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Abstract.

This paper surveys the state of general purpose software for the

sol ution of partial differential equations. A discussion of the

purported capabilities of twenty-one prograns is presented. No testing

of the routines was perforned.






1. Introduction

Mat hematical software for partial differential equations (pde's)is
a relatively new area. It is only within the last five years that prograns
have been published which are capable of solving relatively large classes
of partial differential equations using effective nunerical approxinations.

The first attenpts at general purpose software were oriented toward
provi ding programm ng |anguages that facilitated witing the equation and
its approximtion (usually finite differences). Two exanples of such
| anguages were PDEILAN [10] and PDEL [5]. These seem not to have been too
wi dely used and are currently not supported

Current popul ar software now is produced in the form of subroutines
with user-provided subprograns defining the equation. There are, however,
several notable exceptions to this that will be discussed in detail bel ow

This paper resulted from a reasonable extensive literature search under-
taken to determne what software was available. The guiding principle in the
sel ection process was generality. Hence, no coverage has been provided in
the very large special application areas such as finite el enent codes for
structural engineering, nuclear reactor codes, hydrodynanics codes (produced
principally at government weapons |aboratories), and petrol eum reservoir
nmodel | ing codes. Information on some of the prograns in these areas may be
obtai ned fromthe Argonne (National Laboratory) Code Center and the COSM C
program library at the University of Georgia conputation center. A so, no
attenpt has been made to determne the existence of codes based on integra
equation techniques.

Before proceeding further this caveat nust be tendered: no attenpt has

been made to ascertain the availability, portability, utility, or accuracy



of any of the software nentioned in the renainder of this paper

2. Mat hematical Prelimnaries.

In this section are discussed some nmathenatical ideas that are pertinent
to the description of pde software.

For tine dependent pde's the nost popul ar approximtion is the nethod of
lines wherein the spatial derivatives are approxinmated in some manner in order
to yield a systemof ordinary differential equations (ode's). The tine
integration of this systemof ode's is then acconplished by the use of existing
software for ode's.

For exanple, suppose we wish to approximate the single equation

u, = f(x,t,ux,uxx) s 0<x<l, t>0 (2.1)

with boundary conditions
u(0,t) = u(l,t) = 0 , t >0 (2.2)
and initial condition

u(x,0) = glx) p<x<1 . (2.3)

W nmay choose a finite difference grid {xi} gi ven by

1
n+l ’

and supposi ng vi(t) to be an approximtion to u(xi,t) , We replace U

x1:ih, i = 0,1,2...,N+¥1, h =

and Uy o in (2.1) by, say, second-order central finite difference approxima-

tions resulting in the ode system

_ _ 2
at f(Xi:t; (V.lJrl—Vi l)/?h, (Vi l—2vifvi+l)/h )

= F.(t,v ) (2.4)
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for i =1,2,...,8 . From (2.2) we have

Vo(t) = v (t) =0

n+l
and from (2.3) we obtain the initial conditions

v (0) = gle) 0= 1,2,..,8 2.5)

Equations (2.4) and (2.5) forman initial value ode problem which can be
integrated by sone ode package.

It is not necessary to use finite difference approximtions to renove
the spatial variation. One might assune that the solution u of (2.1) may
be witten

n
u(x,t) = 2 Ce (t)b. (x)
A | [
i=1
where the known functions bi(x)} forma suitable basis. Depending on the
choice of nethod, e.g. collocation or Galerkin, for renoving the spatia
variation one obtains an initial value problemfor a system of ordinary dif-

ferential equations in the unknowns {ci(t)} .

Most devel opers of pde software who have chosen to use the method of |ines
rely heavily on existing software for ode's and for the conputation of the
basis functions. Specifically the ode software used al most exclusively is one
of the several codes based on Gear's method witten by Hi ndmarsh [12,13,14].
The basis functions chosen are frequently B-splines and the package of de Boor
[2] is used.

The use of the nethod of lines for two-space dinension parabolic pde's
introduces a significant conplication in that it is generally accepted that
the ode systemto be solved may be stiff. Hence, this dictates the use of
inplicit methods which give rise to very large, sparse Jacoblans which nust be

inverted. The inversion of such matrices is not at all trivial and seens to be



the principle oObstacle in the development of nulti-space dinension pde
software. This sane problemexists for the devel opnent of robust software
for elliptic pde's defined over general regions.

3. Software for Hyperbolic Systens

Hyperbolic equations are, py far, the nost difficult class of partial

differential equations to approxinmate nunerically.  The principal difficulties
lie in determning the correct approximation at the boundaries of the donain
and accurately representing discontinuities in the solution.

To illustrate the former difficulty, suppose we want to approximate the

solution of the sinple system

u, = AuX (5.1)
ul 1 0
wher e u=112 , A= o .1] » ©0<=x<1
It is easily seen that the general solution is ul(x,t) = £(t+x) and
ug(x,t) = g(t-x) , where f and g are arbitrary functions determned by

the boundary and initial conditions. Cearly, at the boundary x = 0 ,
(if t < 1), uy must be specified and U, cannot be specified unless the

solution is known. At x= 1, U, must be specified, and u1 cannot be.
However, a straightforward finite difference approximtion to equation
(3.1) requires that two conditions be given at each boundary. The problem
here, of course, is that the approximtion near the boundary nust take into
account the nature of the characteristics, i.e., the lines x +t = constant
and x -t = constant. At x =0 , the characteristics indicate that u,
shoul d be conputed from known interior values, e.g., by extrapolation along
the outgoing characteristics x +t = constant. Analogous statenents apply

at the boundary x= 1.

Al'though the preceding comments may seem rather obvious for the system



(3.1), where A is a constant diagonal matrix, the construction of accurate
di fference approxi mati ons becones nore difficult when Ais a function of
X, t, and u . In this case the characteristics nust be conputed by an

ei genval ue/ ei genvector routine at each time step and at each boundary.

3.1 DOG
This program witten by Engquist and Smedsaas [9] , was designed to
provide software for the nunerical solution of hyperbolic systems in one

space dinension. The user specifies synbolically the equation

uLJG - f (x,t,u,ux) s

where a<x<b , and u ¢rR" . Initial condi tions, boundary conditions, and
certain characteristics of the problem e.g. uniformor non-uniformgrid in
space, or that some particular terms should be considered stiff (and, therefore
integrated inplicitly in tinme) are also specified. These specifications are
accepted by the first part of DCG the analyser. A syntactical analysis of the
equations and boundary conditions is performed to detect errors in the specifica-
tion and the problemis classified by linearity, time and space dependence of
coefficients, etc. The principal synbol, i.e., the matrix bf/bux , 1S

examned to determine, as far as possible synbolically, whether the correct
nunber of boundary conditions have been specified. FORTRAN code is prepared

to conpute the eigenvalue and eigenvectors during execution, if necessary.

(This part of the "programis the analysis of the matrix anal ogous to the

matrix A in equation (3.1)). Difference nmethods and boundary strategies,

i.e. which variables should be extrapolated at the boundaries, are selected
according to the preceding analysis and user specification, and a solution
algorithm is determned. This algorithmis then optinized.

The second part of DCG the synthesizer, accepts the algorithm and,



using a library of FORTRAN codes, constructs a FORTRAN programto solve the
given problem This program contains output statements that save all inter-
medi at e execution output on a disk. After execution, a graphics program
operates interactively with the user to *provide graphs of any of the
variabl es as functions of space or tine.

As alluded to above, the approximation Is done by finite differences
using different types of second and fourth order differencing, Leapfrog,
Crank-Nicol son, or sem-inplicit integration, all of which are energy con-
serving. However, the user may specify dissipation if desired.

DCG seens to he a fairly thorough treatnent of the one-space-di nension
problem but its availability may be limted by the fact that the anal yzer
is witten in SIMULA , a |anguage not generally available in nunerical

conputation centers.

3.2 RKFPDE

This subroutine, witten by Gary [11], was notivated by a desire to
provi de software for a class of problems comonly called the "stream function-
vorticity equation”. Problems in this class occur frequently at the National
Center for Atnospheric Research, where this software was devel oped.

The system of equations is assuned to have the form

)

= + +
u fX gY h(x,y,t,w Wx’wy’wxx’wxy’wyy’wmocx’w

plus an optional elliptic equation

Ip = F(X’y’t’u’ux’u}cc’uxy’uxxxx’uyyjy'y

where L is assumed to be separable, and where u ¢ B, w = (ul,ug,. (RETI p),

f and g are functions of x,y,t, and w, The domain is assumed to be a

rectangle in the plane. On the boundaries of the rectangle the user may



specify one of the conditions

1) periodicity

2) symmetry with respect to the boundary

3) skew symmetry with respect to the boundary
4) a nixed condition, or

5) extrapol ation of the characteristic variables.

(This last boundary condition requires that the user determ ne those
quantities which should not be specified at a boundary).

The solution is acconplished by a finite difference approximation on a
user-supplied uniform or non-uniform nesh. The nmethod of lines is used. The
user may select second or fourth order central differences in space. The tine
integration is carried out by a Runge-Kutta-Fehlberg 3-4 schene nodified
froma routine provided by Shanpine. The elliptic equation is solved by the
subroutine gsepELI, a part of FlI SHPAK (cf. 5.1). The functions f,g,h, boundary
data, and the coefficients of the elliptic operator are given in user-supplied
subprograns.

This software was written for the Control Data T600 and designed to use
extended core menory. However, portability should not be too affected as the
calls to this memory have been isolated in the code and may be repl aced by
statenents appropriate for the user's conputer. A version of this code is

currently running on the CRAY-1.
L. Software for Parabolic Systens.

In contrast to the lack of general purpose codes for hyperbolic systens
there are a nunmber of prograns available for parabolic systens. The method
of lines is used exclusively in these codes. Hence, the discussion of the
approximation in each code will be separated into two parts: space and tine.

Ni ne codes will be discussed. They will be presented in an order corresponding



to increasing capabilities of the programs. (One program GENEPL, nay

al so be used for solving a parabolic equation, see 5.9).

4.1 pss/z

Thi s package, produced by Schiesser [28], is a successor to an earlier
code LEANS [27]. DSs/2 is primarily an educational tool. It was designed
as a main program which the user supplies with three subroutines that define
the actual pde to be solved. It is assumed that the pde can be witten in

the form

u F(X,t,u,ux,um> , a<x<b, t>0 (k.1.1)

where u e R (The expressions u, and u . mmean the vectors of first and
second partial derivatives, resp.) The boundary conditions are not provided
in a separate subroutine, but rather, are incorporated by the user into the
subroutine that defines F . It appears, therefore, that only relatively

simpl e boundary conditions may be handl ed with ease.

In order to evaluate F, the user selects froma large collection
of subprograms within DSS/2 the one that automatically conputes finite
di f ference approximations to u or u . Centered and non-centered
differences of even order two through ten are avail abl e.

The time integration scheme may be chosen from one of fourteen different
Runge- Kutta one-step nmethods of orders one through five, or the user may
sel ect the Hi ndmarsh GEARB [14] package.

4.2 PDEPACK

This software was devel oped by Sincovec and Madsen [22], and nay be
purchased or |eased from Scientific Conmputing Consulting Services. The
package consists of eleven subroutines with comunication of the problem
t hrough user-provided subroutines. The system of pde's is assunmed to be

in the form



wher e

k= 1,2,...,n, a < X <b, t > to, D =D .. (t,x,u),

and ¢ may be 0,1, or 2 .Terms of the form

allow the programto handl e discontinuous coefficients, e.g., when a problem has

material interfaces. The inclusion of factors x* facilitates the treatnment

of common expressions occurring in Cartesian, cylindrical, or spherical coordinates
The boundary conditions are assuned to be prescribed at each boundary

and to be in the form
Q/kU + Bku — Yk) k:l,g,--') n

| f By # 0, then o and Y MRy be functions of t and u , but if

0, and Y My only be functions of t

By~ oy
The space discretization is acconplished via central finite differences
on a grid of points specified by the user. The differences are second order
on a uniformgrid, but only first order on a non-uniform grid. The
di fferencing has been designed to conserve such quantities as Du_ across
material interfaces. The finite-difference grid may not change with tine.
The time integration is acconplished by use of a nodification of

the H ndnmarsh package GEARB.

4.3 PDECOL

This software was al so produced by Sincovec and Madsen [20]. The user
specifies the problemvia a set of subroutines and calls the subroutine
PDECOL for the solution.

The equation is assuned to be in the form



u f (t,x,u,ux,uxx) ’

t =
where u ¢ R" , a<x<b, and t>t 0" The boundary conditions are
assurmed to be in the form

b(u,uX) = z(t)

However, the user need not specify a boundary condition at all. This feature

may be useful if the user attenpts to solve a hyperbolic systemor a coupled
ode- pde system

The spatial approximation is acconplished by the use of collocation
using B-splines as the basis. The breakpoints for the B.splines are provided
by the user, as are the degrees of the piecew se polynonials and the order
of continuity. The B-splines are conmputed using the package of de Boor [2].
The collocation points are chosen automatically by the software.

Since the resulting system of ordinary differential equations is inplicit,

the authors use GEARTB, a nodification of GEARB devel oped by Hi ndmarsh [14].

4.4 wo1ip
This subroutine package was devel oped by Hyman [17]. As in the previous
two codes, the user wites subroutines defining the problemand then calls

MOL1D. The equation nust be in the form

ut = g<x:tJu:U-x:uXX:fX) (ll-ul)

n
where u c¢R , a<x<b,t>t _,and f = f(x,t,u,ux,u ).
XX

0
The inclusion of the argunent £.on the right side of (4.4.1) allows
conservative differencing of advective terms which arise naturally in
fluid dynanics equations.

The acceptable boundary conditions are given by:

10



a) periodicity in x,

b) au + bu = C , where a,b, and ¢ may be functions of t and u
if b % 0, otherwise a and ¢ my only be functions of t ,

c) sone differential equation, a free boundary, or no boundary
condition prescribed.

The spatial discretization is acconplished automatically using second ,

fourth, or sixth order centered differences, fast Fourier transform
approximation (in the case of periodicity only) with or wthout |inear
filtering of higher nodes, or unsymmetric second or third order
di ff erences.

The tine integration is carried out by the GEARB package.

Graphical output is available. The plotting procedures use standard
CALCOWP routines, and, as such, represent a departure from the portability

standard the author has set.

4.5 LSQPDE

This software by Eason and Mte [8] is designed to solve the equation

(1) @)

F(x,b,u,us ", u"’, . ..) u

ut _ (p))

n .
where a<x<b , t > %o U e R7, and u(J> represents the vector of
partial derivatives of u of order j . At the boundaries, general

conditions of the form

G\I(X,t,u,u(l), . .,u(p'l>) =0

are assunmed to hold.

The approxi mation technique is a conbination of time integration and

| east square approximation. The user selects a set of points {xi}ril:l in

11



the interior and on the boundary of [a,b] at which points the equation

will be integrated in tine. A particular set of basis functions (provided by the
user) is used to represent an approxi mation v(aj,x) to the solution

u(x,tj), wher e a.J represents the vector of coefficients in the approximation
at time tj . The first step of the algorithmis to forma vector of

residuals, evaluated at the points {xi} , for initial and boundary con-

ditions. The vector 8y corresponding to the initial tine t is determned

0
by minimzing the residual in the |east squares sense. The nininization is
acconpl i shed by Powell's non-linear |east square technique. Assun ng aj

is known, the approximation v(af,x) is used in a nodified Gear-H ndnmarsh
predictor-corrector algorithm Firstly, values of the solution are predicted
at tine |evel tj+l by a Taylor series expansion of V(aj,x) in tine.

These predicted values are used in conjunction with the corrector equation
to forma vector of residuals at the points {x.f. This vector is a

function of the unknown coefficient vector B3y 0 which is determned by a

| east squares minimzation of the residual vector.

4.6 POST
This software, witten by Schryer [29], is available through the PORT
library of Bell Laboratories. It is designed to solve coupled ordinary -parti al

differential equation systems. The equation treated is

f(x,t,u,ux,ut,ux ) = a( X,t,u,ut,ux )

t t'x

where ag<xgb, ue R*, with boundary conditions

,u ) =0 at x = a,b.

b (t,u,ux,u ot

t

It is also possible to inpose non-local conditions on the solution such as

periodicity or that the integral of the solution over soneinterval assumes



a given val ue.

The spatial variation is approxinmated using a Galerkin technique with a
B-spline basis (provided by the de Boor package). The time integration is a
one-step nethod, explicit or inplicit, coupled with an extrapolation algorithm

to provide automatic error control in the time integration

The user provides a call to subroutine POSTS providing information about

the B-spline basis, time integration limts, and an error tolerance. He al so

provi des two subroutines for the evaluation of the equation and boundary

condi tions.

4.7 PDETVO

PDETWO was written by Melgaard and Sincovec [21]. 1t is a collection
of subroutines that provides an interface between a two dinensional pde and
an ode integration package. The user specifies the problem by providing sub-
routines and calls PDETWO for a solution

The equation is assuned to have the form

(k)
1 (n)
v, = f(k)(t,x,y,u,ux, (DHk,l u}(c ))x""’(DHk,n u )x ,
(1) (n)
(ka’l u )y, , (ka’ n Gy )y )
where a;, <x<b;. a,<y< by, t >t k =1,2,....n, and the

i Ci . and DV, . are piecew se continuous functions of
coefficients DHk,g X, 3 p
%,%x,y and u .

Boundary conditions are assunmed to have the form

(x)
a'kll(k) + bkun S k =1,2,...50,

wher e 2, bk, and ¢ are piecew se continuous functions and u,

k

represents a derivative normal to the boundary.

15



The user provides a two dinmensional finite difference grid and the
package automatically produces an approximation at each grid point corresponding
to a five-point star.

The tine integration is acconplished by the use of GEARB.  The use of
Newton's method to solve the system of non-linear equations resulting from
the use of inplicit integration schemes necessitates the solution at each
Newton iteration of a large sparse banded system of equations. The coefficient
matrix, the Jacobian of the non-linear system nust be eval uated at each
iteration and represents a significant conputational expense. The authors

have examined various techniques for this task and havein their view implemented

the most efficient one.

4.8 DISPL

This software package is the collaborative effort of Leaf, Minkoff,
Byrne, Bleakney and Saltzman [19] of the Argonne National Laboratory. The
package is designed specifically for one and two spatially dinensioned
kinetics-diffusion equations. |t represents an effort to provide reasonably
general purpose software designed for a particular application.

The equation is assuned to thave the form

(k)) (x)

[pCp]k(t;r;Z;?l) ut(k) + 8 V-(G (t,r,z,ulu + (J_-e)—\;k(t,r,z,a)vv u

k

n n
= Ve (Bk(t,r,z,a,gu) Vu u‘&z Cs u<i) +Z d‘kj_j u(i)u<j )
i=1 i,j=1

+ 9
+ fk(t,r,z,u,vu) 5

where k = 1,2,...,n . The equation is assuned to hold over a rectangle
with material interfaces in the (r,z)-plane. To increase the applicability

of the code, two forms of advection terms (g =0 or g =1) are all owed.

14




The boundary conditions on the sides of the rectangle are assuned

to have the form

o hu(k) F B ﬁkVu(k)' n = Y hpi

where o, 8, and y may depend on k and the side of the rectangle, 2

_'
is the exterior unit normal, and pﬁ may depend on ¢ and V2 n

A Galerkin procedure is used as the spatial approximtion using
B-splines as the basis functions. The mesh is provided by the user. The

B-splines are conputed using de Boor's package.

The time integration uses the same nethod as that found in Hindmarsh's

GEARIB [13], although the authors do not use GEARIB itself.

Extensive graphics capabilities have been provided. The software has
been witten in MORTRAN -- a FORTRAN preprocessor. This should present no
probl ens since the authors are including in the external distribution a

portable copy of the MORTRAN translator.

4.9 FORSIM VI

As the name indicates, the FORSIM package of Carver et al [6]is in
the sixth edition, a testament to the longevity of this software effort.

This package contains a main program plus a |arge nunmber of subprograms
t hat provide centered, non-centered, and upwind finite difference approximations
of various orders and cubic spline approximations. Time integration methods
provided are a variable step Runge-Kutta-Fehlberg, a fixed step fourth order
Runge-Kutta with Fehlberg corrections, a fixed step Euler, and the Hindmarsh-
Cear algorithm  For this last algorithmthe user may sel ect a number of
different approximtions to the Jacobian, ranging from no Jacobian (functional

tteration) to the full Jacobian, in which case the sparse matrix package of

15



Curtis and Reid [7] is used.
To use this package, the user provides a subroutine UPDATE, that
contains storage declaration, initial conditions, equation and boundary condition
specifications, and output specifications. To define the pde the user selects
t hose subprograns corresponding to the spatial discretization, Creates a
section of code which perfornms the evaluation of the right side of the
equation, e.g., the F in (4.1.1), and incorporates this into UPDATE. The
time integration is perfornmed by a call w thin UPDATE to another subroutine.
This package may al so be used to solve two- and three-space di nension
probl ens defined on rectangles or parallelepipeds, respectively. G aphical

output is also available.

5. Software for Elliptic Equations.

Due to the extensive theory that exists for elliptic partial differential
equations and the large anount of work that has been done on the nunerica
approxi mation of the solutions of such equations, it is not surprising to see
a large selection of software in this area. However, it is true that for
conplicated problems, e.g. non-linear or non-separable, the solution techniques
are not as reliable and software is not generally available.

The software packages will be described in an order corresponding to
i ncreasing conplexity of the type of problens solved.

5.1 FISHPAK (Version 3)

This package of subroutines was witten by Adams, Swarztrauber and
Sweet [1] at the National Center for Atnospheric Research, Boul der, Col orado.
It is a continuing effort brought about originally in response to the need
for a conplete set of readily available well-tested, reliable, efficient, and
wel | - docunmented software to solve a subclass of elliptic equations which occur

frequently in the study of geophysical fluids.

16



The subcl ass consists of separable elliptic equations with particular
enphasi s on the Poisson equation defined on a rectangle in Cartesian
cylindrical or spherical coordinates, and with Dirichlet, Neumann or
periodi ¢ boundary conditions prescribed. O particular inportance was the
need to automatically treat coordinate singularities, e.g., the origin in
spherical coordinates, and equation singularities, e.g., fully periodic
sol utions.

The package consists of eighteen subroutines and one subpackage.
These are
(a) Twelve drivers that define second order, central finite difference
approxi mati ons on staggered and unstaggered uniform grids, incorporate
boundary data, and treat singularities for two-dinensional nodified
Hel mholtz equations in Cartesian, polar, cylindrical, surface spherical
and spherical cross-section coordinate systens, for a three-dinensiona
Helmholtz equation, and a general separable two-dimensional elliptic
equation wthout coordinate singularities,

(b) six solvers that are used to solve the linear systens of equations

ari sing above,and two solvers that can be used to solve finite difference

approxi mations to conpl ex-val ued separable elliptic equations, and

(c) a subpackage of fast Fourier transformroutines that provide periodic,
sine, cosine, sine quarter wave, and cosine quarter wave transforns as wel
as the full conplex transform

The sol ution techniques are based on generalizations of the Buneman
variant of cyclic odd-even reduction [3] and sone of the routines provide,
at the users option, fourth order approximations using the method of deferred

corrections.

Buzbee et al [4] tested version 1 of the package and made criticisns

17



and suggestions [30] to the authors. These suggestions were inplenented by

the authors resulting in the second version of the package.

5.2 A Package for the Helnholtz Equation on an Arbitrary Region.

Thi s package of four subroutines was witten by Proskurowski [23] at
the Lawr ence Berkeleylaboratories, Berkeley, California. It may be used

to solve the Hel mholtz equation

vlu + cu = f (5.1)

defined on a general bounded planar region @ with either Dirichlet or
Neumann conditions prescribed on the boundary of the region

The package solves the standard, second order, central finite difference
approximation to equation (5.1) by enbedding the region in a rectangle R
and using the capacitance matrix technique coupled with fast Poisson sol vers.
Briefly, the nethod consists of four steps:

1) generate the capacitance matrix C the order of which is equal to
the number of grid points within Q and adjacent to the boundary,

2) solve (5.1) on R with f arbitrarily extended to R using a fast
Poi sson solver, e.g., a routine from Fl SHPAK

3) solve the capacitance matrix equation

Cz=hbh (5.2)
and use z to correct the values of f , and
L) solve (5.1) on Rwith the corrected f
For a general region, step 3) can be very time consuning since the order
of Cmay be large. This also may nake the direct internal storage of

C prohibitive.

18



To efficiently overcome these difficulties, the package provides
four subroutines:
1) HLMHLZ sol ves equation (5.2) inplicitly via a conjugant gradient
iteration, thus obviating the storage of C,
2) HEIMIT generates and stores C explicitly and solves (5.2)
directly,
3) HEIMSIX solves the Dirichlet problemonly storing C explicitly
and has the option of obtaining fourth or sixth order approximations via
deferred corrections, and
4) HELSYM produces a symmetric approximation to the Dirichlet problem
using an explicitly generated C. This routine may be used in conjunction wth
an algorithmfor the conputation of eigenvalues and eigenvectors of large symetric
matrices, e.g., the Lanczos nethod, in order to approximate the eigenvalues of the
Lapl aci an.
To describe the irregular boundary, the user must supply a subroutine,
DOVAI N, that specifies the coordinates of the irregular grid points, i.e.
those points on the finite difference grid for which some of its neighbors
are not within the domain. The user nust specify the distance fromthe
grid point to the boundary and the associated boundary values. The right

side of equation (5.1) is furnished in the user-supplied subroutine CHARGE

5.3 EIGEN

Ryder and Sanderson [26] have devel oped a package for approximating the
ei genval ues of Laplace's equation. Specifically, the program finds approximte
solutions to

Veu + wgu =0 (5.3)

defined on a bounded, sinply connected domain in the plane, subject to
Dirichlet or Neumann boundary conditions on various portions of the boundary

of the domain.
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A mgjor difficulty in the approximation is the treatnent of
singularities in the solution induced by re-entrant corners, i.e. an
interior angle greater than = , on the boundary. They overconme this

difficulty by seeking solutions to equation (5.3) of the form

k N
aee) =Y fo 9, x)sing s rd, 3 W esa g) (54

i=1 =0 = +

where k is the nunber of corners on the boundary, @ 5 are determ ned
fromthe angle of the 18 corner, and (ra’ei) are the coordinates of the
poi nt (r,g) in a pol ar coordinate system centered at the i@ corner.
Since each termof equation (5.4) is a solution of equation (5.3), the
coefficients c.l.J and d.l.J are determned by attenpting to satisfy the

gi ven boundary condition in a | east squares technique. |t is known al so
that such an expansion of the solution produces the correct asynptotic
singularity at each corner.

The procedure used is to minimze a certain error functional in w by
selecting an « 1§ solving for the c.l.J and d'lg , then trying to correct
®w by mnimzing the residual of the |east squares solution. Such local ninina
are "strong candidates" for eigenvalues even though convergence proofs for
this technique do not exist. The routine EICGEN uses the routine LOCALM
witten by R Brent for finding local mnina, and the routine DSVD witten

by P. Businger, for finding the singular value deconposition of the matrix.

5.4 | TPACK/ REG ON

This software [18] is a result of the continuing research at the
Center for Numerical Analysis of the University of Texas at Austin. It is
a package of routines which approximte the solution of the linear, self-

adjoint el liptic equation
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(auX)X r (buY\)(+ cu = f (5.5)

defined on a sonewhat general region in the plane, with Dirichlet
boundary conditions assuned on the boundary of the region. The coefficients
a,b, and ¢ may be functions of x and vy .

The solution is approxi mated using second order central finite
di fferences defined on a uniformgrid with equal spacing in x and y .
The boundary of the region over which the equation is assumed to hold may
consist of horizontal or vertical grid lines or lines of slope +1
connecting grid points. The region may have holes so long as the boundaries
of the holes satisfy the above conditions. Such restrictions elimnate
the occurence of irregular grid points near boundaries.

To solve the sparse linear systemarising fromthe approximation to
equation (5.5), the user may select one of six iterative algorithns:

1. Jacobi iteration with Chebyshev accel eration.

2. Conmpresssed Jacobi iteration with conjugate gradient acceleration.

3. Jacobi iteration on a reduced system with Chebyshev accel eration.

4. Jacobi iteration on a reduced system with conjugant gradient acceleration.

5. Symmetric successive overrelaxation with Chebyshev accel eration.

6. Symmetric successive overrelaxation with conjugant gradient acceleration.

The selection of the acceleration parameter and the stopping criterion are
aut omati c.
The subroutine REG ON defines the grid after the user has supplied a

pol ynom al parameterization of the boundary.

5.5 POTENT

This piece of software, witten by Thomas [32], was produced to aid

engineers in the solution of problens in electrostatics and nagnetostatics.
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The equation, witten in divergence form is

V'(E(X,y> vu) = (eu)x + (eu ) = f (x,y) (56)

that is assuned to hold cn a general, bounded planar region. Dirichlet
or m xed boundary conditions are assumed to hold on the boundary.
The nmethod of approximation is to use a finite difference approximation
to equation (5.6) and then solve the resulting system by ADI, point SOR or
line SOR with the acceleration paraneter either specified by the user or
set internally (by assumng Dirichlet boundary conditions for Laplace's equation
defined on a bounding rectangle).
The user nust provide a subprogram which declares whether a point is
inside, on, or outside the boundary, and , in the latter case, its distance
to the boundary. Once the boundary has been determined it is outputed

graphically for the user to check for errors.

5.6 ELLPACK 77

This software research project is coordinated by Rice [24k]. It is a
cooperative effort among many people interested in the devel opnent and
eval uation of algorithms related to solving the large, sparse linear systens
of equations arising from approximations-to linear elliptic equations. The
goal of the project is to facilitate the testing of algorithms that only
deal with a portion of the total solution process. This is done by defining
a fixed nunber of subproblens (nodules), and defining fixed interfaces
bet ween these modul es. ' There are currently four nodul es: equation fornmation
equation indexing, equation solution, and output. Researchers may contribute
sof tware designed for one of the mbdules. Mre inportantly, they may sel ect
exi sting software fromthe other nodules for testing their own software,

thereby relieving themsel ves of the burden of unnecessary coding. The interested
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reader is referred to the above reference for a detailed discussion of

the ELLPACK project.

5.7 ELLCOL

The first piece of software from the ELLPACK project has

been designed by Houstis and Rice [16]. |t is designed to solve the Iinear
equation
au, + EBqu + Yoy Foou ot E%{+ gu = f

defined on a general two-dimensional region with the boundary condition
au + bu + cu = g
X Y

assuned on the boundary. The coefficients g,8,...£,a,b, and ¢ may be
functions of x and y

The nethod of approximation is to enbed the region in a rectangul ar
grid and then use collocation at four CGaussian points within each rectangle
usi ng bicubic piecewi se Hermite polynomi als for the basis. The approxi mation
is also required to interpolate the boundary condition at "appropriate" points.
The system is solved using profile Gauss elimnation.

To use this software, the user nust provide information to the ELLPACK
input and output nodul es. For input the user provides:

1. subroutine BCOORD that provides a paranetric representation of the
boundary of the region

2. functions COEF and BCCEF that provide the equation and boundary
condition coefficients, and

3. function F that provides the functions f and g
The user may select various levels of output of intermediate results,

approximations to u_, u , and u_, and the execution tine.
Xy Xy
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5.8 EPDEL
This main programwas wit-ten by Hornsby [15] at CERN. It is designed

t 0 approximate the solution of

auxx+buYY ©ocu t dL{( + eu = f
where a,b,...,f may be functions of x,y, and u . The equation is
assumed to hold over a region bounded by a sinple closed curves (21,02,..,(1k s
wher e CQ,...,ck must lie within Cl. Al ong the curves CJ the follow ng

boundary conditions are assuned to hol d:

1. Dirichlet, or

2. if C, is aline which coincides with the finite difference grid
then a mxed condition

pu_+ au + ru = S
X oY

may hol d.

A uniformfinite difference grid is defined, and at each grid point
a finite difference equation is devel oped using the four neighboring 'points.
The resulting system of equations is solved by point SOR  The acceleration
parameter w is estimated using the method of carre. The convergence criterion,
based on estimates of the spectral radius of the iteration matrix involves a
percentage accuracy specified by the user. If the equations are non-linear,
functional iteration is coupled with the SOR iteration.

The input for this programis conplicated. Not only does the user

provide subroutines to evaluate the coefficients of the finite difference

equations, but the user nust define each boundary by a sequence of grid points

supplied on cards.

5.9 GENEPI

This software, witten by Roux et al [25], is designed to solve a general
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linear or non-linear elliptic or parabolic equation on a two-dinensional
rectangle with Dirichlet, Neumann, or nixed boundary conditions. This program
accepts the problem definition in synbolic form and generates a FORTRAN
program that solves the approximte equations.

The user may specify a uniformor non-uniformgrid in space and tine.
The program generates the finite difference approximation using the four
nearest neighbors and solves the equations using point or line relaxation
or ADI, but |eaves the acceleration parameter selection to the user.

This program requires disk files, so portability may be a problem

5.10 ELIPTT

This software, witten by Taylor and Taylor [31], is designed to
solve a general non-linear elliptic equation defined on an arbitrary region
in the plane, and assuming Dirichlet boundary conditions. The solution is
obt ai ned by approxi mating the steady-state solution of a related time-
dependent parabolic equation.

The approximation is by finite differences on a uniform rectangul ar
grid. The time integration is perfornmed in such a way that the schenme is

equi valent to an AD1 schene. Aitken-Shanks acceleration is used in time also.
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