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Abstract.

Four steplength algorithms are presented for minimizing a class

of nondifferentiable functions which includes functions arising from

5
and 1

W
approximation problems and penalty functions arising

from constrained optimization problems. Two algorithms are given

for the case when derivatives are available wherever they exist

and two for the case when they are not available. We take the view

that although a simple steplength algorithm may be all that is required

to meet convergence criteria for the overall algorithm, from the point

of view of eff%ciency it is important that the step achieve as large

a reduction in the function value as possible , given a certain limit

on the effort to be expanded. The algorithms include the facility

for varying this limit , producing anything from an algorithm requiring

a single function evaluation to one doing an exact linear search.

They are based on univariate minimization algorithms which we present

first. These are normally at least quadratically convergent when

derivatives are used and superlinearly convergent otherwise, regardless

- of whether or not the function is differentiable at the minimum.
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1. Introduction.

Descent methods for minimizing a function F(x), x E En , normally

construct a sequence of estimates [x k) ] to the minimum such that

k-1)
X = (k).

X
+ CY(k) (k)

P

with

F(x(~+')) < F(x(~)) .

The vector p (k) is known as the direction of search and my (k) as

the steplength. Gill and Murray [l] describe a reliable and efficient

algorithm for-determining the steplength my k) in the case that F(x)

is continuously differentiable. In this report we show how to construct

a steplength algorithm that is equally efficient when minimizing certain

classes of nondifferentiable functions.

We will at first restrict ourselves to the case that F(x) is

either

m
n

or

FS(x) = max (O,fi(x)

i=l

FM(x) = max
l<i<m

fi(X)
- -

where the functions Cf 3i are of the form

fi : En + E1

(1.1)

and are continuously differentiable. We assume that every time the
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function F(x)

made available

developed for

is evaluated the values f,(x),...,f,(x) are also

. In Section 5 we will indicate how the algorithms

FS(x) and FM(x) could be modified to make them

applicable to a wider class of functions. Basically, the ideas to

be described here could be modified to construct a steplength algorithm

for any nondifferentiable function F(x) with the following properties:

(1) F : r C En + E1 is continuous on r.-

(2) The directional derivative F' (x> 61) =

lim ; (F(x + hh) - F(x))
h+O

exists for all h f 0 everywhere on r .

(3) Any point z where the derivative F'(z) does not exist

satisfies an equation
.( >cpJ ( >Z = 0

for some j , l< j < J , where the functions cp (1) (J)
J”‘> cp :- -

rCEn+ E
1 are known and are continuously differentiable.-

In order to prove convergence for descent methods for multivariate

minimization the steplength must satisfy certain criteria. Such criteria

do not in general define a unique point, but a spectrwn of values.
-
Although all points in a particular range may satisfy the criteria equally

well, they are not necessarily all of equal merit with regard to the

efficiency of the method. Usually if two steps both meet the convergence

criteria, the one that achieves the greatest reduction in F(x) is to be

preferred. The better the step, in this sense, the fewer iterations

usually required to obtain a satisfactory approximation to the minimum.

The question we face, therefore, in designing a ste'plength  algorithm is

not merely how to choose a ste*p which satisfies the required criteria for
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convergence, but of the many that do how do we choose a "good" step.

At the same time, however, how good a step we can choose depends on

how much effort we are willing to expend, and hence all the algorithms

we present contain the facility for varying this limit on the expense,

producing anything from an algorithm requiring a single function

evaluation to one doing an exact linear search.

2. Notation.

with

As explained in the last section, we shall initially be concerned

minimizing functions of the form

m

FS(x) =
T-

max (O,fi(xH

-_
i=l

or

FM(x) = max
l<i.<m

fi(X)
- -

where the functions fi(X) are continuously differentiable on En .

We denote the gradient vectors of fi(x) by v fi(x) and define

Vfi(X) , in the case that F = F
s '

i: fi(x) > 0

or

g(x) = ' fj(x) bd , where j(x) is the smallest index

such that F(x) = f
j (x) (x) , in the case that F = F

M'

Note that g(x) is the gradient of F(x) wherever the latter is defined,

and is one of the directional derivatives of F(x) at the points  where
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the gradient is

Let x be

along which the

not defined.

the current iterate and p be the direction of search

ste-p is to be taken. We are now omitting the super-

script k for simplicity. Then it is convenient to write

f; (a/> = f,(x + cup> ) i = l,...,m

and

F(& = F(x + a p> .

It should always be clear form the context whether we are thinking of

fi or F as a function of a vector or of
-_
m

or

da) = mm (0, f&H

a steplength value cy . Then

in the case that F = F
S

i=l

(2.1)

F(a) = max
l<i<m

fi M
- -

if F=F
M l

We denote the derivative of fi(a) , which is the projected gradient

of fi(x + Q! p> along p , by

f; (QJ = v fi (x + c! PJT P

and-denote the left and right derivatives of F&Y) by F' (a> and

FL (a> where

F’ (a) = lim F&y+h) - F&y)

h + O- h

and F:(a) is analagously defined.
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We also define

F?(r) = g(x + o! PJTP l

Thus

F’ (a) =
c

i: fi(& 0

in the case that F = F
S

(2.2)

or

F’ (CY) = f; (cu)(~)

where j(a) is the smallest index such that

F&Y) = f3 M (~4 9 if F=
FM '

Furthermore, -F' (0) is the derivative of F(U) wherever the latter is

defined and otherwise is either the left or the right derivative of F(a) .

We also define F"(a) to be the second derivative of F(a) where

it exists.

A point where the derivative of F(a) does not exist will be

referred to as a point of derivative discontinuity, or just a discontinuity

for short. Note that in the case F = Fs the discontinuities occur at

In the case F = the discontinuities z- the zeros of the fi(a) .
FM '

satisfy F(z) = fi(z) = fk(z) for some i f k .

The term "convergence rate" will be used to mean the R-order of

convergence in the sense of Ortega and Rheinboldt [P,p.2%] . In each of

our theorems, the corresponding stronger Q-order result also follows

except in pathological cases, but as pointed out by Brent [3,p.35],  it is

often necessary to introduce rather artificial conditions to ensure this.

Thus, for simplicity, we use only the R-order.



39 Univariate Minimization Methods.

In this section we present a number of algorithms to find a local

minimum of the univariate function F(a) , where F(Q) is defined by

(2.1). There is no loss of generality if we assume F'(0) < 0 and

that there exists a local minimum Lo l This is a valid problem in

its own right, but in developing our algorithms we shall bear in mind

their use for constructing steplength algorithms for minimizing functions

of several variables. This aspect of their use will be discussed in

Section 4 .

The inappropriateness of using an algorithm which assumes F(Q)

is continuously differentiable can be seen by examining Figure 1-_

Efficient methods for functions with continuous derivatives usually

*
determine cy iteratively by successively approximating F(a) by a

cubic or quadratic polynomial and taking as the next approximation to

*
CY the minimum of this approximating polynomial. The approximating

polynomial\is  matched to F(x)
*

at the best known estimates to my .

It is quite clear in case (iii) that the minimum of an approximating

*
polynomial may bear no relationship to cy . In case (ii) the approach

is valid only if the approximating points all lie on the central portion

of the curve. Such a situation is unlikely

*
only a poor approximation to Q is known.

performance of such algorithms is poor even

a discontinuity. It will be seen that from

to be true initially when

Consequently, the initial

when the solution is not

the point of view of step-

length algorithms it is the initial performance which is crucial.

The two types of minima possible for functions of the type (2.1)

illustrated in Figure 1 are emphasized in the statement of the necessary
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I (i)
CY

A continuously differentiable function.

A function of the type (2.1) but with z not a discontinuity.

1 (iii)

A function of the type (2.1) with E a discontinuity.

FIGURE 1
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and sufficient conditions for z to be a minimum of F(a) :

Either F' (,", = 0
*

Necessary condition: with F"(cY) non-negative
*

if it exists , or cy is a derivative discontinuity of

F(Q) with F'(g) < 0 and F:(z) > 0 .- -

Sufficient condition: Either F' (z) = 0 and F"(z) exists and

*
is positive, or Q is a derivative discontinuity of F(Q) with

F'(z) < 0 and F: (:I > 0 .

Two algorithms are described (one with low overhead and one with

higher overhead) with two variants (one which utilizes derivatives and

one which does not):. The essential feature of all the algorithms is that

at each iteration the option of converging to either type of minimum is

kept open. The step taken may be an estimate of either type, depending

on which is considered more likely and/or prudent. When G is not a

discontinuity the higher overhead algorithms are comparable in efficiency

(in terms of the number of function evaluations) to the algorithms of

[l] applied to just the continuously differentiable function which coincides

*
with F(Q) near Q/ . When Z is a discontinuity the algorithms are

cmparable in efficiency to efficient rootfinding algorithms applied

directly to the function of which z is a root.

- Before describing the new algorithm in detail we shall review the

algorithms of [l]. It is worth noting that because of the safeguards

built into them they will work even if F(Q) is not differentiable

although for the reasons mentioned earlier their performance will usually

be poor.
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3.1 The Differentiable Case.

Here we present the basic ideas of the algorithms of Gill and Murray

[l] for the

These ideas

present all

these.

univariate minimization problem when da/) is differentiable.

will be needed in Section 3.2. We do not make any attempt to

the details of the algorithms and refer the reader to [l] for

We assume that at each iteration of the minimization we know an

*
interval [a,b] in which the minimum cy is known to lie. The interval

[a&l is called the interval of uncertainty and the points a and b

are said to bracket the minimum. (Initially a is zero, but b is un-

known. This situation is handled later).

Two cases-are treated, the case where both the function values F(Q)

and the derivatives F'(Q) are used, and the case where the function

values only are used. The latter case may occur either because the

derivatives are not available, or because they are relatively expensive

to compute. In the first case we assume that two points x and w are

also known. The point x is the lowest point obtained so far, (i.e.

F(x) < F(Q) for any value of Q at which the function has been evaluated),

and w is either the second lowest or the last evaluation point. There

- are four possible configurations for x, w, a and b :

( 1i x = a and w<a
. .

( >

(II >

x = a and w=b

iii x = b and w = a (3*1)

( >iv x = b and w > b .

In the case that the derivatives are not used, we assume that three points

x, w and v are known, where x is the lowest point obtained so far,

W is the second lowest, and v is either the third lowest or else is the
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most recent point. Then a < x < b and the possible values for w

and v are :

(i) w = a and v < a

( )ii w = a and v = b (3.2)

(iii) w = b and v = a

(iv> w = b and v > b

The basic strategy of the algorithm is to use successive polynomial

interpolation with safeguards. (We use interpolation to mean actually

either extrapolation or interpolation). Thus at each iteration, a new

A
point u is chosenas the minimum of a polynomial approximating F(cY)

at some of the points already evaluated. Provided 0 satisfies certain

conditions, u is set to G 7 but otherwise the point is rejected and

U is set to something different. The function is then evaluated at u .

In the case that derivatives are used, the polynomial is a cubic chosen

to agree in both function value and derivative with F(Q) and F'(a) at

the points x and w , and in the case that derivatives are not used,

a quadratic is chosen to agree in function value with F(a/) at the

'points x, w and v . Then u is set to 6 except in the following

situations:

(i) G lies outside the interval of uncertainty [a,b]. This

normally only occurs in cases (i) or (iv) of (3.1) or (3.2)

when the step from x to G is an extrapolation step.

However, because of round-off error, it could occur even in

an interpolation step. Whenever G does not lie in [a,b]
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it is rejected and u is instead set to a point fi

obtained by a function comparison method which is guaranteed

to lie in [a,b] . The function comparison method used is

somewhat complicated and will not be described here.

(ii> G is obtained by extrapolation and although 0 lies in [a,b],

u lies between G and x . In this case too the point is

rejected and u is set to U instead. By extrapolation we

mean that case (i> or (iv> applies in (3.1). Justifying this

would require going into details about the function comparison

Amethod, but basically if u is not close to the best two points

but close to a known poor point some change would seem warranted.

(iii) The step from x to 6 is greater in magnitude than half of

the step taken at the iteration before last. Here too u is

instead set to 6 . The purpose of this restriction is to

ensure that the algorithm does not produce a sequence of points

oscillating back and forth at each iteration and reducing the

interval of uncertainty by very little.

(iv) The point 6 lies too near one of the points already evaluated.

In this case u is instead set to another point which is

separated from those already evaluated by at least a certain

tolerance tol(x) defined by

to1 (a) = E lcvl + 7 (3.3)

11



The function is then evaluated at u and the various points are

updated as follows:

Case with derivatives:

If F(u) < F(x) t h e n-

if F'(u) < 0 then a e u otherwise b t u-

w e x and x + u

otherwise

if u < x then a e u otherwise

w e u .

Case without derivatives:

If F(u) < F(x) then

if u>x then a + x otherwise-

vtw, wtx and xtu

b tu

hex

otherwise

if u < x then a+u otherwise b + u

if F(u) < F(w) then v + w and we-u

otherwise vtu.

This:com'pletes the description of one iteration of the algorithm.

12



3.l.L The initial strategy.

The initial case is normally handled by specifying in advance

a step length a0 to try first. This then gives two initial values

0 and a0 for x and w . In the case without derivatives, the

second step must also be handled specially, using only the two points

for the polynomial approximation, but we do not consider the details

here. The point a is initially set to zero, but it may be several

iterations before we determine an upper bound on the interval of un-

certainty. The strategy in this case is to use polynomial extrapolation,

just as in the case where b is known and situation (i) in (3.1) or

(3.2) applies, but with u being set to fi except in the following

cases :

(i) the step from x to 2 goes across G , where z is

obtained by taking a step from x which is four times the

step taken in the previous iteration. Here u is set to l .

(ii> The point t lies too close to or beyond a fixed upper bound

on Q beyond which we are not permitted to evaluate the

function. Here u is set to a permissable point instead.

- The function is then evaluated at the new point u and the other points

are updated as in the case that b is known.

3.1.2. Convergence Criteria.

We complete the basic description of the algorithms by specifying

that they terminate when the minimum is bracketed and

b - a < 2 tol(x) (case with derivatives)

or max(x-a,b-x) < 2 tol(x) (case without derivatives)

where tol(x) is defined by (3.3).
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3.1.3. Convergence Results.

Here we state the convergence results for what we may call the

theoretical procedures associated with the algorithms described above.

By this we mean the algorithms with exact arithmetic applied to the

exact function F(a) , with the tolerances E and 7 set to zero.

Since this might produce a zero step from x to 6 , we also specify

that if this happens u is instead set to 6 as defined by the function

comparison method. We assume that an upper bound ?5 has been found

on the interval of uncertainty.

We also assume that F(a) is continuous on [C,b]. (We can obtain

convergence results even if F(Q) is not differentiable, althought not

the same rate of convergence). Let us define a stationary-inflection

point as a point my , where F'(Q) exists and equals zero, and which

is neither a local maximum nor a local minimum of F(a). We also define

a‘ generalized stationary-inflection point as a point a where either

F:(Q) = 0 or F'(Q) = 0 and which is neither a local maximum nor a

local minimum of F(a) . Note that by a local minimum we mean either a
*

weak or a strong local minimum, i.e. a point my such that 3 6 > 0 s.t.

*

F(cY) > F(c) for 10 - CYI < 6 l We then have the following result:-

Theorem 1.

Let $A$ be the sequence of points u generated by the

theoretical procedures. Then in both the cases with and without derivatives
*

the sequence Pk) converges to a point cy which is either a local

minimum or a generalized stationary-inflection point of F(a) on LO,';3 .

Furthermore, suppose that F"(z) f
*

is positive,
uk Q for all k , and

F"'(cr> is Lipschitz continuous on [a,b] as defined by [2,p.63].

Then the asymptotic convergence rate is quadratic, in the case with

derivatives, and is superlinear with order 1.324...,  in the case without

14



derivatives.

We note that it is possible to modify the theoretical algorithm in

order to ensure convergence to a local minimum. In practice this additional

complication is not warranted since numerically one cannot distinguish

between a stationary point and a minimum.

In order to prove the theorem, we need several lemmas. In the

following, we use uk , xk , wk , ak , bk , etc. to denote the

various points at iteration k .

Lemma 1.

Suppose that the sequence of points
4J contains a subsequence

{u. ] with the property that
Jk ujk = Ujk

for all k , i.e. all the points

in the subsequence are generated by the function comparison method. Then

the sequence
f?J

* *
converges to a point u , and u is a local minimum

or generalized stationary inflection point (LM or GSIP).

Proof.

The proof that the sequence converges follows from a property of the

function comparison method that at each such step the length of the inter-

val of uncertainty is multiplied by 8 where o<e<1. The rules for

- updating the end points of the interval of uncertainty ensure that it

always contains a LM or GSIP, so we have
ak' bk, \+ : ,and z is aLM

or GSIP.

Lemma2.

Suppose 3 K such that uk is set to the point *uk for all

k > K , i.e. ultimately no function comparison steps are needed. Then the

kkJ
*

sequence converges to a limit u . Also xk + z and wk + z .

15



Proof.

We must have that for all k 2 K :

as otherwise the point $ would be rejected. Assume without loss of
n

generality that K is even. Then

I U2k - x2kl _< (:I k - ii I UK - XKI

and
k-K

I u2k+l - x2k+l I < ($1 -i uI I- II+1 - xK+l  l

For simplicity we write

K- -
where C = 2 2 max (hK - xKi J IuK+l - xK+lI 1 '

Since xk is the lowest point so far and
%

is the new point,

have either xk = uk 1 , or
xk= Tic-1 l

Thus either there

such that
xk

=XJ for k > J , i.e. no subsequent point
uk is

xJ ' or there is a subsequence (x.
Jk

] such that x. = u.
Jk Jk-1

we always

exists J

lower than

for all k .

In the former case uk + xJ , so assume the latter. Consider
uk+l' uk l

Let j, be the largest element of the subsequence such that j, < k , i.e.
-

s = ⌧kel = l *- = Xj = Ujjel . If jLtl = k t- 1 , i.e.
R

xkl
=

+ uk > then

k+l

I%1+ - uk I = I\+, .-
2

\.Ql ,< @ c l

16



Otherwise x,+l = x. and we have
JR

I\+1 - xi 5 I%+1 - xj, I + I uk - xj, l

5 l~+l-- s+ll ‘1% - Xkl

Using this result, we have that for any i > k

I u .-- -1 uk I I< ui-UilIf  lui-l -u- i-2
I+...+1

%+1- 4

k

< 24
2

-

k- -

C

iz -1
<, ($) 2 c (1 + ; + ; -+ . ..>

Therefore for all 6 there exists M such that for i,k > M,- Iu
i

- u.J < 6 ,

and hence &J is a Cauchy sequence and converges. Clearly (51 and

(wk] also converge to the same point.
-

The following lemma is presented without proof.

Lemma 3.

If E is not a LM or GSIP of F(Q) , then there exists 6 > 0 such

that the interval (E - 6, c + 6) contains no LM or GSIP and such that

cubic interpolation with at least one of the two points in the interval,

or quadratic interpolation with at least two of the three ,points in the

interval, is good enough that the minimum of the approximating *polynomial

lies outside the interval.

17



The following lemma is presented in a more general form than

needed here so that it can be used in the next section.

Lemma 4.

Assume that there is a subsequence (u.
Jk

] such that each point

in the subsequence is generated by polynomial approximation to F(a)

with, in the cubic case, x.
Jk

as one of the two points where the fit

is made, or, in the quadratic case, xjk and w
jk

as two of the three

Then, if (u$ 7 b$
* *

points. and (wk] all converge to u , u is

a LM or GSIP of F(a) .

Proof.

Let 6 be that of Lemma 3. Since the sequences all converge to

*
u , there exists K-- such that %, xk and wk are all separated from

E by at most 6 , for all k > K. Therefore the points used for the-

fit ultimately lie within 6 of c . Thus the result follows, since

otherwise we can apply Lemma 3 to show that the new point
%

satisfies

I , which is a contradiction.

Proof of Theorem 1.

Either there is a subsequence (u.
Jk

] all generated from function

comparison steps, or there exists K such that \= $ for k?K.
-
In the former case the first part of the result follows from Lemma 1.

In the second case we can apply Lemmas 2 and 4 to conclude that uk + E ,

and. z is a LM or GSIP. This completes the proof of the first part of

*
the theorem, and we write my = E .

If the hypotheses of the second part of the theorem hold, we can

conclude that ultimately the points will be generated by successive

polynomial approximation alone. The superlinear convergence of order

1.324... for successive quadratic interpolation was shown by Jarratt [4]

18



in 1967, and by Kowalik and Osborne [5., p.201 in 1968. In 1973,

Brent [ 3,p.35] showed that their results for the Q-order (see Section 2)

were not true in certain pathological cases and showed how to introduce

extra assumptions to avoid these. He also showed that the R-order is

at least 1.324... in all cases. The rate of convergence for successive

cubic interpolation was shown to be quadratic (again except in patho-

logical cases) by Overtsn [6], using the symbolic manipulation system

MACSYMA [-il. This was independently rediscovered (also using MACSyrjvl)

and a considerably simplified proof for the R-order was presented by

Bjorstad and Nocedal [8].

Clearly the safeguards (i) to (iii) will no longer be involved

once the quadratic or superlinear convergence sets in. This completes the

proof of the theorem.

Note that it does not make sense to talk about just any local

minimum of the function Q( >CY which approximates F(a) by calculating

it on a finite machine, since such a function is really just a step.-function

and may have a lot of local minima very close together (see Brent [3,p.63]).

Instead, we can say that the algorithm produces an approximate local

- minimum in the following sense:

Theorem 2.

The algorithm applied to the computed function ec 1a using the

(computed) derivatives , terminates with points a and b such

that a < b , and

(i) @kd < 0 and e'(b) > 0 or Q?(a) < 0- and g(b) > P(a)-

or PO'b > 0 and $(a) > !&b)

19



and

(ii> to1 (x) < b - a < 2 tol(x)- -

(where x = a if @(a) < G(b) and otherwise x = b) ,

Theorem 3.

The algorithm applied to the computed function fi( >QJ without

derivatives terminates with points a, x and b such that a < x < b

and

(i) &a) > 8(x) and P(x) < g(b)- -

(ii) to1 (x) < max (x-a, b-x) < 2 tol(x) .- -

As long as the tolerances E and 7 are chosen so that talk) is

a reasonable minimum distance to require between two points before

comparing their function values, then the above is as near as we can get

to giving conditions for a "reasonable" local minimum to satisfy. The

results are easily verified by examining the algorithm.

3.2. The Nor-differentiable Case.

In this section we describe the changes that must be made to the

algorithm described in Section 3.1to create our new algorithm for uni-
a

variate minimization when F(a) is given by (2.1). It is necessary to

modify only one part of the algorithm, namely the method used for

selecting the point 2 . The safeguards which when necessary reject G

and set u to another point, and the method for updating the points

a,b,x,w and v, are all left unchanged. As mentioned earlier, the key

*
strategy of the new algorithm is to try to recognize whether QJ is a

discontinuity or not, and to then select 4 accordingly as either a
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direct estimate of the discontinuity, or as an estimate of the minimum

of a polynomial approximating F(a) .

Several different cases are treated. We have already noted that

we are concerned with the two possibilities F&Y) = F& ) and

F(a) = F&Y) as defined by (2.1) l These will both be described

together as far as possible. We also consider both the case where

the function values f.$) and the derivatives f; (CY) are used and

the case where function values only are used. Recall that we have

extended the definition of a derivative by defining F,(Q) in (2.2) .

For simplicity we initially confine our attention to the case with

derivatives. Finally we describe two versions of the algorithm, a low

overhead version and a higher overhead version. The latter makes much

more use of all the information known but requires more operations to

A
choose the new point u . The two versions have similar asymptotic

convergence <properties but the higher overhead version should be more

efficient in terms of the number of function evaluations required to

obtain some specified accuracy (especially for low accuracy requirements).

The difference between the two methods is likely to be more significant

the higher the number of discontinuities is. In most applications the

computer time is dominated by the time spent evaluating the function,

so the higher overhead version is expected to be much the more useful in

. practice. However, for simplicity we describe the low overhead version

first.

3.2.1 The Low Overhead Version.

As in Section 3.1, we assume that at each iteration we have an

interval of uncertainty [a,b] and points x and w satisfying (3.1).

The process for determining 6 may be divided into a number of parts:
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(i) The minimum and maximum discontinuities contained in the interval

[a&l are estimated. In the case that F = FS this is done as follows.

The function values fi(a) and fi(b) are compared, for each i from

ltom. If for some i , fi(a) and fi(b) have opposite signs then

there is a discontinuity between a and b given by the zero of fi (cu>  l

This is estimated by the Newton step from x . If zi lies outside

b&l it is replaced by the secant estimate (a fib) - b f. (a>> /1

(fi(b) - fi(a)) which is guaranteed to lie in [a,b] . After this has

been done for all i , zL is set to the minimum of the z
i

and zR

is set to the maximum (it is not necessary to store the z i ; zL and

ZR
can be updated as each z

i is computed). If there were no dis-

continuities located between a and b , i.e. fi(a) and fi(b) had

the same sign in every case, zL is set to b and zR is set to a .

Note that comparing fi(a) and fi(b) for all i will identify all the

discontinuities between a and b if the functions fi are sufficiently

near linear, although it may not identify them all in general, since a

function may have a zero in [a,b] and still have the same sign at a

and b .

In the case that F = FM the discontinuities z are no longer

given by fi(z) = 0 , but by fi(z) = fk(z) = F(z) for some i f k .

The estimate zL of the minimum discontinuity is then made as follows.

Let Ij(a) be as defined in (2.2>, i.e. normally j(a) is the index of the

only function which has the largest value at a . Then for each i f j(a)

the zero of fi(&) - f; (cy) is estimated by the Newton step from a ,
J \a/ I

( >i.e. y. a
1 is set to a - [fj(a)(“) - fi(a)l / [f!

I ,J
WNote that there is no reason to suppose that yi

ca) (a> - f! Ml .1
lies in [a,b]. Then

kL and zL are defined by
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i
(a) > 81 a

zL
= min (y(a) ' Yi = y; )

T
( 1 L

If none of the yia, are greater than a then zL is set to b and kL

is undefined. The estimate ZR of the maximum discontinuity and the index

%
are similarly defined by looking at the Newton step from b to the zero

of fj cb) (~1 - fi(CY) for each i . Note that it is not necessary to store

all the y(a) or y(b) .
i i Figure 2 illustrates the process.

However, if F = FM , and kL = j(b) and kR = j(a), indicating that

there is only one discontinuity in [a,bl, then in all subsequent computations

of 0 part (i) is omitted and zL and
ZR

are set to Z as defined below.

The reason for this is simply to avoid estimating the zeros of all the other

fj(,)(& - f&) and fj(,@ - f.(a) hw en1
it is unlikely that any of them

will have any relevance. Note that this is the only place in the algorithm

where any information need be retained from previous iterations other than

a,bx,w and the function and derivative values.

(ii) A point 'z is defined as follows. In the case F = F
SS

2 is

defined to be the average of all the estimates z
i

of the discontinuities

located in [a,b]. In the case F = FM, z is set to an estimate of the zero

*f fj(a)- fj(b) which must lie in [a,b]. The same technique used in (i)

for estimating the zero of fi(a) is used, i.e. first the Newton estimate
-

from x is tried, and if this lies outside [a,b] it is replaced by the

secant estimate using a and b . This is illustrated in Figure 3.

If there do not appear to be any discontinuities in [a,b], i.e. F = FS

and none of the fi(a) differ in sign at a and b , or F=F
M

and

j(a) = j(b) , then 2 is undefined. If F = FM and 'z is defined then

we insist that zL < z 5 zR by setting zL = min(z
L' 2) and

'R = max(zR, Z> . This may be necessary because of the different methods

for making the three estimates.
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Estimating the leftmost discontinuity in [a,b] for F = FM .

FIGURE 2
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a
X

Z b

. Determining 2 for F = FM . The zero of f - f
1 3

is estimated. First

the Newton step from x is tried, but since this lies outside [a,b] it

is replaced by the secant step using a and b .

FIGURE 3
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(iii) If w is not equal to a or b , i.e. situation (i) or

(iv) in (3.1) applies, then we wish to estimate whether there are

any discontinuities between w and x . (If w equals a or b

this has already been done in (i) ). In the case that F = FS , this

is done by comparing fi(w) with fi(x) for each i and seeing

whether they have opposite sign for any i . This can be done at the

same time as the z i
are estimated in (i) . In the case that F = FM

it is done simply by seeing whether j(w) and j(x) are equal. No

attempt is made to estimate any discontinuities.

(iv) Let us introduce some new notation. For a given point y

we define

,(‘) (& = -_
c, .

fi (a/) if F = FS

i:fiCyJ > 0

(3.4)

or

where j(cd is defined by (2.2) if F=F
M l

Then F(Y)(~) is a continuously differentiable function coinciding

with F(Q) in the interval containing y over which F&Y) is

differentiable. We denote the derivative of F ( >' (a> by F(')' (cd .

In this part then we compute the values F (a)(b), F(a)'(b),

F(b)( )a and F(b)'(a) . Again for F = F, this can be done at the

same time as the

(v) We are

The idea here is

computation of the z i in (i) .

now ready to make our first polynomial approximation.

to fit a polynomial to a differentiable function coinciding

with F (a) in a certain interval and to take the minimum of the

polynomial as the new point u only if the step to it does not cross



any of the estimates of the discontinuities. The ultimate quadratic

convergence rate for successive cubic approximation quoted in Section

3.1.1 holds only if the approximation is made at the lowest points

available, which do not necessarily bracket the minimum, Thus ultimately

we would like each point
A
u to be obtained by approximating F(o) at

X and w in the case that c is not a discontinuity. Therefore if

there were no discontinuities located between w and x in (iv), or

in(i w=a or w=b,thepoint
s1 is computed as the minimum

of the cubic fitted to F(a) at x and w , i.e. agreeing in function

value and derivative with F(a) and F'(a) at x and w . However,

if there was at least one discontinuity located between x and w ,

then s1 is computed as the minimum of the cubic fitted to F (x) (a)

at a and b using the values in (iv) (recall x=a or x=b). The

reason that a and b are used rather than x and w is that this

choice of fit cannot impede the ultimate rate of convergence in the case

that z is not a discontinuity since then eventually there can be no

discontinuities located between x and w . It is our view that this

strategy,using  an interpolation fit instead of an extrapolation fit while

still not near the solution, is slightly more reliable than if the fit

was made to F (")(a) at x and w regardless of whether there were

. discontinuities between the two ,points.

If s1 lies in [a,b] and the step from x to s1 does not cross

any discontinuities, i.e. a <- s1 ,< zL if x = a or zR 5 s1 5 b if

x = b , then 6 is set to s1 . Otherwise the step is rejected. This is

illustrated in Figure 4 .
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a s2 zL Z
ZR b

X 9

Determining 9 for F = FM. The step to s1 , the minimum predicted by the fit

to fl, and the step to s2 , the minimum predicted by the fit to
I\ f3

rejected. :\ is set to Z

, are both

F

/

a

X zL

The step to sl, the minimum predicted by the fit to f2, is accepted. G is set to S 1'

FIG-U-RI3 4
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(vi) If the step is rejected in (v), a second cubic fit is tried,

this time fitting the cubic to F (b)(cu) at a and b if x=a, or to

F(a)(~) at a and b if x=b . Thus for example in Figure 4 (i) ,

after the step to s1 is rejected, the point s2 is set to the minimum
. .

of the cubic interpolating f,(a) at a and b l This second cubic

fit may be of crucial importance to the algorithm's performa,nce as will

be described later. Then as in (v), if s2 lies in [a,b] and the step

from x to s2 does not cross any discontinuities, t is set to s2 l

Otherwise this step is rejected too.

(vii) If the steps in (v) and (vi) have both been rejected, this

implies that the step from a to the estimate of the minimum of the

differentiable function coinciding with F(Q) at a crosses the

estimate of a discontinuity. The same is true of the step from b

estimating the minimum of the differentiable function coinciding with

F(o) at b l Hence the conclusion is drawn that i may be a dis-

continuity.
A

Therefore u is set to z as defined in (ii).

This completes the description of the choice of u when an interval

of uncertainty is known. We now describe the changes that must be made

to the above when minimum has not yet been bracketed. We have x=a and

w < x. Then fi is defined as follows.

(i) Here the minimum discontinuity is estimated. If F = FS the

. zero of each of the fi(o) is estimated by the Newton step from a , and

zL
is set to the smallest estimate greater than a l

If F=FM,then

zL
is defined as in the case where b is known.

(ii) and (iii) are omitted.

(iv) Here we compute F 0( >W and F(x)'(w) as defined by (3.4).
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(v) The point
s1

is comwted as the minimum of the cubic

( 1fitted to F x, at x and w . If x < sl< zL , then fi is set- -

to s1 ; otherwise the step is rejected.

(vi) If the step in (v) was rejected, a second cubic fit is made,

this time fitting to the differentiable function which is thought to

coincide with F(U) beyond the discontinuity which is estimated by zL .

This is done by noting in (i) which function it is whose zero is estimated

bY ZL' For example, if F = FS , and zL estimates the zero of

qcd , and fl(x) > 0 , then the differentiable function thought to

coincide with F(U) beyond this zero would be F (")(cu) - fl(cr) l

Consequently the value of this function and its derivative would be

computed at x and__ w in order to make the cubic fit. An example in

the case F = F
M

would be that z
L estimates the zero of f+Y) -

f2(d and F(x) = fl(x) . Then the differentiable function in question

would be f2 and the value of f
2

and its derivative at x and w

would be used for the cubic fit. Let s2 be the minimum of the cubic

thus defined.
A

If s2 > zL we set u to s- 2
; otherwise the step is

rejected. The situation when F = FM is illustrated in Figure 5 .
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zL s2 9

A
Determining u for F = FM when the minimum is not bracketed. The step to

A

s1 '
the minimum predicted by the fit to fl , is rejected, and so u is set

to s2 Y the minimum predicted by the fit to f2 .

FIGURE 5
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(vii) If the steps in (v) and (vi) were both rejected, this implies

that the steps to the estimates of the minima of each of the differentiable

functions coinciding with F(o) on either side of the discontinuity

estimated by zL both go across the dicontinuity. Hence we conclude that
*
CY is likely to be at the discontinuity and set 0 to ZL l

3.2.2 Comments on the Algorithm.

In the algorithm described the asymptotic rate of convergence will

3t
usually be quadratic, irrespective of whether or not my is a point of

discontinuity. This is because ultimately the points generated will either

be those resulting from successive cubic interpolation estimating the

minimum of a differentiable function or from Newton's method estimating

the zero of a different differentiable function, and both processes normally

have a quadratic rate of convergence. Note that since 5 is an estimate

.of the average of the discontinuities we might expect the number of dis-

continuities between a and b to be halved at each step. Consequently

even on problems for which there is a large number of discontinuities in

the region of interest the number within the interval of uncertainly will

soon become small.

- To our knowledge the only other univariate minimization or line search

algorithm which has been proposed for special nondifferentiable functions

is that of Charalambous and Conn [y] for F = FM . Their algorithm does

not include the safeguards that we have described. Also, a basic iteration

of their algorithm is quite different from ours in a nwnber of ways.

Suppose a is the lowest .point x . Their algorithm estimates the zeros

of fj(a) - fi for each i by (a>y. as ours does.
1

It then similarly

estimates the values of ( >
fk at Yi

a
for each i and k and hence
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estimates the value
(a>of F at each yi . ( >The point yia, with the

lowest estimated value of F is then chosen for the new point and a

function evaluation is made. Then a cubic interpolation step is taken

only if the new function value is higher than F(x). This approach is

quite different from ours where 9' is set to a discontinuity estimate

only if the ste,p to the cubic interpolation estimate crosses a dis-

continuity estimate. Also we make cubic fits only to differentiable

functions, i.e. to F (")(a) or F(b)(cu) rather than F(a) . Since

(a>the points estimated by yi may not even be discontinuities, our

higher overhead version (to be described in the next section) presents

a better way to estimate the minimum supposing that is is at a dis-

continuity. =

In some situations the algorithm of [Y] may converge to a point of

discontinuity which is not a minimum. This would also happen in our

algorithm if step (vi) were omitted, i.e. if G were set to 'i without

making a second cubic fit when the step to the estimate of the minimum of

the first interpolating polynomial used in (v) crosses a discontinuity

estimate. This is illustrated in Figure 6 for F = FM . Here zL= zR= 5

*
as there is only one discontinuity between a and b and z<z<s1 '

*
where z is the exact zero of fl- f2. If no second fit is made in step

(vi)but 4 is set to z
*

the points generated will converge to z if

*
the points z converge to z from the left. This will happen in this

example if (f;(Z) - f$)) ' (f;(Z) - f;(t)) < 0 since Newton's method

to find the zero z of (p(z) converges from the left if cp"(E) (p'(z) < 0 .

*
Clearly what is needed is to generate a point between z and b , and this

is done by stepping to the minimum of the cubic fitted to f2 at a and

b in step (vi).
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F

\

f2 \

a

X

Z Z CY "1 u

zL

An example for F = FT4 where successively setting i to z
jc *

because s, is rejected causes convergence to z instead of cy .

FIGURE 6
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An alternative strategy for avoiding this difficulty is to estimate

whether the gradient of F(a) changes sign at the discontinuity estimated

by i , and to set 6 to z only if this happens. However, the second

cubic fit is recommended since it can give a good estimate of the minimum

at the same time as rejecting the estimate of the discontinuity. In any

event if the gradient is thought not to change sign at the discontinuity

some alternative step must be computed.

Another point worth noting is that it might seem that an almost as

efficient algorithm could be designed saving some storage by not requiring

the fi(w) to be available as well as fi(a! and fi(b) (and perhaps

the corresponding derivatives). In fact saving fi(w) requires no

extra storage as a third vector in addition to those for the function

values at a and b is required anyway for the evaluation of the function

values at the new point u , and since the new w is always either the

old a or the old b , the function values at w can be retained by

interchanging the new vector with the old vector that would otherwise be

overwritten. Of course this is really only of academic interest since we

do not expect storage of a vector of length m to be significant.

3.2.3 The Higher Overhead Version.

We now describe a second version of the algorithm which requires

more housekeeping operations and/or storage , but makes fuller use of

. the information available. The basic difference between the two versions

is that in the higher overhead version we do not restrict the number of

cubic fits to one or two, but allow up to m cubic fits. Consequently

A
U is always set to either the estimate of a minimum between two adjacent

discontinuity estimates or to a specific discontinuity estimate. The other
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difference between the two versions is that we now estimate the dis-

continuities by inverse cubic interpolation at two points. Thus the

estimate of the discontinuity is chosen as the zero of the inverse

cubic which agrees with the inverse of CD&Y) in both function and

derivative values, where cp(cy> is the function whose zero is desired.

Inverse interpolation is preferable to direct interpolation for this

purpose because the zero of the inverse cubic must be unique whereas

the direct interpolating cubic may have several zeros. For further

details on inverse interpolation see Traub [lo] .

As before we begin by assuming that the minimum is bracketed by

a and b . It bec:_omes necessary to consider the two possible forms

of F(a) separately. For simplicity we assume that F(a) < F(b) .

The computation of G is then done as follows:

(a) F=F
s l

(i) All discontinuities located in [a,b] are estimated by inverse

interpolation and the estimates z. are ordered and stored. If there is
1

at least one discontinuity located between x and w (i.e. there is

at least one fi (cy> with different sign at x and w > then the inverse

interpolation is done at a and b since this is the most reliable

choice, but otherwise each estimate is first made by inverse interpolation

at the ,points x and w , and this is then replaced by the estimate

using a and b only if the first estimate lies outside
☯a&l l This is

done because the good rates of convergence properties of successive inverse

interpolation apply only if the best points are used for each fit. Note

that although x and w are usually the two points with lowest values of

F(a) it is clear that if z lies at a discontinuity with fk(3= 0 , then
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ultimately x and w will also be the two points with lowest value of

If&d 1 ’ If a and b are not equal to x and w , then ultimately

there cannot be any discontinuity between x and w even if the minimum

*
QJ is a discontinuity, and hence this strategy cannot impede the rate of

convergence. It is possible that the inverse interpolation estimate

using a and b lies outside [a,b]; if this happens, it is replaced

by the secant estimate.

(ii) For convenience we set yl to the value a and y2 to the smallest

of the values {zi] . The points yl and y2 represent the current

discontinuities as we examine them from left to right. We initially

define the function h(a) by F (a) (cd as defined by (3.4). The function

hkd is the differentiable function thought to coincide with F(a) between

the discontinuities estimated by yl and y2 l

(iii) The point s is set to the estimate of the minimum of h(a) using

(direct) cubic interpolation. As in the low overhead version, the cubic

interpolation is done at the points a and b if there is at least one

discontinuity located between x and w , and otherwise is done at the

points x and w .

If s is undefined,

-
is defined as either

comparing its values

If yl < s < y2 , then G is set to s .- -

which will be the case if h(o) is linear, then s

+a or - 03 by assuming h(o) is linear and

at x and w or a and b . For example, if

h(a) < h(b) , then s is set to - CO .

(iv) If s < yl then k is set to yl as then the differentiable

functions coinciding with F(Q) on either side of yl each appear to

have their minimum on the opposite side of yl .

(v) If s > y2 then yl is set to y2 , y2 is set to the next smallest
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of the values of the [zi] , or to b if there are none greater than

y2 , h(a) is set to the function thought to coincide with F(cY) in

the new interval [y,, y21 , and steps (iii), (iv> and (v> are repeated.

The new function h(a) is obtained by adding to the old h(a) the

function + f,(o) , where zk is the old'value of y2 and the sign

is the sign of fk(b) . However, if the old value of y
2

is b , the

A
process is terminated with u set to b . This is illustrated in

Figure 7 .

(b) F = FM'

(i) In this case in order to recognize the discontinuities it is necessary

to estimate them in stages.
-_

We therefore begin by setting yl to a and

kl to j(a) as defined by (2.2).

(ii> The .point s is set to the estimate of the minimum of f
kl

(a) using

(direct) cubic interpolation. As before, the interpolation is done at a

and b if at least one discontinuity is located between x and w , i.e.

if j(x) f j(w), and otherwise it is done at x and w. Also if this

makes s undefined it is set to + ~0 as before.-

(iii) If s<y
1

then 4 is set to yl and the process is terminated.
a

(iv) The zeros of the functions f
kl

(CY) - fi(tY) for all i f kl are

estimated by inverse interpolation. As in (ii> the points a and b are

used if j(x) f j(w) and otherwise x and w are used. Then y2 is

set to the minimum of those estimates which are greater than yl . If

there are none greater than yl and less than b , then y2 is set to b .

Also k2 is defined such that y
2

is the estimate of the zero of

f
kl

(c!) - fk (cu) , unless y2 = b when k2 is undefined. If s < y2 ,-
2
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A
Determining u for F = FS in the higher overhead version. The zeros

6, (of f,), 5, (of f,) and 6, (of f4) are estimated first. Then the

polynomial fits to each function are successively made. Provided that

the minimum predicted by the fit to

cl
f2+f3 lies between the estimates of

69 and c 7 ' is set to this point. The low overhead version would

have set $'to the average of estimates of 5
l5

,
2

and
53 '

FIGURE 7
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then 6 is set to s and the process is terminated.

(v) If s > y2 then kl is set to k2 , yl is set to y2 , and

steps (ii) to (v) are re*peated, unless y2
= b when the process is

terminated with t set to b . See Figure 8 for an illustration.

However if during the execution of the above k2 is initially set

to j(b) in part (iv) , i.e. we have kl = j(a) and k2 = j(b) indicating

only one discontinuity between a and b , then in all subsequent

computations of G part (iv> is replaced by

(iv-2) If yl = a then y2 is set to the estimate of the zero of

fj (a> - fj(b) '
using inverse interpolation either at a and b or at

X and w , depending-on whether j(x) = j(w) as before. Since we know

there is a zero of this function in [a,b] , we re*place  the estimate using

X and w ,if it lies outside [a&l , by the estimate using a and b ,

and replace the estimate using a and b if necessary by the secant

estimate. If yl f a , then y2 is set to b . Note that estimating only

the zero of f
j(a) - fj(b)

is a safe strategy even though there may still

be more than one discontinuity in [a,b] . An example of an unsafe strategy

would be to estimate only the zero of, say, f2- f
3

, if 0 had been set

to-the estimate of the zero of this function several times already. Also

note that the strategy may never be invoked since if the estimates  con-

verge to z from one side the interval of uncertainty may always contain

more than one discontinuity. As in the low overhead version this is the

only place where the definition of G de*pends on retaining any information

from the previous iteration other than a,b,x,w and the function and

derivative values.

Notice that for F = FM in part (iv) it would be *possible to exclude

40



Determining G for F = FM in the higher overhead version. The zeros

61, $7 63 are successively estimated and the polynomial fits successively

+ made to each function. Provided that the polynomial fit to f2 is de-

creasing to the right of the estimate of
5, and that to f

3
is decreasing

to the left of it, G is set to the estimate of
62 l

The low overhead

version would have set 9 to an estimate of < .

FIGURE 8
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from consideration those i such that kl = i for an old value of

kl or such that the estimate of the zero of f
kl

(a) - fi(QI) lies

outside [a,b] for an old value of kl l

A
It is worth noting that the choice of u in the higher overhead

version requires of the order of m-m operations in the case that F = FM

(in part (iv)), where m is the number of discontinuities in the interval

of uncertainty, but only of the order of m operations for F = FS .

If we were not permitted to store the (zij in the case F = FS, there

would also be order mom operations required for this case. However, it

does not appear possible to utilize storage in a similar way to reduce

the operation count for F = FM since there are too many possible dis-

continuities to be stored in advance.

In both the above descriptions for F = FS and F = FM we have

.assumed that F(a) < F(b) but clearly when this is not true the roles

of a and b are simply interchanged and the discontinuities are examined

from right to left instead of left to right.

As in the low overhead version we end the section by considering the

*
case where my is not yet bracketed. The choice of 0 is made in much

the same way as in the case that F(a) < F(b) , except that x and w
-

are used for both the direct and inverse interpolations, and in the case

F = FS the zeros of fi(o!) for all i must be estimated instead of

just those thought to lie in [a,b]. Clearly instead of terminating if

yl becomes b , the computation of fi must terminate if yl becomes

undefined and the safeguards will then choose a reasonable new u .

3.2.4 The case without derivatives.

We do not describe this in any detail but outline the changes to be
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made to the low and higher overhead version for computing G . We now

have the extra point v defined in Section 3.1. In the low overhead

version the Newton steps to the discontinuities are replaced by secant

steps. We use the points a and b when there are discontinuities
*

located between w and v (and o is bracketed) and switch to using

X and w when this is no longer true. In the higher overhead version

the inverse cubic interpolation is replaced by inverse quadratic inter-

polation at the points a, x and b initially (if z is bracketed)

and the points x, w and v ultimately. In both versions the (direct)

cubic interpolation estimate of a minimum is replaced by quadratic inter-

polation, again at a,x, and b, or at x,w and v .

3.2.5 Convergence Results.

We now give the convergence results for the theoretical procedures

associated with the algorithms described above. By theoretical procedures

we mean exact],y what was explained in Section 3.103 l We assume that

F(cu) has one of the forms (2.1) and that an upper bound 5 on the interval

of uncertainty is known. 1

Theorem 4. The theoretical procedures corresponding to both the low and -

higher overhead versions described above for both F = Fs and F = FM ,

in the cases with and without derivatives, all produce a sequence of points

@kJ
*

converging to a point CI' which is either a local minimum or generalized

stationary inflection *point of F(o) on [0,6] .
1 1 1

Furthermore if fi (a)

is Lipschitz continuous on [a,b] for 1 < i < m , and f
*

- - Yk Q for all k ,

then we have the following. If either

(a> F” (G) exists and is positive, and it is not true that f$ = 0

for some i if F = FS , or that fi& = fk& = F(E) for some
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ifk if F=FM Y or

(b) F' (E) f 0, F;(G) f 0, and fi& = 0 for exactly one i , with

f! (3 f 0, if F = F, , or fi& = f,(z) = F(z) for exactly one
I Ll

pair i f k , with f;(z) f

convergence rate is given by the

,if F=FM, then the asymptotic. .

following table.

Algorithm Convergence rate
Case (a> above Case (b) above

Low overhead with derivatives 2 2

Low overhead without derivatives 1.324... 1.618...

Higher overhead with derivatives 2 2.732...

Higher overhead without derivatives l.@+... 1.83%.

In order to prove this theorem we need several more lemmas in addition

to those of Section 3.1.3. The first two are similar to Lemmas 3 and 4 ,

and, as before, we present the first without proof.

Lemma 5.

If z is not a zero of a differentiable function (p(a) then 3 6 > 0 s.t.

the interval (z - 6 , z f 6) contains no zero of (P(Q) and such that a

secant or Newton step to the zero of cp(@) using a point inside the interval-

is good enough that the estimate of the zero lies outside the interval.

Lemma 6.

Assume each point in the subsequence (u.
'k

] is generated by either

a Newton or secant step to the zero of cp(cu> using the point If

* * *
Xjk

x. + u and u. + u , then u is a zero of
Jk Jk

CpkY)  l

Proof.

Identical to that for Lemma 4 using Lemma 5 instead of Lemma 3*
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Lemma 7.

Assume the hypotheses of Lemma 4 except that the approximating

polynomials are fitted to a continuously differentiable function @(a>

instead of F(a). Then if there is a sub-sequence of (u.
Jk

] , namely

{u; 3, i3.t. F(u; ) = Q(u, ) v k, the same result holds as for Lemma 4.
'k

Proof.
'k

By Lemma 4 E must

generality assume that a

*

be a LM or GSIP of &>. Without loss of

subsequence of {u.
Jk

}, namely {u.
'k

3, converges
.

to u from the left. Since @(a) is continuously differentiable we

can write

m'(3 = lim
6.

'k
1 - @G)

= F' (;) = 0.
k+a 3c

u. -u
'k-_

The fact that E must be a LM or GSIP of F(o) follows from this and

the fact that F(u. ) + F(c) from above.
'k

Proof of Theorem 4.

We restrict our attention to the low overhead version. Either there

is a subsequence (u. ) with u. = fi. for all k
Jk Jk Jk

, or there exists K

s.t. uk= $ for k?K. In the former case as before we obtain the

first part of the result from Lemma 1. Therefore assume the latter case.

- There must be a subsequence (u.
Jk

] either (i) consisting entirely of points

generated by polynomial approximation fitting to a certain differentiable

function @(fy) , or else (ii) consisting entirely of points generated by

Newton or secant steps to the zero of a differentiable function q(o) .

Case (i).

ByLemmas and4, u.+E
Jk

with E a LM or GSIP of Q(o) . (Note

that the quadratic approximation always uses the two best points for two

of its three points and similarly the cubic approximation always uses the
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best point). Suppose there is a subsequence (u. }

F(uik) = @(ui
3

of (ujk] such that

) for all k . Then by Lemma 7 u is a LM or GSIP of
k.

F(a)= Otherwise 3 K s.t.

F(ujk) f Q (uj > for k 2 K .
k

(3051

Since x, + E
*

and w,+u we know either a
i
+ c or b$.

Jk Jk
Without loss of generality assume the former,

the way the fit is chosen in the low overhead

either Fbjk) = 9 bj >
k

or F(b. ) = @(bjk).
Jk

'k Y 'k
i.e. a. + U . Because of

Jk
version, we have for each k

By taking subsequences (but

not writing them explicitly), we can assume that either da. > = @(a. >
Jk Jk

for all k > K , or F(b. ) = @(b. ) for all k > K . The former con--
Jk Jk

-

tradicts (3.5) , as we could write (a.
Jk

] as a subsequence of cu. ]-_
* Jk

converging to u , so we assume the latter. Since @(a/) and F(a) agree

at b.
Jk

but not at u. , there must exist a discontinuity 5 such that
Jk

2 5 5<bs
Now consider the

k - Jk
for all k > K , and hence :<g.-

estimate of 5 at each step, namely z.
Jk

, which results from a Newton

or secant step using the best point x. .
Jk

We have a. < z. < b. .
Jk - Jk - Jk

On the other hand, z. must lie outside [u.
Jk

b.
Jk' Jk

] or the step to

2,
would not be accepted as it crosses a discontinuity estimate. Thus

LL
and z.+:

Jk
. By Lemma 5 this is not possible unless

We therefore have that @(a/) agrees with F(a) on an interval to the

*
right of and including u , and hence that F:(E) = 0 as @l(E) = 0 .

Since a. + z , we know F(Q)
*

Jk
is non-decreasing on the left of u , so

z is a LM or GSIP of F(a/) (see Figure 9).

Case (ii).

We have C"jk3 where each point is generated by a Newton or secant

step to the zero of a differentiable function
q&Y) l By Lemmas 2 and 5 ,
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F=@

*
a. cy b

-_ Jk

(a> Equation (3.5) does not hold.

b > Equation (3.5 > holds.

*
a. CY b
Jk

Two possibilities in case (i) of the proof of Theorem 4 .

FIGURE 9
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and
St
U must be a zero o f q&Y). Suppose

*
U is not a LM or

GS?P, and without loss of generality assume F;(e) < 0 . Let &> be

the differentiable function coinciding with F(a) on the right side of
*
U

The algorithm will not permit u. to be set to the estimate z of the
Jk

zero of (p(a) if a point to the right of" z is produced by polynomial

approximation to the function thought to coincide with F(Q) to the

right of z . In the low overhead version the function in question is

F(b+ >CY , and since u.
Jk

is then always set to z.
Jk

ultimately we

must have i.
'k

equal to a slpecific  discontinuity estimate and F (b)(d z $(a>-

(In the higher overhead case the function in question is clearly ultimately

equal to ;P(cu).) Thus by Lemma 3 this fit is ultimately good enough that

ajk
cannot be set to the estimate of the zero of TM , which is a con-

*
tradiction. Hence u must be a LM or GSIP.

This completes the first part of the proof for the low overhead

version. We omit the proof for the higher overhead version since it is

similar. The main difference is the replacement of the Newton and secant

results by analogous ones for successive inverse interpolation.

The hypotheses of the second part of the theorem ensure that ultimately

the ,points uk are generated entirely by successive estimates of a minimum

using (direct) cubic or quadratic interpolation or entirely by successive

estimates of a zero using the secant method, Newton's method, or inverse

cubic or quadratic interpolation. They also ensure that ultimately the

best points are used for the interpolation and hence that the rate of con-

vergence is not impeded. The convergence rates for successive cubic or

quadratic interpolation were quoted in Section 3.1.3, those for the secant

method and Newton's method are well known, and those for inverse inter-

polation may be found in Traub [lO,p.66]. This completes the proof of the
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theorem.

Finally we note that as in the differentiable case it does not make

sense to talk about just any local minimum of the computed function PC )cl! l

It is easy to verify that Theorems 2 and 3 hold for the nondifferentiable

algorithms as well, where !J (' cy 1 is the quantity resulting from computing

F'(a) as defined in (2.2).

4. Steplength Algorithms.

In this section we discuss how to choose a/ (k) (see Section l), when

minimizing an n dimensional function of the type given by (1.1). In order

to prove convergence for descent methods the steplength has to meet certain

criteria. The function must be "sufficiently decreased" with respect to

the steplength, and the steplength must not be too small (see Ortega and

Rheinboldt [2,~.4pO]).For differentiable functions a typical criterion to

ensure that the first condition is satisfied is

F(k) _ F(xck)+ cr(k)p)  > _ p (&k)&k)Tp
- (4.1)

where p is a preassigned scalar, 0 < p < 1 . (We have now omitted

the superscript from p (k) , and have denoted F(x (k)) and g(x(k)) by

- F(k) and g(k). > As was mentioned in the introduction, such criteria do

not in general define a unique point. Many elementary algorithms have

been proposed which satisfy them. However it is important to realize that

for a practical algorithm mere convergence in the limit is only of academic

interest. We are interested in the finite sequence [x (k) 1, k=l,...N,

where N is preferably small, and where x (N) is "close" to Z . The

greater the reduction in F(x) per iteration usually the lower the value

of N . It is necessary however to limit the effort expended on determining
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$d since this in itself could be an infinite process.

For algorithms which are designed to minimize differentiable

functions Gill and Murray [l] proposed choosing the steplength by

proceeding to compute a local minimum of .F(x (k)
+ a p) using the

algorithm described in Section 3.1 and terminating this prematurely

(possibly after a single function evaluation). When derivatives are

available the termination condition is

F(x(~) + QJ p) < F(k)

and

Igcx(k) + a! PfPI < - h g (kjT p (4.2)

where h is a preassigned scalar, 0 < h < 1 . A check is then made- -

as to whether this step satisfies (4.1) with 1-1 set to a small value

such as 10 -4 . The experience with such a procedure in the many cases

that were checked is that the resulting step always satisfied (4.1).

If (4.1) is not satisfied, the step is successively contracted by a factor

of one half until it satisfies (4.1). It is proved in [l] that this

strategy is sufficient to ensure the overall convergence.

- Clearly the smaller the parameter h is, the greater the reduction

obtained in F(x) but the more evaluations of F(x) required. The

optimal choice of t-t will vary both with the algorithm within which the

procedure is incorporated and the problem being solved. Fortunately for

a particular algorithm a near optimal value of h can be predetermined

That different algorithms will require different choices of h arises

from the relative effort of computing the search direction p and per-

forming additional iterations of the univariate search (recall that the
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more accurate the univariate search, the fewer iterations of the multi-

dimensional algorithm required). If for example in a Newton-type method

it was expensive to evaluate the Hessian matrix (required to compute p

only) compared to evaluating F(x) and g(x) then a small value of h

would be warranted. Similarly if n was large making the housekeeping

operations of obtaining p significant, then again a small value of h

would be warranted. For most algorithms, however, the optimal h under

most circumstances is in the range 0.5 - 0.9 .

The termination criterion (4.2) is clearly inappropriate for

nondifferentiable functions since if z is a discontinuity there may

be no value of my which satisfies it. To achieve a similar objective

for nondifferentiable functions we propose the following. Let a/ be

the first point in the sequence generated by one of the minimization

algorithms with derivativesdescribed in Section 3.2 such that

F(x(~) i- &p, < F(k)

and either

or
-

(kjT
P1 g (xCk) + a/ gdTPl  5 -hg

Icp(x(k)+ a, P)l < Yt lrpol-

(4.3a)

The test (4.3b) is done only if the generation of the next point

after G in the univariate search entails setting the new point u to

an estimate of a specific discontinuity, namely the zero of the function

cp(xk + cy P)* The scalar
(PO

is the value of dcd at the first point

*
at which we assume my to be the zero of (p(a) . The required steplength

k)
CY is set to G provided this satisfies any criteria such as (4.1)

(4.3b)
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required for guaranteed convergence of the algorithm. In the unlikely

event & is not satisfactory a/ (Jd is set to the first satisfactory

member of the sequence {(j)Ji &I i = 1,2....3 .

In the case without derivatives, g(x (k) Tf i p> p in (4.3a) is

replaced by

F(x(~) + cr p) - F(x k) +cyp) )

where o is the last point in the sequence obtained in the univariate

search which is less than a/ . We assume that an estimate of g (k) is

available as a result of determining p .

5. Extensions to a Wider Class of Functions.

Although we have confined our attention so far to functions of the

type (l.l), the algorithms presented here can be extended to handle a

wider class of functions. Two common types of nondifferentiable functions

are those arising from

m

Fl(x) = if. (X)1
i=l

t-he
5

and 1a3 approximation problems, namely

I and FoD(x) = max
l<i<m

/fiOl l

A third is the class of nondifferentiable penalty functions arising from

general minimization problems subject to inequality or equality constraints

(see Conn and Pietrzykowski [ll] and Han [121):

;Fp(x) = fo(x) + Pl
r

max b,fi(x)) + p2 Ifi  l

i=l

The functions Fl(x) and FoD(x) could be transformed to the type (1.1) ,

as could FP(x) if a suitable positive term were added to fo(X) l However,

to do so is both artificial and unnecessary, and although the performance

of the steplength algorithms would be satisfactory, the transformation would
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be likely to introduce degeneracy into the n dimensional algorithm.

It is therefore much more satisfactory to consider the following two

types of functions:
m

FGS(x) = 0 (Bi, fi(X))

i=l

where CT (ei, fi(x) is one of Ifi(x)I, max(O,fi(x)), fi(x),
(5.1)

min(O,fi(x)), - Ifi(x according to the value of ei , and

FGM(x) = max (max Ifi(dI, max
l<i<ml m+l<i<m

fi(X)).
- l - -

Note that there are functions of the type FGS(x) which cannot be

transformed to the type (1.1). These two types of functions clearly have

their discontinuities defined in a similar way to that described for the

functions FS
and F

M'
and it is easy to modify the algorithms to cope

with these more general cases. Since the modifications introduce little

additional overhead, our implementations of the algorithms cope with these

wider classes of functions.

As indicated in Section 1, the ideas of these algorithms could be

extended to handle virtually any continuous function whose directional

derivatives exist everywhere and whose discontinuities are given by the

roots of known differentiable functions. We believe however that most

such functions arising in practice are either of the type (5.1) or else

could easily be

Finally we

described above

transformed to this type.

note that it would be possible to extend the algorithms

for use in minimizing certain differentiable functions

with discontinuities in the second derivative. If the minimum is at a

point of discontinuity in the second derivative, the convergence rate

will normally be only linear for the differentiable case algorithm
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described in [l], but if the minimum is also a root of a differentiable

function, the good rates of convergence for the nondifferentiable

algorithms could be achieved if the algorithms were extended properly.

An example of such a function would be F(x) = x2 on [O,a) and

F(x) = $ x2 on (- qO1  l

. .

6. Implementation and Numerical Results.

The algorithms described in this paper have been implemented in

Fortran. They make use of the computer programs for the algorithms

described in [l], which are documented in [13] and form part of the

Numerical Optimization Software Library at the National Physical Laboratory.

Hence the safeguards are attended to by the existing programs and the new

programs essentially compute ?l at each iteration and include the extra

steplength termination criterion.

We present the results of some test runs of the higher overhead step-

length algorithm for F = FS using derivatives, and compare them with

running  the algorithm of [l], intended for differentiable functions, on

the same function. Although we have not yet had extensive numerical ex-

perience with the new algorithms, the results illustrate their potential

advantages. The univariate function is
-

F(x) = fl(x) + max(f2(x),0) f max(f3(x),0)

where

(a>

b >

fl(X) = - cos x

f2(X) = 4(x-l) and either

f3(x) = - 1 0  sin(0.5(x-0.1)) or

f3(x) = - 10 sin(0.5(x+O.l)) .
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The initial point is x0 = - 1.2 , the direction of search is p = 1 ,

and the initial step is aO
=l. In case (a) the points of derivative

discontinuity are x = 0.1 and x = 1.0 , and the minimum is at the

first of these. In case (b) the points of discontinuity are x = - 0.1

and x = 1.0 and the minimum is at x = 0.0 , where the function is

differentiable. Results are given for several values of h : h = lo-6

for an "exact" line search, and h = 0.1 and 0.5 for "slack" searches.

The tolerances E and 7 are set to 10 -6 . The results were obtained

on an IBM 370/168 using double precision, i.e. approximately 14 decimal

digits of accuracy. They appear in Table 1. The number of function

evaluations includes the evaluation F(xo + a0 p>.

The results illustrate that as well as being far more efficient than

the algorithm of [l] for an exact line search where the minimum is at a

discontinuity, the new algorithm can also be significantly more efficient

for slack line searches where the minimum may or may not be at a discontin-

uity. In all cases for large h the new algorithm required less function

evaluations and in all but one also produced a lower point. In case (a),

for h = 0.5, the algorithm terminated with x = x0 + cyo , since it

determined that the best step to take next was to the zero of f3(x)

but that the step from x0 to x0 + a0 had already achieved a reduction

in lf3(x)l sufficiently large enough to allow it to stop. Note that in

. case (a> if the left and right derivatives at the solution had been

sufficiently higher, the algorithm of [l] would have been unable to terminate

until the length of the interval of uncertainty was reduced to 2 to1 (XI

even for large h , since it would be unable to reduce the gradient to

h=F'(xo) .
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7. Concluding Remarks.

A fundamental part of algorithms and software for minimizing

differentiable functions of several variables is an efficient steplength

algorithm. The basic algorithms described by Gill and Murray [l] have

been incorporated in the implementation of more than 50 different routines

for unconstrained and constrained optimization. We believe that the same

,potential exists for developing software for nondifferentiable functions.

Although there is not as yet the same variety of routines for this class

of problems, the existence of a powerful steplength algorithm will in

itself provide a stimulus. The routines should also prove useful when

nondifferentiable functions are used as merit functions for solving con-

strained optimization problems.
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