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ABSTRACT

This manual provides a complete description of the instruction-set architecture of the S-l
Uniprocessor (Mark IIA), exclusive of vector operations. It is assumed that the reader has a general
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1 Introduction

This manual provides a complete description of the instruction-set architecture of the S-l
Uniprocessor (Mark IIA), exclusive of vector operations. It is assumed that the reader has a general
knowledge of computer architecture. The manual was designed to be both a detailed introduction to
the S-l and an architecture reference manual.

This manual does not describe the S-l performance architecture, or any other
implementation-related aspects of the S-l Uniprocessor, except as is necessary to make the S-l
instruction-set architecture understandable.

The remainder of this chapter discusses the notation used throughout the manual. Chapter 2
describes the structure of the S-l’s memory and registers, including the status words and the concept
of address contexts. Chapter 3 defines various conceptual data types used in the discussion of the
S- 1 instructions. Chapter 4 describes the formats of the S-l instructions and how operands are
addressed. Chapter 5 describes the individual instructions in detail. Chapter 6 describes the
architecture of traps and interrupts in the S-l. The remaining chapters provide examples and
summaries. The two appendices summarize the FASM Assembler (because examples throughout
the manual uses the FASM syntax) and the S-l Formal Notation (which is used to precisely define
the instruction set).
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1.1 Notation and Collventions

This section describes the notation used in the text of this manual. Many of the
abbreviations used in this section may not be understood until later sections of the manual are read,
but they are presented here for the sake of completeness. Most of the examples in the manual are
stated in the syntax of the FASM assembler. That syntax is summarized in Section 10 with various
aspects of it introduced at appropriate points in the main text as well. The syntax used to formally
describe the S-l and its instructions is summarized in Section 11.

The notation ” A . . B ” (borrowed from PASCAL-like programming languages) means the
range of integers from A to B inclusive, or the set of the elements of that range, depending on
context.

The term field means a series of consecutive bits within memory or a register. The bits in a
field are always numbered from left to right, starting at zero. Subfields of a field are specified by
the notation X<m:n>. Here X is the name of the field, and the subfield being referenced is the bits
of X whose numbers within X are in the range m,n  . . . A reference to a single bit (X<m:m>)  can
be abbreviated to X<m;:  The selection of a named subfield is indicated as X, SUB (X is the name
of the field, SUB is the name of the subfield within X). Subfields, like like all fields, always have
their bits numbered from left to right starting from zero, and so the bits of a subfield may not have
the same bit numbers as those same bits within the superfield.

The term word is intended to mean a field of any of the four standard precisions
(quarter-word, single-word, half-word, and double-word, which are 9, 18, 36, and 72 bits wide
respectively). It is intended that if word is not modified then no specific precision is being described,
or rather what is being said applies to words of all four precisions. Not every field 9 bits long is a
quarter-word; the term word also implies alignment of the field to a word boundary (see Section 2.1).
Words, like all  fields, may have subfields.

For example, Figure 2-4 is reproduced below as Figure l-l. This picture of a single-word
‘shows the format of a page-table entry.

I FLG 1 ACCESS ) PGNO I

0 6 7 12 13 35

Figure l-l
PTE or STE

This single-word could have the name PTE (for reasons described in Section 2.3). In that case,
PTE, FLG would be the same as PTE<O:6>,  and PTE,ACCESS  the same as PTE<7:12>.  The
second through fourth bits of PTE,ACCESS  could be described as either PTE&lO> or
PTE. ACCESS< 1:3>.

A byte is a subfield of a single-word or double-word which is specified by a byte poinhr.  A
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byte may be of any length (not just eight bits, for example). The term byte bears no relation in this
manual to the amount of memory used to contain a character code. (See Sections 3.5 and 3.6.)

The notation used to describe the concatenation of fields into a larger unit is
cfield 1 11 field2 11 field33 (i.e., field 1, field2  and field3 are concatenated to form one unit). For
example, figure 1-l could be described as cFLG<O:6>  11 ACCESS<O:5> 11 PGN0<0:22>~. Unless
otherwise stated, this new conglomerate is treated as a single unit (e.g., the concatenation of two
quarter-words is a half-word, not merely two quarter-words). This distinction becomes important
when considering alignment issues. If a field is repeated in the conglomerate then that may be
specified using the notation n*field,  where n is the number of times the field is repeated. For
example, cfield 1 11 5*0 11 field23 would be the same as cfield 1 11 0 11 0 11 0 11 0 11 0 11 field2=>.

The contents of register number n is R[n].  The contents of memory location A is MIA]. The
terms OP 1, OP2, S 1, S2, and DEST refer to the contents of the appropriate locations. Some
instructions operate on a pair of memory locations. If X is the first object of such a pair, then
NEXT(X) is the second object of the pair. X and NEXT(X) are contiguous and have the same
precision. The address of NEXT(X) is greater than the address of X by the length of X (which is
the same as the length of NEXT(X)). As with OPl, NEXT(OP1) refers to the contents of the
appropriate location (the same applies to the other terms given above). ADDRESS(OP 1) refers the
the quarter-word (virtual) address of OPI. The term JUMPDEST represents an address. The
terms SO (short operand), LO (long operand), and IL0 (indirect long operand) also refer to the
contents of the appropriate locations (or to the values of immediate constants, if appropriate).

If a field X is to be interpreted as a two?-complement  number, then the notation SIGNED(X)
is used. When only part of a word (or the result of a computation), X, is to be used, the terms
LOW-ORDER(X) and HIGH-ORDER(X) designate the least-significant and most-significant
portion of X, respectively. When used informally, it should be obvious from the context how much
of X is included; otherwise the precision will be stated explicitly. Unless otherwise stated, when
moving a smaller field, X, into a larger field, Y, it is the case that X is right-justified into Y. The

- bits in Y that were not in X are specified by the moving operation. If ZERO-EXTEND(X) is used,
then these extra bits are zero-bits. If SIGN-EXTEND(X) is used, then these extra bits are ueqla to
the sign-bit of X. (The sign-bit of X is X<O>).

rText appearing within four corner-brackets is intended as an illustrative example rather than1as
part of the main discussion.

L
Typically an example will give sample data formats or sample

instruction sequences. This text, on the other hand, is an example of an example.
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2 Memory and Registers

The S-l architecture provides for a very large (228 single-word) virtual address space.
Virtual-to-physical address transformation is handled by the hardware. Single-words are 36-bits
long but the architecture allows for the accessing of. memory in any of four different precisions
(quarter-word, half-word, single-word, and double-word). Thirty-two general purpose register
words are provided which can be accessed via special register operations or as memory locations.
Separate address spaces and register-files are maintained for the user and the executive. The
following sections in Chapter 2 describe these features in detail.

Each S-l processor has two private caches to reduce memory access times for those sections of
memory that are frequently accessed. One cache is for instructions and the other is for data. The
caches are described in Section 5.15.

2.1 MeIn  ory

The S-l architecture provides 228 single-words of virtual address space. Each single-word is
thirty-six bits long. The bits are numbered 0 . . 35 from most significant to least significant.

0 35

Figure 2- 1
Single-Word

Memory may be accessed in any of four precisions: quarter-word (nine bits numbered
0 s I 8 ), ha/f-word  (eighteen bits numbered 0 . . 17 ), single-worth  (thirty-six bits numbered
0 . . 35 ), or double-word (seventy-two bits numbered 0 . . 71 ). Therefore, the single-word above

could be considered to be two half-words, four quarter-words, or half of a double-word.
Instructions are designed to access and operate on words of all four precisions with equal ease.

,

4 b

0 17 18 35

Figure 2-2
Two Half-Words

0 8 9 17 18 26 27 35

Figure 2-3
Four Quarter-Words
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Quarter-words within a half-word, single-word, or double-word have increasing addresses
from left to right. Thus if a quarter-word and a single-word have the same address, then the
quarter-word is the high-order (most significant, or leftmost) quarter-word of the single-word.
Similarly, the more significant single-word in a double-word has the lower address.

Unless otherwise stated, all addresses mentioned are quarter-word addresses. Therefore, the
range of S- 1 addresses is 0 . . 23o-1  . Half-words must be aligned on half-word boundaries, that
is, the most-significant quarter-word of a half-word must have an even address. Similarly,
single-words must be aligned on single-word boundaries (the most-significant quarter-word must
have an address that is a multiple of four). Double-words must begin on single-word boundaries,
but they need not begin on double-word boundaries. Depending upon the implementation,
however, access to double-words beginning on double-word boundaries may be more efficient than
those not so aligned.

References to the first 128 quarter-words of memory are interpreted as references to the
thirty-two (single-word) registers. Registers are discussed in Section 2.2.
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2.2 Registers

Registers can be used to hold information that must be accessed quickly or concisely. They
are addressable by the use of register addressing modes, or as the first 128 quarter-words of
memory. Some registers are dedicated to special-purpose applications, while others are available for
general-purpose use. The instruction set has been designed to deal efficiently with registers and
with memory locations addressed by a small offset from a register. In addition, special instructions
are provided for saving and restoring registers during interrupts, traps, and subroutine calls. The
registers and their uses are described in the following sections.

2.2.1 Register Files

There are sixteen register files (REGALES)  in the S-l architecture. Each consists of
thirty-two single-word registers. REG_FILE[OJ  is reserved for use by the hardware and microcode.
The other fifteen register files may be put to any use by software.

The processor status word selects which register files are being used by the current context
and the previous context (one register file for each context). The user may access only the
thirty-two registers in the register file associated with the current context. The executive, however,
may access either context, and so which register file is used depends on which context is being
accessed. The processor status word is discussed in Section 2.5.1. Contexts are discussed in Section
2.4.

The organization of registers into register files facilitates context switching. Each of several
users may have his own register file that the executive can specify simply by changing a field in the
processor status word. Similarly, each of several trap or interrupt handlers within the executive can
have a dedicated register file and need not save the registers of the previous context.

22.2 General-Purpose Registers

The contents of the first single-word of the current register file is called REOJ, the second R[lJ,
and so forth. When not otherwise modified, the term register will hereafter be used to mean one of
the thirty-two registers in the current register file. Other registers (e.g., PC or STP) will be referred
to specifically by name,

on, or
Many instruct:ion  formats can make special use of registers. Some registers have restrictions
extensions of, these specia .l uses. Registers addressed as memory have no special properties.

Registers 8 through 31 can be used as general-purpose registers in all instructions that make
special use of registers. Registers 0 through 7 have certain special-purpose uses but they can also be
used as general-purpose registers, with some restrictions. Registers 0 through 3, for example, cannot
be used in short-indexed mode (see Section 423.3). Other restrictions concerning references to
register 3 are discussed in Section 2.2.3.1 and Section 2.2.3.2. Register uses and restrictions are
summarized in Section 2.2.4.
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2.2.3 Dedicated-Function Registers

Certain general-purpose registers in the S-l have special functions associated with them. One
register serves as a stack pointer, while others may serve as operands in three operand instructions.
These registers and their uses are described below. They are summarized in Section 2.2.4.

2.2.3.1  Program-Counter

The program-counter (PC) is a 30-bit register that points to (contains the address of) the
instruction in memory that is currently being executed. Because instructions consist of single-words
and so are aligned on single-word boundaries, the contents of the PC must always be a multiple of
four. The PC always points to the beginning of the instruction being executed (that is, it is not
advanced when the extended words of a multi-word instruction are fetched).

References to register 3 are interpreted as references to the PC in certain circumstances. PC is
used instead of R[3J whenever register 3 is specified as an index register within an address
calculation. This includes indexing in indirect address pointers (see Section 4.2.5). In all other cases,
RI33  is treated as a general-purpose register. All non-indexing references to register 3 use R[3J. It
should be emphasized that PC itself is not a general-purpose register, and does not reside in any
register file.

2.2.3.2 Stack-Pointer (SP) and Stack-Limit (SL)

The S-l maintains a stack for saving values during traps, interrupts, and subroutine calls.
The location and extent of the stack in memory is specified by the contents of two registers: the
stack-pointer (SP) and the stack-limit (SL). SP points to the first free location on that
(upward-growing) stack and SL points to the first location past the end of the area reserved for
stack growth.

The five-bit SPJD field in the user status word (see Section 2.5.2) specifies which
general-purpose register will be used as SP. The register immediately following SP is interpreted as
the SL register. Hence SP = R[SPJDJ  and SL - R[SPJD + 1 J. The values 3 and 31 for SP-ID
are illegal; an attempt to set SP-ID to either value will cause a hard trap.

The SP-ID can be set by special instructions (see Section 5.14). The usual practice is to use
the two highest-address registers (registers 30 and 31) as the SP and SL respectively.

2.2.3.3 RTA alid RTB

Registers 4 and 6 are given the special names RTA and RTB respectively. They are of
special interest in three-address instructions, When double-word quantities are involved, then RTA
is considered to be registers 4 and 5 together, and RTB is considered to be registers 6 and ‘7
together. Registers 5 and 7 also have the names RTA 1 and RTB 1 respectively. See Section 4.1.2
for a description of the uses of RTA and RTB.
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22.4 Summary

5 2.2.4

The tables below summarize the uses of the registers that have been discussed in the previous
sections.

Register

RIO3
RI 1 ..23
RN1
RN1
RF31
R[6J
RDJ
RI8..31 I

Primary Use

General-Purpose
General-Purpose
General-Purpose
General-Purpose
General-Purpose
General-Purpose
General-Purpose
General-Purpose

Other Uses/Restrictions

Restricted indexing
No short indexing
Indexing uses PC instead
RTA
Low-order half of RTA DW
RTB
Low-order half of RTB DW
MS-

Table 2-l
Registers and their Uses

Register Primary Use Other Uses/Restrictions

PC Program-Counter Indexing uses PC for RI33
SP Stack-Pointer Cannot be R[3J  or R13IJ
SL Stack-Limit Always register after SP
RTA Third Operand Same as R[4J (or cR[43  11 R[53~)
RTB Third Operand Same as R[6J (or cR[6l  11 RE713)

Table 2-2
Dedicated-Function Registers and their Uses

Pertinent Sections

2.22, 4.2.3.3
2.2.2, 4.2.3.3
2.2.2, 2.2.3.1
2.2.2, 2.2.3.3
2.2.2, 2.2.3.3
2.2.2, 2.2.3.3
2.2.2, 2.2.3.3
2.2.2

Pertinent Sections

2.2.3.1,  2.2.2
2.2.3.2, 2.2.2
2.2.3.2, 2.2.2
2.2.3.3, 2.2.2
2.2.3.3, 2.2.2
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2.3 Address Transformation

The S-l maps 30-bit, virtual, quarter-word addresses into 34-bit, physical, quarter-word
addresses. The address transformation uses two levels of paging, specified by a segment table and
up to 1024 page tables. A page is made up of 512 single-words (2” quarter-words). There are up
to 223 physical pages in memory; hence the physical address space contains 234  quarter-words. A
virtual address space contains up to 1024 segments (specified by the segment table). Each segment
contains 512 pages (specified by one of the page tables). This gives a virtual address space of up to
230 quarter-words.

The location of the current segment table is specified by two 34-bit registers: the segment table
pointer (STP) and the segment table limit (STL). If the content of the STP is in the range 0 . . 127
(a register address), then absolute addressing is in effect; the mapping from virtual addresses to
physical addresses is the identity mapping. Otherwise, the STP contains the physical address of the
segment table, and the STL contains the physical address of the first location beyond the end of the
segment table. STP<32:33>  and STL<32:33>  must equal zero, because table entries are single-words
and therefore must-be aligned on single-word boundaries.

Each segment table consists of a contiguous list of segment table entries (STE) (also called page
table pointers). Each page table consists of a contiguous list of 512 page table entries (PTE). Both
segment table en tries and page table entries have the following format:
cFLG<O:6> 11 ACCESS<O:5>  II PGN0<0:22>~. Either may be null  (FLG<O>=O), indicating that the
entry specifies no page. FLG contains flag bits. ACCESS indicates the access bits and is used only
in page table entries. PGNO is the physical page number (page number x 2” - page address). (See
Sections 2.3.1 and 23.2 for further discussion of the FLG and ACCESS fields.)

I FLG ( ACCESS ] PGNO I

0 6 7 12 13 35

Figure 2-4
PTE or STE

Each STE specifies the physical address of a page table, or is null. A null STE indicates that
the page table does not exist. STE. PGNO is used as the most-significant 23 bits of the physical
address of the page table (the least-significant 11 bits are zero). page tables fill exactly one page (of
5 12 single-words). Each PTE specifies the physical address of a page, or is null. A null PTE
indicates that the page does not exist. As with the STE, PTE.PGNO is used as the
most-significant 23 bits of the physical address of the page (and the least-significant 11 bits are
zero).

The segment tables and page tables are indexed by the 30-bit, virtual address (VA). The
physical address (PA) is calculated as follows; VA<0:9>  is interpreted as a single-word offset from
the address contained in the STP. The physical address of the STE is STP+cVA<O:9>  II 2*0~. If
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absolute addressing is not selected and the address of the STE is greater than or equal to the
contents of STL then a hard trap occurs. If the selected STE is null then a hard trap occurs.
STE. PGNO specifies the physical page number of the desired page table, that is, the desired page
table starts at physical address cSTE.  PGNO 11 1 laO3. VA c 10: 18> is interpreted as a single-word
offset from the beginning of the page table. The. physical address of the PTE is, therefore,
cSTE. PGNO 11 VA<l0:18> lI2*0~. If the selected PTE is null then a hard trap occurs.
PTE. PGNO specifies the physical page number of the desired page (i.e., the page starts at physical
address cPTE.  PGNO 11 ll*O~).  VA<l9:29>  specifies the quarter-word offset from the beginning
of the page. The physical address is, finally, PA=cPTE.  PGNO 11 VA<l9:29>=>.

In general, an address transformation involves two memory references, the first to the segment
table, the second to the page table. No memory reference is needed for the STP or STL since they
are hardware registers inside the processor. Two page map caches inside each processor contain (for
the most recently used pages) the complete translation from virtual page address to physical page
address. One page map is for addresses of instructions, the other for addresses of data. Whenever
a necessary translation is not resident in a page map, the necessary entry is fetched from memory
and placed in the page map. Another page map entry may be evicted in the process. The evicted
entry is not written out to memory (because it cannot have changed).

The processor hardware actually contains two sets of segment table pointer/limit registers, one
set for the executive (EXECSTP and EXECSTL) and the other set for the user (USERSTP and
USERSTL). A pointer/limit pair specifies an address space (i.e., a segment table/page table/page
mapping). The address space specified by EXECSTP  and EXECSTL registers is called the
executive address space. Similarly, the USER--STP  and USERSTL registers specify the user
address space. The CRNT-MODE  and PREV-MODE  fields of the PROCSTATUS word
determine which address space is referenced during an address calculation (see Sections 2.5.1 and
2.4). Each h dar ware page map entry contains a base-bit which identifies which of the two address
spaces (executive or user) the entry is associated with.
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Virtual  Address (VA)

10  b i t s I 9 b i t s I 11 bI
9 10‘

,**

r - l+

18 19

1 LIB)*
0 0 31 32 33

ISTL .

0-1023

Page

I 0 22 23 31 32 33
I* = Physical Address

** = T h e  10 bits are
considered to be a
single word offset

- = Contents of a word
or  f i e ld  be ing
used in another
locat ion

-0. = Physical addressing

.
I

.

.L

i 0
i

1

page table

(PTE)

PGNO -

13 35Note that in STE and PTE
the FLG and ACCESS fields
have been omi  t ted. 511 (SW)

29

Figure 2-5
Virtual-to-Physical Address Translation
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2.3.1 Flag Bits: The FIX-field

Each STE and PTE has a 7-bit  FLG field. This field is used to indicate whether the table
entry is valid and to record software flags. FLG<O> is called the VALID bit. If VALID=0  then the
STE (or PTE) is considered to be a null entry; that is, it specifies no page. If VALID4  then the
STE (or PTE) is not null and is interpreted as a pointer to a physical page as described in Section
2.3.

The bits of FLG<1:6>  are reserved for software flags . They can be used by programs (e.g.,
an operating system) to record information concerning the STE or PTE. They have no defined
function within the architecture.

2.3.2 Access Modes

Both STEs and PTEs contain an ACCESS field. STE.ACCESS  is unused. PTE.ACCESS,
however, specifies any restrictions on accessing the page pointed to by the PTE. PTE. ACCESS can
distinguish pages used for instructions and those used for data. It also controls when data cache
entries are allocated and when changes to the data cache go through to physical memory. (The
cache is discussed in Section 5.15). Many different high-level access modes (e.g., “local data” and
“static code”) can be specified using combinations of the ACCESS bits.

It should be noted that absolute addressing (see Section 2.3) does not utilize the access modes
in the standard way. This is because absolute addressing bypasses the segment table/page table
address transformation. The approach to access modes for absolute addressing is discussed in
Section 2.321.

INSTRUCTIONS

DATA

READALLOCATE

WRITEALLOCATE

PTE.ACCESS<O>  specifies whether a word on the indicated page
may be used as an instruction. If INSTRUCTIONS=0 then a hard
trap will occur when a location from the indicated page is accessed as
an instruction.

PTE. ACCESS& specifies whether a word on the indicated page
may be used as data. If DATA-O then a hard trap will occur when
a location from the indicated page is accessed as an operand of an
instruction (except as noted in the instruction descriptions, Section 5).

PTE.ACCESS&  indicates the course of action after encountering a
read miss. If READ-ALLOCATE4 then any read miss will
allocate and fill a data cache entry. If READALLOCATE=O then
a read miss will not allocate a data cache entry, but will cause data to
be read directly from memory.

PTE,ACCESS<3>  indicates the course of action after encountering a
write miss. If WRITE-ALLOCATE4 then any write miss will
allocate and update a data cache entry. If WRITEALLOCATE=O



f 2.3.2 Memory and Registers

WRITE-ONLY

Page 13

then a write miss will not allocate a data cache entry. All write hits
will simply update the data cache entry.

PTE.ACCESS<4>  is used to prohibit reading from a page that is
write-only. Reading of an operand from a page marked with
WRITE-ONLY-1 will cause a hard trap. (Note that
WRITE-ONLY=1  does not necessarily mean that the page in
question can be written into; that is controlled by the
WRITEALLOCATE and WRITE-THROUGH bits.)

WRITE,.THROUGH PTE,ACCESSc5> controls the updating of memory upon a write to
the data cache. If WRITE-THROUGH=1  then any write will
update memory. If the write is a data cache hit then the data cache
will be updated as well. If the write is a data cache miss, then a data
cache entry will be allocated and written if and only if
WRITEALLOCATE=l.

Certain combinations of access bits are given special meanings by the hardware. The
combination WRITEALLOCATE=O  and WRITE-.THROUGH=O  specifies that a page is
read-only. An attempted write to a read-only page will cause a hard trap. The combination of
INSTRUCTIONS=0 and DATA=0  specifies an l/O page. If an instruction other than an I/O
instruction operates on an I/O page then a hard trap will occur.

Various combinations of the above six bits provide useful, high-level access modes. A page
may be specified to be for local data with the combination DATAPI, WRITEALLOCATE=l,  and
READALLOCATE=l.  A data cache miss caused by reading an operand from a local-data page
causes the missed word to be read from memory and placed in the data cache. Writes to local-data
pages do not necessarily write through to main memory. Whenever it is important that the memory
shadow of a local-data page be made identical to the cache, cache control instructions must be

e executed to update memory, It is intended that the private variables of a process be identified as
local-data pages. (All other access bits are zero.)

Cached read data may be specified by DATA= 1 and READALLOCATE= 1. A data cache
miss in a cached-read-data page causes the missed word to be read from memory and placed In the

. data cache. No writes are allowed to a cached-read-data page because WRITEALLOCATE=O
and WRITE-THROUGH-O. Instructions cannot be fetched from a cached-read-data page. (All
other access bits are zero.)

Static code is specified by INSTRUCTION&l, DATA=l,  and READALLOCATE=l.  A
static-code page is similar to a cached-read-data page; however, locations on a static-code page can
be accessed as instructions. It is intended that shared routines will be identified as static-code. (All
other access bits are zero.)

Shared data is indicated by DATA=1 and WRITE-THROUGHPI.  Words from shared-data
pages are never placed in the data cache. A write to a shared-data page writes through to main
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memory without writing in the data cache (WRITEALLOCATE=O),  and a read from a shared
page reads directly from main memory (provided that the data cache does not already contain the
word). Locations that are heavily shared by multiple processors are intended to be on shared-data
pages, eliminating the necessity to perform repeated cache sweeps when passing small amounts of
data between processors. (All other access bits are zero..)

The S-l hardware does not check for illegal combinations of access bits. Such checking
should be performed by operating system software when setting up PTEs.

2.3.2.1 Access Modes and Absolute Addressiug

When absolute addressing is selected (STP < 128) no choice is given for the access bits.
Instead, the bits INSTRUCTIONS= 1, DATA=], READALLOCATE= 1,
WRITE-ALLOCATE=], WRITE-ONLY=O,  and WRITE-THROUGH=0  are always used.
However, no trap will occur due to a violation of these bits while in absolute addressing mode (e.g.,
I/O can be done to a page even though it is not an I/O page). The bits are used only to indicate
the caching algorithm for-absolute addressing.
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2.3.2.2 Sum wary

J5i.J Name Description

0 INSTRUCTIONS If - 0 then cannot access locations on this page as instructions.
1 DATA If = 0 then cannot access locations on this page as data.
2 READALLOCATE If - 1 then a read miss will allocate a cache entry.
3 WRITEALLOCATE If = 1 then a write miss will allocate a cache entry.
4 WRITE-ONLY If - 1 then cannot read an operand from this page.
5 WRITE-THROUGH If = 1 then any write will update memory.

Table 2-3
Bits of STE.ACCESS and PTE.ACCESS

Combination (Bits specified - 0)

Read Only WRITEALLOCATE, WRITE-THROUGH
II0 Page INSTRUCTIONS, DATA

Table 2-4
Special Defined Combinations of ACCESS bits

Combination (Bits specified - 1)

Local Data DATA, WRITEALLOCATE, READALLOCATE
Cached Read Data DATA, READALLOCATE
Static Code INSTRUCTIONS, DATA, READALLOCATE
Shared Data DATA, WRITE-THROUGH

Table 2-5
Useful Combinations of ACCESS bits
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2.4 Address Contexts

Section 2.3 describes the existence of the two address spaces maintained in the S-l
architecture, executive and user. Instructions, however, do not refer directly to either the user or
executive address space. They refer to the current or previous address space.

When a program (either executive or user) refers to itself or its data (Le., its own address
space), it refers to the current address  space. Access to the current address space is controlled by
PROC-STATUS. CRNT-MODE. (See Section 2.5.1 for a description of PROCSTATUS.) If
CRNT-MODE=0 then the current address space is the user address space. If CRNT-MODE=1
then the current address space is the executive address space. User programs operate exclusively in
the current address space with CRNT-MODEsO.

Executive programs may be called by other programs (both user and executive) as the result
of any one of various traps (see Section 6). In this situation the executive program is able to refer to
the address space of the program that called it. The calling program’s address space is called the
previous address spac_e. Access to the previous address space is con trolled by
PROC-STATUS. PREV-MODE  in the same way that PROCSTATUS. CRNT-MODE controls
the access to the current address space (PREV-MODE=O  gives user address space,
PREV-MODE=1  gives executive address space). User programs cannot access the previous address
.sp ace.

Instruction operands select between the current and previous address space by means of the
P-bit in extended operands and indirect address pointers. The P-bit is discussed in Section 4.2.6.

Current (previous) context includes both the current (previous) address and the current
(previous) register file. PROC-STATUS, CRNT-FILE  (PROC-STATUS, PREY-FILE)  specifies
which register file should be accessed when an addressing calculation specifies the current (previous)
address space.

i.4.1 Shadow Memory

The first thirty-two single-words of an address space are called shadow memory. This term is
derived from the fact that they overlap or are shadowed by the currently selected register file
(because references to the first 128 quarter-words of an address space are normally interpreted as
references to the current register file instead). Shadow memory cannot be accessed by the user, but
is accessible to the executive (when accessing the previous address space).

The use of shadow memory is controlled by the USE-SHADOW-PREV bit in the processor
status word (See Section 2.5.1). When USE-SHADOW-PREV=  1, all references to addresses
0 . . 127 in the previous context will cause the shadow memory of the previous context to be

accessed. When USE-SHADOW-PREV=O,  the previous register file is accessed instead.

rAssume the USE-SHADOW-PREV bit in the processor status word is set. The following1
instruction loads the second shadow memory word from the previous context into the location
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whose (hypothetical) symbolic name is SECOND.

MOV SECONO,c!P 43 ;“!P”  means access previous context

Page 17
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2.5 Status Words

Status words partially define the current state of a program’s execution. They contain
information about current and previous contexts, and about conditions such as arithmetic overflow
and trace modes. There are two types of status: processor status and user status. As a general rule,
processor status contains privileged information which the user may not modify, and user status
contains per-user information which the user program may modify at will. (The user status does
not apply just to user mode programs, Programs running in executive mode are also affected by the
user status. However, the user status is automatically changed whenever a switch from user mode to
executive mode occurs, and so the executive may be thought of as a distinct “user” so far as user
status is concerned.)

2.5.1 Processor

The processor status word (PROCSTATUS) contains information about the current state of
a process. This includes information such as the extent of the stack and the currently accessible
address space. The fields in their order of occurrence from most-significant bit to least-significant
bit are shown below.

CRNTJ;ILE<O:3> Current register file. This is the number of the register file that will be
accessed in all references to the current context. Note that REG-FILECOI
is reserved for use by hardware and microcode, and so CRNTJILE  will
normally have a non-zero value.

PREVJ;ILE<O:3> Previous register file. This is the number of the register file that will be
accessed in all references to the previous context. (Such references may be
additionally controlled by the USE-SHADOW-PREV bit, however.)
Note that REGJILE[O]  is reserved for use by hardware and microcode,
and so PREVFILE will normally have a non-zero value.

USE-SHADOW-PREV  Use shadow memory. When set to one, this bit causes references to
memory locations 0 . . 127 in the previous context to reference shadow
memory instead of registers. The user is not allowed to access the
previous context (P-bit=1  will cause a hard trap to occur), and therefore
the user cannot access shadow memory. See Section 2.4.1 for more on
shadow memory. Address spaces and the P-bit are discussed in Section
4.2.6.

PRIO<O:‘L> Processor priority level. Interrupts with INTUPT.AT-LVLcL>=  1 where
i < PRIO will cause the S-l to be interrupted. See Section 5.16 for a
description of the interrupt architecture.

EMULATION<O:l> Emulation mode. When equal to zero, causes the S-l native instruction
set to be executed. When non-zero, specifies the emulation of one of
three other instruction sets.
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TRACEXNB Trace-trap enable. Used to enable trace-traps after each instruction. See
Section 6.3 for a description of the trace feature.

TRACEwPEND Trace-trap pending.. Used to indicate that a trace-trap is pending. See
Section 6.3 for a description of the trace feature.

CRNT-MODE Current mode. Specifies whether the current context is executive or user.
Zero means user, one means executive.

PREV-MODE Previous mode. Specifies whether the previous context is executive or
user. Zero means user, one means executive.

UNUSED<O: 1 ‘I> Reserved for future use.

Changing the processor status word causes a change in state for the currently executing
p recess. This change of state often involves changing the current context (see Section 2.4). In order
to make this change of context correctly, PROCSTATUS cannot be loaded in its entirity from an
arbitrary 36-bit word. If the execution of an instruction causes the loading of a new
PROC-STATUS (e.g., traps, interrupts), then the new PREV-MODE must be loaded from the old
CRNT-MODE. Similarly, the new PREVFILE must be loaded from the old CRNT-FILE. The
PREV-MODE and PREVFILE fields of the word which is being loaded into PROCSTATUS
are ignored. This operation is called loading partial processor siatus. PROCSTATUS is always
loaded in this way unless specifically mentioned otherwise. The only instructions that load the entire
PROC-STATUS word are RETFS and WFSJMP (see Sections 5.9 and 5.14).

A similar process is involved when loading a new PROCSTATUS while checking for
trace-traps (see Section 6.3). In this case a change in state occurs when the TRACE-.PEND bit of
PROC-STATUS is updated during the instruction-execution sequence.

-

2.5.2 User

User status is contained in a single register named USER-STATUS. It contains a large
. number of subfields, each of which is described below. CARRY and the error-bits FLT-OVFL,

FLTUNFL,  FLTBAN,  INT-OVFL, and INTZDIV are described as being not sticky. This
means that they are either set or cleared by any instruction that can affect them. As an example, if
an ADD instruction produces an integer overflow while trapping is disabled
(INT-OVFL-MODE=l),  the INT-OVFL bit of PROCSTATUS will be set to one. If a MULT
instruction is then executed and no integer overflow occurs during the multiplication, INT-OVFL
will be reset to zero. Each error bit is also reset when the appropriate trap is initiated, before a copy
of USER-STATUS is saved on the stack. The conditions that affect CARRY and the error-bits
for both integer and floating-point instructions are described in Section 5.2.3 and Section 5.3.2. The
fields of USER-STATUS are shown below in order of occurrence from most significant to least
significant.
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SPJD<O:4>

CARRY

FLT-OVFL

FLTSJNFL

FLTNA N

INT-OVFL

I N T Z D I Ve

Memory arld Registers § 2.5.2

Stack-pointer identity. Specifies the register that will be used in all
references to the stack-pointer (SP). The stack-limit register (SL) is
considered to be the next contiguous register. SPJD=3 or SP_ID=31 is
illegal. See Section 2.2.3.2. for details.

Carry-out of arithmetic operations. Set to zero or one by the most
recently executed integer arithmetic instruction. Note that CARRY is
not sticky. See Section 5.2.3.1.

Floating overflow. Always set by floating-point arithmetic instructions.
Set to one if the result of the most recently executed floating-point
instruction was greater than or equal to MAXNUM (i.e. MOVF). This
bit is not sticky. See Section 5.3.2.1.

Floating-underflow. Always set by floating-point arithmetic
-_ instructions. Set to one if the result of the most recently executed

floating-point instruction was less than or equal to MINNUM+ 1 (i.e.
MUNF). This bit not sticky. See Section 5.3.2.1.

Floating-point result is “Not A Number” (NAN). Always set by
floating-point arithmetic instructions. Set to one whenever NAN is the
result of a floating-point operation. This bit is not sticky. See Section
5.3.2.

Integer overflow. Set to one when the result of the most recently
executed integer arithmetic instruction is greater than or equal to
MAXNUM. This bit is not sticky. See Section 523.2.

Integer-zero-divide. Set to one when a divide-by-zero has occurred in
the most recently executed integer instruction . This bit is not sticky.
See Section 5.2.3.3.

FLT,OVFL-MODE<O:  l> Determines the action that is taken when floating overflow occurs.
FLT-OVFL-MODE=0  causes the instruction to soft-trap without
storing a result. FLT-OVFL-MODE=  1 causes the floating point
infinity of correct sign (either OVF or MOVF) to be stored as the
result. FLT-OVFL-MODE=2  causes a floating-point number of
correct mantissa and sign, but with wrapped-around exponent to be
stored as the result. FLT-OVFL-MODE=3  is undefined (an attempt
to set FLT-OVFL-MODE  to 3 will cause a hard trap).

FLTUNFL-MODE<O:l>  Determines the action that is taken when floating underflow occurs.
FLTJJNFL-MODE=0  causes the instruction to soft-trap without
storing a result. FLTUNFL-MODE=  1 causes the floating point
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infinitesimal of correct sign (either UNF or MUNF) to be stored as the
result. FLTUNFL-MODE=2  causes a floating-point number of
correct mantissa and sign, but with wrapped-around exponent to be
stored as the result. FLT_UNFL_MODE=3  is undefined (an attempt to
set FLTJJNFLMODE  to 3 will cause a hard trap).

FLT-NA  N-MODE<O:  I> Determines the action that is taken when NAN is the result of a

INT-OVFL-MODE

INTZDIV-MODE

RND_MODE<O:4>

UNUSED<O:‘I>

-
FLAGS<O:3>

floating-point operation. FLTNAN-MODE-O causes the instruction
to soft-trap without storing a result. FLT-NAN-MODE=  1 causes
NAN to be stored as the result. FLT_NAN_MODE=[2,31  a r e
undefined (an attempt to set FLTNAN-MODE  to 2 or 3 will cause a
hard trap).

Determines the action that is taken when integer-overflow occurs.
INT-OVFL-MODE=0  causes the instruction to soft-trap without
storing a result. If trapping is disabled (INT-OVFL-MODE-l),  all
instructions except for SHFA to the (true) left store the low-order bits
of the result. SHFA to the (true) left stores the correct sign followed by
the low-order bits of the (true) result.

Determines the action that is taken when integer divide-by-zero occurs.
INT-Z-DIV-MODE-0 causes the instruction to to soft-trap without
storing a result. INTZDIV-MODE=1  causes zero to be stored as the
result.

Rounding mode. Selects the rounding mode to be used. See Section
5.3.1 for a description of the rounding modes.

Reserved for future use.

Contains various software-definable flag bits. These bits have no
defined meaning in the architecture.
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3 Data Types

Data in the S-l is uniformly represented as quarter-, half-, single- or double-words. For
many operations it is useful to interpret the bits in these words in various ways. Each of these ways
of viewing data constitutes a data type. Instructions may interpret their operand data as being of a
certain type. The same data may be interpreted in different ways by different instructions.

S-l instructions operate on the following data types: boolean, integer (signed and unsigned),
floating-point, indirect address pointer, byte (single-word and double-word), byte pointer, block, and
flag. To be fetched as the operand of an instruction, data must be on pages marked with DATA= 1
(see Section 2.3.2).  The data types are described below.

3.1 Boolea

The boolean data type is a bit vector in any of the four standard precisions  (quarter-word,
half-word, single-word, and double-word). The bits are numbered from left to right, as shown in
the figures of Section 2.L

rFor example, the following assembles as the QW bit vector 001000101. 1
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3.2 Integer

The S-l has two different formats for integers: unsigned and signed. Unsigned integers
represent only non-negative quantities while signed integers can represent both negative and
non-negative quantities in two’s-complement notation. Either format may be represented in any of
the four standard precisions (quarter-word, half-word, single-word, and double-word). For
example, quarter-word, unsigned integers can represent quantities in the range 0 . . 511 whereas
quarter-word, signed integers represent quantities in the range -256. . 255.

For ease of description the largest positive signed integer in a given precision is termed
MAXhrUM. Correspondingly, the negative signed integer with the largest magnitude is termed
MIWVUM.  For example, in quarter-word precision MAXNUM=255  (3773) and MINNUM=-256
(4OOS). More generally, in any precision MAXNUM has all bits but the leftmost set to one, and
MINNUM has all bits but the leftmost set to zero. (This is a consequence of the nature of the
two’s-complemen t representation of integers.)

rThe following shows signed and unsigned interpretations of various integer quarter-word1
constants.

105 :signed  and unsigned interpretation is 105
673 tunsigned  673, signed -105

-105 ;unsigned  673, signed -105

-1 ;unsigned  777, signed -1

The bit pattern for the first example is 001000101, and for the next two is 110111011. The
leftmost bit is interpreted as the sign bit &negative)  in the signed case. Note that in all

Lprecisions the signed value -1 has all bits set to one.
--I
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3.3 Floating-point

S-l floating-point numbers are always (implicitly) normalized and may be represented in
three different precisions  (half-word, single-word, and double-word). The floating-point
representation is made up of three fields SIGN, EXP, and MANT.  These fields, along with an
implicit hidden bit, determine the value of the floating-point number. The formats are:
cSIGN 11 EXP<O:5> 11 MANT<O:lO >=) for half-words, cSIGN 11 EXP<O:& /I MANT<O:25>3  for
single-words, and cSIGN 11 EXP<O:lO>  II MANT<O:59>>  for double-words.

ISIGN EXP 1 MANT ]

0 1 67 17

Figure 3-l
Half-word Floating-Point Format

I ISIGN EXP I MANT I

0 1 9 10 35

Figure 3-2
Single-word Floating-Point Format

.
SIGN EXP MANT

b 4

0 1 11 12 71

Figure 3-3
Double-word Floating-Point Format

SIGN represents the sign of the floating-point number (O=non-negative, Lnegative).  EXP
specifies the exponent. For half-word precision, EXP is the exponent in excess-32 format. For
single-words, EXP is the exponent in excess-256 format, and for double-words, EXP is the
exponent in excess- 1024 format. SIGN, MANT, and the hidden-bit make up the mantissa. The
hidden-bit is always the cbmplement  of SIGN, so for positive numbers the hidden-bit equals one.
The mantissa, for postive numbers, can be written as the concatenation of SIGN, the binary-point,
the hidden-bit, and MANT, that is, mantissa=cSIGN 11 . 11 hidden-bit II MANT3  with “.I’
representing the binary-point. (This is, of course, a slight abuse of the concatenation notation, as
the binary point is not really a field.) Positive floating-point numbers have their
range O.SSmantissa< 1. Floating-point zero is represented as integer zero (which is
the SIGN/hidden-bit correspondence, because zero has SIGN=0 and hidden-bitlO).

mantissa in the
an exception to

r 1
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The following shows the octal representation of some non-negative floating point numbers in
various precisions.

0

204000
004000
377777
200400, ,0
000400,,  0
377777,, -1
200100, ,0 H 0
000100, ,0 f+ 0
377777, ,-1 w -1

;0.0  in all p r e c i s i o n s

;1,0  HW

; 2t t-321  HW

; (2t321-  (2?20) HW

;1.0 SW

; 2f (-256)  SW

; (2f256)  - (2?228) SW

$0 DW

;2C (-1024) OW

; (2?1024)  - (2’?962) DW

-I
The full specification of a floating-point number (including both positive and negative

numbers) is as follows. Note that the one’s-complement and two’s-complement operations are
performed in the same number of bits as the argument to the operation.

Definition Positive Numbers Negative Numbers

mantissa
exponent
number

cSIGN 11 . 11 hidden-bit 11 MANT> 2%comp(cSIGN  11 . 11 hidden-bit II MANT3)
EXP - excess l’s-comp(EXP)  - excess
mantissa * (Zexponent) - mantissa * (2expo”ent)

Floating-point zero is represented as integer zero

Table 3-l
Floating-Point Representation

Negative floating-point numbers have hidden-bit=0  because SIGN= 1. Negative number
mantissas are in the range O.Scmantissar;l. Note that the above definition specifies that mantissas
are always non-negative (hence the minus sign in the above table description of the value of a
negative number).

rThe following shows the octal representation of some negative floating point numbers in various1
precisions.

574000 ;-1.0 HW
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L

774000
400000
577400,) 0
777400,,  0
400000, ,0
577700, ,0 ++ 0
777700,,0  +, 0
400000,,0 w 0

; - (Pr-32)  HW
: - (2t32) HW
;-LB SW
; - (ZI’-256)  SW
: - 62T256)  !+I
p1.0 DW
; - (2T-1024)  DW
: - (2t1024)  DW

g 3.3

-I

The floating-point format permits a simple translation between positive and negative
floating-point numbers. The floating-point representation of -x is equal to the two’s-complement of
the floating-point representation of x. (The entire word is two’s-complemented, ignoring sub-field
boundaries. The hidden bit is determined by the new SIGN bit.)

An outline for a proof that two’s-complement negation works correctly on floating-point
numbers follows. If MANT f 0 then no carry from the two’s-complement operation can reach the
EXP field, since it will be absorbed by the right-most, non-zero MANT-bit. Therefore, the
EXP-field will be one’s-complemented. If MANT = 0 then there are three cases. Case 1: The
floating-point number was originally negative. The mantissa was, therefore, 1.0 and the
floating-point number was -2exPonent, Wh en this number is two’s-complemented, the MANT-field
is still zero but the EXP-field is two’s-complemented. The mantissa becomes l/2 and the carry from
the fraction has increased the exponent by one. This gives (1/2)r~2~~P~“~“~‘l  or 2eXpo”e”t,  the
negative of the original number. Case 2: The floating-point number was originally zero. The
two’s-complement of zero is zero. Case 3: The floating-point number was originally positive. The
mantissa was, therefore l/2 and the floating-point number was (l/2)*2exPo”ent.  When this number
is two’s-complemented, the MANT-field is still zero but the EXP-field is two’s complemented. The
mantissa becomes 1.0 and the carry from the fraction has decreased the exponent by one. (It
increased the EXP but decreased the one’s-complement of the EXP). This gives -( l.0)*2exponent-1
or -( 1 /2)*2expone”t, the negative of the original number.

Besides zero, there are five floating-point numbers that have special meanings attached to
them. The positive, floating-point number with the greatest magnitude (in a given precision) has
the meaning of positive infinity This number is designated OI/F. (It should be noted that the
largest, positive, signed-integer, in a given precision, is termed MAXNUM. Correspondingly, the
negative, signed-integer with the largest magnitude is termed MINNUM. It is often convenient to
speak of a floating-point number in terms of the signed-integer with the same bit representation.
For example, OVF is the same as MAXNUM in that if MAXNUM is interpreted as a
floating-point number, it turns out to be the largest floating-point number (i.e., OVF).) *The
two’s-complement of OVF (i.e., MINNUM+I)  has the meaning negative infinity. It is termed
MOI/F. (The terms OVF and MOVF come from overfiow and minus overflow,  respectively.) The
smallest, positive, floating-point number has the meaning of positive infinitesimai  and is termed
UNF; it has the same bit representation as the integer 1. The largest, negative, floating-point
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number has the meaning of negative infinitesimal and is termed MUNF. MUNF is the
two’s-complement  of UNF, and so has the same bit representation as the integer -1. (The terms
UNF and MUNF come from and minus underflow, respectively). The floating-point number with
the same bit representation as MINNUM has the meaning of undefined. It is termed NAN,
mea.ning  not a number. Floating-point instructions take these special interpretations into account.
Certain bits of USER-STATUS control the action taken when one of the exceptions associated with
these special numbers occurs (e.g, overflow with OVF). See Section 2.5.2 for details of
USER-STATUS and see Section 5.3.2 for details of floating-point exception handling.

Name

OVF
MOVF
UNF
MUNF
NAN

Meaning Equivalent integer representation

Positive overflow MAXNUM
Negative overflow MINNUM+ 1 (-MAXNUM)
Positive infinitesimal 4-l
Negative infinitesimal -1
Indeterminate (“not a number”) MINNUM

Table 3-2
Floating-Point Exception Representation

NOTE: The signed integer (Section 3.2) and floating point formats employed in the S-l have
an important and useful property: the same algorithms can be used to compare the value of a datum
interpreted in either format. However, special floating-point symbols such as OVF and NAN are
not properly interpreted by integer instructions.
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3.4 Indirect Address Pointer

An indirect address pointer (IAP) is a single memory word that is interpreted as a pointer into
memory. Its format is shown below. IAP. P denotes the address space being referenced.
IAP. IREG and IAP,ADDR together describe the m.emory  location to be addressed. The IAP, as
used for indirect addressing, is discussed in Section 4.2.5. The P-bit is described in Section 4.2.6.

P I REG ADDR
1

01 56 35

Figure 3-4
Indirect Address Pointer
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3.5 Byte

A single-word byte is a bit vector with a length in the range 0 . . 36 . A double-word byte is a
bit vector with a length in the range 0.. 72. (A zero-length byte of course contains no
information, but it is permitted to use a byte pointer specifying such a byte.) The position and
length of a byte are specified by a byte pointer, as described in Section 3.6.

3.6 Byte Pointer

A byte pointer completely specifies a byte somewhere in memory. The byte pointer consists of
two single-words. The first single-word is an indirect address pointer (IAP). The IAP specifies a
memory single-word or double-word which contains the byte. The second single-word of the byte
pointer is a byte selector. It has two half-word fields POSITION and LENGTH
(cPOSITION<O:  17~ 11 LENGTH& 17>=>). POSITION is the bit number of the first bit in the
byte. LENGTH is the number of bits in the byte.

.
P I REG ADDR

POSITION LENGTH
L b

01 56 17 18 35

Figure 3-5
Byte Pointer
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3.7 Block

A block consists of a contiguous list of words. The words may be any of the four standard
precisions  (quarter-word, half-word, single-word, double-word). Ail of the words within a block,

. however, are of the same precision. Some instructions which operate on blocks implicitly treat the
elements of the block as being of some other specific type; for example, STRCMP (Section 5.13)
treats the block elements as signed integers.

3.8 Flag
The flag is a single-word data type with only two values: the bit representations which are all

bits zero and ail bits one (i.e., integer 0 or -1 in two’s-complement notation). A flag of ail ones
means true, ail zeros means false.
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4 Instruction Formats and Addressing Modes

4.1 Instruction Classes

The S-l provides a rich variety of ways in which the operands for a given operation may be
accessed. These ways are called addressing modes. All S-l instructions can be specified with no
more than three single-words. The first word specifies the instruction selected. In general, the
second and third words are optional in that they specify extended addressing modes if needed.
Therefore, depending on the number of extended operands, S-l instructions may consist of one, two,
or three words.

The general format for the first word of an instruction is
cOPCODE<O:l  l> 11 0DlcO:l l> 11 OD2<0:1  l>~,. The first twelve bits specify the opcode, the second
twelve describe how the first operand is accessed, and the last twelve bits describe how the second
operand is accessed. (Note that in jump instructions the second operand is called J, not OD2.)

The opcode indicates which instruction is being selected. It also specifies the precision of the
arguments (the data values the instruction operates on). Depending on which instruction is selected,
the opcode may also indicate more information so as to fully describe the instruction (e.g., which
direction to shift, what condition to skip on, etc.). Sections 4.1.2, 4.1.1, 4.1.3, 4.1.4, and 4.1.5 describe
the five classes to which instructions belong: two-address (XOP), three-address (TOP), skip (SOP),
jump (JOP), and hop (HOP).

ODl and OD2 are operand descriptors (OD). They describe the arguments upon which the
instruction operates. The full specification of an operand may require an extra instruction-word
per argument. This use of extra instruction-words is termed extended addressing. The process
whereby the value described by the OD is determined is called operand evaluation The result of the
operand evaluation of ODl is called OPl, and that for OD2 is called OP2. The various means of
describing operands (addressing modes) are discussed in Section 4.2.

- The evaluation of all operands (including jump or skip destinations) logically occurs before the
execution of the instruction and before the PC is updated. The order of operand evaluation is
undefined. Operand evaluation produces no side effects.
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4.1.1 Two-Address (XOP)

g 4.1.1

XOP I 001 002

0 11 12 23 24 35

Figure 4-l
XOP

The two-address instructions are generally used to specify operations that involve one source
and one destination. Typically OPl is used as the destination and OP2 as the source. The XOP
field is the opcode. ODl and OD2 are the ODs that describe the arguments to the instruction. The
results of the operand evaluation of OD 1 and OD2 are OP 1 and OP2, respectively. When an
XOP instruction stores two results, it stores OP2 before OPl.

Some XOP instructions leave one or both operand descriptors unused. As a rule, an XOP
instruction with only one operand uses ODl, and OD2 must be zero.

-_

rAn XOP instruction is written as the instruction mnemonic followed by OD 1 and OD2
specifications, in that order.

1
For example, let X and Y be SWs. The following illustrates an

XOP instruction which sets X to Y (that is, the single-word register or memory location whose
symbolic name is X is made to contain the contents of Y).

ROV  X,Y ;X is the destination, Y is the source

If only one operand descriptor is specified, then FASM will use it for both ODl and OD2, or
just ODl, depending on whether or not both operands are used by the instruction.

INC COUNT ;COUNTtCOUNT+l;  INC uses both 00’s

I

RUS RTA ;RTA+USER-STATUS;  RUS uses only 001
e
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4.12 Three-Address (TOP)
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1 TOP I IT 001 I 002 I

0 9 10 11 12 23 24 35

Figure 4-2
TOP

Three-address instructions allow the specification of three arguments (generally two sources
and one destination). They specify two general memory locations (which may, of course, be registers)
and possibly one of the registers RTA or RTB. This format provides most of the power of full
three-address instructions (instructions specifying three general memory locations) but only costs two
bits in the instruction word (for T) as compared to twelve bits for a third general operand
descriptor.

The TOP field is that portion of the opcode that indicates the instruction selected, the
precision, and any- other information needed to fully specify the operation. OD 1 and OD2 are
general operand descriptors. OPI and OP2 are the results of the operand evaluations of OD 1 and
OD2, respectively. T specifies how OPl, OP2, RTA, and RTB are to be used as arguments to the
operation. The first argument to the operation is called $1, the second is called $2, and the third
DEST. In most (but not all) cases the instruction takes $1 and $2 as input and uses DEST as the
location for its output. When a TOP instruction stores more than one result, it stores S2 before S 1,
and S 1 before DEST. The following table shows how the T field selects S 1, $2, and DEST.

I $ 1DEST $2

00 OP1 OPI OP2
01 OPl RTA OP2
10 RTA OPl OP2
11 RTB OPl OP2

Table 4-l
Specification of S 1, $2, DEST

rA TOP instructionis written as an opcode mnemonic followed by DEST, $1, and $2 in that
order. For example, let X and Y be SWs. The following shows the various T fields.

1

ADD X,X,Y ;T f i e l d  = 0 0 ;  XtX+Y
ADD X,RTA,Y ;T f i e l d  = 01; XtRTA+Y
ADD RTA, X, Y ;T f i e l d  - 10; RTAtX+Y
ADD RTB,X,Y ;T f ie ld  = 11; RTBtXtY

In the case T=O, where by definition OPl is used for both $1 and DEST, it is not necessary to
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write the operand twice. Thus the first example above may be written:

ADD X,Y ;T field - 00; XtX+Y

FASM automatically fills in the T field based on the operand descriptors written after the

Lopcode mnemonic.

The selection of DEST, Sl, and S2 by the T field is asymmetric with respect to OD 1 and
ODZ. As a general rule (which has exceptions), whenever a TOP instruction is not symmetric with
respect to Sl and S2, it comes in two forms, an ordinary form and a “reverse” form. The reverse
form is just like the normal form except that the use of Sl and S2 is reversed.

rFor example, one can write:
1

SUB X,RTA,Y ;XcRTA-Y

but one cannot write:

SUB X,Y,RTA :iilegal!

because no T-field value corresponds to that arrangement of operands. One can get the
intended effect by using the reverse form of the SUB instruction.

SUBV X,RTA,Y ;X+Y-RTA

I because whereas SUB computes S l-S2, SUBS computes  s2-s 1. -I
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4.1.3 Skip (SOP)

1 SOP 1 SKP ( ODl I 002 I

0 7 8 11 12 23 24 35

Figure 4-3
SOP

Skip instructions are used for short range transfers of control. The format allows a forward
skip of 1 . . ‘I single-words, a stationary skip of zero single-words, or a backward skip of 1 . . 8
single-words relative to the first word of the current instruction. (In this respect the word skip is
used more broadly than in other machine architectures, because the S-l can skip backwards, and
forwards over more than one instruction.) The SOP field specifies the opcode (including the
condition on which the skip will be taken). ODl and OD2 are general operand descriptors and the
results of their operand evaluation are OPI and OP2 respectively.

The SKP field specifies the number of instruction single-words to skip. SKP is considered to
be a signed constant in the range -8 . . 7 . If the skip instruction results in not skipping, then
control flow is not interrupted (Le., the instruction following the skip instruction is executed next). If
the instruction results in skipping, then the next instruction to be executed has an address of
PC+4*SIGNED(SKP)  (’i.e., the address of the skip instruction offset by SKP single-words).

rA skip instruction is written as an opcode mnemonic followed by the two operand descriptors1
and the name of the location to be skipped to. For example, let X and Y be single-words. The
following ensures that XsY. FASM automatically determines the PC offset in the skip
instruction. (If only the larger or smaller of X and Y were of interest, then the MAX or MIN
instructions might be used instead; this piece of code makes X the larger and Y the smaller of
the two.)

SKP.GEQ X,Y,NEXT ; if XIY  then go to N E X T
EXCH X,Y ; else swap X and Y

NEXT: . . . ;continue  with program

. As another example, this code computes the product of all odd integers from 1 to 15.

MOV X,#l ;X counts odd integers

MOV RESULT,#l ;RESULT  accumulates product

LOOP: ADD X,#2 ;step  X to next odd integer

MULT RESULT,X ;muItiply  i t  i n

SKP.LSS X,#15,,LOOP ; if X45.  then go to L O O P

L
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4.1.4 Jump (JOP)

The jump instructions a llow two different ways of specifying the destination of the jump,
PC-relative and general. The choice depends on the PR bit (PR=l for PC-relative and PR=O for
general). The JOP field is the opcode and ODl is a general operand descriptor. The result of the
operand evaluation of ODl is termed OPl. The PC-relative bit PR selects how J is to be
interpreted as the jump-destination (JUMPDEST). If PR=l then J is considered to be a signed
12-bit constant and is used as the number of single-words to offset from the PC. Therefore,
JUMPDEST=PC+4mSIGNED(J);  the range of a relative jump is from PC-(2048  single-words) to
PC+{2047  single-words) If PR=O, JUMPDEST is set equal to the address of the operand that is
computed by interpreting J as an OD-field. With PR=O any address can be specified (at the
possible expense of an-extra instruction-word). It should also be noted that with PR=O,  J may not
specify an immediate constant or a register.

I JOP I IPR ODl

0 10 11 12 23 24 35

Figure 4-4

JOP

rA JOP instruction is written as the opcode mnemonic followed by the operand (if applicable)
and the jump destination.

1
For example, let X be a SW. FASM determines the value of the PR

bit in the following instruction, depending on how far away the location named AWAY is from
the jump instruction.

I
JMPZ.GEQ  X, AWAY ;go to AWAY if X10

-I
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4.1.5  Hop (HOP)
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I HOP I DISPLACEMENT I
0 11 12 35

Figure 4-5
HOP

There is only one hop instruction, JPATCH. The HOP field is the opcode. It does not have
an ODl or OD2 field. Instead, bits 12 to 35 of the instruction word as used as a 24-bit signed
displacement, which is added to the PC to form an unconditional-jump address.

rAn HOP is written as the opcode mnemonic followed by the the jump destination, as for a1 JOP.

I
JPATCH PATCH. AREA :go to PATCH.AREA
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4.2 Addressing Modes

The addressing modes of the S-l are efficient and powerful. Many operands can be specified
using only the fields in a single instruction-word, If it is necessary to access the full 2” single-ward
address space then extended addressing may be employed at the expense of an extra instruction
single-word per extended address. Indirection is also available in (and only in) extended addressing
mode.

The addressing modes were designed with both high-level and low-level languages in mind.
All of the common addressing modes used in assembly language programming are available.
Addressing modes designed explicitly to implement high-level language constructs have also been
included. An important example of this is the concept of pseudo-registers, in which data with’in  a
small offset of a register pointer (e.g., a stack pointer) may be accessed using only a single
instruction-word.

Unless otherwise stated, all addresses are quarter-word addresses. They are 30-bit integers in
the range 0. . 23o-1  . Operand evaluation is the process of fetching the argument of an instruction.
Address calculations within  operand evaluation have no side effects (and are restartable). Such
address calculations produce results which are truncated to the low-order thirty bits and do not
affect such arithmetic flags as carry or overflow. During an instruction’s execution, the PC remains
unchanged.

4.2.1 OperalId Descriptor Format

An operand descriptor (OD) is a Q-bit  field of an instruction-word, and describes an
argument to that instruction. The OD has three subfields: X, MODE, and F. OD. X specifies
short (0) or extended (I) addressing. As a rule, if an X bit of an operand descriptor is 1 then a
corresponding extended word follows the instruction word for use by that operand descriptor.
(Recall, however, that in a JOP instruction with PR=1, the J (OD2)  descriptor has no X bit.) If
both operand descriptors have OD.X=l,  then the extended word for OD2 follows the first
‘instruction-word, and after that is the extended word for ODl. OD, MODE and OD. F are used to
determine an addressing mode or to calculate a memory location. If an OD is unused in an
instruction then it must be identically zero. (If it is non-zero, a hard trap will occur.)

- The numbering of the bits in the diagram below is relative to the start of the field.

[xjnooE/j
01 56 11

Figure 4-6
Operand Descriptor (OD)

4.22 Extended Addressing Formats
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If an instruction requires more than a single-word to specify an operand, additional
single-words called extended-words (EWs) are used. The possible formats of the EWs are described
in the following sections.

4.2.2.1 Lollg-Comtant  Format

Long-constants are used to specify immediate values that are too large to represent in an OD.
They require an additional instruction-word of the format shown below.

ELI

0 35

Figure 4-7
Constant Extended-Word (EW)

4.2.2.2 Fixed-Based Format

In those cases when the OD cannot specify a particular memory location, extended addressing
is required. Fixed-based addressing requires an extra instruction-word (shown below).

,
PV=00 I s ADDR

A 4
0 12 34 56 35

Figure 4-8
Fixed-Based Extended-Word (EW)

4.2.2.3 Variable-Based Format

When indexing through two registers, or a register and a pseudo-register, variable-based-
addressing must be used. Variable-based addressing uses an additional instruction-word of the
format shown below.

P V=l 0 I s REG DISP
c b

0 12 34 56 10 11 35

Figure 4-9
Variable-Based Extended-Word (EW)

4.2.3 Short-Operand Addressing

An operand descriptor (OD) fully describes a short operand (SO). If OD. X=0  (short-operand
mode) then the argument to the instruction is exactly SO. If OD. X4, then SO is used in later



Page 40 Irlstructioll  Formats alld Addressiug Modes 5 4.2.3

phases of the operand evaluation procedure (see Section 4.2.4). Short-operand mode gives access to
the 32 registers, short (integer) constants in the range -32.. 31 , and memory locations indexed
through the registers and offset by no more than a short constant. The decision as to which of the
above is to be accessed depends on the contents of OD.MODE.  Only the current address space
may be referenced. (See Section 2.3 for a description of the concept of address space.)

Note that OD. MODE=2 is reserved for future use and if used will result in a hard trap.

4.2.3.1 Register-Direct

OD. MODE-O gives register-direct mode, that is, the result of the operand evaluation (SO) is
the contents of one of the 32 registers. The register number is specified by OD. F and must be in
the range 0, . 31 or a hard trap will occur. (SO=R[OD.  Fl.)

rFor example, here OD 1 and OD2 are register direct. The instruction negates RTA. 1
I

NEG RTA ;RTA+-RTA  (same as NEG.S  RTA,RTA)

4.2.3.2 Short-Constant

OD. MODE= 1 gives short-comtant  mode. In this case, SO=SIGNED(OD.F),  which is a
constant in the range -32.. 31 .

rFor example, here the #O is assembled as a short constant: 1
L

MOV RTA, #0 ; RTAc0

-

4.2.3:3  Short-Indexed

OD. MODE in the range 3.. 31 gives short-indexed mode, which allows easy access to small
memory areas indicated by registers. The memory locations that can be accessed in this addressing
mode are called pseudo-registers. The address calculation uses ROOD. MODE1 as a base and then
offsets that base by SIGNED(OD.  F) single-words (i.e., range -32 . . 31 single-words). SO is the
contents of the resulting address (SO=M[R[OD.  MODEI+~>I<SIGNED(OD.  F)l). If OD. MODE=3

then PC is used instead of R[3] (see Section 2.2.3.1). Note that R[Ol,  R[ll, and R[2l  cannot be used
in short-indexed mode because OD. MODE=0  selects register-direct mode, OD, MODE= 1 selects
short-constant mode, and OD. MODE=2 is reserved and therefore hard-traps.

I
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An interesting special case of pseudo-registers is the top few locations on the stack. Let SP be
the stack pointer specified by SPJD (and assume SP-ID is not 0, 1, or 2). The following
instructions access stack locations in short-indexed mode. In this way local variables can be kept
on the stack and easily accessed.

ADD -1 (SP) $7 ;add 7 to top SW on stack

EXCH -2 ISPI, -1 (SP) ;swap  top two single-words of stack

SKP.  EQL -5 GP) , -1 GP) ;skip  nex t  ins t ruc t ion  i f  equa l

As another example, suppose that register R contains the address of a record structure. Then
short-indexed mode can be used to access components of the record.

MOV Y, 1 (RI
MULT RTB, (RI ,2 (RI

;move  second uord of register to Y
;product of first and third words to R T B
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4.2.3.4 Summary

MODE Mode Name S hort-Operand(S0) F-field R awe

0 Register-Direct
1 Short-Constant
2 Reserved
3 Short-Indexed
4 * * 31 Short-Indexed

R[OD,F]  .
SIGNED(OD. F)
(hard trap)
M[PC+4*SICNED(OD.  F)]
M[R[OD.  MODE]+4*SICNED(OD.  F)]

0.. 31
-32..31
---
-32.. 31
-32.. 31

Table 4-2
Short-Operand Mode

.
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4.2.4 Extended Addressing

Unlike short-operand addressing, extended addressing allows an instruction to access the
entire 2*’ single-word address space. This generality requires an additional instruction-word for
each extended operand.

OD. X= 1 is used to select extended addressing. OD, MODE specifies how the extended-word
(EW) will be interpreted (i.e,, long-constant, fixed-based, or variable-based). The interpretation of
OD. F depends on OD. MODE, and is described in detail in the following sections. The result of
an extended address calculation is itself an address. A long-operand (LO) is the contents of memory
at that  address, except in the case of long-constant mode, where LO is the result of the evaluation of
the constant (there being no intermediate addresses).

Indirection is specified by setting EW. I= 1. A full discussion of indirect addressing appears in
Section 4.2.5. EW, S is used to facilitate array indexing and is described in Section 4.2.4.4. EW. P
controls access to the previous address space and is discussed in Section 4.2.6.

4.2.4.1 Long Coktant

Long constants are specified by setting OD, X=1 and OD. MODE=l.  The address calculation
then uses OD. F to indicate how the EW is to be interpreted (i.e., how the EW should be extended
to a double-word or which register should be used for indexed long-constant mode). In this context
OD. F is considered to be an unsigned constant in the range 0 . . 63 .

It should be noted that having OD.F=O is a special case and is not long-constant addressing
mode. It will be discussed further in the sections on fixed-based and variable-based addressing
(Sections 4.2.4.2, 4.2.4.3). OD. F in the range 4 . . 31 results in a hard trap since these values are
reserved for future use.

4.2.4.1.1 Immediate Long-Constant

If OD. F is in the range 1 . . 3 then the address calculation is in immediate long-constant
mode. In this mode, LO=SICNED(EW).  If LO is to have precision smaller than a single-word (i.e.,
quarter-word or half-word), then the low-order bits of EW are used, and the bits not so used are

. ignored. If the precision is single-word, then all of EW is used. Thus for quarter-word, half-word,
and single-word precisions,  the values 1, 2, and 3 for 0D.F all behave alike. If the precision is
double-word, however, then 0D.F specifies how the single-word EW is extended into the
double-word format. OD. F=l  right-justifies EW into LO and sign-extends into the high-order
word. OD. F=2 also right-justifies EW into LO but zero-extends into the high-order word.
OD. F=3 left-justifies EW into LO and zeros out the low-order word.

I The various types of long constant syntax appear below: 1
MOV  RTB,#cl06125103113~  ;RTBcarbitrary  SW constant
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The following sequence of instructions illustrates the several cases of sign extension. The two
columns on the comment field indicate the value in RTA (DW) after the execution of each
instruction.

thigh  order SW of RTA: low order SW of RTA:
MOV.0.D RTA,#cZ> ; 0 2
AD0.D RTA,#cl~B> ; 1 2
ADD.D RTA,#c!S+l> ; 1 1

L ADD.D RTA,#c-l> ; 2 0 --I

When an immediate long constant is used as a half-word or quarter-word then no check for
overflow is made. Instructions may not require NEXT(immediate operand), as it is undefined and
will result in a hard trap.

-_
4.2.4.1.2 Indexed Long Constant

indexed long constant mode is selected by having OD, MODE=1  and OD, F in the range
. 32..63. In this mode, the extended word is indexed by a register, selected by OD. F;

LO=SIGNED(EW)+R[OD.F-321.  Overflow is not checked during the addition of EW and the
register’s contents. This sum is truncated to 36 bits. Quarter-word and half-word precisions  use the
low order bits of this result as the LO. Double-word precision uses this result, sign-extended into
the high-order word, as the LO.

rFor example, the following instructions illustrate various uses of indexed constants. The1
comment field gives an alternative instruction with a similar effect. (The effects may not be
identical because indexing does not detect arithmetic carry or overflow. This fact may sometimes

- be used to advantage.)

NOV RTA,##c200>(RTB) ;A00 RTA,#c200>,RTB
SKP.GEQ #cl~(RTA),#c-13(RTB),FOO ;SKP.GEQ  #cZ>(RTA),RTB,FOO

The following instruction sets RTA to (RTA+ l)x(RTA-1) (which is RTA’-1) in a single
instruction. There is no alternative implementation of this operation. It is assumed that RTA
contains neither MAXNUM or MINNUM.

MULT  RTA, ##cl3 (RTA) , #c-l> (RTAI
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4.2.4.1.3 Summary

0D.F Extended-Word Interpretation

0 Special case of fixed- or variable-based addressing (SO=O>
1 EW right-justified, sign-extended into high-order single-word
2 EW right-justified, zero-extended into high-order single-word
3 EW left-justified, zeros to low-order single-word
4..31 Reserved for future use (hard trap)
32 . .64 Indexed constant: SIGNED(EW)+R[OD.  F-321

Table 4-3
Long-Constant Mode

Page 45
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4.2.4.2  Fixed-based Addressing

Fixed-based addressing is used to access locations that are offset by up to 230 quarter-words
from the value specified  by SO. A fixed-based address calculation uses EW. ADDR and EW. S as
well as SO to compute the address of a LO*

Address calculation occurs in stages. SO is calculated first as described in Section 4.2.3 and
then shifted left EW, S places. (For a full discussion of EW. S see Section 4.2,4.4.) The result is
then added to the 30-bit base address EW,ADDR to produce the address of a LO, that is,

LO=M[EW.ADDR+SO*2EW’S 1. If EW.I=l,  indirect addressing is then used (see Section 4.2.5).

Fixed-based addressing is selected in two different ways. If OD. X=1, EW. V=O and
OD. MODE f 1 or 2 then the operand is computed as described above. Xf OD. X= 1, EW. V=O,
OD. MODE= 1 and OD. F=O, then the operand is computed (as described above) with zero used in
place of SO.

rFor example, let SP be the stack pointer, and let TABLE be the address of a table of QWs.1
The following instructions illustrate fixed-base addressing.

MOV RTA,c30>
MDV.H.H RTA,c22>

;alternative  to MOV RTA,RTB (address in QLJs)

; set high order HW  of RTA equal to low order HW

l The following sets RTA to the QW in TABLE indexed by the top stack element.

M0V.Q.Q  RTA,cTABLE>(-l(SPN

The following two instructions set RTB to the address of a table of quarter-words, and then
RTA to the second QW in the table.

MOVADR RTB,TABLE-

I

MDV.Q.Q  RTA,cMRTB)

i

4.2.4.3 Variable-based Addressing

Variable-based addressing uses EW, DISP and EW, REG to supply additional information
for the operand evaluation. EW. DISP is interpreted as a signed offset from R[EW. REGI. The
offset is in the range -224 . * 224-l ,

Address calculation occurs in stages. The first stage involves adding R[EW.  REGI to
SIGNED(EW. DISP). This produces a base value which is used in subsequent calculations. The
rest of the operand calculation proceeds as for fixed-base addressing, using this computed base
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value in place of EW.ADDR. SO is calculated (see Section 4.23) and then is shifted left EW. S
places. (For a full discussion of EW. S-field see Section 4.2.4.4). The resulting value is added to the
base value t0 produce the address of the LO. Therefore,
LO=M[R[EW.  REG]+SIGNED(EW,  DISP)+SO*2EW  l ‘1.

Variable-based addressing is selected in two different ways. If OD. X= 1, EW. V=l and
OD. MODE * 1 or 2 then the operand is computed as described above. If OD, X=1,  EW. V= 1,
OD. MODE= 1 and OD. F=O, then the operand is computed (as described above) with zero used in
place of SO.

rFor example, let TABLE be the address of a table of QWs,  and SP be the stack pointer. The
following instructions illustrate various uses of variable-base addressing.

1
The first two

instructions set RTA to the RTA-th QW in the table.

MOVAOR RTB,TABLE
tl0V.Q.Q  RTA,c(RTB)>(RTA)

The following sets RTA to the RTA-th QW in the table, counting from the QW given by the
top SW on the stack.

tl0V.Q.Q  RTA,cTABLE  (RTA)>(-1  (SP) 1

--I

4.2.4.4 Xndexirlg  Into Data Structures: The S-field (EW.S)

EW. S is included in the fixed-based and the variable-based extended formats to facilitate
indexing into data structures (e.g., arrays). It is often the case that many elements of a data structure

- are accessed sequentially. If one wanted to access a quarter-word structure in such a manner, one
could use OD. X-l, OD. MODE=index register, OD. F=O, and EW.ADDR=base address of the
structure. The contents of the index register would be an offset to the address in EW.ADDR. It
(the contents of the index register) would also be the index of the element in the structure. To

- access the next element in the structure the contents of the index register would be incremented by
one. It must be remembered, however, that addresses on the S-l are quarter-word addresses. If the
elements of the structure are not of quarter-word precision then it would no longer be correct to add
one to the index register to obtain the offset for the next element of the structure. Either the offset
in the register would have to be shifted after incrementing, or an increment larger than one (1)
would be needed (e.g., for single-words, four would be added). Using an additional shift instruction
is undesirable because it would decrease code density, and also because it would cause a pipeline
interlock which would slow the execution of the code. Using a larger increment would make it
difficult to use the index register’s contents as the index into the structure because the offset in the
register would be some multiple of the actual index. The solution chosen by the designers of the
S- 1 is to use a field EW. S to specify how many bits to shift the SO to make memory appear to be
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the desired precision. EW. S equal to 0, 1, 2, or 3 causes the “apparent memory precision” to be
quarter-, half-, single-, or double-word, respectively. If one wanted to access a single-word data
structure (using fixed-based addressing), the method outlined above would work if one set EW. S to
2. The contents of the index register would then specify both the “single-word offset” (i.e., the
quarter-word offset divided by 4) to the base of the structure and the index of the element within
the structure. The address calculation would then shift this “single-word offset” left two bits,
converting it into a quarter-word offset. The resulting address would be the actual location of the
data element. To increment the index, the register contents would be incremented by one. The shift
by EW, S takes care of adjusting the precision, and since it is part of the operand calculation, no
pipeline-interlock occurs.

rFor example, let SP be the stack pointer and let TABLE be the address of a table of SWs.  The1
following illustrates how the shift field facilitates indexing into this table. RTA is set to the SW
element of the table one SW beyond the SW indexed by the top SW in the stack. Informally,
RTAttable(stack(SP-l)+ 1). The shift field EW.S is specified by the number following the
up-arrow “Y’.

MOVADR RTB,TABLE
MOV RTA,c4(RTBM-l(SPHt2

4.2.5 Indirect Addressing

Indirect addressing may be used during extended addressing by setting EW. I= 1. It is used
for accessing memory through pointers that are stored as single-words in memory. With EW. I= 1,
the LO that is calculated in previous addressing stages is now interpreted as an indirect address
pointer (IAP) (see Section 3.4). The fields of the IAP are then used to compute the address of the
actual operand. This operand is termed the indirect long operand (ILO).

P I REG ADDR
A

01 5 6 35

Figure 4- 10
Indirect Address Pointer

There are two different types of indirection which can be selected. IAP.IREG determines
which one is used. If IAP.IREG=O then IAP.ADDR is used as the address of the ILO. Thus,
ILO=M[IAP. A DDR].  This is termed simple indirection. If IAP. IREGzO then indexed indirection
is used. In this case, R[IAP. IREGI is added to IAP. ADDR to produce the address of the IL0 so
that ILO=M[R[IAP. IREG]+IAP.ADDR]. Note that R[Ol  can not be used in the above
computation, since IAP. IREG=O specifies simple indirection.
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Like all addressing operands, the IAP operand evaluation logically occurs before the
instruction execution and before the PC is updated, Since it has no side effects, it is restartable.
The IAP calculation is done modulo 230 and does not set carry or overflow flags. See Section 4.2.7
for more details on addressing restrictions and exceptions. The interpretation of the P-bit is
discussed in section 4.2.6. .

rFor example, assume resister P contains the address of the first word of any node in a circular,
1

doubly-linked list of nodes consisting of three single words: a “next link”, a “last link” and a
“data pointer” which points to a SW quantity. The following illustrates use of indirection.

MOV P, (PI ;advance  P to point  at  the “next” node

MOV P, 1 (PI ;backup  P t o  p o i n t  a t  t h e  “ l a s t ”  n o d e

MOV P,C@(P)> ladvance P to the “next” of  “next” node

MOV P, cm (PI ;this does the same thing a di f ferent  way

EXCH c8> (0 (PI 1, c8> (1 (PI 1 ;swap  data-pointer(last)  w i t h  data-pointer(next)

EXCH c&>(0(P)  1 ,cc98Al  (PI 1 ;ewap  datailast)  w i t h  datainext)

I
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4.2.5.1 Summary

IAP. IREC Mode Name IL0

0
1.. 31

Simple Indirection M[IAP. ADDRI
Indexed Indirection M[R[IAP,  IREG]+IAP.ADDR]

Table 4-4
Indirect Address Pointer (IAP)
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4.2.6 Address Space Switching: The P-bit

Bit zero of fixed-based EWs, variable-based EWs, and IAPs is interpreted as a previous

context  bit (P-bit). The P-bit specifies the address space that will be used in the computation of an
extended operand. The interpretation of the P-bit is always done as the last step of a given phase
of address calculation (e.g., it is done just before-LO is fetched, and again just before IL0 is fetched
in an indirect address calculation). The PREYMODE, CRNT-MODE, PREVFILE,
CRNTFILE,  and USE-SHADOW-PREV  fields of PROCSTATUS determine the effects of the
P-bit. (See Section 2.5.1 for a description of PROCSTATUS.)

The purpose of the P-bit is to facilitate communication between a program and the executive.
If a (user or executive) program traps, then the P-bit allows the executive routine that handles the
trap to access the memory space of the program that trapped. CRNT-MODE (PREV-MODE)
indicates whether the current (previous) context is in user or executive mode. CRNT-MODE-O
(PREV-MODE-O) means that the current (previous) context is in user mode. CRNT-MODE=1
(PREY-MODEmI)  means that the current (previous) context is in executive mode.

P=O means that the address space being referenced is the same as that selected by
CRNT-MODE. It is used by both the executive and the user each to access its own address space.
The executive may access operands in the previous address space by using a P-bit equal to 1. If a
user (i.e., a program with CRNT-MODE-O) attempts to access the previous address space by using
a P-bit equal to 1, a hard trap will occur.

Only one change of address space is allowed in the evaluation of a single operand since this is
all that is needed to allow the executive to access the trapping program’s address space. Therefore,
if a P-bit equal to 1 has already been encountered in an address calculation, encountering another
one will cause a hard trap.

Since the interpretation of the P-bit is always done as the last step of the address calculation,
if an IAP is fetched from a given address space (either current or previous), then the IREG and-
ADDR fields are also interpreted as being in that same address space. After all these other fields
have been evaluated, the P-bit of the IAP is then interpreted. If IAP. P=O, then the IL0 is fetched
from the same address space as the IAP. If IAP. P= 1 and the IAP is in the current address space,
then the IL0 is fetched from the previous address space. All other cases will hard-trap.

rThe first instruction below uses the P-bit in the extended word to access the RTB-th1
single-word in TABLE in the previous address space. The second uses an IAP to achieve the
same effect. Note that the o symbol causes FASM to set the P-bit in the IAP constant, but
specifies indirection in the EW.

MOV RTA,c!P  TABLE (RTB)>
MOV RTA,m Ee TABLE (RTB)  I >
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4.2.7 Addressing Restrictions  alld Exceptions

Without exception, instructions that require NEXT(OP) or ADDRESS where OP is
either a short-constant or a long-constant will hard-trap.

If an instruction requires two EWs, the first is used to calculate OP2, and the second to
calculate OP 1.

All instructions which move addresses (e.g., MOVADR) perform the address interpretation
procedure to the point just before the virtual-to-physical translation, and store the resulting 36-bit
number (possibly with the P-bit=l)  in the destination. See Section 2.3 on virtual-to-physical
address translation.

A hard trap will occur if an instruction has a jump destination which is in the previous
context. Jumps to registers are undefined.

Note that the PC is a 30-bit positive number (Le., is zero-filled to the left in indexing).
References to register R[3] are interpreted as references to the PC under certain conditions. PC is
used instead of R[3] whenever R[3]  is specified as an index register within an address calculation.
This includes indexing off of R[3] in indirect address pointers (see Section 4.2.5). All other
references to R[3] refer to the contents of general-purpose register number 3.

For an instruction to be executable, the two words following the first word of the instruction
must be valid instruction words (Le., they must exist in the address space and be on a page with
access mode INSTRUCTION=l).  This applies even when those two words are not part of the
instruction and even when they cannot possibly be executed as part of any instruction. This is an
effect of pipelining.

There are two cases where crossing the memory/register boundary may cause hard traps.
Instructions that begin within two single-words of the boundary (inclusive) will cause a hard trap
when executed. Instructions that have operands or sequences of operands (e.g., NEXT(operand))
that are addressed in register-direct mode (see Section 4.2.3.1) and that cross the memory/register
boundary will cause a hard trap. Operands that are accessed as the first 128 quarter-words of
memtiry  will never cause a memory/register boundary hard trap (but may cause traps such as
alignment error, etc.).
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4.2.8 Addressing Summary

Short-Operand SQ OD, MODE 0D.F

Register-direct R[OD. F] 0 0..31
Short-constant SIGNED(OD,  F) 1 -32. . 31
Short-indexed M[PC+4*SIGNED(OD.  F)] 3 - 3 2 . 3 1
Short-indexed M[R[OD. MODE]+4*SIGNED(OD. F)] 4..31 -32. . 31

OD.X=O

Table 4-5
Short-Operand Addressing Summary

LonP--Constant Lo 0D.F EW extension to double-word

Immediate
Immediate
Immediate
Indexed

SIGNED 1 right-justified, sign-extended
SIGNED 2 right-justified, zero-extended
SIGNED 3 left-justified, low order zero
SIGNED(EW)tR[OD,  F-321 32..63

0D.X = l,OD.MODE  = 1

Table 4-6
Long-Constant Addressing Summary
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Lo OD, MODE FOD.

M[EW.ADDRtSO*2EW’Sl f 1,2 0D.F
M[EW,ADDRl . 1 0

0D.X - 1, EW.V - 0

Table 4-7
Fixed-Based Addressing Summary

Lo OD. MODE 0D.F

M[R[EW.REG]+SIGNED(EW.DISP)+SO*2EW’S] f 1,2 0D.F
M[R[EW.  REGltSIGNED(EW.  DISP)l 1 0

0D.X = 1,EW.V = 1

Table 4-8
Variable-Based Addressing Summary

IL0 IAP. IREG

M[IAP.ADDRl 0
M[R[IAP. IREGl+IAP.ADDRI 1.. 31

EW.I= 1

5 4.2.8

Table 4-9
Indirect Addressing Summary
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4.2.9 FASM Addresshg Summary

In the following tables, lower case symbols denote FASM expressions (these tables correspond
one-to-one with the previous section).

Short-Operand s FASM

Register-direct R[rl
Short-constant S C

Short-indexed M[PC+4ssc]
Short-indexed M[R[r1+4wl

Rr
#SC
sc( 3)
49

r - register 0 . . 31 , SC = short constant -32 . . 31

Table 4-10
FASM Short-Operand Addressing Summary

Lone-Constant LO (DW) FASM

Immediate SIGN-EXTEND(lc)  c) lc #C!S H lc3
Immediate 0 i-b lc +clc=>
Immediate lc H 0 rtclc  H 03
Indexed lc+R[r] *&D(r)

lc = long constant (SW), r = register

Table 4-l 1
FASM Long-Constant Addressing Summary
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Lo FASM

M[x+so*2Sh1 cx>(so)tsh

MEx1 CX>

= address, so = short operand, sh = shift 0 . . 3
in x: Q = indirect, !P = previous context)

Table 4-12
FASM Fixed-Based Addressing Summary

-_ Lo FASM

M[R[r]+x+sou2Shl cx(r)$so)tsh
MER[rl+xl cx(rb

x - offset, r = register, so - short operand, sh - shift 0 . . 3
(in x: @ = indirect, !P = previous context)

Table 4-13
FASM Variable-Based Addressing Summary

IL0 FASM

MIxI
M[R[rl+xl

@X

dr>

x = address, r = register

g 4.2.9

Table 4-14
FASM Indirect Addressing Summary
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5 Instruction Descriptions

The instruction set of the S-l contains many powerful instructions for manipulating various
data types. The instructions are designed to make the implementation of high-level languages easier
and more efficient in terms of both storage and speed. The formats for the instructions are
described in Section 4.1.

Ail S-l instructions are written as an opcode name followed by zero or more modifiers. These
modifiers are separated from the opcode field and from each other by the “.‘I character (i.e.,
opcode(  . modifier)). In the instruction descriptions that follow, ail the possible values of a
modifier-field are listed within curly brackets at the position which they should occur in the
instruction. One modifier from each set in the curly brackets must be used. (An exception to this
rule is that if precision modifiers are omitted, then single-word precision is assumed.) The order of
the modifier-fields is important (e.g., MOVQS is not the same as M0V.S.q).

Essentially ail three-operand instructions that are asymmetric with respect to Sl and S2 in
their operation are- provided in reverse form (i.e., where an instruction uses Sl operation  S2, the
reverse instruction uses S2 operation Sl). This is indicated by appending the letter “V” to the end
of the opcode name (e.g., SUB and SUBV, or SHF and SHFV). Instructions for commutative
operators such as ADD are symmetric in S 1 and S2, and so need no reverse forms.

Unless otherwise stated, ail operands required for the execution of an instruction are
prefetched,  that is, ail address computations (including indirection) are done and all operands are
available before the operation specified by the instruction is performed and before results are stored.

5.1 Instruction-Execution Sequence

The execution of an instruction can be logically divided into a number of stages which make
up the instruction-execution sequence. These stages are described in order in the following

- paragraphs.

The first stage is concerned with processing interrupts. (See Section 5.16 for a description of
the interrupt architecture.) If an interrupt is pending at this time, the interrupt is serviced by
jumping to the interrupt handler specified in the appropriate interrupt vector. Return from the
interrupt handier restarts the instruction-execution sequence, so that if further interrupts are
pending, they will also be serviced. If no interrupts are pending, control passes immediately to the
next stage.

The second stage of the instruction-execution sequence processes trace-traps trace-trap.
TRACE-PEND is sampled and reset. If a trace-trap is pending (TRACE-PEND-l),  then a trap
occurs and the trace-trap handier is executed. Upon return, the trapping instruction is restarted
from the beginning. Interrupts are processed again. The TRACE-PEND flag is sampled again,
but unless the trace-trap handler changed the saved PROCSTATUS, TRACE-PEND is
necessarily zero, since was reset before the trace-trap began. If a trace-trap is not pending
(TRACE-PEND=O),  control passes to the next stage.
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Before-instruction exceptions are handled in the third stage. These include exceptions such as
page-faults and iliegal  memory-access traps that can be detected before instruction execution has
begun. If any before-instruction exception is detected, the exception is handled, and when the
exception handier reutrns, control is passed back to the beginning of the first stage. Interrupts are
processed again. The TRACE-PEND flag is sampled again, but unless the exception handler
changed the saved PROCSTATUS, TRACE-PEND is (again) necessarily zero. Thus, repeated
before-instruction exceptions can occur without causing superfluous trace-traps.

The fourth stage of instruction execution simply saves the value of TRACE-ENB for use
after the part of instruction execution which may change PROCSTATUS. We call this saved
value TRACE-ENBOLD.

During the fifth stage of instruction execution, the instruction body is executed, possibly
affecting the user state.

Some lengthy instructions are interruptable. Interrupts occurring within interruptable
instructions save INSTRUCTION-STATE (an otherwise inaccessible hardware register) on the
stack. The saved INSTRUCTION-STATE allows the interrupted instruction to restart at the
proper point when the interrupt handier returns. A zero value for INSTRUCTION-STATE
means that the instruction body has not begun execution, i.e., that the instruction can be restarted
from the beginning.

In the sixth stage of instruction execution, TRACE-PEND is set to TRACE-PEND v
TRACE--ENBOLD. Thus, if tracing was enabled when this instruction commenced (or if this
instruction itself sets TRACE-PEND), a trace-trap will occur after this instruction completes (i.e., at
the beginning of the next instruction). Hence, the trace-trap handier receives a trap after the last
instruction in a sequence of instructions to be traced, as well as before the first instruction in the
sequence.

After-instruction exceptions such as integer overflow are handled in the seventh and last
stage of instruction execution. If the handler of an after-instruction exception restarts the
instruction (which will not normally be the case), another trace-trap may occur immediately
(depending upon the value of TRACE-PEND). A second trace-trap is appropriate in this case,
since ‘the instruction is actually being executed twice.
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The formal description of the above instruction-execution sequence for a single S-l processor
(S- LUniprocessor)  is shown below.

define S- 1 Jniprocessor  E

do forever
program-counter t pc-nxt-instr next .
Check-Interrupts next

if Trace-Trap--Pending
then Trace-Trap
else Fetch-Instruction-Word next

Decode-Opcode
fi next
Trace-Trap-Pending t Trace-Trap-Pending v Trace-Trap-Enable

reverof od;
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5.2 Integer

5.2.1 Signed Integer

Signed integer instructions operate upon the signed  integer data type (see Section 3.2). The
instructions perform addition, subtraction, multiplication, integer division, remainder, and modulus
functions. Negation, absolute value, min, and max are also provided. Non-commutative operations
such as subtraction are provided in both normal and reverse forms . These reverse instructions are
indicated by a “V” as the last character of the opcode string. (e.g., SUB becomes SUBV).
Instructions that allow extended-precision operations (e.g., multiplying two single-word integers and
producing a double-precision result) have an “L” as either the last or penultimate character of the
opcode.

Two different remainder functions are provided: rem and mod. The result of mod has the
same sign as the divisor of the operation (or is zero), whereas the result of rem has the same sign as
the dividend (or is zero). In both cases, however,

DIVIDEND = (DIVISOR * QUOTIENT) + REMAINDER
and

ABS(REMAINDER) < DIVISOR

For example, -5 mod 3 = 1 (QUOTIENT,,d=-2)  while -5 rem 3 = -2 (QUOTIENT,,,=-I).

Integer division (QUO, DIV, etc.) produces QUOTIENT,.,,, not QUOTIENTmoo.  For
example, the result of (- 1)/2 is zero, not -1. The SHFA.RT instruction can be used to produce
QUOTIENTmod in the case that the divisor is a power of two. By contrast, the QUO2 series of
instructions produces QUOTIENT,.,,, like all QUO instructions. This may all be summarized by
noting that QUO and DIV instructions always round the quotient towards zero, while SHFA.RT
rounds towards negative infinity. (See Section 5.7-

Section 5.2.3 describes the possible side
INT-OVFL,  and INTO-DIV).

for shift instructions.)

effects of signed-integer instructions (CARRY,
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Instruction: ADD . (Q,H,S,D}
Class: TOP

ADD

Page 61

Integer add

Purpose: DESTcS  l+S2. The integer sum of Sl and S2 is stored in DEST.

Side Effects: CARRY, INT-OVFL

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define ADD.p:qhsrt  E T O P  Lp:p:pl  Add6I, ~2) + s u m ,  c, ov n e x t
IntAlverj~ow? nextS-1

(dest (: sum also Carry t cl ;

rCarry is set by the following instruction. Note that 777 has the signed interpretation -1 and the
unsigned interpretation 2’- 1.

1

L
ADD.Q  RTA,#c333>,#c777> ; FITA=

-I
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ADDC

5 5.2.1

Integer add with carry
Instruction: ADDC . {Q,H,s,D}
Class: TOP

Purpose: DESTtS  l+S’L+CARRY

Side Effects: CARRY, INT-OVFL

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define ADDC,p:qhsd  z T O P  rp;p;pl  A&fJ&th-Carr’y(S1,  s2, Carrly) + s u m ,  c ,  o v  n e x t
Int-Overflow?  next
(dest  e sum also Carry c c) ;

I Carry is set after the execution of the first instruction, and cleared after the second. 1
ADD. Q RTA, #c666>,  #c777> ; RTA=665

ADDC.Q RTA,RTA,#l ;RTA=667

The following adds two long integers at X and Y represented as a pair of DWs with the

low-order DW having the higher address. The result is stored in X and NEXT(X).

ADD.D X+lB,Y+lB
ADDC.D X,Y

Similarly, suppose that NUMl and NUM2 are two blocks of single-words, each of length N
- (N22)  and representing an N-word integer, with lower-order words having higher addresses.

These can be added and the result stored in an (Ntl)-word block NUM3 in this manner:

MOV RTB,  #cN-l> ;RTB  counts words

ADD RTA,cNUMl>(RTB),cNUM2>(RTB) ; add I ow-order words

MOV cNUM3+1dRTB),RTA ; s tore low-order resul t

LOOP: ADDC RTA,cNUtll-l>(RTB),cNUMZ-WRTB) ;add next words plus carry
MOV cNUM3>  (RTB)  , RTA ;store next word

DJMPZ.  GTR RTB, LOOP ;DJMPZ doesn’t  a l ter  carry!

CMPSF.LSS RTA,cNUMl> ;produce  s i g n - e x t e n s i o n  o f

CMPSF.LSS,RTB,cNUMZ> ; NUMl  a n d  NUMZ

ADDC cNUM3>,RTA,RTB ;produce  h i g h - o r d e r  r e s u l t

I
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Instruction: SUB . (W&D)
Class: TOP

Instruction Descriptions Page 63

SUB

Integer subtract

Purpose: DESTcS  l-S2

Side Effects: CARRY, INT-OVFL

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define SUB. p:qhsd  E TOP lp; p; PI Sublract(S1,  ~2) + d i f ,  c, o v  n e x t

Int-Overflow?  next

(dest e dif a l s o  C a r r y  t c) ;

rThis example subtracts 1 from -1 to obtain -2. After execution, CARRY is set, INTBVFL  is1
clear, and RTA contains -2.

L
SUB RTA, g-1, #I ; RTA=-Z
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Instruction: SUBV  l {Q,H,S,D)
Class: TOP

Instructiotl Descriptions

SUBV

3 5.2.1

Integer subtract reverse

Purpose: DEST+S2-S 1

Side Effects: CARRY, INT-OVFL

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

d e f i n e  SUBV, p: qhsd  c TOPEP;P;pl Subtract(s2,  Sl) + d i f ,  c ,  o v  n e x t
Int-Overflow?  next
(dest c= d i f  a lso  Car ry  c c) ;

rThe long constant below is a SW minus one in signed interpretation.

I
SUBV RTA,#c7777777777773,#1 ; RTA=tZ

1
-I
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SUBC

Instruction: SUBC l {Q,H,S,D)
Class: TOP

Page 65

Integer subtract with carry

Purpose: DESTtSl-S&l+CARRY

Side Effects: CARRY, INT-OVFL

Precision: S 1, $2, and DEST all have the precision specified by the modifier.

Formal Description:

d e f i n e  SUBC. p: qhsd o T O P  @;p:pl  Subtract-With-Carry ISl, s2, Carry) + dif, c, ov next
Int-Overflow?  next
(dest e dif also Carry 6 c) :

rLet X and Y be two pairs of DWs representing a long integer with the low-order DW having
the lower address. The following sets X to the difference of X and Y.

1

SUB.0 X,Y

L
SUBLD X+10, Y+10
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Instruction: SUBCV  l (W,S,D)
Class: T O P

Instruction Descriptions 5 5.2.1

SUBCV

Integer subtract with carry reverse

Purpose: DESTtS2-Sl-I+CARRY

Side Effects: CARRY, INT-OVFL

Precision: $1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

def ine SUBCV.  p: qhsd  E TOP rp: p: PI Subtract-With-Carry (s2, Sl, Carry) -) dif, c, ov next
Int-Overflow?  next
(dest * d i f  a l s o  C a r r y  c c) ;

rThe following illustrates SUBCV, 1
SUB RTA,#Z,#l ;RTA=+l, c a r r y  c l e a r

L
SUBCV RTA, #2, RTA ;RTA=-2,  c a r r y  s e t

-.I
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MULT

Instruction: MuLT . {Q,~~,s,D)
Class: TOP

Page 67

Integer multiply

Purpose: DESTcLOW-ORDER@  M2)

Side Effects: INT-OVFL

Precision: S 1, $2, and DEST all have the precision specified by the modifier.

rINT-OVFL is set by the following instruction which multiplies 333 octal by 3, giving a result
larger than can fit in nine bits: 1221 octal.

1 \

I
MULT,Q RTA,#c333>,#3 ;RTA=221
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MULTL

5 5.2.1

Instruction: MULTL . {Q,H,S)
Class: TOP Integer multiply long

Purpose: DESTtS  l&2

Precision: S1 and S2 have the same precision as the modifier. DEST has a precision tzuice  that of
the modifier.

rThe following instruction does not set INT,OVFL since the result fits in a halfword. 1
I

t'lULTL.Q RTA,#c333>,#3 ;RTA-001221
I
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Instruction: QUO l (Q,H,S,D)
Class: TOP

hstructioll Descriptions

QUO

Purpose: DESTcSl/S2.  QUO rounds its result towards zero.

Side Effects: INT-OVFL, INTZDIV

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

I The following illustrates a simple quotient calculation.

Page 69

Integer q uotien t

1
I QU0.Q  RTA,#c345>,#3 ;RTA=114
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Instruction: QUOV . {Q,H,s,D)
Class: TOP

Instruction Descriptions

QUOV

5 5.2.1

Purpose: DESTtS2/Sl QUOV rounds its result towards zero.

Side Effects: INT-OVFL, INTZDIV

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Integer quotient reverse

I The following illustrates a quotient calculation.

I
QUOV.  Q RTA, #c114>,  #c345r, ; RTA=3

1
-I
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Inst ruct ion:  QUOL  l (QW}
Class: T O P

Iwtruction Descriptions

QUOL
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Integer quotient long

Purpose: DESTtS l/S2. QUOL rounds its result towards zero.

Side Effects: INT-OVFL, INTZDIV

Precision: S 1, NEXT(Sl),  S2, DEST have the same precision as the modifier. S 1 has a precision
twice that of the modifier.

rThe following illustrates taking a quotient with a long dividend.

I QUOL. Q RTA, #c1221>,  #3 ; RTA-333
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QUOLV

I n s t r u c t i o n :  QUOLV . {W&S)
Class: TOP Integer quotient long reverse

Purpose: DESTcS2/Sl.  QUOLV rounds its result towards zero.

Side Effects: INT-OVFL, INTZDIV

Precision: S 1 and DEST have the same precision as the modifier. S2 has a precision twice that of
the modifier.

rThe following illustrates taking a quotient with a long dividend.

L
QU0LV.Q  RTA,#c333~,#cl221~ ;RTA=3
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QUO2
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Inst ruct ion:  QUO2 l {Q,H,S,D)
Class: TOP Integer quotient by power of 2

Purpose: DESTtS  l/2’? QUO2 rounds its result towards zero. The SHFA.RT instruction may be
used to divide by a power of two, rounding towards negative infinity. S2 may be
negative, in which case a multiplication by a positive power of two is performed.

Side Effects: INT-OVFL (INT-OVFL is not set during the 2’* portion of the operation. This
exponentiation is done with unlimited precision.)

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

rThe following divides -3 by +2, giving a different result than SHF.RT with the same opera ds.

I
QUO2 RfTA,#-3,471 ; RTA=-1

-J
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QU02V

Instruction: QU02V . {Q,H,s,D)
Class: TOP Integer quotient by power of 2 reverse

Purpose: DEST&& QUO2V rounds its result towards zero. The SHFAV.RT instruction may
be used to divide by a power of two, rounding towards negative infinity. Sl may be
negative, in which case a multiplication by a positive power of two is performed.

Side Effects: INT-OVFL (INT-OVFL  is not set during the 2>’ portion of the operation. This
exponentiation is done with unlimited precision.)

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

rThe second instruction illustrates the use of negative shifts.

QU02V RTA,#l,#-2 ;RTA=-1

I

QU02V RTA,RTA,#l ;RTA=2

1

--.I
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QU02L

Instruction: QUO2L  m {QHS}
Class: TOP Integer quotient by power of 2 long

Purpose: DESTcS  l/2’*. QUOPL  rounds its result towards zero. S2 may be negative, in which
case a multiplication by a positive power of two is performed.

Side Effects: INT-OVFL (INT-OVFL  is not set during the 2’* portion of the operation. This
exponentiation is done with unlimited precision.)

Precision: S2 and DEST have the same precision as the modifier. S1 has a precision twice that of
the modifier.

I The following divides the long operand by 16 (decimal).

I QU02L.Q RTA,#c1221>,#4  ;RTA&I

1
-I
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QU02LV

Instruction: QU02LV  l (Q,H,S)
Class: TOP Integer quotient by power of 2 long reverse

Purpose: DESTcS2/2’  ‘. QUO2LV  rounds its result towards zero. Sl may be negative, in which
case a multiplication by a positive power of two is performed.

Side Effects: INT-OVFL (INT-OVFL is not set during the 2’1 portion of the operation. This
exponentiation is done with unlimited precision.)

Precision: S I and DEST have the same precision as the modifier. S2 has a precision twice that of
the modifier.

rIn the first instruction RTA is to be interpreted as a HW destination. In the second instruction1
RTA is to be interpreted as a QW destination, a QW shift argument, and a HW operand,
respectively. Note rhat the second instruction leaves the contents of RTA unchanged
(independent of its interpretation).

QU02LV.H RTA,#-ll,#ll ;RTA=11000  (HW)

I

QU02LV.  Q RTA, RTA,RTA ;RTA-11  KIWI

-I
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REM

Page 77

Instruction: REM a (Q,H,S,D)
Class: TOP Integer remainder

Purpose: DESTtSl  rem S2. The result is the remainder produced by a division that rounds
towards zero (as in the QUO instruction). The result (DEST) has the same sign as the
dividend (S I), or is zero. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INTZDIV

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

rThe following illustrate the results of various combinations of signs.

REM.Q  RTA,#5,#3 ;RTA=2
REM.Q  RTA,#5,#-3 ;RTA=2
REM.Q  RTAJ-5,#3 ;RTA=-2

I

REM.Q RTA,#-5,#-3 ;RTA=-2

1

-I
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REMV

f 5.2.1

Instruction: fwvw . (Q,H,s,D)
Class: TOP Integer remainder reverse

Purpose: DESTtS2 retn  Sl. The result is the remainder produced by a division that rounds
towards zero (as in the QUOV instruction). The result (DEST) has the same sign as the
dividend (S2), or is zero. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the M O D
operation.

Side Effects: INT~Z~DIV

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

I The following illustrate the results of variou$  combinations of signs.

REMV.Q RTA,#3,#5 :RTA=2
REMV. Cl RTA, H-3, #5 ; RTA=2
REMV.Q  RTA,#3,#-5 ; RTA=-2

I
REMV.Q  RTA,#-3,#-5 ;RTA=-2

1
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REML

Page 79

Instruction: REML  l (Q,W)

Class: TOP Integer remainder long

Purpose: DESTtSl  rem S2. The result is the remainder produced by a division that rounds
towards zero (as in the QUOL instruction). The result (DEST) has the same sign as the
dividend (Sl), or is zero. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INTO-DIV

Precision: S2 and DEST have the same precision as the modifier. Sl has a precision twice that of
the modifier.

rThe following illustrates the remainder using a long dividend. 1
I

REML , Q RTA , #cl 23453,  #c300~ ; RTA=245
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REMLV

5 5.2.1

Instruction: miiu~v.  (Q,H,s)
Class: T O P Integer remainder long reverse

Purpose: DESTtS2  rem Sl. The result is the remainder produced by a division that rounds
towards zero (as in the QUOLV instruction). The result (DEST) has the same sign as the
dividend (S2), or is zero. Note that the MOD function provided in many high-level

. languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INTZDIV

Precision: Sl and DEST have the same precision as the modifier. S2 has a precision twice that of
the modifier.

rThe following illustrates a remainder using a long dividend. 1
I

REMLV. Q RTA, #c300>,  #c12345> ; RTA=245

I
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MOD
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Instruction: MOD . @,H,s,D)
Class: TOP Integer modulus

Purpose: DESTcSl  mod S2. The result is the remainder produced by a division that rounds
towards negative infinity, The result (DEST) has the same sign as the divisor (S2), or is
zero. Hence when the divisor is positive the result is the number-theoretic reduction of
Sl in the modulus S2. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INT-Z-DIV

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

I The following illustrates the result of various combinations of signs.

L

MO0.Q RTA,#5,#3 ; RTA=2
MO0.Q RTA,#5,#-3 ; RTA=-1
MO0.Q RTA,#-5,#3 ; RTA=l
MO0.Q RTA,#-5,#-3 ; RTA--2

1
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MODV

3 5.2.1

Instruction: MOW l (Q,H,S,D}
Class: T O P Integer modulus reverse

Purpose: DESTcS2 mod Sl. The result is the remainder produced by a division that rounds
towards negative infinity. The result (DEST) has the same sign as the divisor (Sl), or is
zero. Hence when the divisor is positive the result is the number-theoretic reduction of
S 2  i n  t h e  m o d u l u s  Sl. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INT Z DIV

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

I The following illustrates the result of various combinations

MO0V.Q  RTA,#3,#5 : RTA=2
MOOV, Q RTA, #-3, #5 ; RTA=-1
MO0V.Q  RTA,#3,#-5 ; RTAm.1
MO0V.Q RTA,#-3,#-5 ; RTA=-2

of signs. 1
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MODL

Integer modulus long

Purpose: DESTtSl  mod S2. The result is the remainder produced by a division that rounds
towards negative infinity. The result (DEST) has the same sign as the divisor (S2), or is
zero. Hence when the divisor is positive the result is the number-theoretic reduction of
Sl in the modulus S2. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INTO-DIV

Precision: S2 and DEST have the same precision as the modifier. Sl has a precision twice that of
the modifier.

rThe following illustrates the module  operation using a tong dividend. 1
e I MO0L.Q RTA,#c12345~,#~300> ; RTA=245
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MODLV

5 5.2.1

Instruction: M0Dl.V. (Q,H,S)
Class: TOP Integer modulus long reverse

Purpose: DESTcS2  mod Sl. The result is the remainder produced by a division that rounds
towards negative infinity. The result (DEST) has the same sign as the divisor (S 1), or is
zero. Hence when the divisor is positive the result is the number-theoretic reduction of
S2 in the modulus Sl. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INT-Z-DIV

Precision: Sl and DEST have the same precision as the modifier. S2 has a precision twice that of
the modifier.

rThe following illustrates the modulo operation using a long dividend. 1
I MO0LV.Q RTA,#c300~,#~12345> ;RTA=245

i.I
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DIV

Instruction: DIV l {Q,H,S,D)
Class: T O P Integer divide

Purpose: DESTcSl/S2;  NEXT(DEST)tSl  rem S2. DIV is like doing both a QUO instruction and
a REM instruction.

Side Effects: INT-OVFL, INTZDIV

Precision: S 1, S2, DEST, and NEXT(DEST) all have the same precision as the modifier.

rThe following produces a quotient-remainder result. 1
I

D1V.Q RTA,#c345>,#3 ;RTA=114001  (two QWd

-I
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DIVV

Instruction: DlVV . {Q,HAD)
Class: TOP Integer divide reverse

Purpose: DESTtS2/S 1; NEXT(DEST)cSZ  ren Sl. DIVV is like doing both a QUOV instruction
and a REMV instruction.

Side Effects: INT-OVFL, INTJDIV

Precision: Sl, S2, DEST, and NEXT(DEST) ail have the same precision as the modifier.

I The following produces a quotient-remainder result.

I
0IVV.Q RTA,#3,#c345> ;RTA=114001  ( t w o  QWd

1
-.I
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DIVL

Inst ruct ion:  DlVL l (Q3M)

Class: T O P Integer divide long

Purpose: DESTtS l/S!$ NEXT(DEST)tSl  rem S2. DIVL is like doing both  a QUOL instruction
and a REML instruction.

Side Effects: INT-OVFL, INTZDIV

Precision: S2, DEST, NEXT(DEST) have the same precision as the modifier. Sl has a precision
truice  that of the modifier.

rThe following produces a quo’tient-remainder for a long operand. 1
I D1VL.Q RTA,#c12345>,#~300> ; RTA=33245  ( t w o  QWs)

I
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DlVLV

f 5.2.1

Instruction: DIVLV  l (Q,W)
Class: TOP Integer divide long reverse

Purpose: DESTtS2/S 1; NEXT(DEST)tS2  rem S 1. DIVLV is like doing both a QUOLV
instruction and a REMLV instruction.

Side Effects: INT-OVFL, INTZDIV

Precision: S I, DEST, NEXT(DEST) have the same precision as the modifier. S2 has a precision
twice that of the modifier.

rThe following produces a quotient-remainder for a long operand.

I
D1VLV.Q RTA,#c300>,#~12345~ ;RTA=33245  (two QWs)
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INC

Instruction: WC l {Q,H,SJQ
Class: XOP

Instruction Descriptions Page 89

Purpose: OP kOP2+ 1

Side Effects: CARRY, INT-OVFL

Precision: OP 1 and OP2 have the same precision as the modifier.

Formal Description:

d e f i n e  INC. p:qhsd  c XOP[p;pl Add(op2,  1) 3 s u m ,  c ,  o v  n e x t
lnt-Overflow?  next
(opl 4= s u m  a l s o  Carry c c) ;

rThe following adds one to RTA.

I N C  RTA,RTA ; RTAtRTA+l

FASM allows this instruction to be abbreviated simply to:

L
INC RTA :RTA i s  b o t h  s o u r c e  a n d  d e s t i n a t i o n

Integer increment

-I
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D E C

Instruction: DEc.{ca,ti,~,~}

Class: XOP

Purpose: OPlcOP2-1

Side Effects: CARRY, INT-OVFL

Precision: OP 1 and OP2  have the same precision as the modifier.

Formal Description:

define DEC. p:qAsd ES X O P  rp; PI S u b t r a c t  (0~2,  1) + dif , c, ov n e x t
Int-Overflow?  next
(opl  G dif also Carry c cl ;

I The following subtracts one from RTA.

DEC RTA ;RTA+RTA-1

This instruction subtracts one from BAR and puts the result in FOO.

I
DEC FOO,BAR :FOOcBAR-1

5 52.1

Integer decrement

1
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TRANS

Instruction: TRANS. {Q,H,s,~)  . {Q,~~,s,D}
Class: XOP Integer transfer

, Purpose: OPltSIGN_EXTEND(OP2). Take the integer specified by OP2 and sign-extend it to
make it an integer of the precision of the first modifier. Store the result in OPl. More
precisely, OP2 is sign-extended if OPI is longer than OP2. It is unchanged if OP 1 and
OP2 are the same length (in which case TRANS behaves just like MOV). If OP1 is
shorter than OP2, then a “sign-compressed” copy of OP2 is stored in OPl, provided the
correct numerical value of OP2 can be expressed in the precision of OPl; if it cannot,
INT-OVFL is signalled.

Side Effects: INT-OVFL

Precision: OPl has the precision of the first modifier and OP2 has the precision of the second
modifier.

rThe second instruction illustrates the sign-extension of TRANS.
1

MOV. H. Q RTA, #-1 ; RTA=000777 (HW)

L
TRANS.H.Q RTA,#-1 ; RTA=777777 (HW)



Page 92 Instruction Descriptions

Instruction: NEG l {Q,HS,D)
Class: XOP

NEG

Purpose: OP Ittwo’J-complement(OP2)

Side Effects: CARRY, INT-OVFL

Precision: OP 1 and OP2 have the same precision as the modifier.

Formal Description:

define NEG. p:qhsd  D XOP rp: pl Subt rac t  (0, 0~2) + dif , c, ov n e x t

Int-Overflow?  next
(0~2 + dif a l so  C a r r y  + cl :

5 5.2.1

Integer negate

I The following negates the value in RTA.

NEG RTA ; RTAe-RTA

This piece of code jumps to TWOPOWER  if the non-negative single-word integer in HUNOZ
is an exact power of two (where zero is considered to be such a power).

NEG RTA,  HUNOZ : RTAc-HUNOZ
ANOCT RTA,HUNOZ ; RTAtone’s-complement  (RTA) AHUNOZ

JMPZ.EQL  RTA,TWOPOWER ; jump i f RTA now is zero

The BITCNT instruction can be used to do the same thing if zero is not to be considered a

Lpower of two. -J
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A B S

Instruction: ABS l (Q,H,S,D)
Class: XOP Integer absolute value

Purpose: OP l+abs(OP2)

Side Effects: CARRY, INT-OVFL

Precision: OP 1 and OP2 have the same precision as the modifier.

Formal Description:

d e f i n e  ABS. p: qhsd B X O P  [fi;pl i f  op2 2 0
t h e n  (opl e= op2  a l so  IntA?vfl e: 0)

e l s e  S u b t r a c t  (0, 0~2) + d i f ,  c ,  ov  next
Int~Overflow?  next
op2  e d i f

fi;

I The following takes the absolute value of RTB and puts it in RTA.

I

ABS RTA,RTB ; RTAt  1 RTB 1

1
_I
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MIN

§ 5.2.1

Instruction: MIN . (Q,~~,s,D}
Class: TOP Integer minimum.

Purpose: DESTtmin(S  l,S2). The smaller of the signed integers S 1 and S2 is placed in DEST.

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

def ine MIN.  p:qhsd  E T O P  [p: p; PI dest e (if Sl < s2 then Sl else s2 fi) ;

I The following sets RTA to 0 if RTA is negative.

I M I N  RTA,RTA,#0

1
-I
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MAX

Instruction: MAX l (Q,H,S,D)
Class: T O P Integer m a x i m u m

Purpose: DESTtmax(S  l,S2). The larger of the signed integers S 1 and S2 is placed in DEST.

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

def ine MAX.  p:qAsd  E TOPCp:p:pl d tes e (if Sl > s2 then S1 else s2 fi) ;

rThe following sets RTA to 100 if RTA is greater than 100.

L
MAX RTA,RTA,#cl00.>

1
-l
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5.2.2 Unsigned Integer

Unsigned integer instructions operate upon the unsigned integer data type (see Section 3.2).
The instructions perform unsigned multiplication and unsigned integer division. Instructions that
allow extended-precision operations (e.g., multiplying ..two  single-word integers and producing a
double-precision result) have an “L” as the last character of the opcode.

These instructions were designed to be used for arithmetic on numbers of arbitrarily great
precision (as exemplified by “bignums” in MacLISP).  Note that ADD and SUB work correctly for
bignum arithmetic.

Section 5.2.3 describes the possible side effects of unsigned-integer instructions (INT-OVFL
and INTZDIV).
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UMULT

Instruction: UMULT  l {Q,H,S,D)
Class: TOP Unsigned integer multiply

Purpose: Do an unsigned multiplication of Sl and S2 and place the low-order {quarter, half, single,
double]-word of the result in DEST.

Side Effects: INT-OVFL

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

rThe following instruction puts the low order QW of the unsigned square of 2’4 in RTA. This
18 10 1

value is the low-order nine bits of 2 -2 tl, that is, 001. Since the full result is greater than
2’-1, INT-OVFL is also set.

UMULT.Q  RTA,?777,?777

The only difference between UMULT and MULT is that UMULT sets INT-OVFL whenever
MULT does, and, in addition, whenever the high order bit of one of its operands is set, and the

L(unsigned) magnitude of the other operand is greater than unity. -J
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UMULTL

Instruction: UWTL l (Q,H,S)
Class: T O P Unsigned integer multiply long

Purpose: Do an unsigned multiplication of S 1 and S2 and place the result in DEST.

Precision: S 1 and S2 have the same precision as the modifier. DEST has a precision twice that of
the modifier.

rThe following instruction puts the unsigned square of 29-i in RTA. This value is
that is, 776001.

I
UMULTL.Q RTA,?777,?777

I
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Instruction: UDIV a
Class: TOP

{Q,W,D)
Unsigned integer divide

Purpose: The result of unsigned, integer division, Sl/SZ,  is placed in DEST.  The unsigned, integer
remainder, Sl YM S2, is placed in NEXT(DEST);.

Side Effects: INT-OVFL, INT,Z-DIV

Precision: S 1, S2, DEST, and NEXT(DEST) all have the same precision as the modifier.

rThe following sets RTA to the unsigned quotient-remainder of 2’-3 divided by twenty-two.
1

I UD1V.Q  RTA,?775,?26 : RTA=027003 1 two QWs)
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UDIVL

5 5.2.2

Instruction: UDIVL . (Q,H,S)
Class: TOP Unsigned integer divide long

Purpose: The result of unsigned, integer division, Sl/S2,  is placed in DEST. The unsigned, integer
remainder, Sl rent S2, is placed in NEXT(DEST);.

Side Effects: INT-OVFL, INTZDIV

Precision: S2, DEST, and NEXT(DEST)  all
precision twice that of the modifier.

have the same precision as the modifier. Sl has a

I
1 The following sets RTA to the unsigned quotient-remainder of 377377 (octal) divided by 777 1

(octal).

I
UDI VL. Q RTA; ?377377,?777 ;RTA-377776  ( t w o  QWs)

I
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5.2.3 Instructioll Side Effects

USER-STATUS records three types of side effects that can occur during the execution of an
integer instruction. (See Section 2.52 for a description of USER-STATUS.) They are: CARRY,
INT-OVFL  (integer overflow), and INTZDIV  (divide-by-zero). All of these bits in
USER-STATUS are not sticky, that is, if an instruction can set one of these bits, it must either set
or clear that bit.

5.2.3.1 CARRY

For each instruction shown, USERSTATUSJZARRY  is set if the following formula is true
with the indicated substitutions. CARRY is cleared if the formula is false. C-IN refers to the state
of CARRY at the beginning of the instruction (used in ADDC, SUBC, and SUBCV).

CARRY = (X 1~0  A X2<0)  v [(X 1~0 v X2<0) A (X1+X2+X3 2 O)]

In the following table, the result of the instruction equals X1+X2+X3;  “w” means
one%complement;  and “- 1” is the two’s-complement of 1.

Instruction x1 x2 x3

ADD
ADDC
SUB
SUBV
SUBC
SUBCV
INC
DEC
NEG
ABS

Sl
Sl
Sl
+I
Sl
41
1
-1
0
0

s2 0

s2 C - I N
42 1
s 2 1
42 C - I N
s2 C - I N
OP2 0 (i.e., OP2 = - 1)
OP2 0 (i.e., OP2 f 0)
NOP2 1 (i.e., OP2 = 0)
NOP2 1 (i.e., OP2 - 0)

Table 5-l
Conditions for setting CARRY

No other instructions change CARRY.

I For example, the following instruction sets CARRY.

L
I N C  RTA,#-1 ; RTAt0

1
--I
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5.2.3.2 XNT,OVFL

USER-STATUS. INT-OVFL is set when the result of an operation will not fit in the
destination, that is, if the destination precision is (QH,S,D),  then overflow occurs if the result is not
between -2 {8,17,35,71}  an,j 2 (8,17,35.7  I} - 1 inclusive. Instructions which set/clear INT-OVFL are:
ADD, ADDC, SUB, SUBV, SUBC, SUBCV, INC, IJMP, IJMPZ, IJMPA, ISKP, DEC, DJMP,
DJMPZ, DJMPA, DSKP, FIX, SHFA, SHFAV, MULT, QUO, QUOV, QU02, QUO2V, QUOL,
QUOLV, QUOZL,  QUO2LV,  DIV, DIVV, DIVL, DIVLV, NEG, ABS, TRANS, UMULT,
UDIV, and UDIVL. No other instructions change INT-OVFL. It should be noted that
INT.-OVFL is not set during the exponentiation in the QUO2 class of instructions. For these
instructions, unlimited precision is available for the 2’ section of the computation.

The condition for determining INT-OVFL is simplified when considering the addition and
subtraction instructions (ADDS, SUBS, INC, DEC, IJMPs, DJMPs, ISKP, and DSKP). With these
instructions, INT-OVFL is set when the carry into the high-order bit of the result is not the same
as the carry out of that bit.

W h e n  a n integer overflow occurs, the action taken depends on the
USER-STATUS. INT-OVFL-MODE bit. If equal to zero, a trap occurs and no value is stored.
If equal to one, all instructions (except SHFA to the left) store the low-order bits of the result.
SHFA to the left stores the correct sign followed by the low-order bits of the result.

rFor example, the following instruction sets INT-OVFL. 1

I NC RTA, #c377777,  (7777773 ;RTA+MINNUM: constant is MAXNUM

5.2.3.3 XNT,Z,DIV

USER-STATUS, INT-Z-DIV  is set when a divide-by-zero occurs in an integer division.
Instructions which set/clear INT-Z-DIV  are: QUO, QUOV, QUOL, QUOLV, REM, REMV,
REML, REMLV, MOD, MODV, MODL, MODLV, DIV, DIVV, DIVL, DIVLV, UDIV, UDIVL.
No other instructions change INTZDIV.

When an integer divide-by-zero occurs, the action taken depends on the
USER-.STATUS,INT_Z-DIV-MODE bit. If INTZDIV-MODE=0  then a trap occurs and no
value is stored in the destination. If INT-ZDIV-MODE4  then zero is stored and no trap occurs.

5.3 Floating Point

Floating-point instructions operate on the floating-point data type (see Section 3.3). The
instructions include addition, subtraction, multiplication, division, absolute value, negation,
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minimum, maximum, and scaling by powers of two. Reverse instructions are provided for the
non-commutative operations (subtraction, division, and scaling). These reverse instructions have a
“V” added to the end of the opcode mnemonic (e.g., FSC becomes FSCV). Extended-precision
operations are provided for multiplication and division (e.g., multiplying two single-word
floating-point numbers and producing a double-precision result). Multiplication (FMULTL)
produces a n extended-precision product and division (FDIVL, FDIVLV) utilizes an
extended-precision dividend.

All operations producing a floating-point result normalize that result. (See Section 3.3 for a
discussion of the floating-point format. This format does not permit the representation of
unnormalized numbers.)

5.3.1  Rounding Modes

During floating-point operations, rounding of the result may be necessary. With the
exception of the FIX instruction, the rounding mode used is specified by
USERSTATUSRND-MODE,  as described below. The FIX instruction allows the explicit
specification of a rounding-mode or the use of RND-MODE.

Let F be the magnitude of the difference between a true floating-point result, R, and the
greatest representable floating-point number N which is less than or equal to R, expressed as a
fraction of the least-significant representable bit of R.

The bits of RND-MODE have the following functions (reversals of rounding direction
accumulate):

RND-MODE<O>

s RND-MODE< l>

RND-MODE&> 0: Round toward negative infinity.
1: Round toward positive infinity.

RND-MODE<S> 0: No effect.
1: If and only if N’s mantissa’s least significant bit is a one, reverse the
rounding direction.

RND_MODE<4>

0: Round as specified by RND_MODE<I:4>.
1: Reserved.

0: If F * 0, round as specified by RND_MODE<2:4>;  otherwise deliver R
exactly.
1: If F = l/2 then round as specified by RND_MODE<2:4>; otherwise round
to the floating-point number nearest to R.

0: No effect.
1: If and only if R is negative, reverse the rounding direction.
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Various combinations of the above bits provide a variety of rounding modes. Some of the
more common modes are:

RND MODE (octal)

0
1
4
5

12
14
15

Function Modifier for FIX

Floor FL
Diminished Magnitude DM
Ceiling CL
Augmented Magnitude
Half Rounds Toward Positive HP
PDP-10 FIXR Rounding
App. PDP-10 FLTR Rounding

Table 5-2
Useful Rounding Modes

--_
5.3.2 Instruction Side Effects

USER-STATUS records three types of side effects that can occur during the execution of a
floating-point instruction. (See Section 2.5,2  for a description of USER-STATUS.) They are:
FLT-OVFL (floating overflow), FLT-UNFL  (floating underflow), and FLTJAN (floating
undefined). All of these bits in USER-STATUS are not &Ivy, that is, if an instruction can set one
of these bits, it must either set or clear that bit.

5.3.2.1 FLT,OVFL and FLT,UNFL

USER-STATUS.FLT-OVFL is set when a floating-point instruction produces a result with
an exponent that is too large to be represented in the EXP-field of the destination (i.e., OVF or
MOVF). (See Section 3.3 for a description of the floating-point data type.) In a similar way,
l?LT-UNFL is set when a floating-point instuction’s result has a negative exponent whose
magnitude is too large to be represented in the destination’s EXP (i.e., UNF or MUNF). Floating
underflows and overflows generally occur in two situations. The first situation is that the result of
an op.eration (e.g., FMULT) is out of range of the EXP-field. The second situation is when the
result ‘will fit, but the post-normalization of that result causes the exponent not to fit.

All instructions that produce floating-point results set/reset FLT-OVFL and FLTJJNFL.  It
should be noted that FSC and FSCV do not set either overflow or underflow during their
exponentiation calculations. In these two instructions, the 2’ part of the calculation is done with
unlimited precision.

When a floating underflow (overflow) occurs, the action taken depends on the
USER-STATUS. FLTJJNFL-MODE  (USER-STATUS, FLT-OVFL-MODE)  field.
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FLT UNFL MODE<O:l> Result

0
1
2

Trap and do not store any value in the result
Store the infinitesimal with the correct sign (UNF or MUNF)
Store the floating-point number with the correct sign and

mantissa, but with a wrapped-around exponent
3 Not defined

Table 5-3
USER-STATUS-UNFL-MODE

FLT,OVFL,MODE<O:  1> Result

0 Trap and do not store any value in the result
Store the infinity with the correct sign (OVF or MOVF)
Store the floating-point number with the correct sign and

mantissa, but with a wrapped-around exponent
Not defined

Table 5-4
USER-STATUS,OVFL-MODE

See Section 5.3.2.3 for a discussion of how OVF, MOVF, UNF, and MUNF propagate in
floating-point instructions (when they do not trap).

s

I

The first instruction sets FLT-OVFL,  the second sets FLTUNFL.

FSUBV. H RTA, #0, #c400000>

I

FSC. H RTA, #c004000>,  H-1

I

5.3.2.2 FLT,NAN

USER-STATUS, FLTNAN is set when a NAN is the result of a floating-point operation.
All instructions that require floating-point arguments and produce floating-point results set/reset
FLTJWA N.
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When an undefined floating-point number (NAN) is produced the action taken depends on
the USERSTATUS.FLTNAN-MODE  bit. If FLTNAN-MODE=0 then a trap occurs and no
value is stored in the destination. If FLTNAN-MODE=1  then NAN is stored and no trap occurs.

See Section 5.3.2.3  for a discussion of how NAN propagates in floating-point instructions
(when it does not trap).

5.3.2.3 Exception Propagation

When the traps are disabled (as explained in the previous sections) the exception values
(OVF, MOVF, UNF, MUNF, NAN) can propagate through floating-point instructions. The
diagrams below describe how the exceptions propagate through addition, multiplication, and
division. Floating-point subtraction behaves with respect to exception propagation as if FNEG
were applied to the second argument, and then FADD applied,

FMIN and FMAX propagate the exceptions as regular floating-point numbers (i.e.,
MOVF+X<MUNF<OdJNF<X<OVF),  but the result is NAN if either argument is NAN.
FNEG(MOVF)=OVF,  FNEG(OVF)=MOVF, FNEG(MUNF)=UNF,  and FNEG(UNF)=MUNF.
Similarly, FABS(MOVF)=OVF and FABS(MUNF)=UNF. FTRANS acts as an identity function
for all five exceptions. FIX of any special floating-point symbol produces an intermediate NAN
result  and stores the result on the basis of FLTNAN-MODE. The exponentiation portion of the
FSC and FSCV is effectively done in infinite precision and will not produce an exception; the
subsequent multiplication follows the rules given below.

In the following tables, X and Y are assumed to be any positive floating-point numbers,
excluding the special floating-point symbols 0, UNF, and OVF.

Addition (AtB)

e A B- MOVF -Y MUNF 0 UNF Y OVF NAN

J
MOVF MOVF MOVF MOVF MOVF MOVF MOVF NAN NAN
- X MOVF -X-Y -x - X - X -XtY OVF NAN
MUNF MOVF -Y MUNF MUNF NAN Y OVF NAN
0 MOVF -Y MUNF 0 UNF Y OVF NAN
UNF MOVF -Y NAN UNF UNF Y OVF NAN
X MOVF X-Y X X X XtY OVF NAN
OVF NAN OVF OVF OVF OVF OVF OVF NAN
NAN NAN NAN NAN NAN NAN NAN NAN NAN

Figure 5-l
Floating-point Exception Propagation (t)
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Mul tip1 ication (A*B)

A B- MOVF -Y MUNF 0 UNF Y OVF NAN

J
MOVF OVF OVF NAN 0 NAN MOVF MOVF NAN
- X OVF X*Y UNF 0 MUNF -X*Y MOVF NAN
MUNF NAN UNF UNF 0 MUNF MUNF NAN NAN
0 0 0 0 B 0 0 0 NAN
UNF NAN MUNF MUNF 0 UNF UNF NAN NAN
X MOVF -X*Y MUNF 0 UNF X*Y OVF NAN
OVF MOVF MOVF NAN 0 NAN OVF OVF NAN
NAN NAN NAN NAN NAN NAN NAN NAN NAN

Figure 5-2
Floating-point Exception Propagation (N)

D i v i s i o n  ( A / B )

A B- MOVF -Y MUNF 0 UNF Y OVF NAN

4
MOVF NAN NAN NAN
- X UNF MUNF NAN
MUNF UNF MUNF NAN
0 0 0 NAN
UNF MUNF UNF NAN
X MUNF UNF NAN
OVF NAN NAN NAN
NAN NAN NAN NAN

OVF
X / Y
UNF
0
MUNF
- X / Y
MOVF
NAN

OVF NAN
OVF NAN
NAN NAN
0 NAN
NAN NAN
MOVF NAN
MOVF NAN
NAN NAN

MOVF
MOVF
NAN

0
NAN
OVF
OVF
NAN

MOVF
- X / Y
MUNF

0
UNF
X / Y
OVF
NAN

Page 107

Figure 5-3
Floating-point Exception Propagation (I)
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FADD

fj 5.3.2.3

Instruction: FADD . {H,S,D)
Class: TOP Floating-point add

Purpose: The floating-point sum, Sl plus S2, is rounded according to RND-MODE  and stored in
DEST.

Side Effects: FLT-OVFL, FLT-UNFL,  FLTNAN

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

rTo add 1.0 to RTA either of the first two instructions could be used. Note that FASM provides1
an interpretation of floating-point constants. The third instruction doubles RTA. Alternatively,
FMULT, FSC, or FDIV might be used.

FADD RTA, #c280400,,  0>
FADD RTA,#cl.B>

I

FADD RTA,RTA :RTA+Z*RTA;  F S C  RTA,#l  i s  p e r h a p s  c h e a p e r
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FSUB
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Instruction: FsuB . (H,S,D)
Cfass: T O P Floating-point subtract

Purpose: The floating-point difference, Sl minus S2, is rounded according to RND-MODE and
stored in DEST.

Side Effects: FLT,OVFL, FLTUNFL,  FLTNAN

Precision: S1, S2, and DEST all have the precision specified by the modifier.

rThe following subtracts a floating point value of one from RTA. 1
I

FSUB RTAJcLBD ;RTAcRTA-1.0
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FSUBV

0 5.3.2.3

Instruction: FSUBV. {H,S,D)
Class: TOP Floating-point subtract reverse

Purpose: The floating-point difference, S2 minus Sl, is rounded according to RND-MODE and
stored in DEST.

Side Effects: FLT-OVFL, FLT-UNFL,  FLTNAN

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

I The following subtracts RTA from a floating point value of one.

L
FSUBV RTA,#cl.B> ;RTAcl.B-RTA

1
-I
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FMULT

Instruction: FMULT  l {W,D}
Class: TOP Floating-point multiply

Purpose: The floating-point product, Sl times S2, is rounded according to RND-MODE  and stored
in DEST.

Side Effects: FLT-OVFL, FLTUNFL,  FLTNAN

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

rThe following instruction doubles the value in RTA. Alternately, FSC, FADD, or FDIV might1
be used for this purpose.

I FMULT  RTA,#c2.0> ; RTAtRTAkZ.  0
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FMULTL

5 5.3.2.3

Instruction: FMWII. g (H,S}
Class: TOP Floating-point multiply long

Purpose: The floating-point product, S 1 times S2, is rounded according to RND,MODE and stored
in DEST. Note that the long result format will have more than twice as many MANT
bits as either operand.

Side Effects: FLT-OVFL, FLTUNFL, FLTNAN. (These can occur only if one of the
floating-point exception values occurs as an argument. If both arguments are
ordinary floating-point numbers, the result cannot overflow or underflow, because the
long result format has a larger EXP field than the operands do.)

Precision: S 1 and S2 have the same precision as the modifier. DEST has precision twice that of
the modifier.

rThe following instruction will give RTA ail significant bits of the square of the value in X1
(unless overflow or underflow occurs).

I
F M U L T L  RTA,X,X ;RTA+XtZ
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FDIV
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Instruction: FDIV . {H,S,D)
Class: T O P Floating-point divide

Purpose: The floating-point quotient, Sl divided by S2, is rounded according to RND,MODE and
stored in DEST.

Side Effects: FLT-OVFL, FLTJJNFL, FLTNAN

Precision: S 1, S2, and DEST ail have the precision specified by the modifier.

rThe following instruction doubles the value in RTA. Alternatively, FADD, FMULT or FSC
might be used.

1
I FDIV RTAJc200000,  ,0> ; RTAcRTA/B, 5=2*RTA
I
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FDIVV

Instruction: FDWV  l {H,S,D)
Class: TOP Floating-point divide reverse

Purpose: The floating-point quotient, S2 divided by Sl, is rounded according to RND-MODE and
stored in DEST.

Side Effects: FLT-OVFL, FLTUNFL,  FLTNAN

Precision: S 1, S2, and DEST ail have the precision specified by the modifier.

I The following code might be used to set RTA to its reciprocal.

L
F O I V V  RTA,RTA,#cl,0>

1
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FDIVL
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Instruction: FDIVL . (H,S)
Class: TOP Floating-point divide long

Purpose: The floating-point quotient, Sl divided by S2, is rounded according to RND-MODE and
stored in DEST.

Side Effects: FLT-OVFL, FLTUNFL,  FLTNAN

Precision: S2 and DEST have the same precision as the modifier. $1 has precision twice that of
the modifier.

rThe following uses a long 1.0 to reciprocate RTA. Note that this is NOT the same constant as1
would be used for FDIV.

I
FD I VL RTA, #c200100000000  +, $2, RTA
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FDIVLV

Instruction: FDIVLV . {H,S)
Class: TOP Floating-point divide long reverse

Purpose: The floating-point quotient, S2 divided by Sl, is rounded according to RND-MODE and
stored in DEST.

Side Effects: FLT-OVFL, FLTJJNFL, FLTNAN

Precision: Sl and DEST have the same precision as the modifier. S2 has precision twice that of
the modifier.

rThe following uses a SW 1.0 to reciprocate RTA. Note that this is NOT the same constant 1as
would be used for FD1V.H.

I
FD1VLV.H RTAJc200400,  ,0>
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Instruction: FSC . (H,S,D)
Class: TOP Floating-point scale

Purpose: The floating-point product, Sl times Zs2, is rounded according to RND-MODE and
stored in DEST. S 1 is a floating-point number and S2 is a signed integer.

Side Effects: FLT-OVFL, FLTJJNFL, FLTJAN.  (FLTBVFL  and FLT-UNFL are not set
during the Zs2 portion of the operation. This exponentiation is done with unlimited
precision.)

Precision: S 1 and DEST have the same precision as the modifier. S2 is a single-word.

‘

I The following instruction may be used to double the value in RTA. Alternatively, FADD,
FMULT, or FDIV might be used. I

I
FSC RTA, #1 ;RTA~~TAHL??U~~~RTA



Page 118 Xnstruction  Descriptions

FSCV

5 5.3.2.3

Instruction: Fscv . (H,s,D)
Class: TOP Floating-point scale reverse

Purpose: The floating-point product, S2 times 2’1, is rounded according to RND-MODE and
stored in DEST. S2 is a floating-point number and Sl is a signed integer.

Side Effects: FLT-OVFL, FLTUNFL,  FLTNAN. (FLT-OVFL and FLTUNFL are not set
during the 2’1 portion of the operation. This exponentiation is done with unlimited
precision.)

Precision: S2 and DEST have the same precision as the modifier. S 1 is a single-word.

rThe following two instructions set RTA to the average of X and Y. 1
FADD RTA,X;-Y

I

FSCV RTA,#-1,RTA
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FIX

Instruction: F I X. (FL,CL,DM,HP,US).  @,H,s,D).  p,s,~}
Class: XOP Fix floating-point number

Purpose: Convert the floating-point number specified by OP2 into an integer and store it in OPl.
Use the rounding mode specified by the first modifier.

Side Effects: INT-OVFL

Precision: OPl has the precision of the second modifier. OP2 has the precision of the third
modifier.

rThe following converts a floating point value in RTA into an integer. The exact result depends
on the value and the rounding mode specified in USER-STATUSRND-MODE.

1

I
FIXJJS-RTA,RTA
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FLOAT

Instruction: FLOAT.  {H,s,D)  . {Q,~~,s,D}
Class: XOP Float fixed-point number

Purpose: Convert the integer specified by OP2 into a floating-point number and store it in OP 1.

Side Effects: FLT-OVFL.  (This can occur only in the cases of FL0AT.H.S  and FL0AT.H.D.)

Precision: OP 1 has the precision of the first modifier. OP2 has the precision of the second
modifier.

rThe following loads RTA with the floating point value 1.0. 1
I

FLOAT RTA,#l ;RTA-200400,,0  (SW)
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Instruction: FTRANS . (H,S,D}  .
Class: XOP

FTRANS

{HAD)
Floating-point transfer

Purpose: Take the floating-point number specified by OP2 and make it a floating-point number of
the precision of the first modifier. Store the result in OPl.

Side Effects: FLT-OVFL, FLTUNFL,  FLTNAN. If OP2 has no greater precision than OP 1,
then these can occur only if OP2 is one of the floating-point exception values.

Precision: OP2 has the precision of the second modifier. OPl has the precision of the first
modifier.

rThe following illustrates the precision alteration possible with FTRANS. The exact values1
produced will, in general, depend on the rounding mode defined in the
USERSTATUSRND-MODE.

L
FTRANS3.D  RTA~k200100000000  - 0> ;RTA=200400,  ,0=1.0
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FNEG

Instruction: FNEG . (H,S,D)
Class: XOP

5 5.3.2.3

Floating-point negate

Purpose: Take the floating-point negation of OP2 and store it in OPl. The primary difference
between NEC and FNEC is that FNEC properly propagates the floating-point exception
values. They also have different side effects.

Side Effects: FLT-OVFL, FLT-UNFL,  FLTNAN

Precision: OP 1 and OP2 have the same precision as the modifier.

I These examples show how floating-point exceptions are propagated by FNEC.

FNEG.H RTA,#c000001> ; RTAcMUNF,  s i gna I FLTJJNFL
FNEG,H  RTA,#c400001> ; RTAcOVF, s i gna I FLT-OVFL
FNEG . H RTA,  k400000~ ; RTAcNAN, s i gna I FLT-NAN

1

-I
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Instruction: FABS  . {HAD)
Class: XOP Floating-point absolute value

Purpose: Take the floating-point absolute value of OP2 and store it in OPl. The primary
difference between ABS and FABS is that FABS properly propagates the floating-point
exception values. They also have different

Precision: OP 1 and OP2 have the same precision as

Side Effects: FLT-OVFL, FLTUNFL,  FLTNAN

side effects.

the modifier.

1 These examples show how the uses of FABS and ABS on floating-point numbers differ. 1

ABS. H RTA, #c-l> ;RTAcUNF,  n o  s i d e  e f f e c t s

FABS.H RTA,#c-l> ;RTA+UNF,  s i g n a l  FLTJJNFL
ABS. H RTA, tic3777772 ;RTAcOVF,  n o  s i d e  e f f e c t s

FABS. H RTA, #c377777> : RTAcOVF, s i gna I FLT-OVFL
ABS. H RTA , #c-400000~ ;RTA+NAN,  s i g n a l  INT-OVFL
FA6S.H RTA,#c-4000003 ; RTAtNAN,  s i g n a  I FLT-NAN

-J
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FMIN

5 5.3.2.3

Instruction: FMJN  l (HS,D)
Class: TOP Floating-point minimum

Purpose: DESTcmin(Sl,SZ).  The smaller of the floating-point numbers Sl and S2 is placed in
DEST. The primary difference between MIN and FMIN is that FMIN properly
propagates th fl te oa ing-point exception values.

Precision: Sl, S2, and DEST all have the precision specified by the modifier.

I This instruction sets RTA to the smaller of X and 43.0. 1
I

FMIN RTA,X,#c43.0>
I
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FMAX

Inst ruct ion:  FMAX l (%S,D)
Class: T O P Floating-point maximum

Purpose: DEST+max(Sl,SZ).  The larger of the floating-point numbers Sl and S2 is placed in
DEST.  The primary difference between MAX and FMAX is that FMAX properly
propagates the floating-point exception values.

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

rThis sequence of instructions takes the number FOO and “clips” it to be within the window
LO.0,  1 .O].

1

I

FMAX RTA,F00,?0.0
FMlN  FOO,RTA,?1.0

; larger of FOO and 0.0 to R T A
;smaller of t h a t  a n d  1.0 t o  F D O

-I
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5.4 Move

Move instructions are used to move operands and/or addresses of operands to memory
locations and/or registers. Many words may be moved by the single instructions MOVMQ and
MOVMS. Single registers can be saved and loaded with a single instruction using SLR or
SLRADR. Virtual or physical addresses can be lbaded using MOVADR or MOVPHY. The
precisions  associated with each move instruction are described in the instruction descriptions.
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MOV

Instruction: MOV l @,H,s,D}  l (Q,H,s,D)
Class: XOP Logical move

Purpose: OPlcOP2. If OP2 has greater precision than OPl, the low-order bits of OP2 are used.
If OP2 has smaller precision than OPl, it is zero-extended to the left. This is best
thought of as a “logical” or “unsigned” move operation. No condition bits (e.g., carry or
integer-overflow) are affected. Note that the TRANS instruction can be used to perform
sign-extended or truncated integer moves, and FTRANS to perform moves of
floating-point numbers.

Precision: The two modifiers specify the precisions  of OP1 and OP2 respectively.

Formal Description:

define MOV. PI: qhsd,  p2: qhsd TV XOP rp1;  p21 opl c= l o w  (PI, z e r o - e x t e n d ( o p 2 ,  72) 1 ;

rThe following copies the low-order QW of RTA into the high-order QW. 1
I M0V.Q.Q  RTA,c23>
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MOVMQ

Instruction: MOVMQ . ( 2 . . 32,64,128)
Class: XOP Move many quarter-words

Purpose: Moves the number of quarter-words, specified by the modifier, from the locations starting
at ADDRESS(OP2) to the locations starting at ADDRESS(OP1).  If the source and
destination regions overlap, the result is undefined. If either OPl or OP2 is an
immediate constant, a hard trap will occur.

Precision: This instruction deals with quarter-words for both source and destination precisions.

I The following copies the three high-order QWs from RTA into RTB.

I MOVRQ.  3 RTB, RTA

1
-I
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Instruction: MOVMS.(2..32)
Class: XOP Move many single-words

Purpose: Moves the number of single-words, specified by the modifer, from the locations starting at
ADDRESS(OP2) to the locations starting at ADDRESS(OP1). If the source and
destination regions overlap, the result is undefined. If either OPl or OP2 is an
immediate constant, a hard trap will occur.

Precision: This instruction deals with single-words for both source and destination precisions.

rThe following saves all the registers from RTA on in a block starting at SAVEBK. 1
L

ROVRS.28 SAVEBK,RTA

-I
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g 5.4

Instruction: Exw . @,H,s,D}
Class: XOP Exchange words

Purpose: Exchange the values OP1  and OP2. If either OP 1 or OP2 is an immediate constant, a
hard trap will occur.

Precision: OP 1 and OP2 each have the precision specified by the modifier.

Formal Description:

define EXCH,  p: qhsd E XOP Lp, RW;P, RWI l e t  t e m p  - op2
t h e n  op2 c= o p l  n e x t  o p l  * temp;

I

I The following swaps RTA and RTB.

I
EXCH RTA, RTB

1
-.I
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Instruction: SLR l { 0 .. 31 >
Class: XOP

SLR

Page 131

Save and load register

Purpose: OPl is replaced by the contents of the register named by the modifier. The contents of
the register is then replaced by OP2,

Precision: A 11 operands involved are single-words.

Formal Description:

define SLR,  ?I: n&o31  E X O P  IS;SI le t  temp - R[nl
t h e n  REnl t op2 next opl e: t e m p ;

rThe first instruction moves RTA into RTB and zeros RTA. The second and third instructions1
illustrate the results when one of the operands is the register specified in the instruction. The
fourth illustrates the result when the operands are the same.

SLR, 4 RTB, #0 ; RTBtRTA,  RTA+-0
SLR. 4 RTA, FOO :al ternate  NOP
S L R . 4  FOO,RTA talternate ROV FOO,RTA
SLR.4 FOO,FOO ;alternate EXCH RTA,FOO
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Instruction: S L R A D R  .  ( 0 . . 31 >

Class: XOP Save and load register with address

Purpose: OPl is replaced by the contents of the register named by the modifier. The contents of
the register is then replaced by ADDRESS(OP2).

Precision: A 11 operands involved are single-words.

Formal Description:

define S L R A D R ,  II: nOto a XOP IS; S,Al let temp = R EnI

then  Rlnl t Address (0~2) next opl c= t e m p t

rThe first instruction moves RTA into RTB and puts ADDRESS(FO0)  in RTA. The second1
and third instructions-illustrate the results when one of the operands is the register specified in
the instruction. The fourth illustrates the result when the operands are the same.

L

SLRAOR.4 RTB,FOO ; RTBtRTA, RTAtAODRESS (FOO)
SLRAOR. 4 RTA, FOO ;al ternate  NOP

SLRADR.4  FOO,RTA ralternate RDV FOOJITA;  ROVAOR RTA,RTA
SLRADR.4 FOO,FOO ;alternate  ROV FOO,RTA;  ROVADR RTA,FOO

-I
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MOVADR

Inst ruct ion:  MOVADR
Class: XOP Move address

Purpose: OPlcADDRESS(OP2).  If OP2 is an immediate constant, a hard trap will occur.

Precision: OP 1 is a single-word.

Formal Description:

define MOVADR P XOP[S;S,Al opl e: Address  (0~2) ;

rThe first instruction loads RTA with the address of the operand FOO. 1

MOVADR RTA,FOO ;RTAeADORESS(FOO)

L
MOVADR--RTA,RTA ;RTAc20  octal (RTA is register 4, a t  address  4*4-20)

-l
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MOVPHY

Instruction: MOVPW
Class: XOP Move physical address

Purpose: OPltPHYSICAL_ADDRESS(OPZ).  If OP2 is an immediate constant, a hard trap will
occur. If ADDRESS(OP2) is in the range 0 . . 123  then the physical address of the
corresponding shadow memory location will be used. See Section 2.4.1 for a discussion of
shadow memory.

Restrictions: Illegal in user mode.

Precision: OPl is a single-word.

Formal Description:

define MOVPHY 6 XOP-IS; S, PA3 opl  e: Phys ica l -Address  (0~2) :

I The following loads RTA with the phyical address of FOO. 1
MOVPHY RTA,FOO ;RTAtPHYSICAL-ADDRESS(FO0)
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5.5 Flag

Flag instructions produce results that are of the flag data type. The flag data type is discussed
in Section 3.8. The flag results are always single-words. A flag is either all zeros or all ones. All
zeros means true. All ones means false.

CMPSF compares two words according to a specified condition. It returns true if the
condition was satisfied and false if it was not. BNDSF checks if its argument is within a given
bounds and returns the appropriate flag.
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CMPSF

Instruction: CMPSF . {GT~~,EQL,GEQ,Lss,NEQ,LEQ}  . {Q,H,s,D)
Class: TOP Compare and set flag

Purpose: DESTcS  1 condition S2, where condition is the first modifier.

Precision: S 1 and S2 have the same precision as the modifier. DEST is a single-word.

Formal Description:

define CMPSF. rel: acond.  p: qhsd E TOP [S; p; PI dest e (if rel(Sl,  s2) then -1 else 0 fi) ;

rLet X, Y, and 2 be single-words, with Y=NEXT(X). The following code implements setting1
RTA to X if Z>O and to Y otherwise. It uses indexing rather than a conditional jump or skip.
Such use of indexing can often make more effective use of instruction pipelining than jumping
or skipping.

CMPSF.GEQ  RTA,Z,#0
MOV RTA, cY> (RTA) ;indexing  w i t h  f l a g  r e s u l t

CMPSF.LSS can be used to produce an extended-sign word for a number. TRANS or
FTRANS can be used to sign-extend a number to one of the four standard precisions,  but this
trick is useful in dealing with numbers of very large precision.

CMPSF,LSS RTA,NUM,#B ;al I b i ts  of  R T A  g e t  t h e  s i g n  b i t  o f  N U M

The effect of CMPSF.lcond  can be obtained by an AND or ANDCT followed by a
CMPSF.EQL or CMPSF.NEQ

e

ANDCT RTA,FOO,BAR
CMPSF. EQL RTA ,170

;this behaves  as  wou ld  the  f i c t i ona l

; i n s t r u c t i o n  CMPSF,NDN RTA,FOO,BAR
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BNDSF

Instruction: BNDSF . (B,MIN,Ml  ,O,l>  . (Q,H,S,D)
Class: TOP Bounds-check and set flag

Purpose: The first modifier determines if S2 is compared against a constant and Sl, or against Sl
and NEXT(S 1). If the first modifier is B then if S ~IS!%NEXT(S~)  then DESTcTRUE
else DESTtFA  LSE. If the first modifier is one of MIN, M 1, 0, and 1 then if
constantsS2sS  1 then DESTtTRUE  else DESTcFALSE.  Constant=- 1 if the first modifier
is M 1. Comtant=O  if the first modifier is 0. Constant4 if the first modifier is 1. If the
first modifier is MIN then constant is the negative number with the greatest magnitude
for the precision specified by the second modifier.

Precision: Sl and S2 have the same precision as the second modifier. DEST is a single-word. If
NEXT(S l), 0, 1, -1, or MIN is used it also has the same precision as the second modifier.

rThe following two instructions are alternate implementations for setting RTA to -1 if X contains
1

the ASCII representation of a digit, and to 0 otherwise. In the first instruction FASM places the
string “09”  on a data page automatically.

BNDSF.B.Q  RTA, E”09”l  ,X
BNDSF.04 RTA,#ll,#c-“B”>(X) ;X must be a register

-I
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5.6 Boolean

Boolean instructions operate upon the boolean data type (see Section 3.1). All boolean
instructions can operate on any of the four data precisions  (QW,HW,SW,DW). Both operands must
be of the same precision. The result of a boolean operation has the same precision as the operands.
Note that none of the condition bits (e.g., carry or integer-overflow) can be set by boolean
instructions.

The three-operand boolean instructions ANDTC, ANDCT, ORTC, and ORCT are not
symmetric in their use of S 1 and S2. Nevertheless, instructions named ANDTCV, ANDCTV,
ORTCV, and ORCTV are not provided. This is because the reverse form of ANDTC is provided
by ANDCT, of ANDCT by ANDTC, of ORTC by ORCT, and of ORCT by ORTC.
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Instruction: N O T  . {Q,H,s,D)
Class: XOP

NOT

Purpose: OP 1 tone’s-complement(oP2)

Precision: OP 1 and OP2 have the same precision as the modifier,

Formal Description:

define NOT, p: qhsd E XOP rp;p1  o p l  e 1 o p 2 ;

I The following is an alternate to NEG RTA.

L
NOT RTA,#c-MRTA) ;RTA+-RTA

Page 139

Logical (bit-wise) NOT

1
-A
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AND

5 5.6

Instruction: AND l {QH,W)
Class: TOP Logical (bit-wise) AND

Purpose: DESTtS  lr\S2

Precision: S 1, S2, and DEST ali have the precision specified by the modifier.

Formal Description:

def ine AND.  P:qhsd  E T O P  @p;pl  d e s t  (: Sl A s2;

rThe following instruction illustrates the effect of all possible combinations of bits in the1.
operands.

I
AND.Q RTA,#3,#5 ; RTA=1

-.I

’ I

:.
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ANDTC

Instruction: ANDTC . {Q,H,S,D)
Class: TOP Logical (bit-wise) A ND truelcomplemen  t

Purpose: DESTtS  l Aone’s-complement(S2). Note that the “TC” in ANDTC means
“True-Complement” and refers to the fact that Sl and onekomplement(S2)  respectively
are operands to the AND function, The reverse form of ANDTC is ANDCT, not

ANDTCV.

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

d e f i n e  ANDTC,p:qhsd  E T O P  rp;p;pI  d e s t  e: Sl A (v s2) ;

rThe following instruction illustrates the effect of all possible combinations of bits in the1
operands.

ANDTC.Q.  RTA,#3,#5 ; RTA=Z

Suppose that MASK is a mask whose one-bits select certain (possibly non-contiguous!) bits of
WORD. These bits are to be regarded as a “field”, and the contents of that field decremented as
an integer “in place” in WORD, without affecting non-selected bits of WORD. This can be
done as follows.

s

L

AND RTA,WORD,HASK
DEC RTA
AND RTA,HASK
ANDTC WORD,HASK
OR WORD, RTA

;RTAc-WORD  w i t h  n o n - s e l e c t e d  b i t s  z e r o e d

;zeroed  b i t s  p ropaga te  the  bo r row

;mask  o u t  n o n - s e l e c t e d  b i t s

:mask  out S E L E C T E D  bits in W O R D
;merge t h e  t w o  r e s u l t s

-I
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ANDCT

Instruction: ANDCT  l {Q,H,S,D)
Class: TOP Logical (bit-wise) AND complement/true

Purpose: DESTeone’s-complement(S  l)r\S2. Note that the “CT” in ANDCT means
“Complement-True” and refers to the fact that one%complement(S1)  and S2 respectively
are operands to the AND function. The reverse form of ANDCT is ANDTC, not
ANDCTV.

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define ANDCT. p: qhsd E T O P  Ifi; #I; PI dest * I- Sl)  A s2;

rThe following instruction illustrates the effect of all possible combinations of bits in the1
operands.

I
ANDCTJI  RTA,#3,#5 ; RTA=4
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OR
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Instruction: OR . (Q,H,S,D)
Class: TOP Logical (bit-wise) OR

Purpose: DEST+S  lvS2

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define OR. p:qhsd  I TOPIp;P:pl  dest * S1 v s2;

rThe following instruction illustrates the effect of all possible combinations of bits in
operands.

I
0R.Q RTA,#3,#5 ; RTA=7
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ORTC

Instruction: 013Tc . (Q,~I,s,D)
Class: TOP Logical (bit-wise) OR true/complement

Purpose: DESTcS  hone&complement(S2). Note that the “TC” in ORTC means
“True-Complement” and refers to the fact that Sl and on&complement(S2)  respectively
are operands to the OR function. The reverse form of ORTC is ORCT, not ORTCV.

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define ORTC.  p: qhsd = TOP [p; p; PI dest (: Sl v (7 ~2) ;

rThe following instruction illustrates the effect of all possible combinations of bits in the1
operands.

0RTC.Q  RTA,#3,#5 ; RTA=773

Suppose that MASK is a mask whose one-bits select certain (possibly non-contiguous!) bits of
WORD. These bits are to be regarded as a “field”, and the contents of that field incremented as
an integer “in place” in WORD, without affecting non-selected bits of WORD. This can be
done as follows.

ORTC RTA,WORO,NASK ;RTAtWORD  w i t h  n o n - s e l e c t e d  b i t s  s e t  t o  o n e

INC RTA tone b i ts p r o p a g a t e  t h e  c a r r y
AND RTA,  MASK ;mask  o u t  n o n - s e l e c t e d  b i t s

ANOTC WORD, MASK ;mask  out S E L E C T E O  bits in W O R D

OR WORD,RTA ;merge  t h e  t w o  r e s u l t s
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ORCT

Instruction: ORCT . @,H,s,D}
Class: TOP Logical (bit-wise) OR complement/true

Purpose: DESTtone’s-complement(S  l)r\S2. Note that the “CT” in ORCT means
“Complement-True” and refers to the fact that one’s-complement(S1)  and S2 respectively
are operands to the OR function. The reverse form of ORCT is ORTC, not ORCTV.

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define ORCT, p: qhsd  E T O P  ~p:p:pl  d e s t  c= I- Sl) v s2;

rThe following instruction illustrates the effect of all possible combinations of bits in the
operands.

1

I
0RCT.Q RTA,#3,#5 ; RTA=775
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NAND

fj 5.6

Instruction: NAND l {Q,H,S,D)
Class: TOP Logical (bit-wise) NAND (NOT of AND)

Purpose: DESTtone’s-complement@  l~S2)

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define NAND. p: qhsd e T O P  ~P;p:pl d e s t  c - (Sl A ~2) ;

rThe following instruction Ilkstrates  the effect of atI possible  combinations of bits in the1
operands.

NAN0.Q  RTA#,#5 ; RTA-776

-I
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NOR
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Instruction: NOR . {Q,~~,s,D}
Class: TOP Logical (bit-wise) NOR (NOT of OR)

Purpose: DESTeone’s-complement(S  lvS2)

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define NOR. p:qbsd  E T O P  [p;p:pl dest * - (S1 v ~2) ;

rThe following instruction illustrates the effect of all possible combinations of bits in the1
operands.

I
N0R.Q RTA,#3,#5 ; RTA=770

-.I
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XOR

Instruction: x013 . {Q,H,s,D}
Class: TOP Logical (bit-wise) exclusive OR

Purpose: DESTt(S l/\one’J-comprement(S2))  v (one?-completneni(S  l)~S2)

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define XOR+qhsd  E TOPIp:p:pl  d e s t  * Sl @ s2;

rThe following instruction illustrates the effect of all possible combinations of bits in the1
operands.

XOR. Q RTA, #3; #5 ; FITA=

The following code exchanges the two words QUUX  and ZTESCH. (A better way to do this is
with the EXCH instruction, but this example demonstrates an interesting information-preserving
property of XOR.)

XOR QUUX,ZTESCH
XOR ZTESCH, QUUX

I

XOR QUUX, ZTESCH
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Instruction: EQV. {Q,W,D} .
Class: TOP Logical (bit-wise) equivalence

Purpose: DEST+(S  1162)  v (on&compZement(S  I)/\o~e’s-rompZemenr(S2))

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define EQV. p: qhsd E T O P  ip;p:pl  d e s t  (: -) (Sl $ ~2) ;

rThe following instruction illustrates the effect of all possible combinations of bits in the1
I

operands.

EQV.Q  RTA,#3,#5 ; RTA=771

The following code exchanges the two words QUUX and ZTESCH. (A
with the EXCH instruction, but this example demonstrates an interesting
property of EQV.)

better way to do this is
information-preserving

EQV QUUX, ZTESCH
EQV ZTESCH, QUUX

I

EQV QUUX,ZTESCH

-I
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5.7 Shift and Rotate

The shift and rotate instructions provide logical and arithmetic shifting of operands. Since all
shift and rotate instructions are non-commutative, each instruction is also provided in its reverse
form (e.g., SHF and SHFV).

Note that a left shift (rotate) by N is equivalent to a right shift (rotate) by -N for all the
instructions in this section except for DSHF and DSHFV The effect of these instructions is
described individually.
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Instruction: SHF . {LF,RT) . (Q,H,S,D}
Class: TOP Logical shift

Purpose: DESTcS  I logically shifted (left,right)  by S2. Bits shifted in are zero bits; bits shifted out
are lost. Note that a left shift by S2 is identical to a right shift by 42.

Precision: S2 is a single-word. DEST and Sl have the precision specified by the second modifier.

Formal Description:

def ine  S H F .  dir:Ifrt.  p:qhsd  m T O P  tj; #I; Sl des t  (: shift (Sl,  case dir  o f
L F :  ~2;
R T :  - s2,

end) ;

I ~-The following shows the effect of a positive left-shift argument.

I
SHF,LF,Q  RTAJ-l,#l ;RTA=-2

1

-I
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SHFV

Instruction: SHFV . (LF,RT) l {Q,H,S,D)
Class: TOP Logical shift reverse

Purpose: DES&S2 logically shifted (left,right}  by Sl. Bits shifted in are zero bits; bits shifted out
are lost. Note that a left shift by S1 is identical to a right shift by -S 1.

Precision: S 1 is a single-word. DEST and S2 have the precision specified by the second modifier.

Formal Description:

define SHFV,  dinlfrt.  p:qAsd m T O P  rp; Si PI des t  c shift (~2, case dir  o f
LF: Sl:
RT: - Sl:

end1 ;

I The following shows the effect of a negative left-shift argument.

I SHFV,LF,Q  RTA,#-1,#1 ; RTA-0
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DSHF

Instruction: DSHF e (LF,RT} l (Q,H,S)
Class: TOP Logical double-width shift

Purpose:  CS 1 11 NEXT(S 1)~ is logically shifted (left,right)  by S2 positions. The
{high-order,low-order] 9, 18, or 36 bits of the result (corresponding to 9, H, S
respectively) are then stored in DEST. Note that cS1 11 NEXT(S 1)~ is not treated as a
“long” operand, but as two separate operands (which is why the mnemonic is DSHF and
not SHFL). This is useful for multi-word shifts of any of the three precisions  allowed.
Long right shifts must start at the right end of the multi-word vector, and long left shifts
must start at the left end of the vector. Note that DSHF.RT by X is equivalent to
DSHF.LF by (9-X), (18-X), (36-X).

Precision: CS 1 11 NEXT(S 1)~ is considered to be two {QH,Sj-precision  words (rather than one
{H&D)-precision  word) for alignment purposes.

I The following illustrates the result of shifting a long operand. 1
DSHF.LF.Q  RTA,#c123456>,#1 ; RTA=247

Suppose that a 30-word block of bits MARKERS is to be logically shifted in place three bits to
the left. This can be done as follows.

MOV RTB, #0 ;RTB i ndexes  M A R K E R S  f rom lef t  to r ight

LOOP: DSHF,LF cMARKERS>(RTB)  ,#3 ;produce  o n e  resul t  w o r d

ISKP,LSS RTB,#29, ,LOOP ; i n c r e m e n t  R T B  a n d  loop i f c 2 9 .
SHF,LF  MARKERS+29,,#3 ;do t h e  l a s t  w o r d  i n  s i n g l e  p r e c i s i o n

e The same block of bits can be logically shifted three bits to the rtght  as follows. Note that the
operation must proceed in the other direction within the block, i.e. from right to left.

ROV RTB, #29. ;RTB i ndexes  M A R K E R S  f rom r ight  to lef t

. LOOP: D S H F . R T  cMARKERS>(RTBI,#3  ;produce  o n e  r e s u l t  w o r d

DSKP.GTR RTB,#B,LOOP ; decrement R T B  and I oop i f > 0
SHF. RT MARKERS, #3 ;do t h e  l a s t  w o r d  i n  s i n g l e  p r e c i s i o n

The same block of bits can be arithmetical/y shifted three bits to the right by using the same

Lloop but changing the last SHF.RT instruction to SHFA.RT.
-I
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DSHFV

Instruction: DSHFV . {LF,RT}  . {Q,H,s)
Class: TOP Logical double-width shift reverse

Purpose:  cS2 11 NEXT(S2)=>  is logically shifted {left,right}  by S 1 positions. The
(high-order,low-order}  9, 18, or 36 bits of the result (corresponding to Q, H, S
respectively) are then stored in DEST. Note that cS2 ]I NEXT(S2)2  is not treated as a
“long” operand, but as two separate operands (which is why the mnemonic is DSHFV and
not SHFLV). This is useful for multi-word shifts of any of the three precisions  allowed.
Long right shifts must start at the right end of the multi-word vector, and long left shifts
must start at the left end of the vector. Note that DSHFV.RT by X is equivalent to
DSHFV.LF by (9-X), (18-X), (36-X).

Precision: cS2 11 NEXT(Q)=,  is considered to be two (QH,Sj-precision  words (rather than one
{H&D)-precision  word) for alignment purposes.

rLet X be a DW. Assume RTA contains the negative of the amount by which we wish to shift X
left. To store the shifted result in RTA the following instruction may be used.

1

.I
DSHFV,RT  RTA,#c44>(RTA)  ,X
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SHFA

Instruction: SHFA . (LF,RT)  . (Q,M,D)
Class: TOP Shift arithmetically

Purpose: DESTcSl arithmetically shifted {left,right} by S2. Shifts to the (true) left introduce zero
bits; shifts to the (true) right replicate the sign bit and discard bits shifted out the low end.
This is equivalent to a multiplication or division by a power of two, where it is
understood that such a division rounds towards negative infinity. For division by a
power of two, rounding towards zero, the QUO2 instruction should be used instead. Note
that a left shift by S 1 is equivalent ta a right shift by -Sl.

Side Effects: INT-OVFL  will be set if any bit that is to be shifted into the sign bit does not equal
the original sign bit. This may occur when shifting left with S2>0 or by shifting right
with S2<0. During untrapped integer-overflow SHFA stores the correct sign followed
by the low-order bits of the correct result.

Precision: S2 is a single-word. DEST and Sl have the precision specified by the second modifier.

rThe following two instructions illustrate the difference between SHF.RT  and SHFA.RT. 1

SHF.RT,Q  RTA,#-l,#l ; RTA=377

I

SHFA.RT.Q  RTAJ-l,##l ;RTA-777
I
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SHFAV

Instruction: SHFAV . {LF,RT) . (Q,H,S,D)
Class: TOP Shift arithmetically reverse

Purpose: DESTcS2  arithmetically shifted {left,right)  by Sl. Shifts to the (true) left introduce zero
bits; shifts to the (true) right replicate the sign bit and discard bits shifted out the low end.
This is equivalent to a multiplication or division by a power of two, where it is
understood that such a division rounds towards negative infinity. For division by a
power of two, rounding towards zero, the QUOPV instruction should be used instead.
Note that a left shift by Sl is equivalent to a right shift by -Sl.

Side Effects: INT-OVFL will be set if any bit that is to be shifted into the sign bit does not equal
the original sign bit. This may occur when shifting left with Sl>O or by shifting right
with SkO. During untrapped integer-overflow SHFA stores the correct sign followed
by the low-order bits of the correct result.

Precision: S 1 is a single-word. DEST and S2 have the precision specified by the second modifier.

I The following instruction sets INT-OVFL. 1
I

SHFAV.LF  RTA,#7,#3 ; RTA4!00



g 5.7 Instruction Descriptions Page 157

ROT

Instruction: ROT g {LF,RT}  l {Q,H,S,D)
Class: TOP Logical rotate

Purpose: DESTcSl rotated (left,right)  by S2. Rotation introduces bits shifted out of one end into
the other end, so that no bits are lost. Note that a left rotation by S2 is equivalent to a
right rotation by -S2.

Precision: S2 is a single-word. DEST and Sl have the precision specified by the second modifier.

Formal Description:

define ROT. dir: lfrt. p: qhsd  E TOP lp; p; S3 Rotate (9, dir, ~2)  ;

I The following illustrates a right rotation by a positive amount.

I
R0T.RT.Q  RTA,#1,#1 ;RTA=400

1
-I
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ROTV

Instruction: ROTV . (LF,RT) . (Q,H,S,D)
Class: TOP Logical rotate reverse

Purpose: DESTcS2  rotated (left,right)  by Sl. Rotation introduces bits shifted out of one end into
the other end, so that no bits are lost. Note that a left rotation by Sl is equivalent to a
right rotation by -Sl.

Precision:  S 1 is a single-word. DEST and S2 have the precision specified by the second modifier.

Formal Description:

define ROTV. dir: lfrt. p: qhsd P TOP rp; S; pl Rotate (~2, dir, Sl) :

I The following illustrates a left rotation by a negative amount.

I
R0TV.LF.Q  RTA,#-1,#3 ,RTA-401

1
-I
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5.8 Skip and Jump

Skip and jump instructions allow control to be transferred to locations other than that of the
next sequential instruction. Skip instructions are used for short-range transfers, while jumps are
used to transfer control anywhere in the 30-bit-address space. In many cases, the skips or jumps
occur only if a condition that is specified by a modifier to the instruction is true. Skips or jumps
can occur on an arithmetic condition (ACOND) which can be any one of the following :

ACOND = {GTR,EQL,GEQLSS,NEQLEQj

These correspond to the conditions >, =, L, c, *, < respectively.

Skips may occur on logical conditions (LCOND) as well as arithmetic conditions for the SKP
instruction. The LCONDs are:

LCOND - (NON,ALL,ANY,NALJ

These correspond to the logical conditions that relate two operands (say OP 1 and OP2) as shown in
the table below. Here OP2 is considered to be a mask whose one-bits select bits of OPl to be
tested.

Modifier

NON
ALL
ANY
NAL

Condition Meaning

(OPl A OP2) = 0 If no masked bits are 1
(one’+complement(OPl  A OP2)) - 0 If all masked bits are 1
(OPl A OP2) f 0 If any masked bit is 1
(one?-complement(OP1  h OP2)) f 0 If not all masked bits are 1

Table 5-5
LCOND modifier descriptions

By combining the ACONDs and the LCONDs, we get the arithmetic and logical conditions
(ALCONDs) shown below:

ALCOND - (CTR,EQL,GEQ&SS,NEQ,LEQ,NON,ALL,ANY,NAL]

All skip instructions are members of the skip instruction class (SOP). See section 4.1.3 for a
discussion of this instruction class. The skip instructions are used to perform short jumps in the
range -8 . . 7 single-words relative to the current PC (the first word of the instruction that is
currently executing). The offset of the jump is specified by the four-bit SKP field of the opcode
(OPCODE. SKP). Since OPCODE.SKP fully specifies the jump destination, both OP 1 and OP2
can be used in comparison operations.
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All jump instructions are members of the jump instruction class (JOP). See section 4.1.4 for a
discussion of this instruction class. The jump instructions are used to transfer control to a general
memory location. The low twelve-bits of the instruction specify a JUMPDEST, that is, the location
to which control will be transferred if the condition specified in the jump instruction is true. OP 1
specifies a general word that can be tested against the condition specified by the ACOND modifier.
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SKP

Instruction: SKP . {GTR,EOL,GEQ,LSS,NEO,LEO,N~N,ALL,ANY,NAL}  . (Q,H,s,D)
Class: SOP Skip on condition

Purpose: If OPl ALCOND OP2 is true (where ALCONDc(GTR,  EQL, GEQ, LSS, NEQ LEQ
NON, ALL, ANY, NAL)), control is transferred to the specified location that is within
-8 . . 7 single-words of the current PC. If ALCOND is false, control is transferred to

the next instruction. The number of single-words to skip is specified by OPCODE.SKP.

Precision: The precision of OP 1 and OP2 is specified by the second modifier.

Formal Description:

define SKP. rehakond.  p:qhsd E SOP [p; PI if rel (opl, 0~2) then S k i p  f i ;

rThe following instructions compute the function “If RTA is Odd Then RTA+3*RTA+l Fi;
RTAtRTA/2;”  repeatedly while RTA> 1.

1
Note that FASM determines the SW offset

automatically from the JUMPDEST operand.

THREEN:
SKP.LEQ RTA,#l,DONE
SKP,NON RTA,#l,RTAEVN ;skip if R T A  h a s  a n  e v e n  i n t e g e r

MULT RTA, #3 ;multiply b y  t h r e e

ADD RTA, #l ;add one - resu l t  mus t  be  even ,

RTAEVN: ; s o  f a l l  i n t o  e v e n  c a s e

QUO2 RTA, #l ;this i s  be t te r  than  Q U O  RTA,#2
JHPA THREEN

I
DONE: . . .

-I
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ISKP

Instruction: ISKP . {GTR,EQL,GEQ,LSS,NEQ,LEQ)
Class: S O P Increment, then skip on condition

Purpose: OP 1tOP l+ 1. CARRY is not affected. Then if OPl ACOND OP2 (where
ACONDc(GTR,EQL,GEQLSS,NEQLE~),  control is transferred to a location that is
within -8 . . ‘7 single-words of the current PC. If ACOND is false, control is transferred
to the next instruction. The number of single-words to skip is specified by
OPCODE.SKP.

Side Effects: INT-OVFL may be set by the incrementing operation.

Precision: OPl and OP2 are both single-words.

Formal Description:

define ISKP. rel: acond E SOPES,RW;Sl  Add(op1,  1 )  + s u m ,  c, o v  n e x t
int-Overflow?  n e x t

(if rel ( s u m ,  0~2)  t h e n  S k i p  f i  a l s o

o p l  e s u m  a l s o

C&rry  4- cl ;

rThe following is a typical loop of the form, “For location ItM Thru N Do . ..“. The inner part of1
the loop must not exceed 8 SWs  when assembled.

M O V  1,M

LOOP:

. . .
a

I

ISKP.LEQ  I ,N,LOOP -J
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D S K P

Instruction:  DSKP . (GTR,EQL,GEQ,LSS,NEQ,LEQ)
Class: SOP Decrement, then skip on condition

Purpose: OP l+OP l-l. CARRY is not affected. Then if OPl ACOND OP2 is true (where
ACOND<(CTR,EQL,GEQLSS,NEQ,LEQJ),  control is transferred to a location that is
within -8 . . 7 single-words of the current PC. If ACOND is false, control is transferred
to the next instruction. The number of single-words to skip is specified by
OPCODE.SKP.

Side Effects: INT-OVFL  may be set by the decrementing operation.

Precision: OP 1 and OP2 are both single-words.

Formal Description:

define DSKP. rel: acond E SOP ES, RW: Sl Sub-act  (opl, 1) 3 d i f ,  c ,  o v  n e x t
lnt-Overflow?  next
(if rel(dif, 0~2)  then Skip fi also
o p l  * dif a l s o
C a r r y  c cl ;

rThe following instructions search an array of N SWs starting at TABLE for the largest index I1
such that TABLE[I]=I.  Assume that TABLELO]  contains 0 to ensure loop termination, and that
N single-words follow this entry. In the following, I must be a register. Note that since the loop
is one instruction long the SW skip offset is zero. The “-1” added to the base address TABLE
compensates for the fact that the address calculation occurs before the decrernentation operation,
but the skip condition is tested after the decrementation operation. In turn, “N+l” is usede
instead of “N” in the initialization to compensate for this compensation.

MOV I, ?<N+l> ;N is  a n  a s s e m b l y  l i t e r a l  s y m b o l

LOOP: DSKP.NEQ  I ,cTABLE-MI)  ,LOOP
I
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JMP

Instruction: JMP . (GTR,EQL,GEC~,LSS,IWC~,LEQ)
Class: JOP Jump on condition

Purpose: If OPl ACOND NEXT(OPI) is true (where ACONDc(GTR,  EQL, GEQ, LSS, NEQ,
LEQ), control is transferred to the location specified by JUMPDEST.  If the condition is
false, control is transferred to the next instruction.

Precision: OP 1 and NEXT(OP 1) are both single-words.

Formal Description:

d e f i n e  JMP. rel: alcond  E JOP lp, NRI if rel(op1,  Next (opll) then J u m p  fi;

rThe following loop searches down a chain of pointers for a specified tail pointer FOOPTR. Let
P be a register and HEAD the address of the first link in the chain. Note that

1
NEXT(P) is

implicitly used by this routine to hold the comparison operand.

M0V.D.D  P&HEAD +, FOOPTb ; ini t ia l  ize P and NEXT(P)

L O O P : M O V  P, (PI

I

JMP. NEQ P, LOOP
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JMPZ

Instruction: JMPZ . {GTR,EQL,GEQ,LSS,NEQ,LEQ}.  (Q,H,S,D)
Class: JOP Jump on condition relative to zero

Purpose: If OPl ACOND NEXT(OP1)  is true (where ACONDc(CTR, EQL, GEQ, LSS, NEQ
LEQ), control is transferred to the location specified by JUMPDEST. If the condition is
false, control is transferred to the next instruction.

Precision: OP 1 is a single-word.

Formal Description:

def ine  JMPZ. rel: acond,  p: qM E JOP  (PI i f  reliopl, 0) t h e n  Jump  f i ;

I The following jumps to A WAY iff RTAs1.0.
-_

L
JMPZ.LEQ  #c-I,B>(RTA),AWAY

1
-J
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JMPA

§ 5.8

Inst ruct ion:  JMPA
Class: J O P Jump always

Purpose: Jump unconditionally to JUMPDEST. ODl must be identically zero or a hard trap will
occur.

Forma1 Description:

d e f i n e  J M P A  E JOP [X,Ul J u m p ;

rThe following instruction jumps to the RTA-th address stored in the table at JVECTS.1
I

JMPA c(eJVECTS (RTA)  >
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IJMP

Instruction: I JMP . {GTR,EQL,GEQ,Lss,NEQ,LEQ)
Class: JOP Increment, then jump on condition

Purpose: OP 1tOP l+ 1. CARRY is not affected. Then if OPl ACOND NEXT(OP 1) is true
(where ACONDE{CTR,EQL,CEQLSS,NEQLEQ),  control is transferred to the location
specified by JUMPDEST. If the condition is false, control is transferred to the next
instruction.

Side Effects: INT-OVFL  may be set by the incrementing operation.

Precision: OP 1 and NEXT(OP I) are both single-words.

Formal Description:

define IJMP, rel: acwi is JOPIP,NRWl Add(op1,  1) -) s u m ,  c, o v  n e x t

Int-Overflow?  n e x t

(if rel  (sum, Next (0~11)  then Jump fi also
o p l  (: s u m  a l s o

C a r r y  + cl ;

rThe following is a typical loop of the form, “For location ItM  Thru N Do . ..“. The inner part of1
the loop may be any length when assembled.

MOV.0.D  I ,  IM~NI ;M,N a r e  assembly literal8
LOOP:

. . *

IJMP.LEQ  I,LOOP -I
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IJMPZ

Instruction: ~JMPZ . {GTR,EQL,GEQ,Lss,NEQ,LE~)
Class: JOP Increment, then jump on condition relative to zero

Purpose: OP IcOP l+l. CARRY is not affected. Then if OPI ACOND 0 is true (where
ACONDc{GTR,EQL,CEQLSS,NEQ,LEQ),  control is transferred to the location
specified by JUMPDEST. If the condition is false, control is transferred to the next
instruction.

Side Effects: INT-OVFL  may be set by the incrementing operation.

Precision: OP 1 is a single-word.

Formal Description:

d e f i n e  IJMPZ, rehacond  t- JOP [p, RWI Addopl,  1) 3 s u m ,  c ,  o v  n e x t
int-Overflow?  next
( i f  rellsum, 0) t h e n  Jump  f i  a l s o  o p l  cr s u m  a l s o  Carry  c cl ;

I
The following increments N and jumps to AWAY if N=O. 1

I
IJMPZ.EQL  N,AWAY
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IJMPA

Instruction: 1 JMPA
Class: JOP Increment and jump always

Purpose: OP l+OP l+ 1. CARRY is not affected. Jump unconditionally to JUMPDEST.

Side Effects: INT-OVFL  may be set by the incrementing operation.

Precision: OP 1 is a single-word.

Formal Description:

d e f i n e  I J M P A  IJ J O P  EP,RWI  Rdd(opl,  1) -) sum,  c ,  ov  nex t

Int-Overflow?  next
(Jump also op 1 c= sum also Carry c cl ;

rThe following is an extremely inefficient way to add RTA into RTB, assuming that integer1
overflow traps are disabled. However, it shows off the IJMPA instruction.

LOOP: OSKP.EQL  R T A , # - 1 ldecrement R T A ;  s k i p  n e x t  i n s t r u c t i o n  i f  - 1

I
I JMPA RTB,LOOP ;otherwise increment R T B  and  l oop

I
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DJMP

Instruction: DJMP . (GTR,EQL,GEQ,LSS,NEQ,LEQ}
Class: JOP Decrement, then jump on condition

Purpose: OP 1tOP I- 1. CARRY is not affected. Then if OPl ACOND NEXT(OP 1) is true
(where ACONDe{GTR,EQL,GEQLSS,NEQLEq)),  control is transferred to the location
specified by JUMPDEST. If the condition is false, control is transferred to the next
instruction.

Side Effects: INT-OVFL  may be set by the decrementing operation.

Precision: OP 1 and NEXT(OP 1) are both single-words.

Formal Description:

define DJMP. rel: acond pi -- JOP tg, NRWI S u b t r a c t  (opl, 1) + dif, c, ov n e x t
InLOverflow?  next
(if rel  (dif, Next (0~11) then Jump fi also
opl e: dif also
Carry + cl;

rThe following is a typical loop of the form, “For location ItM Step -1 Thru N Do 2. The1
inner part of the loop may be any length when assembled.

tl0V.D.D  I,  EM~NI ;M,N a r e  a s s e m b l y  literals
LOOP:

. . .

I
DJMP.  GEQ 1, LOOP

a
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DJMPZ

Instruction:  DJMPZ . {GTR,EQL,GEQ,LSS,NEQ,LEQ)
Class: JOP Decrement, then jump on condition relative to zero

Purpose: OP 1cOP 1-l. CARRY is not affected. Then if OPl ACOND 0 is true (where
ACONDc{GTR,EQL,GEQLSS,NEQ,LEqJ),  control is transferred to the location
specified by JUMPDEST. If the condition is false, control is transferred to the next
instruction.

Side Effects: INT-OVFL  may be set by the decrementing operation.

Precision: OP 1 is a single-word.

Formal Description:

def ine  DJMPZ.  rel: ucond P JOP L/I, RWI Subtract  (opl  , 1) 3 dif , c, ov next
Int-Overfi!ow?  next
( i f  rel(dif, 0) t h e n  J u m p  f i  a l s o  opl  e d i f  a l s o  C a r r y  + c) 8

rThe following decrements N and jumps to AWAY if N=O. 1
I

DJMPZ,EQL  N,AWAY
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DJMPA

Instruction: DJMPA
Class: JOP Decrement and jump always

Purpose: OP 1cOP  I-1. CARRY is not affected. Jump unconditionally to JUMPDEST.

Side Effects: INT-OVFL  may be set by the decrementing operation.

Precision: OP 1 is a single-word.

Formal Description:

d e f i n e  D J M P A  E JOP [p, RWI S u b t r a c t  top1 , 1) -) dif , c, o v  n e x t

Int-Overflow?  n e x t

(Jump  also opf  e dif also Carry t c) ;

rThe following decrements N and jumps to AWAY.

D J M P A  N,AWAY
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B N D T R P

Instruction: BNmw . (B,MIN,M~,~,~).  {Q,I+s,D)
Class: XOP Bounds check and trap on failure

Purpose: Check if OPl and OP2 satisfy the bounds condition that is specified by the first modifier.
If the condition is not satisfied then a bounds trap will occur. The following conditions
are associated with the first modifier:

Modifier Meaning

B - [Both] OPl s OP2 5 NEXT(OP1)
MIN - IMINimum] MINNUM s OP2 s OPl
M 1 - [Minus 11 -1 I: OP2 5 OPl
0 - [Zero] OSOP2~OPl
1 - [One] 1 SOP2IOPl

Table 5-6
BNDTRP modifiers and meanings

Precision: The precision of OP 1 and OP2 is specified by the second modifier.

I The following two equivalent instructions both trap if lRTAl>l.O 1
B N D T R P . B  I - 1 . 0  +, l.BI,RTA

I

BNDTRP.0  #c2,0>,#c1,0~(RTAI
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5.9 Routine Linkage

Routine linkage instructions include the instructions to jump to and and return from
subroutines and coroutines. Instructions are also provided for returning from traps and interrupts
(see Section 6). The subroutine linkage conventions for the S-l are described in a separate
document.

The JSR instruction is used to jump to subroutines. OPl and the PC of the next instruction
to be executed (PC-NEXTJNSTR) are pushed into the JSR save area (JSR-SAVE-AREA)  on
the stack. It’s format is shown in Figure 5-4. Control is then passed to the routine at the address
specified by JUMPDEST. See Section 4.1.4 for a description of how JUMPDEST is computed.
Return from a subroutine is accomplished using the RETSR instruction. The stack is decremented
so that the old OPl value that was previously saved in the stack and the return address are now
popped off and saved in OP1 and PCNEXTJNSTR respectively.

r OP1

I c6*0  1 1 PC-NEXT-1 NSTRc0:  29>2 1

0 35

Figure 5-4
JSR Save Area Format

The JCR instruction is used to jump between coroutines. It allows easy transfer of control
between two routines by using OPl, OP2 and NEXT(OP2) to transfer information. NEXT(OP2)
contains the return address to the coroutine that is not currently executing. No locations on the
stack are involved.

There are three return instructions that are used for returning from traps and interrupts.
They restore different amounts of information including status words and the return PC. RET is
used to return from instructions such as TRPSLF which do not save either PROC-STATUS or
USER--STATUS in the save area. RETUS does a return and restores USER-STATUS. This is
used for returning from soft-errors (see Section 6.1). RETFS does a return and restores full status,
that is, both PROCSTATUS and USER-STATUS are loaded from the save area. Note that the
return. address is the first single-word from the end (highest memory location) of all save areas.
PROCSTATUS (if present) is the second single-word, while USER-STATUS (if present) is the
third single-word from the end of the save area. The formats of the save areas for traps and
interrupts are shown in Figures 6-3 to 6-7. Note that the RETFS restores the entire
PROCSTATUS word from the save area rather than loading partial processor status (as described
in section 25.1).

There are two instructions that are used to force the processor to execute trap sequences under
program control: TRPSLF and TRPEXE. TRPSLF can be used by either the executive or the
user to cause a trap to one of the TRPSLF-VECS that exist in the same address space as the
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instruction executing the TRPSLF instruction. TRPEXE can be used by either the executive or the
user to cause a trap to the executive. The vectors for TRPEXE start at location TRPEXEVECS
in the executive’s address space.

The TRPSLF and TRPEXE instructions both deliver parameters to their respective trap
handlers by passing information in the form of two double-word trap parameter operands
(TRP_PARM_OP{1,2J[  0 . . 1 1. See Figure 6-6). The interpretation of these operands depends on
the value of the trap parameter descriptor single-word (TRAP-PARM-DESC-SW)  which is located
in the tra,p vector for both TRPSLF and TRPEXE (see Figure 6-2).

The TRP-PARM-DESCSW  forms an extension to the opcode by describing ways in which
the trap parameter operands can be interpreted. It is a single-word consisting of the four
quarter-words labeled QW[ 0 . . 3 ] respectively. QW[Ol and QW[ll must be identically zero.
QW[23 describes how OP2 of the trapping instruction will be passed into the trap routine in the
double-word TRP-PARM-OPl[O:ll. QW[31 describes how OPl of the trapping instruction will be
passed into the trap routine in TRP-PARM-OPl[O:l].  QW[2J  and QW[3]  have identical format
and interpretation, They are interpreted as TMODE-fields (as described below).

The tables below show how the trap parameter operands are interpreted based on the value
of TMODE. Table 5-7 lists the primary uses for the different values of TMODE. Table 5-8
shows how the contents of TRP~PARM~OP{1,2J[O:l]  are interpreted depending on the value of
TMODE. This table also shows the cases that cause an error trap occurs when interpreting
TMODE. The left or right arrows represent left or right justification with zero-filling respectively.

TMODE Primary Use

0 Check an unused operand descriptor.
1 Deliver a PC-relative jump descriptor.
2 Deliver the entire operand descriptor.
3 Deliver a pointer operand (cannot be an immediate).
4 Deliver a quarter-word value operand.
5 Deliver a half-word value operand.
6 Deliver a single-word value operand.
7 Deliver a double-word value operand.

Table 5-7
TMODE Values and their Uses
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TMODE

<o
0

2 never
3 IMMED(OP(L2))
4 never
5 HW alignment
6
7 ’

SW alignment
SW alignment

>‘I always

Trap Condition

always
OD(1,2) * 0
never

TRP-PARM-OP(l,m

---

undefined
-+OD( 1,2)
+OD( 1,2j
A DDRESS(OP(  1,2])**
QW +OP{ 1,23***
HW cOP{1,2)***
SW OP(1,2)
OP( 1,2)<0:35>

TRP_PARM_OPI1,21[11

---

undefined
undefined
extended word for OD( 1,2j*
undefined
undefined
undefined
undefined
OP( 1,2}<36:7  l>***
e-w

* If TMODE=2,  then the extended word for OD(1,2j is stored in TRP-PARM.-OP{  1,2][11 if
the extended?word  exists, otherwise TRP-PARM-OP(  1,2)[ I] is undefined.

** If TMODE-3,  TRPEXE stores ADDRESS(OP{1,2))  with P-bit- 1.

x x x If TMODE=  4 . . 7 , immediates are properly sign-extended and justified according to
the value of 0D.F.

Table 5-8
Interpretation of TMODE

The RET instruction is used for returning from TRPSLF instructions since it pops OPl
parameters off the stack in addition to the return PC. RETFS is used to return from TRPEXE
instructions since it restores the status words in addition to popping the PC and the parameters.
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JSR
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Instruction: JSR
Class: JOP Jump to subroutine

Purpose: The return address and OP 1 are pushed onto the stack and SP is adjusted accordingly.
The format of the JSR save area is shown in Figure 5-4. Control is then transferred to
JUMPDEST. If this instruction would cause SP>SL,  a hard trap will occur and the stack
will not be affected. (The RETSR instruction is normally used to return from a
subroutine called by JSR.)

Precision: A II operands involved are single-words.

Side Effects: SPcSP+8

rThe following pushes ADDRESS(FO0)  and RTA on the stack before jumping to BAZ.1
JSR RTA,BAZ

FOO:

L
. 6 . ; return address

-I
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JCR

3 5.9

Instruction: JCR
Class: XOP Jump to coroutine

Purpose: OPl and OP2 are exchanged. NEXT(OP2) is prefetched and stored temporarily. The
PCNEXT-INSTR  of the routine that executed the JCR instruction is saved in
NEXT(OP2). The value NEXT(OP2) that was prefetched is then loaded into PC and
control passes to the coroutine.

Precision: A 11 operands involved are single-words.

rSuppose that each of two coroutines has an associated stack. Let there be a double-word “save1
area” SAVE.AREA which contains the stack pointer and program counter for the currently
inactive coroutine. Whichever coroutine is actually running uses register SP as its stack pointer,
and of course uses PC as its program counter. Then the following instruction makes the current
coroutine inactive, and -activates the other coroutine after setting up its stack pointer and saving
the current one.

L
JCR SP, SAVE. AREA ;call  other coroutine

I
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Instruction: ALLOC  . {1 . . 32)
Class: XOP Allocate stack locations

Purpose: This instruction is commonly used to save registers on the stack. It causes 1 . . 32
single-words starting at ADDRESS(OP1) to be moved into the memory locations starting
at SP. OP2 is added to the value of SP, producing a new value for SP (OP2 is therefore
a number of quarter-words, not a number of single-words). OP2 should be at least as
large as four times the modifier, but this may not be checked for by the hardware. If this
instruction would cause SP>SL,  a hard trap will occur and the stack will not be affected.
If the source and destination overlap, the result is undefined.

Side Effects: SPcSP+OP2

’ Precision: All operands involved are single-words.

rThe following saves all the registers

ALLOC.32 %0,?4w40+2>

and reserves an additional DW on the stack as well.
I

Note that the modifier is a decimal number, but the numbers in the operands are octal. The
same instruction could be written

L
ALLOC.32 %0,?4w32.+2>

-I
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Instruction: MTSR
Class: XOP Return from subroutine

Purpose: Return from a subroutine that was invoked by the JSR instruction. The stack pointed to
by OP2 (usually SP) is decremented by eight, removing the saved OPl value and the
return address. OPI is then loaded with this old OPl value, and control is transferred to
the location specified by the return address (See Section 5.9 for a description of the JSR
instruction and the JSR save area).

Side Effects: SPtADDRESS(OP2)-8

Precision: A 11 operands involved are single-words.

Formal Description:

define RETSR E XOP ES; S, NRI Check  Jump-Address (Next (0~2) ~6: 35d next
CSP + Addrer~  (0~2)  a lso
op l  (: op2 a l s o
p c - n x t - i n s t r  + IVex (0~2) <6r 33~) ;

rThe following code calls BAZ, which returns to FOO, saving and restoring RTA on the stack.
Assume SP is the stack pointer.

1

JSR RTA, B A Z

FOO: . . . : r e t u r n  h e r e

BAZ: . . . ;cal  led r o u t i n e

I

a RETSR RTA, (SP)

-I



5 5.9 Xnsttuction Descriptions Page 181

RET

Instruction: RET
Class: XOP Return and pop parameters

Purpose: Return from an exception without restoring registers. Note that OP 1x1 for a return from
TRPSLF. OPl+ 1 single-words (OP1 parameters + return address) are popped off the
stack pointed to by ADDRESS(OP2)  (usually SP), and the stack is adjusted. All popped
words except the return address are thrown away and ignored. Control is then
transferred to the location specified by the return address.

Side Effects: ADDRESS(OP2)+ADDRESS(OP2)-4-OP  I*4

Precision: All operands involved are single-words.

Formal Description:

define RET s XOP IS, R; S, RI CheckJump-Address  (op2<6:  354 next
CSP + Addresdop2) - s h i f t  (opl, 2) a l s o

p c - n x t - i n s t r  c 0~2~6: 33~) ;

rThe following returns from a previous JSR call, throwing away the operand previously pushed
on the stack by the JSR.

1
R E T  #I, (SP)
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RETUS
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Instruction: RETUS
Class: XOP Return, restoring user status

Purpose: Return from an exception that requires USER-STATUS to be restored (e.g., soft traps).
OP 1+2 single-words (OP 1 parameters + old USER-STATUS + return address) are
popped off the stack pointed to by ADDRESS(OP2),  and the SP is adjusted.
USER-STATUS is loaded from the value in the stack. All other popped words
the return address are thrown away and ignored. Control is then transferred
location specified by the return address.

Side Effects: SPtADDRESS(OP2)-8-OP  l*4

Precision: A ii operands involved are single-words.

except
to the

1 The following returns from a soft trap (The soft-trap save area is shown in Figure 6-4). 1

RETUS ##II,  (SP)
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RETFS

Instruction: RETFS
Class: XOP Return, restoring full status

Purpose: Return from an exception that requires’ both USERSTATUS and PROCSTATUS to
be restored (i.e., hard traps, TRPEXE and interrupts. See Section 6.6 for a description of
the save areas associated with each of these). OPl + 3 single-words (OP I parameters +
USER-STATUS + PROCSTATUS t return address) are popped off the stack, and the
SP is adjusted. USER-STATUS is loaded from the value saved in the stack. The entire
PROCSTATUS word is loaded from the value saved in the stack (as opposed to loading
partial processor status; see Section 2.5.1 for a description of partial processor status). All
other popped words except the return address are thrown away and ignored. Control is
then transferred to the location specified by the return address.

Restrictions: Illegal in user mode.

Side Effects: SPeADDRESS(OP2)-  12-OP 1*4

Precision: A ii operands involved are single-words.

rThe following returns from an interrupt.

L
R E T F S  #l, (SP)
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Instruction: TRPSLF . { 0 . . 63 )
Class: XOP Trap to self

Purpose: Causes a trap to a routine in the current address space. The trap vectors start at location
TRPSLFJECS  in the current address space. A particular vector in this block is selected
by the modifier. The trap vector specifies a handler address and a
TRP-PARMDESCSW.  The save area contains two double-word trap operands, PC,
and PCNEXTJNSTR.  The interpretation of the operands is based on the TMODE
fields in TRP-PARMDESCSW.  See Section 5.9 for a complete discussion of these
fields and how they are interpreted.

rThe following causes a trap to the “number 0” trap routine in the current address space with1
operands X and Y.

TRPSLF, 0 X-i Y



g 5.9 Instruction Descriptions Page 185

TRPEXE

Instruction: TRPEXE . { 0 Le 63 >
Class: XOP Trap to executive

Purpose: Causes a trap to a routine in the executive’s address space. The trap vectors start at
location TRPEXE-VECS  in the executive’s address space. A particular vector in this
block is selected by the modifier. The trap vector specifies a handler address, a
TRP-PARMDESCSW, USERSTATUS and PROCSTATUS. The save area
contains two double-word trap operands, PC, the old USER-STATUS and
PROCSTATUS, and PCNEXTJNSTR. The interpretation of the operands is based
on the TMODE fields in TRP-PARMDESCSW. See Section 5.9 for a complete
discussion of the uses of TRPEXE.

rThe following causes a trap to the “number 0” trap routine in the executive’s address space with
operands X and Y.

1
TRPEXE. 0 X, Y
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5.10 Stack

A stack is specified by any two consecutive single-words in memory (or in registers). The S-l
interprets these locations as a stack-painter and a stack-limit. The meaning of these terms differs
slightly whether we are talking about upward-growing stacks or downward-growing stacks. The
interpretation of which of these two single-words is the stack-pointer and which is the stack-limit
depends on whether we are talking about upward-growing stacks or downward-growing stacks. In
the description of stacks that follows, note that an upward-growing stack and a downward-growing
stack can exist together in memory at the same time. In this case, the same register is used for the
SP of the upward-growing stack as is used for the SL of the downward-growing stack (and
vice-versa!).

Upward-growing stacks grow towards higher memory locations. Instructions that operate on
upward-growing stacks use the “UP” modifier with the stack instruction. For upward-growing
stacks, OP is the stack-pointer and NEXT(OP) is the stack-limit. The stack-pointer points to the
next free location on the stack. Thus, a push onto an upward-growing stack involves saving the
value in the location specified by the stack-pointer and then incrementing the stack pointer. The
stack-limit for an upward-growing stack is the location immediately following the stack-pointer (i.e.,
stack-limit=NEXT(stack-pointer)). It points to the first location beyond the end of the stack.

Downward-growing stacks grow towards lower memory locations. Instructions that operate on
downward-growing stacks use the “DN”  modifier with the stack instruction. For downward-growing
stacks, OP is the stack-limit and NEXT(OP) is the stack-pointer. The stack-pointer points to the
top  item on the stack. Thus, a push onto a downward-growing stack involves incrementing the
stack pointer and then saving the operand in this location. The stack-limit for an upward-growing
stack is the location immediately preceding the stack-pointer. It points to the last stack location into
which information can be stored.

The SPID field of USER-STATUS specifies a particular upward-growing stack for implicit
use by certain instructions such as JSR and ALLOC; the SP and SL for this stack must be in

- registers. By contrast, the instructions in this section can operate on any arbitrary stack specified by
an explicit operand,
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Instruction: ADJSP. (WDN)
Class: XOP Ad just (arbitrary) stack pointer

Purpose: Adjust the size of an {upward-growing, downward-growing] stack. OP2 is the a
single-word two’s-complement number which is (added to, subtracted from] OPl for
ADJSP.(UP,DNJ. Thus, ADJSP with a positive OP2 makes a stack larger while AD JSP
with a negative OP2 makes a stack smaller.

S ide  Ef fec t s :  I f  OPi+OP2>NEXT(OPl)  for ADJSPUP  or NEXT(OP  I)-OP2xOP  1 f o r
ADJSP.DN,  a hard trap will occur.

Precision: Both OP 1 and OP2 are single-words.

rThe following throws away the top 4 stack elements. Let SPL be the address of a
pointer/limit DW.

L
AD&P. UP SPL, #-4

I
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Instruction: ~usti . {uP,DN) . {Q,ti,s,D)
Class: XOP Push onto (arbitrary) stack

Purpose: Push OP2 with precision specified by the second modifier onto an upward-growing or
downward-growing stack.

Side Effects: If OP l+( 1,2,4,8j>NEXT(OP  1) for PUSHUP or NEXT(OP  l)-( 1,2,4,8]<OP  I for
PUSI-LDN,  a hard trap will occur.

Precision: Both OPl and OP2 are single-words.

rThe following pushes RTA on a stack. Let SPL be the address of a stack .

PUSH.UP  SPL,RTA
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POP

Instruction: POP. {Up,DN)  . {QJG#)
Class: XOP Pop from (arbitrary) stack

Purpose: Pop OP2 with precision specified by the second modifier off of an upward-growing or
downward-growing stack.

Precision: Both OP 1 and OP2 are single-words.

rThe following pops the top value on a stack into RTA. Let SPL be the address of a stack1
pointer/limit DW.

POP.UP SPL,RTA
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5.11 Byte

The byte data types (single-word
pointers and byte selectors are described
pointers.

and double-word) are described in Section 3.5. Byte
in Section 3.6. Byte instructions access bytes via byte

) P ( IREG ) ADDR I

POSITION I
LENGTH

I

01 56 17 18 35

Figure 5-5
Byte Pointer

The instruction modifier (SD) specifies the byte precision that the instruction works with
(S=single-word byte, D=‘double-word  byte). Let MBL be the maximum byte length for for a given
precision byte. Single-word bytes have MBL=36.  Double-word bytes have MBL=72.  Any byte
instruction will hard-trap if POSITIONtLENGTH > MBL. Furthermore, the IAP must point to
the beginning of a single-word or the instructions will hard-trap. This restriction on the IAP and

the rule concerning MBL implies that single-word bytes may not cross single-word boundaries.

There are three immediate instructions which use only a byte selector (a <position,,length>
single-word) to access an immediate byte.
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Instruction: LBYT . {S,D)
Class: XOP Load (unsigned) byte

Purpose: OP2 is the (source) byte pointer. 6Pl is the destination word which receives the
zero-extended byte. POSITIONtLENGTH~MBL  causes a hard trap.

Precision: OPl has the same precision as the modifier. OP2 is a byte pointer. OP2 points to a
byte with a precision specified by the modifier.

rThe following sets RTA to the exponent field of the single-word floating-point number X.1
I

LBYT RTA, EX +, I,,11 3
I
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f 5.11

Instruction: iJBYT . (W)
Class: TOP Load immediate (unsigned) byte

Purpose: S2 is the (source) byte selector. Sl contains the (source) immediate byte. DEST receives
the zero-extended byte.

Precision: S I and DEST have the same precision as the modifier. S2 is a byte selector. The byte
contained in Sl has the same precision as the modifier.

rThe following sets RTA to the exponent field of the single-word floating-point number X.1
LIBYT  ATA,X,#cl,,ll>
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LSBYT

Instruction: LSBYT . (S,D)
Class: XOP Load signed byte

Purpose: OP2 is the (source) byte pointer. 6Pi is the destination word which receives the
sign-extended byte. POSITION+LENGTH>MBL  causes a hard trap.

Precision: OPl has the same precision as the modifier . OP2 is a byte-pointer. OP2 points to a
byte with a precision specified by the modifier.

rThe following sets RTA to the signed value of the sign and exponent fields of the single-word
floating-point number X.

1

I
L S B Y T  RTAJX  H 1 2 1



1
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L I S B Y T

Instruction: LlSBYT  l {S,D)
Class: TOP Load immediate signed byte

Purpose: S2 is the (source) byte selector. Sl contains the (source) immediate byte. DEST receives
the sign-extended byte.

Precision: S 1 and DEST have the same precision as the modifier. S2 is a byte selector. The byte
contained in S I has the same precision as the modifier.

rThe following sets RTA to the signed value of the sign and exponent fields of the single-word1
floating-point number X. Notice that a short constant can be used, because the position of the
byte is zero.

I L I S B Y T  RTA,X,#12
--

i
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Instruction: DBYT . (S,D)
Class: XOP Deposit byte

Purpose: OP2 contains, as its low-order bits, the byte to be stored. OP1 is the byte pointer that
locates the byte to be replaced.

Precision: OPl is a byte pointer. It points to a byte with the same precision as the modifer. OP2
has the same precision as the modifier.

rThe following sets the mantissa of the single-word floating-point number X to the twenty-six
low order bits of RTA.

1

I
D B Y T  I X  +, 12,,321  ,RTA

I
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DIBYT

Instruction: DIBYT . (S,D}
Class: TOP Deposit immediate byte

Purpose: DEST is the destination word for the immediate byte. Sl contains, as its low order bits,
the byte to be stored. S2 is the byte selector that controls the placement of the byte in
DEST.

Precision: S 1 and DEST have the same precision as the modifier. S2 is a byte selector.

rThe following sets the exponent field of the single-word floating-point number in RTA

I
D I B Y T  RTA,#0,#cl,  ,112

I
J
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Instruction: ADJBP  l {S,D)
Class: TOP Adjust byte pointer

Purpose: Sl is the source byte pointer. S2 specifies the number of bytes to adjust S 1 by. DEST
receives S 1 adjusted by the number of bytes specified by S2. In more detail, if
S l.LENGTH=O  then S 1 is copied into DEST. Otherwise, DEST becomes S 1 adjusted
forward or backwards by S2. If S2 is positive, the byte pointer is advanced. If S2 is
negative, the byte pointer is backed up. S2=0 causes Sl to be copied into DEST. The
adjustment assumes that single-word bytes are contained in single-words and
double-word bytes are contained in double-words (i.e., POSITION+LENGTH~MBL).
The adjustment will not cause DEST.ADDR to overflow into DEST.IREG.  Instead, the
adjustment is done modulo 230 {no hard trap occurs on wrap-around).

Precision: Sl and DEST are byte pointers and the bytes they specify have precision equal to the
modifier- S2 is a single-word.

I The following advances the byte pointer at BP by one byte. 1
ADJBP BP, #l

Suppose that TABLE is a vector of NBYTES four-bit bytes, packed nine per single-word.
Suppose that a purported index into this table is in RTB. This code checks the purported
index for validity and then produces the desired byte in RTA, or zero if the index was invalid.
It produces a flag indicating whether the index is valid, and then selects one of two byte pointers
to adjust. If the index is valid, a byte pointer to the beginning of the table is adjusted to point
to the desired byte; if not, a byte pointer to a zero-length byte is produced. Loading a byte using
a zero-length byte pointer always produces a zero. Note the “f3” in the ADJBP instruction: it

- causes the indexing by RTA to be double-word indexing, because byte pointers are two words
long.

B N D S F . O  RTA,#cNBYTES-l>,RTB ;RTAt-1  i f  i n d e x  o k a y ,  e l s e  0

A D J B P  RTA,cBPTRS+lB>(RTAM3,RTB  ;get p t r  t o  d e s i r e d  b y t e ,  o r  n u l  I  p t r

LBYT RTA,RTA : load byte into R T A

. . .

BPTRS: T A B L E  * 0,,4 ;byte po in te r  t o  beg inn ing  o f  T A B L E

I

T A B L E  w 0,,0 Izero-length  b y t e  p o i n t e r

-J1
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5.12 Bit

Bit instructions operate on the boolean data type. These instructions are concerned with
individual bits and their ordering. BITRV and BITRVV reverse the order of the low-order bits
of a word. BITEX  and BITEXV extract bits from a word, according to a mask, and then squeeze
them to the right of the destination. This is useful ‘for extracting a set of flags in order to do an
N-way branch on them. BITCNT counts the number of one-bits in a word. This was designed for
counting the number of elements in a PASCAL set. BITFST gives the position of the first
(left-most) one bit in a word. This is useful for computing the index of the first element of a
PASCAL set.



5 5.12 Xustruction  Descriptions

B I T R V

Page 199

Instruction: WTRV e {WAD}
Class: TOP

0

Bit reverse

Purpose: Reverse the order of the S2 low-order bits of Sl, and zero-extend the result into DEST.

Precision: S 1 and DEST have the same precision as the modifier. S2 is a single-word.

Formal Description:

define BITRV. p: qhsd P TOP rp;p;  S3 if (~2 < 01 v (~2 > Bits(p) 1
then Hard-Error
e l s e  d e s t  e Reverse-BitJGl,  ~2)

fi;

I The following reverses all nine bits of its operand.

I
BITRW  RTA,#c123>,#11  ;RTA=624

1
-I
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BITRVV

Instruction: WIWV l {QH,W)
Class: TOP Bit reverse reverse

Purpose: Reverse the order of the SI low-order bits of S2, and zero-extend the result into DEST.

Precision: S2 and DEST have the same precision as the modifier. S 1 is a single-word.

Formal Description:

d e f i n e  BITRVV,  p:qhi E T O P  rp;#~;Sl if (Sl < 0) v (Sl P Bits (#PI  1
then Hard-Error
else dest e Reverse-Bits  (s2, S 1)

fi;

rThe following reverses all nine bits in the operand.

I BITRVV RTA,#ll,#c624~ ;RTA=123

I-

1
-J
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B I T E X

Bit extract

Purpose: Extract the bits of Sl selected by the one-bits of S2. Squeeze these selected bits to the
right and zero-extended into DEST.

Precision: S I, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define

I The

BITEX, #v qhsd ci TOP tp: p; pl dest e Extract-Bits (Sl, ~2)  ;

following extracts alternate bits from the operand.

BI TEX.Q  RTA,#c765>,#c525> ;RTA=37

code does an eight-way dispatch based on CARRY, INT.ZDIV-MODE,  and FLAGS<O>This
in USER-STATUS.

1

RUS RTA ;read USER-STATUS into RTA
B I T E X  RTA,#c010000,,400010~ ;select b i t s

J M P A  CQ DISPTABLE>(RTAW rdispatch  t h r o u g h  t a b l e  o f  IAPs
DISPTABLE:

NDNEDFTHEM ;to t h i s  a d d r e s s  i f  n o  b i t s  w e r e  s e t

FLAG ;to t h i s  a d d r e s s  i f  only FLAGcB>  s e t

ZDIV ;and s o  on...

ZDIVFLAG
CARRY
CARRYFLAG
CARRYZDIV

I-

CARRYZDIVFLAG



Page 202 Instruction Descriptions

BITEXV

§ 5.12

Instruction: BITEXV l (Q,H,S,D)

Class: TOP Bit extract reverse

Purpose: Extract the bits of S2 selected by the one-bits of Sl. Squeeze these selected bits to the
right and zero-extended into DEST.

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define BITEXV. P:qhsd  R TOP rp; p; PI dest c Extract-Bits (~2,  Sl) :

I The following extracts a group of seven bits from the operand.

L
BITEXW  RiA,#c765>,#c525> ; RTA-127

-I
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Instruction: B I T C N T  .  {Q,H,S,D)

Class: X O P

I
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B I T C N T

Purpose: OPlcnumber  of one bits in OP2

Precision: OP 1 is a single-word. OP2 has the same precision as the modifier.

Formal Description:

d e f i n e  BITCNT,p:qM  si XOP [S; PI opl e: Number-ofLBits  (0~2) ;

I The following sets RTA (flag-style) if RTA has odd parity.

Bit count

1
B I T C N T  RTA,RTA

CMPSF,ALL  RTA,#i

The parity of an arbitrarily long block of bits can be obtained by using the XOR instruction to
condense the block. (The XOR operation essentially causes pairs of one-bits to cancel.) If
TABLE is a block of N single-words (N>2), this code sets RTA (flag-style) if TABLE has odd
parity.

X O R  RTA,cTABLE+N-l>,cTABLE+N-22  ;RTA g e t s  X O R  o f  t w o  w o r d s

MOV RTB,##cN-3> ;RTB  c o u n t s  all o t h e r  w o r d s

LOOP: XOR RTA,cTABLE>  (RTB) ;XOR  i n  n e x t  u o r d

DSKP.GEQ  RTB,#B,LOOP ;loop  u n t i l  a l l  w o r d s  d o n e

B I T C N T  RTA,RTB ;count  r e s u l t  a s  b e f o r e

CMPSF.ALL  RTA,##l

A non-zero integral power of two always has a two?-complement  representation with exactly one
bit set. Assuming that HUN02  contains a positive single-word integer, this code jumps to
TWOPOWER  if HUN02 is an exact power of two.

B I T C N T  RTA,HUNOZ ;RTA+l  i f  H U N O Z  i s  a  p o w e r  o f  t w o

DJMPZ.EQL  RTA,TWOPOWER ;jump  t o  TllOPOWER i f  RTA-1  i s  z e r o

If

L
zero is to be considered a power of two, DJMPZEQL  can be changed to DJMPZ.LEQ

Alternatively, a trick involving the NEG instruction can be used instead.
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B I T F S T

Instruction: B I T F S T  .  (Q,H,S,D)

Class: XOP Bit number of first one bit

Purpose: If OP2=0  then OPl t-l else OP h-bit  number of the leftmost one bit in OP2

Precision: OP 1 is a single-word. OP2 has the same precision as the modifier.

Formal Description:

define BITFST. fit qhsd  t XOP ES! PI opl 0: Number_of_FirJt_I_BiC  (0~21;

rThe following sets RTA to floor(log2(RTA))  with RTA assumed to be a non-zero unsigned
single-word integer.

1
B I T F S T  RTAtRTA

S U B V  RTA,#c43>

Suppose that location MASK contains a non-zero single-word. This piece of code constructs a
byte pointer in (double-word) RTA to the smallest byte containing all the one-bits in WUNOZ.

aL

B I T F S T  RTA,HUNOZ ;number o f  l e a d i n g  z e r o  b i t s

B I T R V  RTAl,HUNOZ,#c36.>  ;reverse H U N O Z  i n t o  RTAl

B I T F S T  RTAl ;number o f  t r a i l i n g  z e r o  b i t s

A D D  RTA1,RTA ;number o f  s u r r o u n d i n g  z e r o  b i t s

SUBV RTAl,#c36.> ;length o f  s m a l l e s t  c o n t a i n i n g  b y t e

t'lDV,H,D RTAl,RTA iput p o s i t i o n  i n  h i g h  halfword o f  RTAl

MOVADR RTA,HUNOZ ;make  IAP to H U N O Z  in R T A
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5.13 Block

Blocks are discussed in Sections 3.7. The instructions in this section are used for comparing,
moving, and initializing blocks. Block I/O instructions are described in Section 5.17.

STRCMP is used to compare two blocks (or strings). BLKINI initializes a block to a given
scalar value. BLKMOV copies one block to another location. BLKID does a BLKMOV, but
transfer a block from and INSTRUCTION page to a DATA page. This allows instructions to be
accessed as data. BLKDI transfers from a DATA page to an INSTRUCTION page, allowing data
to be executed as instructions. See Section 2.3.2  for a discussion of INSTRUCTION and DATA
pages.
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STRCMP

Instruction: STKMP  l {RTA,RTB)
Class: XOP String compare

Purpose: Consider the two blocks OPi and OP2 to be strings of quarter-word characters. The
blocks have the same length. {RTA,RTB)  contains the block length in quarter-words.
Signed comparison is used, and each quarter-word character is compared separately. The
result of the comparison is computed as shown in the following table and is stored back
into (RTA,RTB).  The result values are designed to have two useful properties. First, the
result (as a signed integer) bears the same relation to zero that STRING1 does to
STRINGP. Second, the value can be used as an index into the string no matter what the
result, because bit 0 being set does not affect indexing.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION-STATE.

Condition Result

STRINGI  - STRING2 0
STRING1 > STRING2 n
STRING1 < STRING2 -235+n  (i e MINNUM+n)* .

where n is the position of the first character to differ

Table 5-9
STRCMP Results

-Precision: OPI and OP2 are blocks. The elements of the blocks are quarter-words. RTA and
RTB are single words.
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rThe following sets RTA to the result of comparing the eighty-character blocks at X

MOV RTA,?l20

STRCMP.RTA  X,Y

;120  o c t a l = 80 d e c i m a l

The following illustrates a more general sort of comparison. Assume that XLENGTH contains
the length of a string beginning at X and YLENGTH that of string at Y. For the purposes of
this comparison we will imagine that appended to the two strings are infinitely many imaginary
characters defined to be “less than” ail real characters. We will then define the result of the
comparison as the result of a STRCMP performed on these extended str
similar to that used in some high-level languages).

ings. (This definition is

M I N  RTA,XLENGTH,YLENGTH :set RTA to minimum r e a l  l e n g t h

I N C  RTB,RTA ; save  one  g rea te r  in  R T B  f o r  u n e q u a l  c a s e

STRCMP,RTA  X,Y ;do comparison

JMPZ.NEQ  RTA,DONE ;difference f o u n d

SKP.EQL  XLENGTH,YLENGTH,DONE ;done  i f  s t r i n g s  a r e  e q u a l  l e n g t h

MOV RTA,RTB ;RTB  i s  i n d e x  o f  “ i m a g i n a r y ”  c h a r a c t e r

SKP.LEQ XLENGTH,YLENGTH,DONE ;set h i g h - o r d e r  b i t  i f  n e c e s s a r y

OR RTA,#c400000,,0> ;or D I B Y T  RTA,#l,#l t o  s a v e  a  w o r d !

. . . ;RTA  c o n t a i n s  r e s u l t

I
J
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ELKMOV

Instruction: BLKMOV . (RTA,RTB)
Class: X O P Block move

Purpose: OP2 is the source block. OPI is the destination block. (RTA,RTBJ specifies which
register contains the quarter-word transfer length.

The semantics of the BLKMOV instruction are such that if the source and destination
blocks overlap, no word in the source block is overwritten until after it has been
transferred to the destination block.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION-STATE.

Precision: OP 1 and OP2 are blocks. The elements of the block have quarter-word precision.
RTA and RTB are single-words.

I rThe following moves all registers into an area starting at RECS. The original contents of RTA
1

must be saved temporarily in SAVRTA since RTA is used to contain the quarter-word transfer
length.

SLR, 4 SAVRTA, ?4*40 ;save RTA and load with transfer length

BLKMOV, RTA REGS, %0 ;do block transfer

MOV REGS+4*RTA,SAVRTA f f ix up saved  R T A
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BLKINI

Instruction: BLKINI  . {RTA,RTB)  . {Q,H,s,D)
Class: XOP Block initialize

Purpose: OP2 is the scalar initialization value. OP1 is the block to be initialized. (RTA,RTB)
specifies the register containing the number of quarter-words to be initialized.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION-STATE.

Precision: OPl is a block. OP2 has the same precision as the second modifier. The elements of
the block also have the same precision as the second modifier. A hard trap will occur if
the contents of (RTA,RTB)  is not a multiple of the block-element precision. RTA and
RTB are single-words.

rThe following zeros registers 8 through 31.

MOV RTA, ?4*30 :set RTA to number of QWs

BLKINI.RTA  %8,#0 ;initialize block
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BLKID

f 5.13

Instruction: BLKID . {RTA,RTB}
Class: XOP Block transfer instructions to data

Purpose: OP2 is the source block. OPl is the destination block. (RTA,RTB)  specifies which
register contains the quarter-word transfer length. The source block must be on a page(s)
marked with INSTRUCTION4 The destination block must be on a page(s) marked
with DATA= 1.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION-STATE.

Precision: OPl and OP2 are blocks. The elements of the block have quarter-word precision.
RTA and RTB are single-words.

I The following transfers a single word instruction at INST  into RTA. 1
NOV RTA,?4 ;load R T A  u i t h  QW t r a n s f e r  l e n g t h

BLKIO.RTA, INST ; load R T A  u i t h  i n s t r u c t i o n

I
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BLKDI

Instruction: BLKDI . {RTA,RTB)
Class: XOP Block transfer data to instructions

Purpose: OP2 is the source block. OP1 is the destination block. (RTA,RTB)  specifies which
register contains the quarter-word transfer length, The source block must be on a page(s)
marked with DATA-l. The destination block must be on a page(s) marked with
INSTRUCTION4

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION-STATE.

Precision: OPl and OP2 are blocks. The elements of the block have quarter-word precision.
RTA and RTB are single-words.

rThe following transfers a DW value in RTA to a two word instruction ae INST. 1
MOV RTB, 110 ;set RTB to QW transfer length
BLKDI.RTB INST,RTA ;move  RTA to instruction space
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5.14 Status

Status instructions are used to manipulate the USER-STATUS and PROCSTATUS  words.
Instructions exist for reading, writing, and jumping based on logical conditions (LCONDS).  The
LCONDs are described in Section 5.6. See Section 2.5 for a description of the status words.
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RUS

Instruction: RlJS
Class: XOP Read user status

Purpose: OP MJSER-STATUS.  OP2 is unused.

Precision: OP 1 is a single-word. OP2 is unused (OD2 must equal zero).

rThe following sets RTA to USER-STATUS. Note that FASM supplies the zero operand.
1

L
RUS RTA
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JUS

Instruction: JUS l {NONALAWNAL)
Class: JOP Jump on selected user status bits

Purpose: If OP 1 LCOND USER-STATUS (where LCONDG{NON,ALL,ANY,NAL})  is true,
control is transferred to the location specified by JUMPDEST.

Precision: A 11 operands concerned are single-words.

rLet ERRORS be a mask for several bits in USER-STATUS. The following jumps to ZIP1if
any of these bits are set.

JUS ERROR&ZIP

-I
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JUSCLR

Instruction: JUSCLR . {NON,ALL,ANY,NAL)
Class: JOP Jump on selected user status bits and clear

Purpose: TEMPtUSER-STATUS. USER-STATUS is then loaded according to
USERSATUStUSERSTATUSAone’s-complement(OP  1). If OPI LCOND TEMP
(where LCONDc(NON,ALL,ANY,NALj)  is true, control is transferred to the location
specified by JUMPDEST. Note that a hard trap will occur if clearing the specified bits
would produce an illegal value for USER-STATUS.

Precision: A II operands concerned are single-words.

rLet ZDIV be the mask for the INTZDIV  bit in USER-STATUS. The following jumps
YOW and clears this bit if it is set.

I
JUSCLR ,-ALL ZD I V, YDW
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WUSJMP

Instruction: WUSJMP
Class: JOP Write user status and jump

Purpose: USER-STATUScOP 1, Control is then transferred to the location specified by
JUMPDEST. Note that a hard trap will occur if an illegal value of USER-STATUS is
specified.

Precision: A Ii operands concerned are single-words.

I The following sets the USER-STATUS to NEWUS and jumps to AWAY.

WUSJMP NEWUS,AWAY

1
-.I



i
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Instruction: SETUS
Class: XOP Set specified user status bits

Purpose: USER-STATUStUSER-STATUSvOPl.  OP2 is unused. Note that a hard trap will
occur if an illegal value of USER-STATUS is specified.

Precision: OP1 is a single-word. OP2 is unused (OD2 must equal zero).

rThe following sets the low order bit in USER-STATUS.

I
SETUS #1

1
_I
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CLRUS
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Instruction: CWJS
Class: XOP Clear specified user status bits

Purpose: USERSTATUStUSERSTATUSAone’~-complement(OP  1). OP2 is unused. Note that a
hard trap will occur if an illegal value of USER-STATUS is specified. The JUSCLR
instruction can clear specified user status bits and simultaneously test them.

Precision: OP 1 is a single-word. OP2 is unused (OD2 must equal zero).

rThe following clears the low order bit in USER-STATUS. 1
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Instruction: RSPlD
Class: XOP

1

I
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RSPID

Read SPJD

Purpose: OP ltUSER,STATUS.SPJD. OP2 is unused.

Precision: OPi is a single-word. OP2 is unused (OD2 must equal zero).

rThe following loads the top stack element into RTA, without first knowing which register is the1
stack pointer (as long as it is not RTA!).

RSPID RTA
MOV RTA,co>(RTAW2

;RTA+stack  register number
;RTAttop  of stack

-I



Page 220 Instruction Descriptiorls

WSPID

g 5.14

Instruction: WSPID
Class: XOP Write SPJD

Purpose: USERSTATUSSPJDcOP1.  If OP1>31 or OP1e0,  the result is undefined. A hard
trap will occur if OPl=3  or OPb31 (these are illegal values for SPlD). OP2 is unused.

Precision: OP 1 is a single-word. OP2 is unused (002 must equal zero).

rThe following sets the stack pointer/limit to the last two registers. 1
WSPID #36 ; SP-%36, SL=%37

I



1
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RRNDMD

Instruction: FWJDMD
Class: XOP Read rounding mode

Purpose: OP k-USER_STATUS.RND-MODE.  OP2 is unused. See Section 5.3.1  for a description
of rounding modes.

Precision: OP I is a single-word. OP2 is unused (OD2 must equal zero).

rThe following jumps to FLOOR if floor rounding is specified by USER-STATUS. 1
RRNDMD RTA

L
Jt’lPZ.EQL  RTA,FLOOR

-I
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Instruction: WRNDMD
Class: XOP Write rounding mode

Purpose: USERSTATUS.RND-MODEeOPl.  If OPb31 or OP 1x0, the result is undefined.
OP2 is unused. See Section 5.3.1 for a description of rounding modes.

Precision: OP 1 is a single-word. OP2 is unused (OD2 must equal zero).

I The following sets the USER-STATUS to specify floor rounding.

I
WRNDMD #43

1
_I
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Instruction: RPS
Class: XOP
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RPS

Purpose: OP l+PROC-STATUS. OP2 is unused.

Restrictions: Illegal in user mode.

Precision: OP 1 is a single-word. OP2 is unused (OD2 must equal zero).

I The following sets RTA to PROC,STATUS.

RPS RTA

Read processor status

1
-I
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WFSJMP

Instruction: WFSJMP
Class: JOP Write full status and jump

Purpose: USERSTATUScOP  1. PROCSTATUScNEXT(OP  1). Note that NEXT(OP 1) is
loaded directly into PROCSTATUS without interpreting the PREV/CRNT-FILE  or
PREV/CRNT-MODE fields in the special way that is done when loading partial
processor status. (See Section 2.5.1 for a discussion of processor status.) Note that a hard
trap will occur if an illegal value of PROCSTATUS is specified.

Restrictions: Illegal in user mode.

Precision: A 11 operands concerned are single-words.

I The following sets PROCSTATUS to NEWPST and jumps to BRAZIL.

I
WFSJMP NEWPST,BRAZIL

1
_1
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RCFILE

Instruction: RCFU
Class: XOP

Purpose: OP l+PROC-STATUS.CRNTIILE.  OP2 is unused.

Restrictions: Illegal in user mode.

Precision: OP 1 is a single-word, OP2 is unused (OD2 must equal zero).

I The following sets RTA to the current file number.

L
RCFILE RTA

i

Page 225

Read CRNT-FILE

1
-I
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Instruction: WWlLE
Class: XOP Write CRNTJILE

Purpose: PROC-STATUS,  CRNTJILEtOP  1. If OP 1~ 15 or OP l<O, the result is undefined.
OP2 is unused.

Restrictions: Illegal in user mode.

Precision: OPl is a single-word. OP2 is unused (OD2 must equal zero).

rThe following sets the current file number to the value in RTA.

I
GlCFILE  RTA

-J
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RPFILE

Instruction: FWW.E
Class: XOP

Purpose: OP I+PROC-STATUS. PREV-FILE.  OP2 is unused.

Restrictions: Illegal in user mode.

Precision: OP 1 is a single-word. OP2 is unused (OD2  must equal zero).

I The following loads RTA with the previous file number.

I
RPFILE RTA

Page 227

Read PREKFXLE

1
-I
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Instruction: WPFILE
Class: XOP Write PREY-FILE

Purpose: PROC-STATUS,  PREKFILEcOP  1. If OPb15 or OPkO,  the result is undefined.
OP2 is unused.

Restrictions: Illegal in user mode.

Precision: OP 1 is a single-word. OP2 is unused (OD2 must equal  zero).

I The following sets the previous file number to the value in RTA.

I
WPFILE RTA

1
-I
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RPID

Instruction: RPID
Class: XOP Read processor identification number

Purpose: OPl+PROCJD.  OP2 is unused.

Restrictions: Illegal in user mode.

Precision: OP 1 is a single-word. OP2 is unused (OD2 must equal zero).

I The following sets RTA to the processor ID number.

RPIO RTA

1
_J
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5.15 Cache and Map

Each S-l processor has two private caches to reduce memory access times for those sections of
memory that are frequently accessed. One cache is for instructions. The other is for data. The
instruction cache retains only locations from pages marked with INSTRUCTIONS=l, the data
cache retains locations from pages marked with DATA&  (See Section 2.32 for details on access
modes.) Instruction words may not, in general, be accessed as data (except as immediate operands).
Special instructions are provided for converting instructions to data and data to instructions. (See
BLKID, and BLKDI in Section 5.13 for details.)

Each cache uses physical addresses to tag entries, allowing the software to switch virtual
addresses spaces without sweeping the cache. This eliminates the problem of clogging the cache
with multiple copies of shared read-only information.

For purposes of communication or synchronization, it may be necessary to insure that certain
variables are not present--in  the cache of a specific processor. Access modes serve this purpose and
are described in Section 2.3.2. In addition, special instructions are provided to sweep the caches
(SWPIC and SWPDC). Sweeps may either update main memory, invalidate the cache residents, or
both.

No instructions are provided which, when executed on processor PA, cause the cache of
processor P B to be swept (A # B). This necessary function will be accomplished by directing a
special interrupt from PA to P, which causes Pg to sweep its own cache.

Each processor also has two page map caches. These contain, for the most recently used
pages, the complete translation from virtual page addresses to physical page addresses. See Section
2.3 for a discussion of the virtual-to-physical translation. One map is for the addresses of
instructions and the other is for the addresses of data. Special sweep commands are provided for
the maps (SWPIM, SWPDM).

Two other commands are discussed in this section: WEPJMP and WUPJMP. These write
into the executive/user segment pointer/limit registers (see Section 2.3).
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SWPIC

Instruction: SWPIC . {RTA,RTB}  . {V,P>
Class: XOP Sweep instruction cache

Purpose: Sweep the instruction cache by (Virtual,Physical)  addresses, Ming residents. To kill
means to remove cache residents without updating memory. Updating is not provided for
the instruction cache since residents in the instruction cache cannot be modified. OPl is
the block to be swept. (RTA,RTBJ  contains the number of quarter-words to be swept
(which must be a multiple of four (4) or a hard trap will occur).

The address sequence generated by the instruction may be interpreted by the hardware as
either virtual or physical addresses, depending on the modifier (V=virtual,P=physical).
Physical-address sweeps are legal only in executive mode to prevent the user from
degrading system performance by sweeping addresses which not in its address space.
Virtual-address sweeps are legal in both user and executive mode.

In the case of physical-address sweeps, the microcode may, for efficiency reasons, choose to
sweep the entire cache, if a very large sweep range is specified. No sweep-range
optimization is performed for virtual-address sweeps.

Restrictions: Illegal in user mode.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION-STATE.

Precision: OP 1 is a block. OP2 is unused (OD2 must equal zero). RTA and RTB are
single-words.

rThe following sweeps all instructions from START up to but not including the following1A instructions.

-L
MOV RTA, <r -START>
SWP1C.RTA.V  START

:set RTA the number of intervening QWs
; sweep cache
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SWPDC

Instruction: SWPDC . {RTA,RTB} . (v,p) . (U,UK}
Class: XOP Sweep data cache

Purpose: Sweep the data cache by {Virtual, Physical) addresses, (updating, updating and killing);
residents. To kill means to remove cache residents without updating memory. No
instruction is provided for killing data cache residents without updating. OP 1 is the
block to be swept. (RTA,RTB)  is the number of quarter-words to be swept (which be a
multiple of four (4) or a hard trap will occur)

The address sequence generated by the instruction may be interpreted by the hardware as
either virtual or physical addresses, depending on the modifier (V=virtual,P=physical).
Physical-address sweeps are legal only in executive mode to prevent the user from
degrading system performance by sweeping addresses which not in its address space.
Virtual-address sweeps are legal in both user and executive mode.

In the case of physical-address sweeps, the microcode may, for efficiency reasons, choose to
sweep the entire cache, if a very large sweep range is specified. No sweep-range
optimization is performed for virtual-address sweeps.

Restrictions: Illegal in user mode.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION-STATE.

Precision: OP 1 is a block. OP2 is unused (OD2 must equal zero). RTA and RTB are
single-words.

rThe following updates the registers, without removing them from the data cache (i.e., not
a them).

I

MOV RTA,?200

SWPDC.RTA.V.U %0

;set RTA to number of QWs
:sweep cache

-.I
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1
1

SWPIM

Instruction: SWPIM . (E,U)
Class: XOP Sweep instructions page map

Purpose: Sweep the instruction page map, killing (executive, user}-space residents. SWPIM is used
for eliminating residents of the instruction page map. It does not update main memory
since page map residents cannot be modified. OPl is interpreted as a virtual address, and
the translation entry for the page containing that virtual address is removed from the
page map. OP2 is unused. Since SWPIM operates on only one page map resident at a
time, it is fast and not interruptable.

Restrictions: Illegal in user mode.

Precision: OP I is a single-word. OP2 is unused (OD2 must equal zero).

rThe following kiMs the page map entry for the next lower addressed instruction page in the users
address space.

1
SWPIM.U  .-4000
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SWPDM

g 5.15

Instruction: SWPDM . (E,U)
Class: XOP Sweep data page map

Purpose: Sweep the data page map, killing (executive, user)-space residents. SWPDM is used for
eliminating residents of the instruction page map. It does not update main memory since
page map residents cannot be modified. OPl is interpreted as a virtual address, and the
translation entry for the page containing that virtual address is removed from the page
map. OP2 is unused. Since SWPDM operates on only one page map resident at a time,
it is fast and not interruptable.

Restrictions: Illegal in user mode.

Precision: OPl is a single-word. OP2 is unused (OD2 must equal zero).

rThe following kills the-page map entry for the data page containing the virtual address specified1
in RTA.

SWPDM. U RTA
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WUPJMP

Instruction: WUPJMP
Class: JOP Write user segment table pointer and jump

Purpose: USERSTP+OP 1. USERSTLeNEXT(OP 1). PGJUMPDEST.  A hard trap will
occur if either OP 1 or NEXT(OPl)  contains an address that is not a multiple of four.
This instruction also kills all tc~et  residents of the instruction and data page maps.

Restrictions: Illegal in user mode.

Precision: OP 1 is a single-word. NEXT(OP 1) is a single word.

rThe following sets the user segment table to the six SWs pointed to by RTA and jumps to
NEXT.

1
MOVPHY- RTAJRTA)
ADD RTAl,RTA,#6
WUPJMP RTA,NEXT

-I
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WEPJMP

Instruction: WEPJMP
Class: JOP Write executive segment table pointer and jump

Purpose: EXECSTPtOP  1. EXECSTLtNEXT(OP  I). PCtJUMPDEST. A hard trap w i l l
occur if either OP 1 or NEXT(OP1) contains an address that is not a multiple of four.
This instruction also kills all executive residents of the instruction and data page maps.
Notice that the jump destination is computed in the old executive context, but the location
actually transferred to will be within the new executive context.

Restrictions: Illegal in user mode.

Precision: OP 1 is a single-word. NEXT(OP 1) is a single word.

rThe following sets the executive segment table to the six SWs pointed to by RTA and jumps1to
NEXT.

MOVPHY  RTA, (RTA)
ADD RTAl,RTA,#6
WEPJMP RTA, NEXT

-I
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5.16 Interrupt

Interrupts occur during the first stage of the instruction-execution sequence (see Section 5.1).
When an interrupt has been accepted, control is transferred to an interrupt handler whose address is
contained in the interrupt-vector associated with the particular interrupt that occurred. The
interrupt-vector format is shown in Figure 5-6. The occurrence of an interrupt also causes
information to be put on the stack in an interrupt save area (INTUPT-SAVE-AREA).  The
format of this save area is shown in Figure 5-7. The concepts of save areas and vectors are
discussed in Section 6. The interrupt-parameter is used to pass information about the interrupt to
the interrupt handler. The way in which interrupt requests are handled is discussed in the
following paragraphs.

new USER-STATUS

new PROC-STATUS

-_ I
0

handler address
I

35

Figure 5-6
Interrupt Vector Format

interrupt parameter

I USER-STATUS 1

PROCSTATUS

I CP 1 15m0 1 IPC-NEXT-1  NSTR<B:  29>> 1

0 35

Figure 5-7
Interrupt Save Area Format

The interrupt architecture of the S-l allows for eight levels of priority. The priority of the
processor is specified by PROC,STATUS,PR10~0:2>. The priority of any interrupts that are
pending and that are enabled is specified by the eight-bit register INTUPTATLV~.AO:~>.
INTUPT_AT-LVL[l]=l  means that one or more interrupts are pending and have been enabled at
level i.

Associated with each priority level i (and thus with INTUPTATLVL&)  are two 36-bit
r e g i s t e r s  INTUPT...PEND[Il  a n d  INTUPT...ENB[1’1. The interrupt-pending registers
INTUPT-PEND[  0 . . 7 1 can each accept interrupt requests from up to thirty-two devices in bits
0.. 31. Bits 32 . . 35 are unused. If device j with priority i requests an interrupt,

INTUPT-PEND[iJ+  is set equal to one. The second register at each priority level is the
interrupt-enab!e  register INTUPTENB[  0 . . ‘7 1. INTUPTENB[il  provides interrupt-enable bits
for the thirty-two devices that are handled by INTUPT-PEND[i].  As with INTUPT-PEND,
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INTUPT_ENB<32:35>  is unused.

If INTUPT-PEND[L]+  and INTUPT-ENB[il+  are  both  equal  to  one for  any
combination of i and j, INTUPT-AT_LVI.,[i]  will be set to one. Zero is the highest priority and
seven the lowest. If there exists a priority C, such that INTUPTAT-LVL[i]=  1 and
PROC-STATUSPRIOG,  the processor will be interrupted. If more than one bit of
INTUPTATLVL  is set, the device with the highest priority (smallest magnitude) will be the one
that interrupts the processor. Within a given interrupt level i, bit zero has the highest priority and
bit thirty-one the lowest. Note that devices with priority=‘7  cannot interrupt the processor because
PROCSTATUS.PRIO  can never  be  greater  than seven. Note  also that if
PROC-STATUS.PRIO=O,  the processor cannot be interrupted at ail.

Each interrupting device has a unique interrupt erector (INTUPT-VEC)  and a unique bit at
priority i in INTUPT-PEND[i] associated with it. When a device interrupt occurs the appropriate
bit of INTUPT-PEND is see and the interrupt-parameter ts stored in a calculated position of
INTUPT_PARM[0:255],  a RAM located in the S-l processor. (The calculation is to create an
INTUPT-VECNUM, described below.) When an interrupt from a device has been accepted (as
described above), control is transferred to the address specified by the handier address in the
interrupt vector. The INTUPT-PEND[i]+ bit that caused the interrupt is cleared. New
USER--STATUS  and PROC-STATUS words are also loaded from the interrupt vector. The old
USER--STATUS and PROC-STATUS words are saved in the interrupt 3aue area
(INTUPT-SAVE-AREA). The interrupt-parameter, which contains information about the cause
of the interrupt, is also saved in INTUPT-SAVE-AREA. The format of INTUPT-SAVE-AREA
is shown in Figure 5-7.

Instructions are provided to read, write, set and clear INTUPT-ENB  and INTUPT-PEND.
There are also instructions to read and and write an interrupt-parameter. Ail interrupt instructions
are legal in both executive and user mode.

Two terms that are used in the following instruction descriptions are INTUPT-.LVL-NUM
Hnd INTUPT-  VEC-NUM. INTUPT-LVL-NUM  is a 3-bit interrupt level-number (ILN),
right-justified in a single-word field of zeros (i.e., c33*0  11 ILN<O:2>3).  It is used to specify a
priority level. INTUPT-VECNUM is a S-bit level-number (ILN) concatenated with a 5-bit
interrupt bit-number (IBN) within the level, all right-justified in a single-word (i.e.,
c28*:0 11 ILN<O:& II IBN<O:4>3).  Ie uniquely specifies a particular interrupt vector number. (Note
that the INTUPT-VECNUM is also the location of the interrupt-parameter in INTUPT-PARM.)
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MEN

Instruction: RlEN
Class: XOP Read interrupt enable

Purpose: OP2 is an INTUPTLVLJWM.  OPl gets the contents of the interrupt-enable register
associated with priority level OP2 (INTUPTJNB[OP21).

Restrictions: Illegal in user mode.

Precision: OP 1 and OP2 are both single-words.

I The following loads RTA with the enable bits for the highest priority level.

L
RIEN RTA,#0

-_

1
--I
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Instruction: WlEN
Class: XOP Write interrupt enable

Purpose:  OPl is an INTUPT-LVL-NUM.  The interrupt-enable register associated with priority
level OP 1 (INTUPT_ENB[OPl])  is set to OP2. If OP2<32:35>  * 0, then a hard trap will

occur.

Restrictions: Illegal in user mode.

Precision: OP 1 and OP2 are both single-words.

I The following enables ail interrupts at the second-highest priority level.

I
MIEN #l,#cG?0>

1
-I
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SIEN

Instruction: SlEN
Class: XOP Set specified bits in interrupt enable

Purpose: OPl is an INTUPTJVLNUM. The interrupt-enable bits (for priority level OP 1)
corresponding to the one bits of OP2 are set to one (i.e.,
INTUPT_ENB[OP lltOP2 v INTUPTJZNBlOP  11).

Precision: OP 1 and OP2 are both single-words.

rThe following enables for interrupt by the third-highest priority device at the
priority level.

I
SIEN #Z,#c100000,,0~
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CIEN
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Instruction: CIEN
Class: XOP Clear specified bits in interrupt enable

Purpose: OP 1 is an INTUPTLVLNUM.  Clear the interrupt-enable bits (for priority level OP 1)
corresponding the bits of
INTUPT-ENBEOP  lizone’r-compiement(i&)  A INTUPTAZNBCOP  11).

OP2 (i.e.,

Precision: OP 1 and OP2 are both single-words.

rThe following disables interrupts by the fourth-highest priority device at the fourth-highest
priority level.

1

I
CIEN #3,#c40000,,0>
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RIPND

Instruction: RWND
Class: XOP Read interrupts pending

Purpose: OP2 is an INTUPT-LVL-NUM. OPl gets the contents of the interrupt-pending
register associated with priority level OP2 (INTUPT-PEND[OP’L$.

Precision: OPl and OP2 are both single-words.

rThe following sets RTA to the pending interrupts at the fourth-lowest priority level. 1
RIPND RTAJ4
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Instruction: WlPND
Class; XOP Write interrupts pending

Purpose: OP 1 is an INTUPT_LVL-NUM.  The interrupt-pending register associated with priority
level  OP1 (INTUPT-PEND[OPl])  is set to OP2. If OP2<32:35>  * 0, then a hard trap
will occur.

Precision: OP 1 and OP2 are both single-words.

rThe following sets interrupts pending for ail devices at the third-lowest priority level. 1
WIPND #5,#c-202
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SIPND

Set specified interrupt-pending bits

Purpose: OPl is an INTUPTLVLNUM.  The interrupt-pending bits (for priority level OPl)
corresponding to the one bits of OP2 are set to one (i.e.,
INTUPT--PEND[OP  llcOP2 v INTUPT-PENDrOP  11).

Precision: OPl and OP2 are both single-words.

rThe following sets an interrupt pending for the second-lowest priority device at
second-lowest priority level.

SIPND #6,#c40>
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Instruction: CIpND
Class: XOP Clear specified interrupt-pending bits

Purpose: OPl is an INTUPT-LVLNUM.  Clear the interrupt-pending bits (for priority level
OP 1) corresponding the bits of
INTUPT-PENDEOP  I &-one%-c~mpletnent(OP2)OnnfNTUPT_PEND[OP  I I).

OP2 (i.e.,

Precision: OPl and OP2 are both single-words.

rThe following clears any interrupt pending for the lowest priority device at the lowest priority1
level.

CIPND #7,#c20>
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RIPAR

Instruction: IWAR
Class: XOP Read interrupt parameter

Purpose: OP2 is an INTUPT-VECNUM.  OPl gets the contents of INTUPT,PARM[OP2].

Precision: OPI and OP2 are both single-words.

rThe following sets RTA to the interrupt parameter for vector 1.

L
RIPAR RTA,#l
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WIPAR

Instruction: WIPAR
Class: XOP Write interrupt parameter

Purpose: OP 1 is an INTUPT-VECNUM.  INTUPT-PARMLOPII  is set to OP2.

Precision: OP 1 and OP2 are both single-words.

I The following sets the interrupt parameter for vector 1 to RTA.

I WIPAR #l,RTA

1
-I
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5.17 Input/Output

The S-l performs I/O via I/O buffers. The number of I/O buffers is implementation
dependent (with upper bound 2’). The Mark II contains eight //O buffers (IOBUF[O:‘71>. Each of
the eight IOBUFs contains 2K single-words. Each IOBUF is connected to exactly one r/O Processor
(TOP)  through a simple interface (IOBUF-IFACE)  in the IOP. One IOP may be connected to
multiple IOBUFs. Devices on the IOP’s internal bus (IOP-BUS) address the IOBUF either as
32-bit words or as pairs of 16-bit words. These 32-bit  words are right-justified in the 36-bit
memory. The extra four bits allow the S-l processor to use the buffers as auxiliary storage. The
IOBUF-IFACE  can be configured by the IOP so that the addresses of the IOBUF can start at any
(aligned) IOP-BUS address.

The IOP and devices on the IOP-BUS can read and write locations in the IOBUF as normal
IOP-BUS locations (including &bit, 16-bit, and 32bit writes). The S-l processor can read and
write IOBUF locations in a single cycie as 36-bit single-words. A synchronization mechanism is
provided to prevent simultaneous access. One set of translation hardware is located between the
eight IOBUFs and the main data path of the S-l processor. This hardware is able to do four
different types of translations in each direction.

IOBUF to Processor Processor to IOBUF Name

Bit stream Bit stream B
8 bits right-justified in QW QW<l:$>  in 8 bits a
16 bits right-justified in HW HW<2:17>  in 16 bits H
32 bits right-justified in SW SW<4:35> in 32 bits S

QW-quarter-word,  HW=half-word,  SW=single-word.

Table 5-10
ProcessorlIOBUF  Translations

Certain areas within each IOBUF are, by convention, dedicated to IOP/S-1 control
communication. All device interrupts are forwarded through an IOP to the S-l processor.
Interrupts are described fully in Section 5.16. When a device interrupt occurs, the IOP writes
control information into the control section of the IOBUF (including the INTUPT-PEND register
number, the INTUPT-PEND bit number, the interrupt-parameter). The IOP then interrupts the
S- 1 processor. The S-l processor immediately processes the interrupt and interprets the control
information in the IOBUF. It should be noted that before the IOP writes the control area of
IOBUF, it busy-waits until the previous interrupt has been serviced by the S-l processor.

Similarly, when the S-l processor needs to interrupt the IOP, it sets up the contents of
another portion of the control area of the appropriate IOBUF and executes an instruction which
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causes the IOP to interrupt and interpret the IOBUF control area. The S-l processor also does a
busy-wait to avoid conflicts.

There are instructions to fill and empty an IOBUF, and to interrupt an IOP. All I/O
instructions are legal in either executive or user mode.

When an operand is to be interpreted as a IOBUF address, the following procedure is used.
The virtual address which results from the operand address calculation must reside on an I/O page
(see Section Z3.2). The standard virtual-to-physical address transformation takes place (see Section
2.3). The resulting physical address is not interpreted as a physical address in memory, but rather
as an IOBUF physical address (IOBUF-PHYADDR). IOBUF-PHYADDR has the following
format: c7*0 11 IOBUFNUM<0:8>  11 ADDR~IN_IOBUFcO:17>~. IOBUF-_NUM refers to the
number of the IOBUF to be accessed. (On the Mark IIa IOBUF-NUM  must be in the range
0 . . 7 .> ADDRINJOBUF  specifies the 32-bit-word address within the selected IOBUF. If

IOBUFNUM is larger than the maximum available, or if ADDRJNJOBUF is not a valid
32-bit-word address within an IOBUF, or if the first seven bits of IOBUF-PHYADDR are not
zero, or if the virtual address specified was not on an I/O page then a hard trap will occur.

This virtual-to-physical transformation allows the executive to maintain control over the I/O
buffers, even though the I/O instructions are legal in user mode. It is up to the executive to set up
the transformation to a valid IOBUF address and to indicate that the virtual page is a valid I/O

Page-
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BLKIOR

Instruction: BLKiOR . (RTA,RTB)  . (B,Q,H,S)
Class: XOP Block I/O read and translate

Purpose: Transfer from an IOBUF to main memory. OPl is the destination memory block.
(RTA,RTB)  contains the quarter-word block length. OP2 is the source IOBUF block.
(B,Q&S)  specifies the type of translation between the IOBUF and the processor.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION-STATE.

Precision: OPl is a block. OP2 is an IOBUF block. RTA and RTB are single-words.

r I
Assume BUFFER is a legitimate IOBUF address. To read eighty characters from the IOBUF

1
(starting at BUFFER) to a block in memory starting at IMAGE the following instruction
sequence could be used.

MOV RTA,?120 ;set RTA to eighty QWs

BLKI0R.RTA.Q IMAGE,BUFFER ;do read
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BLKIOW

Instruction: BLKIOW . (RTA,RTB)  . (B,Q,H,S)
Class: XOP Block I/O write and translate

Purpose: Transfer from main memory to an IOBUF. OPl is the destination IOBUF block.
{RTA,RTBJ  contains the quarter-word block length. OP2 is the source memory block.
(B,QJ-I,S> specifies the type of translation between the processor and the IOBUF.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION-STATE.

Precision:

rAssume
IOBUF

L

OP 1 is an IOBUF block. OP2 is a block. RTA and RTB are single-words.

BUFFER is a legitimate IOBUF address. To transfer the two characters “Sl” into the
starting at BUFFER the following instruction sequence could be used.

I

MOV RTAJZ - ;set RTA to two QWs

BLKI0W.RTA.Q BUFFER,#c"Sl",,B>  ;do write

I
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Instruction: INTIOP
Class: XOP Interrupt I/O processor

Purpose: OPl is an IOBUF address. The IOP connected to the IOBUF containing OPl is
interrupted. OP2 is unused.

Instruction Descriptions

INTIOP

Page 253

Precision: OP 1 is a single-word (and must transform to a valid IOBUF-PHY-ADR). OP2 is
unused (and hence OD2 must be zero).

rAssume BUFFER is a legitimate IOBUF address. The following instruction will interrupt the
I/O Processor containing BUFFER.

1

L
INTIOP BUFFER

-J
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5.18 Performance Evaluation

The S-l has several double-word counters which can be configured to count different events.
These counters are all be readable in user mode, but they are be writable only in executive mode.
Each counter has enable bits associated with it, accessible only in executive mode. Counter zero is
always enabled, by convention, to count real-time cycles.
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RCTR

Instruction: RCTR
Class: XOP Read counter

Purpose: OP2 is a counter number. OP1 gets the contents of the counter specified by OP2.

Precision: OPi is a double-word. OP2 is a single-word.

I The following sets RTA (DW) to the current real-time cycle count.

I
RCTR RTA, #0

1
-I
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Instruction: WCTR
Class: XOP Write counter

Purpose: OP 1 is a counter number. Write OP2 into the counter specified by OP 1.

Restrictions: Illegal in user mode.

Precision: OPl is a single-word. OP2 is a double-word.

I The following zeros the real-time cycle counter.

I
WCTR #0, #0
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RECTR

Instruction: RECTR
Class: XOP Read enable bits for counter

Purpose: OP2 is a counter number. OPl gets the contents of the enabling register for the counter
specified by OP2.

Restrictions: Illegal in user mode.

Precision: OP 1 is a double-word. OP2 is a single-word.

I The following reads the enabling bits for counter COUNT into RTA.

I
RECTR RTA, COUNT

-II
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Instruction: WECTR

Class: XOP Write enable bits for counter

Purpose: OPl is a counter number. Write OP2 into the enabling register for the counter specified
by OPl.

Restrictions: Illegal in user mode.

Precision: OP 1 is a single-word. OP2 is a double-word.

I The following writes ENABLE into the enabling register for counter COUNT.

I
WECTR COUNT,ENABLE

.
-I
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5.19 Miscellaneous

The instructions in this section fit no general category.
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NW
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Instruction: NW
Class: XOP No operation

Purpose: NOP may have operands, but it performs no operation and stores no result. It always
transfers control to the next Instruction. The operand addressing calculations are carried
through; while the operands themselves are not referenced, an invalid addressing mode
will cause a hard trap.

Precision: OP 1 and OP2 may be any precision since they are not fetched.

rThe following three instructions are, respectively, one, two and three word NOPs. 1
NOP #0,#0
NOP #El, #c0>
NOP ~7~03,  c-10) > (sP) ?z
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JPATCH

Instruction: JPATCH
Class: HOP Jump to patch

Purpose: JPATCH is an unconditional jump instruction which uses cODl I] OD23 as a signed
24-bit offset from the PC to form the jump address. It is intended for use by a debugger,
to allow a
JPATCH
instead.

single-word instruction to be replaced by a jump to a patch area. The use of
in ordinary user eode is discouraged; for most purposes JMPA should be used

Precision: OP 1 and OP2 may be any precision since they are not fetched.

1 This instruction occupies only one instruction word.

I
JPATCH PATCH.AREA

-_

1
-I
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XCT
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Instruction: XCT
Class: XOP Execute

Purpose: Execute the instruction OPl. If that instruction requires extended-words, then
NEXT(OP 1) and NEXT(NEXT(OP1))  are used as necessary. During execution of the
instruction OP 1, PC means the PC of the XCT instruction, not the address of OP 1.
Similarly, PCNEXTJNSTR  means the PC of the instruction following the XCT. PC is
used in all indexing off Register 3 during the interpretation of the executed instruction.
PC and PCNEXT-INSTR  are stored on the stack as specified when executing a
context-saving instruction (e.g., TRPSLF or instruction which traps due to an error).
Chaining XCT instructions is legal; in this case PC and PC-NXTJNSTR always refer to
those of the first XCT in the chain. OP2 of an XCT is unused. If OP1 of an XCT
instruction is an immediate constant (either long, short, or indexed) then a hard trap will
occur. If an enabled interrupt occurs during the execution of an XCT chain, the
interrupt will be serviced, and the XCT chain will be restarted upon return. OP 1 (and
the next two single-words following OPl) of an XCT must be located on a page marked
with DATA = 1. As with all instructions, the two single-words following the X C T
instruction itself must be on a page marked with INSTRUCTIONS4.

The XCT instruction must have its operand in the current address space. The instruction
being executed by XCT may access the previous address space with the same effect as if
that instruction were executed in-line.

XCT is very slow.

Precision: OPI is a single-word. OP2 is unused (OD2 must equal 0).

s 1 Let SP be the stack pointer. Assume an entire instruction has been pushed on the stack, 1
’ followed by the negative of the number of extended words that the instruction used.

following executes the stacked instruction.
T h e  ’

L
X C T  c - 2  (SP) 3 (-1 (SP) 1 f2
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RMW

Instruction: HWV

Class: TOP Read/modify/write

Purpose: In one memory cycle (and hence indivisibly with respect to other processors in a
multiprocessor system), DEST42  and then S24 1.

Precision: S 1, S2, and DEST are all single-words.

rThe following illustrates the use of RMW to implement a test-and-set lock for interprocessor1
communication, The lock is a single-word flag which is -1 if some processor has seized the lock
and 0 if the lock is free.

SEIZE: RRW RTA,#-l,LOCK ;attempt to seize Jock

JMPZ.NEQ  RTA,SEIZE :busy-wait if someone else has it

. . * -_ tdo . . . i f lock wa8 zero (now 1 have i t)

I

FREE: MOV LOCK,#0 ;release the lock

I
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Instruction: WAIT
Class: XOP

Purpose: Cause the processor N wait W ICI WWFU@.

Restrictions: Illegal in user mode.

Precision: OP 1 and OP2 are unused; hence  Or) 1 and 4X&? must be zero.

I The following instruction waits for an interrupt.

L
WAIT

§ 5.19

1
-J
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HALT

Instruction: HALT
Class: JOP Halt this processor

Purpose: Halt the processor. Execution continues at JUMPDEST  when the halted processor
continues. HALT only halts the processor that executes it. OP1 is unused.

Restrictions: Illegal in user mode.

Precision: OP1 is unused (ODl must be zero).

rThe first instruction continues at CONT; the second halts immediately upon continuation.1

HALT CONT

L
HALT .
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6 Traps and Interrupts

Traps and interrupts provide a convenient means of handling exceptional conditions that
arise during program execution. They make use of trap vectors and interrupt erectors  to direct
control to exception handling routines. Each type of trap (as well as interrupts) has a Mock of
vectors associated with it. These vector blocks are located at fixed addresses in memory. (See Figure
6-l.) The trap vector associated with each particular trap (interrupt) is located at a fixed offset
from the beginning of its vector block. See Section 6.5 for the formats of the different types of trap
vectors.

A trap (interrupt) causes a new PC to be loaded from the /ran&r a&-!ress that is specified in
the trap vector. The low order 30-bits of the handler address specify the address of the routine that
will service the exception (the high-order bits are ignored). Other information such as status words
may also be loaded from the vector associated with the particular trap (interrupt). These values are
loaded after the previous state of the processor has been saved on the stack. The group of words
that is stored on the stack is called a save area.

The save area associated with a trap (interrupt) may contain information that is used by the

routine that will handle the trap (interrupt). Information that is put in the save area typically
includes the PC of the next instruction to be executed, status words, and information needed to
determine the cause of the trap (interrupt). The formats of the various different types of save areas
are shown in Figures 6-3, 6-4, and 6-5.

6.1 Soft Traps

A soft trap can occur as the result of certain types of instruction execution errors (e.g.,
integer-overflow). It causes control to be transferred to the handler address that is specified in
SFTERRVEC. Soft-trap vectors are located in the same address space in which the soft trap
occurred (i.e. user traps to soft-trap vectors in the user’s address space and the executive traps to
soft-trap vectors in the executive‘s address space. See Figure 6-l). They start at address
SFTERRVECS and occupy 4008 single-words giving a maximum of 85 vectors (three words per
vector). The format of SFTERR-VEC  is shown in Figure 6-2.

Soft traps cause a number of words to be saved in the soft-trap save area. These are shown in
Figure 6-4. USER-STATUS is saved in a temporary location, and a new value is loaded from the
soft-trap vector. When all values shown have been stored on the stack, control is transferred to the
handler specified by the handler address in the soft-trap vector.

The RETUS  instruction is used to return from soft traps. It is described in detail in Section
5.9 along with the return instructions.

6.2 Hard Traps
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A hard  trap can occur as the result of certain types of illegal operations (e.g., attempting to
write a read-only page of memory). It causes control to be transferred to the handler address that is
specified in HRDERR-VEC.  The hard-trap vectors start a& location HRDERRJECS  and occupy
1000S  single-words (thus, maximum number of vectors is 170). All hard-trap vectors are located in
the executive’s address space. They are shown in Figure 6-1.

During the processing of a hard trap, the old PROCSTATUS and USER-STATUS are
first saved in temporary locations. New PROCSTATUS and USER-STATUS are then loaded
from the trap vector. Note that the new PROCSTATUS defines a new stack and thus the location
of the save area. The remainder of the information that is put into save areas depends on the type
of hard trap. There are three types of hard traps: nested hard traps, fatal hard traps, and
recoverable hard traps.

Nested hard traps are due to hard errors that occur within a hard trap or interrupt initiation.
They save the address of the hard-trap vector from which the nested hard trap occured  in
NESTED-HARD-SAVE-AREA. Fatal hard traps are hard traps from which recovery is not
normal. Information about the trap is saved in FATAL-HARD-SAVE-AREA. Recoverable hard
traps are hard traps from which recovery is the normal case. Information needed to effect recovery
is saved in RECOV-HARD-SAVEAREA. The formats for the save areas of the above
mentioned types of hard traps are shown in Figure 6-3.

The RETFS instruction is used to return from hard traps. It is described in detail later on in
this section.

6.3 Trace-Traps

Trace-trapping occurs before instructions when trace-trapping is enabled. It is useful for
debugging purposes, and for performance evaluation. The trace-trap feature uses two bits in
PROCSTATUS (TRACE--PEND  and TRACEENB) to ensure that the proper number of trace

- traps occur, and that they occur at the right times. After interrupts are processed during the first
stage of the instruction-execution sequence, the TRACE-PEND bit is sampled and reset. If
TRACE-_PEND=I,  then a trace-trap will occur immediately. If TRACE-PEND=O, then the
instruction-execution sequence will proceed normally. The details of the trace-trap mechanism are
described in Section 5.1.

6.4 Interrupts

Interrupts are similar to traps in the sense that they have vectors and save areas associated
with them. The interrupt vectors are located after the trap vectors in the user’s address space as
shown in Figure 6-l. The main description of the interrupt architecture is discussed in the Section
5.16 along with the descriptions of the interrupt instructions.
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6.5 Vector Locations arld Formats

USER
ADDRESS SPACE

vectors for
” TRPSLF”
from USER

vectors for
soft errors
from USER

Traps aild hterrupts

4000
(TRPSLFJECS)

6000
(SFTERRJ’ECS)

10000
1 TRPEXEJECS 1

14000
(HRDERRJECS)

20000
(I~NTW’TJECS)

24000

EXEC
ADDRESS SPACE

v e c t o r s  f o r
” TRPSLF ”
from EXEC

vectors for
soft errors
from EXEC

vectors for
"TRPEXE"
f t--rnu~~~C

vectors for
hard errors
f t-mEE:C

interrupt
vectors

i i
i i
i i

i i
i i
i i

Figure 6-l
Trap and Interrupt Vector Locations
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SFTERR,KC

HRDERR-VEC

--

I NTUPTJEC I

TRPSLFJ’EC

TRPEXE-VEC

new USER-STATUS

handier address

-0 3 5

new USER-STATUS

new PROC-STATUS

handler address

0 3 5

new USER-STATUS

I new PROC-STATUS I

handler address

0 3 5

I
0

handler address
I

3 5

TRP~PARflJlESCJth.l

new USER-STATUS

new PROC-STATUS

handler address

3 5

Figure 6-2
Trap and Interrupt Vector Formats
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6.6 Save Area Formats

NESTED-HARD-SAVE-AREA

Vet tor b I ock: HRDERR-VECS I address (vet tor caus i ng error) 1

R e t u r n  i n s t r u c t i o n :  R E T F S I cPJ IS*01 (P&0:29>>

I INSTRUCTION-STATE I

I USER-STATUS I
PROC-STATUS

I CP 1 IS*0 I IPC-NEXT-I  NSTR<B: 29>> 1

0 3 5

FATAL-HARD-SAVE-AREA

Vet tor b I ock: HRDERR-VECS I error number I

R e t u r n  i n s t r u c t  i o n :  R E T F S I first word of instr causing error I

CP I 15*0 I IPC<0:29>3

I INSTRUCTION-STATE I
I USER-STATUS I

PROC-STATUS

Ecjiiij IPC-NEXT-I  NSTR<B:  29>> 1

0 3 5

RECOV-HARD-SAVE-AREA

Vector block: HRDERR-VECS I parameter necessary for recovery I

R e t u r n  i n s t r u c t i o n : RETFS I ~~parameter necessary for recovery I

1 parameter necessary for recovery I

1 first word of instr causing error1

I CP I 15~0 I IPC<0:  29>> I

I INSTRUCT I ON-STATE I

I USER-STATUS I

PROC-STATUS

I CP I 15*0 1 IPC-NEXT-I NSTRc0:  29>> 1

0 3 5

g 6.6

Figure 6-3
Hard-Trap Save Area Formats
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SOFT-TRAP-SAVE-AREA

V e c t o r  b l o c k : SFTERRJECS I address (DEST) I
R e t u r n  i n s t r u c t i o n ;  RETUS first rJord of DEST

second word of DEST I~~~
first word of Sl I

second word of Sl

first word of $2

second word of S2

I first word of instr causing error-1

I c6*0 I I PC<0: 29>> I
I INSTRUCTION-STATE I
I

~~~~
USER--STATUS I

Vet tor b 1 ockr INTUPT-VECS

R e t u r n  i n s t r u c t i o n :  R E T F S

I ~6~0  1 I PC-NEXT-I NSTRc0:  29>> 1
L J

0 3 5

Figure 6-4
Soft-Trap Save Area Format

I NTUPT-SAVE-AREA

interrupt parameter

INSTRUCTION-STATE

USER-STATUS

PROC-STATUS

I CP I 15~0 1 1 PC-NEXT-I NSTR<B: 29>> 1

0 3 5

Figure 6-5
Interrupt Save Area Format
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TRPSLF-SAVE-AREA

5 6.6

Vet tor  b  I  ockt TRPSLF-VECS

R e t u r n  i n e t r u c t i o n t  R E T

TRP~PARM~OPlE01

TRP-PARM-OPl  111

c6*01 jPC<0:29>>

c6*0J (PC_NEXT_INSTR<0:29>2

0 35

Figure 6-6
TRPSLF Save Area Format

TRPEXE-SAVE-AREA

Vet tor b I ock: TRPEXE-VECS I TRP_PARM_OP1[03 I
R e t u r n  i n s t r u c t i o n :  R E T F S I TRP-PARM-OPlill I

TRP_PARM_OPZ[01

TRP_PARM_OP2[11

c6*01 IPC<0:29>I>

USER-STATUS

PROC-STATUS

c6*0J jPC_NEXT_INSTR<0:29>>
* b
0 35

Figure 6-7
TRPEXE Save Area Format
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Vector Name
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Error Condition

TRACE-VEC Trace-trap. due to TRACE-PEND=  1
STK-OVFL-VEC SP > SL
PGJ;AULT-VEC Page fault for a page not in memory
ADDRESSMDVEC Illegal access mode (VA.ACCESS is illegal)
USER-P-VEC User attempt to access previous context with P-bit=1
EXEC,ONLY-VEC User attempted to execute a privileged instruction

Table 6-1
Recoverable Hard-Trap Vector Descriptions

Error Number Description

1
2
3
4
5
6
7
8

- 9
10
11
12
13
14
15
16

Error during soft trap
Address not aligned
register-boundary error
P-bit used twice, operand of XCT, or jump dest
Trap descriptor out of range
Illegal instruction
Illegal F-field
Non-zero unused OD-field
Register number out of bounds
Short-operand addressing mode 2
Unused
Jump to the registers
Immediate as destination, ADDRESS(), jump destination, NEXT{),  or XCT
Illegal byte pointer
Illegal block alignment
I/O buffer physical address is out of range

Table 6-2
Fatal Hard-Trap Error Numbers
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Vector Name Error Condition

FLT-OVFLJ’EC Integer-overflow and INT-OVFL-ENB=  1
FLTJJNFLJ’EC Floating-overflbw  and FLT-OVFLXNB= 1
FLT-NANJ’EC Floating-underflow and FLT-UNFL__ENB=  1
INT-OVFLJ’EC Zero-divide and INT,ZDIV-MODE=0
INTZ-DIV-VEC Bounds check error
BND-CHK-VEC

g 6.6

Table 6-3
Soft-Trap Vector Descriptions
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8 Appendix: htructiolt Summary

DATE: 17DEC78  2207 BTH;

II

MODS :

QHSD = 0, H, S, D;
QHS = Q,  H, S;
HSD = H, S, D;
HS = H, S;

SD = S, D;

BQHS = B, 0, t-4 S;

BQ  = B, 0;

ACOND = GTR,  EQL,  GEQ, LSS,  NEQ, LEQ;
LCOND q NON, ALL,  NAL,  ANY;

ALCOND = GTR, EQL,  GEQ, LSS,  NEQ, LEQ, NON, ALL,  NAL,  ANY;

RND = FL, CL, DM, HP, US;

'LFRT =  L F ,  R T ;

UPDN = UP,  DN;

VP = v, P;

EU = E, U;

UUK = U, UK;
BND = B, MIN, Ml, 0, 1;

RTARTB = RTA,  RTB;

MQLEN = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,-
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 64, 128;

NOT031 = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31;

NlT032 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19; 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32;

N2T032 = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32;

NOT063 = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63;

§8

END;

CLASSES :
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“SIGNED INTEGER”

ADD .QHSD :TOP;

ADDC .QHSD :TOP;

SUB .QHSD :TOP;

SUBV .QHSD :TOP;

SUBC .QHSD :TOP;

SUBCV .QHSD :TOP;

MULT

MULTL

.QHSD :TOP;

.QHS :TOP;

QUO .QHSD :TOP;

QUOV .QHSD :TOP;

QUOL .QHS :TOP;

QUOLV .QHS :TQP;

QUO2 .QHSD :TOP;

QU02V .QHSD :TOP;

QUO2 L .QHS :TOP;

QUO2 LV .QHS :TOP;

REM .QHSD :TOP;

REMV .QHSD :TOP;

REML .QHS :TOP;

REMLV .QHS :TOP;

MOD . QHSD : TOP ;

MODV .QHSD :TOP;-
MODL .QHS :TOP;

MODLV .QHS :TOP;

D I V .QHSD :TOP;

- D I V V .QHSD :TOP;

D I V L .QHS :TOP;

D I V L V .QHS :TOP;

INC .QHSD :XOP;

DEC .QHSD :XOP;

TRANS .QHSD .QHSD :XOP;

NEG

ABS

.QHSD :XOP;

.QHSD :XOP;
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MIN

MAX
. QHSD : TOP ;

.QHSD : T O P ;
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“UNSIGNED INTEGER”

UMULT

UMULTL

.QHSD :TOP;

.QHS :TOP;

U D I V .QHSD :TOP;

UDIVL .QHS :TOP;
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“FLOATING POINT”

FADD . H S D  :TOP;

FSUB . H S D  :TOP;

FSUBV . H S D  :TOP;

FMULT . H S D  :TOP;

FMULTL .HS :TOP;

F D I V .HSD :TOP;
FDIVV . H S D  :TOP;

F D I V L . H S  :TOP;

FDIVLV . H S  :TOP;

FSC . H S D  :TOP;
FSCV . H S D  :TOP;

F I X . R N D  .QHSD .HSD :XOP;

FLOAT . H S D  .QHSD :XOP;

FTRANS .HSD ,HSD :XOP;

FNEG . H S D  :XOP;

FABS .HSD :XOP;

58

FMIN . H S D  :TOP;
FMAX . H S D  :TOP;
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” MOVE ”

MOV .QHSD . Q H S D  :XOP;

MOVMQ .MQLEN :XOP;

MOVMS .N2T032  :XOP;

EXCH .QHSD :XOP;

SLR .NOT031  :XOP;

SLRADR .NOT031  :XQP;
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M O V A D R  :XOP;

MOVPHY : XOP ;
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“FLAG”

CMPSF .ACOND .QHSD :TOP;
BNDSF . B N D  .QHSD :TOP;

§8
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“BOOLEAN”

NOT .QHSD :XOP;

AND .QHSD :TOP;

ANDTC .QHSD :TOP;

ANDCT .QHSD :TOP;

OR .QHSD :TOP;

ORTC .QHSD :TOP;

ORCT .QHSD :TOP;

NAND , QHSD : TOP ;

NOR .QHSD :TOP;

XOR .QHSD :TOP;

EQV .QHSD :TOP;
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“SHIFT AND ROTATE”

SHF . L F R T  .QHSD :TOP;

SHFV . L F R T  . Q H S D  :TOP;

DSHF . L F R T  .QHS :TOP;
DSHFV . L F R T  .QHS :TOP;

SHFA .LFRT .QHSD :TOP;

SHFAV . L F R T  . Q H S D  :TOP;

Appendix: hstruction  Summary §8

ROT . L F R T  . Q H S D  :TOP;

ROTV . L F R T  .QHSD :TOP;
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"SKIP AND JUMP"

SKP . A L C O N D  ,QHSD :SOP;

ISKP .ACOND :SOP;

DSKP .ACOND :SOP;

JMP .ACOND :JOP;

JMPZ .ACOND ,QHSD :JOP;

JMPA :JOP;

IJMP .ACOND :JOP;

IJMPZ .ACOND :JOP;

IJMPA :JOP;

DJMP .ACOND :JOP;

DJMPZ .ACOND :JOP;

DJMPA :JOP; --

BNDTRP . B N D  ,QHSD :XOP;

Page 285

JPATCH :HOP;
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“ROUTINE LINKAGE”

JSR

JCR
: JOP;
:XOP;

ALLOC ,NlT032  :XOP;

RETSR :XOP;

RET :XOP;
RETUS :XOP;

RETFS :XOP;

§8

TRPSLF .NOT063  :XOP;

TRPEXE *NOT063  :XOP;
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“STACK”

ADJSP . U P D N  :XOP;

PUSH .UPDN .QHSD :XOP;

POP . U P D N  .QHSD :XOP;
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“ B Y T E ”

LBYT . S D  :XOP;

L I B Y T . S D  :TOP;

LSBYT . S D  :XOP;
LISBYT . S D  :TOP;

DBYT

DIBYT

. S D  :XOP;

. S D  :TOP;

Appendix: Instruction Summary §8

ADJBP . S D  :TOP;
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” B I T ”

BITRV .QHSD :TOP;
BITRVV .QHSD :TOP;

B I T E X .QHSD :TOP;
BITEXV .QHSD :TOP;

BITCNT .QHSD :XOP;
BITFST .QHSD :XOP;
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"BLOCK"

STRCMP .RTARTB :XOP;

BLKMO'J .RTARTB :XOP;
BLKINI .RTARTB .QHSD :XOP;

BLKID .RTARTB :XOP;
BLKDI .RTARTB :XOP;
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“STATUS REGISTER”

RUS
JUSCLR
JUS
WUSJMP
SETUS
CLRUS
RSPID
WSPID
RRNDMD
WRNDMD

:XOP;
.LCOND :JOP;
.LCOND :JOP;
:JOP;
:XOP;
:XOP;

:XOP;
:XOP;
:XOP;
:XOP;

RPS :XOP;
WFSJMP : JOP;
R C F I L E  : X O P ;
W C F I L E  :XOP;
RPFILE :XOP;
WPFILE :XOP;
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RPID :XOP;
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“CACHE AND MAP”

SWPIC .RTARTB .VP :XOP;
SWPDC . R T A R T B  . V P  .UUK :XOP;

SWPIM .EU :XOP;
SWPDM .EU :XOP;

W U P J M P  :JOP;
WEPJMP : JOP;
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“INTERRUPT”

RIEN
WIEN

S I E N
CIEN

RIPND
WIPND
SIPND
CIPND

RIPAR
WIPAR

:XOP;
:XOP;

:XOP;
:XOP;

:XOP;
:XOP;
:XOP;
:XOP;

:XOP;
:XOP;
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“INPUT/OUTPUT”

BLKIOR .RTARTB .BQHS :XOP;
BLKIOW . R T A R T B  .BQHS :XOP;

INTIOP :XOP;

§8
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“PERFORMANCE EVALUATION”

RCTR :XOP;
WCTR :XOP;

RECTR :XOP;
WECTR :XOP;
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“MISCELLANEOUS”

NOP :XOP;
XCT :XOP;
RMW :TOP;
WAIT :XOP;
HALT : JOP;

Appendix: Instrustion  Summary
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“HOKEY FOR SIMULATOR AND I/O MEMORY”

SETSTK
SETSYM
JMPCC
TIMER
INCHRW
INCHRS
OUTCHR
INTFE
BRIOM
BWIOM
RIOM
WIOM
JCOMNZ

:XOP;
:XOP;
:XOP;
:XOP;
:XOP;
:XOP;
:XOP;
:XOP;
.BQ:XOP;
.BQ:XOP;
:XOP;
:XOP;
:JOP;
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II II II ll ENDI'

END ;

Appendix: Instruction Summary
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9 Appendix: S-1 Formal Description

Page 299

d e f i n e  a c o n d  P IGTR, E Q L ,  G E Q ,  L S S ,  N E Q ,  LEQI;

d e f i n e  AddiAddend,  Augendl  + S u m , Cout, Overflow next Continuation E
Add-With-Carry (Addend, Augend, 01 -) Sum, Gout, Overflow next
Continuation;

define Add-With-Carry (Addend, Augend, Cinl -) Sum, Gout, Overflow next Continuation E
Id x = Addend, y = Augend
t h e n  l e t  2

= cO:x>  + CO: y> + zero-extend Kin,  width(x)  + 1)
then let S u m  - low (width (x1, z) ,

Cout - z<o>,
Overflow = (x<O> = y<O>)  A (xcO> * z<l>)

Ihen Continuation;

d e f i n e  alcond m GTR, E Q L ,  GEQ, L S S ,  N E Q ,  L E Q ,  N O N ,  A L L ,  N A L ,  ANY) I

d e f i n e  A L L  (ArgJ, Arg2)  E ( (- ArgJ)  A Arg2) = 0:

d e f i n e  ANY(ArgJ,  Arg2) E (ArgJ  A Arg2) rr 0:

d e f i n e  b c n u m  E IMIN, Ml, 0, 11 ;

d e f i n e  Bits(p)  E
c a s e  p o f

Q :  9 ;

H: 18;

I* number of bits for given precision *K)
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s :  36;
D: 72;

end ;

define Block-J4emory_Address_ls_a_Register  E Use-Shadow; (* terms missing *I

define bqhs c {B, Q, H, Sl I

define Bytes(p) E
c a s e  p o f

Q: 1;
H: 2;

s: 4;
D: 8;

end;

(* number of bytes for given precision ml

def ine  D e s t  e: Value E M [address  (Dest)  1 + I/due;

def ine  Dfetch  (M I AddresJl  1 + Word next Continuation E
let Word = M [Address]

I* ought to hack memory faults *O

e

then Continuation; (* ought to use data cache *ls)

def ine ’  E Q L  (Argl, Arg2) E Argl = Arg2:

define eu E {E, Ul ;

define Extract-Bits (Field, Mask) E

let x = Field,
Y - Mark,



§9 Appendix: S-I Formal  Description Page 301

z = zero-extend (0, width (Field) 1

then while y rc 0

do if y<O> then z + shift (z, 1) v unsigned (x<O>)  fi next

(x + shift (x, 1) ~160  y + shift (y, 1) 1

od next

2:

d e f i n e  GEQIArgJ, Arg2) B Argl  2 Arg2;

d e f i n e  GTR(Argl,  Arg2) e ArgJ > Arg2;

define hs E (l-l, Sl ;

define hsn E (H, S, 01 :

define Ifetch hl [Address1 1 + Word next Continuation E
let Word - M [Address3
then Continuation;

(* ought to hack memory faults WC)

(>k ought to use instruction cache *:)

define Jnt-Overflow?  [also 1 next3 Continuation pi
if o v

then if lnt-OvfLEnb  then Overflow-Trap else  IntLlvfl  c 1 next Continuation f i

else Continuation
fi;

define Jtlm~ E pc-nxt-instr c jump-address; (* see Calculate-Jump-Target >K)

d e f i n e  lcond  E INON,  A L L ,  NAL, ANY)  :
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d e f i n e  LEQ(ArgJ, Arg2) E ArgJ I Arg2:

d e f i n e  Iff’t E lLF, RTI ;

d e f i n e  Long(p)  E

case p of

Q: H;
H: S;

S: D;
end;

(* long version of a precision *O

d e f i n e  LSS(ArgJ, Arg2) E ArgJ < A r g 2 :

d e f i n e  M [AddreJsl  E
let address<O:  27>  = Address
then if Memory- Address-Js-a-Register  (address)

then R Eaddressc23:  27>1

else physical-memory [address]

fi;

define Memory- Address-Is-a--Register  (Address) E
( AddresscO:  22~ = 0) A (- Block.~Memo~yy_Address~ls~a~Regi~ter)  ;

d e f i n e  NAL(Argl,  Arg2) E ( (1 ArgJ)  A Arg2) H 0 ;

d e f i n e  N E Q  (Argl, Arg2) pi ArgJ z Arg2:
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def ine NON ( ArgJ  , Arg2) o (ArgJ  A Arg2) - 0 ;

Page 303

define Number- of__FirstLBit  1 Field) E
l e t  x = CO:  Field>,

n<0:35>  = - 1

then if x z 0

then repeat n c n + 1 also x t shift (x, 1) until x<O> taeper

f i  n e x t  n;

define Number-of-I-Bits  (Field) E

let x = F i e l d ,  n<0:35>  - 0

then while x z 0 do if x<O> then n c n + 1 fi next x c shift (x, 1) od next n:

define qh E (Q,  l-4,  S) ;

define qhsd E IQ, H, S, DI ;

define Reverse-Bits (Field, Count1 E
let x = Field,

Y = zero-extend (0, width (Field) 1,e
nc0:35>  = Count

t h e n  w h i l e  n  > 0

do n + n - 1 also
(y + s h i f t  (y, 1) v unsigned(low  (1, x1 1 nex t  x  c s h i f t  (x, -1) 1

od next

Y:

d e f i n e  r n d  E (FL, C L ,  D M ,  H P ,  US1 ;

define S k i p E pc-nxt-instr c program-counter + signed (opcode,  SKP)  ;
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define Subtract (Minuend, Subtrahend) + Difference, Cout, Overflow next Continuation E
Subtract--With-Carry (Minuend, Subtrahend, 11 + Difference, Gout,  Overflow next

Continuation ;

define Subtract-WitkCarry  (Minuend, Subtrahend, Cinl  -) Difference, Cout, Overflow
next Continuation E

l e t  x = Minuend, y = Subtrahend
t h e n  l e t  z

= co:x>  + co:- y> + zero-extend Kin, width (x1 + 1)

then let Difference = low (width (x1, z) ,

Cout = z<o>,

Overflow = (x<O>  z y<O>) A (y<O> - z<l>)

then Continuation;

d e f i n e  updn E {UP, DNI ;

define VP E IV, PI ;

d e f i n e  uuk E IU, UK1  ;
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10 Appendix: The S-l Assembler (FASM)

10.1 Preliminaries

10.1.1 Zlwtructiorl  and Data Spaces

It is assumed that the user is familiar with the S-l architecture and in particular understands
about page table access bits. These are the bits that control what kind of access can be made by the
processor to its pages. The output from FASM specifies certain page table access bits for the
various output segments. In more detail, an output segment is either an instruction segment or a
data segment, corresponding to the page table access bits INSTRUCTIONS and DATA. During an
assembly, FASM maintains a number of spaces, each of which is either an instruction space or a
data space. Just how many of these spaces there are and how they are mapped into the output
segments is described in Section 10.3.

10.1.2 Passes

FASM makes three passes over the input file. This is necessary to do a good (but not perfect)
job on optimizing the use of PR type jumps. During the first pass, FASM assumes that all jumps
will NOT be in PR mode. This causes labels to be set to the maximum possible value that they
might attain. During the second pass, FASM attempts to use PR type jumps for jumps in I space,
when the jump destination is in I space only and not external. By the end of the second pass all of
the labels have been set to their final correct values. During the third pass, the code is actually
assembled and output.

10.1.3 Character Set

The character set understood by FASM is the superset  of ASCII used at the Stanford
Artificial Intelligence Lab. Certain important characters are used by FASM that are not present in
standard ASCII. FASM does, however, allow substitutes for these characters from standard ASCII.e
The following table lists the allowable substitutions:

Stanford ASCII ASCII Stanford ASCII ASCII

c and 3
c)
A (“and” sign)
v (“or” sign)

I and I
?
&
!

e (left arrow) =
t (up arrow) A (caret)
f (not-equal) #
y (not-sign) ’

Table 10-l
FASM Character Set
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10.2 FASM Formats

10.2.1  Expressiolis

The primary building block of a FASM statement is the expression. An expression is made
up of terms separated by operators with no embedded”blanks.  A single term with no operators is a
legal expression. An expression may have one or more attributes. The possible attributes are:
register, instruction value (IVAL), data value (DVAL), and external value (XVAL). These attributes
are derived from the terms and operators that make up the expression.

When an expression is encountered, FASM attempts to perform the indicated operations on
the specified terms. Sometimes, the value of a term is not available (for example, is undefined or is
external) at the time the expression is evaluated. Sometimes this is permissible and sometimes it will
cause an error. In the descriptions that follow it will sometimes be said that an expression must be
defined at the time it is evaluated.

10.2.1.1  Operators

The following are the valid operators along with their precedences:

+ - */a%- !VBA##f
1 1 2 2 5 5 5 3 3 3 3 3 3 4

The first four are the usual arithmetic operators of addition, subtraction, multiplication and
division. Plus is ignored as a unary operator. Minus may also be used as a unary operator. b is
equivalent to - as a unary operator, R is a unary operator which forces the entire expression to
have the register attribute. The next four operators are Boolean. They are logical negation,
inclusive or (either ! or v), logical and (either & or A) and exclusive or (either Q or #), The last
operator is the logical shift operator. AtB has the value of A left-shifted B bits. A logical right
shift is performed if B is negative. Each operator has a precedence which is used to determine
order of association. For operations with the same precedence, association is to the left.

Angle brackets <> (also known as brokets and pointy brackets) may be used to parenthesize
arithmetic and logical expressions. (Parentheses () themselves may not be used for this purpose; they
are used to indicate index registers.) A parenthesized (or rather, broketed) expression may take more
than one line, in which case the value of the last line is used as the value of the expression.
However, ALL the lines are evaluated and then all the values are thrown out except for the last
one. These evaluations may have side effects like defining symbols, or executing macros, etc.
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10.2.1.2 Terms

A term in an expression may be a number, a symbol, a literal, a text constant or a
value-returning pseudo-op.

10.2.1.2.1 Numbers

A string of digits is interpreted as a number in the current radix unless it ends in a decimal
point in which case it is assumed to be a decimal number. The radix is initially base 8 (octal) and
may be changed with the RADIX pseudo-op. A floating point number has digits on both sides of
a decimal point and may be followed by an E, an optional + or - and a one or two digit exponent,
which is assumed to be a decimal number and should not have an explicit decimal point.

10.2.1.2.2 Sy nl bols

A symbol is a one to twelve character name made up from letters, numbers, and the characters
. and )6. (A symbol may actually contain more than twelve characters, but all characters after the
twelfth are ignored.) A symbol must not look like a number; for example, 43. is an integer and 0.1 is
a floating point number, whereas O..l, 1.E5, and 2.3E.5 are symbols. Symbols have values and
attributes. The values are 36-bit numbers which are used in place of the symbol when it appears in
an expression. The attributes are: register, instruction value (IV/AL), data value (DVAL),
half-killed, external value, and macro name.

Just the single character . is a symbol whose value is the current location counter. It is either
an IVAL or a DVAL, depending upon which space is currently being assembled into. The symbols
RTA and RTB have been predefined to have the values Z4 and 7.6 respectively. Register values
are in the range 0.. 373. If a symbol is a macro name, then instead of having a value, the symbol
has a macro definition associated with it. This macro definition is expanded when the symbol is
seen under certain circumstances and the expansion is used in place of the symbol in the expression.
(See the section on macros for more details on macro definition and expansion.)e

When a symbol with the register attribute appears in an expression, then the expression is a
register expression and itself has the register attribute. At most one external symbol may appear in
an expression. It does not matter how it appears in the expression, it is assumed to be added in.

. This causes the expression to be an XVAL. If an IVAL (DVAL) ever appears in an expression
then the whole expression is an IVAL (DVAL) with one exception. An IVAL (DVAL) minus an
IVAL (DVAL) is no longer an IVAL (DVAL). Note: in a relocatable assembly all relocation is
done by ADDITION of the I space or D space relocation or of an external symbol’s value.
Therefore using the negative of an IVAL, DVAL or external value will not have the right effect.

10.2.1.2.3 Literals

A literal is any set of assembler statements enclosed in 1: 1 (called square brackets). A literal
directs the assembler to assemble the statements appearing insided  the square brackets and store
them at some location other than where the current location counter points. The value of the literal
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for use in an expression is the address where the first single-word of the literal is assembled. There
are certain restrictions on just what may appear inside a literal. Certain pseudo-ops are Illegal
inside of literals (see the section on pseudo-ops). Currently, labels are not permitted inside a literal,
although this may change in the future. The symbol . is not affected by the fact that it is
referenced from inside a literal. It will have the va!ue it had at the point where the literal was
begun even though the literal may have assembled some statements already.

Just where the literal is assembled is determined by several factors. First it is determined
whether the literal is an instruction-space or a data-space literal. This is determined in the
following manner. If the next characters immediately after the [ that begins the literal are !I or !D,
then the literal is an instruction- or data-space literal, respectively. If not, then the literal will be an
instruction-space literal if it contains any opcodes. Otherwise it will be a data-space literal. All
instruction-space literals will be assembled starting at the current location counter when a LIT
pseudo-op is encountered while in instruction-space. A similar statement is true of the data-space
literals. Certain other pseudo-ops cause an implicit LIT to be done first.

10.2.1.2.4 Text Constants

An ASCII text constant is enclosed in double-quotes and has the value of the right-adjusted
ASCII characters packed one to a quarter-word. For example:

” ab ”

is the same as the number 141 1428.  If more than four characters are specified, then only the value
of the last four will be used. If the trailing double-quote is missing, the assembler will stop
accumulating characters when it sees the end of line. The last four characters will be used in the
constant and no error message will be given.

10.2.1.2.5 Value-returning Pseudo-ops

Some pseudo-ops generate values and may be used as terms in an expression. See the
descriptions of the individual pseudo-ops for a description of the values they return.
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10.2.2  Statements

10.2.2.1 Stateiiient  Terknators

How a statement is terminated will depend upon the exact type of statement. In general, a
statement is terminated with a line-feed, a c), or’ a semicolon that begins a comment that terminates
at the next line-feed. Some statements, like symbol definitions, can also be terminated with a space
or a tab.

10.2.2.2 Symbol Defirlitiorl

Symbols may be defined to have specific values with the assignment statement or by declaring
the symbol to be a label. The assignment statement has two forms:

SYMBOLeexpression  or SYMBOLt+expression

An = may be used in place of a t. These statements define or redefine the symbol to have the
value of the expression. The expression must be defined at the time the assignment statement is
processed. Any attributes of the expression are passed on to the symbol (except for the half-killed
attribute). For example, if the expression has a register value, then the symbol is given the register
attribute. In addition if the second form is used (with two left-arrows) then the symbol will
additionally be given the half-killed attribute. This attribute is not used by the assembler but is
passed on to the debugger, where it means that the symbol should not be used in symbolic typeout.
It does not affect the ability to use the symbol for type-in.

A symbol may be declared to be a label by saying either of:

SYMBOL: or SYMBOL: :

These both define the symbol to be equal to the location counter. The attributes of the location
a counter are passed on to the symbol. The double colon (: t) causes the symbol to be half-killed.

It is legal to redefine a symbol’s value with an assignment statement but it is not possible to
redefine a label’s value or to define as a label any symbol that has previously had a value assigned.

An assignment statement can itself be an expression and has the value of the expression to
the right of the arrows. Therefore it is possible to assign the same value to multiple symbols as
follows:

A+-Bc&-Xl

which will define all of A, B and C to have the register value 1. An assignment statement is
terminated by most any separator, including space and tab. Therefore it is possible to have more
than one assignment statement per line, or have an assignment statement on the same line with other
statements.
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10.2.2.3  S-l hstructions

An S-l instruction is a statement that can cause the assembly of one, two or three
single-words. It is made up of an opcode with modifiers followed by a list of operands.

10.2.2.3.1 Operands

An operand may be in any one of the following formats: (in the following 1 . . . . . 1 may be used
in place of c . . . . . 3 ).

e x p r e s s i o n

This may be a register expression or not. If so, it is assembled as register direct, otherwise as an
absolute address. If the operand is a hop, skip, or jump destination, then the difference between the
expression and the location counter (.) is used as the signed displacement, if possible.

?expression

This assembles as either a short or long constant depending upon the value of expression. It is
dangerous to use an as yet undefined symbol in the expression, as the assembler might decide to
switch from one length to another, which would confuse the rest of the assembly. If the expression
is in the range -3‘2 . . 31 (decimal) the assembler will generate a short constant. If not, it will
generate a long, sign-extended constant. A data word (see below) may not appear in the expression
unless it is enclosed in brokets.

# e x p r e s s i o n

This
. is an

e

assembles as a short constant. It doesn’t matter if the expression has a
error if the expression cannot be expressed as a short constant.

register value or not. It

expression(register  e x p r e s s i o n )

This is a short index. The expression inside the parentheses must have a register value. If the
internal assembler switch BADRSI is off (the default state), the expression before the parentheses is
assumed to be a number of single-words and must be in the range -32 . . 31 (decimal). If the
switch is on, it is assumed to be a number of quarter-words and must be divisible by 4. The result
of division by 4 must be in the range -32 . . 31 (decimal). If the expression before the parentheses
is omitted, zero is assumed.

kexpressiom

This is a format-l long constant (right justified with zero fill).

kexpression  ++ 0~
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This is a format-3 long constant (left justified with zero fill). The spaces around the c) are optional.

#c!S 4+ e x p r e s s i o n >

This is a format-2 long constant (right justified, sign extended).

#cexpressiom(register  e x p r e s s i o n )

This is an indexed constant. The first expression is the constant and the second expression is the
index register (which may be zero but may not be omitted).

c!P@  e x p l  (expZ)>(exp3(exp4)  1 ?exp5

This is the general form of an extended word. The !P and Q are optional and cause the P bit and I
bit respectively to be set in the extended word. If exp2 is present, the extended word is in
variable-based format (V-bit=]);  otherwise it is in fixed-based format. Expl is the base or signed
displacement and is considered a quarter-word address (note that in short indexing, the
corresponding expression may be a signed single-word value). Everything after the 3 is optional. If
nothing is there, a short operand (SO) of short constant 0 is generated. If something is there, the
outer set of parentheses must be present. These are mnemonic, indicating that the SO that’s inside
the parentheses is fetched. The SO inside the parentheses may be either a short index (which
requires the use of another set of parentheses as described above) or register direct (in which case no
other parentheses are used) which must evaluate to a register value. Finally, if the texp5 is present
(which it may be even if (exp3(exp4))  is omitted), the value of exp5 is used as the S field of the
extended word.

!expression

This format forces the operand to have the value of the low 12 bits of expression. No extra worde
will be assembled for an extended word in the case that the value has the 40003 bit on. It is
possible with this format to generate illegal instructions. It is meant for hand or program patching
of code.

‘Here are some examples:

c!P TableVI  d-3(SPHf2
c  T a b l e  >(R5)  or c Table(K)  2
c@ TableDi  (SP) 1

10.2.2.3.2 Opcodes arld Modifiers

An opcode is built out of a base opcode name followed optionally by a . and an opcode
modifier and another . and another modifier, etc. The modifiers are standard as defined in the
opcode files. Numeric modifiers are in decimal without a decimal point. So, for example,
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SLR.8

is different from

SLR.10

It is also possible to use an already defined symbol as a modifier. For example, if A has been
defined by A+%5 then SLR.A  assembles the same way as SLR.5 does. Note that an expression may
NOT be used in place of a modifier. For example, SLR.4tl  is not permitted in place of SLR.5  .
Also note that if there is a conflict between a legal modifier name and a symbolic value, the legal
modifier name will win. For example:

Mltcl
BNDTRPJl1.S  XXX,YYY

will NOT be the same as:

BNDTRP.1.S  XXX,YYY

because M 1 is a legal modifier for BNDTRP and takes precedence over the lookup of the symbol
M 1.

Modifiers should not be omitted from instruction opcodes, with one exception: a precision
modifier {Q H, S, D) which is omitted will be assumed to be S. Modifiers should be written in the
order defined by the instruction descriptions.

The opcode must be separated from the operand list by spaces or tabs.

10.2.2.3.3 Instruction Typese

There are five basic S-l instruction types, SOPS, JOPs, XOPs,  TOPS, and HOPS. For the
assembler, they differ as to the number and interpretation of operands.

‘An SOP is a two operand instruction with a skip destination. The skip destination is just
like a third operand, and should evaluate to the quarter-word address of the instruction that is to
be skipped to. Both of the operands must be present. If the skip destination is missing, then the
instruction is assembled so as to skip over the next instruction, however long it is. For example,

ISKP.GTR  %1,#100,EXIT

assembles a conditional skip to the label EXIT. During the last pass of the assembly, the assembler
checks to see that the skip is within range. This means that the value of the skip destination
operand must be within -8 . . ‘I of the location of the SOP.
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A JOP is a two operand instruction, the second of which is the jump destination. If only one
operand is specified, then which operand it is assumed to be depends upon the exact opcode. Some
opcodes expect only one argument, in which case that argument is the jump destination (JMPA, for
example). The opcodes JSR and JCR expect one or two operands. If only one is supplied it is
assumed to be the jump destination. For other JOPs, if there is only one argument, it is assumed to
be OPI and the jump is assembled to skip over the next instruction (just as for an SOP with an
omitted skip destination). The assembler will try its best to assemble the jump with the PR-bit on
(it even takes a whole extra pass through the source file just for this). For example,

IJtlPZ.NEQ X2,LOOP

assembles a jump to location LOOP.

An XOP is a two operand instruction, one of which must be specified. If exactly one is
given, then, depending upon the specific instruction, either it is used for both operands or the
second operand is defaulted to be register zero (7.0). For example,

I NC COUNT

assembles the same as

I NC COUNT, COUNT.

A TOP is a three operand instruction, where one of the operands is restricted. There are 4
possible combinations for the operands, involving use of RTA and RTB. If only two operands are
given, then T=OO is used (DEST=Sl-OPI).  If the first operand’s value is RTA, then T= 10 is used
(DEST=RTA,  Sl=OPl). If it is RTB, Tell  is used (DEST=RTB,  S l=OPl).  If the second
operand’s value is RTA, then T=Ol  is used (DEST=OPl, Sl=RTA).  Any other format is illegal.
For example,

e ADD RTA,FOO,BAR

assembles a T= 10 TOP.

An HOP is a one operand instruction. It takes a jump destination like a JOP and assembles
it as a pc relative single-word offset directly into the ODi and OD2 fields. No extended words are
ever used. This instruction type is specifically for the JPATCH instruction, which can jump to
PC-<224>*4  through PCt<224 -i>*4. Note that this is not the full virtual addressing range of the
S-l. This instruction, therefore, is not recommended for branching. Use JMPA instead, which can
jump to any location in the address space. JPATCH is provided so that a debugger can “patch” an
instruction location and clobber only one single-word.
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10.2.2.4 Data Words

A data word is much like a short index in that it can specify indexing. For example,

-1
30, J ;A s i n g l e - u o r d  u i t h  3 0  in  i ts  le f t  h a l f - u o r d

; and 7 in its right half-word
G3-4 (SP)
(TT) 1 1

2
4 3

are all data words. If indexing is used, then the value in the register field is assembled into bits
<1:5> and the value of the expression surrounding the index is assembled into bits <6:35>.  If
indexing is not used, then the value is stored in the entire word, bits &35>. If an 8 is present, the
sign bit of the word is turned on. This is the P-bit in an indirect word. The word “surrounding” is
used because of the following effect:

-1 (TT)  E A
El
c 3

will assemble with TT in the index field and with the address of the literal - 1 in the address field.
This is useful if TT for example ranges from 1 to 3.

Data words may be used anyplace where an instruction might have been used. They may be
used in long constants and in literals. They are legal inside any broketed  expression.
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10.3 Absolute and Relocatable Asselnblies

An assembly is either absolute or relocatable. Initially it is assumed that the assembly is
relocatabie.  Certain things in the input file may cause the assembler to try to change its mind if it is
not too late. The pseudo-ops ABSOLUTE and RELOCA will force absolute and relocatable
respectively. A LOC will force absolute. .

In a relocatable assembly, there is one instruction space and one data space. These spaces may
be interleaved in the input file (by use of ISPACE, DSPACE and XSPACE pseudo-ops) but will
be separated into two disjoint spaces in the output. The data space will be output immediately after
the instruction space and it is up to the linker to further relocate it to begin on a page boundary (or
whatever).

Whenever a word is assembled, the attributes of the expressions involved in the assembly of
that word are passed on to the word itself. The assembler outputs instructions to the linker to
relocate every IVAL by adding to it the starting address of the instruction segment and similarly for
DVALs  and the starting address of the data segment. Notice that this does not do the right thing
for the difference  between an IVAL and a DVAL. This is because the assembler does not keep
track of whether the relocation should be positive or negative.

In an absolute assembly, no relocation is done. There may be multiple instruction and data
spaces. The pseudo-ops IPAGE and DPACE cause the assembler to move the location counter to a
new page boundary and switch to the indicated space. The assembler output will contain multiple
spaces which occur in the same order as the IPAGE and DPACE statements. The LOC pseudo-op
may be used to set the value of the location counter to any desired absolute address (with some
restrictions). It cannot be used to change spaces.

An IPACE  or DPAGE or LOC pseudo-op may not be used in a relocatable assembly and an
ISPACE, DSPACE or XSPACE pseudo-op may not be used in an absolute assembly.
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10.4 The Location Counter

The location counter is a symbol internal to the assembler that has the value of the
quarter-word address where the next word will be assembled. It has either the IVAL or DVAL
attribute depending upon the use of the IPAGE, DPAGE, ISPACE,  DSPACE and XSPACE
pseudo-ops. Initially it has the OVAL attribute and for an absolute assembly, it has initial value
1 OOO08. For a relocatable assembly it has initial value 0. The symbol . may be used to reference
the location counter. It cannot be defined with an assignment statement or used as a label.
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10.5 Pseudo-ops

The following is a list of all the pseudo-ops in alphabetical order. Wherever the construct
e text 8 is used, the B represents the first non-blank, non-tab character appearing after the
pseudo-op and text is all of the characters between the matching pair of these characters.

.ALSO,c  c o n d i t i o n a l l y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m

.ELSE,<  c o n d i t i o n a l l y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
These pseudo-ops conditionally assemble the text in brokets depending upon the success or

failure of the immediately preceding conditional. There is an assembler internal symbol called
.SUCC which is set when a conditional succeeds and is cleared when one fails. *ALSO  will succeed
if .SUCC is set and .ELSE will succeed if it is clear. If a conditional succeeds, .SUCC is set both at
the beginning and at the end of the conditionally assembled text. This enables the inclusion of
conditionals within conditionals while using .ALSO  or *ELSE following any outer conditional. For
example,

I F N  A-B,<IFIDN <X>,<Y>,<  ..a>>
.ELSE < . ..>

Here, the *ELSE tests the success of the IFN A-B independent of whether the IFIDN succeeded or
failed.

,AUXO  < f i l e n a m e >

Prepares the file <filename> to receive auxiliary output. Auxiliary output can be generated
with the AUXPRX and AUXPRV pseudo-ops. The auxiliary output file remains open until the
next .AUXO or the end of the assembly is encountered. It is probably most appropriate to do the

a .AUXO during just one pass of the assembly. This can be done, for example by

IF3,<.AUXO  FOO.BAR[P,PNl>

.

. INSERT cfi lename>
Starts assembling text from the new file <filename>. When the end of file is reached in the

new file, input is resumed from the previous file. -INSERTS  may be nested up to a level of 10.

,LENGTH  Q t e x t  a

Has the value of the length of the string text. A CRLF counts as one character.
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.QUOTE e t e x t  Q
Legal only inside a macro definition. It allows the assembler to see iexi without scanning it

for a DEFINE or a TERMIN.

. SWITCH swnanlel,  sWva  I 1, swnan\eZ, suva  12, * .a
Sets internal assembler switch “swname1,2,...” to the value in the expression “swvall,2,...“.  The

currently existing switches are:

BADRSI If set, all short indexes are assumed to be quarter-word
addresses and must be divisible by four. Otherwise a short
index is considered a single-word index.

ABSOLUTE
Forces the assembly to be absolute.

ASCII co t e x t  B
Assembles text as ASCII characters into consecutive quarter-words, padding the last used

single-word with zeros. This pseudo-op may cause more than one word to be assembled as long as
it is not enclosed in any level of brokets.  However, the “value” of this pseudo-op is the value of the
last word it would assemble. So if it is used in an expression, the arithmetic applies only to the last
word. If it is enclosed in broke&  then all but the last word are thrown away. For example,

e l+ASCII /ABCOEfG/

is the same as

ASCI I /ABC01
<ASCI  I /EFG/>+l

but not the same as

l+<ASCII /ABCOEFG/>

which is the same as

l+ASCI  I /EFG/
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ASCllV CD t e x t  o

Is the same as ASCII except that macro expansion and expression evaluation are enabled
from the beginning of text as in PRINTV. \ and ’ may be used as in PRINTV.

ASClZ 8 t e x t  Q
Same as ASCII except that it guarantees that ae least one null character appears at the end of

the string.

ASCIZV Q t e x t  e

Is the same as ASCIIV except it does ASCIZ.

AUWRX  e t e x t  e

The text  is output to the auxiliary file. An error message is generated if no auxiliary file is
open.

AUXPRV e t e x t  e
Is the same as AUXPRX except that macro expansion and expression evaluation are enabled

from the beginning of text as in PRINTV. \ and ‘ may be used as in PRINTV.

BLOCK express i on
Adds expressions4

single-words to reserve.
encountered.

to the location counter. That is, the expression is the number of
The expression must be defined when the BLOCK pseudo-op is

Bw=E (d)b&b12,b13  ,... (si?)b21,b22,b23  ,...
The BYTE pseudo-op is used to enter bytes of data. The s-arguments indicate the byte size

. to be used until the next s-argument. The b-arguments are ehe byte values. An argument may be
any defined expression. The BYTE pseudo-op may not evaluate to more than one word. The
s-values are interpreted in decimal radix. Scanning is terminated by either 3 or >, so a BYTE
pseudo-op may be used in an operand or in an expression. For example,

MOV AJcBYTE  (7)15,12>
MOV  B,El+<BYTE  (7)15,12>3

COMMENT  e t ex t  e
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The text  is totally ignored by the assembler.

5 10.5

DEFJNE  n a m e  a r g u m e n t  I ist
This pseudo-op is used to define a macro. See the section on macros for a description.

DPAGE
If the current space is instruction space, it does an implicit LIT, advances the location counter

to the next page boundary, and sets the space to data. If the current space is data, it merely
advances to the next page boundary. This pseudo-op may not appear inside of a literal or in a
relocatable assembly.

DSPACE
This is a no-op if the current space is already data. Otherwise it switches to data space and

restores the location counter from the last value it had in data space. This pseudo-op may not
appear inside of a literal or in an absolute assembly.

END express i o n
Indicates the end of the program. The expression is taken to be the starting address. This

pseudo-op may not appear inside of a literal. END forces an implicit LIT to be done first for both
instruction and data space. The expression must be defined when the END pseudo-op is
encountered.

J

EXTERNAL syml,  sym2,  sym3,.  . .
This pseudo-op defines the symbols in the list to be “external” symbols. The symbols in the

list gust not be defined anywhere in the program. Only one external reference may be made per
expression. The value of the external will be ADDED by the linker to the word containing the
expression regardless of the operation the expression says to perform on the external symbol.

IFJ,< c o n d i t i o n a l l y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
IFN1.c c o n d i t i o n a l l y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
IF2,< c o n d i t i o n a l  i y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
IFNz,< c o n d i  t i o n a i  i y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
IFS,< c o n d i  t i o n a i  i y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
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IFN3,< c o n d i t i o n a l  i y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
Assembles conditionally assembled  text  if the assembler is in pass 1, 2 or 3 for IFI, IF2 and IF3

or if the assembler is not in pass 1, 2 or 3 for IFNl, IFN2, IFN3.

IFDEF symbol,<  c o n d i t i o n a l l y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
IFNDEF s y m b o l , <  c o n d i t i o n a l l y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m

Assembles conditionally  assembled  text  if the symbol is defined or not for IFDEF and IFNDEF
respectively.

If% e x p r e s s i o n , <  c o n d i t i o n a l l y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
IFN e x p r e s s i o n , <  c o n d i t i o n a l  i y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
IFL e x p r e s s i o n , <  c o n d i t i o n a l l y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
IFG e x p r e s s i o n , <  c o n d i t i o n a l  my a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
IFLE e x p r e s s i o n , <  conditionaliy  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
IFGE e x p r e s s i o n , <  c o n d i t i o n a l l y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m

Assembles conditionally  assembled  text  if the condition is met. If the condition is not met, then
the program is assembled as if the text from the beginning of the pseudo op to the matching > were
not present. For IFE the condition is “the expression has value zero,” for IFN it is “the expression
has non-zero value,” etc. In any case the expression must not use any undefined or external
symbols. The comma, < and > must be present but are “eaten” by the conditional assembly
statement. In deciding which is the matching right broke&  all brokets are counted, including those
in comments, text and those used for parentheses in arithmetic expressions. Therefore one must be
very careful about the use of brokets when also using conditional assembly. For example, the
following example avoids a potential broket problem:

IFN SCANLSS, c
SKP. NEQ A, “<‘I
JMPA FOUNOLESS

>;ENO OF IFN SCANLSS

;> MATCHING BROKET

The broket in the comment is used to match the one in double quotes so that the conditional
assembly brokets will match.

IFlDN cstringl>,<stringZ>,c  c o n d i t i o n a l l y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
IFDlF cstringl>,<string2>,<  c o n d i t i o n a l l y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m

These are text comparing conditionals. The strings that are compared are separated by
commas and optionally enclosed in brokets. If the strings are identical (different for IFDIF) then the
text inside the last set of brokets is assembled as for arithmetic conditionals.
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IFB < s t r i n g > , <  c o n d i t i o n a l l y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m
IFNB < s t r i n g > , <  c o n d i t i o n a l l y  a s s e m b l e d  t e x t  > r e s t  o f  p r o g r a m

These text testing conditionals compare the one string against the null string. They are
equivalent to

I F I D N  < s t r i n g > , < > , <  .  .  .  > . . .
I F D I F  <string>,<>,<  . . . > . . .

INTERNAL syml,  sym2, sym3,.  . .
Defines each symbol in the list  as an “internal” symbol. This makes the value of the symbol

available to other programs loaded separately from the one in which this statement appears.

IPAGE
If the current space is data space, it does an implicit LIT, advances the location counter to the

next page boundary and sets the space to instructions. If the current space is instructions, it merely
‘advances to the next page boundary. This pseudo-op may not appear inside of a literal or in a
relocatable assembly.

ISPACE
Is a no-op if the current space is already instructions. Otherwise it switches to instruction

space and restores the location counter from the last value it had in instruction space. This
pseudo-op may not appear inside of a literal or in an absolute assembly.

e

LIST
. Increments listing counter. Listing is enabled when the count is positive. The count is set to

one at the beginning of each pass. XLIST is used to decrement the count.

LIT
Forces all literals in the current space (instruction or data) that have not yet been emitted to be

assembled starting at the current location counter. It has no effect on the literals in the “other”
space. This pseudo-op may not appear inside of a literal.
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LOC express i on
Sets the location counter to the specified quarter-word address. May not appear inside of a

literal or in a relocatable assembly.

MLIST
Increments macro listing counter. Macro expansion listing is enabled when the count is

positive. The count is set to one at the beginning of each pass. XMLIST is used to decrement the
count.

PRlNTV  e t e x t  e
Prints  text on the console. It is identical to PRINTX except that macro expansion may occur

withm the text. \ and ’ may be used within the text as in macro arguments and expression
evaluation. See the section on special processing in macro arguments for an explanation of \ and ’
processing. Macro expansion is intially  enabled at the beginning of text and may be disabled with \.

PRJNTX e t e x t  QD
Prints text  on the console.

RADIX expressi  o n
Sets the current radix to expression. The radix may not be set less than Iwo.

RELOCA
Forces the assembly to be relocatable.

REPEAT expression,  <body>
Assembles b&y concatenated with a carriage return expression many times. The expression

must be defined at the time the REPEAT pseudo op is encountered. The expression must be
non-negative. If it is zero, the body will not be assembled.

TERMIN
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This pseudo-op is legal only during a macro definition. It is used to terminate a macro
definition. See the section on macros for a description

TITLE  name o t h e r - t e x t
Sets the title of the program to name. Everything else on the line is ignored.

XLIST
Decrements listing counter. Listing is enabled when the count is positive. The count is set to

one at the beginning of each pass. LIST is used to increment the count.

XMLIST
Decrements macro listing counter. Macro expansion listing is enabled when the count is

positive. The count is set to one at the beginning of each pass. MLIST is used to increment the
count.

XSPACE
Has the effect of ISPACE if the current space is data and DSPACE if the current space is

instructions. This pseudo-op may not appear inside or a literal or in an absolute assembly.
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10.6 Macros

The FASM macro facility shows a strong resemblance to those of FAIL (the macro assembler
for the PDP-10 developed and used at the Stanford Artificial Intelligence Laboratory) and MIDAS
(the macro assembler for the PDP-IO developed and used at the M.I.T. Artificial Intelligence
Laboratory), which are hereby acknowledged.

Macros are essentially procedures that can be invoked by name at almost any point in the
assembly. They can be used for abbreviating repetitive tasks or for moving quantities of
information from one part of the assembly to another (in fact even from one pass to another).
Macro operation is divided into two parts: definition and expansion.

The macro facility does differ in an important way from other assmeblers, however. Macro
expansion in FASM is performed at the “read-next-character” level whereas in other assemblers it
is done at symbol lookup time during expression evaluation. Due to this difference, in FASM,
macro expansion inherently produces “string” output rather than evaluated expressions as is
sometimes the case in other assemblers. Wherever a macro call is seen, the effect can be predicted
by substituting the body of the called macro in place of the call.

10.6.1  Macro Defirritioil

Macros are defined using the DEFINE pseudo-op which has the following format:

DEFINE macroname argument I iet
b o d y  o f  m a c r o  d e f i n i t i o n

TERRIN

This will define the symbol macroname to be a macro whose body consists of all the characters
starting after the CRLF that ends argumentlist  and ending with the character immediately
preceding the TERMIN.

a

10.6.1.1  The Argument List

Basically, the argument list is a list of formal parameters for the macro. This is similar to the
list of formal parameters for a procedure in a “high” level language. The parameters are symbol
names and are separated by commas. The number of macro arguments is in the range 0. . 64 .
The macro argument list is terminated by either a ; or a CRLF.

Each macro argument has certain attributes associated with it. In FASM these attributes are
balancedness, gensymmedness,  a n d  parenthesizednesr. From now on, it shall be said that an
argument is or is not balanced, is or is not gensymmed, and that certain pairs of parentheses can or
cannot parenthesize an argument. If an argument isn’t balanced or gensymmed then it is said to be
normal.

Argument attributes are specified by enclosing a string of characters in double quotes
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preceding an argument in the argument list. The attributes specified by that string are “sticky”, that
is, they apply to all following arguments until the next such string is specified. The characters B
and G may appear in the string to indicate that the argument is to be balanced or gensymmed
respectively. There are four parenthesis pairs, namely: ( and ), [ and I, < and >, and ( and ). Any
of these characters may appear in the string to indicate that that set of parentheses may be used to
parenthesize that argument. One final thing that may appear in the string is a statement about the
concatenation  character for the macro body. If the string !=o a ppears, where e is any character other
than CRLF, then Q will be the concatenation character. If the string O! appears, then there will be
no concatenation character. Only the last statement made about the concatenation character will

apply*

At the beginning of the argument list, the attributes have the following defaults: ! is the
concatenation character, arguments are neither balanced nor gensymmed, and any pair of
parentheses may be used to parenthesize an argument. Whenever an attribute string is encountered,
the previous set of attributes are forgotten and the new one applies to future arguments until the
next string is specified.

Here are some examples of valid macro definition lines:

DEFINE MAC
DEFINE MAC1 A,B,C
DEFINE MAC2 ” ’ ’ ” A,B, “G” C
DEFINE MAC3  ‘I;;,, 1” A, ” [0 ! ” B

With these definitions, MAC has no arguments and has ! for the concatenation character.
MAC1 has three normal arguments, A, B and C with ! for the concatenation character. MAC2 has
two normal arguments A and B, a gensymmed argument C and uses ’ as the concatenation character.
MAC3 has a balanced argument A, for which () and [] can be used as parentheses and a normal
argument B for which [] can be used as parentheses. MAC3 has no concatenation character.

10.6.1.2  The Macro Body

The macro body begins at the character following the CRLF at the end of the define line and
ends with the last character before the matching TERMIN. Within the macro body, FASM replaces
all delimited occurrences of formal parameters with a mark that indicates where the actual
parameter should be substituted. Any character that is not a symbol constituent is considered a
delimiter for this purpose. The concatenation character is also considered a delimiter. However, the
concatenation character is deleted wherever it occurs and will not appear in the macro body
definition. The concatenation character is useful to delimit a formal parameter where, without the
concatenation character, the formal parameter would not have been recognized as such. For
example,

DEFINE MAC A,B,C
PUSH.UP.S SP,B
PUSH.UP.S SP,C
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JSR A!RTN

TERNIN
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If X, Y and Z were substituted for the formal parameters A, B and C, then the third line
would assemble as JSR XRTN. Without the concatenation character, it would always assemble as
JSR ARTN regardless of the actual value of the parameter A.

In addition to scanning for formal parameters in the macro body, FASM also scans for
occurrences of the names DEFINE and TERMIN.  It keeps a count of how many it has seen so that
it can find the TERMIN  that matches the DEFINE that began the macro definition. This allows a
macro body to contain a macro definition entirely within it. For example,

/
DEFINE MAC1 A

DEFINE NAC!A

. . . .
TERNIN
TERNIN

defines a macro called MAC1  which contains a complete macro definition sequence within itself.

Note that FASM does NOT recognize either comments or text constants as special cases in its
search for DEFINES, TERMINs  and formal parameters. Therefore, the user must be careful when
using the words DEFINE and TERMIN  in those places. They WILL be counted in order to find
the TERMIN that marks the end of the current definition. There is a pseudo-op called .QUOTE
that can be used if it is desired to inhibit FASM from seeing a DEFINE, TERMIN  or macro
parameter. .QUOTE is like an ASCIZ statement, taking the first nonblank  character after the
.QUOTE as a delimiter and passing all characters up to the matching delimiter through to the
macro definition. For example,

DEFINE MAC
. . . .
TERN1 N

:how to put a .QUOTE /DEFINE/ in a comment

will define MAC’s body to be

. . . . ;how to put a DEFINE in a comment
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10.62 Macro Calls

A macro call occurs whenever a macro name is recognized in a context where macro calls are
permitted. When this happens, the macro call is processed in two distinct phases. The first is
argument scanning and the second is macro body expansion.

10.6.2.1  Argumerlt  Scarmillg

Argument scanning is the process of assigning text strings to the formal parameters of a
macro. These text strings come from the input stream. If a formal argument is not assigned a
string, then it is assigned the null string as its value, unless the argument is defined to be
gensymmed. In that case, the argument is assigned a six character string beginning with G and
followed by 5 decimal digits which represent the value of an internal counter which is incremented
before being converted to a text string.

Argument scanning is performed for those macros that have formal parameters. If a macro
does not have any formal parameters, then the character that terminates the macro name is left to be
reprocessed after the macro expansion is complete even if it is a comma.

If the macro has formal parameters, then how the argument scan is done depends on the
character immediately following the macro name. If it is a CRLF, then the argument scan is
terminated and all of the formal parameters are assigned the null string or are gensymmed as
appropriate. The CRLF is left to be reprocessed after the macro expansion is complete.

If the character following the macro name is a space or a tab, then all immediately following
spaces and tabs are thrown out. The entire sequence of spaces and tabs can be considered to be the
macro name delimiter.

If the character following the macro name is a ( then the macro call is said to be a
parenthesized call, otherwise it is a normal call. A parenthesized call differs from a normal call in

-the way argument scanning is terminated. In a normal call, argument scanning is terminated by
either CRLF, semicolon, or the argument terminator for the last argument. If terminated by a
CRLF or semicolon, the terminator is left to be reprocessed after macro expansion is complete. In a
parenthesized call, only the matching ) can terminate the call. The ) is not reprocessed after the
macro expansion is complete. The following paragraphs will describe the syntax of macro
arguments and explain how they are terminated. The phrase ‘I... macro call terminator” refers to the
character that terminated either the normal or parenthesized call, as described in this paragraph.

10.6.2.2 Macro Arguinerlt  SyIrtax

The first macro argument begins with the first character following either the ( that demarks a
parenthesized call or the macro name delimiter in a normal call. This character is looked at by
FASM to determine how to scan the argument.

If the first character is a left parenthesizing character that belongs to the set of characters that
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may be used to parenthesize the argument that is being scanned (as determined by the character
string in force at the time this formal parameter was seen in the macro define line), then the
argument is taken to be ail characters following that open parenthesis until, but not including, the
matching closed parenthesis. ANY characters may appear between the parentheses. Only the
particular type of parentheses that enclose the argument are counted in finding the matching closed
parenthesis. This type of argument is called a p’arenthesized argument.

If the first character is a comma, then the argument is the null string.

If the first character is a macro call terminator, then this argument and all further arguments
are not assigned strings. That is, if the arguments are gensymmed, they will be assigned unique
gensymmed strings, and if they are not gensymmed they will be assigned the null string.

If the first character is not one of the above, then argument scanning depends on whether the
argument is to be balanced or not. If the argument is not to be balanced, then the argument is
taken to be ail characters from the first character until, but not including, a comma or macro call
terminator. If the terminator is a comma, it is thrown out; a macro call terminator, however, will be
kept to terminate the macro call.

If the argument is to be balanced, then all types of parentheses are treated the same. A count
is kept of the parenthesis level. If there are no unbalanced parentheses, then a comma or macro call
terminator will terminate the argument as if it were a normal argument. Also, if the parentheses are
balanced, any closed parenthesis will terminate the argument and the call. If it is a parenthesized
call, the closed parenthesis must be a ) or an error is reported. If it is not a parenthesized call, the
parenthesis will be left to be reprocessed after the macro call is complete. In either case, the
remaining formal parameters are assigned the null string or gensymmed as appropriate.

10.6.2.3 Special Processillg  in Macro Argurnents

Ordinarily, macro arguments are the quoted forms of the strings that appear between
d delimiters within the macro call. However, it is possible to call a macro or even evaluate an

expression from WITHIN a macro argument DURING the macro argument scan.

If a macro argument is not parenthesized, then the appearance of the character \ (backslash)
-in the argument will enable macro calls to be recognized during the scanning of the macro
argument. The appearance of a second \ will again disable this feature. If a macro call is detected
during this time, then that new macro is expanded and its expansion appears as if it were written in
line in the macro argument that is currently being read. Every time a new macro call is seen and
macro argument scanning is started, the macro-in-argument recognition feature is disabled until
re-enabled by a \. The \ character itself is discarded.

Perhaps this will be clearer if explained in terms of the actual implementation. FASM
maintains a flag, called the \ flag which when set enables macro expansion. This flag is pushed
when a macro name is recognized and initialized to be off at the beginning of the argument scan. It
is complemented every time a \ is seen in the input. When the entire macro call has been scanned
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(but expansion has not yet started) the \ flag is popped.

In fact, the \ flag has wider application than just in macro calls. It is also applicable at
expression evaluation time. Normally it is set during expression evaluation, thereby allowing macros
to be expanded. It is perfectly legal to use \ during expression evaluation to inhibit macro
expansion.

There is a second feature, analogous to the \ feature, which allows the expression evaluator to
be called during a macro argument, or in fact even at expression evaluation time. If a pair of ‘
(backquote) characters surround an expression, the expression evaluator is called upon to produce a
value, which may possibly be null, which is then converted into a character string of digits
representing that value in the current radix. The conversion always treats the value as a 36 bit
unsigned integer. A null value is converted to the null string. The surrounding backquotes act in a
similar way to parentheses in arithmetic expressions, in that multiple lines may be used, but only the
expression on the last line is converted. This converted string is used in place of the backquoted
expression. As in the case of \ this can occur in non-parenthesized macro arguments or in
expression evaluation. The ‘ characters themselves are thrown out.

Following are some examples of the use of these features:

X-1 FOO ‘X ‘: JMPA FOOl

will assemble as

Fool: JMPA FOOl

If FOO was a macro name, it would have been expanded in the previous example. This could be
inhibited with:

e
Next consider:

\FOO\ ‘X ’ : JMPA FOOl

DEFINE MAC
x+*x+1
X!TERMIN

FOO ‘MAC ‘:

will define the label F002 while incrementing X to be 2. The next time FOO‘MAC‘: appears, the
label F003: will be generated.

It is sometimes useful to extract the value of a symbol in a macro argument before the macro
call changes that value:
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DEFINE MAC A
BAR++BAR+l

A*BAR
TERMIN

MAC ‘BAR'

will call MAC with the current value of BAR. Without the backquotes, the string BAR would be
passed to the macro and used where “a” appears which is after BAR is incremented.
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11 Appendix: S-l Formal Description Syntax

11.1 The S-l Architecture Notatioil

The S-i Architecture Notation is a LISP-like language. It has a modified LISP syntax.
There is an interpreter/debugger which executes procedures in the language, and a pretty-printer
which takes the LISP-like code and produces a file which is a version of the code rendered in an
ALGOL- or PASCAL-like syntax. This is the format that appears under the heading “Formal
Description” with each instruction description, and in other places as well. In this description we
shall exhibit the LISP-like and PASCAL-like notations side-by-side.

The basic data objects in the language are numbers and bit fields. A number is simply a
signed integer. A btt field is an object with definite zui&h (the number of bits), contents (values for
each of the bits), and alignment, which is a number for the leftmost bit, following bits have
successively higher integer indices. (Internally, bit fields are represented as S-lists of integers
(content width alignment). For many purposes, one can think of an integer as a bit-field in
two’s-complement form with half-infinite width, sign-extended to the left.)-_

An integer can be notated in the ordinary decimal notation, with an optional sign. It can also
be notated in octal by preceding it with a “Y”.

Examples: 12 + 14 -10 ~777’1 e-43

A bit field can be notated in the “LISP” syntax by writing <j:k>n, where j, k, and n are ail
numbers. This specifies a field k-j+1 bits wide, aligned so that the leftmost bit is bit number j, and
whose contents are the low k-j+1  bits of the two’s-complement representation of n. In the
“PASCAL” syntax this is written as n<j:k>.

There are also one-dimensional arrays of bit fields, called memories. These cannot be
constructed dynamically, but must be pre-declared (this is discussed later).

e
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11.2 Symbols

Non-numeric tokens, or symbols,  occur in four distinct varieties: constant Jymbois,  substitution
variables, identifiers, and ke’yword$.  They are distinguished by their spelling, and in the “PASCAL”
syntax also by the use of special fonts:

“LISP” syntax ‘*PASCAL” syntax

constant all upper case all upper case, gothic font

substitution capitalized, or leading Z italic font, usually  capitalized
identifier all lower case all lower case, gothic font

keyword leading $ boldface

Table 1 l-l
Symbol Types and Fonts

Actually, only the first two characters of the symbol are examined in performing this
classification. The letters A-Z and digits O-9 are considered to be capitals, and all other characters,
even special characters such as I’-” and ‘x’, are considered to be lower-case. A “capitalized“ symbol
is one whose first character is upper-case and whose second is lower-case.

When a “LISP’-syntax symbol is rendered into “PASCAL’ syntax, a leading Jf or % is elided
(because the font carries the necessary information). Also, any “-” characters are changed to “-”
characters (“-‘I is the standard LISP “break” character, while “-” is the standard “break’ character
for PASCAL-like languages.)

Examples of PASCAL syntax:

constant
substitution variable
identifier
keyword

Q H S D LF RT MODE

Address Extended-Word p foe Extended-word ***
program-counter od x n
if while case

.Examples  of LISP syntax:

constant Q H S D LF RT MODE
substitution variable Address Extended-Word %p %foo  Extended-word ***
identifier program-counter od x n
keyword $if $while  #case

L** Note: ‘Extended-Word” and “Extended-word” are two different  substitution variables. The
first is the preferred form.

Constant symbols are used in much the same way as scalar data type elements ark in
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PASCAL: to provide constant values for control purposes with a manifestly meaningful name.
Substitution variables are similar to Algol-style call-by-name parameters, and will be discussed
below. Identifiers are ordinary call-by-value variables; their values may be numbers, bit fields, or
constant symbols; they are also used as names for memories. Keywords are used to identify certain
control constructs, and as noise words.

In presenting the “PASCAL” syntax here, we will use font changes in lieu of the capitalization
and leading “$” conventions. Thus, we will write:

“if okay then Operation else Error fi”

with “if”, “then”, “else”, and “fi” in boldface; “okay” in gothic letters; and “Operation” and “Error” in
italics to mean

“$if okay $then  Operation $else  Error $fi”

in the LISP syntax.

11.3 Forms

In the “LISP” syntax, as in real LISP, nearly all forms except numbers and symbols are
written as a list of forms enclosed in parentheses. Such a form may mean one of three things:

(1) If the first element is an identifier, then it is a procedure call or function call. The
identifier is the name of the function, and the other elements of the list are the arguments,
which are evaluated before the function is called.

Examples: (shift x n) (+ y z) (> a b)

(2) If the first element is a

Example: ($while  x

The keyword “$while”
word.

keyword, then it is a special  form  , a control construct of some kind.

lfdo y)

signifies a special form, The keyword “#do”  is a (required) noise

(3) If the first element is a substitution variable (or a constant symbol) with a global macro
definition (which has not been shadowed by a local definition -- never done in practice!),
then it is a macro call,

Example: (Calculate-Operand 2 $next  Operation) The symbol “Calculate-Operand”
signifies a macro call, with the parameters “2” and “Operation”, and the noise word
“lbnex  t”.

(If the first element is a substitution variable with some local binding, or a global binding which is
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not a macro  definition, then its definition is substituted in and the three-way classification is tried
again. See the description of macros below.)
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11.4 Primitive Functions and Other Identifiers

The language provides a number of identifiers with function definitions which are useful for
manipulating bit fields. Recall that the arguments to all functions are fully evaluated before
invoking the function on the result. Some global identifiers are also predefined with useful bit-field
values. (In the descriptions that follow, Greek letters are meta-variables  which range over forms.
The “LISP” syntax is shown on the left, and the “PASCAL” syntax to the right. If the syntax is
common to both, as in the case of symbols, they are shown centered.)

(+ a P> addition a+P
(- a 6) subtraction a - /3
(A a 0) logical and a A fl
(v a 0) logical or a0
(e a 0) logical xor c-4

$0 $false
These identifiers initially have as value a one-bit field containing a 0.

$1 &rue
These identifiers initially have as value a one-bit field containing a 1.

N.B. $0 and $1 are usually used with the bit-field concatenation construct -- see below.

Table 11-Z
Arithmetic and Logical Functions

These arithmetic and logical operators will accept either integers or bit fields. If both are
integers, then an integer results. If one is an integer and the other a bit field, then the integer is
first converted by two’s-complement truncation to a bit field of the same width as the other

-argument. If both are bit fields, they must be the same width, or an error will result; the value is a
bit field of the same width, aligned so that the high bit is bit number zero. In no case is overflow
detected.

(- a) logical not -a
If a is an integer, the result is an integer. If a is a bit field, the result is a bit field of
the same width, aligned so that the high bit is bit number zero.

N.B. There is no unary minus. However, if one writes ” (- 0 a) “, then the
pretty-printer will render it as “- a” rather than as “0 - a”.

(c a P) signed less than a< P
b a 0) signed greater than a>P
(2 a 0) signed less than or equal a,<P
k a 0) signed greater than or equal a L P
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If either argument is a bit field, it is first converted to an integer by considering it as a
signed two’s-complement representation. If both arguments are bit fields, they must be
the same width (for error-checking purposes). The two integers are compared, and the
result is a bit field exactly one bit wide, whose content is 1 if the specified relation
holds, and 0 otherwise.

b a PI equal c-0
b a 0) not equal ad

These operators compare their arguments for equality. The arguments may be two
integers, two bit fields of the same width, an integer and a bit field (in which case the
latter is sign-extended, or the former is truncated -- the two interpretations are
equivalent), or two symbolic constants.

(signed a) sign extension signed(a)
If the argument is a integer, that integer is returned. If it is a bit field, an integer
produced by sign-extending the bit field “to infinity” is returned.

(unsigned a) unsigned interpretation unsigned(a)

If the argument is a integer, it must be non- negative (otherwise an error occurs), and is
returned. If it is a bit field, an integer produced by zero-extending the bit field “to
infinity” is returned.

(sign-extend a 0) sign extension sign-extend(a, p)

The argument P must evaluate to a non-negative integer, or to one of the symbolic
constants Q, H, S, D, or A (which mean 9, 18, 36, 72, and 30, respectively). The
argument a must evaluate to a bit field whose width is no greater than 0. A field 0
wide containing the same signed value as a is returned, aligned so that the left bit is bit
0.

(zero-extend a 0) zero extension zero,extend(a,  /3)
- The argument P must evaluate to a non-negative integer, or to one of the symbolic

constants Q, H, S, D, or A (which mean 9, 18, 36, 72, and 30, respectively). The
argument a must evaluate to a bit field whose width is no greater than P. A field 6
wide containing the same unsigned value as a is returned, aligned so that the left bit is
bit 0.

(low a 0) extract low bits Ma, 0)
The argument 0 should produce a bit field, and a should produce an integer, bit field,
or one of 9, H, S, D, or A. The unsigned value of a specifies how many bits should be
extracted from the low end of 0 (the width of P must be no less than specified by a).
The result is aligned so that the leftmost bit is bit 0.

(high a P) extract high bits high(a, p)

The argument fi should produce a bit field, and a should produce an integer, bit field,
or one of Q, H, S, D, or A. The unsigned value of a specifies how many bits should be



Page 338 Appendix: S-l Formal Description Syntax 3 11.4

extracted from the high end of fi (the width of (3 must be no less than specified by a).
The result is aligned so that the leftmost bit is bit 0.

(shift a 0) shift field shift(a,  0)
The argument a should produce a bit field, and should produce an integer or bit field.
A field is returned which is as wide as the field a, and which has the Same  alignment,
with contents equal to those of a shifted a distance 0, where positive 0 is to the left, and
the shift loses bits without any overflow detection and shifts in zero bits.

(realign a P E) realign field realign(a,  6, E>
The arguments a and fl must produce numbers (not bit fields), and 6 must produce a bit
field, in in which case the width of c should be &a+l; or an integer, in which case the
integer is truncated without overflow checking to a signed field of that width. The
result is a copy of E realigned so that the leftmost bit is bit number a.
N.B. This is almost never used explicitly by the programmer, but is used implicitly by
control constructs which bind identifiers, such as $let (q.v.). It is also used by the
construction <a$>n  -- see below.

(extract-bits a fl 5)
<a:(3x

extract subfield c<a$>

The arguments a and 0 must produce numbers (not bit fields), and E must produce a bit
field. A bit field is returned of width P-at 1, whose contents are those of bits a through
fi of E. The result is aligned so that the leftmost bit is bit 0 (not bit a!). It is permitted
to abbreviate the field specifier “<j:j>”  to simply “<j>“,  thus selecting a single bit.
Through a bit of clever programming, the “LISP” syntax has an alternative form
<a:@c,  which is similar to the “PASCAL’ form, except for putting the operator up
front, as with most LISP constructs. This syntax enforces a rule that a and p, the forms
themselves, must be explicit numbers, and not any old numeric- valued expression.
This is to force the programmer to use the operators low, high, and shift when variable
fields are involved. Another twist is that if in <a:@, the form c is explicitly a number,
then that expression is parsed as (realign a fl E) rather than as (extract-bits a /3 E) -- see
above.
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The form a must produce a bit field or a non-negative number; the form fl must
produce an array (memory). The unsigned value of a must lie within the declared
range of subscripts for the array. The bit field selected from the array (3 by a is the
result. Through a bit of clever programming, the “LISP” syntax has an alternative
form [a]& which is similar to the “PASCAL” form, except for putting the operator up
front, as with most LISP constructs. A special twist of the I...] syntax is that if the form
0 is explicitly a substitution variable, then the form [alo is not parsed into (word a /3),
but into (0 [ a I), which is a macro call. In this way one can make a macro call look like
an ordinary array reference.

(concatenate al a2 . . . aj aj aj . . . aj . . . an) concatenate bit fields
Cal 1 1 a2 1 I... 1 1 k*aj 1 I... I I an3

By special arrangement, concatenate can take any number of arguments. The bit fields
are concatenated together in order, leftmost argument being leftmost in the result field.
The width of the result is the sum of the widths of all the arguments. The result is
aligned- so that the leftmost bit is bit 0. The “LISP” syntax has an alternative notation
identical to that of the “PASCAL” syntax. The arguments are enclosed in “~3” and
seperated by “11”.  If before any argument the phrase “krK” appears, where k is an explicit
number, it is as if the argument had been written that many times. This is often used
in con junction with $0 and $1.
Example: c6*0 I I program-counter 1 I2*0>
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11.5 Special Forms

(In the descriptions that follow, Greek letters are meta-variables which range over forms. The
“LISP” syntax is shown on the left, and the “PASCAL” syntax to the right.)

(#if a 0 c) if a then fi else E fi

The form a must evaluate to a bit field exactly one bit wide. (Such bit fields are typically the
result of predicate operators such as “c”.) If that bit is a 1, then fi is evaluated, and otherwise
E is evaluated.
Example:
(#if  (> s 1 s2) sl s2) if sl > s2 then sl else s2 fi

($case  a
(set1 61)
(set2 02)

case a of
setl: 01;
set2: 02;

.a.

(setn  LW

. . .

setn: firi;
end

The form a is evaluated, and the resulting value should occur in one of the sets. If it is found
in setj, then /3] is evaluated,

A “set” may be any one of the following:
[al a symbolic constant or an integer
[b] (integer $to integer) integerinteger
[cl (x 1 x2 . . . xn) x 1, x2, . . . . xn
where each xj is a set of type [al or Lb]

Example:
&case  reg case reg of

((0 1 2 (4 #to 31)) Foo) 0,1,2,4..3  1: Foo;
e

((3) Bar)) 3: Bar;
end

Wet ((v 1 = al)

. (v2 = a2)
let vl = al,

v2 = a2,
. . . . . .

(vn - an)) v n  - a n

0) then p

The forms al, . . . . an are all evaluated; then their values are all simultaneously  assigned to the
identifier specifications v 1, . . . . vn, which constitute new local variable bindings. Finally, the
form /3 is evaluated in this new environment. An identifier specification aj can be just an
identifier, or it can be of the form (extract-bits a fi c), where a and fl are integers and c is an
identifier. In the latter case, the result of (realign a 0 aj) is what is assigned to the identifier CE.
This allows the precise width and alignment of the newly-bound identifier to be specified.
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Example:
(#et ((x = Field)

(<0:35>n  - 0 ) )
Continuation)

let x = Field,
n<0:35>  - 0

then Continuation

(#while ct $do 0) while a do fl od

The form a is evaluated, and should result in a one-bit field. If this field contains a 1, then fi
is evaluted, the result thrown away, and the process is iterated. If ever evaluating a produces
a 0, then a ‘*garbage” result is returned, which is illegal to use for any operation on bit fields.

@repeat  a $until  /3) repeat a until (3 taeper

The form a is evaluated, and the result is thrown away. Then the form p is evaluated, which
should produce a one-bit field. If this field contains a 0, then the process is iterated. If ever
evaluating 0 produces a I, then a “garbage” result is returned, which is illegal to use for any
operation on bit fields.

($do-forever a) do forever a o d

The form a-is evaluated and the result thrown away for an indefinitely large number of
iterations.

@prefix  x a) prefix(x,a)
x must explicitly be an identifier. a must also be an identifier, possibly after resolution of
substitution variables. The effect is as if a single identifier had been written in place of the
#prefix-form, whose name is that of x, followed by a “-” (“LISP” syntax) or a “-” (“PASCAL”
syntax), follwed  by that of a.
Example: ($p fre ix address Op) is the same as address-opl, assuming that the substitution
variable Op has the substitution value “opl”.

($next  a fl c . . . n) a next fl next E next . . . next n

The forms a, 0, c, . . . . n are evaluated in order. The results of all but the last are thrown away.
d The result of the last form is the result of the $next-form,

($also a 0 c . . . n) a also p also f also . . . also n

The forms a, 0, c, . . . . n are evaluated in an arbitrary order. No defined result is produced.

(+ a P) a+P
This is the assignment statement. It is very complicated because of the variety of forms
permitted on the left-hand side:

identifier
identifier< j:k>
array[nl
array[n J< j:k>
#Jet  . . . &hen a
#if n &hen  al $else  a2 $fi
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where a, al, a2 are themselves forms permissible on the left-hand side of “t”.  (The last two
cases are useful when a macro is used to compute which identifier is to be assigned to.)

11.6 Global Register and Memory Declarations

Local identifiers can be declared using the let statement. Globally available identifiers and
arrays can be declared using the “toplevel” register and memory statements. (There is no way to
locally declare an array.)

The general form of a register declaration is:

@register  < j:k>identifier) register identifiercj:  k>;

This defines a globally available register whose width is k-j+1 and whose leftmost bit is bit number
j. The bit range limits j and k muse be integers.

Examples:
Mregister  <0:35>uSer-status) register user,status<O:  35>

@register <0:27>program-counter) register program,counter<O:  27>

The general form of a $memory  declaration is:

@memory <j:k>[m:nlidentifier) memory identifier Em: nl <j:  k>;

This defines a globally available array of bit fields. Each bit field is k-j+1 bits wide, with the
leftmost bit being bit number j. There are n-m+1 such bit fields in the array, numbered from m
through n.

Examples:

(#memory <0:35>[0:5 11 Iregister-file)
@memory  <0:35>EO:4095Iphysical-memory)

memory register-file 10: 5 11 I CO: 35>

memory physical-memory 10: 40953 ~0: 35>
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11.7  Macros arld Substitution Variables

A macro may be thought of as a procedure which takes all of its arguments “by name“, in the
Algol sense (however, as we shall see, the rules for scoping variables are different from those of
Algol). It may also be thought of as a piece of text to be used in place of a call on that macro, with
specified arguments substituted into specified places in the macro definition.

A macro definition is a “top-level” declaration, such as the register and memory declarations.
It has the general form:

(E <prototype> <body>) define <prototype> B <body>;

Whenever an instance of the prototype (a macro call) is seen as a form of the language, a copy of
the body may be substituted for it, possibly with alterations determined by matching the macro call
against the formal prototype in the definition.

The simplest type of macro has no parameters. It is merely an abbreviated name for a piece
of text which is evaluated whenever the name of the macro is encountered. The name must be a
substitution variable; the body may be any valid form. For example, with this definition:

(= Jump (t pc-nxt-instr jump-address))
define Jump o pc,nxt-instr e jump-address;

then writing “Jump” as a form would be entirely equivalent to writing “(t-  pc-nxt-instr
jump-address)” (LISP syntax) or “pc,nxt,instr (: jump-address” (PASCAL syntax).

In the more general case, a macro prototype may be an arbitrarily complicated list structure,
provided the first element of the outermost list level is a substitution variable (which is the name of
the macro). A call on this macro must be a similar list structure, with the first element of the
outermost list level being the name of the macro. To substitute the macro body for the call, one
matches the call against the formal prototype. Wherever a substitution variable occurs in the formal
prototype, the corresponding expression in the call is matched to it. If an identifier or keyword
occurs in the formal prototype, that same identifier or keyword must appear in the macro call, as a
“noise word”. When the match has been completed, then the body may be used, with the provision

. that any occurrences of the matched-against substitution variable parameters in the body be
replaced by the matching expressions in the call.

For example, consider:

(P (Memory-Address-Is-a-Register Address)
(A (= <O:ZP>Address 0) (- Block-Memory-Address-Is-a-Register)))

define Memory-Address-Is-a-Register (Address) 0
(Address<O:22>  - 0) A - Block~Memory~Address~Is~a~Register;
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Then if one were to write:

(Memory-Address-Is-a-Register address-op 1)
Memory-Address-Is-a-Register (address-opll

it would be exactly the same as writing: . .

(A (= <O:Z>address-op  1 0) (- Block-Memory-Address-Is-a-Register)))
(address_opkO:  22>  = 0) A - Block~Memory~Adclress..Js~a~Register;

because the parameter
macro definition.

“add ress-op 1” is substituted for occurrences of “Address” in the body of the

There are three extra features which can be used in the formal prototype to control the matching.

[ 11 If the form
(heI a b c . . . z) a 1 b 1 c I... 1 t

appears in the-formal prototype, then the match succeeds if the corresponding part of the
call is an identifier or keyword which is in the list a, b, c, .+., z.

[21 If the form
k x y) XCY

appears in the formal prototype, where “4 is actually the character epsilon, then the form y
must be (or resolve via substitutions to) a form

(#set  al a2 . . . an) {a 1 ,a2,...,an)
Then the match succeeds only if the corresponding part of the call is in the set (whose
elements may be constant symbols, integers, or integer ranges “(m $to n)” (“LISP,’ syntax) or
“m..n” (“PASCAL’ syntax), as with case sets). If this is true, then that same part of the call
is matched against x (which is normally a substitution variable).

131 If the form
(= x 00 X=U

appears in the formal prototype, it is just as if x itself had been written (where x must be a
substitution variable), except that if the macro call has too few elements at the list level
containing the = construction, so that no part corresponds to x, then the match still
succeeds, with x corresponding to u. In this way a serves as a “default value” for x.

Macro calls in the “LISP” syntax all look pretty much alike, according to the above rules. To permit
some syntactic variety in the “PASCAL” syntax, special cases of the “LISP” syntax are defined to
pretty-print in special ways.

The standard syntax for macro calls (and prototypes) is used when no keywords occur at the top list
level of the call, and one of the special formats described below is not involved. In this case the
macro name is printed, followed by a left parenthesis, followed by all the arguments separated by
commas, followed by a right parenthesis:
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(Reverse-Bits Field Count) Reverse- Bits{  Field, Count)

If no parameters are present, then just the name of the macro is printed, without parentheses. Thus
the two “LISP” forms “Jump” and ‘,(Jump)”  are both rendered in the ‘PASCAL” syntax as simply
“Jump”. It is recommended that the second “LISP” form be avoided.

If keywords (boldface) are present in the call, then the rule is to first write the macro name and all
parameters up to the first keyword as a standard call; then print the keywords and other following
parameters in order, using a comma as a separator in case two non-keyword arguments are adjacent:

(Add s 1 s2 $+ sum c ov $next  <more>)
AdiM, ~2) -) sum, c, ov next More

If a macro call has exactly four elements, and the second and fourth are “[” and “]“, then the call (a [
6 I) is pretty-printed in the form “c@J”. (Recall that in the “LISP” syntax the expression “C/3la”  is
parsed as (a [ fl I) iff a is explicitly a substitution variable.)

Example:
(E [Numberllndex-reg

($if (= Number 3)
c6x$O/Program-Counter&!*#OD
<0:35>INumberlRegister))

(= (Index-reg I[ Number /I)
($if (= Number 3)

(concatenate $0 $0 $0 $0 $0 $0 Program-Counter SO $0)
(extract-bits 0 35 (Register /[ Number /I))))

define E Index-reg  [Number3
if Number = 3

then c6tO  I I Program-Counter I 12*03
else R Wumberl  <O: 35~

fi;

‘Here we have, in the middle expression, expanded out all the funny syntactic forms into regular
“LISP-like” syntax to show explicitly the interpretation involved. (The character “/” is used to
“quote” the following character so that it will be interpreted as a letter rather than a special syntactic
character.)

As a special case, it is permitted to use a constant symbol as the name of a macro. This is usually,
but not always, used in conjunction with one of the following special formats.

If the second element of the call in the “LISP” syntax is “$i”, then instruction macro format is used.
The name and the arguments after the W’ are printed in order, separated by ‘I”.
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(MOV $i S D) M0V.S.D

If the second element of the call in the “LISP” syntax is “e”, then selector macro format is used.
There must be only one argument after the “o”; it is printed, then a “.“, and then the name of the
macro.

(MODE e odl) od l-MODE

If the name of the macro is XOP, JOP, TOP, or SOP, then a very funny format is used.

11.8 Comments

Comments may be inserted in the “LISP” syntax in the usual way: a comment begins with a
semicolon, and is terminated by the end of the line. Such comments are rendered into the
“PASCAL” syntax in one of two ways. If the comment begins with more than one semicolon
(usually three and a space are used), then the form “$comment  <the  comment>;” is used. Such
comments are normally used outside of other forms. If the comment begins with only one semicolon,
then the form ‘I(* <the comment> *)” is used; the comment is right-justified (thrown against the
right-hand margin). Such comments can be put in most reasonable places within a form.

The comment is set in the font used for identifiers and constant symbols. However, if a “7.”  is
within the comment, it is thrown away, and succeeding characters up until the next punctuation
character (space tab , ; . ! 7 ” ‘) are set in the font used for substitution variables.



g 11.9 Appendix: S-l Formal Description Syntax Page 347

11.9 Standard Programming Techniques

A special technique which the language was designed to exploit involves the use of
continuations. A continuation is a piece of code which is normally to be executed, if another piece
of code (in a macro body) executes “successfully”. In case of failure, however, the continuation is to
be ignored, and some alternative action taken.

Suppose, for example, that we want to access a register operand. Normally we want to get
back the contents of the register. If there is an error, for example trying to fetch a double-word
beginning at register 31, then we want to abort the operation entirely. Now if we merely wrote:

. . . let op = Access-Register-Operand Wum,Prec)  then <more>

then there is no simple way in the macro AccessXegister-Operand  to abort the operation <more> in
case of an accessing error. The solution is to make the piece of code <more> explicitly available to
the macro, so that it can decide whether or not it should be executed:

. . . Access-Reiister-Operand  Wum,Prec)  + op nex t  <more>

We then write the definition as follows:

define Access-Register-Operand Wum,Prec)  -) Result next Continuation E
i f  (Prec  - D) A (Num  - 31)

then Alignment-Error
else let Result = case Prec of

Q: R lNum1  ~0: 9>;
H:  R ENurn <O: 17>;
S: R [Numl;
D :  CR INuml

end
then Continuation

fi;

JR[Num + 113;I

Now there are several interesting things to note here. One is that if the macro decides that the
- precision is “D” and the register number is 31, then the continuation is never executed at all, but

rather the macro Alignment-Error (which presumably involves the code for taking an error trap).
In any case, whatever it was that was going to be done when the register operand had been accessed
is completely aborted. Another thing is that the text “Continuation” is substituted wholesale into the
body of the macro definition. This means that the identifier matched to the substitution variable
“Result” will be locally bound in the $let  statement, and then will be visible to the code text in
‘*Continuation”. Thus substitution variables do not behave like Aigol call-by-name parameters.
Writing

Access-Register-Operand (op  I.MODE,S) + value next n c value + 1
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is exactly like writing

i f  (S= D) A (opl.MODE  - 31)
then Alignment-Error
else let value - case S o f

Q: R Iop  I.MODEI ~0: 9>;
H: R lop l.MODEl ~0: 17~:
S: R Lop 1,MODEI :
D :  cRlopl.MODEI  1 (RlopLMODE  + 13~;

end

then n + value + l
fi

whence it is clear that the binding of “value” is available to the continuation “n e value + 1”.

Another thing continuations are good for is “returning more than one value”. Suppose we
want to add two bit fields and a carry-in bit and get not only the sum but also carry-out and
overflow bits. This is difficult to do using the functional notation “Add(sl,s2,cin)”  without using
obscure side effects. Using the notion of a continuation we write the definition:

define Add 1 Addend,Augend,Cin 1 + Sum, Cout, Overflow next Continuation E
Jet x - Addend, y = Augend

then let z - CO: XD + CO: y> + unsigned Kin1
then let Sum - low (width (XI , z),

Cod - z<o>,
Overflow - (x<O> - y<O>) A (x<O>  * z<l>)

then Continuation;

Then if we write the call

e Add (sl,s2,cin) + sum, cod, ov next <more>

this is exactly the same as writing

. let x = JZ, y = 52

then let z - ~01 1x2 + cO( ly> + unsigned kin)
then let sum - low (width (x) ,z) ,

cod = z<o>,
ov = (x<O> = y<O>)  A (x<O> rr z<l>)

then <more>

Thus the identifiers sum, tout,  and ov are all available to the continuation <more>. (So are the
identifiers x, y, and t.1 The identifiers x and y are used in case the evaluation of Addend and
Augend involve side effects. The identifier t is used to save time and to make the code more
readable. However, because the Algol “copy rule” is purposely not used, in order to allow just such
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“identifier conflicts” when desired, one must be careful not also to allow undesirable conflicts to
occur. This requires care on the part of the programmer.)

Note that by convention the keyword “#2’ is used to precede variables to be bound by the
macro in a #Jet statement for the benefit of the continuation. This is meant to remind the reader of
the assignment arrow “t”.

Also by convention, the keyword “next” or ‘also” is used to precede to continuation to a macro.
These keywords, when not appearing as part of a macro call, are used to denote language constructs
that enforce or avoid ordering of execution. By convention these keywords are used in macro calls
to indicate the same ordering or lack of ordering. Sometimes a macro may need to be called in one
place using “next” and in another place using “also”. This is the reason the “vel” construct is
provided: one may write the macro prototype (for example):

(Overflow? (Ivel $also #next) Continuation)
Overflow? also I next Continuation

[“LISP”]
[“PAsCA L*‘I

The general rule (in the “PASCAL’ syntax) is that if several “statements” appear separated by next,
then they are executed in order, barring any errors; and if they are separated by also, then they may
be permuted into any other order among themselves before being executed; but then if any
statement is a macro call it may receive the remainder as a continuation. (This is only an intuitive,
not a precise, description. In particular, it doesn’t deal with the possibility of permuting the
statements so that a macro call is last. The intended interpretation is that it receive a “null
continuation”. The interpreter for the language, running on a serial machine, in fact executes also in
exactly the same way as it executes next. In this context the distinction is thus only a teleological
one, a commentary on the code.)
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ABS, 93, 102.
ABSOLUTE, 318.
absolute addressing, 9, 14.
ACCESS, 9, 12.
access modes, 12, 230.
A COND, 159.
ADD, 61, 101-102.
ADDC, 62, 101-102.
ADDR, 28,46,48.
ADDRJN-IOBUF,  250.
ADDRESS, 3.
address, 5, 38.
address context, 16.
address space, 10, 51.
address transformation, 9,
addressing modes, 31, 381
ADJBP, 197.
ADJSP, 187.
alignment, 2-3, 5.
A LLOC, 179.
ALSO, 317.
AND, 140.
ANDCT, 142.
ANDTC, 141.
ASCII, 3 18.
ASCIIV, 318.
ASCIZ, 319.
ASCIZV, 319.

‘AUXO, 317.
AUXPRV, 319.
AUXPRX, 319.
base-bit, 10.
binary-point, 24.
bit instructions, 198.
bit vector, 22, 29.
BITCNT, 198, 203.
BITEX, 198, 201.
BITEXV, 198,202.
BITFST, 198, 204.
BITRV, 198-199.
BITRVV, 200.
BLKDI, 205,211,230.
BLKID, 205,210,230.
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BLKINI, 205,209.
BLKIOR, 251.
BLKIOW, 252.
BLKMOV, 205,208.
BLOCK, 319.
block

data type, 30, 205.
instructions, 205.

BNDSF, 137.
BNDTRP, 173.
boolean, 22.

data type, 138, 198.
instructions, 138.

byte, 2, 29.
BYTE, 319.
byte

data type, 190.
instructions, 190.

byte pointer, 2, 29, 190.
byte selector, 29, 190.
cache, 10, 230.

data, 230.
instruction, 230.
sweeps, 230.

cached read data, 13.
CARRY, 19-20,  101.
CIEN, 242.
CIPND, 246.
CLRUS, 2 18.
CMPSF, 136.

- COMMENT, 319.
context, 16, 18, 51.
context switching, 6.
coroutines, 174.

CRNTFILE,  18, 51.
CRNT-MODE,  19, 51.
current address space, 16.
current context, 6, 51.
DATA, 12, 22, 205.
data cache, 12, 230.
data type, 22.

block, 30, 205.
boolean, 22, 138, 198.
byte, 29, 190.
byte pointer, 29, 190.
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byte selector, 190.
flag, 30, 135.
floating-point, 24, 104.
indirect address pointer, 28.
m teger, 23.

DBYT, 195.
DEC, 90, 101-102.
DEFINE, 320.
DEST, 3, 33.
DIBYT, 196.
DISP, 46.
DIV, 85, 102.
divide-by-zero, 20, 102.
DIVL, 87, 102.
DIVLV, 88, 102.
DIVV, 86, 102.
DJMP, 102, 170.
DJMPA, 102, 172.
DJMPZ, 102, 171.
double-word, 4.

boundaries, 5.
byte, 29.

DPA GE, 320.
DSHF, 153.
DSHFV, 154.
DSKP, 102, 163.
DSPACE, 320.
ELSE, 317.
EMULATION, 18.
END, 320.

-EQV, 149.
error bit, 19.
EW, 38, 43, 51-52.
exceptional conditions, 266.
EXCH, 130.
EXEC-STL,  10.
EX EC-STP, 10.
executive address space, 10.
EXP, 24, 104.
exponent, 24.
extended addressing, 3 1, 38, 43, 48.
extended operand, 43.
extended-precision, 60, 96, 102.
extended-word, 38, 43.
EXTERNAL, 320.
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F, 38, 103.
FABS, 123.
FADD, 108.
FA TA L--HA RD-SA VE.A REA, 267,270.
fatal hard traps, 267.
FDIV, 113.
FDIVL, 115.
FDIVLV, 116.
FDIVV, 114.
field, 2.
figure

Byte Pointer, 29, 190,
Constant Extended-Word (EW), 39.
Double-word Floating-Point Format, 24.
Fixed-Based Extended-Word (EW), 39.
Floating-point Exception Propagation (*), 106.
Floating-point Exception Propagation (+), 106.
Floating-pointException  Propagation (I), 107.
Four Quarter-Words,  4.
Half-word Floating-Point Format, 24.
Hard-Trap Save A rea Formats, 270.
HOP, 37.
Indirect Address Pointer, 28, 48.
Interrupt Save Area Format, 237,271.
Interrupt Vector Format, 237.
JOP, 36.
JSR Save Area Format, 174.
Operand Descriptor (OD), 38.
PTE or STE, 2, 9.
Single-Word, 4.
Single-word Floating-Point Format, 24.
Soft-Trap Save Area Format, 271.
SOP, 35.
TOP, 33.
Trap and Interrupt Vector Formats, 269.
Trap and Interrupt Vector Locations, 268.
TRPEXE Save Area Format, 272.
TRPSLF Save Area Format, 272.
Two Half-Words, 4.
Variable-Based Extended-Word (EW), 39.
Virtual-to-Physical Address Translation, 11.
XOP, 32.

FIX, 102-103, 119.
fixed-based addressing, 39, 46.
flag, 30.
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data type, 30, 135.
instructions, 135.
software, 12, 21.

FLAGS, 21.
FLG, 9, 12.
FLOAT, 120.
floating-point

data type, 24, 102, 104.
instructions, 102.
NAN, 20.

FLT-NAN,  19-20, 105.
FLT-NAN-MODE,  21, 105.
FLT-OVFL,  19-20, 104.
FLT-OVFL-MODE,  20, 104.
FLTJNFL,  19-20,  104.
FLT--UNFL-MODE,  20, 104.
FMAX, 125.
FMIN,  124.
FMULT, 111.
FMULTL, 112.
FNEG, 122.
Formal Description

alignment, 332.
bit field, 332.
con tents, 332.
continuations, 347.
function call, 334.
memories, 332.
number, 332.
procedure call, 334.

e symbols,  333.
width, 332.

FSC, 117.
FSCV, 118.
FSUB, 109.
FSUBV, 110.
FTRANS, 121.
half-word, 4.
half-word boundaries, 5.
HALT, 265.
handler address, 266.
hard trap, 250,266-267.

address transformation, 9.
addressing, 40, 5 l-52.
byte instructions, 190.
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fatal, 267.
nested, 267.
recoverable, 267,
returning from, 267.

hidden bit, 24.
HIGH-ORDER, 3.
HOP, 37.
hop instruction, 37.
HRDERRVEC,  268.
I, 43, 46, 48.
I/O buffer, 249.
I/O page, 13.
I/O Processor, 249.
IA P, 28-29, 48, 5 1.
IBN, 238.
identity mapping, 9.
IF 1, 320.
IF2, 320. --
IF3, 320.
IFB, 322.
IFDEF, 321.
IFDIF, 321.
IFE, 321.
IFC, 321.
IFCE, 32 1.
IFIDN, 321.
IFL, 321.
IFLE, 32 1.
IFN, 321.
IFN 1, 320.
IFN2, 320.
IFN3, 320.
IFNB, 322.
IFNDEF, 321.

. I JMP, 102, 167.
IJMPA, 102, 169.
I JMPZ, 102, 168.
ILN, 238.
ILO, 3, 48, 51.
immediate byte, 190.
immediate constant, 36.
immediate long-constant, 43.
implementation-dependent  features,  249.
INC, 89, 101-102.
indexed indirection, 48.
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indexed long constant, 44.
indexing, 39.
indirect address pointer, 28-29, 48, 52.
indirect addressing, 43, 46, 48.
indirect long operand, 48.
input/output instructions, 249.
INSERT, 317.
INSTRUCTION, 205.
INSTRUCTION-STATE, 58.
instruction cache, 230.
instruction class, 3 1.
instruction-execution sequence, 57, 237.
INSTRUCTIONS, 12.
instructions

bit, 198.
block, 205.
boolean, 138.
byte, 190.
descriptions, 57.
flag, 135.
floating-point, 102.
input/output, 249.
integer, 60.
interrupt, 237.
jump, 159.
miscellaneous, 259.
move, 126.
performance evaluatiollr;  Z&h
rotate, 150.
shift, 150.

e signed integer, 60.
skip, 159.
stack, 186.
status, 2 12.
trap, 174.
unsigned integer, 96.

INT-OVFL, 19-20, 102.
INT. OVFL-MODE, 21, 102.
INTZ-DIV, 19-20, 102.
INT-Z-DIV-MODE,  21,, lO$&
integer

data type, 23.
instructions, 60.
signed, 23.
unsigned, 23.
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integers
signed, 23.
unsigned, 23.

INTERNAL, 322.
interrupt, 57, 174, 266.

instructions, 237.
interrupt bit-number, 238.
interrupt handler, 6.
interrupt level-number, 238.
interrupt save area, 238.
interrupt vector, 238, 266.
interrupt-parameter, 237, 249.
interruptable instructions, 58.
INTIOP, 253.
INTUPT-AT-LVL,  237.
INTUPTwENB,  237.
INTUPT-LVL-NUM,  238.
INTUPT-PA  RMrO:255J, 238.
INTUPT-PEND,  237,249.
INTUPT-SAVEAREA,  23%238,270.
lNTUPT-VEC,  238,268.
INTUPT-.VEC-NUM,  238.
IOBUF, 249.
IOBUF-IFACE,  249.
IOBUF-NUM,  250.
lOBUF_PHYADDR,  250.
1OBUF physical address, 250.
IOP, 249.
IOP.. BUS, 249.
IPAGE,  322.
IREG, 28,48.
ISKP, 102, 162.
ISPA CE, 322.
J, 31, 36.

. JCR, 178.
JMP, 164.
JMPA, 166.
JMPZ, 165.
JOP, 36.
JPATCH, 37,261.
JSR, 174, 177.
JSR- SAVEAREA, 174.
jump

general, 36.
PC-relative, 36,
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jump instructions, 36, 159.
JUMPDEST, 3, 36.
JUS, 214.
JUSCLR, 215.
LBYT, 191.
LCOND, 159.
LENGTH, 29, 317.
LIBYT, 192.
LISBYT, 194.
LIST, 322.
LIT, 322.
LO, 3, 43, 46, 48.
LOC, 323.
local data, I 3.
long-constant, 39, 43, 52.
long-operand, 43.
LOW-ORDER, 3.
LSBYT, 193.
M, 3.
MANT, 24.
mantissa, 24.
MAX, 95.
maximum byte length, 190.
MAXNUM, 23,26.
MBL, 190.
memory/register boundary, 52.
MIN, 94.
MINNUM, 23,26.
miscellaneous instructions, 259.
M LIST, 323.
mod, 60.
MOD, 81, 102.
MODE, 38.
modifiers, 57.
MOD-L, 83, 102.
MODLV, 84, 102.
MODV, 82, 102.
MOV, 127.
MOVADR, 133.
move instructions, 126.
MOVF, 26.
MOVMQ  128.
MOVMS, 129.
MOVPHY, 134.
MULT, 67, 102.

§ 12
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MULTL, 68.
MUNF, 26.
N, 103.
NAN, 20, 26.
NAND, 146.
NEG, 92, 101-102.
negative infinitesimal, 26.
negative infinity, 26.
NEST’EDJ-IARD-SAVEAREA,  267,270.
nested hard traps, 267.
NEXT, 3.
next free location, 186.
NOP, 260.
NOR, 147.
normalization, 24, 103-104.
NOT, 139.
not a number, 26.

--null, 9, 12.
OD, 31, 38-39.
ODl, 31.
OD2, 31.
OPl, 3, 31, 52.
OP2, 3, 31, 52.
opcode, 3 1,60.
operand, 3 1.

evaluation, 31, 38.
prefetching, 57.

operand descriptor, 31, 38-39.
operand evaluation, 31.
OR, 143.
ORCT, 145.
ORTC, 144.
overflow, 26, 102, 104.

floating-point, 20.
integer, 20.

OVF, 26.
P, 16, 28, 43, 51.
PA, 9.
page, 9.
page map, 10,230.
page number, 9.
page table, 9.
page table entries, 9.
page table pointers, 9.
page-fault, 58.
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paging, 9.
partial processor status, 19.
PC, 7, 52.
PC- NEXTJNSTR, 174.
performance evaluation instructions, 254.
PGNO, 9.
physical address, 9, 230.
POP, 189.
POSITION, 29.
positive infinitesimal, 26.
positive infinity, 26.
PR, 36.
precision, 4, 3 1.
prefetching, 57.
PREVFILE,  18, 51.
PREYMODE,  19, 51.
previous address space, 16.
previous context, 6, 19, 51:

bit, 51.
PRINTV, 323.
PRINTX, 323.
PRIO, 18, 237.
priority, 18, 237.
PROC-STATUS, 51,237.
processor status word, 6, 16, 18.
program-counter, 7.
pseudo-registers, 38, 40.
PTE, 9.
PUSH, 188.
quarter-word, 4.
QUO, 69, 102.
QU02, 73, 102.
QUO2L, 75, 102.
QUO2LV,  76, 102.
QUO2V,  74, 102.
QUOL, 71, 102.
QUOLV, 72, 102.
QUOTE, 3 18.
QUOV, 70, 102.
R, 3, 103.
RADIX, 323.
RCFILE, 225.
RCTR, 255.
READALLOCATE,  12.
read miss, 12.
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read-only, 13.
RECOV-HARDSAVEAREA, 267,270.
recoverable hard traps, 267.
R ECTR, 257.
REG, 46.
REG-FILE,  6.
register, 6, 8.
register file, 6, 16, 18.
register-direct, 40.
RELOCA, 323.
rem, 60.
REM, 77, 102.
REML, 79, 102.
REMLV, 80, 102.
REMV, 78, 102.
REPEAT, 323.
RET, 181.
RETFS, 183, 267:
RETSR, 180.
return

from hard trap, 267.
from soft trap, 266.

RETUS,  182, 266.
reverse instructions, 60, 102.
RIEN,  239.
RIPA R, 247.
RIPND, 243.
RMW, 263.
RND--MODE, 21, 103.
ROT, 157.
rotate instructions, 150.
ROTV, 158.
rounding modes, 21, 103.
RPFILE, 227.

. RPID, 229.
RPS, 223.
RRNDMD, 221.
RSPID, 219.
RTA, 7, 33.
RTB, 7, 33.
RUS, 213.
S, 43, 46.
S- l--Uniprocessor,  58.
s 1, 3, 33.
s2, 3, 33.
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save area, 266.
hard trap, 267.
JSR, 174.
soft trap, 266.

segment, 9.
segment table, 9.

en tries, 9.
limit, 9.
pointer, 9.

SETUS,  217.
SFTERRVEC, 268.
shadow, 13.
shadow memory, 16, 18.
shared data, 13.
SHF, 151.
SHFA, 102, 155.
SHFAV, 102, 156.
SHFV, 152.
shift instructions, 150.
short operand, 39.
short-constant, 40, 52.
short-indexed, 6, 40.
short-operand mode, 39.
side effect

CARRY, 101.
floating-point instructions, 104.
FLT_.NAN, 105.
FLT_-OVFL, 104.
FLT-UNFL,  104.
INT-OVFL, 102.

- INT-ZDIV,  102.
integer instructions, 101.

SIEN, 24 1.
SIGN, 24.
SIGN,EXTEND,  3.
SIGNED, 3.
signed integer

instructions, 60.
simple indirection, 48.
single-word, 4.

boundaries, 5.
byte, 29,

SIPND, 245.
skip instructions, 35, 159.
SKP, 35, 161.
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SL, 7, 20.
SLR, 131.
SLRADR, 132.
SO, 3, 39, 46.
SOFT-TRAP-SAVEAREA, 270.
soft trap, 266.
software flag, 12, 21.
SOP, 35.
SP, 7, 20.
SP-ID,  7, 20.
stack, 7, 19, 174, 186.
stack instructions, 186.
stack-limit, 7, 20.
stack-pointer, 7, 20, 186.
static code, 13.
status instructions, 2 12.
status word, 18.

processor, 18. -
user, 19.

STE, 9.
sticky, 19, 101, 104.
STL, 9.
STP, 9.
STRCMP, 205-206.
SUB, 63, 101-102.
SUBC, 65, 101-102.
SUBCV, 66, 101-102.
subroutines, 174.
SUBV, 64, 101-102.
SWITCH, 318.
SWPDC, 230,232.
SWPDM, 230, 234.
SWPIC, 230-231.
SWPIM, 230,233.

. T, 33.
table

Arithmetic and Logical Functions, 336.
Bits of STE.ACCESS and PTE.ACCESS, 15.
BNDTRP modifiers and meanings, 173.
Conditions for setting CARRY, 101.
Dedicated-Function Registers and their Uses, 8.
FASM Character Set, 305.
FASM Fixed-Based Addressing Summary, 55.
FASM Indirect Addressing Summary, 56.
FASM Long-Constant Addressing Summary, 55.
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FASM Short-Operand Addressing Summary, 55.
FASM Variable-Based Addressing Summary, 56.
Fatal Hard-Trap Error Numbers, 273.
Fixed-Based Addressing Summary, 53.
Floating-Point Exception Representation, 27.
Floating-Point Representation, 25.
Indirect Address Pointer (IAP), 50.
Indirect Addressing Summary, 54.
Interpretation of TMODE, 175.
LCOND modifier descriptions, 159.
Long-Constant Addressing Summary, 53.
Long-Constant Mode, 45.
Processor/IOBUF  Translations, 249.
Recoverable Hard-Trap Vector Descriptions, 273.
Registers and their Uses, 8.
Short-Operand Addressing Summary, 53.
Short-Operand Mode, 42.
Soft-Trap Vector Descriptions, 274.
Special Defined Combinations of ACCESS bits, 15.
Specification of S 1, S2, DEST, 33.
STRCMP Results, 206.
Symbol Types and Fonts, 333.
TMODE Values and their Uses, 175.
Useful Combinations of ACCESS bits, 15.
Useful Rounding Modes, 104.
USER-STATUSOVFL-MODE, 105.
USERSTATUSUNFL-MODE,  104.
Variable-Based Addressing Summary, 54.

TERMIN,  323.
three-address instruction, 7, 33.
-TITLE, 324.
TMODE, 175.
TOP, 33.
TRACEwENB,  19, 58.
TRACE-_PEND,  19, 57.
trace-trap, 19.
TRANS, 91, 102.
trap, 174, 266.

bounds, 173.
instructions, 174.

trap handler, 6.
trap vector, 266.

hard, 266.
soft, 266.

TRPEXE, 174, 185.
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TRPEXE-SAVEAREA, 271.
TRPEXE-VEC, 268-269.
TRPEXE.-VECS,  174.
TRPSLF, 174, 181, 184.
TRPSLF-SAVEAREA, 271.
TRPSLF- VEC, 268-269.
TR PSLF-VECS, 174.
two-address instruction, 32.
UDIV, 99, 102.
UDIVL, 100, 102.
UMULT, 97, 102.
UMULTL, 98.
undefined, 26.
underflow, 104.

floating-point, 20.
UNF, 26.
unsigned integer --

instructions, 96.
UNUSED, 19, 21.
USE-SHADOW-.PREV, 18, 51.
USER-STATUS, 19, 101-105.
USER-STL, 10.
USERSTP, 10.
user address space, 10.
user status word, 19.
V, 46.
VA, 9.
VA LID, 12.
variable-based addressing, 39, 46.

e vector block, 266.
virtual address, 9.
WA IT, 264.
WCFILE, 226.
WCTR, 256.

. WECTR, 258.
WEPJMP, 230, 236.
WFSJMP, 224.
WIEN, 240.
WIPAR, 248.
WIPND, 244.
word, 2.
word boundary, 2.
WPFILE, 228.
WRITE-ALLOCATE, 12.
WRITE-ONLY, 13.
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WRITE-THROUGH, 13.
write miss, 12.
WRNDMD, 222.
WSPID, 220.
WUPJMP, 230, 235.
WUSJMP, 216.
X, 38.
XCT, 262.
XLIST, 324.
X M LIST, 324.
XOP, 32.
XOR, 148.
XSPACE, 324.
ZERO-EXTEND, 3.
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