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Abstract

A program is described which  computes  Schwarz-Christoffel transformations
that map the unit disk  conformally onto the interior of a bounded or unbounded
polygon in the complex plane. The inverse  map is also  computed. The computa-
tional  problem  is approached  by setting up a nonlinear  system of equations  whose
unknowns  are essentially  the “accessory  parameters” z&. This  system ie then solved
with a packaged subroutine.

New features of this work include  the evaluation of integrals within the disk
rather than along the boundary,  making possible  the treatment  of unbounded
polygons;  the u6e of a compound form of Gauss-Jacobi quadrature to evaluate  the
Schwarz-Christoffel  integral, making possible  high accuracy at reasonable  cost;
and the elimination  of constraints  in the nonlinear  system by a simple change  of
variables.

Schwarz-Christoffel  transformations  may be applied  to solve  the Lapface and
Poisson equations and related problems  in two-dimensional  domains with irregular
or unbounded  (but not curved or multiply connected)  geometriea.  Computational
example6  are presented.  The  time required  to solve  the mapping problem ie roughly
proportional  to N3, where N is the number  of vertices of the polygon. A typical
set of computations  to Bplace accuracy with  N < 10 takes 1 to 10 seconds on
an IBM 370/168.
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I. INTRODUCTION

1. Conformal mapping and its applications

One of the classical applications of complex analysis is conformal map-
ping: the mapping of one open region in the complex plane C onto another
by a function which is analytic and one-to-one and has a nonzero  deriva-
tive everywhere. Such a map preserves angles between intersecting arcs in
the domain and image regions; hence the name conformal. The Riemann
Mapping Theorem asserts that any simply connected region in the plane
which is not all of C can be mapped in this way onto any other such
region. The theorem does not say what this mapping may look like, however,
and the determination of particular conformal maps for particular mapping
problems has been an active problem since at least 1850.

f

The usefulness of conformal mapping for applied problems stems from
the fact that the Laplacian operator transforms in a simple way under a
conformal map. Let j:C -10 map a region n, in the z-plane conformally
onto a region 0, in the w-plane, and let A, and Au, denote the Laplacian
operators & + 0$ and 0$ + &$, respectively, where z = x + iy and
W S u + iv. Then we may easily show,

A&) = If @)I2 Aw+(~-‘(~)) (1 1).

for +:n, -R suitably differentiable, A conformal map has ij’(z)l  > 0 every-
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where; thus from (1.1) it follows that if 4(z) is the solution to the Laplace
equation A& = 0 in n,, subject to Dirichlet boundary condition6 4(z) =
g(z) on the boundary ra, then $(w) = $(fi’(w))  is a solution to the Laplace
equation A,& = 0 in the image region 0, = /(n,),  subject to the image
boundary condition6 $(w) = g(f’(w))  on the boundary ru, = I&). (We
have assumed that f map6 FE bijectively onto the boundary of &,. This is
not always true, but it is true if both region6 are bounded by Jordan curve6,
See FIenrici,  19’741, Thm. 5.10e.)

More generally, from (1.1) we can see that Poisson’s equation, A&(z) =
p(z), transforms under a conformal transformation into a Poisson equation
in the w-plane with altered right hand side:

Furthermore, more general boundary condition6 than Dirichlet also trans-
form in a simple way. For example,  the Neumann condition &%4(z) = h(z),
where &- is a normal derivative in the x-plane, transforms to &&?$@) =

Ir(rYul,)  l-‘h(f-‘(w))*  w e do not pursue such possibilities further here;
for a systematic trcatmcnt 6ee chapter VI of [Kantorovich & Krylov, 19581.
Some computed example6 are given in Section V.

Traditionally, conformal mapping ha6 been applied most often in two
areas. One is plane electrostatics, where the electrostatic potential (o satisfies

. Laplace’s equation. The other is irrotational, nonviscous fluid flow in the
plane, which may be described in term6 of a velocity potential (O that also
satisfies Laplace’s equation.

2. The Schwarz-Christoffel  transformation

The problem of mapping one complex region conformally onto another
is in general very difficult, but for the special ca6e of polygonal region6 it
can be greatly simplified, Suppose that we seek a conformal map from the
unit disk in the x-plane to the interior of a polygon P in the w-plane whose
vertices are ~1, ..,, WN, numbered in counterclockwise order, For each k,
denote by & the exterior angle of P at wk:



For any polygon we have a simple relationship among the numbers pk:

N

cp
k=fit!,

k--l
(13).

If wk is a finite vertex, we have -1 < @k < 1, We need not require, however,
that P be bounded, It may have a number of vertices at complex infinity, and
the exterior angle6 corresponding to these may fall anywhere in the range
1 5 pk ( 3. Such angle6 are defined to be equal to 2a minus the external
angle formed in the plane by the intersection of the two sides involved, if
they are extended back away from infinity. The following example should

illustrate what is meant by various values of &: it is a polygon with five
vertices u& (in this ca6e  w1 = WA),  with corresponding values (a, . . . . p5) =

(1421
2,3! 3,2r - 1 ) :

“2
ZOO

$2 = 4/3

As alway6,  (1.3) holds for this example.
Let u6 now pick at random N point6 z!, (“prcvertices”)  in counterclock-

wise order around the unit circle and two complex constants C and UJ~, and
consider the Schwarz-Christoff  el formula:

1 (1 4).
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The quantities (1 -%‘/%k)  always lie in the disk 1 w - 11 < 1 for 121 < 1.
Therefore, if we choose a branch of log(z) with a branch cut on the negative
real axis by mean6 of which to define the power6 in (1.4),  w(z)  define6 an
analytic function of z in the disk Izl < 1, continuous on 121 < 1 except
possibly at the vertices zk.

The Schwarz-Christoffel formula is chosen 60 a6 to force the image of
the unit disk to have corner6 in it with the desired exterior angles pk% It
is not hard to 6ce from (1.4) that at each point %k, the image w(z) must
turn a corner of precisely this angle. This is in keeping with our purpose of
mapping the disk onto the interior of P, What the map will in general fail
to do is to reproduce the lengths of sides of P correctly, and to be a one-
to-one correspondence. For a suitable choice of parameter6 {zk}, C, and w,,
the image under f of the unit disk might be, for example,

or

Only the angle6 are guaranteed to come out right.
The variable6 ~1, . . . . zN, C, and 20, are the accessory parameters of the

Schwarz-Christoffel  mapping problem. Our first problem-the parameter
problem-k to determine  value6 of the accessory parameter6 130 that the
length6 of sides of the image polygon do come out right. The central theorem
of Schwarz-Christoffel  transformations asserts that there always exists such
a set of accessory parameters:

Theorem 1 (Schwara-Christoffel  transformation). Let D be a simply
connected region in the complex plane bounded by a polygon P with vertices
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a, se., %N and exterior angle6 @k, where -1 < & < 1 if %k i$ finite and_
1(fl&<3if%k=- 60, Then there exists an analytic function mapping the
unit disk in the complex plane conformally ontoD, and every such function
may be written in the form (1.4).

Proof:  [Henrici,  19741, Thm. 5.12e.

In fact, for any given polygon there is not just one but infinitely many
such conformal mappings, To determine the map uniquely we may fix ex-
actly three points %k at will, or fix one point %k and also fix the complex
value w,, or (a6 in a standard proof of the Riemann mapping theorem) fix
zu, and the argument of the derivative I’(O). ’

The simplicity of the explicit formula (1.4) is attractive. But because
the problem of determining the accessory parameter6 is intractable analyti-
cally, application6 of it have almost always been restricted to problem6
simplified by having very few vertices or one or more axes of symmetry.
General Schwarz-Christoffel  map6 do not appear to have been used a6 a
computational tool, although experiment6 have been made in computing
them.

3. Numerical computation of the Schwarz-Christoffel Transformation

In the early day6 of computers, when a number of relatively pure
mathematicians  were growing interested in computational mathematics,
the numerical computation of conformal map6 in general and Schwarz-
christore  transformations in particular received a flurry of attention, As
early  as 1949, the National Bureau of Standard6 sponsored a symposium on
numerical conformal mapping. It wa6 too early, however, for algorithms to
result from this period which we could now consider practical.

In more recent years interest in numerical conformal mapping ha6 been
modest. Gaier [1964]  produced a comprehensive work describing method6
for various problems in constructive conformal mapping. For the Schwarz-
ChristoKel problem, he proposed determining the accessory parameters zk
by setting up a constrained nonlinear system of N - 3 equation6 relating
(1.4) to the known distances lwk -wjl, and solving it iteratively by Newton’s
method [Gaier, p. 1711. Such a procedure ha6 been tried by at least three sets
of people: [Meyer, 19791, [I-Iowe,  19731,  and [Vecheslavov&Kokoulin,  19731.

The present work follow6 Gaier and others in formulating the parameter
problem a6 a constrained nonlinear system of equations, We believe thaf
fhis is the first fully practical program for computing Schwarz-Christoffel
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transformations, however, and the first which is capable of high accuracy
without exorbitant cost.

One innovation which make6 accurate but cheap computations possible
here is the u6e of a compound form of Gauss-Jacobi quadrature to evaluate
the integral in (1.4). The evaluation of this integral is central in all Schwarz-
Christoffcl computations, both in determining the accessory parameters and
in evaluating the map and it6 inverse once the accessory parameters are
known. We have found that a straightforward application of Gauss-Jacobi
quadrature, a6 6ome other6 have used, can achieve only very low accuracy
in realistic problems, and we have developed a compound form of Gauss-
Jacobi quadrature to get around this difficulty (see II.3).

A second innovation here is that the computation may be performed
not just for bounded polygons, but for polygon6 with any number of vertices
at infinity. This is made possible by taking the unit disk as the model
domain rather than the upper half plane, which other6 have used, and
evaluating complex contour integrals within the disk rather than only along
the boundary. The ability to handle unbounded polygon6 is important for
applications, since one of the attraction6 of conformal mapping is that it
can reduce an unbounded problem domain to a bounded one.

The treatment of the constraints in the nonlinear system is a third
new feature in this work. We have employed a simple change of variables

. to eliminate these constraints directly. This approach appear6 to be more
efhcicnt  than other technique6 which have been tried (see [Howe,19731  and
[Vechcslavov&Kokoulin,1973]), and eliminates the need for an initial guess
of the accessory parameters.

WC have dcpcnded in several place6 on the u6e of a sophisticated library
of “black box” numerical routines. Library program6 come into play here
for Gauss-Jacobi quadrature, for the solution of the nonlinear system, and
for the solution of an ordinary differential equation. Others have been used
in various experiment6 with applications. The Schwarz-Christoffel  problem
is essentially  a simple problem numerically once the machinery is in place,
but it is only in recent year6 that this kind of numerical machinery has
begun to be broadly available,



.

II. DETERMINATION OF THE ACCESSORY PARAMETERS

1. Formulation as a con&rained nonlinear sy6tem (subroutine SCFUN)

The first matter to be settled in formulating the parameter problem
numerically is, what parameter6 in the map (1.4) shall we fix at the outset
to determine the Schwarz-Christoffel  transformation uniquely? One choice
would be to fix three of the boundary points %k: say, %I = 1, a = i, %N = 4,

~This normalization ha6 the advantage that the resulting nonlinear system
ha6 size only (N - 3)-by-(N - 3), which for a typical problem with N=8
may lead to a solution in less than half the time that a method involving
an (IV - I)-by-(N  - 1) y ts 6 em requires. Nevertheless, we have chosen here
to normalize by the conditions:

%N = 1 (2 1).

WC = arbitrary point within P

which lead to an (N - 1)-by-(/V - 1) system. This choice is motivated
by considerations of numerical scaling: it allow6 the vertices to distribute
themselves more evenly around the unit circle than they might otherwise.
(An carlicr  version  of the program mapped from the upper half plane instead
of the unit disk, but wa6 rejected: once points %k began appearing far from
the origin at x = 104, scaling became a problem,) After a map has been
computed according to any normalization, it is of cour6e an easy matter to
transform it analytically to a different domain or a different normalization
by a Mobius transformation.

Now the nonlinear system must be formulated. The final map must
satisfy N complex conditions,

These amount to 2N real condition6 to be satisfied, but they are heavilyover-
dctermincd, for the form of the Schwarz-Christoffel  formula (1.4) guarantees
that the angles will be correct no matter what accessory parameters are
chosen. we must reduce the number of operative equations to N - 1. This
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is a tricky matter when unbounded polygons are allowed, for one must be
careful that enough information about the polygon P is retained that no
degrees of freedom remain in the computed solution.

We proceed as follows. First, we require that every connected corn-
ponent of P contain at least one vertex wk. Thus even an infinite straight
boundary must be considered to contain a (degenerate) vertex. This restric-
tion eliminates any translational degrees of freedom. Second, at least one
component of P must in fact contain two finite vertices, and WN and UQ will
be taken to be two such, This restriction eliminates rotational degrees of
freedom.

Now define

where zN = 1 is fixed permanently by (2.1). Next, impose the complex
condition (real equations 1,2)

(2.4a)

This amounts to two real equations to be satisfied.
Denote by l?l, . . . . rrn the distinct connected components of P, numbered

in counterclockwise order. For each e > 2, impose one more complex con-
dition: if zkt is the last vertex of I?4 in the counterclockwise direction, then
(real equations 3,4,...,2m)

(2.4b)

Finally, N - 2m - 1 conditions of side length are imposed. For each
pair (zk, &+I) beginning at Ic = 1 and moving counterclockwise, where both
vertices are finite, we require (real equations 2m+ l,...,N - 1)

b”k+l - wkl = lcl;+lj-( I- ;)-“dzj
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until a total of N - 1 conditions have been imposed. If P contains at least
one vertex  at infinity, then every bounded side will have been represented in
a condition of the form (2.4~) except for the side (WN, WI),  which is already
taken cart of by (2.1) and (2.4a). If P is bounded, then the last two sides
in counterclockwise order-(WN--2,  WN-1) and (WN-1, W&-will  not be 60
represented.

We have not stated over what contours the integrals of eqs. (2.4) are
dcfincd, This does not matter mathematically, as the integrand is analytic,
but it may matter numerically. In this work we have evaluated them always
over the straight line segment between the two endpoints, a procedure which
posts no domain problem6 since the unit disk is strictly convex. Figure 2.1
illustrates what contours are involved in computing the integrals in (2.3)
and (2.4), for a sample case with N = 10, m = 3.

The nonlinear system is now determined, and its unique solution will
give the unknown parameters C and ~1, . . ..@&l for the Schwarz-Christoffel
mapping. We must, however, take notice of two special cases in which the
solution is not completely determined by eqs. (2.4). It was remarked that
if P ie bounded, then nowhere in eqs. (2.4) does the point WN-1 appear. If
PN-1 # -1 or 0, then this omission is of no consequence, for the geometry
of the problem forces WN-1 to be correct. If PN-~ = 0 or -1, however, then
WN,1 is not determined a priori. The former case is of little consequence,
for since PN-1 = 0 the value taken for zN-1 has no effect on the computed
mapping, as may beseen in (1.4), nor is there any purpose in including WN-1
among the vertices of P in the first place. (Still, there may be problems
in solving the system (2.4) numerically, for it is now underdetermined.)
The latter case, PN-~ = - 1, is more serious, and must be avoided in the
numbering of the vertices Wk.

2. Transformation to an unconstrained system (subroutine YZTRAN)

The nonlinear system (2.4) ostensibly involves N - 1 complex unknown
points Zl, ..+N-l on the unit circle, In dealing with such a system, we
naturally begin by considering not the points & themselves, but their argu-
ments 6k, given by

ie,zk=e , 0 < ok < 2?r. (2 5).-

Now the system depends on N - 1 real unknowns, and the solution in terms
of the ok is fully determined.

However, the system (2,4) as it stands must be subject to a set of strict
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Figure  2.1 - Contours  of integration within  the disk.  A sample Schwarz-
Christoffel  problem is shown  with  N = 10 vertices  of which  m = 3 vertices  are
at infinity,  illustrating  what integrals are computed  to evaluate  the system (2.4):

+ 1 radial integral  along  (0 - ~10)  defines  c (eq+  2.3)

l 1 radial integral  along  (0 - ~1) determine6  two  real equation8  to fix q (eq.
2.4a)

I, 2 radial integrals  along  (0 - 9) and (0 -Q) determine four real equations
to fix 205 and WJ (eq. 2.4b)

l 3 chordal integrals  along  (2~ -zd), (~4 -z& and (a -Q) determine  three
real equationa  to fix 1~4 - WJI,(W~  - wd], and 1~10  - UJQI  (eq* 2.4~)

TOTAL:  N - 1 = 9 real equations
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inequality  constraints,

0 <s, <: ok-+-l ) I<k<N-1,- - (2 6).
which embody the fact that the vertices & must lie in ascending order coun-
tcrclockwise around the unit circle. To solve the system numerically, it is
desirable to eliminate these constraints somehow. We do this by transform-
ing eqs. (2.4) to a system in N - 1 variables ~1, . . . . &@J-1,  defined by the
formula

?h = log ok - ok-l

ok-/-l - ok
t 1<k<N-1,- - (2 7).

whcrc 00 and ON, two different names for the argument of ZEJ = 1, are taken
for convenience as 0 and 27r, respectively.

At each iterative step in the solution of the nonlinear system (2,4),
we begin by computing a set of angles {ok} and then vertices {&} from
the current trial set {vk}. This is easy to do, though not immediate since
the equations (2.7) are coupled. In this way the problem is reduced to one
of solving an unconstrained nonlinear system of equations in N - 1 real
variables.

3. Integration by compound Gauss-Jacobi quadrature (subroutine ZQUAD)

The central  computation in solving the parameter problem, and indeed
in all Schwarz-Christoffel computations, is the numerical evaluation of the
Schwarz-Christoffel integral (1.4) along some path of integration. Typically
one or both endpoints  of this path are prevertices %i, on the unit circle, and
in this cast a singularity of the form (l-&)-P is present in the integrand
at one or both endpoints.

A natural way to compute such integrals quickly is by means of Gauss-
Jacobi quadrature (see fDnvis & Rabinowitz, 19751,  p. 75). A Gauss-Jacobi
quadrature formula is a sum C~=~“wif(~;),  where the weights wi and
nodes xi have been chosen in such a way that the formula computes the

integral  s-+l’  I@)(1 - ~)~(l + x>p dx exactly for If(x) a polynomial of as
high a degree as possible. Thus Gauss-Jacobi quadrature is a generalization
of pure Gaussian quadrature to the case where singularities of the general
form (1 - ~)~(l + x)P (a, p > -1) are present. The required nodes and
weights can be computed numerically; we have used the program GAUSSQ
by Golub and Welsch [Golub & Welsch,1969] for this purpose.
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Gauss-Jacobi quadrature appears made-to-order for the Schwarz-Chris-
to&l problem, and at least two previous experimenters have used it or or
a closely rclatcd  technique ([Howe,1973],  [Vecheslavov & Kokoulin,l973]).
We began by doing the same, and got good results for many polygons with
a small number  of vertices, In general, however, we found this method of
integration very inaccurate. For a typical sample problem with N = 12
a.nd  NPTS = 16, it produced integrals accurate to only about 10v2, and
it dots much worse if one chooses polygons designed to be troublesome.

What goes wrong is a matter of resolution. Consider a problem like the
one shown in Figure 2.2. We wish to compute the integral (1.4) along the
scgmcnt from zk to some point p. (In the parameter problem p might be 0 or
z&-l; in later computations it might be any point in the disk.) Now direct
a.pplication of a Gauss-Jacobi formula will involve sampling the integrand
at only NPTS nodes between zk and p. If the singularity zk+l is so close to
the path of integration that the distance e = ]&+I -zk] is comparable to
the distance between nodes,  then obviously the Gauss-Jacobi formula will
yield a very poor result. It turns out that in Schwarz-Christoffel  problems
the correct spacing of prevertices zk around the unit circle is typically very
irregular,  so the a.ppearance of this problem of resolution is the rule, not
the cxccption. (See examples in V.)

To maintain high accuracy without giving up much speed, we have
. switched to a kind of compound Gauss-Jacobi quadrature (see IDavis  &

Rabinowitz, 19751, p. 56). We adopt, somewhat arbitrarily, the following
quadrature principle:

No singularity zk shaJJ lie closer to an interval of
integration than half the Jength of that interval,

To achieve this goal, the quadrature subroutine ZQUAD must be able to
divide an interval of integration into shorter subintervals as necessary, work-
ing from the endpoints in. On the short subinterval adjacent to the endpoint
Gauss-Jacobi quadrature will be applied; on the longer interval (or intervals)
away from the endpoint pure Gaussian quadrature will be applied. The
effect of this procedure is that number of integrand evaluations required to
achieve  a given accuracy is reduced from O(i) to O(log2  i),

Figure 2.2 shows the intervals of integration that come into play in
compound Gauss-Jacobi quadrature. For a plot comparing the accuracy of
simple and compound Gauss-Jacobi quadrature in another typical problem,
see IV.1.



Figure 2.2 - Compound Gauss-Jacobi quadrature. Division of an interval
of integration into subintcrvals to maintain desired resolution.

With the use of compound Gauss-Jacobi quadrature, we now achieve
high accuracy in little more than the time that direct Gauss-Jacobi quad-
rature takes. This is possible because only a minority of integrals have a
singularity close enough that subdivision of the interval of integration is re-
quired. In the 12.vertex example mentioned above, the switch to compound
Gauss-Jacobi integration decreased the error from low2 to 2 l lo-‘.

There remains one circumstance in which integration by compound
Gauss-Jacobi quadrature as described here is unsuccessful. This is the case
of an integration interval with one endpoint quite near to some prevertex
zk corresponding to a vertex wk = 00. We cannot evaluate such an integral
by considering an interval which begins at &, for the integral would then
be infinite. The proper approach to this problem is probably the use of
integration  by parts, which can reduce the singular integrand to one that
is not infinite Depending on the angle pk, one to three applications of in-
tegration by parts will be needed to achieve this. We have not implemented
this procedure.

The subtlety of the integration problem in Schwarz-Christoffel  com-
putations is worth emphasizing. It is customary to dispatch the integration
problem as quickly as possible, in order to concentrate on the “difficult” ques-
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Gions: computation of accessory parameters and inversion of the Schwarz-
Christoll’cl map. We believe, however, that the more primary problem of
computing Schwarz-Christoffel integrals-the “forward” problem-should
always remain a central concern. Any numerical approach to the parameter
problem or the inversion problem is likely to employ an iterative scheme
which depends  at each step on an evaluation of the integral (1.4), and so
the results can only be as accurate as that evaluation.

4. Solution of system by packaged solver (subroutine SCSOLV)

The unconstrained nonlinear system is now in place and ready to be
solved, For this purpose we employ a library subroutine: NSOlA, by M.J.D.
Powell ([Powell, 1968]),  h hw ic uses a steepest descent search in early itera-
tions if necessary followed by a variant of Newton’s method later on. (The
routine dots not USC analytic derivatives.) It is assumed that a variety of
other routines would have served comparably well,

WC rnake no attempt to tailor the numerical solution procedure to the
particular Schwarz-Christoffel problem under consideration, In particular,
a.11 iterations begin with the trivial initial estimate yk = 0 (1 < k ( N -
1). This corresponds to trial vertices spaced evenly around the unit circle.

. The following input parameters to NSOlA have generally remained fixed:
DSTEP=10-8( t ps c size used to estimate derivatives by finite differences),
DMAX = 10 (maximum step size), MAXFUN = 15(/V  - 1) (maximum
number of iterations).

A fourth parameter, EPS, defines the convergence criterion-how large
a, function vector (square root of sum of squares of functions values) will
bc considcrcd  to bc satisfactorily close to zero. We have most often taken
1o-8 or lo-l4 here. The choice of EPS is not very critical, however, as
convergence  in NSOlA is generally quite fast in the later stages.

In the course of this work about a hundred Schwarz-Christoffel trans-
formations have been computed, ranging in complexity from N = 3 to
N = 18, NSOlA has converged successfully to an accurate solution in all
of these trials. Section  V.1 gives a series of plots showing this convergence
graphically for a simple example,

14



III.COMPUTATIONOF THES-CMAP AND ITSINVERSE

Determining  the accessory parameters is the most formidable task
in computing numerical Schwarz-Christoffel  transformations, Once this is
done, evaluation of the map and of its inverse follow relatively easily. The

foundation of these computations continues to be compound Gauss-Jacobi
quadrature.

1. From disk to polygon: w = w(z) (subroutine WSC)

To evaluate  the forward map w(z) for a given point z in the disk or on
the circle, we must compute the integral

(3 1).

with ~0 = W(ZQ),  where the endpoint ~0 may be any point in the closed disk
at which the image W(Q) is known and not infinite. Three possible choices
for ~0 suggest themselves-

(1) zo = 0; hence IQ = We;

(2) a = %k for some k; hence IQ-J = wk, a vertex of P;

(3) aI = some other point in the disk at which w has previously been
computed.

In casts (1) and (3), neither endpoint has a singularity, and an evaluation of
(3.1) by compound Gauss-Jacobi quadrature reduces to the use of compound
Gauss quadrature. In case (2) a singularity of the form (1 - +$+ is
present at one of the endpoints and the other endpoint has no singularity.
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The best rule for computing W(I)  is: if z is close to a singular point zk
(but not one with wk = oo), use method (2); otherwise, use method (1). In
cithcr  case we employ compound Gauss-Jacobi quadrature, taking normally
the same number of nodes as was used in solving the parameter problem.
By this proccdurc  WC evaluate W(Z)  readily to “full” accuracy-that is, the
accuracy to which the accessory parameters have been computed, which is
directly  related to the number of points chosen for Gauss-Jacobi quadrature
(see IV.1).  Quadrature nodes and weights need only be computed once, of
course.

we should emphasize that even in the vicinity of a singularity &, the
evaluation of the map w = W(Z)  is inherently very accurate. This very
satisfactory treatment of singular vertices is a considerable attraction of
the Schwarz-Christoffel approach for solving problems of Laplace  type.
In particular, in a potential problem the Schwarz-Christoffel transforma-
tion “automatically” handles the singularities correctly at any number of
reentrant  corners,

2. From polygon to disk: z = z(w)  (subroutine ZSC)

For computing the inverse mapping z = x(w) at least two possibilities
. exist, both of them quite powerful, The most straightforward approach is

to view the formula w(z)  = w as a nonlinear equation to be solved for Z,
given some fixed value w, The solution may then be found iteratively by
Newton’s  method  or a related device, W(Z)  should be evaluated at each step
of such a process by compound Gauss-Jacobi quadrature along a straight
line scgmcnt  whose initial point remains fixed throughout the iteration.

An alternative approach is to invert the Schwarz-Christoffel formula,

to yield the formula

(3 2).

This inversion is possible because w = W(Z)  is a conformal mapping, which
means Idw/dzl > 0 everywhere. (3.2) may now be thought of as an ordinary
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differential equation (o.d.e.),

dz
dw

= g(v) P (3 3).

in one complex variable w. If a pair of values (~0, ~0) is known and the new
value z = z(w) is sought, then z may be computed by applying a numerical
0.d.e. solver to the problem (3.3),  taking as a path of integration any curve
from ~0 to w which lies within the polygon P.

In our program we have chosen to combine these two methods, using the
second method to generate an initial estimate for use in the first. We begin
with the o.d,e.  formulation, using the code ODE by Shampine and Gordon,
and for convenience we integrate whenever possible along the straight line
6egment from wC to 20. (ODE, like most 0,d.e.  codes, is written for problem6
in real arithmetic, so that we must first express (3.2) as a system of first-
order o,d,e.‘s in two real variables.) Since P may not be convex, more than
one line segment step may be required to get from ~0 to w in this way. It
will not do to take ~0 = wk for some vertex wi, without special care, because
(3.2) is singular at wk.

From ODE we get a rough estimate 5 of z(w), accurate to roughly 10m2.
‘J.‘his  estimate is now used a6 an initial guess in a Newton iteration to solve
the equation w(z) = w, This method is faster than the 0.d.e.  formulation for
getting  a high-accuracy answer, More important, it is based on the central
Gauss-Jacobi quadrature routine, unlike the 0,d.e.  computation.

In summary, we compute the inverse map z = z(w) rapidly to full
accuracy by the following steps:

(1) Solve (3.2) to 1ow accuracy with package ODE, integrating when-
ever possible along the line segment from wC to w; call the result
Z;

(2) Solve the equation w(z) = w for z by Newton’s method, using f
a6 an initial guess.

17



IV. ACCURACY AND SPEED

1. Accuracy

The central computational step is the evaluation of the Schwarz-Chris-
toffel integral, and the accuracy of this evaluation normally determine6
the accuracy of the overall computation. A6 a consequence of the quadra-
ture principle adopted  in II.3-that no quadrature interval shall be longer
than twice the distance to the nearest singularity &--the compound Gauss-
Jacobi formulation achieve6 essentially the full accuracy typical of Gaussian
quadrature rules operating upon smooth integrands. That is, the number of
digits of accuracy is closely proportional to NPTS,  the number of quadrature
node6 per half-interval, with a very satisfactory porportionality constant in
practice of approximately 1.

It is important not only to be capable of high accuracy, but to be
a.ble to measure how much accuracy one has in fact achieved in a given
computation, To do this we employ a subroutine TEST, which is regularly
called immediately after the parameter problem is solved. Given a computed
set of accessory parameter6 c and {zk} , TEST computes the distance6

I wk - w,l for each wk # oo and the distances Iwk-1 - wk+l( for each
wk = 00, making use of the standard subroutine ZQUAD for compound
Gauss-Jacobi quadrature. The numbers obtained are compared with the
cxacf distance6 specified by the geometry of the polygon, and the maximum
error, RADEMX, is printed as an indication of the magnitude of error6 in
the converged solution. It is now probable that subsequent computations of
w(z) or z(w) will have errors no greater than roughly RADEMX,

hfost often WC have chosen to u6e an g-point quadrature formula. Since
each interval of integration is initially divided in half by subroutine ZQUAD,
this mcan6 in reality at least 16 node6 per integration. With this choice
RADEMX consistently ha6 magnitude ~10~~ for polygons on the scale of
unity.

Figure 4.1 gives an indication of the relationship between number of
quadrature node6 and error RADEMX; it shows RADEMX a6 a function of
NPTS for a 6-gon which is shown at the top of the next page. Two curve6
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are shown: one for simple Gauss-Jacobi quadrature, and one for compound
Gauss-Jacobi quadrature. The exact quantities here should not be taken too
seriously; examples could easily have been devised to make the difference in
performance of the two quadrature methods much smaller or much greater.

2, Speed

Any application of SchwarzChristoffel  transformations consists of a
sequence of steps:

INIT - set up problem

QINIT - compute quadrature nodes and weights

SCSCLV - solve parameter problem

TEST - estimate accuracy of solution

ZSC, WSC, etc. - compute forward and inverse transformation6 in
various applications

Among these tasks NT, QINIT, and TEST all take negligible amounts
of time relative to the other computations: typically less than 0.1 sets. on
the IBM 370/168  for INIT and QINIT, and for TEST a variable time that
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5 10 15 20
NFTS

Figure 4.1 - Quadrature  accuracy as a function of number of nodee.
The error estimate RADEMX  is plotted as a function of NPTS for the
polygon  shown  on p. 19, The upper and lower curves  correspond to
simple  Gauss-Jacobi  and compound  Gauss-Jacobi quadrature, respec-
tively.
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is usually less than 5!% of the time required by SCSOLV, What remains are
three main time consumers: SCSOLV, ZSC, and WSC.

We begin with WSC,  which performs the central evaluation of (1.4)
by compound Gauss-Jacobi quadrature. This evaluation takes time propor-
tional to NPTS (the number of quadrature nodes) and to N (the number of
vertices). The first proportionality is obvious, and the second results from
the fact that the integrand of (1.4) is an N-fold product. Very roughly, we
may estimate

time to solve w = w(z) : 0,25 e NPTS * N msec. (4, la)

for double precision computations on the IBM 370/168. Taking a typical
value of Nl?TS=8, which normally leads to &digit accuracy, (4,la) may be
rewritten

time to solve w = w(z) : 2N msec. I (4. lb)

For the minority of cases in which the interval must be subdivided to
maintain the required resolution, these figures will be larger.

To estimate the time required to solve the parameter problem, we com-
bine (4.1) with an cstimatc  of how many integrals must be computed in the
(-oursc  of solving this problcrn.  To begin with, at each iteration about N
integrals  arc required by NSOlA  (the exact number depends on the number
of vcrticcs at infinity). On top of this, it is a fair estimate to say that 4N
iterations will be required by NSOlA to achieve a high-accuracy solution.
We are therefore led to the estimate

time to solve parameter problem: NPTS 9 N3 msec. (4.2a)

or, taking again NPTS=8,

time to solve parameter problem: 8N3 msec. (4.2b)

These estimates correspond  fairly well with observed computation times
for the parameter problem: two problems with N = 5 and N = 18 may
be expected to take about 1 and 50 seconds, respectively. It is clear that
computing a Schwarz-Christoffel transformation becomes quite a sizeable
problem for polygons with more than ten vertices, In particular, such com-
putations are much too time-consuming for it to be practical to approximate
a curved domain by a polygon with a large number of vertices.
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Finally, we must consider the time taken by subroutine ZSC to invert
the Schwarz-Christoffel map. This too is proportional to NPTS, and quite
problem dependent. We estimate very roughly:

time to solve 2 = z(w) : NPTS e N msec, (4.3a)

or, with NPTS=8,

time to solve z = ‘z(w)  : 8N msec. (4.3b)

Note that inverting the Schwarz-ChristoM  map is only about four
times as time-consuming as computing it in the forward direction.

In practice, computational applications will vary considerably in the
use they make of a Schwarz-Christoffel transformation once the parameter
problem is solved. If only a few dozen applications of ZSC or WSC are
required, then the computational time for solving the parameter problem
will dominate. If thousands of such computations are needed, on the other
hand, then the parameter problem may become relatively insignificant. The
latter situation is most likely to hold when plotting is being done, or when
a high-accuracy solution in the model domain is to be computed by means
of finite differences.

In summary, high accuracy is cheap in Schwarz-Christoffel transfor-
mations; what consumes time is solving problems involving a large number
of vertices.
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V, COMPUTED EXAMPLES AND APPLICATIONS

1. Iterative process for a single example

Figure 5.1 shows graphically the process of convergence from the ini-
tial estimate in an example involving a 4-gon. Routine NSOlA begins by
evaluating the function vector (2.4) at the initial guess, then at each of
N - 1 input vectors determined by perturbing the initial guess by the small
quantity DSTEP in each component, As a result, the first N pictures always
look almost alike, which is why the series shown begins at NEVAL=4 rather
than NEWAL=l.  Each plot shows the current image polygon together with
the images of concentric circles in the unit disk (which appear as “contours”)
and the images of radii leading from the center of the disk to the current
prever t ices zk.

These pictures have a beautiful bonus feature about them: they may
be interpreted as showing not only the image polygon but simultaneously
the domain disk, including the prevertices & along the unit circle. To see
this, look at one of the inner “contour” curves, one which is apparently
circular, and the radii within it. Since w = W(Z)  is a conformal map within
the interior of the disk, the radii visible in this circle must intersect at the
same angles as their preimages in the domain disk, Thus the inner part of
any one of these image plots is a faithful representation on a small scale of
the circular domain, We see in Figure 5.1 that the prevertices are equally
spaced around the unit circle initially (NEVAL = 4), but move rapidly to
a very uneven distribution. This behavior, which is typical, indicates why
the USC of a compound form of Gauss-Jacobi quadrature is so important (see
rr.3).

The sum-of-squares error in solving the nonlinear system is plotted as
a function of iteration number in Figure 5.2, for the same 40vertex example,
Convergence is more or less  quadratic, as one would expect for Newton’s
method. The irregularity at iteration 19 is caused by the finite difference
step size of 10m8 used to estimate derivatives, and would have been repeated
at each alternate step thereafter if the iteration had not terminated.
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Figure 5,1- Convergence to a solution  of the parameter problem. Plots
show the current image polygon  at each step  as the accessory  parameters
{zk} and C are determined  iteratively,  for a problem  with N = 4.
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Figure 5,2 - Rate of wnvergence.  Sum-of-aquarea  error in the nonlinear
system (2.4) aa a function of iteration number, for the came  problem
a8 in Figure 5.1.
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2. Sample Schwara-ChristoBel  maps

Figures 5,3 and 5.4 show plots of computed Schwarz-Christoffel maps
for representative problems. The polygons of Figure 5.3 are bounded and
those of Figure 5.4 are unbounded, Observe that contour lines bend tightly
around reentrant  corners, revealing the large gradients there, while avoiding
the backwater regions near outward-directed corners and vertices at infinity.
Like the plots of Figure 5.1, these may be viewed as showing simultaneously
the image polygon and the domain disk.

Figure 5.5 shows similar plots in which streamlines rather than con-
tour lines have been plotted, so that the configuration may be thought of
as portraying ideal irrotational fluid flow through a two-dimensional chan-
nel. To plot these streamlines an analytic transformation of the disk to an
infinite channel with straight parallel sides was used in conjunction with the
Schwarz-Christoffel transformation from the disk to the problem domain.

3. Laplace’s  equation

Conformal maps do not solve problems, but they may reduce hard
problems to easier ones. How much work must be done to solve the easier
problem will vary considerably with the application.

(1) In th b t fe es o circumstances, the original problem may be reduced
to a model problem whose solution is known exactly. This is the
case in the fluid  flow problems of Figure 5,5, in which a crooked
channel may be mapped to an infinite straight channel of constant
width.

(2) If a problem of Laplace’s equation with pureDirichlet  or Neumann
boundary conditions can be mapped conformally to a disk, then
Poisson’s formula or Dini’s formula [Kantorovich & Krylov, 19581
provide  integral representations of the solution at each interior
point. Such integrals may be evaluated readily on the computer
to yield high accuracy solutions. The primary disadvantage of
this approach is that a new integral must be evaluated for each
point at which the solution is desired.

(3) If the solution will be required at many points in the domain,
then it is probably more efficient to solve Laplace’s equation by
a trigonometric expansion of the form a0 + C,“=, r”(aksin k6 +
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Figure 5.3 - Sample Schwarz-Christoffel traneformations  (bounded
polygons),  Contours  within  the polygons  are images  of concentric circles
at radii .O3, 2, .4, .6, .8,  ,97 in the unit diek,  and of radii from the
center of the disk to the prcvertices zh.
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Figure 5.5 - Sample Schwarz-Christoff  el transformations.  Contours
show streamlinea  for ideal irrotational, nonviscous Auid flow within each
channel.
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bk co6 kd); coefficient6 ak and bk are selected 60 a6 to fit the boundary
conditions closely. A disadvantage of this method is that conver-
gence of the expansion may be slow if the boundary conditions
are not smooth,

(4) Finally, if simpler methods fail, a solution in the model domain
may be found by a finite-difference or finite-element technique.
For problems of Poisson’s equation or more complicated equations
this will probably normally be necessary,

Figure 5.6 presents an example of type (1). We are given an infinite
region bounded  by one straight boundary fixed at potential (o = 0 and one
jagged boundary fixed at ‘p = 2. We may think of this as an electrostatics
problem. The central question to be answered computationally will be: what
are the voltage (o and the electric field E = -VP at a given point, either
within the field or on the boundary?

We proceed by mapping the given region onto the disk by a Schwarz-
Christoffcl  transformation, then analytically onto an infinite straight than-
nel (as in the examples of Figure 5.5). In the straight channel (o and E are
known trivially, and this information may be transferred to the problem
domain through a knowledge of the conformal map that connects them and
of its (complex) derivative. We omit the details, which are straightforward.

Figure 5.6b shows pi as a function of E on the upper and lower bound-
aries of the region. To see more of the behavior of the solution field near
a reentrant corner, we also compute the field at three points near 3 + 1.5i.
These results are given in Figure 5.6~.

4. Poisson’s equation

Consider the ‘I-sided region shown in Figure 5,7a, We wish to solve
Poisson’6 equation

A#(x, y) = i sin 2x( 1 - 2(y + 1)“)

on this region subject to Dirichlet conditions

4(x, Y) = Pb Y) = k sin 2x(y + 1)2

on the boundary. We proceed by mapping the domain to the disk and
solving a transformed problem in the disk in polar coordinates by mean6 of

30



Imw= 2
-3+l..5i ' 9 2=

Imw= 0 0 0=

(a) Problem domain: region between two
conducting sheets
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(b) Field strength along the top boundary
(solid line) and bottom boundary (broken
line)

3.1 +1.4 i 1.7564 1.3082 -.3823
3.01 +1.49 i 1.9486 2.4403 -.2833
3.001+1.499i 1.9889 5.2137 ~2572
3.000+1.500i 2.0000 co ~2500

(c) Computed potential and field strength at
three points near 3 +1.5i

Figure 5.6 - Laplace equation example: electric
potential and field between two infinite sheets.
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a second-order fast finite difference solver (PWSPLR, by P. Swarztrauber
and R. Sweet), p(s, y) is the correct solution in the interior as well as on the
boundary, so we can determine the accuracy of the numerical solution.

This is not as satisfactory a procedure as was available for Laplace
equation problems, According to (1.2),  the model problem here is Poisson’s
equation in the disk with an altered right hand side containing the factor

lJw2? where f is the composite map from the disk to the ‘I-gon.  Two
difficluties  arise. The first is that to set up the transformed equation in the
disk, p(wii) must be computed for every wij = w(zij)  which is an image of
a grid point in the disk, This is time consuming, one hundred times more
so in this experiment than the fast solution of Poisson’s equation once it
is set up. Second, lf’(z)12 is singular (unbounded, in this example) at each
prevertex zk, and this appears to interfere with the second-order accuracy
which we would like to observe. The table in Figure 5,7b attests to both of
these problems.

5. Eigenfrequencies of the Laplace operator

Petter Bjdrstad (Computer Science Dept,, Stanford University) has
recently  combined the present Schwarz-Christoffel  computation with a fast
finite-difference scheme to successfully compute eigenvalues and eigenvec-
tors of the Laplacian operator on polygonal regions. These results may be
interpreted as giving the normal modes and frequencies of a thin membrane
in two dimensions, or of a three-dimensional waveguide with constant cross-
section. This work will be reported elsewhere.
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(a) 7-sided problem domain, including image of 16x32
finite-difference arid in the unit disk

Transformation
Grid and setup Fast Poisson
(rxW time solver time Max. error R?JS error

4x8 1.3 sets. c.01 sets. 0.132 0.0309

8x16 2 sets. .Ol sets. 0.055 0.0085

16x32 5 sets. .03 sets. 0.031 0.0037

32x64 16 sets. .15 sets. 0.026 0.0012

(b) Computed results for four different grids. Time
estimates are for an IBM 370/168.

Figure 5.7 - Poisson equation example. Problem is
transplanted conformally to the unit disk and solved
by finite differences.
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A program has been described which computes accurate Schwarz-Chris-
toffel transformations from the unit disk to the interior of a simply connected
polygon in the complex plane, which may be unbounded. Key features of
the computation have been:

VI. CONCLUSION

(1) Choice of the unit disk rather than the upper half plane as the
model domain, for better numerical scaling (II.1)

(2) Use of complex contour integrals interior to the model domain
rather than along the boundary, making possible the treatment
of unbounded polygons (11.1)

(3) Use of compound Gauss-Jacobi quadrature in complex arithmetic
to evaluate the Schwarz-Christoffel integral accurately (IL3,III.  1)

(4) Formulation of the parameter problem as a constrained nonlinear
system in N - 1 variables (lX.1)

(5) Elimination of constraints in the nonlinear system by a simple
variable transformation (11.2)

(6) Solution of the system by a packaged nonlinear systems solver;
no initial estimate required (IE.4)

(7) Computation of a reliable estimate of the accuracy of further
computations, once the parameter problem has been solved (IV.1)

(8) Accurate evaluation of the inverse mapping in two steps by means
of a packaged 0.d.e. solver and a packaged complex rootfinder

w*2)

Previous efforts  at computing Schwarz-Christoffel transformations nu-
merically  include [Cherednichenko  & Zhelankina, 19751,  popkins  & Rob-
e r t s ,  19781, [I-Iowe, 19731, [M ye er, 19791,  and [Vecheslavov & Kokoulin,
19731, The present work differs from these in that it deals directly with
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complex arithmetic throughout, taking the unit disk rather than the upper
half plant as the model domain and evaluating complex contour integrals.
This makes possible the computation of transformations involving general
unbounded polygons. (Cherednichenko & Zhelankina [1975] also treat un-
bounded polygons, by a different method.) Two other important differences
are the use of compound Gauss-Jacobi quadrature, and the application of
a change of variables to eliminate constraints in the nonlinear system ( (5),
a.bovc).  WC believe that our program computes Schwarz-Christoffel trans-
formations faster, more accurately, and for a wider range of problems than
previous attempts.

A variety of directions for further work suggest themselves. Here are
some of them:

(1) More attention should be paid to the problem of inverting the
Schwarz-ChristoRe  map. The two-step method described in III.2
is only one of many possibilities.

(2) The program could easily be extended to construct maps onto the
exterior of a polygon- that is, the interior of a polygon whose
interior includes the point at infinity. This extension would be
necessary for applications to airfoil problems.

(3) It should not be too great a step to raise the present program to the
level of “software” by packaging it flexibly,  portably, and robustly
enough that naive users could apply it to physical problems.

(4) The program might be extended to handle the rounding of corners
in Schwarz-Christoffel transformations penrici,l974].  What about
mapping doubly or multiply connected polygonal regions, per-
haps by means of an iterative technique which computes an S-C
transformation at each step? What about applying S-C transfor-
mations to eliminate corners in the conformal mapping of curved
domains?

Most important, further work is needed in the direction of applications
to Laplace’s equation, Poisson’s equation, and related problems. Irregular
or unbounded domains are generally troublesome to deal with by standard
tcchniqucs, particularly when singularities in the form of reentrant corners
arc present. Schwarz-Christoffel transformations offer a means of getting
around such difficulties in a natural way. Much more experience is needed
here.
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APPENDIX: PROGRAM LISTING

The boundaries of this program are not sharply defined, for the configu-
ration changes according to what applications are being treated. The present
listing includes only the core routines used to solve the parameter problem
and to evaluate the Schwarz-Christoffel  function and its inverse,

An cxpcrimental copy of the package may be obtained in machine-
readable form from the author,

Control program:
SC

Set-up:
INIT initializes variables and reads input data
QINIT computes quadrature nodes and weights

Solution of parameter problem:
SCSOLV controls solution of parameter problem

YZTRAN  transforms to an unconstrained system
SCFUN sets up the nonlinear system to be solved
SCOUTP prints output from SCSOLV

TEST estimates accuracy of computed solution

Compound Gauss-Jacobi quadrature:
ZQUAD divides the integral into two halves

ZQUADl  evaluates the half-integral (compound)
DIST finds the distance to the nearest singularity
ZQSUM sums a Gauss-Jacobi quadrature rule

Forward and inverse S-C map:
WSC evaluates map from disk to polygon
ZSC evaluates map from polygon to disk

ZFODE  computes initial estimate
ZNEWT inverts map by Newton’s method

Miscellaneous routines:
ZPROD evaluates N-fold Schwarz-Christoffel integrand
FINITE returns “true” if the argument is finite
ENTER begins timing of the current subroutine
EXIT concludes timing of the current subroutine
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Library routines not listed:
GAUSSQ (Golub&Welsch) computes Gauss-Jacobi nodes and wts

(called by QINIT)

NSOlA (Powell) solves the nonlinear system
(called by SCSOLV)

ODE (Shampine & Gordon) solves the inverse mapping problem
(called by ZSC)
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I _ N- Nll'lRER OF V2RTICES  U(K)
7 NY=E"-l- NUKBZR 7F UNKNOUN  POINTS:  Z(l),...,Z(N-1)
Z 'J?TSQ - NUKBER  CP POINTS  PCR GAlJSS-JACOBI QUADRATURE
"- ZTNP - C:yPLEX  INFINITY

F
- SC - !?ATN PRSGRAB
P" TNTT - TNITIXLIZES CGNSTANTS  AND DEPINES  PROBLEB
_u Q:"IT  - ,3KPUTES  QUADRATURE  NODES  AND YEIGBTS
z SrSOLV  - ,G?lPUTZS ACCZSSSEiY PARABETERS  FOR S-C M A P  (1)
,. YZ"RAN  - TFAblS13RflS  UNKNOWNS  FRO?l Y(K) TO Z(K)
c~A S CPllN - N3NLINEAR  SYSTEK  OF EQUATIONS  TO BE SCLVED  BY SCSOLV

SC?UTP  - PRINTS OUTPUT  PfiGH  SCSOLV
P- UC? - C"YPUTES  U(Z)
z zsc - CC'KPUTES Z (ii)
"- PLTCCJN - DRAYS PL3TS CP IHAGE POLYGON  UITH CONTOURS
c ZPFC)D  - C3KPUT2S  N-P3LD  PRClDUCT  II (1)
m_ ZQ'lAD  - 3flfl;  TO LV9LUATE  INTEGRAL  BY GAUSS-JACOBI  QUADRATURE
c PINI" - RETURNS  TRUE IF AFGUBENT  IS PIKITE

C LTFIFARY R'?Ul!INES  REQUIRED:

7 L.N. TRFPF!'HEN

T
c

F

UPL:CII'  R
C".Y5N /SC
C"'E3N  /Ci
EAL*R CDA

NSO 1 A, GAUSSQ,  ODB,

JANUARY,  1978

SAL*8
/ UC,
NS’TS/
i3S

(A-B,D-H,3 -v,x- Y) , COBFLEX
U(20),BETA K(20) ,c,z(2o),N,
PI,TYOPI, ZERO, ZINP,EPS

*16 (C
Nn,NF

:: SE? UP FRCBLZB:
EPS = l.D-8
CALL INIT

,' CqBPUTE  NODES AID UEiGHTS  FOR PARAflETER  PROBLEB:
NPTSQ = 8
CALL QINIT(NPTSQ)

P
C SCLVE PARAYETEB  PEOBLZB:

IPRTNT  = 1
CALL SZSOLV(NB,IPRINT)

C TEST ACCUPACY  r3P SOLUTION:
CALL TZST

CI
i DPAU Cf?N"CUR  PL3T OP SOLUTION:

CALL FLTCdN

103 CCUTINOE
STOP 1
END

//GD.SYSIN  DD *
7

0
;1.

.a
0. 99.

2. 8. -. 5
1.370 l.D70 -1.

-. 2 -2. -. 5
-. 2 -1. 99.
.7 -2.5 93.
.8 -2.7 99.

u
UC
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e
~+**+**L***+*r**C*L********+*+***#**+***+~***+*C*I*L*+****+*+*****+

C* INIT PRIYARY  SUBROUTIUE  l *
~~t*******L**C****************+*****************************
C

SUaRJUTINE  INIT
c

: INITIALIZES  CONSTANTS  IA /CONSTS/  AND PROBLEH  DEPINITIOB
C PAiiA1ETERS  IN /SC/. DATA POR TRE GECRE'YBY  OF TRE PROBLEd
C IS READ IN PROtl UNIT 5.
C

:flPLICIT REAL*8(A-BID-A,C-V,X-Y),  CCt!PLEX*16(C,Y,Z)
LOGICAL  FINITE
:CPPLEX*16  DCIJPLX
CSflYON /SC/  WC,Y(20),BETAl!l(20),C,Z(20),N,NR,NP
Co!'!fl3Y  /CONS’XS/ Pf,TYOPI,ZtRO,ZINP,LFS
I=C?!L¶ON  /GEOH/  KPIX(20),KBAT(20),~COt5F
DATA SBNA?!E /'INfT'/
CALL ENTEE(SBNAKE)

C
c SE!f "3NSTANTS:

Pi = 3.14159 26535 89793 23 DO
TUOPI = PI l 2.DO
ZERO = (O.DO,O.DO)
ZXNF = (l.D70,l.D70)

i 9EAD LNPUT PARAMETERS:
READ (5,201)  N
N!l = N-l
NP = N*l
Z (N) = (l.DO,O.DO)
READ (5,202) UC
RXAD (5,203) (Q(K),BETA?J(K)  ,K=l,tJ)

r-
L ,;cPUTE  4NGLES  AS REQUIRED (WHERE VALUE INPUT IS 99.0):

D3 11 R = l,N
IF (3ETA?l(K).NE.99.D0)  GCTO 10
K!! = nOD(K+N-2,N)  l l
KP = MJD(K,N)+l
JiTXY(K) = DICAG(CDL3G((U(KR)-W(K))/(U(KP)-W(K))))/PI - l.DO
IP (tiETAr(K).LE.-1,DO)  BETAH = BETA!!(K) l 2.DO

10 CJN'TXNUE
P

: :BECK  PO ? VARIOUS INPUT EFROES:
jOI!4 = O.DO
D3 1 K = l,N

1 sun = SU!l l EPTAN(K)
IF (DABS(SUW+2.DO).LT.EPS)  G9TO 2
YaITz (6,30 1)
srcp 2

2 IF (PINITE(U(  1))) GOT0 3
idRITz (6,302)
STOP 2

3 IF (PINITE(U(N)))  GOT0 4
iiRITE (6,303)
STOP 2

4 IF (3ETAn(NH).NE.O.D0) GCTO 5
WRITE (6,304)

5 IF (aETAn(N!l).NE.l.DO) GOTO 20
YRITE (6,305)
STOP 2

C 3dT3B!l:IZ  NUtlBER  OF BOUNDARY  CORPONENTS,  ETC.:
C PASS 1: ONE PIXED POIUT  POE EACH INFINITE  VERTEX:

20 NCORP = 0
DO 21 K = 2,N!l

IF (PINITE(Y(K)))  GOT0 21
NC3RP = NCCIP l 1
KPIX(NCORP) = K - 1
IF (NC3tlP.EQ. 1) KPIX(NCORP)  = 1

21 CONTINUE
IF (!dCDRP.GT.O) GOT0 22
!iCORP  = 1
KPIX(NCOKP)  = 1

C PASS 2: ONE RATIO FOR EACH LIUE SEGUEWT:
22 CONTINUE

N E Q  = 2*NC3RP
DO 23 K = l.Bf!

IF (NEQ.E&U!l)  GOT0 30
IF (.~OP.PINITE(U(K)).OR.. NDT.PINITE(Y  (K*l))) GOT0 23
N E Q  ‘= NEQ + 1
KRAT (NEQ) = K

23 CaNTINUE
C

30 CALL EXIT
RETURN

231 P3RtlAT
232 PdhUAT
203 PORUAT
331 PtiEHAT
302 P3Et!AT
303 PORRAT
33a PORBAT
305 FORUAT

END

(1%
(2P8.0)
(2DB.O,PR.0)

'
L'

*** ERROR IN IUIT: ANGLES  DO NOT ADD UP TO 2'fi
*** ERROR IN INIT: W(1)  SUST BE FINITE'/)

(1' *** ERROR IN INIT: U(N)  !lUST BE FINITE'/)
*** UARNING  IY INIT: Y(N-1) NOT DZTEEtlINED'/)
l ** ERROR II0 IYIT: W(N-1) NOT DETERHINED'/)
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C* QINIT PRI!lARY SUBROUTINE  l *
C8*******************************+*+***********************************

SUBB3UTINE  QINIT(NPTS)
C
,-
c

-'lNPUTES NODES AND YEIGRTS  FOR GAUSS-JACOBI QUADRATURE

IKPLICIT  PEAL*8(A-B,D-A,O-V,X-I),  CORPLEX*16  (C,U,t)
L3GICAL  FINITE
Cf3rlH31  /SC/ UC,U(20) ,BETAB(2O),C,Z(2O),N,ilR,UP
COBH~M  /QUAD/ Qll0DES(32,21),QUTS(32,21),1iF?SQ
DIEElSIOl  QESCE(2),  QSCS(32)
DATA SSNA?!E /'QIUIT'/
CALL ENTER(SBIARE)
WRITE (6,201) NPTS

C
iiPTSQ = NPTS

C
C P^,L? EACA FINITE  VERTEX  U(K), CORPUTE  NODES AND WEIGHTS  POR
C l?IE-SIDED  GAUSS-JACOBI QUADRATIJEE  ALONG A CURVE  BEGINHIUG  AT Z(K):

D3 1 K = l,N
1 IP (PINITE(P(K)))  CALL GAUSSQ(5,NPTSC,O.DD,BETAN(K),D,
G QESCfi,QSCR,QUODES(l,K),QUTS(  l,K))

c
'3 ,';r.PUTE N3DES AND UEIGETS  FOR PURE GAUSSIAN QUADRATURE:

CALL GIUSSQf5,NPTSQ,O.DO,D.D~,O,QESCR,QSCR,QNODES(l,NP),
C QUTS (1,NP))

L

"ALL EXIT

231 PORXAT  (' NPTS =',15)
EtiD

~~*t**r****************************************************~********~
C+ l':ST PFIHARY  SUBROUTINE  l +
~*C****C****+*************k*****************************************
L

SUEE3U?INE  TEST
C
C TZSI'S  TAR COHPUTED  RAP FOR ACCUIACY.
C

ItlPLIZIT REAL*8(A-BID-A,O-V,X-Y),  CORPLEX*l6(C,W,Z)
REAL*8  CDABS
LOGICAL  FINITE
COtlH3N /SC/  UC,U (20) ,BETAR(2O),C,Z(2O),li,NB,NP
C3nHG1  /CONSIS/ PI,TYOPI,ZERO,ZINP,EFS
DATA S ENAME /'TEST'/
CALL EUTER(SBNARE)

C
C T3ST LENGTH  OF RADII:

BADE!lX  = O.DO
DO 10 K = 2,N
IP (PINITE(U(K)))  BADE = CDABS(UC  - PSC(ZERO,Z(K),Y(K),K))
IF (.kiOT.PINITE(W(K)))  RADB =

& CDABS(USC((.  lD0,. lDO),Z (K-l), U (K-l) ,K-1)
& - YSC( (. lD0,. lDO),Z(K+l)  ,U(K+l),K+l))
AADERX  = DBAXl(RADEllX,EADE)

10 CONTINUE
UBITZ (6,20 1) RADERX

C
"ALL EXIT
RETURU

C
201 PC)RHAT  (1' RADEBX:',DlZ.b)

END
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~*****+***L******L**********+****#***L*****************************

C* SCS3LV PEIRABT  SUBROUTINE **
C*********************************I~*****************************
L

SUBROUTINE SCSOLV(NB,IPBIRT)
P

i TYIS S~JBROUTXNE  COEPUTES  TAE ACCESSORY PARAMETERS C AND Z(K).
C THE PROBLEd  IS SOLVED BY PINDIEG TBE
- S3LUTICN  TO A SISTER OP N-l YONLINEAB EQUATIOUS  IN TKE N-l
; UHRNOYUS  Y (l),...,Y(N-1), UEICA ABE RELATED TO TAE POINTS
C Z(K) BY TBE FORKULA:
C
c Y (IO = LOG ((TIi(K)-TE(K-l))/(TE(Ktl)-TB(K))) (1)
C
C WHERE TR(K) DENOTES TBE ABGUBEBT  OP Z(K).
C SUBROUTINE SCPUN DEPINES TEIS SYSTEJ  OP EQUATIOBS.
C THE 3RIGXNAL  PROBLEM IS SUBJECT TO TEE CCNTBAIBTS  TH(K) < TH(Ktl),
C 3UT TBESE VANISH IN THE TRANSPORXATICN  PROR '2 TO I.
e
C SEE HAII PROGRAR  POR PURTEEB  COB!!ENTS.
n
L

IxPLICIT  REAL*8(A-BID-H,O-V,X-I),  CORPLEX*16(C,?,Z)
CO!lt!JN  /CCNS'IS/  PI,TUOPI,ZERO,ZINP,EFS
DIlENSION  AJINV(i?O,ZU), SCR (900), PVAL(19),  Y(19)
EXTE3NAL  SCFUN
DATA SENA?lE  /'SCSOLV'/
CALL ENTER (SBNAI'E)

C
C INITIAL SUESS (VPBTICES EQUALLY SPACED AROUND CIRCLE):

DO 3 A = l,Nf!
3 Y(K) = O.D0

c
C NSOlA COYTROL PARARETEBS:

DSTEP = l.D-8
DnAI = l.Dl
ACC = EPS
lAXFUN = NH l 1s

i
C S)LVE NONLINEAR SISTER RITH YSOlA:

CALL NSO1A(N~,Y,FVAL,AJINV,DSTEP,D~AX,ACC,~AXFUN,IPBINT,SCB,SCPU~)
CALL YZTRAN(T)

P
C PRINT RESULTS:

CALL SCOUTP

CALL EXIT
RETURN

r
END

~*****t*******************************b*****************************
C* YZTRAB SUE"RCTNATE(SCSOLV)  SUBROUTINE l *
~*******+***************************$++******************k*********

‘c

SUBB3UTINE  YZTBAN(Y)
P

';- :IANSPOR!'lS  Y(K) TO Z(K). SEE CORRENTS  IN SUBROUTINE SCSOLV.
P
L

IMPLICIT REAL*8 (A-B,D-H,O-V,X-I),  COCPLEX*16(C,B,Z)
COKPLEX*16  DCRPLX
COCIHON  /SC/ UC,U(20),!3ETA!!(20),C,Z(20),U,NH,UP
COBB311  /CGt?STS/ PI,TROPI,ZEBO,ZINF,EES
DIBENSION  Y(1)

C
DTH = l.DO
YASUK = DTK
DO 1 A = 1,UR

DTA = DTR / DEXP(Y(K))
1 THSUB = THSUB + DTH

c
L

DTA = TYOPI / TEISUE
THSUR = DTE!
z (1) = DCKPLX(DCOS(DTR),DSIU(DTB))
DO 2 K = 2,Ntl

DTR = DTX / DEXP(Y (K-l))
THSUB = THSUR t DT8

2 Z (IO = DCMPLX(DCOS(TRSUH),DSIN(THSUR))
c

EETUBY
END

41



,' SCFUN
,************c********

SUBRJUTINE  SCFUN
C
C TYIS IS THE FUNCTION

(NDIH,Y,PVAL)

WIROSE  ZERO tlU

l ****o*********

BORDINATE(SCSOL
l **************

ST BE POUBD IN

. . . . ..---
V) SUBROUTINE l *
l ****************

SCSOLV.

IBPLICIT  BEAL+E(A-BID-A,O-V,X-Y),  COBPLEX*16(C,U,Z)
REAL*8  CDABS
LOGICAL  FINITE
DIBERSIOI  PVAL (NDIR),Y(nDIf¶)
CORM01  /SC/ UC,U(20),BETAMI(20)  ,C,Z(20) ,Io,IM,YP
COtiMOB  /CCNSTS/  PI,TUOPX,ZEB3,ZIUF,EFS
COH1131  /GEOM/  KPIX(20),KRAT(20),ICOf!F

C
C TRANSPORB  Y(K)  TO Z(K):

<ALL YZTRAN(Y)

C 3ZT UP: COYPUTE  INTEGRAL PROM 0 TO Z(N):
WDENOH = ZQUAD(ZERO,o,Z(U),N)
C = (U(N)-UC) / UDEl?OI¶

c
,' :ASE 1: Y(K) AND W(K* 1) PINITE:
: (CCHPUTE  INTEGRAL  ALONG CHORD Z(K)-Z  (Ktl)):

?dPIRST  = 2*NCOIIP l 1
IF (NPIRST.GT.Nt!)  GOT0 11
Dr) 10 NEQ = NPIPST,NH

KL = KRAT(NEQ)
KR = KL+ 1
ZINT = ZQUAD(Z(KL),KL,Z(KR),KR)
FVAL(HEQ) = CDABS (U(KB)-U  CL))  - CDABS(C*ZIIT)

13 COCTINUE
C

E 2: Y(K+l) INFINITE:
E ,>~,PUTE  CCRTOUR  INTEGRAL  ALGNG  RADIUS  O-Z(K)):

11 D3 23 NVERT = 1,NCOlYP
KR = KPIX (NVERT)
ZINT = ZOUAD(ZERO,O,Z(KR),KR)
ZPVAL = Y(KB) - UC - C*ZINT
FVAL(Z*NVERT-1)  = DREAL(ZpVAL)
FVAL(Z*NVERT) = DIRAG (ZFVAL)

20 CONTINUE
RSTURN

P
L

END
C*********+**+*****************************b***+********************

I--* 523UTP SuEORDINATE(SCSOLV)  SUBROUTINE **
C*f*L********+*************************b****************************

C
SUBROUTINE  SCOUTP

C
C I?RINTS RESULTS  (VARIABLES  IN COl'lHGN  BLOCK /SC/)
$

I!lPLICIT REAL*8  (A-B,D-A,O-V,X-I),  CO!4PLEX*16(C,w,z)
LOGICAL  FINITE
COf!!lJN  /SC/  YC,Y (20) ,BETAf¶(ZO),C,Z(ZO)  ,N,NR,NP
13OI’lHJN /CONSTS/  PI,TVOPI,ZERO,ZIBP,EFS

C
WRITE (6,102)
DO 1 K = l,N
THDPI = DIRAG  (CDLOG(Z(K)))  / PI
IP (THDPI.LE.o.Do)  TRDPI = TADPI l 2.D0
IP (PINXTE(Y(K)))  YRITE  (6,103) K,R(K),TBDPI,BETAIl(K),Z  (K)

1 IF (.NOT.PINITE(U(K)))  YRITE  (6,104) K,THDPI,BETAB(K),z(~)
WRITE (6,105) WC,C

BETUBll
L

102 POBMAT  (//' RESULTS:'//
c ' I',l0X,'W(K)',13X,'T~(I()/PI',llX,'BETA~(K)'~

& 18X, '--I//)

103 FOBRAT  (13,' ('.P6.3,', ',P6.3,')',P20.14,?14.5,
& 3xr'(;,Pi5.12,',',P15.12,')')

104 !‘OBtlAr (x3,' IRPINITT ',PZO.l4,PlU.  5,
& 3X,' (',~15.12,',',P15.12,')')

lo5 PaJRIlAT (//' UC = (',D22.15,',',D22.15,')'/
E I c = (',D22.15,',',D22.15,')'/)
ERD
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~********+*****~**************+*b#******b+***************b**bbbb*b*

C* ZQUAD SECONDARY  SUBROUTINE  l *
~*************rC**********+*******bbbbbbbbbb******b*bbbb*b***********b

PURCTICN  ZQUAD(ZA,KA,ZB,KB)

P :3F!PUTES THE COBFLEX  LINE INTEGRAL  OR ZPROD PROM  Z A  TO ZB ALOY6 A
i SrfiAII;H'T LIVE SEGHENT  WITHIN  TBE UNIT DISK. PUNCTION  ZQUADl  IS .
C CALLED  TUICE, ONCE POR EACH HALF OF THIS INTEGRAL.
P
L

IMPLICIT REAL*E(A-B,D-H,C-V,X-Y),  CGRPLEX*16(C,U,Z)

ZllID = (ZA + ZB) / 2.DO
ZQUAD = ZQUADl(ZA,ZHID,KA)  - ZQUADl(ZB,ZYID,KB)
RZTUBN
ZND

C**L******************b******$*********bb*b*bbbb*b**********b**********
C* ZQUADl SUBORDINATE(ZQUAD)  SUBROUTINE  **
C*L**~***************************b***b+b+*b**************b********+*
C

FUNCTION  ZQUADl(ZA,ZB,KA)

C CGBPUTES  THE COHPLEX  LIRE INTEGRAL  OP ZPEOD PROM  Z A  TO ZB A L 0 1 6  A
C SIFAIGBT  LINE SEGMENT  WITEIB  TRE UNIT DISK. COBPOUUD  ONE-SIDED
C GAUSS-JACOBI  QUADRATURE  IS USED, USIUG  PUUCTION  DIST TO DETEBHINE
C IRE DISTANCE  TO TBE NEAREST  SINGULARITY  Z(K).

IHPLICIT  REAL*E(A-B,D-R,O-V,X-Y),  CORPLEX*16(C,Y,Z)
CCRBON  /CONS'IS/  PI,TPOPI,ZERO,ZINP,EFS
REAL*9  :DABS
DATA RESPRH /2.D0/

C
c CHECK  F O R  ZERO-LENGTH  INTEGBABD:

IP (CDABS (ZA-ZB).GT.O.DO)  GOT0 1
ZQUADl = ZERO
RETURU

C 3TEP 1: ONE-SIDED  GAUSS-JACOBI  CUADRATURE  POB LEPT ENDPOINT:
lR= DHINl(l.DO,DIST(ZA,KA)  *RESPRH/CCABS(ZA-ZB))

ZAA = ZA + ?*(ZB-ZA)
ZQUADl = ZQSU?!(ZA,ZAA,KA)

C
C STEP 2: ADJOIN  I N T E R V A L S  OF PURE GAUSSIAB  QUADBATUEX  IP UECESSABY:

10 IP (R.EQ. l.DO)  RETURN
R = DKINl(1.DO,DIST(ZAA,O)*BESPitH/CDABS(ZAA-ZB))
ZBi3 = ZAA l R*(ZB-ZAA)
ZQUADl = ZQUADl + ZQSUH(ZAA,ZBB,O)
ZAA = ZBB
G3TO 10
END

C*C*********+*******************LSI*++*$bbbbbbb*b***b**b*bbb*b*b*b**
c* DISr SUBORDINATE  (ZQUAD) SUBROUTINE  **
Cf********+***************$**********b*bb*bbb**bbbb*bbb***bbbbbb****b*b*bb
P

PUNCTICN  DIST(ZZ,KS)
P
i DETERYI!iE.S  THE DISTANCE  P R O H  ZZ TO THE NEAREST  SINGULARITY  Z(K)
'7 )l'HER  THAU Z(KS).

i!lPLICIT RSAL*E(A-B,D-H,O-V,X-I),  CORPLEX*l6(C,W,Z)
CornIN /SC/ YC,U(20),BETAH(20),C,Z(2O),N,NH,NP
REAL*8  CDABS

c
DIST = 99.DO
DO 1 K = l,N
IP (K.EQ.KS) GOT0 1
DIST = DHIN 1 (DIST,CDABS(ZZ-Z(K)))

1 CJNTIIUE
RETURN
END

C****b*****+*+b******************#*******b************o~*********~*
C* ZQSUB SUBOBDINATK(ZQUAD)  SUblOU'YfBB *:+
C***********b****+********+************b******+******b******b******b
C

PUNCTIOU  ZQSUR(ZA,ZB,KA)

: CJBPUTES  TRE INTEGRAL  OP ZPBOD FRO!! ZA TO ZB BY APPLYIUG  A
C 3.YE-SIDED  GUASS-JACOBI  POBKULA  WITH POSSIBLE  SINGULARITY  AT ZA.
L

IYPLICIT  BEAL*E(A-BID-E,O-V,X-Y),  CGBFLEX*l6(C,R,Z)
COYMCN /SC,’ YC,Y(20),BETAB(20),C,Z(20),N,Nti,NP
COHHON /C@NSIS/  PI,TifOPI,ZERO,ZINP,EFS
C3H!¶3N  /QUAD/  QNODES(672),QUTS(672),UPTSQ
REAL*8 CDABS

C
ZS = ZERO
ZH = (ZB-ZA) / 2.DO
zc = (ZA+ZB) / 2.DO
K = KA
IP (K.EQ.0)  K = NP
11 = 32+(1(-l)  + 1
12 = 11 l NPTSQ - 1
DO 1 I = 11,X2

1 zs = ZS + QYTS(1) *ZPROD(ZC*ZH*QNODES(I),KA)
ZQSU!l = ZS*ZH
IF (CDABS(ZH) .NE.o.DU.AND.K.NE.NP)

C ZQSUH = ZQSUtl*CDABS(ZB)**BETAB(K)
RETUBB

43



C*********~**********t***t*****~**t*********************************
c* itsc P.3 :MARY SlJ6ROLlT:tvE l *
C**Y****t*l*******t****t**********************fi*******~**********~**

FUEICT:OE!  kSC(ZZ,ZO,hO,KZO)
C
C 1FITEGHATkS  FHOi4  ZO TO ZZ TO CGF'PtiTt k' V.4LbC  COHHESPOKD:NG  TO ZZ
L

:hPL:C:T htAL*8(A-l?,D-H,O-'4,X-Y),  COMPLEX*16(C,k,Z)
c0~1biON /SC/ WC,~(2O),EETAM(20),C,Z(2O),N,,NP

L
wsc  = k3 + C l ZGUAG(ZO,KZO,ZZ,O)

c
RETURN
5ND

Cs*L+**s**+******+*****+***************~*~****************************
c* ZSC PBIRARY  SUBROUTINE  **
C***********+*****~*************************************************
f-

PUNCTIOU  ZSC(UW,Z0,Y0,KZ0)
C
C :>?!PUTES Z(WW). FIRST ODE IS CALLED TO GET AN IUITIAL  ESTXRATE;
2 THFY ZNEYT IS CALLED  TO GET TRE FINAL  ANSUER.
c

IEPLICIT  BEAL*8(A-B,D-H,O-V,X-Y),  CO!lPLEX*16(C,Y,Z)
DIClEYSION  SCR (142), ISCE(5)
EXTESNAL  ZPODE
LCP.f'!lN /SC/ iK,V(20),BETAPl(2O),C,Z(2O),N,NH,NP
CS,Y.!'JN /CCNS'IS/ PI,TWOPI,ZERO,ZINP,EES
CO!lPl)N  /ZSCCOC/  CDWDT

C
c S3T INITIAL  GUESS Zl VIA ODE:

Zl = ZERO
l' = O.DO
:PLAC = -1
RELZRR = O.DO
ABSE;lB  = 5.D-3
CDYDT = (WU-UC)  /C
CALL ODEfZPODE,2,Z1,T,1.D0,RELEER,ABSERR,IPLAG,SCR,ISCR)
IF (IPLAG.NE.2)  URITE  (6,201) I P L A G

C
C SEPINE  ANSWER  VIA ZNEUT:

CALL ZNEYT (Zl,YU,EPS,KZO)
zsc = 21

23 1 PORRAT  ('/ *** RONSTANDARD RETUEU  PRO8 ODE II ZSC: IPLAG =',12/)
3ETURN
END

C*8*****************************************************************
C* ZFJDE SUEOPCINATE(ZSC)  SUBROUTINE  l *
:*r**r****t*********************************************************
P

SUER1UTINE  ZFODE(T,ZZ,ZDZDT)

C :)KP'JT&S THE FUNCTION  ZDZDT  NEEDED  BY ODE 11s ZSC.

IKPLICIT  REAL*8 (A-B.D-H,O-V,X-I),  CO!lPLEX* 16 (C,U, Z)
COBRON  /ZSCCCE/  CDWDT

C
ZDZDl'  = CDYDT  / ZPROD(ZZ,O)

RETUBN
?ND

y************************************
C' ZNEYT
r*C8****SC***+*******************#*&
C

SUBRSOTIUE  ZBtUT(ZROOT,WU,EPS,K
C
C IKPLERENTS  NEWTON'S  HETROD  TO SOLVE
C d(ZR30T) = WY POR ZF'OOT.

SUBCRDIAAT
l *********

20)

TRE EQUAT

.-.-.--
E(ZSC) SUBROUTINE

IYPLICIT  REAL*8  (A-B,D-H,O-V,X-I),  COIlFLEX*  (C,@,Z)
COt!HlN  /SC/  YC,U (20),BETAtl(20),C,Z(20),N,NH,NP

C
D3 1 ITER = 1,lO
ZROOTO = ZROOT

IF (KZ0.2Q.O) ZPNUT = UU - USC(ZROOT0,(0.DO,0.DO),oc,o)
IP (KZO.NE.O) ZPNUT  = 5151 - WSC(ZROOTO,Z(K.ZO),U(KZ~),KZD)

ZROOT = ZROOTO  + ZPNUT/(C*ZFROD(ZEOO'IO,O))
IF (CDABS(ZPNWT).LT.EPS)  RETUBK

1 CONTINUE
PRITE (6,201)
RETURN

2 0 1  P3RtlAT  (/' l ** ERROR IN ZREUT: UC CCRVERGERCE  II 10 ITERATIOUS')
ERD
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C*L**++*+***+*********C********L*#*****+++****+*******+*****+******

C* ZPRJD SECONDARY SUBROUTINE **
C***trC************t****+***********+****k**********************~
C

PUNCTICN ZPROD(ZZ,KS)
C
: CJCPUTES  TRE INTEGRAND

N
PROD (l-ZZ/Z(K))**BETA!l(K)  ,
K=l

‘e
c TAKING ARGUfiENT  ONLY (NOT flODULOS)  FOR TERR K = KS.
C

IHPLICIT REAL*8(A-B,D-R,O-V,X-T),  CORPLEX*16  (C,U,Z)
SEAL*8 CDABS
COHH31  /SC/ UC,U(20),BRTAR(~),C,Z(20),N,PH,liP

C
zsutl  = (O.DO,O.DO)
DO 1 K = l,N

ZT!lP = (l.DO,O.DO)  - ZZ/Z(K)
IF (K.EQ.KS) ZTHP = ZTIYP / CDABS(ZTHP)

1 zsutl = ZSUH + BtTAH(K)*CDLOG(ZTRP)
ZPROD = CDEXP(ZSUH)
KETURY
END

f~*t**************************$****+*****************************
C* FINITE SECONDARY SUBROUTINE l *
C*r*r*******************************+****************************

PUNCTI IN FINITE(Z)
(1
C 32TUZNS l'RUE IF AND ONLY IP Z IS NOT INPINITE

IYPLICIT  REAL*8 (A-B,D-H,O-V,X-I), CCYPLEx*16(C,U,Z)
L3GICAL  FINITE
:3r.!!3N /CONSTS/ PI,TWOPI,ZERO,ZINP,EES

c
PINITE = DREAL(Z).NE.DREAL(ZIrP)
RETURN
END

~***+***************************************************************
C+ ENTER SECONDARY SUBROUTINE l *
~***r*C*******r*****************************************************

SUBR3UTIhE  ENTER(SBNAHE)
C
'3 3TARTS  TIflXNG TIRE SPENT IN SUBROUTINE YITH NAHE SBNAHB.
C

IYPLICIT  EEAL*8(A-B,D-H,O-V,X-Y),  coRPLEx*16(c,I,Z)
ClHHdR  /TI!lE/ TRITER

C
CALL LEPTlA(TENTEE)
YRITE (6,20 1) SPNAYE
R~TURR

c
201 P3RRAT  (//lX,80('X'),'  ERTEBIUG  ',A8)

END
~*r************+*****$****$*******$***********~********************

C* ?XIT SECONDARY SUBROUTINE *+
C*******c***********************************************************
L

SUBRJUTINE  EXIT
C
C PRINTS  TIRE SPEUT  IN SUBROUTIBE.
c

IHPLICIT  REAL*8(A-BID-H,O-V,X-Y),  CORPLEX*16(C,U,Z)
zonKOK  /TIllE/ TEUTER

C
CALL LEPTlA(TEXIT)
TI!lE = TENTER - TEXIT
WRITE (6,20 1) TIRE
EETURR

C
201 F,)RRAT  (lX,8O('X'),'  TIHB ELAPSLD:',P7.3,'  SECS.'/)

END
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