THE ERRATA OF COMPUTER PROGRAMMING

by

Donald E. Knuth

STAN-CS-79-712 January 1979

COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UNIVERSITY

THE ERRATA OF COMPUTER PROGRAMMING

This report lists all corrections and changes of Volumes 1 and 3 of The Art of Computer Programming, as of January 5, 1979. This updates the previous list in report CS551, May 1976. The second edition of Volume 2 has been delayed two years due to the fact that it was completely revised and put into the TEX typesetting language; since publication of this new edition is not far off, no changes to Volume 2 are listed here.

The present report was prepared with a typesetting system that is now obsolete; please do not wince at the typography. All cahnges and corrections henceforth will be noted in TEX form on file ERRATA.TEX[ART,DEK] at SU-AI.

In spite of inflation, the rewards to error-detectors are still \$2 for "new" mistakes in the second edition, $\$ 1$ in the first edition.

Please do not endanger the author's morale by asking him about Volume 4. Thank you for your understanding.
110 0 throughout the book(s) 2/28/78 2
when the text of these books is on a computer I will try to be consistent in hyphenatingcompound adjectives like doubly-linked lists and storage-allocation algorithms, etc. . . . butuntil then, such lapses are not to be considered errors
2.2 line 11 5127178 3
Leibnitz \leadsto Leibniz
1,2818ine-7 11/29/77 4
the theorem that the theorem
1.18 line 16 11/29/77 5
3 ,... $\leadsto \rightarrow 3$,...
1.55ㄴ line 3, under the big pi11/12/76 6
n, n

The preparation of this report was supported in part by National Science Foundation grant MCS-77-23738, by Office of Naval Research contract NOOO14-76-C-0330, and by IBM Corporation. Reproduction in whole or in part is permitted for any purpose of the United States government.

1. 21 displayed formula in exercise 32 2/28/78 7
n/c 円 n/c
2. 14 add a footnote (see p.v for style) 4/19/77 8
line 3 after (1): book. book.'footnote for bottom of page: In fact, permutations are so important, Vaughan Pratt hassuggested calling them "perms." As soon as Pratt's convention is established, textbooks ofcomputer science will be somewhat shorter (and perhaps less expensive).
3. 414 lines $-4,-5$ (twice), $-7,-15,-16$ 11/12/76
... \rightarrow...
1, 25 lines 3, 10, 11, 12, 21 11/12/76 10
... ~
1.5 exercise 21 line 1713117611
Faa Fai
1.5 5 line 13 $2 / 2817812$
manner matter
1.55 line 6 after Table 1 8/25176 13
Sxu-yuen \leadsto Sru-yiian
4. $\mathfrak{B C}$ change in Eq. (17)11112/76 14
$-r$ ~ r and r - \boldsymbol{r}
1.57 Eq. (18) 713117615
$n \geq 0$. n.
5. 57 iine after (19) 11112/76 16
-r ヘr r
1BG caption to Table 2, replace third line by; 9/21/76 17
see D. E. Barton, F. N. David, and M. Merrington, Biometrika 47 (1960), 439-445; 50
(1963), 169-176.
1.75 Ine-4 111517818
$A_{n(k-1)} \leadsto A_{n-1)(k-1)}$
6. 79 lines $8,9,10$ 6/25/76 19
Kepler, ... life. \leadsto Johann Kepler, 1611, who was musing about the numbers he sawaround him [J. Kepler, The Six-Cornered Snowflake (Oxford: Clarendon Press, 1966), p.21].
10.83 line - 7 I J/29/77 20
use same style script F in this line as in line -6 (six places)
1.90 new generalized Eq. (29) 8125/76 21
$\left(z /\left(o^{z}-1\right)\right)^{n}=1-\left(1 /(n-1)\left[{ }_{n-1}^{n}\right] z \cdot(1 /(n-1)(n-2)) n_{n-2}^{n}\right] z^{2} \cdots \cdots \Sigma_{k>0} B_{k}{ }^{(n)} z^{k} / k$. (29)
(convert this to usual format for displayed equations)1. 90 update to previous correction number 2511/12/76 22
to appear, 75-77,
The coefficients $\boldsymbol{B}_{\boldsymbol{k}}{ }^{(\boldsymbol{n})}$ which appear in the last formula are called "generalircd Bernoullinumbers"; Section 1.2.11.2 examines them further in the important special casen. 1. Forsmall \boldsymbol{k}, we have $B_{\boldsymbol{k}}{ }^{(n)} / k!\cdot(-1)^{k}[n-k](n-k-1)!/(n-1)!$, but when $k \geq n$ this formula breaksdown since it reduces to 0 times ∞. An analogous situation holds for the power series$(z / \ln (1+z))^{n}$, where the coefficient of $\boldsymbol{e}^{\boldsymbol{k}}$ for $\boldsymbol{k}<\boldsymbol{n}$ is $\{n-k\}(n-k-1)!/(n-1)!$.
10.92line-8 7131176 24
Faa \leadsto Fai
1.98 caption, line 2 7131176 25
2.11 2.10
1.1083 line 3 713117626
Faa Faà
1.1110 three lines after (12) 6/251762 7
$\boldsymbol{R}_{\boldsymbol{m}} \leadsto \nmid \boldsymbol{R}_{\boldsymbol{m}} \mid$
1.111 line 8 11115/78 28
mately $2 \leadsto$ mately $(-1)^{1+k / 2} 2$
1.1116 line -6 1112917729
Analysis A crude analysis
1.112 line -6 and Eq. (22) 11/29/77 30
$n^{n-1 / 2}$ n^{n}
1.127 line 5 $11 / 29177$ 31
three two
2.118 exercise 5 1112917732
$n^{n-1 / 2}$ $\xrightarrow{\sim} n^{n}$
1.1255 line 2 $1116 / 7733$
is loaded. are loaded.
1.226 line 1 J/16177 34
The contents \leadsto A portion of the contents
2.DEB line 7 $1 / 16 / 7735$
is $\leadsto a r e$
7. 2227 line - 19J J/15/78 36
Overflow may occur as in ADD. Same as ADD but with $\mathbf{-} \mathbf{V}$ in place of V .
8. 227 lines -18 through -13111151783 7
move this paragraph in front of the SUB definition on the preceding two lines
1.13242 line - 12 $4119 / 7738$
MUL requires MUL, NUM, CHAR each require
1.1137 box 05 4/19/77 39
1~ 10
1.15G lines $-10,-9,-8$ 4/19/77 40
CON \leadsto CON (4 times)
9. 1551 line 16 $1 / / 29 / 7741$
facilate facilitate
2.105 stylistic correct ions 6/14/77 42
line 2: i.e. $\sim \nrightarrow$ e.g.
line 3: $(\boldsymbol{X} \boldsymbol{\sim}$ (Here X
line 5: sun. \uparrow sun;
line 10: ($\boldsymbol{E} \mathcal{\sim}$ (This number \boldsymbol{E}
line 22: the year that the year
10. 198 lines 19-21 6/14/77 43
An illustration...See also the book \leadsto See, for example, the book
1.254 Iine-11 6/14/77 44
$F=7 \leadsto F=9$
2.2225 line-9 $6 / 2517645$
about $1946 \sim$ during 1946 and 1947
1.254 line - 10 12/19176 46
down an item $\leadsto \rightarrow$ an item downup the stack \leadsto the stack up
1.248 insert new paragraph after line 4 4/19177 47Further study of Algorithm G has been made by D. S. Wise and D. C. Watson, BIT 16(1976), 442-450.
1.258 Ine 4
we exercise $\mathbf{3 0}$ describes a somewhat more natural alternative, and we
1.220 new exercise 9/21/76 4 9
30.[17] Suppose that queues are represented as in (12), but with an empty queuerepresented by $F=A$ and R undefined. What insertion and deletion procedures shouldreplace (14) and (17)?
11. 3 언 exercise 9 line 4 31217750
girl6 women
12. 2325 line 8 4/191775 J
otherwise. \sim otherwise, making the latter node the right son of NODE (Q).
13. 5 갠 new quote to insert just before Section 2.3.2 1/16/77 52
Bi nary or dichotomous systens, althoughregulated by aprincipie,are among the mostartificial arrangements that have ever beenI nvented.
--WILLIAM SWAINSON, ATreatise on the Geography andClassification ofAnima 1 s, Sec. 250 (1835)
10539 line 13 61251765 3
In all Furthermore TYPE (W) is set appropriately, depending on \boldsymbol{x}. In all
14. 385 line 2 12/19/76 54there is a man now living having \sim somebody now living has
1.398 line -1 5/27/78 55
with than
15. 5 COG line -2 $1 / 1617756$
as \leadsto informally as
1.40B inne 11 512717857
-types $\leadsto \rightarrow$-tuples
 $11115 / 7858$
Polya $\leadsto \rightarrow$ Pólya
1.414 step A2 lines 2-4 212817859
unmarked, mark it, and if \sim unmarked: mark it and, if (twice)
16. 2 200 lines $14-15$ 9/21/76 60
[See the ...372.) \rightarrow An elaborate system which does this, and which also includes amechanism for postponing operations on reference counts in order to achieve furtherefficiency, has been described by L. P. Deutsch and D. G. Bobrow in CACM 19 (1976),522-526.
17. 2 25 lil line 17 11/29/77 61
see \sim see N. E. Wiseman and J. 0. Hiles, Comp. J. 10 (1968), 338-343,
18. 2058 line 18 6/25/76 62For these reasons the \sim A contrary example appears in exercise 7; the point is thatneither method clearly dominates the other, hence the simple
each with a random lifetime, each equally likely to be the next one deleted,1. $\mathcal{L C B}$ new paragraph after line 6$1116 / 776$4
Our assumption that each deletion applies to a random reserved block will be valid if the lifetime of a block is an exponentially-distributed random variable. On the other hand, if all blocks have roughly the same lifctimo, this assumption is falso; John E. Shore has pointed out that type A blocks tend to be "older" than type \boldsymbol{C} blocks when allocations and deletions tend to have a somewhat first-in-first-out character, since a soquence of adjacent reserved blocks tends to be in order from youngest to oldest and since the most recently allocated block is almost never type A. This tends to produce a smallar number of available blocks, giving even better performance than the fifty-percent rule would predict. [Cf. CACM 20 (1977), 812-820.)

1. 2488 line -9

11115178 65
areas areas of the same size
1.251 line 7 1/16/77 66
; John E. Shore, CACM 18 (1975), 433-440.
2. 251 yet anot her addition after line 7 $2 / 2817867$
, $\boldsymbol{\sim}$; Norman R. Nielsen, CACM 20 (1977), 864-873.
1.254 411917768
line 2: 5; for \sim 5. For
line 4: " \sim The execution time is $\mathbf{2 u}$."
1.255 line 8 6/25/76 69
V-1.] \sim V-1; and see especially also the work of Konrad Zuse, Berichte detCescllschaft fiir Math. und Datenv. 63 (Bonn, 1972), written in 1945, Zuso was the firstto develop nontrivial algorithms that worked with lists of dynamically varying lengths.]

1. Mxs line-7
is divisible is not divisible
lines -15 thru -13: The A-1 . . code; \sim The machine language for several early computers used a three-address code to represent the computation of arithmetic expressions;
lines -11 and -10 : the A-1 compiler language \sim an extended three-address code

2. $\mathfrak{B G}$ line 2

31 217772

The latter $\xrightarrow{\longrightarrow}$ Weizenbaum's

1.263 several changes $12 / 1917673$

line 1: . \sim,
line 4: older \leadsto other
now paragraph to be inserted after line 4 :
A related model of computation was proposed by A. N. Kolmogorov as early as 1952. His machine essentially operates on graphs C , having a specially designated starting vertex \boldsymbol{v}_{0}. The action at each step depends only on the subgraph C 'consisting of all vertices at
 includes $\boldsymbol{v}_{\boldsymbol{0}}$ and the vertices v at distance exactly \boldsymbol{n} from $\boldsymbol{v}_{\boldsymbol{0}}$, and possibly other vertices; the remainder of graph \boldsymbol{C} is left unaltered, its components are attached to the vertices \boldsymbol{v} at distance \boldsymbol{n} as before. Here \boldsymbol{n} is a fixed number specified in advance for any particular algorithm, but it can be arbitrarily large. A symbol from a finite alphabet is attached to each vertex, and restrictions are made so that no two vertices with the same symbol can be adjacent to a common vertex. (See A. N. Kolmogorov, Uspokhi Mat. Nauk 8,4(1953),175176; Kolmogorov and Uspenski,̌, Uspekhi Mat. Nauk 13,4(1958), 3-28, Amer. Math. Soc. Translations, serics 2,29 (1963), 217-245.) Such graph machines can easily simulate the linking automata defined above, taking one graph step per linking step; conversely, linking automata can simulate graph machines, taking at most a bounded number of steps per graph step when n and the alphabet size are fixed. The linking model is, of course, quite close to the operations available to programmers on real machines, while the graph model is not.
1.254
1.288 line 1 713117676
Faa $\rightarrow F a i$
2. 985 new answer, cont inued 4/19177 77
For example, Eq. (6) holds for all complex \boldsymbol{k} and n, except in certain casos when \boldsymbol{n} is anegative intager; Eqs. (7), (9), (20) are never false, although they may occasionally takeindeterminate forms such as $0 \cdot \infty$ or $\infty+\infty$. We can even extend the binomial theorem (13)and Vandermonde's convolution (21), obtaining $\Sigma_{k}(\underset{a+k}{ })_{\varepsilon^{a+k}}=(1+z)^{r}$ and$\boldsymbol{\Sigma}_{\boldsymbol{k}}(\underset{\boldsymbol{a}+\boldsymbol{k}}{\boldsymbol{r}})\left(\begin{array}{c}\boldsymbol{b}-\boldsymbol{k}\end{array}\right)=(\underset{\boldsymbol{a}+\boldsymbol{b}}{\boldsymbol{r} \boldsymbol{q}}$, , formulas which hold for all complex $\boldsymbol{r}, \boldsymbol{s}, 1, a, \boldsymbol{b}$ wheneverthe series converge, provided that complex powers are properly defined. [See L.Ramshaw,Inf. Proc. Letters 6 (1977), 223-226.)
1.988 new answer 11/12/76 78
42, $1 /(r+1) \mathrm{B}(k+1, r-k+1)$, if this is defined according to exercise $41(\mathrm{~b})$. In general it appearsbest to define $(\mathbb{k})=0$ when \boldsymbol{k} is a negative integer, otherwise $(k)=\lim _{\boldsymbol{s} \rightarrow \boldsymbol{r}}$$\Gamma(s+1) / \Gamma(k+1) \Gamma(s-k+1)$, since this preserves most of the important identities.
1.294 line 9 11115/78 79
Polya \leadsto Pólya
1.499 exercise 7 111151788 0
(It is "Glaisher's constant" $1.2824271 \ldots$...) To $\boldsymbol{\sim}$ To
This formula . . $\boldsymbol{n}=4 . \wedge$ (The constant \boldsymbol{A} is "Glaisher's constant" $1.2824271 \ldots$, which R.W. Cosper has proved equal to ($2 \pi \mathrm{e}^{\left.\boldsymbol{\gamma}-\boldsymbol{\zeta}^{\prime}(2) /(2)\right)^{1 / 12} \text {.) }}$
 11129/77 81
line $1: 2 n-1 \sim 2 n+1$
$O\left(\left|S^{\prime}(n)\right|\right)=O(f(n) / \sqrt{ } n)$.
13 $5 \mathbb{S}$ exercise $17(b)$ line 6 $312 / 7782$
J2NN J2P
2.502 exercise 194/19/778 3
24 42
$1+1) u$ $10+10) u$
2.5®q exercise 25
4/19/77 84lines 11-12: operations" \rightarrow operations," jump6 on register even or odd, and binary shift6last line: $\mathrm{M} . \sim \mathrm{M}$, and others could set registertrA, registertrX.
1.504 6/14/77 $8 \quad 5$
line 1: $6 \sim 5$ (also make this change in previous correction no. 111)

$\begin{aligned} & 3495 \\ & 3496 \end{aligned}$

line 10: $16 \leadsto 14$
1519 changes to answer 14 6/14/778 6
line 1: uses as much \sim due in part to J. Petolino uses a lot of
line 2: as possible, in \sim in
line 9: I NCX 1 ~
line 10: G \rightarrow GMINUS1
lines -17 to end of page, replace by:INCA 61STA CPLUS60MUL $=3 / / 4+1=$STA XPLUS57(1:2)
CPLUS60ENTA *
$\mathbf{r A}=1 ?+24$
HUL $=8 / / 25+1=$
GMINUSIENT2 *E5.ENT1 $1,2 \quad$ rII $=\mathbf{C}$INC2 1,1
INC2 0,2
INC2 0,1
INC2 0,2
INC2 773,
XPLUS57 INCA -*,2

```
                                    r12=11C+773
rA = 1 1C+Z-X +20+24-30(\geq 0)
```

2.512 more changes to answer 14
delete the bottom line and replace lines 1-31 by: SRAX 5
D IV $=30$
$r X=E$
DECX 24 JXN 4F DECX JXP 2 F JXN 3F DEC1 11 J1NP 2F
3H INCX 1 $2 \mathrm{H} \quad$ DECX 23 E6.
$4 \mathrm{H} \quad \mathrm{STX}$ 2OMINUSN $(0: 2)$ LDA Y EC. MUL $=1 / / 4+1=$ ADD Y SUB XPLUS57 (1:2) rA.D-41
20MI NUSN ENN1 *
INCA 67,1 SRAX 5
D IV $=7$.

E7. SLAX 5 DECA -4.1 rA=31-N JAN $1 F$ DECA 31 CHAR LDA MARCH JMP 2F CHAR LDA APRIL
1.515 new answer $6 / 147788$
15. The first such year is A.D. 10317, although the error almost leads to failure in A.D. $10108+19 k$ for $0 \leq k \leq 10$.
1.513 still more changes to answer 14
replace lines BEGIN $^{1-6 \text { by: }}$

ENTX 1950
ENT6 1950-2000
JMP EASTER INC6 1 ENTX 2000,6 J6NP EASTER+1
"driver" routine, uses the above subroutine.

1. 514 line 18

11/29/779 0
time. $\sim \rightarrow$ time. (It would be faster to calculate $\boldsymbol{r}_{\boldsymbol{n}}(\mathbf{1} / \boldsymbol{m})$ directly when \boldsymbol{m} is small, and then to apply the suggested procedure.)
2. 515 bottom line 11/29/7791
Berk'ly \sim Berkeley
1.516 lines $-4,-3$ 411917792
$3)+7 \sim 7.5)+16$

1. 518 exercise 12 lines $7-10$ 5/27178 93
delete "Thus, (b)."
1.5188 line 5 5/27178 94
19-27. \sim 19-27; E. G. Cate and D. W. Twigg, ACM Trans. Math. Software 3 (1977),104-1 10.
1.546 new answer $9 / 21 / 7695$
30, To insert, set $P \leftarrow A V A I L, ~ I N F O(P) \leftarrow Y$, LINK $(P) \leftarrow A$, if $F=A$ then $F \leftarrow P$else LINK $(R) \leftarrow P$, and $R \leftarrow P$. To delete, do (9) with F replacing T.
denotes, ... are included. \sim denotes "exclusive or." Other invertible operations, such a6 addition or subtraction moduio the pointer field size, could also be used. It is convenient to include

2.550 exercise 2
 31217797

Abstract

line 2: next . . list point \leadsto next, so the links in the list must point line 3: So . . . the \sim Deletion at both ends therefore implies that the line 4: ways. \sim ways, On the other hand, exercise 2.2.4-18 shows that two links can be represented in a single link field; in this way general deque operations are possible.

1. 55 S ${ }^{2}$ exercise 9 step G4
 31217798

desired girls, \sim young ladies desired,

There is ... exist. $\mathcal{\rightarrow}$ When $\mathrm{n}>1$, the number of series-parallel network6 with \boldsymbol{n} edge6 is $2 \boldsymbol{c}_{\boldsymbol{n}}$ [see P. A. MacMahon, Proc. London Math. Soc. 22 (1891), 330-339].
11.588 fourth line before exercise 33

5/27178 102
minimal. \sim minimal. [This argument in the case of binary tree6 was apparently first discovered by C. S. Peirce in an unpublished manuscript; see his New Elements of Mathematics 4 (The Hague: Mouton, 1976), 303-304.]
13. $9 \mathbb{L}$ updates to previous change number 150
to appear, \sim 491-500,
(see also the important new contribution by H. G. Baker, Jr., CACM 21 (1978), 280-294, for which I will probably want to revise Section 2.3.5 entirely!)
1.594 update to previous change number 151 11129/77 104
Clark's list-copying algorithm appeared in CACM 21 (1978), 351-357, and Robson's inCACM 20 (1977), 431-433
1.597 last line of answer 6 $1 / 16 / 77 \quad 105$
list. \sim list. For an alternative improvement to Algorithm A, see exercise 6.2.3-30.
1.597 exercise 8 6/25/76 106
line 1: also set $\mathbf{R} \sim$ also set $M \leftarrow \infty, R$
line 3: If $R=A$ or $t l \leadsto$ If M
1.G11 exercise 26 line 3 2/28178 107
two. \leadsto two, with blocks in decreasing order of aise
$P \geq M \leadsto P \geq M-2^{k}$.
1,BOS program line number 12 4/19/77 108
$j \leadsto j$.

1. 6 B6 n e w answer 2/28178 109
3 1. Seo David L. Russell, SIAM J. Computing 6 (1977), 607-621.
1, B(3) addition to previous change 153 $4119177 \quad 110$
.] \rightarrow; Lars-Erik Thoreiii, BIT 16 (1976), 426-441.
2. BGB exercise 41 , numerator in value of a[5] 6114177111
19559 18535
1.617L 6/25/76 112
delete A-1 compiler, 458.
1.627L Aardenne-... 11129/77 113
Taniana $ヘ$ Tatyana
10.6278 12/19176 114
AMM AMM
1.628ロ 5/27178 115
Baker, Henry Givens, Jr., 594.
1.618B 4/19/77 116
add p487 to entry for Binomial theorem, generalizations of
1.6196 Bobrow entry 9/21/76 117
add $\mathbf{p} 420$
1.6198 5/27178 118
Cate, Esko George, 518.
1.6198 II/29/77 119
Cheney, Christopher John, 420.
18200R new definition entry 12119/76 120
Data organization: A way to represent information in atatucture, together with algorithms that access and/or modify this structure.
1.B22L 2/28/78 121
Derangements, 177.
1.621ㄴDeut sch entry $9 / 21 / 76122$
add p420
3. 1025 End of file entry $312 / 77123$
224 223
2.625は Garwick entry 11/15178124
244 ヘ 245
1.B25L Hopper entry $6 / 25176125$
255,458. 225.
1.624L 11/29/77 126
Hiles, John Owen, 420.
1.624R 312177127
Invert a linked list, 266, 276.
1.G2KRINT entry$6 / 14 / 77128$
4. 224-225.
5. 1.6256 5/27178 129
Leibnitz (= Leibniz) \sim Leibniz (= Leibnitz)
2.625® 12/19176 130
Kolmogorov, Andreĭ Nikolaevich, 463.
10626B MacMahon entry 1/ 5179131
add p. 583
2.62\% $9121 / 76132$
Merrington, Maxine, 66.
1.628L 2/28178 133
Nielsen, Norman Russell, 451.
14.628 5127178 134
Peirce, Charles Santiago Sanders, 588.
1.629 4/19177135add p44 to Pratt entry
1.659B 6/14/77 136
Petolino, Joseph Anthony, Jr., 511.
1.6590 5127178 137
Prüfer, Heinz \leadsto Prüfer, Ernst Paul Heinz
1.629は 6/25176 138
Prinz, Dietrich G.
6. 1 B5® 419177139
Ramshaw, Lyle Harold, 487.
1.B2GL $312 / 77140$
Reversing a list, 266, 276.
1,B51LL new entry 1/ 5179141
Series-parallel networks, 583.
2.652L $1 / 16 / 77 \quad 142$
Shore, John E., 446, 451.
1.B32L $2128178 \quad 143$
Russell, David Lewis, 602.
1.B22ㄴ 1/ $16 / 77144$
Swainson, William, 332.
1.BE2L Stirling numbers entry $8 / 25176$ 145
$90, \sim 90-91$,
1,632R 4/19/77 146
add p630 to Thorelli entry
1.635라 4/19/77 147
Watson, Dan Caldwell, 248.
1.63ㄹㄴㄴ $4119 / 77 \quad 148$
add $\mathbf{p} 487$ to Vandermonde entry
1, 653 5/27178 149
Twigg, David William, 518.
1.635BL van Aardenne-... 11/29/77 150
Taniana Tatyana
2.6TEL 12/19176 151
Uspenskiĭ, Vladimir Andreevich, 463.
2.6E4ㄴ 4119177 152
add p248 to Wise entry
7. 6 G2t 6/25176 153
Windley, Peter F.
1.BTML Weizenbaum entry 9/21/76 154
delete p420
1.BMEL 11/29/77 155
Wiscman, Neil Ernest, 420.
1．B34R $6125176 \quad 156$
Young Tanner，Rosalind Cecilia Hildcgard， 75.
1，（2）른（namely the endpapers of the book） 4／19177 J57
also make any changes specified for pages 136－137
3．0X quotation for bottom of page 5／27／78 158
T w o hours＇daily exercise，will be enough －－M．H．MAHON，The Fandy Horse Book（Edin burg h，1865）
弱。 6 312177159
mädeln \sim Mädeln
岛。B line 26 312177160
Weiner Wiener
3． 54 line 13 212817816 J
（1965 （1965）
3.34 bottom line of determinant on line 12 5／27178 162
$a_{m n} \leadsto a_{m m}$
3． 20 Eq．（26） 2／28／78 163
the j in $\boldsymbol{e}^{\boldsymbol{j}}$ should be in smaller（superscript size）font
3.57 line 2 of step S3 2／28／78 164
right right of
8. 58 Ine 4 2128178165
$a_{1} a_{2}, \leadsto a_{1}, a_{2}$,
3.65 line -4 5/27178 166
s's \leadsto X's
x 's $\boldsymbol{\omega}$, s
 2/28178 167
to better understand $\boldsymbol{t}_{\boldsymbol{n}} \xrightarrow{\rightarrow}$ to understand $\boldsymbol{t}_{\boldsymbol{n}}$ better
36 following (50) 5127178 168
lines 2-4: we find...Euler's $\leadsto \rightarrow$ Euler's
line 5: in this case, since $\boldsymbol{\sim}$ since
lines 7-8 (the two lines following (51)): \boldsymbol{n}; this....we have proved that\boldsymbol{n}. The derivative $\boldsymbol{g}^{(\boldsymbol{m})(\boldsymbol{y})}$ is a polynomial in y time6 $\boldsymbol{e}^{-2 \boldsymbol{y}^{2}}$, hence $\boldsymbol{R}_{\boldsymbol{m}} \cdot \boldsymbol{O}\left(\boldsymbol{n}^{(\ell+1-\boldsymbol{m}) / 4}\right)$$\int_{-\infty}{ }^{+\infty}|g(m)(y)| d y=0\left(\boldsymbol{n}^{(t+1-m) / 4}\right)$. Furthermore if we replace $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ by $-\infty$ and $+\infty$ inthe right-hand side of (SO), we make an error of at most $\boldsymbol{O}\left(\boldsymbol{\operatorname { e x p }}\left(-2 \mathbf{n}^{\mathbf{6}}\right)\right)$ in each term. Thus
3.69 exercise 8 6/14/77 169
accent over o in Erdös should be " not "
3.75 new copy for exercise 28 J $1115178 \quad 170$28. [Mb33 Prove that the average length of the longest increasing subsequence of arandom permutation on $(1,2, \ldots \boldsymbol{n})$ is asymptotically $2 \sqrt{ } \boldsymbol{n}$. (This is the average length ofrow 1 in the correspondence of Theorem A.)
9. 79 last line before exercises $9 / 21 / 76171$
Feurzig $\leadsto \rightarrow$ Feurzeig
11129/77 172
$\log _{2}$ lg
9.98 line 4 J //29/77 173
$\log _{2} \leadsto \lg$
3.104 line - 2 6/14/77 174
inversions. $\mathcal{\sim}$ inversions. Discuss corresponding improvements to Program S.
3.115 simplifications of step Q2 12/19176 175
line 3: $\boldsymbol{K} \leftarrow \boldsymbol{K}_{\boldsymbol{l}} \boldsymbol{l} \boldsymbol{R} \leftarrow \boldsymbol{R}_{\boldsymbol{l}} \leadsto \boldsymbol{\sim} \leftarrow \boldsymbol{K}_{\boldsymbol{l}}$.
line 4: \boldsymbol{K} and $\boldsymbol{R} \leadsto \boldsymbol{K}$
3.118 comment to program line 05 12/19/76 176
$K \leftarrow K_{l}, R \leftarrow R_{l} \leadsto K \leftarrow K_{l}$.
5.250 Ine-3 6/14/77 177
$s_{N} \leadsto s_{N}$
3.1222 line-6 12/19/76 178
instructions " $\boldsymbol{K} \leftarrow \boldsymbol{K}_{\boldsymbol{l}}, \boldsymbol{R} \leftarrow \boldsymbol{R}_{\boldsymbol{l}}$ " \sim instruction " $\boldsymbol{K} \leftarrow \boldsymbol{K}_{\boldsymbol{l}}$ "
3 2 28 line - 34/19/77 179
$\boldsymbol{\sim}$ v. Yihsiao Wang has suggested that the mean of three key values such as (28) beused as the threshold for partitioning; he has proved that the number of comparisonsrequired to sort uniformly distributed random data will than be asymptotic to $1,082 \mathrm{nlg} \mathrm{n}$
3.152 10 lines after (42) 5/27178 180
$(N / x)^{t} \leadsto(N / x \in)^{t}$
3.23 7 lines after (42) $5 / 27 / 78$ 181
$O\left(N^{t-1 / 2} e^{-\pi N / 2}\right) \leadsto O\left(t+i N^{t-1 / 2} e^{-t-\pi N / 2}\right)$
10. 13 in in the discussion following (45) 5127178 182
line 3: $\left.\boldsymbol{N}^{\boldsymbol{t}} \boldsymbol{\sim} \boldsymbol{\rightarrow} \boldsymbol{M} \boldsymbol{+ i N}\right|^{\boldsymbol{t}}$
line 4: negligible. $\uparrow \rightarrow$ negligible, when \boldsymbol{N} and \boldsymbol{N} are much larger than \boldsymbol{M}.
11. 153 Eq. (46) and the line following $2128 / 78183$
, $\sim+O\left(n^{-M}\right)$,
where \leadsto for arbitrarily large M, where
3.154 displayed formula on line 12 $2 / 28178184$
$f(n) \leadsto|f(n)|$
1725 173
ㄴํㄴํㄴ 11/29/77 185
HM46 HM42
3.158 exercise 46 lower limit of integral 6/14/77 186
$a+i \infty \xrightarrow{\sim} a-i \infty$
12. 25 ex 8 excise 52 binomial coefficient in the sum 6/14/77 187
remove spurious fraction line between 211 and $\boldsymbol{n} \boldsymbol{+}$
3.24ㄴㄴ line 10 $2 / 28 / 78188$
Language, \leadsto Language
3.154 11112/76 189
about here I will someday insert material about the new "binomial queue" algorithms to be discussed in papors by Vuillemin and Brown, since they appear to outperform leftist trees
3.258 line -5 5/27178 190
$a_{i} \leadsto a_{1}$
3564 line 21 of program 5/27178 191
$L_{q} \leadsto L_{p}$
3.176 line -12 5/27178 192
$M=b \leadsto M=b^{r}$
3.187 lines 25-27 9/21/76 193
that the multiplicity . . . Algorithm R, even
that it ultimately spends too much time fussing with very small piles. Algorithm R is relatively efficient, even
3.195 line -7 5/27178 194
Well's Wells's
13. 193 Iine - 15 5/27178 195
less fewer
3.199 Eq. (4) 2/28178 196
$\lg 「 \leadsto 「 \mathrm{rlg}$
3.208 replacement for exercise 14 11/29/77 197
14. [41] (F. K . Hwang.) Let $h_{3 k}=\left\lfloor(43 / 28) \cdot 2^{k}\right\rfloor-1, h_{3 k+1}=h_{3 k}+3 \cdot 2^{k-3}, h_{3 k+2}=$$\left\lfloor(17 / 7) \cdot 2^{k}-6 / 7\right\rfloor$ for $\boldsymbol{k} \geq 3$, and let the initial values be defined so that $\left(h_{0}, \boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \ldots\right)=$$(1,1,2,2,3,4,5,7,9,11,14,18,23,29,38,48,60,76,97,121,154, \ldots)$. Prove that $\boldsymbol{M}\left(3, \boldsymbol{h}_{\boldsymbol{t}}\right)>$$\boldsymbol{t}$ and $\boldsymbol{M}\left(3, \boldsymbol{h}_{\boldsymbol{t}}-\mathbf{1}\right) \leq \boldsymbol{t}$ for all \boldsymbol{t}, thereby establishing the exact values of $\boldsymbol{M}(3, \boldsymbol{n})$ for all \boldsymbol{n}.

3.215 line 4 after second illustration
 312177199

the values listed in the table for $n \geq 8 \sim$ the values shown for $\boldsymbol{V}_{\mathbf{4}}(9), V_{\mathbf{5}}(\mathbf{1 0)}$ and their duals $\boldsymbol{V}_{6}(9), \boldsymbol{V}_{6}(10)$

T3.212 amendment to previous correction number 242 12/19176200

line 17: A. Schiinhage [to appear] \leadsto A. Schiinhage, M. Paterson, and N. Pippenger [J. Camp. Sys. Sci, 13 (1976), 184-199]
line 18: asymptotic \sim
lines 19-20: $3 n$, and $\ldots 1.75 n . \sim 3 n+O(n \log n)^{3 / 4}$. On the other hand, Vaughan Pratt has obtained an asymptotic lower bound of $1.75 n$ for this problem [cf. Proc. IEEE Conf. Switching and Automata Theory 14 (1973),70-81]; a generalization of his result appears in exercise 25.

3.219 exercise 14

Show that . . comparisons. \sim Let $U_{t}(n)$ be the minimum number of comparisons needed to find the t largest of nelements, without necessarily knowing their relative order. Show that $U_{2}(5) \leq 5$.
3.250 new exercise

12/19/76 202
26. [M32] (A. Schönhage, 1974.) (a) In the notation of exercise 14 , prove that $\boldsymbol{U}_{\boldsymbol{t}}(\boldsymbol{n}) \geq$ $\min \left(\mathbf{2}+\boldsymbol{U}_{\boldsymbol{t}}(\boldsymbol{n}-\mathbf{1}), \mathbf{2}+\boldsymbol{U}_{\boldsymbol{t}-\mathbf{1}}(\boldsymbol{n}-\mathbf{1})\right)$ for $\boldsymbol{n} \geq 3$. $\boldsymbol{H} \boldsymbol{i n t}$: Construct an adversary by reducing from \boldsymbol{n} to $\mathrm{n}-\mathrm{l}$ as soon as the current partial ordering is not composed of components $\bullet \bullet$. (b) Similarly, prove that $V,(n) \geq \min \left(2+U_{t}(n-1), 3+U_{t-1}(n-1), 3+U_{t}(n-2)\right)$ for $n \geq 5$, by constructing an adversary which deals with components \rightarrow, (c) Therefore we have $\boldsymbol{U}_{\boldsymbol{t}}(\boldsymbol{n}) \geq \boldsymbol{n}+\boldsymbol{t}+\min (L(\boldsymbol{n} \boldsymbol{t}) / 2 \mathrm{~J}, \boldsymbol{t})-3$ for $\mathrm{I} \leq \boldsymbol{t} \leq \boldsymbol{n} / \mathbf{2}$. (d) The inequalities in (a) and (b) apply also when \boldsymbol{V} or \boldsymbol{W} replaces \boldsymbol{U}, thereby establishing the optimality of several entries in Table 1.
3． 2525 linel
$\lfloor m / 2\rfloor$ 2【m／2」
\n／2」 $2\lfloor n / 2\rfloor$
3．259 remarks about current best known sorting networks 1／16／77
204
line 19：D．Van Voorhis in 1974．\leadsto R．L．Drysdale III in his undergraduate honors projeot at Knox College in 1973.
lines 20－21：a $\boldsymbol{n} \lg \boldsymbol{n}+\boldsymbol{O}(\boldsymbol{n})$ comparators，．．．3651．へ
（ $371 / 960) \boldsymbol{n} \lg \boldsymbol{n} \mathrm{t} \mathrm{O}(\mathrm{n})$ comparators；in particular，his construction yields $\hat{\boldsymbol{S}}(256) \leq 3657$ ， line 22：［To be published．］\leadsto［SIAM J．Computing 4 （1975），264－270．］
3.353 update to previous change number 250 8／25／76 205
［JACM，to appear］$\sim \rightarrow$［JACM 23 （1976），566－571］
3．235 line 9 5／27178 206
）］ヘ ］
3.545 rating of exercise 48 1／16／77 207
IIM49～I／M46
3．3259 lines 4，5，6，7 9121176208
has not yet $\ldots \boldsymbol{m}=8$ ．This increase \sim
is difficult to analyze precisely，but T．0．Espelid has shown how to extend the snowplowanalogy to obtain an approximate formula for the behavior［BIT 16 （1976），133－142］．According to his formula，which agrees well with empirical tests，the run length will beabout $2 \boldsymbol{P}+\boldsymbol{b}(\boldsymbol{m}-1.5)(2 \boldsymbol{P}+\boldsymbol{b}(\boldsymbol{m}-2)) /(2 \boldsymbol{P}+\boldsymbol{b}(2 m-3)$ ，when \boldsymbol{b} is the block size and $\boldsymbol{m} \geq 2$ ．Such anincrease
3．26［ insert new paragraph before Table 2 2／28／78 209
The ideas of delayed run－reconstitution and natural selection can be combined，as discussed by T．C．Ting and Y．W．Wang in Camp．J． 20 （1977），298－301．
3.262 line 7 5127178 210
should be the square root of ($4 \mathrm{e}-10$) \boldsymbol{P}
3.264 line-1 5/27178211
beings \leadsto begins
3. 2279 line 10 after Table 4 6/14/77 212
JACM(to appear) $\leadsto \rightarrow$ SIAM J. Computing 6 (1977), 1-39
3.282 line before the big tableau 5127178 213
"R," ヘ "R",
3.584 line 22 1/5179 214
143 145
5,584 lines $4,13,20$ 115179215
25 27
5, 505 line-4 8125176 216
always get \uparrow always gets
3.326 line -7 11/29177217
$L[p] \leadsto L[m]$
 6/14/77 218
! ヘ

3.342 the foldout illustration

in the bottom example (10) look at line 4 of the six lines, where there is a longish black bar as the seventh activity (the sixth activity is a shorter black bar)...and lines $1,2,3$, and 5 have a blank bar just above and below this longish black bar; actually lines $1,2,3$, and 5 should have parallel upward-slanting diagonal lines (the symbol for "reading in forward direction") inside these blank bars
3.318 line 9 after the first illustration 5/27178 220
tape $\boldsymbol{C} \leadsto \rightarrow$ tape \boldsymbol{A}
tape $\boldsymbol{D} \leadsto$ tape \boldsymbol{B}
3.555 line-9 6/14/77 221
is in
3.358 11/29/77222
merge \leadsto radix sort
3.56 line-11 5/27178 223
T3 \leadsto Track
3.358 line - 2012/19/76 224
artifically \sim tificially
3. 32 Equation (8) 8/25/76 225
$B_{2}{ }^{2} \leadsto B_{1}{ }^{2}$
3.3736/25176226
about here I should mention C. McCulloch's new approach to external disk sorting (embodied in the KA Sort on Honeywell 200)

```
line 17: large, and ... unthinkable! ~~ large; it is, however, so large that N seeks are
unthinkable.
line 24: But ~
line 24:!~
```


3. 581 table entries for Straight insertion

Length: 12 10
Space: $\mathrm{N} \leadsto \mathrm{N}+1$
Average: $2 N^{2}+9 N \sim 1.5 N^{2}+9.5 N$
Maximum: $4 \xrightarrow{\sim}$
N-16: 494 412
N-1000: 19855'74 ヘ 1491928
3.384 insert new paragraph before line -1 6/25176 229

In Germany, K. Zuse independently constructed a program for straight insertion sorting in 1945, as one of the simplest examples of linear list operations in his "Plankalkü" language. (This pioneering work remained unpublished for nearly 30 years; see Berichte dot Cesellschafi für Math. und Datonv. 63 (1972), part 4, 84-85.)
3.387 line 2 8/25/76 230near-optional \sim near-optimal
3,594 caption to Fig. 1 3/ 2/77 231
search. or "house-to-house" search.
3. 294 Fig. 1 4119/77232
label the downward branch coming out of box S2 with an sign
3, MOD lines 12 and -5 2/28/78 233
running time average running time
3. 213 Ines $-4,-3$ 4/19177235
and $\mathrm{N}>2^{k}$, we $\sim \rightarrow$ weL $1 \mathrm{~g}\left(N-2^{k}\right) \mathrm{J}+1 \sim\left\lceil\lg \left(N+1-2^{k}\right)\right\rceil$
3.259 lines $13-14$ 31 2/77236
H. Bottenbruch . . He \sim D. H. Lehmcr [Proc. Symp. Appl. Math. 10 (1960), 180-181 Jwas apparently the first to publish a binary search algorithm which works for all \boldsymbol{N}. Thenext step was taken by H. Bottenbruch [JACM 9 (1962), 214], who
3.919 line 30 11112/76 237
, but his flowchart and analysis were incorrect.
3, 529 line 7 (append to step D1) 5127/78 238(For example, if $\mathbf{Q}=\operatorname{RLINK}(\mathbf{P})$ for some P, this means we would set RL I NK $(\mathbf{P}) \leftarrow$LLINK (T), etc.)
3.45 Fig. 16 $6 / 14177239$insert "a)" and "b)" to the left of the roots of the trees, and change circles to squares inthe right descendants of nodes AN and AS in the upper tree
3. 289 update to previous change 276 11115/78 240
the Garsia-Wachs algorithm appeared in SI AM J. Computing, Dec. 1977, pp. 622ff; butnow it seems an even better way has been found by Hu, Kleitman, and Tamaki (UCSDreport 78-CS-016)

3. 250

line 6: optimum. Cf. $\leadsto \rightarrow$ optimum; cf.

line 7: .) \sim. On machines which cannot make three-way comparisons at once, a program for Algorithm T will have to make two comparisons in step T2, one for equality and one for less-than! B. Sheil and V. R. Pratt have observed that these comparisons need not involve the same key, and it may well be best to have a binary tree whose internal nodes specify an equality test or a less-than test but not always both. This situation would be interesting to explore as an alternative to the stated problem,)

3. 25151 line -3
 3/2/77242

put a small inverted U over the $\boldsymbol{i} \boldsymbol{a}$ in Akadamia
5.256 Fig. 22 9/21/76243
the arrows between boxes A2 and A3 should be reversed (downward arrow on left, upward arrow on right); also delete " $\mathrm{P}=\mathrm{A}$ " below boxes A3 and A4 and insert the words "Leaf found" between the two arrows leading to A5
3. 254 line $15 \quad 2128178244$
necessary. \sim necessary. Essentially the same method can be used if the tree is threadod (cf. exercise 6.2.2-2), since the balancing act never needs to make difficult changes to thread links.

$3.25 \sqrt{4}$ line after (4)

11/29/77245

$\mathrm{K} \leadsto K$

3. 2 21 Table 1

I will recompute this table, since .144 should be ,143; also will modify the discussion on page 462 accordingly and will refer to exercise 11

3.261 line 2 after caption

```
change + and - to typewriter-style type (+ and -)
```

I will rewrite this, as these trees have been studied almost too thoroughly by now

3.27 exercise 10

11129/77 249

Does ...c? What is the asymptotic average number of comparisons made by Algorithm A when inserting the Nth item, assuming that items are inserted in random order?
3.270 exercise $16 \quad 11 / 29177250$
the root node F were \sim node E and the root node F were both

3. 48 (1) new exercise 11 11/29/77 25 J

[M24] (Mark R. B rown.) Prove that when $\boldsymbol{n} \geq 6$ the average number of external nodes of each of the types $+A,-A,++B,+-B,-+B,--B$ is exactly $(\boldsymbol{n}+\boldsymbol{1}) / 14$, in a random balanced tree of \boldsymbol{n} internal nodes constructed by Algorithm A.

3.552 near $t h e b o t t o m$

11/15178 252

```
lines -7, -5, -4: log ~~ lg
line -3:350 ~ 
```

33. 28 update to previous change 293 III15/78 253
, to appear \wedge (1978), 171-181
34. 25 new paragraph before the exercises 12/19/76 254

It is possible for many independent users to be accessing and updating different parts of a large B-tree file simultaneously without "deadlock," if the algorithms are implemented properly; see B. Samadi, Inf. Proc. Letters 6 (1976),107-112.
3.283 line $25 \quad 7131176255$

55 ~ 49
3.981 lines 6 and -2 5/27178 256
less fewer
3. 291 line - 14 5/27178 257
text, e.g. text; e.g.,
5.505 line - 14 5127178258
to uniquely identify them \sim to identify them uniquely
3507 line 13, add new sentence 2/28/78 259
See R. Sprugnoli, CACM 20 (1977), 841-850, for a discussion of suitable techniques.
3.509 line 3 5/27178260
superimpose a / over the sign
3.508 lines 5-7 4119177 261
using circular ... complicated. $\sim \rightarrow$ hashing FIRE and searching down its list, as suggested by D. E. Ferguson, since the lists are short.
3.556 new paragraph after line 19 11/29177 262E. G. Mallach [Camp. J. 20 (1977),137-140] has experimented with refinements ofBrent's variation, and further recent work on this topic has been done by G. Gonnet and I.Munro [Proc. ACM Symp. Theory Comp. 9 (1977), 113-121)
3527 insertion of new material after line 20
Algorithm R may move some of the table entries, and this is undesirable if they are being pointed to from elsewhere. Another approach to deletions is possible by adapting some the ideas used in garbage collection (cf. Section 2.3.5): We might keep a "reference count" with each key telling how many other keys collide with it; then it is possible to convert unoccupied cells to empty status when their reference count is zero. Alternatively we might go through the entire table whenever too many deleted entries have accumulated, changing all the unoccupied positions to empty and then looking up all remaining keys, in order to sce which unoccupied positions really require 'deleted' status. This procedure, which avoids relocation and works with any hash technique, was originally suggested by T . Gunji and E. Goto [to appear].
3 558 update to previous change 307 11115178264
[To appear.] $\leadsto \rightarrow$ J. Camp. Syst. Sci. 16 (1978), 226-214.
3.5 5 2/28/78 265
likely we, $\sim \rightarrow$ likely, we
3.554 Iine-5 312177266
buckote \leadsto pages or buckotr
3.537 line -8 4119177 267
access \leadsto accesses
3.54C line 16 6/14/77 268
change one of \leadsto change
3. 549 exercise 60 1/5/79 269
M48 HM413. 549 another quote, put above the other
She made a hashof the proper names, to be sure. --GRANT ALLEN, The Tets of Shem. Ch. 26(1889)
3.562 new paragraph to insert after line 18 312177271

If carefully selected nonrandom codes are used, it is possible to use superimposed coding without having any false drops, as shown by W. H. Kautz and R. C. Singleton, IEEE Transactions IT-10(1964), 363-377; see exercise 16 for one of their constructions.
3. 5663 line 115/27178 272
the $N \boldsymbol{*} \boldsymbol{*} \mathbf{D} \boldsymbol{* E} \leadsto$ the form $N \boldsymbol{*} \boldsymbol{*} \mathbf{D} \boldsymbol{* E}$
3.563 line 9 8/25/76 273
his Ph. D. thesis (Stanford University, 1973).] ~ SIAM J. Computing 6 (1976), 19-50.]
5.Sbl Eq. (11) 3/2/77 274
this
565
3.566 ine -711115178 275
Pfefferneuse \sim Pfefferneusse
3.570 line 6 3/ 2177276
systems or systems on
2850 new exercise 31 2/77277
16. [25] (W. H. Kautz and R. C. Singleton.) Show that a Steiner triple system of order \boldsymbol{v} can be used to construct $\boldsymbol{v}(\boldsymbol{v}-1) / 6$ codewords of u bits each such that no codeword is contained in the superposition of any two others.
3.576 new paragraph after answer 19 11/12176 278A similar algorithm can be used to find $\max \left\{\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{j}} \mid \boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{x} \boldsymbol{j} \leq \boldsymbol{c}\right\}$; or to find, e.g.,$\min \left\{\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{j}}\left|\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{+} \boldsymbol{y}_{\boldsymbol{j}}\right\rangle \mathbf{t}\right\}$ given \boldsymbol{t} and two sorted files $\boldsymbol{x}_{\mathbf{1}} \leq \cdots \leq \boldsymbol{x}_{\boldsymbol{m}}, \boldsymbol{y}_{\boldsymbol{1}} \leq \cdots \leq \boldsymbol{y}_{\boldsymbol{n}}$
3.506 line -6 12/19/76 279
junctions; $\uparrow \rightarrow$ junctions; STELA, an alternative spelling of 'stele';
3.575 answer 7, line 3 5/27178 280
$>\boldsymbol{B}_{\boldsymbol{k}}$ and append $\left(\boldsymbol{B}_{\boldsymbol{k}}+\boldsymbol{1}\right) \mathcal{\sim} \boldsymbol{\geq} \boldsymbol{k}-\boldsymbol{B}_{\boldsymbol{k}}$ and append $\boldsymbol{k}-\boldsymbol{B}_{\boldsymbol{k}}$
3.585 new paragraph for answer 8 8/25/76 28 JA simple $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ algorithm to count the number of permutations of ($\left.1, \ldots, \boldsymbol{n}\right\}$ havingrespective run lengths $\boldsymbol{l}_{\boldsymbol{1}}, \ldots, \boldsymbol{l}_{\boldsymbol{k}}$ has been given by N. G. de Bruijn, Nieuw Archief voorWiakunda (3) 18 (1970), 61-65.
2.594 new answer11115/78 282
28. This result is due to A. M. Vershik and S. V. Kerov, Dokl. Akad. Nauk SSSR 233(1977), 1024-1028. See also B. F. Logan and L. A. Shepp, Advancer in Math. 26 (1977),206-222.
3.599 exercise 14 line 7 11/29177283
13); 13), and still another by the identity in the answer to exercise $5.2 .2-16$ with $f(k)$ $=k$;
3.6(2) exercise 33, comments to program 7131/76284
line 07: r12 r13
rI3 ヘ r 12
lines 09 and 15: To L4 To L4 with $\boldsymbol{q} \boldsymbol{\oplus} \boldsymbol{p}$

3.604

replace lines 3 and 4 by the following new copy
The ∞ trick also speeds up Program S; the following code suggested by J. H. Halperin use6 this idca and the MOVE instruction to reduce the running time to $(6 B+11 N-10) u$, assuming that location INPUT $+\mathrm{N}+1$ already contain6 the largest possible one-word value:

01 START ENT2 N-1 1
022 H LDA INPUT.2 N-1
03 ENT1 INPUT, 2 N-1
04 JMP 3F N-1
05 4H MOVE 1,1(1) B
06 3H CMPA 1,1 B+N-1
07 JG 4B B+N-1
08 5H STA 0,1 N-1
09 DEC2 1 N-1
10 J2P 2B N-1
Doubling up the inner loop would save an additional $B / 2$ or so unit6 of time.

3. 3 O5 exercise 4
 $2 / 28 / 78286$

lower the $\boldsymbol{\Sigma}$ sign and the relation below it

勾, 10 line 10 of the program 2128178287
$r A \leadsto r A$

In general, ... elements. \sim The situation becomes more complicated when $N=64$; R. Sedgewick has shown how to compute the worst-case permutations, and he has proved that the maximum number of exchanges is $1-\mathrm{ig}$ ig $\mathrm{N} / \operatorname{ig} \mathrm{N}+\mathbf{O}(1 / \log N)$ times the number of comparisons [SIAM J. Computing, to appear].
3.607 new answer 16
16. Consider the $\binom{\mathbf{2 n}}{\boldsymbol{n}}$ lattice paths from $(0,0)$ to $(\boldsymbol{n}, \boldsymbol{n})$ as in Figs. 11 and 18, and attach weights $\boldsymbol{f}(\boldsymbol{i}-\boldsymbol{j})$ if $\boldsymbol{i}>\mathrm{j}, \boldsymbol{f}(\boldsymbol{j}-\boldsymbol{i}-1)+1$ if $\boldsymbol{i}<\boldsymbol{j}$, to the line from $(\boldsymbol{i}, \boldsymbol{j})$ to $(\boldsymbol{i}+1, \boldsymbol{j})$; here $\mathrm{f}(\mathrm{k})$ is the number of bits $6, \boldsymbol{b}_{r+1}$ in the binary expansion $\boldsymbol{k} \cdot\left(\ldots \boldsymbol{b}_{2} \boldsymbol{b}_{1} \boldsymbol{b}_{0}\right)_{2}$. The total number of exchanges on the final merge when $N=2 n$ is
$\Sigma_{0 \leq j \leq i<n}(2 f(j)+1)\binom{2 i-j)}{i-j}\binom{2 n-2 i+j-1)}{n-i-1}$
R. Sedgewick has simplified this sum to
$(1 / 2) n\left(\begin{array}{l}2 n\end{array}\right)+2 \Sigma_{k \geq 1}\left(2_{n-k} \Sigma_{0 \leq j<k} f(j)\right.$ and used the gamma function method to obtain the asymptotic formula $\left(\begin{array}{l}2 n\end{array}\right)\left((1 / 4) n \lg n+\left(\lg \left(\Gamma(1 / 4)^{2} / 2 \pi\right)+1 / 4-(\boldsymbol{\gamma}+2) /(4\right.\right.$ In 2$\left.)+\delta(n)\right) n+$ $\boldsymbol{O}(\sqrt{ } \boldsymbol{n} \log \boldsymbol{n}))$, where $\boldsymbol{\delta}(\boldsymbol{n})$ is a periodic function of $\lg n$ with magnitude bounded by $\mathbf{0 0 0 5}$; hence about $\mathbf{1 / 4}$ of the comparisons lead to exchanges, on the average, as $n \rightarrow \infty$. [SIAM J. Computing, to appear.]
3.BMD second line of answer 31 $11 / 29177290$
step \sim stop
3.611 last line of answer 37 2/28178 291
,]
3. 312 exercise 48 line 4 in limits to the integral 2/28/78 292
$1 / 2 \sim-1 / 2$ (twice)
3.61B line 26 of the program 2/28178 293
$r A \leadsto r A$
3.628 answer 20 line 2 5127178 294
$0 \leq q<k \leadsto 0 \leq q \leq k$
3.619 answer 27 line 1 5/27178 295
$d \backslash n \leadsto d \backslash N$
365 line 16 1／ 5179 296
See also \leadsto See also P．A．MacMahon，Proc．London Math．Soc．（1891），341－344；
3.625 bottom of page，new paragraph for answer 6 8125176297
M．Paterson observes that if the multiplicities of keys are $\left\{\boldsymbol{n}_{\boldsymbol{1}}, \ldots, \boldsymbol{n}_{\boldsymbol{m}}\right\}$ ，the numberof comparisons can be reduced to $\boldsymbol{n} \lg n-\boldsymbol{\Sigma} \boldsymbol{n}_{\boldsymbol{i}} \lg \boldsymbol{n}_{\boldsymbol{i}} \bullet O(n)$ ；see SIAM J．Computing 6（1976）， 2.
3．Bㄹ 5127178298
line 5：Z－1 $\boldsymbol{\sim} \boldsymbol{l}+\boldsymbol{1}$
line 6： $2-l+1 \sim 2^{-l}$
line 6： $2-l \sim 2-l-1$
line 6： $\mathbf{2}^{\boldsymbol{l}} \boldsymbol{\sim} \boldsymbol{2}^{\boldsymbol{l + 1}}$（twice）
line 7： $\operatorname{Llg} N \mathrm{~J}+1$～ Llg NJ
3．354 exercise 6 11／29／77 299
$\lg (\ldots) \sim \sqcap\lceil\lg (. .)$.
岛。號 answer 10 31 2177 300
［Inf．Proc．Letters～］．\sim ．
33 63 supplement to new answer 22 9121／76 301
［See C．K．Yap，CACM 19 （1976），501－508，for a further improvement，］
25. (a) Let the vertices of the two types of components be designated $\boldsymbol{a} ; 6<\mathrm{c}$. The adversary acts as follows on nonrcdundant comparisons: Case 1, a: $\boldsymbol{a}^{\boldsymbol{\prime}}$, make an arbitrary decision. Case 2 , $\boldsymbol{x}: \boldsymbol{b}$, say that $\boldsymbol{x}>6$; all future comparisons $\boldsymbol{y}: \boldsymbol{b}$ with this particular 6 will result in $\mathrm{y}>6$, otherwise the comparisons are decided by an adversary for $\boldsymbol{U}_{\boldsymbol{t}}(\boldsymbol{n}-\boldsymbol{1})$, yielding $\geq 2+U_{\boldsymbol{t}}(\boldsymbol{n}-1)$ comparisons in all. This reduction will be abbreviated "let $6=\mathrm{min} ; \mathbf{2}+\boldsymbol{U}_{\boldsymbol{t}}(\boldsymbol{n}-\mathbf{1})$." Case 3, $\boldsymbol{x}: \mathbf{c}$, let $\mathrm{c}=\max ; \mathbf{2}+\boldsymbol{U}_{\boldsymbol{t}-\mathbf{1}}(\boldsymbol{n}-\mathbf{1})$.
(b) Let the new types of vertices be designated $\boldsymbol{d}_{1}, \boldsymbol{d}_{2}<\boldsymbol{e} ; \boldsymbol{f}<\boldsymbol{g}<\boldsymbol{h}>\boldsymbol{i}$. Case 1 , a: \boldsymbol{a}^{\prime} or $\boldsymbol{c}: \boldsymbol{c}$, arbitrary decision. Case 2, a:c, say that $\boldsymbol{a}<$ c. Case 3, $\boldsymbol{x}: \boldsymbol{b}$, let $\boldsymbol{b}=\boldsymbol{m i n} ; \mathbf{2}+\boldsymbol{U}_{\boldsymbol{t}}(\boldsymbol{n}-\mathbf{1})$. Case 4, $\boldsymbol{x}: \boldsymbol{d}$, let $\boldsymbol{d}=\mathrm{min} ; 2+\boldsymbol{U}_{\boldsymbol{t}}(\boldsymbol{n}-1)$. Case 5, $\boldsymbol{x : c}$, let $\boldsymbol{c}=\max ; 3+U_{t-1}(n-1)$. Case $6, \boldsymbol{x}: f$, let $\boldsymbol{f}=\mathrm{min}$; $2+U_{\boldsymbol{t}}(\boldsymbol{n}-1)$. Case 7, $\boldsymbol{x}: \boldsymbol{g}$, let \boldsymbol{f} and $\boldsymbol{g}=\min ; 3+U_{\boldsymbol{t}}(\boldsymbol{n}-2)$. Case 8 , $\boldsymbol{x}: \boldsymbol{h}$, let $\boldsymbol{h}=\max ; 3+U_{\boldsymbol{t}-1}(\boldsymbol{n}-\mathbf{1})$. Case 9, $\boldsymbol{x}: \mathbf{i}$, let $\boldsymbol{i}=\min ; 2+U_{t}(n-1)$.
(c) For $\boldsymbol{t}=1$ we have $\mathrm{U},(\mathrm{n})=\mathrm{n}-1$, so the inequality holds. For $1<\boldsymbol{t} \leq \mathrm{n} / 2-1$, use induction and (b). For $\boldsymbol{t}=(\boldsymbol{n}-1) / 2$, use induction and (a). For $\boldsymbol{t}=\mathrm{n} / 2, \boldsymbol{U}_{\boldsymbol{t}}(\boldsymbol{n}-1)=\boldsymbol{U}_{\boldsymbol{t}-1}(\boldsymbol{n}-1)$; use induction and (a). Exercise 14 now yields the following lower bound for the median:
$V_{t}(2 t-1) \geq 3 t+L t / 2 \mathrm{~J}-4$.

3 6 und $\quad 2 / 28 / 78303$

(To appear.) $\sim \rightarrow$ IEEE Trans. C-27 (1978), 84-87.

2 $6 \mathbb{C L}$ line - 2

1/16/77 304

Pollard.] \sim Pollard.] All such identities can be obtained from a system of four axioms and a rule of inference for multivalucd logic due to Eukasicwicz; see Rose and Rosser, Trans. Amer. Malh. Soc. 87 (1958), 1-53.

3.6디 exercise 43

A. Waksman and M. Green have proved that $\boldsymbol{\sim} \rightarrow$ By slightly extending a construction due to L. J. Goldstein and S. W. Lcibhoiz, IEEE Trans. EC-16 (1967), 637-641, one can show that $\boldsymbol{P}(\boldsymbol{n}) \leq \boldsymbol{P}(\lfloor\boldsymbol{n} / 2\rfloor)+\boldsymbol{P}(\lceil\boldsymbol{n} / 2\rceil)+n-1$, hence Eq. 5.3.1-3, cf. ... Green also has proved $\boldsymbol{\sim}$ Eq. 5.3.i-3; M. W. Green has proved (unpublished)
3.655 new paragraph after answer 10 2/28178 307
One might complain that the algorithm compares KEY values that haven't been initialized. If such behavior is too shocking, it can be avoided by setting ail KEYs to 0 , say, in step R1.
3.658 line 7 5/27178 308
increase \boldsymbol{l} by 1 , set \ldots and return \leadsto set \ldots increase \boldsymbol{l} by \mathbf{l}, and return
른 $B 6$ ex excise 3 line 7 11112/76 309
Trabb-Pardo \leadsto Trabb Pardo
2.B71 exercise 2 2128178310
line 1: RTAG \sim RTAG($\mathbf{(O)}$
line 2: RLI NK (P). \leadsto RLINK (P) and RTAG $(P) \leftarrow+$. In step T4, change the test RLINK $(P) \neq$ a to $\operatorname{RTAG}(P) \neq+$.
last line: .] \uparrow. Similar remarks apply with simultaneous left and right threading.)
3.675 tree illustration in answer 23 11115178 311
5 ~ 9
3.675 new answer 1111/29177 312
11. Clearly there are as many $+A$'s as $--B$'s and + - 's, when $\boldsymbol{n} \geq 2$, and there is symmetrybetween + and - . If there are M nodes of types +A and -A , consideration of all possiblecases when $\boldsymbol{n} \geqslant 1$ shows that the next random insertion produces $\mathrm{M}-1$ such nodes withprobability $3 M /(n+1)$, otherwise it produces exactly $M+1$ such nodes. The result follows.[To be published.]
3.376 new answer to exercise 1611/29177 313Delete E; Case 3 rebalancing at D . Delete G ; replace F by G; Case 2 rebalancing at \mathbf{H};balance factor adjusted at K .(a new illustration, in the same style as before, must be supplied now)
the line following the tree should become the following (instead of what was stated in the former correction number 355):
It is perhaps most difficult to insert a new node at the extreme left of a tree like this. An insertion algorithm taking at most $\mathbf{O}(\log n)^{2}$ steps has been presented by D. S. Hirschberg, CACM 19 (1976), 4’71-473.
 11/15/78 315
, to appear (1978), 171-181
3.379 changes to answer 5 6/14/77 316
450. The worst . . . chars.Interpretation 1, trying to maximize the stated minimum: 450. (The worst . . . chars.)Interpretation 2, trying to equalize the number of keys after splitting, in order to keepbranching factors high: 155 (15 short keys followed by 16 long ones).
3.68D bottom, new paragraph for answer 4 7131176 317A more versatile way to economize on trie storage has been proposed by Kurt Maly,CACM 19 (1976), 409-415.
9,68C5 line-8 $2 / 28 / 78318$

3.687 exercise 1 2/28178 319
-38 ヘ- -37
3.688 answer 46/14/77 320
change line 1 to: Consider cases with \boldsymbol{k} pairs. The smallest \boldsymbol{n} such thatin line 2 (the displayed formula), interchange \boldsymbol{m} and \boldsymbol{n} everwhere, then add ", for $\boldsymbol{m}=365$,"
3.687 update to previous change number 365 6/14/77 321
Computing, to appear. $\mathcal{\sim}$ Computing 6 (1977), 201-234.
 12/19/76 322
10. See F. R. K. Chung and R. L. Graham, Ars Combinatoria 1 (1976), 57-76.
3.689 exercise 14 6/14/77 323
line 2: keys \sim all keys
line 12: until \sim until TAG $(\mathbf{P})=1$ and
line 12: points \sim points (perhaps indirectly through words with TAG=2)
3.695 replace all but first line of answer 37 by: 12/19/76 324
$M^{N} S_{N}=\frac{1}{2} \Sigma\left(N_{k_{1}, \ldots, k_{M}}\right)\left(k_{1}\left(k_{1}-\frac{d}{2}\left(k_{1}-1\right)+\cdots+k_{M}\left(k_{M}-\frac{d}{2}\right)\left(k_{M}-1\right)\right)\right.$$=\frac{1}{3} M \Sigma\binom{N}{k}(M-1)^{N-k} k\left(k-\frac{d}{2}(k-1)\right.$

$$
=\frac{1}{3} M N(N-1)(N-2) \sum\binom{N-3}{k-3}(M-1)^{N-k}+\frac{1}{2} M N(N-1) \sum\binom{N-2}{k-2}(M-1)^{N-k}
$$

$$
=\frac{1}{3} M N(N-1)(N-2) M^{N-3}+\frac{1}{2} M N(N-1) M^{N-2}
$$

The variance is $\mathrm{SN}-((N-1) / 2 M)^{2}=(N-1)(N+6 M-5) / 12 M^{2} \approx \frac{1}{2} \alpha+\frac{1}{12} \alpha^{2}$.
9398 new answer 115179325
60. No; see M. Ajtai, J. Komlós, and E. Szemerédi, Inf. Proc. Letters 7 (1978), 270-273.

3.700 new answer $312 / 77326$

16, Let each triple correspond to a codeword, where each codeword has exactly three 1 bits, identifying the elements of the corresonding triple. If $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{v} \boldsymbol{0}$ are distinct codewords, \boldsymbol{u} has at most two 1 bits in common with the superposition of \boldsymbol{v} and \boldsymbol{v}, since it had at most one in common with \boldsymbol{v} or \boldsymbol{w} alone. [Similarly, from quadruple systems of order \boldsymbol{v} we can construct $\boldsymbol{v}(\boldsymbol{v}-1) / 12$ codewords, none of which is contained in the superposition of any three others, etc.)
3.30 update to previous correction number 373

11/12/76 327
appear in the \sim appear in Eq. 5.2.3-19 and in the
3.710L 115179328
Ajtai, Miklos, 698.
$3.510[$ 1/16/77 329
Allen, Charles Grant Blairfindie, 549.
3.7LL 4119/77330
add p576 to AND entry
3.711 11115/78 331
delete index entries for R. M. Baer and P. Brock
3.711以 11129177332
Brown, Mark Robbin, 470.
3.712 4/19177333
delete Circular lists entry
3.5122 12/19/76 334
Chung, Fan Rang King, 688.
3.712 2 de Bruijn entry 8/25176335
add p. 585
3.5122012/19/76336
Deadlock, 479.
3.725 6/14/77 337
accent over o in Erdös should be " not .
$3.713 \square$ J/16/77 338
Drysdale, Robert Lewis (Scot), III, 229.
3.715は 4/19177339
add p576 to Exclusive or entry
3.7136 J1/12/76 340
Espelid, Terje Oskar, 259.
$3.712 \square$ 4/19177 341
add p518 to Ferguson entry
$3.72 ณ L$ line 5 9121/76 342
Feurzig \leadsto Feurreig
3.714 2/28178 343
Gonnet Haas, Gaston Henry, 526.
3.7141 312177344
Goldstein, Larry Joel, 641.
3.7141 6/14/77 345
Halperin, John Harris, 604.
2．71世歽 6／14／77 346
h－ordered，86－92，103－104，see \％－ordered． h－sorting，86－92．
3． 5 ²\％ 11／29／77 347
add p607 to Gamma function entry
3.7141 12／19／76 348
Goto，Eiichi， 527.
3．7โษは 12／19／76 349
Cunji，Takao， 527.
2．515 4119177350
Index $\bmod \mathbf{p}, 9$.
2．525L 9／21／76 35 J
Hirschberg，Daniel Syna Moses， 677.
9．21SL new entry 5127178352
Interchanging blocks of data， 598 （exercise 6）， 664 （exercise 3）．
3．216L 1／5／79353
Komlós，János， 698.
3．716LKleit man entry 2128／78 354
$640 \leadsto 639$
3.716L 312177355
Lehmer, Derrick Henry, 419.
3.716L 3/ 2/77 356
add pp. 561, $\mathbf{5 7 0}$ to Kau tz entry
3.716L 11/15/78 357
Kerov, S. V., 594.
3.7164 1/16/77358
add p641 to Eukasiewicz entry
3.7164 312177359
Leibholz, Stephen W., 641.
3.7166 6/25/76 360
Lozinski ĭ, Eliezer Leonid Solomonovich, 621.
3.727L MacMahon entry 115179361
add p. 627
3.2124 7131176 362
Maly, Kurt, 680,
3.5175 11/29177 363
Mallach, Efrem Cershon, 526.
3.7124 12/19176 364
add p. 637 to the entry for Median
3.5178 2/28/78 365
Munro, James Ian, 526.
3.5278 5/27/78 366
Mahon, Maurice Hartland (* Magenta), ix.
2. 2176 6/14/77 367
ROVE, 604.
3.7186 3/ 2/77 368
add p. 215 to Noshita entry
3.7186 4119177369
delete Newell entry
3.718L 12/19176 370
Nitty gritty Nitty-gritty
3.718R 4/19/77 371
Packed data, 401.
3.718 new entry 5/27178372
Pardo, see Trabb Pardo.
3．728 Paterson entry 8／25176 373
add p． 627
$3.719 \square$ 11115178374
add p． 576 to Pollard entry
3．7194 1116177375
Rose，Alan， 641.
Rosser，John Barkley， 641.
3.7196 312177376
Rearrangeable network，see Permutation network．
3．519以 new entry 5127178 377
Rotation of data， 598.
3．72ロロ 11／29／77 378
add pp．606， 607 to Sedgewick entry
3．72ロL 12／19／76 379
Samadi，Behrok h， 479.
$3.520[$ 12／19／76 380
add p． 220 to Schönhage entry
3.5264 31 2／77 381
add pp．561， 570 to Singleton entry
3.52はL entry for SLB 8/25/76 382
add p. 509
3.7206 12/19176 383
Sheil, Beaumont Alfred, 450.
3.7214 2/28/78 384
Sprugnoli, R , 507.
3. 7218 replacement for previous change 416 115179385
Szemer édi, Endre, 528,698.
3.72010 1/16/77 386
Shanks, Daniel Charles, 575.
$3.722[$ 2/28/78 387
Ting, T. C., 260.
3. 7525 Threaded tree entry $2 / 28 / 78388$
add $\mathbf{p} 457$
3.522亿 11/12176 389
Trabb-Pardo \sim Trabb Pardo
3.7226 1/16/77 390
delete p229 from Van Voorhis entry
2.7828 2/28/78 391
Wang, Y. W., 260.
3.5250 3/ 2/77 392
Wiener, Norbert, 8.
53, 725 312177393
delete p641 from Waksman entry
3.7226 4/19177 394
Wang, Yihsiao, 128.
3.726国 new name6 6/25176 395
Venn, John L.Windley, Peter F.
3.7226 11112176 396
Yap, Chee-Keng, 637.
3.7224 11115/78 397
Vershik, Anatolii Moiseevich, 594,
3.725 6/14/77 398
2-ordered, 87, 103, 112, 135.
3.726 (namely the endpapers of the book) 4119177399
also make any changes specified for pages $\mathbf{1 3 6 - 1 3 7}$ of volume $\mathbf{1}$

3.7495

add p. 450 to Vaughan Pratt entry
3.765 addendum to previous change 324 11115/78 401

John M. Pollard has discovered an elegant method for index computation in about $\mathbf{O}(\sqrt{ } \boldsymbol{p})$ operations mod \boldsymbol{p}, requiring very little memory, based on the theory of random mappings. See Math. Comp. 32 (1978), 918-924, where he also suggests another method based on numbers $n_{\boldsymbol{J}}=\boldsymbol{r} \boldsymbol{j} \bmod \boldsymbol{p}$ that have only small prime factors.
9.(1 changes for the book Mariages Stables

```
p12 line 18: Ac ~
p14 line 4: Ab ~
```



```
p18 line - 3: a an}~->\mp@subsup{a}{k}{
p22 line -5, -4, -3: d: ~ (b:b:~~}c:c:~~d
p32 line 6: exercises ~ - exercices
p32 line -5 exercise ~
p35 illustration: delete arc from 4 of clubs to 8 of hearts
p38 line -11: C ~ B
p47 line 2: Chsbyshav ~ Tchébichev
p50 lines -12, -10, -3 and p51 line 5: Chebyshev }~~\mathrm{ Tchébichev
p52 line -6: c ~
p65 line -4:m ~ m
p66 line -10, denominator of third term in sum: n+l ~
p71 line 8: que }\mp@subsup{R}{A}{\prime
p74 line -1: }X~
p78 line-7: X ~ 
p78 line -4: O[ \]~~}O[t
p86 line 10: fcmmes. ~
p87 line-10:ZZ'~ Zz'
p92 line -8: excrcise }~~\mathrm{ exercice
p93 line 4: et ( }Aa,Bb,Cc~~ et (Aa,Bc, Cb
p93 lines -6,-3,-2: crossed-out e should be crossed-out c
p95 line 3:n!P呙~n!p
p95line9:\Sigmaヘ~
p95 line -2: formula should be preceded by (3)
p95 line -2: }d\mp@subsup{x}{2}{},\ldots,d\mp@subsup{x}{n}{}d\mp@subsup{y}{1}{}d\mp@subsup{y}{2}{\prime}\ldots,d\mp@subsup{y}{n}{}\leadsto~d\mp@subsup{x}{2}{\prime\ldots}d\mp@subsup{x}{n}{}d\mp@subsup{y}{1}{}d\mp@subsup{y}{2}{}\ldots.d\mp@subsup{y}{n}{
```

9.1 Changes for Surreal Numbers 1/16/77 403p86 lines 13-14 should say: $\mathrm{II}\left(\boldsymbol{y}, \mathbf{X}_{L}, \boldsymbol{z}\right), \mathrm{II}\left(\boldsymbol{Y}_{\boldsymbol{R}}, \boldsymbol{x}, \boldsymbol{x}\right)$.p86 line -2, change final comma to a period
p86 line -1 , delete this linep112 line -5: p. The $\boldsymbol{\sim} \boldsymbol{p}$. [See his incredible book On Numbers and Cames, publishedby Academic Press in 1976.] The
p113 M athematik \wedge Analysis

THE TEX METAFONT PRO ECT.

WHAT HAS BEEN DONE:
Don Knuth has fini shed (and frozen) the implenentation of TEX (the typesetting system) and is currently invol ved in the implementation of METAFONT (the font generator).

WHAT VE MANT TO DO
We want to complenent TEX / METAFONT with a suitable hardware envi ronment, nanel y:

* An XGP type device that will provi de hardcopy capabilities both for proof reading and for (nedi um qual ity) ori gi nal s.
* A high resol ution typesetting device for high quality originals.
* A high resol ution CRT terminal, capable of di spl aying TEX out put.

We al so want to make the system widel y available, thus it is needed to i mplement it in a nore wi despread language (PASCAL).

And finally we would like to try our hand in maki ng TEX more interactive than what it is now (This one is a tougher cookie.)

IF YOU ARE INTERESTED:

There are many things to be done. There are learni ng oportunfties. There are academic goodies (units, CS293 projects, etc). And there is al so noni es.

FOR MDRE INFO
Send a message to LTP, or call 74425 or 74377.

