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Abstract.

Consider the implementation of two stacks by letting them grow

towards each other in a table of size m . Suppose a random sequence

of insertions and deletions are executed, with each instruction having

a fixed probability p (0 < p < l/2) to be a deletion. Let (m
% )

denote the expected value of max{x,yj , where x and y are the

stack heights when the table first becomes full. We shall. -prove that,

as m4=, Ap(4 = (2x(1-2~)) + O((log m)/&) . This gives

a solution to an open problem in Knuth [The Art of Computer Programming

Vol. 1, Exercise 2.2.2-131.

f* This research was supported in part by National Science Foundation under
grant MCS77-05313. Part of this paper was prepared while the author was
visiting Bell Laboratories, Murray Hill, N.J.
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1. Introduction.

The purpose of this paper is to give a solution to an open problem

of Knuth [2, Exercise 2.2.2-131, regarding the effectiveness of implementing

two stacks by letting them grow towards each other.

Consider a contiguous block of m locations, which we use to

implement two stacks. One stack grows frcm the leftend of the block

and the other from the rightend; we denote the heights of the stacks

by x and y (see Figure 1).
*

One measuref of the effectiveness of

the memory utilization for this scheme is the expected value of max(x,yj

when the two stacks first meet, i.e., when x+y = m . For example, suppose

the value of max{x,y} is 2m/3 . If we had used one block for each stack,

then we should have reserved at least 4m/3 locations instead of the

present m locations. The following model was proposed in [2], with p

(0 5 P < 1) as a parameter. Consider a sequence of stack operations to be

carried out, until the two stacks meet. Each instruction is either on the

left stack or on the right stack with equal probability; and for each

choice, there is a -probability p for it to be a deletion and probability

l-p to be an insertion. A deletion on an empty stack will not have any

effect. Let Ap(m) denote the expected value of max{x,y] when the two

stacks first meet. It was shown in Knuth [2, Fxercise 2.2.2-121 that

A&4 = m/2 + Jm+ O(m-1/2) . It was also stated [2, Exercise 2.2.2-131

that lim Ap(m) = 3m/4 for fixed m . Thus, in this model, there is
I?+1

little gain in memory utilization for large m when only insertions are

*
f This measure is somewhat conservative. An alternative measure might be

the expected value of max{x,yI: at any time before the two stacks meet.
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Figure 1. Two stacks growing towards each other.



present; whereas substantial gain results when deletions are overwhelmingly

dominant. The question asked was the behavior of Ap(m) for fixed p

and large m .

In this paper we prove the following result.

Theorem 1. Let pe (0,1/2) be a fixed number. Theny

4p )(m = g+ *+oy2 4
( )

.

Thus, for such p ) there is no substantial gain in memory utilization

asymptotically. Note that the formUa is also true for p = 0 , as

mentioned earlier.

We leave open the question of the asymptotic behavior of Ap(m)

when p 2 l/2 .

f
*

Here and throughout this paper, p is assumed to be fixed and the
constants in the O-notations may depend on p . Logarithms are the
natural logarithms (i.e., with base e ),



2. Random Walks.

It is convenient to cast the above model in random walk terminologies

(see Feller [l] for backgrounds on random walks). Let IL , IR denote

an insertion instruction for the left and the right stack, respectiveSy,

and DL ., DR
a respective deletion instruction. We can regard the

execution of a sequence of such instructions as a "particle" performing

a "walk" on the integer lattice points in the plane, with the coordinates

(x,y) being the current heights of the stacks. For example, an

instruction IL causes the particle to move from its current position

(x,y) to (x+l,y) . An instruction DL will cause the -particle to move

from (x2 Y> to (x-&y) , unless x = 0 (i.e., an empty left stack),

in which case the position does not change. We shall call the line

x= 0 a reflecting barrier, the line y = 0 being also a reflecting

barrier. The line x+y = m will be referred to as the absorbing barrier.

By a (p,m;a,b) -random walk, we mean a random walk on the plane

that starts at an integer point (a,b) , moves according to the transition

rules given below, and stops when any point on the absorbing barrier is

reached (the -point reached is called the absorption point). We assume

hereafter that 0 < p < l/2 , m > 0 , a 2 0 9 b 10, and a+b <_m .



The Transition Rules (cf. Figure 2): suppose (%Y> is the present

position. 5e next position (x',y') is given below.

(x+1, Y)
(a) If x # 0, y # 0, then (x',y') =

(xtY+l)

(x-LY)

h Y-1)

O'Y>

(b) If x = 0 , y # 0 , then (x',y') =

{

~~,~~')

(O'Y 1)' -

I

(x+LO>

(c) If x f 0 , y = 0 , then (x',y') = (X' 1)

(x-1'0)

(X'O)

w>

(d) If x = 0 , y = 0 , then (x',y') = (0'1)

(0' 0)

with probability

(l-P)/2

(l-P)/2

p/2

P/2 '

(w?P

(w?P

p/2

PI2

0-m

(1-W

PI2

P/2 '

o-PP

P-P)/2

P '

Let cxa byYa  b ) denote the pair of random variables that have as
' '

their values the coordinates (X'Y) of the absorption point if the walk

ends on the absorbing barrier, and have values (0'0) if the walk never

reaches the absorbing barrier. The value (0'0) in this latter

assignment is not important, as we shall see later (see the remark at the

end of this section) that it occurs only with probability 0 . Let

za,b = ma⌧i⌧a byya b�l l' '
The quantity of interest, Ap(m) , is clearly

equal to
zo,o l





We begin by considering a related random walk that is easier to.

analyze. In a (p,m;a,b)' -random walk, a particle starts at the point

b’b) ’ moves according to the following transition rule

{

(x+bY) with probability (l-p)/2

(X'Y> 3
(X' y+l> with probability (l-p)/2

(x-by) with probability p/2

(%Y-1) with probability p/2 ,

and stops when it hits the absorbing barrier x+y = m . We use

"
0

fy;b' ';b for the random variables defined in the same way
' '

as X,
%b

,Ya,b ' Za,b l

Again, we shall see later that the particle

will eventually hit the absorbing barrier with probability 1 .

The value of Za b can be evaluated rather precisely. In particular,
'

we have the following result when ko > is close to the origin.

Lemma1. If a+b = O(log m) , then

- m+☺;;rX+o(y)  l

Z�a,b = 2

Proof. See Section 3. 0

We also have the following result.

Lemma 2. If a,b >
10

- log((l-p)/p) log m ' lYJhen

Za,b = Z'a b + O(m-') .
'

Proof. See Section 3. 0
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Let

EP
= min{(l-2p)/8, P/B) ,

A 4 10
= max

P ' l-2p log((l-P)/P)

and A' = l-2p
P TAP l

Clearly, k; ,> lO/log((l-p /p) . Define R = Cb log ml , Thp log ml+l12 .
Y

Lemmas 1 and 2 combine to give the following formula:

(a,b)ER . 0)

We shall now use (1) to evaluate Z. o .
'

Let t = rh
P
log ml+1 and S be the set of all sequences of

length t in [IL,IR,DL,DR}  . For each s = s1s2 . . . st E s , let

r(s) = J-T
l<i<t

ro(si) , where ro(si) = (l-p)/2 if sic {I,,I,} and

ro(si) = p/2 if SUE {DL,DR] . For each s ES , let (fl(s),f2(s))  be

the position of the particle in a (p,m;O,O) -random walk after the

sequence s has been executed. Clearly, for each k ,

Pr<zo o = k) =
' IF.  44 p�(zfl(s),f2(s)  = k) l

SES

As a result, we have

zo,o = sEs= rw zfl(s),f2(s)
.

9



Now, let
%

be any integer such that, if m > M , then t <'m .
- P

Lemma 3. Suppose m > M
- PO Let so = (S 1 =s; (fl(s),f2(s)){R}  . Then

z 44 5 8m-lo .
s E so

Proof. We need the following fact (see Renyi [3, p. 2001). If the toss

of a certain coin has a probability v (0 < v < 1) to result in a "Head",

then after tossing the coin N times, we have, for any

Pr([# of "Heads" - vN1 > 6N) < 2e-Nt52/(4v(1-v)) .- (3)

For each SES , let #IL(s) Y #IR(s) Y #DL(s) Y #DR(s) denote the

number of appearances of IL , IR , DL , DR in s , respectively. It

follows from (3) and the fact 4v(l-v) < 1 that, for a random s&3

(weighted by r(s) , of course),

Pr l+IL(s) - 7 tl > E t
( P 1

5 2 w&t; t> '

Pr I#IR(‘) - 9 tl > cpt
(

< 2 eq$ t) ,-

J#DL(S) - $j tl > cPt
1

< 2 exp(-ci t) ,-

Pr
(
(#DLb) - f tl > Ept

>
< 2 eq(-c: t) .

As m>M
- P

, the particle will not be absorbed in t steps. Since

fj(s) 5 t for j E (1'23 , it follows that s E So only if

fj(s) 5 ‘h; 1% ml for some j e {1,2) . Observe that

fl(s) 2 #IL(s) -#DL(S) and f2(s) > #IR(s)-#DR(s) . It is

10



.

straightforward to verify that fj(s) 5 rk; log ml for some j E {U)

only if at least one of the conditions \#i(s) -ro(i)tl > ePt , where

i e {IL,IR,DL,~R] , is satisfied. It follows then from (4) that,

-E2t
c r(s) _< 4*2e ' < 8m-lo . 0

s E so

From (1)' (2) and Lemma 3, we obtain that for m 2 Mp ,

zo,o = c
sk S()

r(S) zfl(s),f2(s)  + = r(s) zfl(s),f2(s)s E so

2,( J log m
=

2 2n(lm_2p) + O &( n (l- O(m-lo)) + O(m-lo)*O(m)

This proves Theorem 1. 0

Remark.
l-2p

Let N be any large integer such that s N > m . Similar to

the proof of Lemma 3, one can show that, with probability l- 0 '

the particle must have been absorbed in the first N steps in a

(p,m;a,b) -random walk (or a (P'm;a'b)' -random walk). Let N-)Q).

This shows that the particle will be absorbed with probability 1 .

11



3a Proofs of Lemma 1 and Lemma 2.

We need some basic facts about l-dimensional random walks (see

Feller [l]). Consider a random walk in l-dimension that starts at 0 ,

and at each step, moves to the left with probability p (0 < p < l/2)

and to the right with probability l-p . Let urn .(p) be the probability
'

that position m (m > 0) is reached for the first time at exactly the

n-th step. It is known (see Feller [l, Chap. 14, formula (4.14)]) that

n+m n-m

U
m>  n

(P) = : ((n+:j,2)  (l-P?- P7 if n>m and n,m are_

of the same parity.

All other urn ,(p) = 0 . Clearly,
'

cum ,(P) = 1 l

n '

Fact 1. Let no = 2m/(1-2p) and c = 4p(l-p)/(l-2p) .
P

Then

c urn ,(p)n = n0
n '

CU 2
m> n (P)(n-no) =

n cpno l

Proof. The generating function V,(z) = c u zn is equal to (G(z
n>O m> n
-

where

G(z) = 1 -
( J

l-4p(l-p)z2
I/

(2PZ) '

as can be directly verified. The first sum is given by

(P)n = u;(1) = mG'(1) = no .' Umnn '

(5)

(6)

>>
m

'

12
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The second sum is then the variance of the sequence urn ,(p) ,
'

n= 0'1'2,... ' regarded as a probability distribution. Thus, after

some calculations, we find

cum n (p)(n-n,)
2

n '
= um(1

= m(G"(1) + G'

=
cpno l

We also need the following result (see Feller [l, Chap. 14, formula (2.8)]).

Fact 2. The probability that the above random walk ever reaches -z

0w ere z > 0 ) is equal to (p/(1-p))' .

We state one more fact. Let R be any number. For each se {a,@jn ,

let W:')(s) denote the quantity I# of p - # of a - 11 . Let wLp, be

(1)the average value of Wn (s) , assuming that all 2n sequences are

equally likely.

Fact 3. wn0) = J--$+ o(y) ,

Proof.

W (0 =.^ z -$ ( E ) 1 (n-k) - k - R 1

O<k<n 2"- -

2n kL
c

n-1
<2

(i)(n-2k- R > + r
k$$

(

13



1= n
2

c (i)(n-2k-1) + c

k<g

(",)(2k-n+e)

k$ I

1= -
n f2 c (f,(

2
II

\

.a
k<;

n-2k) + O(g)) + O[$) . (7)

We have used the fact in the derivation.

Fact 3 follows from (7) and the following formulas, which can be

obtained in the standard way (see Knuth [2, Chapter 11):

c (E)(n-2k) = rn/21

k<;
'

(rnl;l) = e2n Cl+ own>> l 0

Proof of Lemma 1. Let m' = m- (a+b) and & = a-b . A (p,m;a,b)' -random

walk can be generated in the following way. First generate a sequence

IE p>q* one symbol at a time, each has a probability p to be a " D "

and probability l-p to be an " I ", until (#I-#D) = m* for the

-I*first time. Then convert 5 into a sequence s c {~x'Iy'Dx'Dy]
*

probabilistically by attaching with equal probability a suffix x or y ,

to each symbol in 5 . We now associate with s a walk starting from the

point (a,b) to an absorption point on x+y =m, by interpreting each

Ix > 1 > Dx Y DY Y
as a step moving from position (X'Y) to (x+bY) '

(x,y+l) Y (x-1,~) , (&y-l) , respectively, It is easy to verify that

*
J We have ignored here the possibility that 5 may be infinite. However,

our discussion is valid as the probability is zero for
infinite (see the remark at the end of Section 2).

5 tobe
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this procedure indeed generates a (p,m;a,b)'  -random walk. It is also

not difficult to see that, for each such s generated, the value of

Z'a b is given by (see Figure 3)’
'

Z’ (s) = ;+ ho
0 2 '

where h(s) = I(# of Iy + # of Dx) - (# of Ix + # of Dy)-eI .

Note that, for each sequence 5 of n symbols, the average value of

h(s) for s derived from 5 0)is in fact equal to wn . Thus, we have

Z’ :+
a,b = 2

$ C (Probability that 151 = n).wn') .
n

It is easy to see that the quantity (probability that 151 = n) is

exactly urn, (PI
>n l

Hence

Z’ Tn+
a,b = 2 i$ c Urn' ,(P)wnl)  l

n '

Using Fact 3 and the fact I = O(log m) , we have

z’ m+
a,b = 2 (p)("/;;+ o(F)) l

Write 4;I and l/2/;; as

dF = q+ $ (n-n($)(nb)-1/2 + ()((n-nb)2(n$-3/2) ,

and

1-=
II-

-& + O(\n-n(!Jn$ -3/y

n A ntJ
0

= -L + O((n-nb)2(nb)-3/2

c%

) for all n >l .-

(8)

15
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Substituting these'expressions into (8)’ and making use of Fact 1, we

obtain

Z’ m+
a,b = 2

(n-rQ2

\i
“6= ;+
z+

iS6-2 0 1 + -$ C urnI ,(p)(mQ2
d-“6 ( 0 n '

>

F+ d I log m
= 2n(Y-2P) + O G( > .

As rn' = m- O(log m) , the lemma follows. 0

Proof of Lemma 2. Consider a (p,a;a,b) -randm walk, and let Ab>b>

be the probability that the particle will ever touch the reflecting

boundaries (x = 0 or y = 0) . By Fact 2, the probability for it to

touch x = 0 is b/(l-p))a and for it to touch y = 0 is (P/(l-P))b  l

This implies that A(a,b) < (p/(1-P))~ + (p/(1-P))~ < 2m'lo .- -

Since any walk that does not touch the reflecting barriers occurs

with the same probability in both the (p,m;a,b) -random walk and the

(Pym;a,b)' -random walk, we conclude that

Iz - ‘Lb1 5 m*A(a,b) 5 2m-9
0

.
'

This completes the proof of Lemma 2. 0
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