AN Z(n.llog21) MAXIMUM-FLOW ALGCORITHM

by

Yossi Shiloach

STAN-CS-78-7@2
December 1978

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Scienczs
STANFORD UNIVERSITY

An O(n-I log2 I) Maxi mum Fl ow Al gorithm

Yossi Shil oach f/

Conputer Science Departnent
Stanford University
Stanford, California 94305

December 1978

Abstract. W present in this paper a new algorithmto find a maxi mum

flowin a flownetwork which has n vertices and m edges in tine of

O(n-I log2

) , where | =mn is the input size (up to a constant
factor). This result inproves the previous upper bound of 7. galil [a]

which was 0o 17/5) in the worst case.

Keywor ds: Binom al queues, Dinic's algorithm flow networks, maximl flow,
path sections.

%/ This research was supported by a Chai m Wi zmann Postdoctoral Fel | owship
and by National Science Foundation grant MCS 75-22870.

1. [ntroduction.

A flow network is a quadruple (G,s,t,c) where

(1) G = (v,E) 1is a directed graph.

(ii) s and t are two distinguished vertices, the source and the

termnal, respectively.

(iii) c: E~R s the capacity function (R+ denotes the set of all

positive real nunbers). Henceforth n and mw Il denote v|

and |E| respectively and | will stand for n+m. The notation

(w will represent a directed edge fromu to v .

A function f: E_.R+ isaflowif it satisfies:

(a) The capacity rule:
f(e) < c(e) VeeE .

(b) The conservation rule:

IN(f,v) = OUT(f,v) ¥veV-{s,t}

wher e
IN(f,v) = 2 f(u,v) = total flow entering v
(u;V) € E
fixed v
and

OUT(EY) = & tlow
(v,w) e E

fixed v

total flow emanating fromv.

The total flow value f| is defined by

|[f| = QUr(f,s) - m(L,s) .

4 flow s is amximumflowif |£| > |£r |

for any other flow £’ .

The maxi mum flow probl emwas first introduced and sol ved by Ford
and Nkerson [FF]. Since then, better and better solutions have
been found. The history and state of the art of this problemare given
inavery detailed and tabulated form in [G. Thus, we allow ourselves
to proceed without paying the proper credit to all those researchers

who contributed so nmuch to the study of this problem

2. D nic's Reduction.

E. A Dinic showed in his paper, [Dp], that the maxi num flow problem
can be solved by solving another much sinpler problemat nost n tinmes.
The sinplified problem can be stated, using the following three

definitions.

1 A layered network is a network whose vertices are partitioned into

disjoint sets v,v,,. .V, Wwhere Vo= {st, v =10t} andif

(u,v) € E then ue v, and vevVig for sonme 0 < i< k-I

2. Gven a flow f in a network, we say that an edge e < Eis
saturated if f(e) =c(e) . A saturated edge will also be called

a bottleneck. -The quantity c(e) -f(e) is the residual capacity

of e .

3. Aflowf in a given network is maximal if every directed path
from s to t contains a saturated edge. (oviously, a maxinum

flow is also maxinmal but the converse is not necessarily true,

Dinic's restricted problemis to find a maximal flow in a |ayered
network which has n vertices and at nobst m edges.

Dinic himself solved the restricted problemin o(n.1) tinme and
all the inprovements which follewed his solution were, in fact,
i nprovenents of the restricted problems time bound. CQur algorithmis
No exception. W show that Dinic's solution for the restricted problem
can be inplemented in o(1 J.og2 [) time by using nore efficient data
structures. The evaluation of the conplexity is also nore involved,
but fortunately it does not affect the algorithm From now on, the
"problent and a "solution” will always refer to the restricted rrovlem

and its solutions.

3. The Underlying A gorithm

In this section we'll describe our algorithmin a level which wll
not involve any data-structure details. W want the reader to have a
clear picture of the underlying algorithm before we get into the data-
structure level. Mreover, we'll make it clear in this section, what
exactly are the features which our data-structure would have to support.

Since Dinic's algorithmis the framework of ours, we'll describe
it briefly first.

Dinic uses a depth first search to find a flow augnmenting path
(f.a. pathj and then pushes as much flow as possible through this path,
del etes the bottlenecks, updates the residual capacities along the path
and then starts from s a new search for another f.a. path.

The main drawback in Dinic's algorithmis that it does not store
any information which is not relevant to the currently grow ng f.a. path.
Pat h-sections that have al ready been traversed during searches for
previous f.a. paths, are conpletely ignored. Qur algorithm though
basically following the lines of Dinic's algorithm stores such path-
sections and makes use of them as soon as they are reencountered.

Instead of describing the underlying algorithmprecisely, we'll give
the reader the feeling of what's going on by illustrating a typical

exanpl e of generating the first three f.a. paths. The various steps
wi |l be acconpanied by a sequence of figures (Fig, 3.1-3.11), show ng
what are the path-sections that are stored after each step, Each figure

corresponds to the step with the same nunber.

Step 1. Ve find the first f.a. path froms to t ,

Step 2. Two bottlenecks (w,v) and (w,x) are found and del eted.
Three path sections are stored, the (s,u) section, the
(v, x) section, and the (y,t) ~section.

Step 3. The search resunes fromu . In general the search will
resune fromthe tail of the |lowest bottleneck. The section
(s,u) will now be "growing" into a new f.a. path.

Ster 4. W encounter an old path section, namely the (v,x) section

at w.

Step 5. We cut the (v,x) section into tw sections (v,w) and. (w,x)
and thenapaste the (w,x) section with the (s,w) section.

Step 6. W continue the search fromx .

Step 7. W encounter t . A new f.a, path has just been found.

Step 8. A bottleneck (a,b) is found and deleted. Two new path
sections (s,a) and (b,t) are forned.

Step 9. Ve resune the search froma and encounter the path section
(v, w)at z .

Step 10. W cut the (v,w) section into (v,z) and (z,w) sections

- and paste the (z,w) section with the (s,z) section, forning
an (s,w) section.

Step 11. Since we are now in w, we have just encountered the old
(b,t) section. Thus, we cut the (b,t) section into (b, w)
and. (w,t) sections and paste the (w,t) section with the

(s,w) section, formng a new f.a. path.

In order to conplete the picture we have to add a few words, when
we use the word "search” we nean a depth first search. As in the original
algorithmof Dinic, this means that when we reach a dead end we backtrack
to its predecessor and delete it together with the edges incident with it,
The algorithmterm nates when s beconmes a dead end. At each stage of
the algorithm an edge can be in exactly one of the follow ng states:

1. Never encountered.

2. Belongs to a (unique) path-section.

3. Deleted (because of being either saturated or incident with a

dead end.

The crucial rule in our algorithmis that when we encounter a path
section, we annex its upper portion to our grow ng f.a. path.

The rule inplies the follow ng |ema.

Lemma 3. 1. At each stage of the algorithm a given vertex can have at

nmost one out-going edge in State 2.

Following the lines of the underlying algorithm one can verify
that the data structure should support the follow ng operations.
1. Performing a depth first search.
2. Finding and deleting bottlenecks.
3. Updating residual capacities.
4. Inserting an edge to a path-section. (The growi ng f.a. paths
is stored and regarded as a path-section.)

5. Qutting and pasting path sections.

Getting nmore into details, we find out that we also have to be able

to:

Know that we've encountered a path section, when we encounter
one.
Know from where to resune the search after pasting two path

sections.

Compute the final residual capacity of each edge. (The flow
t hrough each edge is obtained by subtracting the residua

capacity from the original one.)

4, Data Structure.

L.1 Sequential Binomal Queues.

Data structures which support deptn first search have been
di scussed in many papers. Therefore we'll concentrate on the
additional data structure which will enable us to store and manipul ate
with path sections. This data structure is essentially a binomal queue
It has been described and studied in detail in [B]. A binomal queue

is a forest of binomal trees (b-trees and b-queues in short). In a

b-tree we store sets of size which is a perfect power of 2, A b-queue
which is a forest of such trees enables us to store sets of any given
size. These-sets nust be well ordered and in our case they will be sets
of nunbers which represent edge capacities. A binomal tree which stores
the set {71,52,6%,11,7,4,22,20} is shown in Figure 4.1. Basically
all the values are stored in the external nodes and each other node
contains the nminiml value of its two off-springs. The root contains
the mnimal value of the entire set.

In our b-queues, we'll store the capacities of edges of path
sections. Being a path, such a group of edges has a sequential structure
and therefore we would like that our b-trees will represent sequences
rather than sets. Figure 4.2 shows a b-tree which represents the sequence
71,52 ,63 , 11,7 , 4 ,22 ,20. In general, the external nodes of these
trees will have a left to right order which will be inposed by the sequence.
These trees will be denoted as s-b-trees (sequential binomal trees) and
the corresponding queues will be s-b-queues. Another nodification should
still be nade. Instead of storing the right capacity values at each node,

we will store the riaht value of the root only. Each other node will

store the difference between his value and his father's value, Thys,
the tree of Figure 4.2 will be nodified to that of Figure 4.3.This
modi fication will enable us to update residual capacities fast.

In the com ng discussion we would |ike to distinguish between

vertex-layers (y-layers) and edge-layers (e-layers). The vertex s

conposes the O-th v-layer, while the edges which emanate fromit,
formthe O -th e-layer, In general, the heads of the edges of the i-th
e-layer will formthe i+l -st v-layer and the edges which emanate from
themw |l formthe i+l -s-t e-layer. W shall also assume for the sake
of sinplicity that the nunber of e-layers is a perfect power of 2,

%1 and 2 we can add a pat h

say o (I'f this number i S between 2
which starts fromt and has the appropriate length. The edges al ong
this path will have infinite capacities and t will be noved to its end.)
VW have described in detail how one s-b-tree looks like. W'Il now
describe how a path section is represented by an s-b-queue. The following

definition is required. Gven a full binary tree T and a set g of

external nodes of T, we say that % is the forest determned by S if

it is the (unique) forest of maximal full sub-trees of T such that its
external nodes set is 5. In Fi gure 4.4 we show a full binary tree T
which has 8 external vertices and the forests which are determined by
{1,295,&} ; 5,6}, 8&nd{0,1,2,3,1)

Let's recall now that there are 25 e-| ayers in our network, and
let T be a full finary tree with >* external nodes which are numtered
fromleft to right by o,l,...,ek-l . The following rule specifies
exactly the structure of an s-b-queue which represents a given path

section.

10

The Frane Rule. A path section that extends fromthe i-th e-level to

the j-th e-level will be represented by an s-b-queue which is isomorphic

to the forest determned by the set {i,...,j} of external nodes in T .

The rule is called "the frame.rule” since T is used as an
underlying frame for all the queues which represent path sections.

In Figure 4.5 we show a path section together with his representing
S-b-queue and with all the features that we have already mentioned. W
assune that the total nunber of e-layers is 8. Note that the left-to-

right order anong the trees in the queue is significant.

L.,2 Path Sections Al gorithns.

In this subsection we'll present the algorithms for finding and
deleting bottlenecks, wupdating residual capacities, inserting an edge
to a growing f.a. path and cutting and pasting path sections. (These
are algorithns # 2 -5 in the list at the end of Section 3.) Each of
these algorithms will take at nost logarithmc tine.

The ot her operations that shoul d be supported by our data structure
(# 6,7,8 in the list) will be described in the next subsection where an
auxiliary data structure will be introduced and a nore detailed discussion
about storage schemes, pointers and space will be made. This discussion

will also nake the description of algorithnms # 2 -5 nore conpl ete.

Finding and Deleting Bottlenecks.

These operations are perforned after a whole f.a. path has been

found. Such a path is always represented by an s-b-queue which is a

single s-b-tree (since the nunber of layers is 2k Y. The residual

11

capacity of the bottlenecks is exactly the value which is stored in the
root of this s-b-tree. "Pushing" that anmount of flow through the path
I S tantemcunt to reducing the root's value to zero. Then we delete the
root and obtain two s-b-trees of equal size. At |east one of them will
have a root with value zero. The algorithm continues on such a tree in
the sanme way. Wen we get to the level of the external nodes, deleting
a node also neans that we delete the corresponding edge from the graph.
This algorithm mght take nore than logarithmc time if more than one

edge is deleted. However, it is easy to verify that it does not take

nore than logarithnic time per a deleted edge. In Figure 4.6 we show

an f.a. path of length 8 and all the stages of deleting its bottlenecks.

Updating Residual Capacities.

Due to our way of storing differences between residual capacities,
rather than capacities thenselves, we don't have to do anything, it is

done "automatically".

Inserting an Edge to a G owi ng f.a. Path.

Let P be a growing f.a. path of length s and let QP) be its
torresponding queue. The binary representation of the number ¢ contains
all the information about the structure of the underlying forest of Q.
Mre precisely, the i-th digit fromthe right is 1 iff thereis an
s-b-tree of height i-1 in the forest. For exanple, a path of length 6
is represented by a forest that contains one tree of height 1 and one
tree of height 2 . (Note that this property holds only for path sections

that start at s .)

12

Wen we insert an edge to P, we always insert it fromthe "right"
(assuming that s is on the left and t is on the right) and by doing
that we increase the length to ¢+1 . As far as the forest structure of
the new queue is concerned, we just-make a binary addition of ¢ and 1,
(see also [B], pp.21l-27). Qoviously, since the nodes of the s-b-trees
contain sone nunerical values, we have to do a little bhit nore. \hen we
add a bit of 1 to a bit of 0 we don't have to do anything. However,

adding two bits of 1 neans the follow ng:

1 Take the corresponding two trees (which are of equal size) and

connect their roots to a new single root, formng one tree which

is one |level higher.
2. Put the mininmal value of the two old roots in the new one, zero in
the old root that contributed the mniml value and the difference

between the two values in the other old root. It is easy to see

that insertion is logarithmc.

In Figure 47 we show how an edge e is inserted to a path P of

length 3.

Cutting and Pasting Path Sections.

Gven a path section P we want to cut it in a given vertex, and nake
two path sections, say P; and P, , out of it. If the cut point turns

out to be exactly between two trees of QQP) then all the trees to the
left of the cut point foer(Pl) and the others foer(PE) .

If the cut-point is inside a tree T of QP) then all the trees
to the left of T belong to Q(Pl) and those on its right hand side

bel ong to Q(Pg) . W nowcut Tin the follow ng way:

13

1. W delete the root of T and add its value to both sons which now

become the roots of the resulting trees 1, and T, let's

assune that T1 is to the left of T2

2. If the cut point is exactly between .T, and T, , then T, is
added to Q(Pl) and T, is added to Q(PZ) and we are done.
If the cut point is inside T (T

we add T2 (T to

1 2) 1)

a(P,) (Q(Py)) and apply the same procedure to cut Too(T,) .

Cutting is obviously logarithmc.
Pasting is a little bit more involved to describe but also bel ongs

to the set of "do it yourself" algorithms.

Thus, instead of describing it formally, we start with an exanple.

Let's assune that the total number of layers is 32 and we have to paste

.a path section Py which extends fromthe third to the 18-th | ayer with

anot her path section P, , ext ending from the 19-th |ayer to the 25-th,

The underlying structure of Q(Pl) and Q(Pg) is given in Figure 48. nly

the roots of the trees of o(F;) and (k,) play a role in the pasting.

W start with the |eftnost root of Q(Pe), Rg in our case, The

frame tree (the full binary tree with 32 external nodes) tells us whether

its competant iS to its right or to its left. In any case it is the
closest root and in our exanple it is R5 The val ues of Rg and R5
are conpared and a new root R9 is formed. Its sons are R5 and Ry .

The mnimal of the values of Rs and kg is stored in Ry The node
that contributed the mninmum gets zero as its new value and the other one
gets the difference between the two values as its new value -- exactly as

we did in the insertion algorithm Following the frane tree R9 shoul d

14

now be conpared with R, and a new root R wll be formed. The val ue

transformations are the same as before. Now R is conpared with the

10
closest root to its right, namely R7 and a new root Ry, is forned.

Now R shoul d be conpared with the closest root to its right, nanely

11

Rg However Rg Is not in the same level as Ry and therefore the
algorithm termnates yielding the queue shown in Figure L.9, The reader
can easily extend this exanple to a general algorithm which obviously

has a logarithmc time bound.

4.3 Storage Schenmes and Space Bounds.

In this subsection we shall specify exactly how s-b-queues are stored
in a way which supports all the path section algorithnms that have been
descri bed above and al so operations # 6, 7and 8.we'll conclude with a

very short discussion on the space linearity.

Definition. W say that a vertex v belongs to a path section P if
v is the tail of an edge in P (i.e., the last vertex of P does not

belong to P).

Fol I owi ng the underlying algorithm it is easy to verify that a vertex
does not belong to nore than one path section at a given noment. (See Lemma 3.1.)
This fact enables us to store the information associated with a given
path section P and its s-b-queue QQP) , not only in its edges but also
in the vertices which belong to P. As we shall soon see, there is a
very "natural” way to do it. In Figure 4.10 we show a path section P

and its associated s-b-queue. The dashed |ines denonstrate a natural

15

mappi ng of the tree nodes into the edges and vertices of P, The
external nodes are mapped into edges and the rest -- into vertices

The edges of the s-b-trees represent two-way pointers that enable
us to nove up and down in the trees and performthe cutting and the
bottlenecks deleting algorithms. The insertion and pasting algorithns

require another set of pointers which are called peak pointers. Two

such pointers are associated with every root node of an s-b-tree and
enable us to locate the neighbor root nodes (of other s-b-trees in the
same s-b-queue) fromleft and right, in constant time. Another couple
of peak pointers is required for each path section P. (ne is stored
at the first (leftnost) vertex of P and points to the first peak and
the other is stored at the last vertex of P and points to the |ast
peak. In Figure L.11 we give a one-dimensional picture of the s-b-queue
of Figure 4.8,indicating the way in which the queue nodes are stored in
their corresponding edges and vertices, The "curly" pointers are the
peak pointers. A1l the pointers are two way pointers and therefore they
are drawn as undirected edges.

Note that we can get fromany vertex of P to the last one in
-logarithmc time by clinbing to the root of the tree in which we are and
then use the peak pointers to get to the rightnost vertex. This sol ves
the problem of locating the vertex from which we have to resune the

search. Marking all the vertices that belong to any path section wll

solve the problem of recognizing that we have encountered a path section.

If we want to be conpletely rigorous we still have to show exactly

how peak pointers are used and updated in each of the path-section algorithns,

However, this is quite a straightforward technique and we leave it to the

r eader .

16

Finally, the nost inportant thing, how do we conpute the fina
residual capacities of each edge. Cobviously, all the deleted edges
have zero residual capacity and those which have not been encountered
have zero flow. Those which have been encountered and not deleted are
stored in an s-b-queue upon termnation of the algorithm If we sum up
the values of the nodes fromthe one representing a given edge upwards
to the root of the s-b-tree to which it belongs, we obtain its residua
capacity. This operation can be done in linear time if we start from

the root and go to all the edges in the tree simltaneously.

Space Linearity.

Conventional data structures for representing a flow network and
supporting a depth first search in linear space, can be found 211 over.

Qur additional data structure requires six nore fields for each
vertex and four for each edge, and therefore uses |inear space too

The six vertex fields are: One for the value of the node associated
with it, two pointers to the vertices which represent its sons and one to
its father. Finally we need two peak pointer fields

An edge needs one field for the value of its node, one to point to

its father, and two peak pointer fields.

17

5. Conplexity.

In this section we'll evaluate the conplexity of the restricted
problem showing that it is bounded by o(z log2) . This yields an
an | 1og2 [) tinme bound for the whole algorithm

The depth first search and the final evaluation of the flow value
at each edge take linear tinme.

Del etions of bottlenecks and insertions of new edges to grow ng
f.a. paths, take logarithmc time per edge (deleted or inserted) and
thus, they sumup to a total of o(T log I) time. Both cutting and
pasting take logarithmc tine. Since they always occur together (in fact,
if we encounter the first vertex of a path section, cutting is not
required but we'll assume that it is performed) we shall consider them as
one unit tinme operation and call it CP . Thus, in order to establish our
time bound, we just have to show that the number of cP'sis 0o(z log I)
and that's what we are going to do.

Let E = {el,. , .,em} and | et 1o Ty ewes T be all the f.a. paths
in the order in which they were generated. Since each such path is
associated with at least one bottleneck that disconnects it, we can
deduce that r < m.

W are going to show that the number of cP's is bounded by m(1 + log r)
by dermonstrating a way to assign all the cp's to edges in such a way that
no edge will be associated with nore than L4(1+log r) CP's.

G ven two f.a. paths T and rr.Jand a vertex v , we say that
" splits J.oat v if =, is the first path after T that enters v

J
not through the sane edge as «

K Note that one path can split several

others but can be split by at nost one other path. Mreover, every CP that

occurs at v is caused by some path =, splitting another path T for

J
some i< j.
18

The Charging Rule. Gven a CP that occured at v when nj split T

| et e be the path that split Jn. at v (if such a one exists).

This CP will be charged to the right account of' I if either

j-1 < k-j or = does not exist, and will be charged to the Ieft account

of T if k-] <j-i

Thus, for every f.a, path we'll nmaintain two accounts in which we'll
store the cp's assigned to it. In the right account we'll store CP's
that were caused by later paths and in the left account we'll store those
that were caused by previous paths.

Let's try now to trace the right account of a given f.a. path T
o)

The CP's that are charged to this account can be ordered according to the
vertices at which they occur -- from s to t . Let €y 202y be the
1 r

bott| enecks of T Removi ng these bottlenecks we split T into r+l
0 0
sectionsmg,...,nI; . W are going to show that no nmore than 1 + log r
0 0
cp's Wi || be charged to our account in any of these sections. [|f we show

that we are alnost done, the edge eb will be charged for the cp's that
occured al ong nci) and n:,lL and ebl. will be charged for the cp's that
occured al ong ° ni forO 2<3< g . The right account of -C. will
thus be cleared. S n?:e these edges were saturated by nio t hey cgnnot

clear the right account of any other path. Later on we'll see that each

of them might be used once nore to clear the left account of a given path,

nanely the first path that passed through it.
G ven any section rr:‘?L we have to show now that no nore than
0
1+1log r CP's were charged to our account in this section. Let's assume

that all the cp's that were charged to s right account at this section
0

occured at V. ,...,v; (nunbered in the s -+t direction) and were caused

1 k

19

by A respectively. Since T did not saturate any edge

1 k 0
bet ween v. and v. we know that either n. or some = <o
ll 12 11 b4
ip<i<iy passed t hrough V. . In any case, since the right account
2
of T, wWas charged for the CP that was 'caused by Tooat v,
0 2 2
know t hat i1, < % (il-io) This argument can be repeated k tines
to yield
. . 1 . . 1
1 < e (11 - :LO)__ e
2 2
which inplies that k< 1+logr .
An alnost symmetric argunent holds for left accounts. |n this case,

however, we don't use bottlenecks to split Tfl: but those edges for which
r, was the first to pass through. The detai Ios are left to the reader.
Inogeneral an edge can be charged for L(1+1og r) cp's at nost and that
bounds the nunber of ¢P's by km(1+ log r) .

The follow ng exanple shows that this bound is tight up to a constant
factor. In Figure 5.1 we show a network in which 8f.a. paths are
generated and 22 cp's are performed. This structure can be easily

general ized to a network in which r = 2% ¢,q, paths are generated and

T gepttl o o(r lOog r) cp's are execut ed. o(r log r) = Qmlog r)
i=1

since. m =3r-1 in these networks, Note that the order in which the
Z.a.-paths are generated, is very inportant and the nunber of cp's might

decrease if we generate them in another order.

6. Sunmary

The maxi mum flow probl em has a | ong history of solutions which keep
improving all the tine.
This one is sonewhat different fromthe last three inprovements of

Karzanov, Cherkasky and Galil in two points.

1 Its underlying algorithmis nuch sinpler and its conplexity is shifted
to the data structure.

2. It seens that this algorithmcan be generalized to finding maxi mal
(not maximum) flow in any directed acyclic flow network within the
same time bound of o1 1og2) . The conplexity proof obviously
works for general acyclic graphs. In a first glance, the data
structure seens to rely heavily on the layered structure of the graph.
However, directed acyclic graphs also have a natural |ayered structure.
It seems that the s-b-queues and the path section algorithns can be
general i zed to these graphs with ninor nodifications. This observation
suggests that we mght reduce the nunber of phases in Dinic's al gorithm

by taking larger graphs in each phase

21

Ref er ences

[B] Brown, Mark R, "The analysis of a practical and nearly optinal
priority queue," Stanford University Conputer Science Departnent
Technical Report STAN-CS-77-600 (1977).

[c] Cherkasky, B. V., "Algorithmof construction of maximal flow in

: : 3 ~ : :
networks with conplexity of o(v- /&) operations," Mthemati cal

Met hods of Sol ution of Economical Problens 7(1977), 117-125

(in Russian).
[p] Dinic, E. A, "Agorithm for solution of a problem of maximal flow

in a network with power estimation," Soviet Mith. Dokl. 11(1970),

1277 -1280. --

[E] Even, S., "The max-flow al gorithm of Dinic and Karzanov: An exposition,"
MI.T., LCS, TM 80, (Decenber 1976).

[FF] Ford, L. R and D. R Pulkerson, "Maxinal flow through a network,"

Canadi an J. of Math. 8(1956),399-L0OkL.

[G@ Galil, Z., "A new algorithm for the naximal flow problem" Proceedings
19th | EEE Synposi um on Foundations of Conputer Science, Ann Arbor, Mich.,

Cct ober 1978, 231-2L5,
(K] Karzanov, A. V., "Deternmining the maximal flow in a network by the

met hod of preflows," Sovi et Math. Dokl.15(197k), 434-437.

22

11

10

3.11.

Figures 3 1

23

Figure L.1.

2L

o

dbdbodbde

The forest determned by:

{192:5;1*} {5:/3} {O)ng)BJL}

oboloo| St

\J!
[@aN
o
—
[N

Figure &4.L,

n
(&)Y

The path:

[]
y
®
/
J

\
¥
¥
¥
¥

The corresponding queue:

O © & O O & e

Figure 4.5

27

The path:

Its representation:

-Step 1. Deleting the root.

28

Step 2.

Step 3.

Step 4.

Step 5.

Deleting a

zero-valued
root at
second

level.

& ©

Del eting zero val ued
roots at third
level

Del eting zero val ued
roots at fourth

| evel . n

(] (o)
a

The 5-th and 8-th edges are deleted fromthe graph.

Figure 4.6.

29

QP):

O 0

we add 3 = UJJE and 1 .

Step 1. Q —> S 3

0 © © ©

Step 2: Q —» \10 "E'

o\@

Figure 4.7.

350

corresponds to this

addition = . V

-

1

Q.

o .‘)\\C

o~/

Figure 4.8

Figure 4.9

Figure k4,10,

Figure L.11.

Figure 5.1.

33

