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Abstract

A program is described which computes Schwarz-Christoffel transformations
that map the unit disk conformally onto the interior of a bounded or unbounded
polygon in the complex plane. The inverse map is also computed. The computa-
tional problem is approached by setting up a nonlinear system of equations whose
unknowns are essentially the “accessory parameters” z;. This system is then solved
with a packaged subroutine.

New features of this work include the evaluation of integrals within the disk
rather than along the boundary, making possible the treatment of unbounded
polygons; the use of a compound form of Gauss-Jacobi quadrature to evaluate the
Schwarz-Christoffel integral, making possible high accuracy at reasonable cost;
and the elimination of constraints in the nonlinear system by a simple change of
variables.

Schwarz-Christoffel transformations may be applied to solve the Laplace and
Poisson equations and related problems in two-dimensional domains with irregular
or unbounded (but not curved or multiply connected) geometries. Computational
examples are presented. The time required to solve the mapping problem is roughly
proportional to N 3, where N is the number of vertices of the polygon. A typical
set of computations to 8-place accuracy with N < 10 takes 1 to 10 seconds on

an IBM 370/168.
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|. INTRODUCTION

1. Conformal mapping and its applications

One of the classical applications of complex analysis is conformal map-
ping: the mapping of one open region in the complex plane C onto another
by a function which is analytic and one-to-one and has a nonzero deriva
tive everywhere. Such a map preserves angles between intersecting arcs in
the domain and image regions, hence the name conformal. The Riemann
Mapping Theorem asserts that any ssmply connected region in the plane
which is not al of C can be mapped in this way onto any other such
region. The theorem does not say what this mapping may look like, however,
and the determination of particular conformal maps for particular mapping
problems has been an active problem since at least 1850.

The usefulness of conformal mapping for applied problems stems from
the fact that the Laplacian operator transforms in a simple way under a
conformal map. Let j:C —C map aregion €1, in the z-plane conformally
onto a region {1, in the w- pIane and let A, and A, denote the Laplacian

operators g’-’; + i, and au + au , respectively, where z = x 41y and
w == U+1v. Then we may easily show,

A,(z) = |f @7 dug(f ' (w)) (1.1)

for ¢:2, =R suitably differentiable, A conformal map has |f'(z)| > 0 every-
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where; thus from (1.1) it follows that if ¢(z) is the solution to the Laplace
equation A,é =0inQ,, subject to Dirichlet boundary condition6 ¢(z) =
9(2) on the boundary T, , then y(w) = ¢(f~*(w)) is a solution to the Laplace
equation Ay = 0 in the image region £, = f(£1,), subject to the image
boundary condition6 (w) = g(f~*(w)) on the boundary T'y, = f(T'). (We
have assumed that f map6 I'; bijectively onto the boundary of §2,,. Thisis
not always true, but it is true if both region6 are bounded by Jordan curves.
See [Henrici, 1974), Thm. 5.10e.)

More generaly, from (1.1) we can see that Poisson’s equation, A¢(z) =
p(z), transforms under a conformal transformation into a Poisson equation
in the w-plane with altered right hand side:

Aup(w) = 11T~ W) o(/ (w)) - (1.2)

Furthermore, more general boundary condition6 than Dirichlet aso trans-
form in a simple way. For example, the Neumann condition 5%¢(2) = N(z),
where g2~ is a normal derivative in the x-plane, transforms to g8-y(w) =

1A(F(w)) |~ h{f—}(w)). We do not pursue such possibilities further here;
for a systematic treatment 6ee chapter VI of [Kantorovich & Krylov, 1958].
Some computed example6 are given in Section V.

Traditionally, conformal mapping haé been applied most often in two
areas. One is plane electrostatics, where the electrostatic potential ¢ satisfies
. Laplace’s equation. The other is irrotational, nonviscous fluid flow in the
plane, which may be described in term6 of a velocity potential ¢ that also
satisfies Laplace’s equation.

2. The Schwarz-Christoffel transformation

The problem of mapping one complex region conformally onto another
Is in general very difficult, but for the special case of polygonal region6 it
can be greatly ssimplified, Suppose that we seek a conformal map from the
unit disk in the x-plane to the interior of a polygon P in the w-plane whose
vertices are wy, ..., wn, NuMbered in counterclockwise order, For each k,
denote by Fkr the exterior angle of P at wy:




For any polygon we have a simple relationship among the numbers f:

Y Be=2. (1.3)
k=1

If wg isafinite vertex, we have —1 < f < 1. We need not require, however,
that P be bounded, It may have anumber of vertices at complex infinity, and
the exterior angle6 corresponding to these may fall anywhere in the range
1 < fx < 3. Such angle6 are defined to be equal to 2x minus the external
angle formed in the plane by the intersection of the two sides involved, if
they are extended back away from infinity. The following example should
illustrate what is meant by various values of fx: it is a polygon with five
vertices wy (in this case w; == wy), with corresponding values (81, . . . . f5) =

(%) %: %) %"1):

/N

As always, (1.3) holds for this example.

Let us now pick at random N point6 2 (“prevertices”) in counterclock-
wise order around the unit circle and two complex constants C and w,, and
consider the Schwarz-Christoff el formula:

w= f(z) = w,+C /; :[:II(L—’ :—;)_mdz'. (1.4)




The quantities (1 —2'/z) adwayslieinthe disk |w — 1| < 1 for |z| < 1.
Therefore, if we choose a branch of 1og(z) with a branch cut on the negative
real axis by mean6 of which to define the power6 in (1.4), w(z) define6 an
analytic function of z in the disk |z|<< 1, continuous on 2| < 1 except
possibly at the vertices .

The Schwarz-Christoffel formula is chosen 60 as to force the image of
the unit disk to have corner6 in it with the desired exterior angles Byw. It
is not hard to see from (1.4) that at each point 2, the image w(z) must
turn a corner of precisely this angle. Thisis in keeping with our purpose of
mapping the disk onto the interior of P, What the map will in genera falil
to do is to reproduce the lengths of sides of - correctly, and to be a one-
to-one correspondence. For a suitable choice of parameter6 {2}, C, and w,
the image under f of the unit disk might be, for example,

or

Only the angle6 are guaranteed to come out right.

The variableb #, . . . . 2y, C, and w, are the accessory parameters of the
Schwarz-Christoffel mapping problem. Our first problem-the parameter
problem-k to determine value6 of the accessory parameter6 so that the
length6 of sides of the image polygon do come out right. The central theorem
of Schwarz-Christoffel transformations asserts that there always exists such
a set of accessory parameters:

Theorem 1 (Schwarz-Christoffel transformation). Let be a simply
connected region in the complex plane bounded by a polygon »with vertices
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21, .., 2N and exterior angle6 wfk, where -1 < B < 1 if % is finite and
1 < 6k < 3if z = 00. Then there exists an analytic function mapping the
unit disk in the complex plane conformally onto D, and every such function
may be written in the form (1.4).

Proof: [Henrici, 1974], Thm. 5.12e.

In fact, for any given polygon there is not just one but infinitely many
such conformal mappings, To determine the map uniquely we may fix ex-
actly three points 2z at will, or fix one point 2, and aso fix the complex
valucw, or (a6 in a standard proof of the Riemann mapping theorem) fix
w, and the argument of the derivative f/(0).

The simplicity of the explicit formula (1.4) is attractive. But because
the problem of determining the accessory parameter6 is intractable analyti-
cally, application6 of it have almost always been restricted to problem6
simplified by having very few vertices or one or more axes of symmetry.
General Schwarz-Christoffel map6 do not appear to have been used a6 a
computational tool, although experiment6 have been made in computing
them.

3. Numerical computation of the Schwarz-Christoffel Transformation

In the early day6 of computers, when a number of relatively pure
mathcmaticians were growing interested in computational mathematics,
the numecrical computation of conformal map6 in genera and Schwarz-
ChristofTel transformations in particular received a flurry of attention, As
carly as 1949, the National Bureau of Standard6 sponsored a symposium on
numerical conforma mapping. It wab too early, however, for agorithms to
result from this period which we could now consider practical.

In morerecent years interest in numerical conforma mapping hat been
modest. Gaier [1964] produced a comprehensive work describing method6
for various problems in constructive conformal mapping. For the Schwarz-
Christollel problem, he proposed determining the accessory parameters zx
by setting up a constrained nonlinear system of N — 3 equation6 relating
(1.4) to the known distances |wx—wj|, and solving it iteratively by Newton's
method [Gaier, p.171]. Such a procedure hab been tried by at least three sets
of pcople: [Meyer, 1979], [Howe, 1973], and [Vecheslavov&Kokoulin, 1973].

The present work follow6 Gaier and others in formulating the parameter
problem a6 a constrained nonlinear system of equations, We believe that
this is the first fully practical program for computing Schwarz-Christoffel
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transformations, however, and the first which is capable of high accuracy
without exorbitant cost.

Once innovation which make6 accurate but cheap computations possible
here is the use of a compound form of Gauss-Jacobi quadrature to evaluate
the integral in (1.4). The evaluation of thisintegral is central in all Schwarz-
Christoffel computations, both in determining the accessory parameters and
in evaluating the map and it6 inverse once the accessory parameters are
known. We have found that a straightforward application of Gauss-Jacobi
guadrature, a6 6ome other6 have used, can achieve only very low accuracy
in realistic problems, and we have developed a compound form of Gauss-
Jacobi quadrature to get around this difficulty (see IL.3).

A second innovation here is that the computation may be performed
not just for bounded polygons, but for polygon6 with any number of vertices
at infinity. This is made possible by taking the unit disk as the model
domain rather than the upper half plane, which other6é have used, and
evaluating complex contour integrals within the disk rather than only along
the boundary. The ability to handle unbounded polygon6 is important for
applications, since one of the attraction6 of conforma mapping is that it
can reduce an unbounded problem domain to a bounded one.

The treatment of the constraints in the nonlinear system is a third
ncw feature in this work. We have employed a simple change of variables
. to eliminate these constraints directly. This approach appear6 to be more
eficient than other technique6 which have been tried (see [Howe,1973] and
[Vecheslavov&Kokoulin,1973]), and eliminates the need for an initial guess
of the accessory parameters.

Wc havedcpended in several place6 on the use of a sophisticated library
of “black box” numerical routines. Library program6 come into play here
for Gauss-Jacobi quadrature, for the solution of the nonlinear system, and
for the solution of an ordinary differential equation. Others have been used
in various experiment6 with applications. The Schwarz-Christoffel problem
is essentially a ssimple problem numerically once the machinery is in place,
but it is only in recent year6 that this kind of numerical machinery has
begun to be broadly available,



II. DETERMINATION OF THE ACCESSORY PARAMETERS

1. Formulation as a con&rained nonlinear system (subroutine SCFUN)

The first matter to be settled in formulating the parameter problem
numerically is, what parameter6 in the map (1.4) shall we fix at the outset
to determine the Schwarz-Christoffel transformation uniquely? One choice
would be to fix three of the boundary points z: say, 21 =1, =1, 2y = —1.
-This normalization ha6 the advantage that the resulting nonlinear system
ha6 size only (N — 3)-by-(N — 3), which for a typica problem with N=8
may lead to a solution in less than half the time that a method involving
an (N — 1)-by-(N — 1)sy6tem requires. Nevertheless, we have chosen here
to normalize by the conditions:

an=1 (2.1)

= arbitrary point within »

which lead to an (N — 1)-by-(N — 1) system. This choice is motivated
by considerations of numerical scaling: it allow6 the vertices to distribute
themselves more evenly around the unit circle than they might otherwise.
(An carlicr version of the program mapped from the upper half plane instead
of the unit disk, but wab rejected: once points zx began appearing far from
the origin a x = 10% scaling became a problem,) After amap has been
computed according to any normalization, it is of course an easy matter to
transform it analytically to a different domain or a different normalization
by a Mobius transformation.

Now the nonlinear system must be formulated. The fina map must
satisfy N complex conditions,

k—wc—C'/ H(l—-—)_mdz', 1<k<N. (22

These amount to 2N real condition6 to be satisfied, but they are heavily over-
dctermincd, for the form of the Schwarz-Christoffel formula (1.4) guarantees
that the angles will be correct no matter what accessory parameters are
chosen. We must reduce the number of operative equations to N — 1. This

7



iIsa tricky matter when unbounded polygons are allowed, for one must be
careful that enough information about the polygon P is retained that no
degrees of freedom remain in the computed solution.

We proceed as follows. First, we require that every connected com-
ponent of P contain at least one vertex wg. Thus even an infinite straight
boundary must be considered to contain a (degenerate) vertex. This restric-
tion eliminatcs any trandational degrees of freedom. Second, at least one
component of P must in fact contain two finite vertices, and wy and w; will
be taken to be two such, This restriction eliminates rotational degrees of
freedom.

Now define

N N —By
C = wN wc // 1—") dz', (2.3)

where zy = 1 is fixed permanently by (2.1). Next, impose the complex
condition (real equations 1,2)

n N A\ P
w—w, = cfo H(l—-;) dz . (2.4a)
J

=l

This amounts to two real equations to be satisfied.

Denoteby I'y, . ... Ty, the distinct connected components of P, numbered
in counterclockwise order. For each € > 2, impose one more complex con-
dition: if z, is the last vertex of T'y in the counterclockwise direction, then

(rea equations 3,4,...,2m)

Cw=C / " H (1 — —)_mdz'. (2.45)

Finally, N — 2m — 1 conditions of side length are imposed. For each
pair (zx, 2k+1) beginning at k& = 1 and moving counterclockwise, where both
vertices are finite, we require (real equations 2m - 1,...,N — 1)

#hts N S\~
|Wet-1 — wi| = IC/ H( 1— ;—_) d7' (2.4¢)
j=1 §




until a total of N — 1 conditions have been imposed. If P contains at least
one vertex at infinity, then every bounded side will have been represented in
a condition of the form (2.4c) except for the side (wn, wi), which is already
taken care of by (2.1) and (2.4a). If P is bounded, then the last two sides
in counterclockwise order—(wy—3, wy—;) and (wy—i, wy)—will not be 60
represented.

We have not stated over what contours the integrals of egs. (2.4) are
defined. This does not matter mathematically, as the integrand is analytic,
but it may matter numericaly. In this work we have evaluated them always
over the straight line segment between the two endpoints, a procedure which
poses N0 domain problem6 since the unit disk is strictly convex. Figure 2.1
illustrates what contours are involved in computing the integrals in (2.3)
and (2.4), for a sample case with N = 10, m =3.

The nonlinear system is now determined, and its unique solution will
give the unknown parameters C and #, . . ., 2n— for the Schwarz-Christoffel
mapping. We must, however, take notice of two special cases in which the
solution is not completely determined by egs. (2.4). It was remarked that
if Pis bounded, then nowhere in eqgs. (2.4) does the point wy—; appear. If
BNn—154—1 or O, then this omission is of no consequence, for the geometry
of the problem forces wy—; to be correct. If Ay—; = 0 or -1, however, then
wn—1 1S NOt determined a priori. The former case is of little consequence,
for since fn—1 = 0 the value taken for zy—; has no effect on the computed
mapping, as may beseen in (1.4), nor is there any purpose in including wn—i
among the vertices of P in the first place. (Still, there may be problems
in solving the system (2.4) numerically, for it is now underdetermined.)
The latter case, fn—1=—1, ismore serious, and must be avoided in the
numbering of the vertices wy.

2. Transformation to an unconstrained system (subroutine YZTRAN)

The nonlinear system (2.4) ostensibly involves N — 1 complex unknown
points zi,...,zy—; on the unit circle, In dealing with such a system, we
naturally begin by considering not the points 2, themselves, but their argu-
ments 6k, given by

ze=¢e%  0<f <2r. (2.5)

Now the system depends on N — 1 real unknowns, and the solution in terms
of the 0k is fully determined.
However, the system (2.4) as it stands must be subject to a set of strict

9



Figure 2.1 - Contours of integration within the disk. A sample Schwarz-
Christoffel problem is shown with N = 10 vertices of which m = 3 vertices are
at infinity, illustrating what integrals are computed to evaluate the system (2.4):

e 1 radial integral along (0 — 2¢) defines C (eq. 2.3)

e lradial integral along (0 — 2;) determines two real equations to fix w; (eq.
2.4a)

e 2 radial integrals along (0 — z5) and (0 — 27) determine four real equations
to fix ws and wy (eq. 2.4b)

o 3 chordal integrals along (23 —24), (24 — 25), and (g — 2;¢) determine three
rcal equations to fix |wy — wy|,[ws — wy, and  |wyo — wy| (eq. 2.4c)

TOTAL: N — 1 = 9 real equations

10



incquality constraints,

0 <O < Oky1 I1I<k<N-—-1, (2.6)

which embody the fact that the vertices 2 must lie in ascending order coun-
tcrclockwise around the unit circle. To solve the system numerically, it is
desirable to eliminate these constraints somehow. We do this by transform-
ing egs. (2.4) to asystem in N — 1 variables yy, . . . . yn—1, defined by the
formula

w=log k=%l i ckaN—1, (2.7)
Ok+1— Ok
where 6y and 6, two different names for the argument of zy = 1, are taken
for convenience as 0 and 2w, respectively.

At each iterative step in the solution of the nonlinear system (2.4),
we begin by computing a set of angles {6} and then vertices {z} from
the current trial set {yx}. This is easy to do, though not immediate since
the equations (2.7) are coupled. In this way the problem is reduced to one
of solving an unconstrained nonlinear system of equations in N — 1 real
variables.

3. Integration by compound Gauss-Jacobi quadrature (subroutine ZQUAD)

The central computation in solving the parameter problem, and indeed
in al Schwarz-Christoffel computations, is the numerical evaluation of the
Schwarz-Christoffel integral (1.4) along some path of integration. Typically
onc or both endpoints of this path are prevertices # on the unit circle, and
in this case a singularity of the form (1 —z/z)# is present in the integrand
at one or both endpoints.

A natural way to compute such integrals quickly is by means of Gauss-
Jacobi quadrature (see [Davis & Rabinowitz, 1975, p. 75). A Gauss-Jacobi
quadrature formula is a sum ):fZTSw.-f(x,-), where the weights w; and
nodes «; have becn chosen in such a way that the formula computes the
integral ffll f(z)(1 — z)°(1 + z)? dx exactly for f(z) a polynomial of as
high a degree as possible. Thus Gauss-Jacobi quadrature is a generalization
of pure Gaussian quadrature to the case where singularities of the genera
form (1 —z)%(1 + z)? (a, # > -1) are present. The required nodes and
weights can be computed numerically; we have used the program GAUSSQ
by Golub and Welsch [Golub & Welsch,1969] for this purpose.
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Gauss-Jacobi quadrature appears made-to-order for the Schwarz-Chris-
toffel problem, and at least two previous experimenters have used it or or
a closely rclated technique ([Howe,1973], [Vechesavov & Kokoulin,1973]).
We began by doing the same, and got good results for many polygons with
a small number of vertices, In general, however, we found this method of
integration very inaccurate. For a typical sample problem with N = 12
and NPTS = 16, it produced integrals accurate to only about 10—2, and
it does much worse if one chooses polygons designed to be troublesome.

What goes wrong is a matter of resolution. Consider a problem like the
one shown in Figure 2.2, We wish to compute the integral (1.4) along the
scgment from 2, to some point p. (In the parameter problem p might be O or
zx—y; in later computations it might be any point in the disk.) Now direct
application of a Gauss-Jacobi formula will involve sampling the integrand
at only NPTS nodes between 2z and p.If the singularity 2. is so close to
the path of integration that the distance ¢ = |z — %/ is comparable to
the distance between nodes, then obvioudly the Gauss-Jacobi formula will
yicld a very poor result. It turns out that in Schwarz-Christoffel problems
the correct spacing of prevertices 2z, around the unit circle is typically very
irrcgular, SO the appearance Of this problem of resolution is the rule, not
the cxccption. (See examples in V.)

To maintain high accuracy without giving up much speed, we have
. switched to a kind of compound Gauss-Jacobi quadrature (see [Davis &
Rabinowitz, 1975], p. 56). We adopt, somewhat arbitrarily, the following
guadrature principlc:

No singularity z shall lie closer to an interval of
integration than half the Jength of that interval,

To achieve this goal, the quadrature subroutine ZQUAD must be able to
divide aninterval of integration into shorter subintervals as necessary, work-
ing from the endpoints in. On the short subinterval adjacent to the endpoint
Gauss-Jacobi quadrature will be applied; on the longer interval (or intervals)
away from the endpoint pure Gaussian quadrature will be applied. The
effect of this procedure is that number of integrand evaluations required to
achicve a given accuracy is reduced from O(4) to O(log, 1)

Figure 2.2 shows the intervals of integration that come into play in
compound Gauss-Jacobi quadrature. For a plot comparing the accuracy of
simple and compound Gauss-Jacobi quadrature in another typical problem,
see IV.1.
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Zk+1
z IE

Figure 2.2 - Compound Gauss-Jacobi quadrature. Division of an interval
of integration into subintcrvals to maintain desired resolution.

With the use of compound Gauss-Jacobi quadrature, we now achieve
high accuracy in little more than the time that direct Gauss-Jacobi quad-
rature takes. This is possible because only a minority of integrals have a
singularity close enough that subdivision of the interval of integration is re-
quired. In the 12-vertex example mentioned above, the switch to compound
Gauss-Jacobi integration decrcased the error from 10—2t0 2.107,

There remains one circumstance in which integration by compound
Gauss-Jacobi quadrature as described here is unsuccessful. This is the case
of an integration interval with one endpoint quite near to some prevertex
2, corresponding to a vertex wg = oo. We cannot evaluate such an integral
by considering an interval which begins at z, for the integral would then
be infinite. The proper approach to this problem is probably the use of
integration by parts, which can reduce the singular integrand to one that
is not infinite Depending on the angle Fk, one to three applications of in-
tegration by parts will be needed to achieve this. We have not implemented
this procedure.

The subtlety of the integration problem in Schwarz-Christoffel com-

putations is worth emphasizing. It is customary to dispatch the integration
problem as quickly as possible, in order to concentrate on the “difficult” ques-
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Gions: computation of accessory parameters and inversion of the Schwarz-
Christoffel map. We believe, however, that the more primary problem of
computing Schwarz-Christoffel integrals-the “forward” problem-should
always remain a central concern. Any numerical approach to the parameter
problem or the inversion problem is likely to employ an iterative scheme
which depends at each step on an evaluation of the integral (1.4), and so
the results can only be as accurate as that evaluation.

4. Solution of system by packaged solver (subroutine SCSOLV)

The unconstrained nonlinear system is now in place and ready to be
solved, For this purpose we employ a library subroutine: NSOIA, by M.J.D.
Powell ([Powell, 1968}y hichuses a steepest descent search in early itera-
tions if necessary followed by a variant of Newton's method later on. (The
routine does not usc analytic derivatives.) It is assumed that a variety of
other routines would have served comparably well,

Wc rnake no attempt to tailor the numerical solution procedure to the
particular Schwarz-Christoffel problem under consideration, In particular,
all iterations begin with the trivia initia estimateyy, =0 (1 <k< N —
1). This corresponds to trial vertices spaced evenly around the unit circle.
. The following input parameters to NSOIA have generaly remained fixed:
DSTEP=10"2 (stcp size uscd to estimate derivatives by finite differences),
DMAX = 10 (maximum step size), MAXFUN = 15(N — 1) (maximum
number of iterations).

A fourth paramcter, EPS, defines the convergence criterion-how large
a function vector (square root of sum of sguares of functions values) will
bc considercd to bc satisfactorily close to zero. We have most often taken
10— or 10— here. The choice of EPS is not very critical, however, as
convergence in NSOIA is generally quite fast in the later stages.

In the course of this work about a hundred Schwarz-Christoffel trans-
formations have been computed, ranging in complexity from N = 3 to
N = 18, NSOIA has converged successfully to an accurate solution in all
of these trials. Section V.1 gives a series of plots showing this convergence
graphically for a simple example,

14



III. COMPUTATION OF THE S-C MAP AND ITSINVERSE

Dctermining the accessory parameters is the most formidable task
in computing numerical Schwarz-Christoffel transformations, Once this is
done, evaluation of the map and of its inverse follow relatively easily. The

foundation of these computations continues to be compound Gauss-Jacobi

guadrature.

1. From disk to polygon: w = w(z) (subroutine WSC)

To evaluate the forward map w(z) for a given point z in the disk or on
the circle, we must compute the integral

z N N —B;
w = %+O/ZOJI=II(1—;J_) d (3.1)

with wy = w(z), where the endpoint 2 may be any point in the closed disk
at which the image w(z) is known and not infinite. Three possible choices
for z suggest themselves-

(1) 20 = 0; hence wp = w

(2) 20 = 2z for some k; hence wy = wy, a vertex of P;

(3) 20 = some other point in the disk at which w has previously been
computed.

In cascs (1) and (3), neither endpoint has a singularity, and an evaluation of
(3.1) by compound Gauss-Jacobi quadrature reduces to the use of compound
Gauss quadrature. In case (2) a singularity of the form (1 — z/z) ¥ is
present at one of the endpoints and the other endpoint has no singularity.

15




The best rule for computing w(z) is: if z is close to a singular point z
(but not one with wg = 00), use method (2); otherwise, use method (1). In
either case we employ compound Gauss-Jacobi quadrature, taking normally
the same number of nodes as was used in solving the parameter problem.
By this procedure wc evaluate w(z) readily to “full” accuracy-that is, the
accuracy to which the accessory parameters have been computed, which is
dircctly related to the number of points chosen for Gauss-Jacobi quadrature
(see IV.1). Quadrature nodes and weights need only be computed once, of
course.

We should emphasize that even in the vicinity of a singularity 2, the
evaluation of the map w = w(z) is inherently very accurate. This very
satisfactory treatment of singular vertices is a considerable attraction of
the Schwarz-Christoffel approach for solving problems of Laplace type.
In particular, in a potential problem the Schwarz-Christoffel transforma
tion “automatically” handles the singularities correctly at any number of
rcentrant corners,

2. From polygon to disk: z = z{w) (subroutine ZSC)

For computing the inverse mapping z = x(w) at least two possibilities
cxist, both of them quite powerful, The most straightforward approach is
to view the formula w(z) = w as a nonlinear eguation to be solved for z,
given some fixed value w. The solution may then be found iteratively by
Newton's method or a related device, w(z) should be evaluated at each step
of such a process by compound Gauss-Jacobi quadrature along a straight
line segment whose initia point remains fixed throughout the iteration.

An aternative approach is to invert the Schwarz-Christoffel formula,

N —P
dw z
o= cg(l—z—k) ,

to yield the formula

N ~+Bx
dz 1 z
— — l I —— . 3.
dw C (1 zk) 5.2

This inversion is possible because w = w(z) is a conformal mapping, which
means |[dw/dz| > 0 everywhere. (3.2) may now be thought of as an ordinary
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differential equation (o.d.e.),

£ = gwa), (3.3)

in one complex variable w. If a pair of values (%, wp) is known and the new
vaue z = z(w) is sought, then z may be computed by applying a numerical
o.d.e. solver to the problem (3.3), taking as a path of integration any curve
from wp to w which lies within the polygon P.

In our program we have chosen to combine these two methods, using the
second method to generate an initial estimate for use in the first. We begin
with the o.d.e. formulation, using the code ODE by Shampine and Gordon,
and for convenience we integrate whenever possible along the straight line
segment from w, to w. (ODE, like most o.d.e. codes, is written for problem6
in real arithmetic, so that we must first express (3.2) as a system of first-
order o.d.e.'s in two rea variables.) Since P may not be convex, more than
one line secgment step may be required to get from wp to w in this way. It
will not do to take wy = wy for some vertex wg without special care, because
(3.2) is singular at wg.

From ODE we get a rough estimate # of z(w), accurate to roughly 102,
This estimate is now used a6 an initial guess in a Newton iteration to solve
the equation w(z) = w. This method is faster than the o.d.e. formulation for
getting a high-accuracy answer, More important, it is based on the central
Gauss-Jacobi quadrature routine, unlike the o.d.e. computation.

In summary, we compute the inverse map z=z(w) rapidly to full
accuracy by the following steps:

(1) Solve (3.2) to low accuracy with package ODE, integrating when-
ever possible along the line segment from w, to w; call the result
z;

(2) Solve the equation w(z) = w for z by Newton's method, using 2
ab an initial guess.
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V. ACCURACY AND SPEED

1. Accuracy

The central computational step is the evaluation of the Schwarz-Chris-
toffel integral, and the accuracy of this evaluation normally determine6
the accuracy of the overall computation. A6 a consequence of the quadra-
ture principle adopted in II.3—that no quadrature interval shall be longer
than twice the distance to the nearest singularity z—the compound Gauss-
Jacobi formulation achieve6 essentially the full accuracy typical of Gaussian
guadrature rules operating upon smooth integrands. That is, the number of
digits of accuracy is closely proportional to NPTS, the number of quadrature
node6 per haf-interval, with a very satisfactory porportionality constant in
practice of approximately 1.

It is important not only to be capable of high accuracy, but to be
able to measure how much accuracy one has in fact achieved in a given
computation, To do this we employ a subroutine TEST, which is regularly
called immediately after the parameter problem is solved. Given a computed
set of accessory parameter6 C and {z} , TEST computes the distances
wx — we| for each wy 5% 00 and the distances |wg—; — wg+i1| for each
wg =00, making use of the standard subroutine ZQUAD for compound
Gauss-Jacobi quadrature. The numbers obtained are compared with the
cxacf distance6 specified by the geometry of the polygon, and the maximum
error, RADEMX, is printed as an indication of the magnitude of error6 in
the converged solution. It is now probable that subsequent computations of
w(z) or z(w) will have errors no greater than roughly RADEMX,

Most often wc have chosen to use an 8-point quadrature formula. Since
cach interval of integration isinitialy divided in half by subroutine ZQUAD,
this mcan6 in reality at least 16 node6 per integration. With this choice
RADEMX consistently haé magnitude ~10~8 for polygons on the scale of
unity.

Figure 4.1 gives an indication of the relationship between number of
guadrature node6 and error RADEMX; it shows RADEMX a6 a function of
NPTS for a 6-gon which is shown at the top of the next page. Two curve6
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are shown: one for simple Gauss-Jacobi quadrature, and one for compound
Gauss-Jacobi quadrature. The exact quantities here should not be taken too
seriously; examples could easily have been devised to make the difference in
performance of the two quadrature methods much smaller or much greater.

2. Speed

Any application of Schwarz-Christoffel transformations consists of a
sequence of steps:
INIT - set up problem
QINIT - compute quadrature nodes and weights
SCSOLY - solve parameter problem
TEST - estimate accuracy of solution

ZSC, WSC, etc. — compute forward and inverse transformation6 in
various applications

Among these tasks INIT, QINIT, and TEST all take negligible amounts
of time relative to the other computations: typically less than 0.1 secs. on
the IBM 370/168 for INIT and QINIT, and for TEST avariable time that
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o012 L

Figure 4.1 - Quadrature accuracy as a function of number of nodes.
The error estimate RADEMX is plotted as a function of NPTS for the
polygon shown on p. 19. The upper and lower curves correspond to
simple Gauss-Jacobi and compound Gauss-Jacobi quadrature, respec-
tively.
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is usually less than 5% of the time required by SCSOLV, What remains are
three main time consumers. SCSOLV, ZSC, and WSC.

We begin with WSC, which performs the central evauation of (1.4)
by compound Gauss-Jacobi quadrature. This evaluation takes time propor-
tional to NPTS (the number of quadrature nodes) and to N (the number of
vertices). The first proportionality is obvious, and the second results from
the fact that the integrand of (1.4) is an N-fold product. Very roughly, we
may estimate

timeto solvew =w(z):  0.25: NPTS ‘N msec. (4. 19)

for double precision computations on the IBM 370/188. Taking a typical
value of NPTS=_8, which normally leads to &digit accuracy, (4.1a) may be
rewritten

time to solve w = w(z) : 2N msec. ] (4. 1b)

For the minority of cases in which the interval must be subdivided to
maintain the required resolution, these figures will be larger.

To estimate the time required to solve the parameter problem, we com-
bine (4.1) with an cstimate of how many integrals must be computed in the
course Of solving this problem. To begin with, at each iteration about N
intcgrals arc required by NSO1A (the exact number depends on the number
of vertices at infinity). On top of this, it is a fair estimate to say that 4N
iterations will be required by NSOIA to achieve a high-accuracy solution.
We are therefore led to the estimate

time to solve parameter problem: NPTS + N® msec. (4.2a)

or, taking again NPTS=S8,

timeto solve parameter problem:  8N® msec. (4.2b)

These estimates correspond fairly well with observed computation times
for the parameter problem: two problems with N =5 and N = 18 may
be expected to take about 1 and 50 seconds, respectively. It is clear that
computing a Schwarz-Christoffel transformation becomes quite a sizeable
problem for polygons with more than ten vertices, In particular, such com-
putations are much too time-consuming for it to be practical to approximate
a curved domain by a polygon with a large number of vertices.
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Finally, we must consider the time taken by subroutine ZSC to invert
the Schwarz-Christoffel map. This too is proportional to NPTS, and quite
problem dependent. We estimate very roughly:

time to solve z = z(w) : NPTS + N msec. (4.3a)

or, with NPTS=S,

time to solve z = 2(w) : 8N msec. (4.3b)

Note that inverting the Schwarz-Christoffel map is only about four
times as time-consuming as computing it in the forward direction.

In practice, computational applications will vary considerably in the
use they make of a Schwarz-Christoffel transformation once the parameter
problem is solved. If only a few dozen applications of ZSC or WSC are
required, then the computational time for solving the parameter problem
will dominate. If thousands of such computations are needed, on the other
hand, then the parameter problem may become relatively insignificant. The
latter situation is most likely to hold when plotting is being done, or when
a high-accuracy solution in the model domain is to be computed by means
of finite differences.

In summary, high accuracy is cheap in Schwarz-Christoffel transfor-
mations, what consumes time is solving problems involving a large number
of vertices.
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V. COMPUTED EXAMPLES AND APPLICATIONS

1. Iterative process for a single example

Figure 5.1 shows graphically the process of convergence from the ini-
tial estimate in an example involving a 4-gon. Routine NSO01A begins by
evaluating the function vector (2.4) at the initial guess, then at each of
N — 1 input vectors determined by perturbing the initial guess by the small
guantity DSTEP in each component, As a result, the first N pictures always
look almost alike, which is why the series shown begins at NEVAL==4 rather
than NEVAL==1. Each plot shows the current image polygon together with
the images of concentric circles in the unit disk (which appear as “contours’)
and thc images of radii leading from the center of the disk to the current
prever t ices z.

These pictures have a beautiful bonus feature about them: they may
be interpreted as showing not only the image polygon but simultaneously
the domain disk, including the prevertices z along the unit circle. To see
this, look at one of the inner “contour” curves, one which is apparently
circular, and the radii within it. Since w = w(z) is a conforma map within
the interior of the disk, the radii visible in this circle must intersect at the
same angles as their preimages in the domain disk, Thus the inner part of
any one of these image plots is a faithful representation on a small scale of
the circular domain, We see in Figure 5.1 that the prevertices are equally
spaced around the unit circle initially (NEVAL =4), but move rapidly to
a very uneven distribution. This behavior, which is typical, indicates why
the usc of a compound form of Gauss-Jacobi quadrature is so important (see
rr.3).

The sum-of-squares error in solving the nonlinear system is plotted as
a function of iteration number in Figure 5.2, for the same 4-vertex example,
Convergence is more or less quadratic, as one would expect for Newton's
method. The irregularity at iteration 19 is caused by the finite difference
step size of 1078 used to estimate derivatives, and would have been repeated
at each alternate step thereafter if the iteration had not terminated.
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Figure 5.1 - Convergence to a solution of the parameter problem. Plots
show the current image polygon at each step as the accessory parameters
{2} and C are determined iteratively, for a problem with N = 4.
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2. Sample Schwarz-Christoffel maps

Figures 5.3 and 5.4 show plots of computed Schwarz-Christoffel maps
for representative problems. The polygons of Figure 5.3 are bounded and
those of Figure 5.4 are unbounded, Observe that contour lines bend tightly
around reentrant corners, revealing the large gradients there, while avoiding
the backwater regions near outward-directed corners and vertices at infinity.
Like the plots of Figure 5.1, these may be viewed as showing simultaneously
the image polygon and the domain disk.

Figure 5.5 shows similar plots in which streamlines rather than con-
tour lines have been plotted, so that the configuration may be thought of
as portraying ideal irrotational fluid flow through a two-dimensional chan-
nel. To plot these streamlines an analytic transformation of the disk to an
infinite channel with straight parallel sides was used in conjunction with the
Schwarz-Christoffel transformation from the disk to the problem domain.

3. Laplace’s equation

Conformal maps do not solve problems, but they may reduce hard
problems to easier ones. How much work must be done to solve the easier

problem will vary considerably with the application.

(1) In tk ds o Eircumstances, the original problem may be reduced
to amodcl problem whose solution is known exactly. This is the
case in the fluid flow problems of Figure 5.5, in which a crooked
channel may be mapped to an infinite straight channel of constant
width.

(2) If aproblem of Laplace's equation with pure Dirichlet or Neumann
boundary conditions can be mapped conformally to a disk, then
Poisson’s formula or Dini's formula [Kantorovich & Krylov, 1958]
provide integral representations of the solution at each interior
point. Such integrals may be evaluated readily on the computer
to yield high accuracy solutions. The primary disadvantage of
this approach is that a new integral must be evaluated for each
point at which the solution is desired.

(3) If the solution will be required at many points in the domain,
then it is probably more efficient to solve Laplace' s equation by
a trigonometric expansion of the form ap - Z;"___l r’°(a;c sin k§ -
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by, cob ka); coefficient6 ax and b, ar e selected 60 as to fit the boundary
conditions closely. A disadvantage of this method is that conver-
gence of the expansion may be slow if the boundary conditions
are not smooth,

(4) Finaly, if simpler methods fail, a solution in the model domain
may be found by a finite-difference or finite-element technique.
For problems of Poisson’ s equation or more complicated equations
this will probably normally be necessary,

Figure 5.6 presents an example of type (1). We are given an infinite
region bounded by one straight boundary fixed at potential ¢ == 0 and one
jagged boundary fixed at ¢ = 2. We may think of this as an electrostatics
problem. The central question to be answered computationally will be: what
are the voltage ¢ and the electric field E' = —Vp at a given point, either
within the field or on the boundary?

We proceed by mapping the given region onto the disk by a Schwarz-
Christoffel transformation, then analytically onto an infinite straight chan-
nel (as in the examples of Figure 5.5). In the straight channel ¢ and E' are
known trivially, and this information may be transferred to the problem
domain through a knowledge of the conforma map that connects them and
of its (complex) derivative. We omit the details, which are straightforward.

Figure 5.6b shows |E| as a function of z on the upper and lower bound-
aries of the region. To see more of the behavior of the solution field near
a reentrant corner, we also compute the field at three points near 3 - 1.5¢.
These results are given in Figure 5.6c.

4. Poisson’s equation

Consider the ‘I-sided region shown in Figure 5.7a. We wish to solve
Poisson’ 6 equation

l .
Adlz,y) =5 sn2x(1—2y+1)")
on this region subject to Dirichlet conditions
1 .
$(z, y) = p(z, y) = 75 sin 2y + 1)’

on the boundary. We proceed by mapping the domain to the disk and
solving a transformed problem in the disk in polar coordinates by mean6 of
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ELECTRIC FIELD STRENGTH

Imw= 2 AN

341,51
Imw= 0
(a) Problem domain: region between two
conducting sheets
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1.5 — \ )

- = 3
1.0 —————=— a —
0.5 =
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X

(b) Field strength along the top boundary
(solid line) and bottom boundary (broken

line)

w ¢ |E| arge/m
3.1 +1.4 i 1.7564 1.3082 -.3823
3.01 +1.49 1 1.9486 2.4403 -.2833
3.001+1.4991 1.9889 5.2137 -.2572
3.000+1.5004 2.0000 L -.2500

(c) Computed potential and field strength at
three points near 3 +1.5i

Figure 5.6 — Laplace equation example: electric
potential and field between two infinite sheets.
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a second-order fast finite difference solver (PWSPLR, by P. Swar ztrauber
and R. Sweet), p(z, y) is the correct solution in the interior as well as on the
boundary, so we can determine the accuracy of the numerical solution.
This is not as satisfactory a procedure as was available for Laplace
equation problems, According to (1.2), the model problem here is Poisson’s
equation in the disk with an atered right hand side containing the factor
|/'(2)|?, where f is the composite map from the disk to the 7-gon. Two
difficlutics arise. The first is that to set up the transformed equation in the
disk, p(w;;) must be computed for every w;; = w(z;) which is an image of
a grid point in the disk, This is time consuming, one hundred times more
so in this experiment than the fast solution of Poisson’s equation once it
is set up. Second, |f'(2)|? is singular (unbounded, in this example) at each
prevertex z, and this appears to interfere with the second-order accuracy
which we would like to observe. The table in Figure 5.7b attests to both of

these problems.

5. Eigenfrequencies of the Liaplace operator

Petter Bjgrstad (Computer Science Dept., Stanford University) has
recently combined the present Schwarz-Christoffel computation with a fast
finite-difference scheme to successfully compute eigenvalues and eigenvec-
tors of the Laplacian operator on polygonal regions. These results may be
interpreted as giving the normal modes and frequencies of a thin membrane
in two dimensions, or of a three-dimensional waveguide with constant cross-
section. This work will be reported elsewhere.
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including image of 16x32

Transformation
Grid and setup Fast Poisson
(rx8) time solver time Max. error RMS error
4x8 1.3 secs. <,01 secs. 0.132 0.0309
8x16 2 secs. .01 secs. 0.055 0.0085
16x32 5 secs. .03 secs. 0.031 0.0037
32x64 16 secs. .15 secs. 0.026 0.0012

(b) Computed results for four different grids,
estimates are for an IBM 370/1€8.

Figure 5.7 — Poisson equation example.
transplanted conformally to the unit disk and solved

by finite differences.
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VI. CONCLUSION

A program has been described which computes accurate Schwarz-Chris-

tofTel transformations from the unit disk to the interior of a simply connected
polygon in the complex plane, which may be unbounded. Key features of

the computation have been:

(1) Choice of the unit disk rather than the upper half plane as the
model domain, for better numerical scaling (II.1)

(2) Use of complex contour integrals interior to the model domain
rather than along the boundary, making possible the treatment
of unbounded polygons (11.1)

(3) Use of compound Gauss-Jacobi quadrature in complex arithmetic
to evaluate the Schwarz-Christoffel integral accurately (II.3,III. 1)

(4) Formulation of the parameter problem as a constrained nonlinear
system in N — 1 variables (II.1)

(5) Elimination of constraints in the nonlinear system by a simple
variable transformation (11.2)

(6) Solution of the system by a packaged nonlinear systems solver;
no initial estimate required (IE.4)

(7) Computation of a reliable estimate of the accuracy of further
computations, once the parameter problem has been solved (IV.1)

(8) Accurate evaluation of the inverse mapping in two steps by means
of a packaged o.d.e. solver and a packaged complex rootfinder
(IL.2)

Previous cfforts at computing Schwarz-Christoffel transformations nu-

merically include [Cherednichenko & Zhelankina, 1975], [Hopkins & Rob-
erts, 1978], [Howe, 1973], [Meyer, 1979, and [Vecheslavov & Kokoulin,
1973]. The present work differs from these in that it deals directly with
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complex arithmetic throughout, taking the unit disk rather than the upper
half planc asthe model domain and evaluating complex contour integrals.
This makes possible the computation of transformations involving genera
unbounded polygons. (Cherednichenko & Zhelankina [1975] also treat un-
bounded polygons, by a different method.) Two other important differences
are the use of compound Gauss-Jacobi quadrature, and the application of
a change of variables to eliminate constraints in the nonlinear system ( (5),
above). Wc believe that our program computes Schwarz-Christoffel trans-
formations faster, more accurately, and for a wider range of problems than
previous attempts.

A variety of directions for further work suggest themselves. Here are

some of them:

(1) More attention should be paid to the problem of inverting the
Schwarz-Christoffel map. The two-step method described in 111.2

isonly one of many possibilities.

(2) The program could easily be extended to construct maps onto the
exterior of a polygon—that is, the interior of a polygon whose
interior includes the point at infinity. This extension would be
necessary for applications to airfoil problems.

(3) It should not be too great a step to raise the present program to the
level of “software” by packaging it flexibly, portably, and robustly
enough that naive users could apply it to physical problems.

(4) The program might be extended to handle the rounding of corners
in Schwarz-Christoffel transformations [Henrici, 1974]. What about
mapping doubly or multiply connected polygonal regions, per-
haps by means of an iterative technigue which computes an S-C
transformation at each step? What about applying S-C transfor-
mations to eliminate corners in the conformal mapping of curved
domains?

Most important, further work is needed in the direction of applications
to Laplace’s equation, Poisson’s equation, and related problems. Irregular
or unbounded domains are generally troublesome to deal with by standard
techniques, particularly when singularities in the form of reentrant corners
arc present. Schwarz-Christoffel transformations offer a means of getting
around such difficulties in a natural way. Much more experience is needed
here.
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APPENDIX: PROGRAM LISTING

The boundaries of this program are not sharply defined, for the configu-
ration changes according to what applications are being treated. The present
listing includes only the core routines used to solve the parameter problem
and to evaluate the Schwarz-Christoffel function and its inverse,

An cxperimental copy of the package may be obtained in machine-
readable form from the author,

Control program:
SC

Set-up:
INIT initializes variables and reads input data
QINIT computes quadrature nodes and weights

Solution of parameter problem:

SCSOLV controls solution of parameter problem
YZTRAN transforms to an unconstrained system
SCFUN sets up the nonlinear system to be solved
SCOUTP prints output from SCSOLV

TEST estimates accuracy of computed solution

Compound Gauss-Jacobi quadrature:
ZQUAD divides the integral into two halves
ZQUADI evaluates the half-integral (compound)
DIST finds the distance to the nearest singularity
ZQSUM sums a Gauss-Jacobi quadrature rule

Forward and inverse S-C map:
WSC evauates map from disk to polygon
ZSC evauates map from polygon to disk
ZFODE computes initial estimate
ZNEWT inverts map by Newton’s method

Miscellaneous routines:
ZPROD evauates N-fold Schwarz-Christoffel integrand
FINITE returns “truc” if the argument is finite
ENTER begins timing of the current subroutine
EXIT concludes timing of the current subroutine
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Library routines not listed:
GAUSSQ (Golub&Welsch) computes Gauss-Jacobi nodes and wts
(called by QINIT)

NSO1A (Powell) solves the nonlinear system
(called by SCSOLV)

ODE (Shampine & Gordon) solves the inverse mapping problem
(called by ZSC)
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THZ3 PP GPAY COMPUIES THE SCHWARZ-CHRISTOFFEL TEANSPORMATION
WHICH STNDs THE UNIT DISK TO THE INTERIOR JOF THE PCLYGON
W(',..., (N). THIS MAPPING IS OF THE FORN:

2 N
W = dC + C e INT PROD(1-2/Z(K) )**BETAN (K) DZ . 21
k=1

TC SCLVE THZ PRUBLEM WE BEGIN BY PINDING THE ACCESSORY PARAMETERS
-- VEZRTTCPS Z (K) AND CONSTANT C -~ POR THE MAP OF (1). THIS IS DONE
BY SUBRCUTINE SCSOLY.

THT TIMAGE POLYGON BAY BE UNBOUNDED; PERMITTED ANGLES LIE IN THE
PANGE -3.1%.3ETAM(K).LE,1. W(N) AND W (1) MUST BE FINITE,
WE N7RMALIZZ BY THE CONDITICNS:

Z(N) = 1 2. 1)
W(0.C) = WC (A POINT IN THE INTERIOR OF THE PCLYGON) (2.2)
NOTATION:

W(K) - VERTEX K 2F THE IMAGE POLYGON
7Z(Ky - POINT GN THE OUNIT DISK NAPPED TO U(K)
3ETAM (K} - NEGATIVE JF EXTEFIOR ANGLE AT W (K) DIVIDED BY PI
N - NUMBER OF VERTICES W (K)
NY = ¥-1 - NUMBER JF UNKNOWN POINTS: Z (1 ,...,%Z(N-1)
NPTSQ - NUMBER CP POINTS PCR GAUSS-JACOBI QUADRATURE
ZTNP - COMPLEX INPINITY

ICTAL SCUTINES:

SC - MATN PROGERAM
TNIT - TNITIALIZES CONSTANTS AND DEPINES PROBLEN
QTNIT =~ CZOMPUTES QUADRATNRE NODES AND WEIGHIS
SCSOLY - CGMPUTES ACCESSOREY PARAMETERS POR S-C MAP (1)
YZTRAN - TRANSPDRMS UNKNOWNS FROM Y(K) TO 2(K)
S CPUN - NONLINBAR SYSTEM OF RQUATIONS TO BE SCLVED BY SCSOLV
SCAUTP - PRINTS OUTPUT PRGM SCSOLV
WST - C7MPUTES U(2)
zsc - COMPUTES Z (W)
PLTCON - DRAYS PLOTS CF INAGE POLYGON WITH CONTOURS
ZPFND - COMPUTES N-F2LD PRODUCT IN (1)
70TAD - 30M3 TO EVALUATE INTEGRAL BY GAUSS-JACOBY QUADRATURE
PINITE - BETURNS TRUE |F ARGUMENT IS FINITE

LIRFARY ROUILINEBS RBQUIRED: NSO01A GAUSSQ, ODB
L.N, TRTFETHEN JANUARY, 1978

IMPLICIT REAL*8 (A-B,D-H,0-V,X-Y) COMELEX*16 (C,N,2)

ccv¥oN /SCys WC,W (20) ,BETAX (20) ,C,2Z(20),N,NM,NE
CMMAON /CCNSTS/ PI,TWOPI,ZERO, ZINF,EPS

FEAL*8 CDABS

SET UP PRCBLEM:
EPS = 1.D-8
CALL INIT

COMPUTE NODES AND WEIGHTS POR PARANETER PROBLEN:
NPTSQ = 8
CALL OINIT (NPTSQ)
SCLVE PARAMETER PROBLEM:
IPRINT = 1
CALL SCSOLV (NM,IPRINT)

TEST ACTUPACY OF SOLUTION:
CALL TEST

DPAW CONTCUR PLOT OP SOLUTION:
CALL PLTCUN

103 TCNTINUE

STOP 1
END
//G3.SYSIN DD *
7 N
.0 ] uc
2. 0. 99.
2. 8. -.5
1.370 1.070 -1.
=.2 -2. -.5
-.2 -1. 99.
.7 -2.5 93.
.8 -2.7 99,
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C* INIT PRIMARY SUBROUTINE e *
CH*¥SE XA R AEX XXX XEREERE RS EEREE SR NS BN S S XSS LR BRI SRR AR R EEE SRR R R S &
c

SUBRJOUTINE INIT
c
C INITIALIZES CONSTANTS IN /CONSTS/ AND PROBLEM DEFINITION
C PARANBTERS IN /SC/., DATA POE TH2Z GECMETEY OF THEF PROBLEX
C IS RBAD IN PROM ONIT S.
c

IMPLICIT REAL*8(A-B,D-H,C-V,X~-Y), CCMPLEX*16(C,¥#,Z)

LOGICAL PINITE

CCMPLEX®16 DCMPLX

COMMON /SC/ WC,¥(20) ,BETAM(20) ,C,Z(20),N,NN,NP

CONMON /CONSTS/ PI,TWOPI,ZERO,ZINF,ERES

COMMON /GEOM/ KPIX{(20) ,KEAT (20) ,NCONE

DATA SBNAFEE /'INIT'/

CALL ENTEE (SBNANE)

C 3BT CZINSTANTS:
PI = 3.14159 26535 89793 23 DO
TWOPI = PI e 2.D0
Z2RC = (0.D0,0,D0)
ZINKF = (1.D070,1.D70)

a0

READ INPUT PARAMETERS:
READ (5,201) K
Ny =N-1
NP = N¢1
Z(M = (1.00,0,D0)
READ (5,202) WC
R3AD (5,203) (W (K),BETAX(K) ,K=1,N)

T IJEPUTE ANGLES S REQUIRED (WHERE VALUE INPUT IS 99,0):
DO1) K = 1,N
IP (3ETAM (K).NB.99.D0) GCTO 10
KM = NOD(R+N-2,N) ® 1
KP = MID (K,N)+1
3ETAN(K) = DIMAG(CDLOG( (W (KM)-W (K))/(W(KP)-W(K))))/PI — 1.DO
IP (BETA®(X).LE.-1.D0) BETAM(K) = BETAM(K) e 2.DO
10 CONTINOE

[«
C CHECK PCP® varlous | NPUT EFRORS:
S0M = 0.DO
DOV K = 1,N
1 SUN = SUM e BRETAN(K)
IF (DABS (SU™+2.D0) .LT.EPS) GOTO 2
WRITZ (6,30 1)
SICP 2
2 |F (PINITE(W( 1)) GOTO 3
WRITZ (6,302)
5TOP 2
3 IF (PINITE(W(N))) GOTO 4
4RITEZ (6,303)
STOP 2
4 TP (SETAM(N¥).NE.0.DQ) GCTO S5
WRITE (6,304)
5 IF (BETAM (N%).NE,1.D0) GCTO 20
YR TE (6, 305)
sTOP 2
-
T DZT3IBMINZ NUMBER OF BOUNLDARY COMPONENTS, ETC.:
o PASS 1: ONE FIXED POINT POE EACH INFINITE VERTEX:

20 NCOMP = 0
DO 21 K = 2,N%
IP (FINITE(W(K)))} GOTO 21
NCOMP = NCCMP o 1
KPIX (NCONP) = K - 1
IF (NCOMP.EQ., 1) KPIX(NCOME) = 1
21 CONTINUE
IP (NCONMP.GT.0) GOTO 22
NCOMP = 1
KPIX (NCONP) = 1
[ PASS 2: ONE RATIO POR EACH LINE SEGHNENT:
22 CONTINUE
NEQ= 2%NCOMP
DO 23 K = 1,N0H
I? (NEQ.EQ.NM) GOTO 30
IP (.NOT.FPINITE(W(K)).OR, .NOT.PINITE (W (K+1))) coTO 23
NEQ = NEQ + 1
KRAT (NBQ) = K
23 CONTINUE

30 CALL EXIT
RETURN

201 PORMAT (I3)

202 PFOKMAT (2F8.0)

203 PORMAT (2D8,0,P8.9)

3)1 PURMAT (/' #*s% FRROR IN INIT: ANGLES DO NOT ADD UP TO 2'/)

302 PORMAT (/' *** ERROR IN INIT: W (1) MUST BE FINITE'/)

303 PORMAT (/' *** FRROR IN INIT: W(N) MUST BE PINITE'/)

304 POEMAT (/* #***= WARNING IN INIT: W(N-1) NOT DETERMINED'/)

305 FOBRMAT (/' e ** ERROR IN INIT: W (N-1) NOT DETERMINED'/)
END
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C* QINIT PRIMARY SUBROUTINE e *

CHESREERRAREESF SR AR AARXXEERELARARS ARSI IR AR RS EERRARERRRERRRARER S
SUBROUTINE QINIT(NPTS)

c
< Z)MPUTES NODES AND WEIGHTS FOR GAUSS- JACOBI QUADRATURE
o
IMPLICIT REAL*8(A-B,D-R,0-V,X-Y), COMPLEX*16(C,W,Z)
LOGICAL PINITE
consmow / SC/ wWC,¥(20) ,BETAM(20) ,C,Z(20) ,N, NN, NP
conmdw / QUAD/ QNODES (32,21) ,QWTS(32,21),NETSQ
DIMENSION QESCR(2), QSCR{(32)
DATA SSNANE /'QINIT'/
CALL ENTER (SBNAME)
WRITE (6,201) NPTS
C
NPTSQ = NPTS
o
C P>k EACH FINITE VERTEXW(K), COMPUTE NODES AND WEIGHTS POR
C INE-SIDED GAUSS- JACOBI QUADRATURE ALONG A CORVE BEGINNING AT Z(K)

pp 1 x =1,N
1 IP (PINITE(W(K))) CALL GAUSSQ(S,NPTSC,0.D0,BETAN(X),O,
& QESCK,QSCR,QNODES (1,K),0W1s( |, K))

aa

CJrPUTE NODES AND WEIGHTS FOR PURE GAUSSI AN QUADRATURE:
CALL GAUSSQ(5,¥PTSQ,0.D0,0.D0,0,QESCR,QSCR,QNODES (1,NP),
§QWTS (1,NP))

TALL EXIT
KEZTURN

231 rorMAT (* NPTS =',I5)
END

TEEEERREBBEEIERAXEEREREEEBEXESE XL BHE AR L X SR EEBR S ERE XX SRR XX EREEEEER RS

C* TZsT PRIMARY SUBROUTINE o *
CEEEREERAIEXIEEBEEXRERERRAAXERRARIRE R SRS A SR ERB R XA ERB R KR SR AKX AER K&

C
SUERJUTINE TEST

T2SIS THEZ COMPUTED RAP FOR ACCUEACY.

Is¥e%s

IMPLICIT REAL*8(A-B,D-H,0-V,X-Y), COMPLEX*16(C,W,Z)
REAL*S CDABS

LOGICAL PINITE

COMMON /SC/WC,W (20) ,BETAM(20),C,Z(20),N, NN, NP
COMMON /CONSIS/ PI,TWOPI,ZERO,ZINF,EES

DATA S ENAME /'TEST'/

CALL ENTER (SBNAME)

-
C T3ST LENGTH OF RADI |
RADENX = 0.DO
DO 10 K= 2,
IP (FINITE(W(K))) RADE = CDABS (WC - WSC(ZERO,Z(K),¥W(K),K))
IP (.NOT.PINITE(V(K))) RADB =
& CDABS(WSC({(. 1D0,. 100),2 (K-1), ¥ (K1) ,K- 1)
& - WSC{( (. 1D0,.1D0),Z(K+1) ,¥W(K+1),K+1))
RADEMX = DMAX1(RADEMX,RADE)
10 CONTINUE
WRITE (6,20 1) RADEMX

o}
ZALL BXIT
RETURN
C
201 POBMAT (/' RADEMX:!,D12,4)
END
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C* 5CSHLV PRINARY SUBROUTI NE ##*
Ctt.‘tttttl!tt#t!t‘tt‘t‘tt“tt‘t‘t‘l.“tt‘t'tt‘t!.t‘#“ltt‘l“.“ttt

~

SUBROUTI NE SCSOLV (NM,IPRINT)

c
C T4IS SUBROUTINE COMPUTES THE ACCESSORY PARAMETERS C AND Z(K)
C THE ?ROBLEN | S SOLVED BY PINDI EG THE
C SOLUTICN TO A SISTER OP N-1 YONLI NEAB BQUATIONS | N THE N-1
C UNKNOWNS Y (1) ,...,Y(N-1), WEICH ABE RELATED TO TAE PO NTS
Z z(k) BY THE FORMULA:
C
E Y (K) = LOG ((TH(K)~TH(K=-1) )/ (TH(K+1) -TH(K))) N
C WHERE TH(K) DENOTES THE ARGUMENT OP Z(K).
C SUBROUTI NE SCPUN DEPI NES THIS SYSTEM OP EQUATI OBS.
C IHE JRIGINAL PROBLEM IS SUBJECT TO TEE CCNTRAINTS TH(K) < TH(K+1),
C 30T THESE vanisH IN THE TRANSPORMATICNPRONZ TO Y.
C SEE mAIN PROGRAM POR PURTHER COMMENTS.
c
IMPLICIT REAL*8(A-B,D-H,0-V,X~Y), COMPLEX*16(C,¥,2)
COMMON /CONSTS/ PI,TWOPI,ZBRO,ZINF,EES
DIMENSION AJINV(20,20), SCR (900), PVAL (19), Y(19)
EXTERNAL SCFUN
DATA SENAME /'SCSOLV'/
CALL ENTER (SBNAPE)
c
C INITIAL sU2SS (VERTICES EQUALLY SPACED AROUND CI RCLE)
DO 3k =1,Nn
3 Y(K) = 0.D0
c
C ¥s01a COYTROL PARAMETERS:

DSTEP = 1.D-8
DMAX = 1.D1
acc = EPS
MAXFON = NN o 15
o
C sO>LVE NONLI NEAR S| STER WITH NSO M:
CALL NSO1A(NM,Y,FVAL,AJINV,DSTEP,D®AX,ACC,MAXFUN,IPRINT,SCR,SCFUN)
CALL YZTRAN(Y)

C PRINT RESULTS
CALL scautp

CALL EXIT
RETURN
END

CEXEXKXRREXEEEAXXXABAEEREABRSER R KRR R LR R SRR R RREX AR X R XK R KK SR RER RSN SR

C* YZTRAN SUBORCTNATE(SCSOLY) SUBROUTI NE o *
:tattttl‘!tt#ttt‘tl‘t‘ttttt-ttt“#tl‘tt‘ttlttttt‘tvlt#“ttttl‘ttt‘t‘

SUBROUTINE YZTRAKN(Y)

C TRANSPORMS Y(K) TO Z(K). SEE conMerTs | N SUBROUTI NE SCSOLV.
o
IMPLICIT REAL*8 (A-B,D-H,0-V,X~Y), COMPLEX*16(C,W,2)
COMPLEX*16 DCMPLX
coMMoN / SC/ wWC,w(20) ,BETAM (20),C,Z2(20) ,N,NH,NP
COMMON /CCESTS/ PI,THWOPI,ZEBO,ZINE,EES
DIMENSION Y(1)
C

DTH = 1.p0
TASUM = DTH
DO 1 K =1,Nn
DTA = DTH / DEXP(Y (K))
1 THSUB = THSUB + DTH

DTA = TWO0PI ,/ THSONM
THSOM = DTH
2 (1) = DCMPLX(DCOS (DTH) ,DSIN(DTH))
DO 2 K =2,NH
DIR = DTH / DEXP(Y (K-1))
THSUB = THSOM t DTH
2 z (K} = DCMPLX(DCOS (THSUMN) ,DSIN(THSUN))

(e]

RETURN
END
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C* SCFON SUBORDINATE (SCSOLV) SUBROUTINE o ¢

CEERRKEREX KR R R kR kbR bk ke ehk k& ek 0 [N INIAIRID 4o DAMIDARDARARIDARAD
SUBRIUTINE SCFUN (NDIN,Y,FVAL)

EE I P Y

THIS IS THE FUNCTION WHOSE ZERO MUST BE FOUND IN SCSOLV.

a0

IMPLICIT REAL*8 (A-B,D-H,0~V,X-Y), COMPLEX*16(C,¥,2)
REAL*8 CDABS

LIGICAL PINITE

DIMENSION PVAL (NDIN),Y (NDIN)

COMNOM / SC/ WC,W (20) ,BETAM (20) ,C,Z(20) ,N, NN, NP
COMMON /CCNSTS/ PI,TWOPI,ZERO,ZINP,EES

COMNON /GEOM/ KPIX(20) ,KRAT (20) ,NCONME

a0

TRANSPORN Y (K) TO Z(K):
CALL YZTRAN (Y)

C 32T UP: CCMPUTE | NTEGRAL PROM O TO Z(N):
WDENOM = ZQUAD(ZERO,0,Z (N}, N)
C = (M (N)-WC) / WDENON

CASE 1: W(K) AND W(K¢ 1) PINITE:
(CCMPUTE INTEGRAL ALONG CHORD Z (K) -2 (K+¢1)):
NPIKSI = 2«NCOMP e 1
IP (NPIRST.GT.NM) GOTO 11
D3> 10 NEQ = NPIRST,NHN
KL = KRAT (NEQ)
KR = KL+ 1
ZINT = 2QUAD(Z(KL) ,KL,Z (KR),KR)
FVAL (NEQ) = CDABS (W (KBR)~W (KL)) - CDABS (C*ZINT)
13 CONTINUE

a0

ZASE Z: W(K+1) INPINITE:
(ZUMPUTE CCNTOUR INTEGRAL ALCNG RADIUS 0-Z(K)):
11 DJ 23 NVERT = 1,NCOMP
KR = KPIX (NVERT)
ZINT = ZQUAD(ZERO,0,Z(KR) ,KR)
ZPVAL = W (KR) - WC = C*2INT
FYAL (2*NVERT-1) = DREAL (ZFVAL)
FVAL (2*NVERT) = DIMAG (ZFVAL)
20 CONTINUE

[eNeNe!

RETURN
c

END
R L Ry P P T P T P e s
C* 3C0UTP SUEBORDINATE (SCSOLV) SUBROUTINE *»*

CHEER X EAEEER AR ERAEAREARRERERREE R XX X R BE AR R RSN X RA R AR EE K RE KK R RRR R R RS

C
SUBROUTINE SCOUTP

o
C PERINTS RESULTS (VARIABLES IN COMMCN BLOCK /SC/)
[of

IMPLICIT REAL#*8 (A-B,D-H,0-V,X~-Y), COMPLPX*16(C,W¥,Z)
LOGICAL FINITE

COMMOIN /SC/ WC,W (20) ,BETAN (20),C,Z(20) ,N,NN, NP
COMMON /CONSTS/ PI,TWOPI,ZERO,ZIBF,EES

c
WRIT® (6,102)
D21 K = 1,n
THDPI = DIMAG (CDLOG(Z(X))) / P
IF (THDPI.LE.0.DO) THDPI = THDPI e 2.D0
1P (PINITE(W(K))) WRITE (6, 103) K,¥ (K),THDPI,BETAN(K) ,Z (K)
1 IP (.NJT.PINITE(W(K))) WRITE (6,104) X,THDPI,BETAM(K),Z(K)
WRITB (6,105) WC,C
BETURN
[of

102 PORMEAT (//* RESULTS.'//

& ' I',10X,'W(K)',13X,'TH(K) /PI',11X,'BETAR(K)",
& 18X,'Z(K)'/
&
&

Voeeet, 9, tememt 13, Ve — LR R SRR
18X, t===='//)
103 PORMAT (I3, (*,F6.3,',',F6.3,')",P20.14,714.5,
& 3X,'(',F15,12,',',F15.12,% ')
104 POBMAT (x3," INFINITY ',P20,14,F 14, 5,

& 3X,'(',P15.,12,',',FP15.12," ")
105 PORMAT (//*' WC = (',D22.15,%,',D22.15,')'/
& ' ¢ =(',D22.15,%,',D22.15,')'/)
END
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C* ZQUAD SECONDARY SUBRNDUTINE e #*
CESSEAAETERA AR RKRERRARARERNRSRE IR ISR ERARBEXRKXRSAXERABAAERRESSE S

aoan

[e]

CEXESE XL ERARXEA XA XX AR EREE SR AR BEEX E RIS U R A REREER AR S XX ER XX RS XS

FPUNCTICN ZQUAD(ZA,KA,ZB,KB)

ZOMPUTES THE COMELEX LINE INTEGRAL OF ZPROD FROMZATO 2B ALONG A
STRAIGHT LINE SEGMENT WITHIN THE OUNIT DISX, FUNCTION 2QUADV IS
CALLED TWICE, ONCE FOR EACH HALF OF THIS INTEGFRAL.

INPLICIT REAL*8(A-B,D-H,C-V,X-Y), CCMPLEX*16(C,¥,2)

ZMID = (ZA + ZB) / 2.DO

ZQUAD = ZQUAD1(ZA,ZMID,KA) - ZQUAD1(ZB,ZMID,KB)
RETOURN

END

C* ZQUAD?1 SUBORDINATE (ZQUAD) SUBROUTINE *x

CEXERXEEX AT XS AR ERREBERESEFEAX L XX XA B SXXIBXRR XKL S REERASEBEREXER S S

[of

[eNeKe XeKe}

nn

PUNCTION ZQUAD1(ZA,ZE,KA)

COMPUTES THE COMPLEX LINE INTEGRAL op ZPROD FROMZATO ZBALO16 A
STEAIGHT LINE SBGMENT WITHIN THE UNIT DISK, COMPOUND ONE-SIDED
GAUSS=JACOBI QUADRATURE IS USPED, USING PUNCTION DIST TO DETERMINE
THE DISTANCE TO THE NEAREST SINGULARITY Z(K).

IMPLICIT REAL*8(A-B,D-H,0-V,X~Y), CCHMPLEX*16(C,W,Z2)
CC*MON /CONSTS/ PI,TWOPI,ZERO,ZINF,BES

REAL*3 CDABS

DATA RESPRH /2.D0/

CHECKFORZERO-LENGTH INTEGRAND:
IP (CDABS (ZA-2B).GT.0.D0) GOTO 1
ZQUADY = ZERO
RZTURN

3TEP 1: ONE-SIDED GAUSS-JACOBI CUADRATURE FOR LEFT ENDPOINT:
1 R = DMIN1(1.D0O,DIST (ZA,KA) *RESPRM/CLABS (ZA-2B))
ZAA = ZA + P*(ZB-Z}))
ZQUADY = ZQSUM(ZA,ZARr,K})

STEP 2: ADJOININTERVALSOPFP PORE GAUSSIAW QUADBATUREBIF NECESSARY:
10 1P (B.EQ. 1.D0) RETURN

R = DNIN1(1,D0,DIST (ZAA,0) *RESPRM/CLABS (ZAA-ZB))

ZBB = ZAA e R*(ZB-ZAA)

ZQUADY = ZQUAD1 + ZQSUM(ZAA,ZBB,0)

ZAA = ZBB
GOTO 10
END

CEESEXEAEERXAER BB EREX SRR RB A ZEBRE AR I SXSE XX R RE XXX R KRR AR XXX KRR XK AR

C* DIsST SUPBPORDINATE (ZQUAD) SUBROUTINE *#
CHREEXARAERRARERRERRRRARR S AR RRR AR KRS SRR RS XA KRR SRR R RA R XERR KRS

~

O Na

(]

PUNCTICN DIST(ZZ,KS)

DETERMINES THE DISTANCEPROHZZ TO THE NEAREST SINGULABITY Z(K)
JTHERTHAN Z(KS).

IMPLICIT RZAL*8(A-B,D-H,0-V,X-Y), COMPLEX*16(C,W,2Z)
COrMOIN /SC/ WC,W(20) ,BETAM(20),C,Z(20) ,N,NM,NP
REAL*8 CDABS

DIST = 99.DO

DO 1 K = 1IN

IF (K.EQ.KS) GOTO 1

DIST = DMIN 1 (DIST,CDABS(22-2(K)))
1 CONTINUE

ARETURN

END

o AR IR I R R RS R 2 2R R RS 22 2SRRI RES SRS S22 22222 2 2 % 7 )

C* 72Qs0n SUBORDINATR (XQUAD) SUBROUTINE *»
CHABRASRTNEN SAARASRBALREEFASALR SR RSN A DA AR S SRR SRS S SIS SSS SR ASEE RS

o

aaoc

PUNCTION ZQSUE(ZA,ZB,KA)

CIOMPUTES THE INTEGRAL OP ZPROD FRON ZA 10 ZB BY APPLYING A
JNE~-SIDED GUASS-JACOBI PORMULA WITH POSSIBLE SINGULARITY AT ZA

IMPLICIT REAL*8(A-B,D-H,0-V,X~Y), CCHELEX*16(C,¥,2)
COMMCN /sc,” WC,W(20) ,BETAN(20),C,Z(20),N,NN,NP
COMMON /CONSTS/ PI,TWOPI,2ERO,ZINF,EES

COMMON /QUAD/ QNODES (672) ,QWTS (672) ,¥PTSQ

32AL+*8 CDABS

2S = ZERO

ZH = (2ZB-ZA) s 2.DO

2C = (ZA+ZB) / 2.DO

K = KA

IP (K.2Q.0) K = NP

11 = 32« (K-1) ¢ 1

I2 = 11 e NPTSQ -1

po 1 I = 11,12

1 2S = 2S + QWTS(I) *ZPROD(ZC+2H*QNODES (I) ,KA)
Z2QS0M = zs*zH
IF (CDABS (ZH) .NE.O,DO.,AND,K.NE,NP)

& 2Z2QSOM = ZQSUM*CDABS (ZH) s*BETAMN(K)
R2TURN

E¥D 43



CRHREASR AR SR LB BB BB AR H AR RN AR R RN R A B R AR R R AR R AR RSN IR B R A RN SRR R DR N RN NN NN
C®* WSC PRIMARY SUBROUTINE e *
CHRBBRBE AR AR BB R R AR ARB RN R R R RN RA RN AR B RN R BB RSN R R R RN R AR RN RN R RN N AR

FUNCTION WSC(2Z,20,w0,KZ0)

INMTEGRATKES FROM 20 TO 22 TO COMPUTE W VALUE CORRESPONDING TO ZZ

< OO

IMPLICIT hEAL*8(A-B,D-H,0-V,X-Y), COMPLEX®*16(C,W,Z)
COMMON /sc/ WC,W(20),BETAM(20),C,Z2(20),N,NM,NP

WSC = W0 + C e 2GQUAD(Z0,K20,22,0)

O

RETURN
END

CHEERXXEAEXE XESNRSERI AR ISESR RN ERNN A SRR R SRS EER LB ISR KRR KA USRS LR K S
C* 2sC PRIMARY SUBROUTINE ==
CHERRERIRREEIRXRENBAERBAXRARKER AR SRS RS AR SRR KRR SRR SRR N R KRR RRRER B S
~

FUNCTION 2SC(Ww,20,W0,K20)

ZJMPUTES Z (WW), PIRST ODE |S CALLED TO GET AN INITIAL ESTIMATE;
THEN ZNEWT IS CALLED TO GET THE FINAL ANSWER,

aann

IMPLICIT REAL*8 (A-B,D-H,0-V,X-Y), COMPLEX*16(C,¥,Z)
DIMENSION SCR (182), ISCR(5)

EXTERNAL ZFODE

CCEMON /scs/ WC,W(20) ,BETAM(20),C,Z(20) ,N,NN,NP
COMMON /CCNSTS/ PI,TWOPI,ZERO,ZINF,EES

COMMON /ZSCCOR/ CDWDT

aa

(]
(9]

NITIAL GUESS Z1 VIA ODE:
1 = ZERO
T = 0.D0

IPLAG = -1

RELERR = 0.DO0

ABSERR = 5.D-3

CDWDT =(WW-WC)/C

CALL ODE(ZFODE,2,Z1,T,1.DO0, RELERR,A
IP (IFLAG.NE.2) WRITE (6,201) | PLAG

BSERR,IFLAG,SCR,ISCR)
C
C REPINE ANSWER VIA ZNEWT:

CALL ZNEWT (21,WW¥,EPS,KZ0)
zsc = 21

23 1 PORMAT ('/ **% NONSTANDARD RETURN FRONM ODE IN ZSC. |PLAG =',12y)
RETURN

END
CHERARERSRER IR RER RN SRR AR RRE R K SRR A RS E SRR AR AR R AR SRR R R R AR &N

C* ZF)ODEB SUBORDINATE (2SC) SUBROUTINE e #
AR A L R PR Tty
~

SUBRIUTINE ZFODE(T,Z2,ZDZDT)
C CJI®PYTES THE FUNCTION ZDZDT NEEDED BY ODE IN 2zsc.

IMPLICIT REAL*8 (A-B,D-H,0-V,X~Y), COMPLEX* 16 (C,¥, Z)
COMMON /ZSCCOM/ CDWDT

o

ZDZDT = CDWDT / ZPROD (22Z,0)

RETORN

ZND
TEREEXEEREERAREXXIEXEBREEE SR XA R AIRR S B XS EN AL AR AR XXX EAX SRR AR KRR AR E K
C* ZNEWT SUBCRDINATE (2SC) SUBROUTINE *x
CHEAEXAXXEAESERRAEAXEXERXERXRSERANAE R0 I SRS ES RS ARASRERERRE &%
C

SUBROUTINE ZNEWT (ZROOT,WW,EPS,K20)
C

IMPLEMENTS NZWTON'S METHOD TO SOLVE =< EQUATION
C 4{ZROOT) = WW FOR ZPFOOT.

INPLICIT REAL®8 (A-B,D-H,0-V,X-Y), COMELEX*16 (C,R,2)
COEMIN /SC/WC,¥ (20) ,BETAM(20),C,Z(20)},N, NN,KP

c
DY 1 ITER = 1,10
ZROOTO = ZROOT
IF (K20.E0.0) 2ZPNWT =WW - WSC(ZROOTO, (0.D0,0.D0),HC,0)
IP (KZ0.NE.O) ZFNWT = WW - WSC(ZROOTO,Z (K20),W (KZ0) ,KZ0)
ZROOT = ZROOTO + ZPNWT/(C*ZEROD (ZROOTO,0))
IF (CDABS (ZPNHT).LT.EPS) RETURN
1 CONTINUE
4RITE (6,201)
RETURN
-
201 FORMAT (/' e *% ERROR IN ZNEWT: UC CCHVERGENCE || 10 ITERATIONS')
END
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2L ARSI IR 2R SRS S RS S22 R A 2 R R A R 2222 R 22222 R R 2222 22 22 2 2]

C#* ZPRID SECONDARY SUBROUTI NE ##
Cornnxepghes ERASAEEKEXEXE R K XKENE SR SE R KRR BSOS R AR AR R ERE R KRR R RkEReE g h
PUNCTI CN zPROD(22,KS)
CJEPUTES THE | NTEGRAND
N
PROD (1-2Z/Z (K) ) **BETAN(K) v
K=1

TAKING ARGOUMENT ONLY (NOT MoDULOS) FOR TEREM K = KS.

OO0 Oaa0n

| HPLI CI T REAL®8 (A-B,D-R,0-V,X-Y), CORPLEX®16(C,W,2)
REAL*8 CDABS
COMNON / SC/ WC,¥(20) ,BETAM (20) ,C,2(20) ,N,¥N,NP

ZsoM = (0.D0,0.DO0)
po 1K = I,N
ZT4P = (1.D0,0.D0) - 2Z/Z(K)
|IF (K.EQ.KS) ZTMP = ZTHP / CDABS (ZTIHP)
1 zsutl = ZSUM + BETAM (K) *CDLOG (ZTMP)
ZPROD = CDEXP(ZS5UM)
EETURN
END

Cttttttttttlt#t““tl.ttt‘.tt‘llt“!tl.t‘#‘“.‘i'tt“‘l‘#‘tt‘t“‘t“

C FINTE SECONDARY SUBROUTI NE e *

Cttttttttltt‘ttttttttttttlt“‘tt“‘t!t‘tt‘lt‘t“tt‘t‘ttttt‘ttttttl‘t
c
FUNCTI ON FINTE(2)

R2TURNS TRUE | F AND ONLY IF Z IS NOT INFINITE

ann

IMPLICTT REAL*8 (A-B,D-H,0-V,X-Y), CCMPLEX*16(C,V,2)
LOGICAL FINITE
COMMON /CONSTS/ PI,TWOPI,ZERO,ZINF,EES

A

PINTE = DREAL(Z).NE.DREAL (ZINF)
RETURN
END

CAHERR AN AR SR AR R ERANB AR SARER SR BRB NS ARAS AR RN BEERRSSEA SR RS AR ER NS

C* ZNTER SECONDARY SUBROUTI NE e *

S Tt e e R R e L R L et i A b bbbt bl b il
SUBROUTINE ENTER (SBNAME)

STARTS TIMING TIRE SPENT I N SUBROUTI NE Yl TH NAME SBNAMB.

eV E®

IMPLICITREAL*8(A-B,D-H,0-V,X-Y), COMPLRXI*16(C,¥,2)
CIMMON /TIME/ TENTER

(o]

CALL LEPT1A (TENTER)
WRITE (6,20 1) SBNAME
RZTURN

201 PORMAT (//1X,80('X'),*' ENTERING ',A8)

END
ctt"ilt‘#“‘“tt“t‘ttt-t‘tt“tt“‘t‘t‘.t.““‘tt“.‘..““..“‘.!.

Cc* 2XIT SECONDARY SUBROUTI NE **
I e e S PR R R R EELEE L LA ettt bbb il b

C
SUBRJUTINE EXIT

PRINTS TIME SPEBT IN SUBROUTINE,

[ NeNe]

IMPLICIT REAL*8(A-B,D-H,0-V,X-Y), COMPLEX®*16(C,¥,2)
ZOMMON /TIME/ TENTER

CALL LEPT1A (TEXIT)
TINE = TENTER - TEXIT
VR TE (6,20 1) TIKE
RETURN

201 PORMAT (1X,80('X'),' TIME ELAPSED:',F7.3,' SECS.'/)
END
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