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Abstract.

This paper surveys the state of general pur'pose software for the

solution of partial differential equations. A discussion of the

purported capabilities of twenty-one programs is presented. No testing

of the routines was performed.
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1. Introduction

Mathematical software for partial differential equations (pde's)  is

a relatively new area. It is only within the last five years that programs

have been published which are capable of solving relatively large classes

of partial differential equations  using effective numerical approximations.

The first attempts at general purpose software were oriented toward

providing programming languages that facilitated writing the equation and

its approximation (usually finite differences). Two examples of such

languages were PDELAN [lo] and PDEL [5]. These seem not to have been too

widely used and are currently not supported.

Current popular software now is produced in the form of subroutines

with user-provided subprograms defining the equation. There are, however,

several notable exceptions to this that will be discussed in detail below.

This paper resulted from a reasonable extensive literature search under-

taken to determine what software was available. The guiding principle in the

selection process was generality. Hence, no coverage has been provided in

the very large special application areas such as finite element codes for

structural engineering, nuclear reactor codes, hydrodynamics codes (produced

principally at government weapons laboratories), and petroleum reservoir

modelling codes. Information on some of the programs in these areas may be

obtained from the Argonne (National Laboratory) Code Center and the COSMIC

program library at the University of Georgia computation center. Also, no

attempt has been made to determine the existence of codes based on integral

equation techniques.

Before proceeding further this caveat must be tendered: no attempt has

been made to ascertain the availability, portability, utility, or accuracy
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of any of the software mentioned in the remainder of this paper.

2. Mathematical Preliminaries.

In this section are discussed some mathematical ideas that are pertinent

to the description of pde software.

For time dependent pde's the most popular approximation is the method of

lines wherein the spatial derivatives are approximated in some manner in order

to yield a system of ordinary differential equations (ode's). The time

integration of this system of ode's is then accomplished by the use of existing

software for ode's.

For example, suppose we wish to approximate the single equation

Ut = f(x,Lux,um)  f O<x<l, t>o

with boundary conditions

u(o,t) = u(l,t) = 0 7 t > 0

and initial condition

u(x,o) = g(x) f _ _O<x<l l

(2.1)

We may choose a finite difference grid (xi] given by

X.1
= ih , i = 0,1,2...,N+l  , h= &,

and supposing vi(t) to be an approximation to u(xi,t) , we replace ux

and u
xx

in (2.1) by, say, second-order central finite difference approxima-

tions resulting in the ode system

dvi
-=
dt f(Xi,t, (Vi+l-vi l)/2h,(vi  l-2viivi+l)/h2)

(2.2)

(2.3)

= Fi(t,vi l,vi'vi+l) '
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(2.5)

and from (2.3) we obtain the initial conditions

vi(O) = g(xi) i = 1,2,...,N .

Equations (2.4) and (2.5) form an initial value ode problem which can be

integrated by some ode package.

It is not necessary to use finite difference approximations to remove

the spatial variation. One might assume that the solution u of (2.1) may

be written

for i = 1,2,...,N  . From (2.2) we have

v,(t) = v,,,(t) = 0

u(x,t) = F c.(t)b
i (x>

i=l '

where the known functions { hi(x)]  form a suitable basis. Depending on the

choice of method, e.g. collocation or Galerkin, for removing the spatial

variation one obtains an initial value problem for a system of ordinary dif-

ferential equations in the unknowns {ciO~ '

Most developers of pde software who have chosen to use the method of lines

rely heavily on existing software for ode's and for the computation of the

basis functions. Specifically the ode software used almost exclusively is one

of the several codes based on Gear's method written by Hindmarsh [X2,13,14].

The basis functions chosen are frequently B-splines and the package of de Boor

[2] is used.

The use of the method of lines for two-space dimension parabolic pde's

introduces a significant complication in that it is generally accepted that

the ode system to be solved may be stiff. Hence, this dictates the use of

implicit methods which give rise to very large, sparse Jacobians  which must be

inverted. The inversion of such matrices is not at all trivial and seems to be



.
the principle obstacle in the develo,pment  of multi-space dimension Bde

software. This same problem exists for the development of robust software

for elliptic pde's defined over general regions.

3* Software for Hyperbolic Systems

Hyperbolic equations are J by far, the most difficult class of partial

differential equations to approximate numerically. The principal difficulties

lie in determining the correct approximation at the boundaries of the domain

and accurately representing discontinuities in the solution.

To illustrate the former difficulty, sup'pose we want to approximate the

solution of the simple system

where

It is easily seen that the general solution is u,(x,t) = f(t+x)  and

U,(x,t) = g(t-x) , where f and g are arbitrary functions determined by

the boundary and initial conditions. Clearly, at the boundary x = 0 J

(if t < l>, u1 must be specified and
u2

cannot be specified unless the

solution is known. At x= 1,
u2

must be specified, and u
1

cannot be.

However, a straightforward finite difference approximation to equation

(3.1) requires that two conditions be given at each boundary. The problem

here, of course, is that the approximation near the boundary must take into

account the nature of the characteristics, i.e., the lines x + t = constant

and x - t = constant. At x=0 , the characteristics indicate that u2

should be computed from known interior values, e.g., by extrapolation along

the outgoing characteristics x + t = constant. Analogous statements apply

at the boundary x= 1.

Although the preceding comments may seem rather obvious for the system



(3-l), where A is a constant diagonal matrix, the construction of accurate

difference approximations becomes more difficult when A is a function of

x, t, and u . In this case the characteristics must be computed by an

eigenvalue/eigenvector routine at each time step and at each boundary.

3J DCG

This program, written by Engquist and Smedsaas [VI , was designed to

provide software for the numerical solution of hyperbolic systems in one

space dimension. The user specifies symbolically the equation

Ut =
f (x,t,u,ux)  3

where a < x < b , and u ER
n

. Initial conditions, boundary conditions, and

certain characteristics of the problem, e.g. uniform or non-uniform grid in

space, or that some particular terms should be considered stiff (and, therefore,

integrated implicitly in time) are also specified. These specifications are

accepted by the first part of DCG, the analyser. A syntactical analysis of the

equations and boundary conditions is performed to detect errors in the specifica-

tion and the problem is classified by linearity, time and space dependence of

coefficients, etc. The principal symbol, i.e., the matrix bf/aux , is

examined to determine, as far as possible symbolically, whether the correct

number of boundary conditions have been specified. FORTRAN code is prepared

to compute the eigenvalue  and eigenvectors during execution, if necessary.

(This part of the 'program is the analysis of the matrix analogous to the

matrix A in equation (3-l)).  Difference methods and boundary strategies,

i.e. which variables should be extrapolated at the boundaries, are selected

according to the preceding analysis and user specification, and a solution

algorithm is determined. This algorithm is then optimized.

The second part of DCG, the synthesizer, accepts the algorithm, and,
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using a library of FORTRAN codes, constructs a FORTRAN program to solve the

given problem. This program contains output statements that save all inter-

mediate execution output on a disk. After execution, a graphics program

operates interactively with the user to *provide graphs of any of the

variables as functions of space or time.

As alluded to above, the approximation Is done by finite differences

using different types of second and fourth order differencing, Leapfrog,

Crank-Nicolson, or semi-implicit integration, all of which are energy con-

serving. However, the user may specify dissipation if desired.

DCG seems to be a fairly thorough treatment of the one-space-dimension

problem, but its availability may be limited by the fact that the analyzer

is written in SIMULA  , a language not generally available in numerical

computation centers.

3.2 RKFPDE

This subroutine, written by Gary [II], was motivated by a desire to

provide software for a class of problems commonly called the "stream function-

vorticity equation". Problems in this class occur frequently at the National

Center for Atmospheric Research, where this software was developed.

The system of equations is assumed to have the form

ut
=fx+g + h(x,y,t,w,w >

Y
x~Wy,w~~Wyy?wyy,W-~~~

plus an optional elliptic equation

tip = Fk,y,t,u,ux,uz,uXf”-.‘uyyyY >

where L is assumed to be separable, and where u E Rn , w = (ul,u2,. l *,un P)J7

f and g are functions of x,y,t, and w , The domain is assumed to be a

rectangle in the plane. On the boundaries of the rectangle the user may

6
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specify one of the conditions:

1) periodicity

2) symmetry with respect to the boundary

3) skew symmetry with respect to the boundary

4) a mixed condition, or

5) extrapolation of the characteristic variables.

(This last boundary condition requires that the user determine those

quantities which should not be specified at a boundary).

The solution is accomplished by a finite difference approximation on a

user-supplied uniform or non-uniform mesh. The method of lines is used. The

user may select second or fourth order central differences in space. The time

integration is carried out by a Runge-Kutta-Fehlberg 3-4 scheme modified

from a routine provided by Shampine. The elliptic equation is solved by the

subroutine SzPEIJ,a part of FISHPAK (cf. 5.1)* The functions f,g,h, boundary

data, and the coefficients of the elliptic operator are given in user-supplied

subprograms.

This software was written for the Control Data 7600 and designed to use

extended core memory. However, portability should not be too affected as the

calls to this memory have been isolated in the code and may be replaced by

statements appropriate for the user's computer. A version of this code is

currently running on the CRAY-1.

4. Software for Parabolic Systems.

In contrast to the lack of general purpose codes for hyperbolic systems

there are a number of programs available for parabolic systems. The method

of lines is used exclusively in these codes. Hence, the discussion of the

approximation in each code will be se,parated into two parts: space and time.

Nine codes will be discussed. They will be presented in an order corresponding
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to increasing capabilities of the programs. (One program, GENEPI,  may

also be used for solving a parabolic equation, see 5.9).

4.1 DSS/2

This package, produced by Schiesser [28l, is a successor to an earlier

code LEANS [27]. DSS/2 is primarily an educational tool. It was designed

as a main program which the user supplies with three subroutines that define

the actual pde to be solved. It is assumed that the pde can be written in

the form

Ut = F(x,t,u,ux,uxx)  , a<x<b,t>O (4.1.1)

where
n

ucR. (The expressions u and u
X

mean the vectors of first and

second partial derivatives, resp.) The boundary conditions are not provided

in a separate subroutine, but rather, are incorporated by the user into the

subroutine that defines F . It appears, therefore, that only relatively

simple boundary conditions may be handled with ease.

In order to evaluate F , the user selects from a large collection

of subprograms within DSS/2 the one that automatically computes finite

difference approximations to ux or uxx . Centered and non-centered

differences of even order two through ten are available.

The time integration scheme may be chosen from one of fourteen different

Runge-Kutta one-step methods of orders one through five, or the user may

select the Hindmarsh GEXRB  [lb] package.

4.2 PDEPACK

This software was developed by Sincovec and Madsen [22], and may be

purchased or leased from Scientific Computing Consulting Services. The

package consists of eleven subroutines with communication of the problem

through user-provided subroutines. The system of pde's is assumed to be

in the form
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(k
Ut

where

k =

(t ,XTU,U  ., -
X

lc [xc Dk 1 $)I x> . ..> Ic ["c%,,$"']
X

> (4.2.1
X ., X

1,2,...,n, a < x <b, t > to, D
k,j

=D .
kJ (t AU),f

and c may be O,l, or 2 l Terms of the form

Lc [ xc
X

Dk j $j' lx
9

allow the program to handle discontinuous coefficients, e.g., when a problem has

material interfaces. The inclusion of factors xc facilitates the treatment

of comTnon expressions occurring in Cartesian, cylindrical, or spherical coordinates.

>

The boundary conditions are assumed to be prescribed at each boundary

and to be in the form

ak (k)U + f& ;’U = Yk ’ k = 1,2, . . ., n .

If pk f 0, then ak and yk may be functions of t and u , but if

&= ', cc' k and yk may only be functions of t .

The space discretization is accomplished via central finite differences

on a grid of points specified by the user. The differences are second order

on a uniform grid, but only first order on a non-uniform grid. The

differencing has been designed to conserve such quantities as Dux across

material interfaces. The finite-difference grid may not change with time.

The time integration is accomplished by use of a modification of

the Hindmarsh package GEARB.

4.3 PDECOL

This software was also produced by Sincovec and Madsen [20]. The user

specifies the problem via a set of subroutines and calls the subroutine

PDECOL for the solution.

The equation is assumed to be in the form
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Ut =
f (t,x,u,ux,uz'  $

where u E R
n

, a < x < b , and t > t
0 '

The boundary conditions are

assumed to be in the form

b(u,ux) = z(t) .

However, the user need not specify a boundary condition at all. This feature

may be useful if the user attempts to solve a hyperbolic system or a coupled

ode-pde system.

The spatial approximation is accomplished by the use of collocation

using B-splines as the basis. The breakpoints for the B.splines  are provided

by the user, as are the degrees of the piecewise polynomials and the order

of continuity. The B-splines are computed using the package of de Boor [p].

The collocation points are chosen automatically by the software.

Since the resulting system of ordinary differential equations is implicit,

the authors use GEKRIB,  a modification of GEARB developed by Hindmarsh [lb].

4.4 MOLlD

This subroutine package was developed by Hyman [17]. As in the previous

two codes, the user writes subroutines defining the problem and then calls

I.KJLlD. The equation must be in the form

Ut = &,LWx,“,,fx) (4.4.1)

where UER
n

, a < x < b , t > t
0 '

and f = f(x,t,u,uX,u >.

The inclusion of the argument fx on the right side of (F4.1) allows

conser-rative  differencing of advective terms which arise naturally in

fluid dynamics equations.

The acce*ptable  boundary conditions are given by:
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a) periodicity in x,

b) au + bux = c , where a,b, and c may be functions of t and u

if b f 0, otherwise a and c may only be functions of t ,

c) some differential equation, a free boundary, or no boundary

condition prescribed.

The spatial discretization is accomplished automatically using second ,

fourth, or sixth order centered differences, fast Fourier transform

approximation (in the case of periodicity only) with or without linear

filtering of higher modes, or unsymmetric second or third order

differences.

The time integration is carried out by the GEARB package.

. Graphical output is available. The plotting procedures use standard

CALCOMP routines, and, as such, re,present a departure from the portability

standard the author has set.

4.5 LSQPDE

This software by Eason and Mote [8] is designed to solve the equation

Ut =
F(x,fJ,u,P, J2), . ..) u(P))

where a < x < b , t > to, u E Rn, and u (j >
represents the vector of

partial derivatives of u of order j . At the boundaries, general

conditions of the form

G (x,t,u,u(l),  . . ..u("-l))  = 0
i x = a,b; i = 1,2,...,q

are assumed to hold.

The approximation technique is a combination of time integration and

least square approximation. The user selects a set of points (xi):-, in
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the interior and on the boundary of [a,b] at which points the equation

will be integrated in time. A particular set of basis functions (provided by the

user) is used to represent an approximation v(a.,x) to the solution
J

u(x,tj), where a.
J

re'presents  the vector of coefficients in the approximation

at time t
j '

The first step of the algorithm is to form a vector of

residuals, evaluated at the points {xi] , for initial and boundary con-

ditions. The vector a0 , corresponding to the initial time t
0

, is determined

by minimizing the residual in the least squares sense. The minimization is

accomplished by Powell's non-linear least square technique. Assuming a
j

is known, the approximation v(a.,x)
J

is used in a modified Gear-Hindmarsh

predictor-corrector algorithm. Firstly, values of the solution are predicted

at time level t
j+l

by a Taylor series expansion of v(aj,x) in time.

These predicted values are used in conjunction with the corrector equation

to form a vector of residuals at the points {xij . This vector is a

function of the unknown coefficient vector
aj+l ' which is determined by a

least squares minimization of the residual vector.

4.6 POST

This software, written by Schryer [29], is available through the PORT

library of Bell Laboratories. It is designed to solve coupled ordinary -partial

differential equation systems. The equation treated is

f(x,t,u,yt,uxt)  = a( X,t,U,Ut,UXt)X

where a,<x\<b, UE Rn, with boundary conditions

b (t,u,ux,ut,uXt) = 0 at x= a,b.

It is also possible to impose non-local conditions on the solution such as

periodicity or that the integral of the solution over someinterval assumes



a given value.

The spatial variation is approximated using a Galerkin technique with a

r

B-spline basis (provided by the de Boor package). The time integration is a

one-step method, explicit or implicit, coupled with an extrapolation algorithm

to provide automatic error control in the time integration.

The user provides a call to subroutine POSTS providing information about

the B-spline basis, time integration limits, and an error tolerance. He also

provides two subroutines for the evaluation of the equation and boundary

conditions.

4.7 PDETWO

PDETWO was written by Melgaard and Sincovec [21]. It is a collection

of subroutines that ,provides  an interface between a two dimensional pde and

an ode integration package. The user specifies the problem by providing sub-

routines and calls PDETWO for a solution.

The equation is assumed to have the form

(k)
“t = f(k)(t,x,y,u,u

X’
(DHk 1 u;')x,es+JDHkn  uxn'Jx 7

9

bJ (1))
k,lUy y'"' '

(DVk,n uF')y '

where al<x<b
1 '

a2 < y < b2 , t > to , k = 1,2, . . . . n, and the

coefficients DH
k,j

and DV
kA

are piecewise continuous functions of

t,x,y and u l

Boundary conditions are assumed to have the form

+ biru$) =
'k '

k = 1,2,...,n ,

where "k 9 bk9 and 'k
are piecewise continuous functions and un

represents a derivative normal to the boundary.
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The user provides a two dimensional finite difference grid and the

package automatically produces an approximation at each grid point corresponding

to a five-point star.

The time integration is accomplished by the use of GEARB. The use of

Newton's method to solve the system of non-linear equations resulting from

the use of implicit integration schemes necessitates the solution at each

Newton iteration of a large sparse banded system of equations. The coefficient

matrix, the Jacobian of the non-linear system, must be evaluated at each

iteration and represents a significant computational expense. The authors

have examined various techniques for this task and havein their view implemented

the most efficient one.

4.8 DISPL

This software package is the collaborative effort of Leaf, Minkoff,

Byrne, Bleakney and Saltzman [ly] of the Argonne National Laboratory. The

package is designed specifically for one and two spatially dimensioned

kinetics-diffusion equations. It represents an effort to provide reasonably

general purpose software designed for a particular application.

The equation is assumed to thave the form

[pc 1 it,r,z,$ u (k)
pk t + 0 V-(Gk(t,r,z,u)u (k))+ (l-e)?k(t,r,z,Z)-V  u(~)

n n

oic$(t,r,z,Z$u) Vu tk=
'ki u

O&j >

i=l i,j=l

where k = 1,2;...,n . The equation is assumed to hold over a rectangle

with material interfaces in the (r,z)-plane. To increase the applicability

of the code, two forms of advection terms (e = 0 or 8 = 1) are allowed.
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The boundary conditions on the sides of the rectangle are assumed

to have the form

a ?dk) + fij 3kVu(k)* ;: = y h.Pk

where Q/t p9 and y may depend on k and the side of the rectangle, 2

is the exterior unit normal, and P
0 + -I
k

may depend on u and 02. n +I I

A Galerkin procedure is used as the spatial approximation using

B-splines as the basis functions. The mesh is provided by the user. The

B-splines are computed using de Boor's package.

The time integration uses the same method as that found in Hindmarsh's

GEAKtB h31, although the authors do not use GEARIB  itself.

Extensive graphics capabilities have been provided. The software has

been written in MORTRAN -- a FORTRAN preprocessor. This should present no

problems since the authors are including in the external distribution a

portable copy of the MORTRAN translator.

4.9 FORSIM VI

As the name indicates, the FORSIM package of Carver et al [6] is in

the sixth edition, a testament to the longevity of this software effort.

This package contains a main program plus a large number of subprograms

that providecentered, non-centered, and upwind finite difference approximations

of various orders and cubic s,pline approximations. Time integration methods

provided are a variable step Runge-Kutta-Fehlberg, a fixed step fourth order

Runge-Kutta with Fehlberg corrections, a fixed step Euler, and the Hindmarsh-

Gear algorithm. For this last algorithm the user may select a number of

different approximations to the Jacobian, ranging from no Jacobian (functional

-Iteration) to the full Jacobian, in which case the sparse matrix package of
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Curtis and Reid [7] is used.

To use this package, the user provides a subroutine UPDATE, that

contains storage declaration, initial conditions, equation and boundary condition

specifications, and output specifications. To define the pde the user selects

those subprograms corresponding to the spatial discretization,  creates a

section of code which performs the evaluation of the right side of the

equation, e.g., the F in (4.1.1), and incorporates this into UPDATE. The

time integration is performed by a call within UPDATE to another subroutine.

This package may also be used to solve two- and three-space dimension

problems defined on rectangles or parallelepipeds, respectively. Graphical

output is also available.

54 Software for Elliptic Equations.

Due to the extensive theory that exists for elliptic partial differential

equations and the large amount of work that has been done on the numerical

approximation of the solutions of such equations, it is not surprising to see

a large selection of software in this area. However, it is true that for

complicated ,problems, e.g. non-linear or non-separable, the solution techniques

are not as reliable and software is not generally available.

The software packages will be described in an order corresponding to

increasing complexity of the type of problems solved.

5.1 FISHPAK (Version 3)

This package of subroutines was written by Adams, Swarztrauber and

Sweet [l] at the National Center for Atmospheric Research, Boulder, Colorado.

It is a continuing effort brought about originally in response to the need

for a complete set of readily available well-tested, reliable, efficient, and

well-documented software to solve a subclass of elliptic equations which occur

frequently in the study of geophysical fluids.
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The subclass consists of separable elliptic equations with particular

emphasis on the Poisson equation defined on a rectangle in Cartesian,

cylindrical or s*pherical  coordinates, and with Dirichlet, Neumann or

periodic boundary conditions prescribed. Of particular importance was the

need to automatically treat coordinate singularities, e.g., the origin in

spherical coordinates, and equation singularities, e.g., fully periodic

solutions.

The package consists of eighteen subroutines and one subpackage.

These are:

(a> Twelve drivers that define second order, central finite difference

approximations on staggered and unstaggered uniform grids, incorporate

boundary data, and treat singularities for two-dimensional modified

Helmholtz equations in Cartesian, polar, cylindrical, surface spherical,

and spherical cross-section coordinate systems, for a three-dimensional

Helmholtz equation, and a general separable two-dimensional elliptic

equation without coordinate singularities,

b > six solvers that are used to solve the linear systems of equations

arising above,and two solvers that can be used to solve finite difference

approximations to complex-valued separable elliptic equations, and

cc> a subpackage of fast Fourier transform routines that provide periodic,

sine, cosine, sine quarter wave, and cosine quarter wave transforms as well

as the full complex transform.

The solution techniques are based on generalizations of the Buneman

variant of cyclic odd-even reduction [3] and some of the routines provide,

at the users option, fourth order approximations using the method of deferred

corrections.

3uzbee  et al [4] tested version 1 of the package and made criticisms
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and suggestions [30] to the authors. These suggestions were implemented by

the authors resulting in the second version of the package.

5.2 A Package for the Helmholtz Equation on an Arbitrary Region.

This package of four subroutines was written by Proskurowski [23] at

the Lawrence BerkeleyLaboratories,  Berkeley, California. It may be used

to solve the Helmholtz equation

2
Vu+cu=f (5.1)

defined on a general bounded planar region fl with either Dirichlet or

Neumann conditions prescribed on the boundary of the region.

The package solves the standard, second order, central finite difference

approximation to equation (5.1) by embedding the region in a rectangle R

and using the capacitance matrix technique coupled with fast Poisson solvers.

Briefly, the method consists of four steps:

1) generate the capacitance matrix C the order of which is equal to

the number of grid points within R and adjacent to the boundary,

2) solve (5.1) on R with f arbitrarily extended to R using a fast

Poisson solver, e.g., a routine from FISHPAK,

3) solve the capacitance matrix equation

(5-dCz = b

and use z to correct the values of f , and

4) solve (5.1) on R with the corrected f .

For a general region, step 3) can be very time consuming since the order

of C may be large. This also may make the direct internal storage of

C prohibitive.
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To efficiently overcome these difficulties, the package provides

four subroutines:

1) HLMHLZ solves equation (5.2) implicitly via a conjugant gradient

iteration, thus obviating the storage of C ,

2) HELMIT generates and stores C explicitly and solves (5.2)

directly,

3) HELMSIX solves the Dirichlet problem only storing C explicitly

and has the option of obtaining fourth or sixth order approximations via

deferred corrections, and

4) HELSYM produces a symmetric approximation to the Dirichlet problem,

using an explicitly generated C 4 This routine may be used in conjunction with

an algorithm for the computation of eigenvalues and eigenvectors of large symmetric

matrices, e.g., the Lanczos method, in order to approximate the eigenvalues of the
Laplacian.

To describe the irregular boundary, the user must supply a subroutine,

DOMAIN, that specifies the coordinates of the irregular grid points, i.e.

those points on the finite difference grid for which some of its neighbors

are not within the domain. The user must specify the distance from the

grid point to the boundary and the associated boundary values. The right

side of equation (5.1) is furnished in the user-supplied subroutine CHARGE.

5.3 EIGEN

Ryder and Sanderson [26] have developed a package for approximating the

eigenvalues of Laplace's equation. Specifically, the program finds approximate

solutions to

v2u + w2u = 0 (5.3)

defined on a bounded, simply connected domain in the plane, subject to

Dirichlet or Neumann boundary conditions on various portions of the boundary

of the domain.

19



A major difficulty in the approximation is the treatment of *

singularities in the solution induced by re-entrant corners, i.e. an

interior angle greater than n , on the boundary. They overcome this

difficulty by seeking solutions to equation (5.3) of the form

k N.

u(r,e> = c J hr >ij Q/J; i sin a.. 8. + d.. J
13 =

cur. kos cy. . e (5.4)
1J a;: = 1J i

i=l j=O AJ IJ

where k is the number of corners on the boundary, o.. are determined
=J

from the angle of the ith corner, and (r, ,e, ) are the coordinates of the

point (r,e) in a

Since each term of

coefficients c..
=J

I I

polar coordinate system centered at the i41i corner.

equation (5-4) is a solution of equation (5.3), the

and d..
iJ

are determined by attempting to satisfy the

given boundary condition in a least squares technique. It is known also

that such an expansion of the solution produces the correct asymptotic

singularity at each corner.

The procedure used is to minimize a certain error functional in w by

selecting an ci! 9 solving for the c..
1-J

and d.. ,
iJ

then trying to correct

w by minimizing the residual of the least squares solution. Such local minima

are "strong candidates" for eigenvalues even though convergence proofs for

this technique do not exist. The routine EIGEN uses the routine LOCALM

written by R. Brent for finding local minima, and the routine DSVD written

by P. Businger, for finding the singular value decomposition of the matrix.

5.4 ITPACK/REGION

This software [181 is a result of the continuing research at the

Center for Numerical Analysis of the University of Texas at Austin. It is

a package of routines which approximate the solution of the linear, self-

adjoint  elliptic equation
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hx Jx + (bu > f cu = f
Y Y

(5.5)

defined on a somewhat general region in the plane, with Dirichlet

boundary conditions assumed on the boundary of the region. The coefficients

09 and c may be functions of x and y .

The solution is approximated using second order central finite

differences defined on a uniform grid with equal spacing in x and y .

The boundary of the region over which the equation is assumed to hold may

consist of horizontal or vertical grid lines or lines of slope + 1-

connecting grid points. The region may have holes so long as the boundaries

of the holes satisfy the above conditions. Such restrictions eliminate

the occurence  of irregular grid points near boundaries.

To solve the sparse linear system arising from the approximation to

equation (5.5), the user may select one of six iterative algorithms:

1. Jacobi iteration with Chebyshev acceleration.

2. Compresssed Jacobi iteration with conjugate gradient acceleration.

3. Jacobi iteration on a reduced system with Chebyshev acceleration.

4. Jacobi iteration on a reduced system with conjugant gradient acceleration.

5. Symmetric successive overrelaxation

6. Symmetric successive overrelaxation

The selection of the acceleration parameter

automatic.

with Chebyshev acceleration.

with conjugant gradient acceleration.

and the stopping criterion are

The subroutine REGION defines the grid after the user has supplied a

polynomial parameterization  of the boundary.

5.5 POTENT

This piece of software, written by Thomas [32], was ,produced to aid

engineers in the solution of problems in electrostatics and magnetostatics.
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The equation, written in divergence form, is

V'(E(X,Y) vu) = iELlr)X + kqy = f LY
L > (5.6)

that is assumed to hold en a general, bounded planar region. Dirichlet

or mixed boundary conditions are assumed to hold on the boundary.

The method of approximation is to use a finite difference approximation

to equation (5.6) and then solve the resulting system by ADI, point SOR, or

line SOR with the acceleration parameter either specified by the user or

set internally (by assuming Dirichlet boundary conditions for Laplace's equation

defined on a bounding rectangle).

The user must provide a subprogram which declares whether a point is

inside, on, or outside the boundary, and , in the latter case, its distance

to the boundary. Once the boundary has been determined it is outputed

graphically for the user to check for errors.

5.6 ELLPACK 77

This software research project is coordinated by Rice [2&l. It is a

cooperative effort among many people interested in the development and

evaluation of algorithms related to solving the large, sparse linear systems

of equations arising from approximations-to linear elliptic equations. The

goal of the project is to facilitate the testing of algorithms that only

deal with a portion of the total solution process. This is done by defining

a fixed number of subproblems (modules), and defining fixed interfaces

between these modules. 'There are currently four modules: equation formation,

equation indexing, equation solution, and output. Researchers may contribute

software designed for one of the modules. More importantly, they may select

existing software from the other modules for testing their own software,

thereby relieving themselves of the burden of unnecessary coding. The interested
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reader is referred to the above reference for a detailed discussion of

the ELLPACK project.

5.7 ELLCOL

The first piece of software from the ELLPACK project has

been designed by Houstis and Rice [161. It is designed to solve the linear

equation

+2gu fyu
w

+ bu + EU + cu = f
Y-Y X Y

defined on a general two-dimensional region with the boundary condition

au
X

+ bu + cu = g
Y

assumed on the boundary. The coefficients o,g,...J,a,b, and c may be

functions of x and y .

The method of approximation is to embed the region in a rectangular

grid and then use collocation at four Gaussian points within each rectangle,

using bicubic piecewise Hermite polynomials for the basis. The approximation

is also required to interpolate the boundary condition at "appropriate" points.

The system is solved using profile Gauss elimination.

To use this software, the user must provide information to the ELLPACK

input and output modules. For input the user provides:

1. subroutine BCOORD that provides a parametric representation of the

boundary of the region,

2. functions COEF and BCOEF that provide the equation and boundary

condition coefficients, and

3. function F that provides the functions f and g .

The user may select various levels of output of intermediate results,

approximations to Ux' u 9 and u
Y w'

and the execution time.
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5.8 EPDEL

This main

to a,pproximate

program was writ-ten by Hornsby [15] at CERN. It is designed

the solution of

au + bu 4- cu t du f eu = f
YY X Y

where a,b,.. .,f may be functions of x,y, and u . The equation is

assumed to hold over a region bounded by a simple closed curves Cl,C2-Ck 9

where C ,...,C
2 k

must lie within C
1 '

Along the curves C. the following
J

boundary conditions are assumed to hold:

1. Dirichlet, or

2. if Ci is a line which coincides with the finite difference grid,

then a mixed condition

may hold.

PUX
+ qu fru = s

Y

A uniform finite difference grid is defined, and at each grid point

a finite difference equation is developed using the four neighboring 'points.

The resulting system of equations is solved by point SOR. The acceleration

parameter me, is estimated using the method of Car&. The convergence criterion,

based on estimates of the spectral radius of the iteration matrix involves a

percentage accuracy specified by the user. If the equations are non-linear,

functional iteration is coupled with the SOR iteration.

The input for this program is complicated. Not only does the user

provide subroutines to evaluate the coefficients of the finite difference

equations, but the user must define each boundary by a sequence of grid points

supplied on cards.

5.9 GEXEPI

This software, written by Roux et al [251, is designed to solve a general

24



linear or non-linear elliptic or parabolic equation on a two-dimensional

rectangle with Dirichlet, Neumann, or mixed boundary conditions. This program

accepts the problem definition in symbolic form and generates a FORTRAN

program that solves the approximate equations.

The user may specify a uniform or non-uniform grid in space and time.

The program generates the finite difference approximation using the four

nearest neighbors and solves the equations using point or line relaxation

or ADI, but leaves the acceleration parameter selection to the user.

This program requires disk files, so portability may be a problem.

5.10 ELIPI'I

This software, written by Taylor and Taylor [31], is designed to

solve a general non-linear elliptic equation defined on an arbitrary region

in the plane, and assuming Dirichlet boundary conditions. The solution is

obtained by approximating the steady-state solution of a related time-

dependent parabolic equation.

The approximation is by finite differences on a uniform rectangular

grid. The time integration is performed in such a way that the scheme is

equivalent to an AD1 scheme. Aitken-Shanks acceleration is used in time also.
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