual, The Mathlab Group, Laboratory for
Conputer Science, Massachusetts Institute of Technol ogy.

(8] Bjorstad, P. and Nocedal, J., Analysis of a new algorithm for
one-di mensi onal mnimzation, Conpuier Science Dept. Report
STAN-CS-T8-66L, Stanford University (1978).

[9] Charal ambous, C. and Conn, AR, An efficient nethod to solve the
minimax problem directly, SIAMJ. Numer. Anal. 15 (1978) 162-187.

[10] Traub, J.F., Iterative nethods for the solution of equations,
Prentice-Hal |, Englewood T 1ffs, NJ. (1964).

[11] Conn, AR and Pietrzykowski, T., A penalty function method
converging directly to a constrained optimum SIAM J. Nuner. Anal.
14 (1977) 348-375. —

[12] Han, S.P., A globally convergent nethod for nonlinear programmng,
JOTA 22 (1977? 297-309.

[13] GII, P.E et al., Docunments for Subroutines LINDER and LINDF,

NPL Al gorithns Library Reference Nos. E4/15/0 and E4/16/0,
National Physical Laboratory (1976).

58






