
Stanford Artificial Intelligence Laboratory
Memo AIM:320

November 1978

Computer Science Department
Report No. STAN-CS-78-690

A DEDUCTLVE APPROACH T O PROGRAM SYNTHESIS

bY

Zohar Manna Richard Waldingcr
Artificial Intelligence Lab Artificial Intelli@nce Center
Stanford University SRI International

Research sponsored by

National Science Foundation
Office of Naval Research

Advanced Research Projects Agency

COMPUTER SCIENCE DEPARTMENT
Stanford University

Stanford Artificial Intelligence Laboratory
Memo AIM-320

November 1978

Computer Science Department
Report No. STAN-CS-78-690

A DEDUCTIVE APPROACH TO PROGRAM SYNTHESXS

bY

Zohar Manna Richard Waldinger
Artificial Intelligence Lab Artificial Intelligence Center
Stanford University SRI International

Program synthesis is the systematic derivation of a program from a given specification. A
deductive approach to program synthesis is presented for the construction of recursive programs.
This approach regards program synthesis as a theorem-proving task and relies on a theorem-
proving method that combines the features of transformation rules, unification, and mathematical
induction within a single framework.

This research was supported in part by the National Science Foundation under Grants MCS 76
53.655 a.nd MCS 78-02391, by the C$ce of Naval Research under Contrazts N00014-76-C-0687
and N00014-75-C-0816, by the Advanced Research Projects Agency of the thpartment of Defense
under Contract MDA903-76-C-0206, and by the United States-Israel Enational Science
Foundation.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the oflcial policies, either expressed or impiied, of Stanford
University, or any agency of the U. S, Government.

2

MOTIVATJON

The early work in program synthesis relied strongly on mechanical theorem-proving

techniques. The work of Green [1969] and Waldinger and Lee [1969], for example,

depended on resolution-based theorem-proving;‘however, the difficulty of representing the

principle of mathematical induction in a resolution framework hampered these systems in

the formation of programs with iterative or recursive loops. More recently, program

synthesis and theorem proving have tended to go their separate ways. Newer theorem

proving systems are able to perform proofs by mathematical induction (e.g., Boyer and

Moore [1976]), but are useless for program synthesis because they have sacrificed the

ability to prove theorems’ involving existential quantifiers. Recent work in program

synthesis (e.g. , Burstall and Darlington [19771 and Manna and Waldinger [1977]), on the

other hand, has abandoned the theorem-proving approach, and has relied instead on the

direct application of transformation or rewriting rules to the program’s specifications; in
choosing this path, these systems have renounced the use of such theorem-proving

techniques as unifica_tion or induction.

In this paper, we describe a framework for program synthesis that again relies on a

theorem-proving approach. This approach combines techniques of unification, mathematical
induction, and transformation rules within a single deductive system. We will outline the

logical structure of this system without consider ing the strategic aspects of how

deductions are directed. Although no implementation exists, the approach is machine-

oriented and ultimately intended for implementation in automatic synthesis systems.

In the next section, we will give examples of specifications accepted by the system.
In the succeeding sections, we explain the relation between theorem proving and our
approach to program synthesis.

3

SPECIFJCATION

The specification of a program allows us to express the purpose of the desired program,

without indicating an algorithm by which that purpose is to be achieved. Specifications

may contain high-level constructs that are not computable, but are close to our way of

thinking. Typically, specifications involve such constructs as the quantifiers for all . . . and

f or some.,,, the set constructor {x: . ..}. and the descriptor find r such that, . . .

For example, to specify a program to compute the integer square-root of a nonnegative

integer n, we would write

sqrt(n) <6 find z such that
integer(z) and 2 5 n < (zt 1)2

where integer(n) and 0 5 n,

Here, the input condition--_

integer(n) and 0 I n

expresses the class of legal inputs to which the program is expected to apply. The output
condition

integer(z) and z2 5 n < (~+l)~

describes the relation the output z is intended to satisfy.

To describe a program to sort a list 1, we might write

sort(l) <= find 2 such that
ordered(r) and perm(l, 2)

where islist(

Here , o r&red(r) expresses tha t the e lements o f the ou tpu t l i s t x shou ld be in

nondecreasing order; perm(l, x) expresses that z should be a permutation of the input 1;

and-islist expresses that I can be assumed to be a list.

Finally, to describe a program to find the last element of a nonempty list I, we might

last(l) <E find z such that
for some y, 1 = yc>[z]

where isiist(t) and I N [J

4

Here, UCXJ denotes the result of appending the two lists u and v; [u] denotes the list

whose sole element is u; and [] denotes the empty list. (Thus, [A B C]o[D] yields

[A B C D]; therefore, by the above specification, last([A B C DJ) = 0,)

In general, we are considering the synthesis of programs whose specifications have the
form

f(a) <= find 2 such that R(a, z)
uhere P(a).

Thus, in this paper we limit our discussion to the synthesis of applicative programs, which

yield an output but produce no side ef fects. To der ive a program from such a

specification, we attempt to prove a theorem of the form

for all a,
if P(a)
then for som6 2, R(a, r).

The proof of this theorem must be constructive, in the sense that it must tell us how to

find an output z satisfying the desired output condition. From such a proof, a program to

compute I can be extracted,

6

BASIC STRUCTURE

The basic structure employed in our approach is the sequent, which consists of two lists

of sentences, the assertions A,, AZ, . . . , A,, and the goals C, , c2, . . . , G,. With each

assertion or goal there may be associated an entry called the output expression. This output

entry has no bearing on the proof itself, but records the program segment that has been

constructed at each stage of the derivation (cf. the “answer literal” in Green [1969]).
We will denote a sequent by a table with three columns: assertions, goals, and output.

Each row in the sequent has the form

assertions

A,b, 4

goals output

ti(a, X>

or
--

cib, 4 tj(a, x)

The meaning of a sequent is that if all instances of each of the assertions are true,

then some instance of at least one of the goals is true; more precisely, the sequent has

the same meaning 6s its associated sentence

if for all x, A,(a, x) and
for all x, A,(a, x) and

for all x, A,(a, x)
then for some x, G,(a, x) or

for some x, G2(a, x) or
.

for some x, C&a, x)

where a denotes all the constants of the sequent and x denotes all the free variables. (In

general, we will denote constants or tuples of constants by a, b, c, . . . , n and variables

or tuples of variables by u, v, w, . . . , r.) If some instance of a goal is true [or some

6

instance of an assertion is false], the corresponding instance of its output expression

satisfies the given specification. In other words, if some instance G/a, e) is true [or some

instance Ai(a, e) is false], then the corresponding instance tj(a, e) [or t,(a, e)] satisfies the

specification. -.

Note that: (1) an assertion or goal is not required to have an output entry; (2) an

assertion and a goal never occupy the same row of the sequent; (3) the variables in each

row are “dummys,” that we can systematically rename without changing the meaning of the
sequent.

The distinction between assertions and goals is artificial, and does not increase the
logical power of the deductive system. In fact, if we delete a goal from a sequent, and

add its negation as a new assertion, we obtain an equivalent sequent; similarly, we can

delete an assertion from a sequent, and add its negation as a new goal, without changing

the meaning of the sequent. This property is known a s duality. N e v e r t h e l e s s , t h e

distinction between-assertions and goals makes our deductions easier to understand.

If initially we are given the specification

f<)a G find z such that R(a, z>
ruhere P (a) ,

we construct the initial sequent

t
Assertions Goals output

P(a)

Rb, z> 2

In other words, we assume that the input condition P(a) is true, and we want to prove that

for some z, the goal R(a, z) is true; if so, z represents the desired output. Quanti f iers have

been removed by the usual skolemization procedure (see, e.g., Nilsson [1971]). The

output z is a variable, for which we can make substitutions; the input a is a constant.

The input condition P(a) is not the only assertion in the sequent; typically, simple, basic

axioms, such as u = u, are represented as assertions that are tacitly present in all

sequents. Many propert ies of the subject domain, however, are represented by other

means, as we shall see.

7

The deductive system we describe operates by causing new assertions and goals, and

corresponding new output expressions, to be added to the sequent without changing its

meaning, The process terminates if the goal true (or the assertion false) is produced,

whose corresponding output expression consists entirely of primitives from the target

programming language; this expression is the desired program. in other words, if we
develop a row of form

true t

or

false t
L .

--
where t is a primitive expression, the desired program is of form

f(n) <E t.

Note that this deductive procedure never requires us to establish new sequents or

(except for strategic purposes) to delete an existing assertion or goal, In this sense, the

approach more resembles resolution than “natural deduction.”

In the remainder of this paper we outline the deductive rules of our system, and we

present two complete examples illustrating the application of the system to program

synthesis.

SPLITTING RULES

8

The spl i t t ing rules al low us to decompose an assert ion or goal into i ts logical

components. For example, if our sequent contains an assertion of form F and G, we can

introduce the two assertions F and C into the sequent without changing its meaning. We

will call this the andsplit rule and express it in the following notation:

the andsplit rule

assertions

F and G

F
G

goals output

t
-

t
t

Similarly, we have the orsplit rule

assertions

and the ifsplit rule

goals

F or G

F
c

output

t

t
t

assertions

-
F

goals

if F tl1en G

G

output

t

t
t

Note that the output entries for the consequents of the splitting rules are exactly the

same as the entries for their antecedents.

9

Although initially only the goal has an output entry, the ifs@ TX/C can introduce an

assertion with an output entry. Such assertions are rare in practice, but can arise by the

action of such rules,

10

TRANSFORMATION RULES

Transformation rules allow one assertion or goal to be derived from another. Typically,

transformations are expressed as conditional rewriting rules

Y=3J if P

meaning that in any assertion, goal, or output expression, a subexpression of form Y can be

replaced by the corresponding expression of form 5, provided that .the condition P holds.

W e n e v e r write such a rule unless Y and s are equal t e r m s o r e q u i v a l e n t s e n t e n c e s ,

whenever condition P holds, For example, the transformation rule

ucv * u = head(v) or u C tail(v) if islist and v g []

expresses that an element belongs to a nonempty list if It equals the head of the list or

belongs to its tail. (Here, he&(v) denotes the first element of the list v, and tail(v) denotes
the list of all but the first element.) The rule

ul0 * t r u e if integer(u) and u z 0

expresses that every nonzero integer divides zero.

If a ruie has the vacuous condition true, we write it with no condition; for example, the

logical rule

9, and true 3 9,

may be applied to any subexpression that matches Its left-hand side.

- A transformation rule

Y=3 s if P

is- not permitted to replace an expression of form 3 by the corresponding expression of

f&m Y when the condition P holds, even though these two expressions have the same

values. For that purpose, we would require a second rule

S=+Y if P.

For example, we might include the rule

11

x+0=2-x if number(x)

but not the rule

. .
x=+x+0 if number(x).

Assertions and goals are affected differently by transformation rules. Suppose

Y=+S if P

is a transformation rule and F(r’) is an assertion such that its subexpression Y’ is not

within the scope of any quantifier. Suppose also that there exists a unifier for Y and Y’,

i .e . , a substitution 8 such that ~0 and 7’0 are identical. Here, ~0 denotes the result of

applying the substitution 0 to the expression Y. We can assume that 8 is a “most general”

unifier (in the sense of Robinson [19651) of Y and Y’. (We rename the variables of F(r’), if

necessary, to insure that it has no variables in common with the transformation rule.) By

the rule, we can conclude that if PO holds, then re and se are equal terms or equivalent

sentences. Therefore, we can add the assertion

if P6 then F(s)8

to our sequent.

For example, suppose we have the assertion

and we apply the transformation rule

ucv =a u = head(v) 0~ u ti tail(v) if islist and v f [I,

taking Y’ to be a 6 1 and 6 to be the substitution [u c a; v c I J; then we obtain the new

assertion

if islist and I f []
then (a = had(l) OY a E tail(l)> and a f 0,

Note that a and I are constants, while u and v are variables, and indeed, the substitution
was made for the variables of the rule but not for the constants of the assertion.

In general, if the given assertion F(Y’) has an associated output entry t, the new output

12

entry is formed by applying the substitution 6 to t, For, suppose some instance of the new

assertion “if Po then F(s)& is false; then the corresponding instance of PO is true, and the

corresponding instance of F(s)6 is false. Recall that F(r)8 and F(r’>e are identical. Then,. .
by the transformation rule, the corresponding instance of F(Y)& i.e. of F(r’)& is false. We

know that if any instance of F(Y’) is false, the corresponding instance of t satisfies the

given specification. Hence, because some instance of F(r’)6 is false, the corresponding

instance of to is the desired output,

In our deduction rule notation, we write

asseytions

Fly’)

if PO then F(sJ6

goals

The corresponding dual deduction rule for goals is

assertions goals

F(r’)

PO and F(s)0

output

t
-

I te

(Transformation rules can also be applied to output entries in an analogous manner.)
-

For example, suppose we have the goal

and we apply the transformation rule

uJ0 * true if integer(u) and u z 0,

taking Y’ to be air and 6 to be the substitution [z c 0; u c a 1. Then we obtain the goal

13

(integeY(n) and a # 0) and
(true and b10)

ot 1

which can be further transformed to

t
integer(a) and a z 0 and b10 1

J

Note that applying the transformation rule caused a substitution to be made for the

occurrences of the variable r in the goal and the output entry.

Transformation rules need not be simple rewriting rules; they may represent arbitrary

procedures. For example, Y could be an equation f(x) = a, s could be its solution x = e, and

P could be the conditioii under which that solution applies. In general, efficient procedures

for particular subtheories may be represented as transformation rules (see, e.g., Bledsoe
[19771 or Nelson and Oppen [1978 3.)

Transformation rules play the role of the “antecedent theorems” and “consequent

theorems” of PLANNER (Hewitt [1971]). For example, a consequent theorem that we might

write as

to prove flu) = f(v)
prove u = v

can be represented by the transformation rule

flu) = f(v) 3 t r u e if u = v .

This rule will have the desired effect of reducing the goal fca) = f(b) to the simpler subgoal
a = b, and (like the consequent theorem) will not have the pernicious side effect of

deriving from the simple assertion a = b the more complex assert ion pa) = j(b). The

axiomatic representation of the same fact would have both results. (Incidentally, the

transformation rule has the beneficial effect, not shared by the consequent theorem, of

deriving from the complex assertion notma) = f(b)) the simpler assertion not(a = b).)

14

RESOLUTION ’

The or ig inal resolut ion pr inciple (Robinson [1966]) applied only to a sentence in

conjunctive normal form. However, the ability-to deal with sentences not in this form is

essential if resolution and mathematical induction are to coexist happily within the same

framework. The version of resolution we employ does not require the sentences to be in

conjunctive normal form.

Assume our sequent contains two assertions of form F(P,) and G(P&, where P, and P2
are subsentences of these assertions not within the scope of any quantifier. For the time

being, let us ignore the output expressions corresponding to these assertions. Suppose

there exists a unif ier for PI and P2, i.e., a substitution 8 such that PI0 and P@ are

identical. We can take 8 to be the most general unifier. The AA-resolution rule allows us
to deduce the new assertion

F(true)e OY GCfalse)&

.

and add it to the sequent. (Here, F(true) denotes the result of replacing PI by true in

F(PJ. Of course, we may need to do the usual renaming to ensure that F(PI) and G(P,>

have no variables in common.) We will call 8 the unifying substitution alid PI6 (=P@) the

eliminated subexpression; the deduced assertion is called the resolvent. Note that the rule is

symmetric, so the roles of F(P,) and C(P2) may be reversed.

For example, suppose our sequent contains the assertions

if (P(x) and Q(b)) then R(x)

and

The two subsentences “P(x) a n d Q(b)” a n d “P(a) and @y)” c a n b e u n i f i e d b y t h e

substitution

Therefore, the AA-resolution rule allows us to eliminate the subexpression “P(a) and Q(b)”
and derive the conclusion

(if true then R(a)) or false,

which reduces to

16

by application of the appropriate transformation rules.

The conventional resolution rule may be regarded as a special case of the above AA-

resolution rule. The conventional rule allows us to derive from the two assertions

and

(not PJ OY Q

P2 or R

the new assertion

where 8 is a most general unifier of PI and P2, From the same two assertions we can use

our AA-resolution rule to derive

((not true) or Q)8 or (fialse or R)e,

which reduces to the same conclusion

as the original resolution rule.

The justification for the AA-resolution rule is straightforward: Because F(Pl) hoids, if

-PI6 is true, then F(true)6) holds; on the other hand, because G(P2) holds, if PI@ (=P& is

false, G(p5e)e holds. In either case, the disjunction

F(tr2de)O OY G(fa&se)e

holds,

A “non-clausali resolution rule similar to ours has been developed by Murray [19781.

Other such rules have been proposed by Wilkins [19783 and Nilsson [19771.

16

THE RESOLUTION RULES

We have defined the AA-resolution rule to derive conclusions from assertions:

the AA-resolution rule . .

assertions

F(P,)
G(P&

goals

1 F(true)6 o r Glfatse)@

where P$ = P@, and 8 is most general.

By duality, we can regard goals as negated assertions; consequently, the following
three rules are corollaries of the AA-resolution rule:

the CC-resolution rule

goals

F(true)O and G(fnlse)e 1

-the GA-resolution rule

assertions

GO’,)

goals

FP,)

F(rrue)8 and (not G(fnlse)@

1 7

the AC-resolution rule

assertions goals

W,)

(not F(true)t?) and G(false)e

where PI, P2, and 8 satisfy the same condition as for the AA-resolution rule.

Up to now, we have ignored the output expressions of the assertions and goals.

However, if at least one of the sentences to which a resolution rule is applied has a

corresponding output e_xpression, the resolvent will also have an output expression. If

only one of the sentences has an output expression, say t, then the resolvent will have

the output expression te. On the other hand, if the two sentences F(P,) and G(P& have

output expressions tl and t2, respectively, the resolvent will have the output expression

if P,e then t ,e else t,O.

The justification for constructing this conditional as an output expression is as follows;

we consider only the GG case: Suppose the goal

F(true)e and G(false)8

has been obtained by GG-iesolution from two goals F(P,) and C(P,). We would like to

show that if this goal is true, the conditional output expression satisfies the desired

specification. We assume that the resolvent is true; therefore both F(frue)o and Gvalse$

are true. In the case that P,8 is true, we have that F(P,>e is identical to F(true)& and

therefore is true. Consequently, the corresponding instance t,8 of the output expression t 1

satisfies the specification of the desired program. In the other case, in which PI8 is false,

P@ is fa lse, and the same reasoning al lows us to conclude that t2e satisfies the

specification of the desired program. In either case, we can conclude that the conditional

if P,e then t ,6 else t,e

satisfies the desired specification. By duality, the same output expression can be derived
for AA-resolution, GA-resolution, and AG-resolution,

18

For example, let u* u denote the operation of inserting u before the first element of the

list v, ancl suppose we have the goal

assertions gods outpus

head(z) = a and tail(z) = b z

and we have the assertion

I head = u. I I

with no output expression; then by GA-resolution, applying the substitution

and eliminating the subsentence

head = a,

we obtain the new goal

(true awl taii(aw) = 6) and
(not false)

a*v

which can be reduced to

tail(aw) = b av

by application of the appropriate transformation rules. Note that we have applied the

substi tut ion [2~ c n; z c a*v] to the original output expression z, oblaining the new output

expression a*v. Therefore, if we can find v such that tail(a*v) = 6, the corresponding

instance of a*v will satisfy the desired specification.

Another example: suppose we have derived the two goals

19

max(tail(l)) 2 head(i)
and tail(l) f []

max(tail(l>)

not(mnx(tail(l)) I’ head(l)) head(l)
(rnd tail(l) * []

Then by GG-resolution, eliminating the subsentence max(tail(l)) 2 had(/), we can derive the

new goal

(true ant-l tail(l) # [I) and if max(tail(l)) 2 head(l)
(not(f-ah) and tail(l) # El) then mnx(tail(/>)

else heat-l(l)
.

which can be reduced to

tail(l) # [J if max(tni/(l)) 2 head(l)
then max(tail(l))
else head(l)

2 0

THE POLARITY STRATEGY

Not ali applications of the resolution rules will produce valuable conclusions. For

example, suppose we are given the goal

and the assertion

Then if we apply GA-resolution, eliminating Q(b, a), we can obtain the resolvent

(P(c, b) and true) and not(v P(a, d) then false),

which reduces to the goal

I P(c, b) and P(a, d) I

However, we can also apply GA-resolution and eliminate P(c, d), yielding the resolvent

(true and Q(d, a)) and not(iffalse then Q(b, c)),

which reduces to the trivial goal

false

Finally, we can also apply AG-resolution to the same assertion ancl goal in two different

ways, eliminating P(c, d) and eliminating Q(b, a); both of these applications lead to the same

trivial goal false.

21

A polnrity strategy adapted from Murray [1978] restricts the resolution rules to prevent

many such fruitless applications.

We f i rs t ass ign a po la r i t y (either posit ive .(+) or negat ive (-) or both) to every

subsentence of a given sequent, as foHows:

Q each goal is positive

* each assertion is negative

0 if a subsentence S has form %c?t cy”, then its component CT has polarity opposite to S

* if a subsentence S has form % anal fi,” ‘ICI or fi”, ‘Ifor all x, o(“, or ‘Ifo~ soltze x, fl,” then its

components cy and 0 have the same polarii-y as S

0 if a subsentence S has form “if cr then b”, then 0 has the same polarity as S, but 01 has

the opposite polarity.

For example, the above goal and assertion are annotated with the polarity of each

subsentence, as follows:

I assertions goals I output I

(if P(y, d)+ then Q(b, y)-)-
(P(c, x>+ and Q(x,a)+>+

The four resolution rules we have presented replace certain subsentences by true, and

others by ffzlse. The polnrtty strategy, then, permits a subsentence to be replaced by It’tr.e

only if it has at least one positive occurrence, and by false only i f has at least one

negative occurrence. For example, we are permitted to apply GA-resolution to the above

goal and assertion, eliminating Q(b, II), because Q(x, a), which is replaced by true, occurs

positively in the goal, and Q(b, y), which is replaced by false, occurs negatively in the
assertion. On the other hand, we are not permitted to appiy GA-resolution to eliminate

P(c, d), because P(y, n), which is replaced by false, only occurs positively in the assertion.

Similarly, we are not permitted to apply AG-resolution between this assertion and goal,

whether we eliminate P(c, n) or Q(b, a). Indeed, the only application of resolution permitted

by the polarity strategy is the one that led to a nontrivial conclusion. I

2 2

The deductive system we have presented so far, including the splitting rules, the

resolution rules, and an appropriate set of logical transformation rules, constitutes a

complete system for first-order logic, in the sense that a derivation exists for every valid

sentence. (Actually, only the resolution rules ar@ some of the logical transformation rules

are str ict ly necessary.) The above polar i ty strategy does not interfere with the

completeness of the system.

--

23

MATHEMATICAL INDUCTION AND THE FORMATION OF RECURSIVE CALLS

Mathematical induction is of special importance for deductive systems intended for

program synthesis, because it is only by the applicartion of some form of the induction

principle that recursive calls or iterative loops are introduced into the program being

constructed. The induction rule we employ is a version of the principle of mathematical

induction over a well-founded set, known in the computer science literature as %tructural

induction.”

We may describe this principle as follows: In attempting to prove that a sentence of

form F(n) holds for every element a of some well-founded set, we may assume inductively

that the sentence holds for all u that are strictly less than a in the well-founded ordering

<. Thus, in trying to prove F(a), the well-founded induction principle allows us to assume

the induction hypothesis

for dl U, if ZL < a then F(u).

In the case that the well-founded set is the nonnegative integers under the usual <

ordering, well-founded induction reduces to the familiar complete induction principle: to

prove that F(n) holds for every nonnegative integer n, we may assume inductively that

the sentence F(u) holds for all nonnegative integers u such that u < n.

In our inference system, the principle of well-founded induction is represented as a

deduction rule (rather than, say, an axiom schema). We present 6nly a special case of
this rule here.

Suppose we are constructing a program whose specification Is of form

f<a> <r find z such that
for somey, Rb, y, r>

where P(a),

Then our initial sequent is

.

assertions goals output

P(a)
a, y, 2) 2

2 4

Then we can always add to our sequent a new assertion, the induction hypothesis

6
ifu<a
then if P(u)

then Rb, g(u), fb>>
L J

Here, f denotes the program we are trying to construct, and g is a new Skoiem function

corresponding to the variable y. The well-founded set and the particular well-founded

ordering < to be employed in the proof have not yet been determined.

Let us paraphrase: We are attempting to construct a program f such that, for an

arbitrary input a satisfying the input condition P(a), the output f(n) will satisfy the output

condition R(a, y, J(a)), for some y; or, equivalently, R(a, g(a), f(n)). By the well-founded

induction principle, we can assume inductively that for every u less than a in some weii-

founded ordering su-&h that the input condition P(U) holds, the output flu) will satisfy the

same output condition R(u, g(u), flu)).

in general, we could introduce an induction hypothesis corresponding to any subset of

the assertions or goals in our sequent, not just the initial assertion and goat; most of these

induction hypotheses would not be relevant to the final proof, and the proliferation of new

assertions would obstruct our efforts to find a proof. Therefore, we employ the following

recurrence strategy for determining when to introduce an induction hypothesis.

Let us restrict our attention to the case where the induction hypothesis is derived from

the initial assertion and goal. Suppose that @a, y, z) is some subsentence of the initial

goal; then that goal may be written

Suppose further that at some point in the derivation an assertion or goal of form

a$, y’, 0)

is developed, where t is an arbitrary term and y’ and z’ are distinct variables. In other

words, the newly developed assertion or goal has a subsentence Q(t, y’, z’) that is a

precise instance of a subsentence @(a, y, z) of the initial goal. This recurrence motivates
us to add the induction hypothesis

2 6

ifu<a
then if P(u)

then R<Qb, g(u), f(u))).

The rationale for introducing the induction hypothesis at this point is that now we can

perform resolution between the induction hypothesis and the newly developed assertion or

goa1 sQ(t, y’, r’)), eliminating the subexpression Q(t, g(t), f(t)). In fact, we do not need

to introduce the induction hypothesis unless the original subexpression Q((&, JI, r) and the

recurrrent subexpression Q(t, y’, r’) have the same polarity, either both positive or both

negative. For the subexpression Q(u, S(U), f(u)) in the inductive assertion always has

polar i ty opposite to the subexpression Q(cz, JI, z) of the initial goal; and the induction

hypothesis cannot be resolved against the newiy developed assertion or goal unless the

eliminated subexpressions Q(u, g(u), f(u)) and Q(t, J', z’) have opposite polarity, by the

polarity strategy for resolution.

Let us look at an example. Suppose we are constructing a program rem(i, j> to compute

the remainder of dividing a nonnegative integer i by a positive integer j; the specification
may be expressed as

rem& j) <n find z such that
for some y,
i=ytj+zanUszandr<j

where 0 s i and 0 < j,

(Note that, for simplicity, we have omitted type requirements such as integer(i).) Our initial
. sequent is then

assertions

OIiandO<j

goals outputs

i=yyi+zandOIzandzcj x

Here, the inputs i and j are constants, for which we can make no substitution; J and the

output % are variables.

Assume that during the course of the derivation we develop the goal

2 6

This goal is a precise instance of the initial goal

obtained by replacing i by i - j . Therefore, taking Q((i, j, y, z) to be the initial goal itself, we
add as a new assertion the induction hypothesis

Here, g is a new Skolem function corresponding to the variable y, and 1: is an arbitrary well-

founded ordering. Note that < is to be defined on pairs because the desired program f has
a pair of inputs. --

We can now apply GA-resolution between the goal

and the induction hypothesis; the unifyin{/ substitution 0 is

[14.1 +- i-j; u2 4-j; y l +- g(i-j, j); z t rem(i-j, j) J,

The new goal is

- ,
true and ww(i-j, j)
not (if (i-j, j) < (i, j)

then if 0 5 i-j nnd 0 < j
then false)

6

which reduces to

(i-j, j) < (i,j) and
Osi-jandOcj

m&-j, j>

27

Note that the recursive call retn(i-j, j) has been introduced into the out/Jut entry.

The particular well-founded ordering < to be employed in the proof has not yet bectl

dcterminecl. To choose the ordering requires special transformation rilles, which describe

known well-founded orderings and ways of combining them. in this case, the ordering < is

chosen to be the < ordering on the first component of the pairs, by application of the

transformation rule

(q, u2) $1 (q, 24 =+ true if ui c tii and 0 5 u1 and 0 5 U1.

A new goal

i-j -c i and 0 5 i-j and 0 I i and
true and 0 5 i-j ml 0 <j

rpm(i-j, j)

is produced; this goal ultimately reduces to

In other words, in the case that j ,< i , the output rem(i-j, j) satisfies the desired program’s

specification.

In a l a te r sec t ion we w i l l g i ve the fu l l de r i va t ion o f the related program that finds the
integer quotient of two integers.

- We will not discuss here the more general case, where a newly developed assertion or

goal has a subsentence that is an i n s t a n c e of a subsentence not of the initial goal, but of
some intermeciiate goal or assertion; this situation accounts for thr! introduction of

“auxiliary procedures” to be called by the program under construction. We will also not

discuss the case where the new subscntence is not a precise instance of the earlier

subsentence, but where both are instances of a somewhat more general sentence.

Some early efforts toward incorporating mathematical induction in a resolution

framework were made by J. L. Darlington [1968]. His system treated the induction

principle as a second-order axiom schema rather than as a deduction rule; it had a limited

ability to perform second-order unifications.

2 8

A COMPLETE EXAMPLE: Finding the Quotient of Two Integers

in this section, we present a complete example that exploits most of the features of

the cieductive synthesis approach. Our task is to construct a program niu(i, j> for finding

the integer quotient of dividing a nonnegative integer i by a positive integer J. Our

specification is expressed as

diu(i, j> <E find y such that

fOY some 2,
i=y~+zandO<zandz<j

where 0 5 i and 0 < j.

(For simplicity, we again omit type conditions, such as integer(i), from this discussion). Our

initial sequent is therefore

assertions --

LOsiandOcj

goats output

2. i = yy t 2 and 0 I z y
andxcj

(Note that we are enumerating the assertions and goals.)

in presenting the derivation we will sometimes apply simple logical and algebraic

transformation rules without mentioning them explicitly. We assume that our background

knowledge includes the two assertions

+ Applying the andsplit rule, to assertion 1 yields the new assertions

5.0 5 i
6.Ocj

b

Assume we have the following transformation rules that define integer multiplication:

2 9

ov * 0
(u+l)‘V * U’V t 21.

Applying the first of these rules to the subexpression yv in goal 2 yields

7.i=O+zandOrzandrcj 0
L

The unifying substitution in deriving goal 7 is

e = [y +o; v +j 1;

applying this substitution to the output entry y produced the new output 0.

Applying the numerical transformation rule--

o+vov

yields

The GA-resolution rule can now be appiied between goal 8 and the equality assertion 3,

u = IL. The unifying substitution is

e=[u+i; rci]

and the eliminated subexpression is i = i; we obtain

I 9.OSiandicj I 0

By applying GA-resolution again, against assertion 5, 0 5 i, we obtain

*

1O.i <j 0

3 0

in other words, we have found that in the case that i < j, the output 0 will satisfy the

specification for the quotient program.

Let us return our attention to the initial goal 2,

i=ytJ+zandO<randz<j.

Recall that we have a second transformation rule

(u+l)v =a U’V + v

for the multiplication function. Applying this rule to goal 2 yields

I 11. i = yfj t j + x and 0 5 z and z <j I Yl+' I

where y1 is a new variable. Here, the unifying substitution is

wp lying this substitution to the output entry z produced the new output yl+ 1.

The transformation rule

u = VW * u-v = 1u

applied to goal 11 yields

b

- 12.i-j=yfjtzandOrzandz<j Yl+i
b A

Goal 12 is a precise instance of the initial goal 2,

i=y+j+zandOSzandz<j,

obtained by replacing the input i by i-j. (Again, the replacement of the dummy variable y

by ~1 is not significant.) Therefore, the following induction hypothesis is formed:

31

13. if (u 1, 2.42) < 0, j)
thenifOsulandO~u2

then u1 = div(u, , u2)*u2 t h(u, , u2) and
0 5 h(uj, u2) a n d h(q, 242) < 242

t 4

Here, h is a Skolem function corresponding to the variable z, and < is an arbitrary weii-

founded ordering.

By applying GA-resolution between goal 12 and the induction hypothesis, we obtain the
goal

14. true and
not (if (i-j, j) < (i, j)

thenifOsi-jandO<j
then false)

div(i-j, j)t 1

. Here, the unifying substitution is

e = [u 1 + i-j; up + j; yl c div(i-j, j); z c h(i-j, j)]

and the eliminated subexpression is

i - j = div(i-j, j>ri + h(i-j, j) and 0 I h(i-j, j) a n d h(i-j, j> < j*

Note that the substitution to the variable y1 has caused the output entry y,+l to be

- changed to div(i-j, j)+ 1. The use of the induction hypothesis has introciuced the recursive

call div(i-j, j) into the output.

Goal 14 reduces to

15. (i-j, j) < (i, j) and 0 5 i-j and 0 < j div(i-j, j)+ 1

The particular ordering < has not yet been determined; however, it is chosen to be the c

ordering on the first component of the pairs, by application of the transformation rule

b,, 342) <N] b,r up) 3 true if u, x vl and 0 5 u1 and 0 5 q.

3 2

A new goal is produced:

16.i-jd andOri-jczndosiand div(i-j, j)+ 1
Oh-jandO<j

Note that the conditions of the transformation rule caused new conjuncts to be added to

the goal.

By application of algebraic and logical transformation rules, and GA-resolution with the

assertion 5, 0 < i, and assertion 6, 0 <j, goal 16 is reduced to

17.j 5 i div(i-j, j>+ 1
4 b

In other words, we have learned that in the case thatj < i, the output &v&j, j>+l satisfies

the specification of the div program. On the other hand, in deriving goal 10 we learned

that in the case that i <j, 0 is a satisfactory output. Assuming we have the assertion 4

U<VOYV<U,

we can obtain the goal

I
18, not(i < j) div(i-j, j>+ I

by GA-resolution.

The final goal

19, true
1

ificj
then 0
else div(i-j, j)+ 1

A

can then be obtained by GG-resolution between goals 10 and 18. The condit ional

expression has been formed because both goals have a corresponding output entry.

Because we have developed the goal true and a corresponding primitive output entry, the
cierivation is complete. The final program

3 3

div(i,j) <E i f i cj
then 0
else div(i-j, j>t 1

is obtained directly from the final output entry.

Note that the same proof could be used to derive a remainder program as well as a

quotient program. The specification of the remainder program

rem(i, j> <E find z such that
for some y,

.r=yytzandO~zandz<j
ruhereO<iandicj

yields the same initial assertion and goal as the quotient program, except that the initial

output entry is z instead of y. The succeeding output entries are changed accordingly.

The final remainder program is then

rem(i, j) <5 i f i <j
then i
else rem(i-j, j).

We used steps from the derivation of this program to illustrate the formation of recursive

calls in the section on mathematical induction.

3 4

ANOTHER COMPLETE EXAMPLE: Finding the Last Element of a List

In this example, we apply the same techniques to derive a list-processing program. Our

discussion here will be a bit more brisk than in the preceding section.

Our task is to construct a program last(l) to find the last element of a nonempty list 1.

Our specification is

last(l) <E find 2 such that
for some y, I = y<>[rJ

where I f [J

Retail that u<>v is the result of appending two lists u and v, [w] is the list whose sole

element is IU, and [] denotes the empty list. Again, we omit type conditions, such as

islist(from our discussion.

Our initial sequent-is

assertions

4 . 1 f [I

goals

2. I = y4zl

output

2

Let us assume that our subject knowledge includes the assertion

I 3. u = u

and the transformation rules

(UW)~~W ==+ W(V<>W)

w = u-u =+ w z [] and head(w) = u and tail(w) = v

tail(u) <L u 3 true if u z [J

3 5

The first two rules constitute the definition of the append function <>; the third expresses

the uniqueness of the decomposition of a list into a head and a tail; the fourth provides the

meaning of the abbreviation [u]; and the final rule defines a welt-founded ordering <L over

the lists.

The first transformation rule

can be applied to the initial goat 2,

I = y<>[x];

the unifying substitution is

0 = [y * C-J; 4.4 + [% J]

and the resulting goal is

Applying the two rules

- IU = WV * w z [J and head(w) = u and tail(w) = v

yields

5.1 ti Cl and head(l) = z
and tail(l) = (1

2

Applying GA-resolution between goat 5 and assertion 1, I ;t [], produces the goal

,

6. head(l) = z and tail(l) = [] z

3 6

Applying GA-resolution again, between goat 6 and assertion 3, u = u, produces the goat

7, toil(l) = [I I head(l) I

Here, the unifying substitution is

e = [z + head(l); u - head(l)]

and the eliminated subexpression is lzea&) = head(l). Note that the substitution has

caused the output entry r to be replaced by head(l). We have learned that in the case

where tail(l) is empty the output had(l) satisfies the specification for last.

Returning to the initial goal 2,

I = y<>[xJ, --

we can apply the second transformation rule

to the subexpression y<z[z]. The unifying substitution is

0 = [u c yi; v + y2; w - [z]; y ‘y]‘y2]

and the resulting goat is

Applying the transformation rule

10 = U*v I$ w f [] and head(w) = u and tail(w) = v

yields

I 9, 1 z [I and head(i) - yl and tail(l) = y4zl 1 % I

37

Next, applying GA-resolution between goal 9 and assertion 1, I z [], and then between the

resulting goal and assertion 3, u = u, we obtain

10, rail(l) = yp[z]

Note that goal 10 is a precise instance of our initial goat 2, I = y<>[z], obtained by

replacing I by tail(l); therefore, the following induction hypothesis is formed:

.

ll.if u <I
then if u N [I

then u = g(u)o[last(u)l
c A

Here, < is an arbitrary well-founded ordering and g is a Skolem function corresponding to

the variable y.

We can now apply GA-resolution between goal 10 and the induction hypothesis,
. assertion 1 1. The unifying substitution is

8 = [u + tail(t); y2 t g(tail(l)); 2 + last(tai/(l))]

and the eliminated subexpression is

tail(l) = g(tail(l)) 0 [last(tail(l))];

we obtain

12, t7u.e and
not(if tail(l) < I

then if tail(l) z [I
then false)

last(tail(1))

I

which reduces to

13. tail(l) < I and tail(l) rc 11 Iast(tail(l))

3 8

Note that the unifying substitution caused the introduction of the recursive call last(tail(l))
in the output entry.

The rule

tail(u) XL 21 * true ifu * [I

suggests taking the well-founded ordering < to be <L; we derive

I 14. I ;IC Cl and tail(i) f [I I Iast(tail(l))

which reduces to

I 15, tail(l) z [I I last(tail(l)) I

after GA-resoiuion with assertion 1, I PC [J

We have deduced that in the case where tail(l) z [], the output last(tail(l)) satisfies the

specification; on the other hand, from goal 7 we know that in the case where tail(l) = [],
head(l) is a satisfactory output. Combining these two goals by GG-resolution, we obtain

16. true if tail(l) = [I
then bend(l)
else /ast(tait(l))

J

.

Because we have derived the goal true with a corresponding primitive output entry, our

derivation is complete. The final program, extracted from the final output entry, is

last(l) <5 if tail(l) = []
then head(l)
e/se iast(tail(l)).

Note that the same proof could be used to derive a program front(/) to remove the last

element from a nonempty list 1. The specification forfront is

fr0%4ll <p find y such that
for some z, 1 = y<>[r]

39

where I ti [].

This specification yields the same initial assertion and goal as the last program, except

that the initial output entry is y instead of L The succeeding output entries are changed

accordingly, and the final program derived is

front(i) <e if tail(l) = []
then []
else head(r>~front(tairo).

4 0

APPLICATION TO PROGRAM TRANSFORMATION

Our program synthesis techniques can be applied as well to the transformation of

programs. in this application, we are given a clear and concise program for a certain task,

which may be inefficient; we derive a more efficient equivalent program, which may be
neither clear nor concise (see Burstali and Darlington [19771).

To transform a given program, we regard the program itself as the specification of a

new program. For example, suppose we are given the program

rev(l) <E if 1 = [I
then 11
else rev(tail(l)) c> [head(/) J

where islist

f o r r e v e r s i n g t h e o r d e r of the elements of a list 1. This program is inefficient, for it-_
requires many recursive calls to rev and to the append program <>. The specification for

the transformed program revnezu(l) is then

revneru(l) <E find z such that z = rev(l)
where isiist(i).

The initial sequent is thus

I assertions I goals I output I

1. islist
2. 2 = rev(l) %

We admit the new transformation rules

yeu(u) 3 13 ifu41

and

rev(u) 3 rev(tail(u)) 0 [head(u)] if u * [I;

these rules are obtained directly from the given program.

in such a derivation, the given program rear is not regarded as a primitive construct of

41

the target language. For efficiency purposes, we may also choose to regard the append

function 0 as nonprimitive.

Applying our synthesis techniques, we can obtain the following new program for

reversing a list:

revnew <E revnew2(1, [J),

where

revneru2(l, m) <= if I = 11
then m
else revneru2(tail(l), head(l)*m 1.

The derivation involves the formation of auxiliary procedures and the use of generalization,

which we do not discuss in this paper.

The new program is more efficient than the given program rez/(l); it is essentially

iterative and does not employ the expensive C> operation. In general, however, unless we

introduce additional efficiency criteria, we cannot ensure that the program we obtain is
. more efficient than the given program.

4 2

COMPARISON WITH THE PURE TRANSFORMATION-RULE APPROACH

Recent work (e.g., Manna and Waldinger [lQ77], as well as Burstall and Darlington

[19771) does not regard program synthesis as a theorem-proving task, but instead adopts

the basic approach of applying transformation rules directly to the given specification.

What advantage do we obtain by shifting to a theorem-proving approach, when that

approach has already been attempted and abandoned?

The structure we outline here is considerably simpler than, say, our implemented

synthesis system DEDALUS. That system required special mechanisms for the formation of
conditional expressions and recursive calls, and for the satisfaction of l’conjunctive goals”

(of form “find x ~u,ch tha.t R](z) and R&)“), It relied on a backtracking control structure,

that required it to explore one goal completely before attention could be passed to

another goal. In the present system these constructs are handled as a natural outgrowth

of the theorem-proving process. In addition, the foundation is laid for the application of

more sophisticated search strategies, in which attention is passed back and forth freely
between several competing assertions and goals.

Furthermore, the task of program synthesis always involves a theorem-proving

. component, which is needed, say, to prove the terminat ion of the program being

constructed, or to establish the input condition for recursive calls. (The Burstail-Darlington

system is interact ive and rel ies on the user to prove these theorems; DEDALUS

incorporates a separate theorem prover). If we retain the artificial distinction between

program synthesis and theorem proving, each component must duplicate the efforts of the

other. The mechanism for forming recursive calls will be separate from the induction

principle; the facility for handling specifications of the form

find 2 such that R,(z) and R&)

- will be distinct from the facility for proving theorems of form

f o r 50me 2, R,(z) a n d R2(z);

and so fo r th . By adopt ing a theorem-proving approach, we can unify these two
components.

The two complete examples in this paper have been chosen to i l lustrate the

advantages of the new approach; both were beyond the capabilities of the DEDALUS
system.

4 3

Theorem proving was abandoned as an approach to program synthesis when the

development of sufficiently powerful automatic theorem provers appeared to flounder.

However, theorem provers have been exhibiting a steady increase in their effectiveness,

and program synthesis is one of the most natural’tipplications of these systems.

ACKNOWLEDGMENTS: We would like to thank John Darlington, Chris Goad, Jim King, Neil

Murray, Nils Nilsson, and Earl Sacerdoti for valuable discussions and comments. Thanks are

due also to Patte Wood for aid in the preparation of this manuscript.

REFERENCES:

Bledsoe, W. W, [19773, Non-resolution theorem proving, Artificial Intelligence Journal, Vol.
9, pp. l-35.--

Bayer, R, S. and J S, Moore [Jan, 19751, Proving theorems about LISP functions, JACM, Vol.

22, pp. 129-144.

Burstall, R. M. and J . Dar l ing ton [Jan . 19771, A transformation system for developing
recursive programs, JACM, Vol. 24, No. 1, pp. 44-67.

Darlington, J, L, f 1968], Automatic theorem proving Iclith equaiity substitutions and mathematical
induction, Machine intelligence 3, Edinburgh, Scotland, pp, 1 13-l 27.

Green, C. C, [May 19691, Application of theorem proving to problem solving, Proceedings of

the International Joint Conference on Artificial Intelligence, Washington DC, pp.

2 1 Q-239,
-

Hewitt, C. [Apr. 1971], Description and theoretical analysis (using schemata) of PLANNER: A
language for proving theorems and manipulating models in a robot, Ph.D. thesis, MIT,

Cambridge, MA.

Manna, E, and R, Waldinget [Nov. 1977 J, Synthesis: dreams + programs, Technical Report,

Computer Science Dept. , Stanford Universi ty, Stanford, CA and Art i f ic ial

Intelligence Center, SRI International, Menlo Park, CA.

Murray, N. [197&l, A proof procedure for non-clausal first-order logic, Technical Report,

Syracuse University, Syracuse, NY.

44

Nelson, G. and D, C. Oppen [Jan, 10781, A simplifier based on efficient decision algorithms,
Proceedings of the Fifth ACM Symposium on Principles of Programming Languages,

Tuscan, AZ, pp. 141-l 50.

Nilsson, N. J, [I 9713, Problem-solving methods in artificial intelligence, McGraw-Hill Book Co.,

New York, NY [pp. 165-1683.

Nilsson, N, J, [Aug. 19771, A production system for automatic deduction, Technical Report, SRI

International, Menlo Park, CA.

Robinson, J. A. [Jan, 1965], A madine-oriented logic based on the resolution principle, JACM,

Vol. 12, No. 1, pp. 23-41.

Waldinger, R, J, and R. C, T, Lee [May 196Q], PROW: a step toward automatic program
writing, Proceedings of the Internat ional Joint Conference on Ar t i f ic ia l

Intelligence, Washington, DC, pp. 241-262.-_

Wilkins, D. [1973 ‘J, QUEST--a non-clausal theorem proving system, MSc. thesis, University

of Essex, England,

t

/

/

