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Abstract.

Consi der the inplenmentation of two stacks by letting them grow
towards each other in a table of size m. Suppose a random sequence
of insertions and deletions are executed, with each instruction having
a fixed probability p (0 < p < 1/2) to be a deletion. Let %(m)
denote the expected value of max{x,y} , where x and y are the

stack heights when the table first becones full. W shall -prove that,

a8 m~w, Am) = m/2+n/(2x(1-2p)) + 0((log m)/vm) . This gives

a solution to an open problemin Knuth [The Art of Conputer Programming

Vol . 1, Exercise 2.2.2-13].

¥/ This research was supported in part by National Science Foundation under
grant MCS77-05313. Part of this paper was prepared while the author was
visiting Bell Laboratories, Murray HII, N.J.



1. [ ntroduction.

The purpose of this paper is to give a solution to an open problem
of Knuth [2, Exercise 2.2.2-13], regarding the effectiveness of inplenenting
two stacks by letting them grow towards each ot her.

Consi der a contiguous block of mlocations, which we use to
i mpl enent two stacks. One stack grows from the leftend of the bl ock
and the other fromthe rightend; we denote the heights of the stacks
by x and y (see Figure 1). (ne rreasuref/ of the effectiveness of
the nenory utilization for this schene is the expected value of max{x,y}
when the two stacks first neet, i.e., when x+ty = m. For exanple, suppose
the value of max{x,y} is em/3 . [f we had used one block for each stack,
then we should have reserved at |east Lm/3 |ocations instead of the
present mlocations. The follow ng nodel was proposed in [2], with p
(0O<p<1l) as aparameter. Consider a sequence of stack operations to be
carried out, until the two stacks neet. Each instruction is either on the
left stack or on the right stack with equal probability; and for each
choice, there is a -probability p for it to be a deletion and probability
|-p to be an insertion. A deletion on an enpty stack will not have any

effect. Let Ap(m) denote the expected val ue of max{x,y} when the two

stacks first meet. It was shown in Knuth [2, Exercise 2.2.2-12] t hat
Ao(m) = m2 + ym/(2n) + o(m'l/g) . It was also stated [2, Exercise 2.2.2-13]

t hat 1lim Ap(m) = 3m/4 for fixed m. Thus, in this nodel, there is
r-1

little gain in nmenory utilization for large m when only insertions are

¥ This neasure i s somewhat conservative. An alternative measure mght be
the expected value of max{x,y} at any tine before the two stacks neet.
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Figure 1.
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Two stacks grow ng towards each other.



present; whereas substantial gain results when deletions are overwhel mngly

dominant.  The question asked was the behavi or of Ap(m) for fixed p

and large m.

In this paper we prove the follow ng result.

Theorem 1. Let pe (0,1/2) be a fixed nunber. Theny

| 1
ym = 3 iy o222

Thus, for such p, there is no substantial gain in memory utilization
asynptotically. Note that the formula is also true for p =0, as
mentioned earlier.

V¢ | eave open the question of the asynptotic behavior of Ap(m)

when p > 1/2 .

Wi Here and throughout this paper, p is assuned to be fixed and the
constants in the Onotations may depend on p . Logarithms are the
natural logarithns (i.e., with base e ),



2. Random Val ks.

It is convenient to cast the above nodel in random wal k term nol ogies
(see Feller [1] for backgrounds on randomwalks). Let I , I denot e
an insertion instruction for the left and the right stack, respectively,
and D , Dp 2 respective deletion instruction. W can regard the
execution of a sequence of such instructions as a "particle" performng
a "walk" on the integer lattice points in the plane, with the coordinates
(x,y) being the current heights of the stacks. For exanple, an
i nstruction I, causes the particle to nove fromits current position
(x,y) to (x+1,y) . An instruction D, will cause the -particle to nmove
from (x, y) to (x-L,y), unless x = 0 (i.e., an enpty left stack),
in which case the position does not change. W shall call the line

x =0 areflecting barrier, the liney = 0 being also a reflecting

barrier. The line xty = mw |l be referred to as the absorbing barrier.

By a (p;m;a,b) -random wal k, we nmean a random wal k on the plane

that starts at an integer point (a,b), noves according to the transition
rules given bel ow, and stops when any point on the absorbing barrier is
reached (the -point reached is called the absorption point). W assunme

hereafter that 0 < p<l1/2, m>0, a>0,b >0, and ath <m .



The Transition Rules (cf. Figure 2):  Suppose (x,y) is the present

position. 5e next position (x',y') is given bel ow

with probability

((x#1,y)  (1-p)/2
oy L) GewD) @-p)/e
(a) If X #0, y £0, then (x',y') = < (-1, ) o2
L(X)y‘l) P/2 P
(lJY) (l'P)/2
(0, y+1) (1-p)/2
b =0 , 0 , h X',y') =
(b) 1If x y # then (x',y') < (0 7) o2
_(0sy-1) /2
((x+1,0) (1-p)/2
_ v ooy ) (%1 (1-p)/2
(c)lfx;éO,y—O,then(X,Y)—<(X_l’o) o/
L(X:O) v/2
((1,0) (1-p)/2
(d) £x=0, y =0, then (x,y') = { (0,1) (1-p)/2
(O: O) iY

Let (Xa’b,Ya’b)

their values the coordinates (x,y) of the absorption point if the walk

denote the pair of random variables that have as

ends on the absorbing barrier, and have values (0,0) if the walk never
reaches the absorbing barrier. The value (0,0) in this latter
assignment is not inportant, as we shall see later (see the remark at the
end of this section) that it occurs only with probability 0 . Let

yA = max{X
2

a,b The quantity of interest, Ap(m), is clearly

equal to 2



X+y=m

Figure 2.  The transition rules for the (p,m;a,b) -random walk.



W begin by considering a related random walk that is easier to

analyze. In a (p,m;a,b)' -random walk, a particle starts at the point

(a,b) , noves according to the following transition rule

(xt1,y) with probability (I-p)/2
(x, 1)  with probability (l-p)/2
(x-1,y) with probability p/2
(x,y-1) with probability p/2 ,

(%,y) -

and stops when it hits the absorbing barrier x+ty =m. W use

X for the random variables defined in the sane way

1 A 1
a,b ’ Ya,b ? Za,b

as Again, we shall see later that the particle

Xayb ? Yo,0 7 Zayp .
will eventually hit the absorbing barrier with probability 1 .
The val ue of Z, , can be eval uated rather precisely. In particular,
J
we have the following result when (a,b) is close to the origin.

Lemma 1. If at+b = 0(log M , then
; _n . m log m
Zo,b =23 \ on(1-8p) O( N )

Proof . See Section 3.

W also have the following result.

10
Lemma 2. If ab > Tog((1-0)/5) log m , then
— ' -9
Za,b = Za,b + 0o(m 7).

Pr oof . See Section 3.0



Let
e. = minf{(1-2p)/8, »/8} ,

1Y
10 b 10
>\.P = max l‘e—g -]’ 1-2p log((1l-p)/P) ’
b
1-2p
AL = A
and P p
Qearly, A, > 10/log((1-p /p) . Define R = [[r logml, A log a1l

Lenmas 1 and 2 conmbine to give the follow ng formila:

m m log m
- = —_ b . 1
Za,b 2 * \| 27(1-2p) ¥ O( A/m ) for (&) <R @)

Ve shall now use (1) to evaluate 2, .
J

Let t = MP log m1+1 and S be the set of all sequences of

length tin {IL,IR,DL,DR} . For each s =818, . . . S €8, | et

r(s) = r.(s,), where r.(s.)= (l-p)/2 if s,e{I.,I.} and
lf-[l-\—ft o‘i (ORI 1 I°"R

ro(si) =pl2if s, e {DL,DR} . For each s €5, let (fl(s),fg(s)) be

the position of the particle in a (p,m;0,0) -random wal k after the

sequence s has been executed. Cearly, for each k ,

Pr(z = k) = 2 r(s) Pr(z k)
TlZ,0 = K = 2 F(E) Pl (5,2, (s)
As a result, we have
Zo,0 = 27 Zp (), (e) ®)



Now, | et M? be any integer such that, if rn:>gy , then t <m .

Lemma 3. Suppose m > NL . Let 5, = {s| ses; (fl(s),fg(s))g;a}. Then
Z r(s) < gm0
S ¢ SO
Pr oof . W need the following fact (see Rényi [3, p. 200]). If the toss

of a certain coin has a probability v. (0 <v < 1) toresult ina "Head",

then after tossing the coin N tines, we have, for any

1-v v -1
0<5? <,<2 ma.x<v ’l—v>> R

Pr(|# of "Heads" - wN| > sN) < 2e‘N52/(”V(1-V)) | )

For each ses , 1let #IL(s) s #IR(S) ’ #DL(S) s #DR(S) denote the
nunber of appearances of I, Iz, D, Dy ins,
follows from (3) and the fact Lv(i-v) < 1 that, for a random seS

respectively. It

(weighted by r(s) , of course),
Pr (#IL(S) - }-;—P t] > e Pt) < 2 e@(-ei t) ,
Pr (#IR(S) - l_;g t| > ept) <2 exp(-eg t) )
Pr(‘#DL(s) - -g— t| > Ept> < 2 exp(—eg t) ,

Pr<|#DL(S) - —:EE tl > ep‘t ) < 2 ex_p(—ezf> t) . (4)

As m > MP , the particle will not be absorbed in t steps. Since

fj(s) <t for j ef1,2}, it follows that s es, only if

0]

fﬁ(s) < Fké log m7 for sone j e {1,2}. (bserve that

fl(s) > #IL(S) -#DL(S) and fz(s) > #IR(S)-#DR(S) It is

10



straightforward to verify that fj(s) < D\l') log m7 for some J e{1,2}
only if at least one of the conditions [4i(s) -r (1)t] > e b, where
I e {IL,IR,DL,DR} , Is satisfied. It follows then from (4) that,

-eet

2. r(s) < L.2e o< 8m-lo . O

SeSO

From (1), (2) and Lemma 3, we obtain that for m> M

0,0 = S#ZSO r(s) %2 (s),£,(s) 7 ?SOMS) %2 (5),2,(s)

_ ( + \/g—(-fg— N (L"U‘D (1- o)) + 0@ %)+ 0o(m)

=

\m

(F)

m

p)
* on(1-2p) *0

1
B

This proves Theorem 1. O

. 1-2 o
Remar k. Let N be any large integer such that —g—PN >m. Sinlar to

2
-~e_ N
the proof of Lemmma 3, one can show that, with probability 1- O(e P ) ’

the particle must have been absorbed in the first N steps in a

(pym;a,b) -randomwalk (or a (p,m;a,b)' -randomwalk). Let N - .

This shows that the particle will be absorbed with probability 1 .

11



3. Proofs of Lemma 1 and Lemma 2.

V¢ need sone basic facts about [|-dinensional random wal ks (see
Feller [1]). Consider a randomwalk in |-dimension that starts at 0 ,
and at each step, noves to the left with probability p (0 < p < 1/2)
and to the right with probability |-p . |et um,n(P) be the probability

that position m(m> 0) s reached for the first time at exactly the

n-th step. It is known (see Feller {1, Chap. 14, fornula (k.1k4)]) that

_n+mn-m
n
um,n(p>=%((n+m)/2) (1-p) 2 p°® if n>m and n,m are
of the sane parity. (5)
Al ot her um,n(p) =0. dearly,
Zu - (p) = 1 . (6)

Fact 1. Let n, = m (1-2p) and % = hp(l-p)/(1-2p)2. Then

}n: Lo n(p)n = n,

Proof . The generating function Um(z) =S uzis equal to (G(Z))m’
n>0 ™1©

Az) = (l - \/l-1+1>(1-1>)z2 )/(EPZ) ’

as can be directly verified. The first sumis given by

wher e

n um,n(P)n = UI;1(1> = mG' (1) = n,

12



The second sumis then the variance of the sequence u n(p) ;
2
n=0,1,2,... , regarded as a probability distribution. Thus, after

sone calculations, we find
Zu @)’ = )+ wa) - (w)?

m(@"(1) + G (1) - (6'(1))%)

= cpn o . ]

Ve also need the following result (see Feller [1, Chap. 1k, fornula (2.8)]).

Fact 2. The probability that the above random wal k ever reaches -z

(where z > 0 ) is equal to (p/(1-p))? .

W state one more fact. Let ¢ be any number. For each se {a,a}n ,

| et Wr(l”(s) denote the quantity |# of g - # of a - 2] . Let wr(l” be

n

t he average val ue of w(r‘lz)(s) , assunming that all 2~ sequences are

equal l'y likely.
JARAR
Fact 3. wr(l’z) - —2}9+ o(—l—l-—) ,

Pr oof .

13



n
V¢ have used the fact (k) = o<—2-—> in the derivation.

An
Fact 3 follows from(7) and the follow ng formlas, which can be

obtained in the standard way (see Knuth [2, Chapter 1]):

n
2 (M(n-2x) = 2
(2)a-2K) = n/ w(rnm>

n 2 n
— 2 n
e ) v VmE @ oGy Lo

Proof of Lemma 1. Let m'=m (a+b) and 1 =a-b . A (p,m;a,b)'-random

wal k can be generated in the following way. First generate a sequence

Ec {I,D}* one synmbol at a time, each has a probability p to be a" D"
and probability I-p to be an "1 ", until (41-4D) = m' for the

first tine. ¥ Then convert g into a sequence s e {IX’Iy’DX’Dy}*
probabilistically by attaching with equal probability a suffix x or y ,
to each symbol ing. W now associate with s a walk starting from the
point (a,b) to an absorption point on xty =m , by interpreting each

I, » IY, D, > DY as a step noving from position (x,y) to (x+l,y) ,

(x,7+1) , (x-1,y) , (%,y-1), respectively, It is easy to verify that

Y V¢ have ignored here the possibility that ¢ may be infinite. However,
ordi scussion is valid as the probability is zero for g +to be
infinite (see the remark at the end of Section 2).

1L



this procedure indeed generates a (p,m;a,b)' -randomwal k. It is also

not difficult to see that, for each such s generated, the value of

z' . is given by (see Figure 3),
a,b

)

: _ o, h(s)
Zio(8) = 3+ 75

where h(s) = |(# of I, * $ of D)~ (#of I +# of Dy)-zl :

Note that, for each sequence g of n symbols, the average value of

h(s) for s derived fromg is in fact equal to %) Thus, we have

7! = Ién-+ Zn(Probability t hat \g\:n).wgl).

a,b

ol |

It is easy to see that the quantity (probability that |g|=n) is

exactly um’,n(P) . Hence

DN
™
o

)
s’\
EaY

T .o,
Za,b_ 2

Using Fact 3 and the fact ¢ = 0(log m) , we have

1 logm
Zio = 7% %= E“m',n(P)(&+ O(%)) ' )
Wite +/n and 1/«/3 as
Jo = Ay + % (ang) (ny) 2 4 o((n-n2)2(n2)/?)
and
1 1 ' 2/ 2
-J;: = = + o(\n-nol(no) />
0
1

- + o((mny)2(ny) /%) for all n>1.

g

15



Xty = m

Figure 3. An illustrati
ation f
or Zé"b(s = m/2 + h(s)/2

16



Substituting these' expressions into (8), and naki ng use of Fact 1, we

obtain
n 1 Jo -0
Zyo = 27 \zx E Uy, n(P)| Wmg * e (n-ng)
0
1 (n-né)e\
+ 0(log m)- +

Ty syl )

_ m o, J m' |Og m
2 on(l-2p) + Jar
As m'=m 0(log M) , the lemma follows. O

Proof of Lemma 2. Consi der a (p,w;a,b) -random walk, and let a(a,b)

be the probability that the particle will ever touch the reflecting
boundaries (x =0 or y = 0) . By Fact 2, the probability for it to
touch x = 0 is (p/(1-p))® and for it to touch y =0 is (o/(2-p))° .
This implies that  a(a,bd) < (p/(1-p)* + (p/(1-p))° < em™O

Since any wal k that does not touch the reflecting barriers occurs
with the same probability in both the (p,m;a,b) -random walk and the

(p;m;a,b)* -random walk, we conclude that

|z . ~ 2 ?

a,b a-,b‘ S m.A(a’b) S 2m

This conpletes the proof of Lemma 2. O
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