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1 Introduction

This manual provides a complete description of the instruction-set architecture of the S-|
Uniprocessor (Mark 11A), exclusive of vector operations. It is assumed that the reader has a genera
knowledge of computer architecture. The manual was designed to be both a detailed introduction to
the S| and an architecture reference manual.

This manual does not describe the S-I performance architecture, or any other
implementation-related aspects of the S-1 Uniprocessor, except as is necessary to make the S+
ingtruction-set  architecture understandable.

The remainder of this chapter discusses the notation used throughout the manual. Chapter 2
describes the structure of the SI's memory and registers, including the status words and the concept
of address contexts. Chapter 3 defines various conceptual data types used in the discussion of the
S 1ingtructions. Chapter 4 describes the formats of the Sl instructions and how operands are
addressed.  Chapter 5 describes the individual instructions in detail. Chapter 6 describes the
architecture of traps and interrupts in the S-I. The remaining chapters provide examples and
summaries. The two appendices summarize the FASM Assembler (because examples throughout
the manual uses the FASM syntax) and the S| Forma Notation (which is used to precisdly define
the ingtruction set).
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1.1 Notation and Conventions

This section describes the notation used in the text of this manual. Many of the
abbreviations used in this section may not be understood until later sections of the manua are read,
but they are presented here for the sake of completeness. Most of the examplesin the manual are
dated in the syntax of the FASM assembler. That syntax is summarized in Section 10 with various
aspects of it introduced a appropriate points in the main text as well. The syntax used to formally
describe the S| and its instructions is summarized in Section 11.

The notation "A ..B" (borrowed from PASCAL-like programming languages) means the
range of integers from A to B inclusive, or the set of the elements of that range, depending on
context.

The tem Field means a series of consecutive bits within memory or a register. The bits in a
field are always numbered from left to right, starting at zero. Subfields of afield are specified by
the notation X<m:n>. Here X is the name of the field, and the subfield being referenced is the bits
of X whose numbers within X arein the rangem,n... A reference to a single bit (X<m:m>) can
be abbreviated to X<m>. The sdlection of a named subfield is indicated as X. SUB (X is the name
of the field, SUB is the name of the subfield within X). Subfields, like like al fields, aways have
their bits numbered from left to right starting from zero, and so the bits of a subfield may not have
the same bit numbers as those same bits within the superfield.

The term word is intended to mean a field of any of the four standard precisions
(quarter-word, single-word, half-word, and double-word, which are 9, 18, 36, and 72 bits wide
respectively). It is intended that if word is not modified then no specific precision is being described,
or rather what is being said applies to words of al four precisons. Not every field 9 bits long is a
quarter-word; the term wora alS0 implies alignment of the field to a word boundary (see Section 2.1).
Words, like all fields, may have subfields.

For example, Figure 2-4 is reproduced below as Figure I-I. This picture of a single-word
‘shows the format of a page-table entry.

| F6 | Access PGNO |

0 67 12 13 35

Figurel-|
PTE or STE

This single-word could have the name PTE (for reasons described in Section 2.3). In that case,
PTE. FLG would be the same as PTE<0:6>, and PTE.ACCESS the same as PTE<7:12>. The
second through fourth bits of PTE.ACCESS could be described as either PTE<8:10> or
PTE. ACCESS< 1:3>.

A byte isasubfield of asingle-word or double-word which is specified by abyte pointer. A
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byte may be of any length (not just eight bits, for example). The term byte bears no relation in this
manual to the amount of memory used to contain a character code. (See Sections 3.5 and 3.6.)

The notation used to describe the concatenation of fields into a larger unit is
cfield 1| field2 | field33 (i.e., field 1, field2, and field3 are concatenated to form one unit).  For
example, figure 1-1 could be described as cFLG<0:6> || ACCESS<0:5> || PGNO<0:22>>.  Unless
otherwise stated, this new conglomerate is treated as a single unit (e.g., the concatenation of two
quarter-words is a half-word, not merely two quarter-words). This distinction becomes important
when congdering aignment issues. If afield is repeated in the conglomerate then that may be
specified using the notation nxfield, where n is the number of times the field is repeated. For
example, cfield 1 |15%0|| field23 would be the same as cfield 1 j0}| 0|0} O} Ojifield2>.

The contents of register number n is R[n). The contents of memory location A is M[A]). The
terms OP 1, OP2, S 1, S2, and DEST refer to the contents of the appropriate locations. Some
ingtructions operate on a pair of memory locations. If X is the first object of such a pair, then
NEXT(X) is the second object of the pair. X and NEXT(X) are contiguous and have the same
precision. The address of NEXT(X) is greater than the address of X by the length of X (whichis
the same as the length of NEXT(X)). As with OPI,NEXT(OP1) refers to the contents of the
appropriate location (the same applies to the other terms given above). ADDRESS(OP 1) refers the
the quarter-word (virtual) address of OP1. The term JUMPDEST represents an address. The
terms SO (short operand), LO (long operand), and ILO (indirect long operand) also refer to the
contents of the appropriate locations (or to the values of immediate constants, if appropriate).

If afield X is to be interpreted as a two’s-complement number, then the notation SIGNED(X)
is used. When only part of aword (or the result of a computation), X, is to be used, the terms
LOW-ORDER(X) and HIGH-ORDER(X) designate the least-significant and most-significant
portion of X, respectively. When used informaly, it should be obvious from the context how much
of X isincluded; otherwise the precision will be stated explicitly. Unless otherwise stated, when
moving asmaller field, X, into alarger field, Y, it isthe case that X isright-justified into Y. The
bits in Y that were not in X are specified by the moving operation. If ZERO-EXTEND(X) is used,
then these extra bits are zero-bits. If SIGN-EXTEND(X) is used, then these extra bits are uegla to

the sign-bit of X. (The sign-bit of X is X<05).

ext appearing within four corner-brackets is intended as an illustrative example rather than
part of the main discussion. Typically an example will give sample data formats or sample
Linstruction seguences. This text, on the other hand, is an example of an example. l
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2 Memory and Registers

The S architecture provides for a very large (2% single-word) virtual address space,
Virtual-to-physical address transformation is handled by the hardware. Single-words are 36-bits
long but the architecture allows for the accessing of memory inany of four different precisions
(quarter-word, haf-word, singleword, and double-word). Thirty-two general purpose register
words are provided which can be accessed via specid register operations or as memory locations.
Separate address spaces and register-files are maintained for the user and the executive. The
following sections in Chapter 2 describe these features in detalil.

Each S processor has two private caches to reduce memory access times for those sections of
memory that are frequently accessed. One cache isfor instructions and the other is for data. The

caches are described in Section 5.15.

2.1 Mem ory

The S architecture provides 228 single-words of virtual address space. Each single-word is
thirty-six bitslong. The bits are numbered 0 . . 35 from most significant to least significant.

Figure2-1
SingleWord

Memory may be accessed in any of four precisions: quarter-word (nine bits numbered
0..8) kalf-word (eighteen bits numbered O .. 17), single-word (thirty-six bits numbered
0 .. 35), or double-word (seventy-two bits numbered 0 . . 71). Therefore, the single-word above
could be considered to be two half-words, four quarter-words, or half of a double-word.
Instructions are designed to access and operate on words of al four precisons with equal ease.

0 17 18 35

Figure 2-2
Two Half-Words

0 89 17 18 26 27 35

Figure 2-3
Four Quarter-Words
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Quarter-words within a half-word, single-word, or double-word have increasing addresses
from left to right. Thus if a quarter-word and a single-word have the same address, then the
guarter-word is the high-order (most significant, or leftmost) quarter-word of the single-word.
Similarly, the more significant single-word in a double-word has the lower address.

Unless otherwise stated, al addresses mentioned are quarter-word addresses. Therefore, the
range of S 1 addressesis 0. .2%0-1. Half-words must be aligned on half-word boundaries, that
is, the most-significant quarter-word of a half-word must have an even address.  Similarly,
singlewords must be digned on singleword boundaries (the most-significant quarter-word must
have an address that is a multiple of four). Double-words must begin on single-word boundaries,
but they need not begin on double-word boundaries. Depending upon the implementation,
however, access to double-words beginning on double-word boundaries may be more efficient than
those not so aligned.

References to the first 128 quarter-words of memory are interpreted as references to the
thirty-two (single-word) registers. Registers are discussed in Section 2.2.
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2.2 Registers

Registers can be used to hold information that must be accessed quickly or concisely. They
are addressable by the use of register addressing modes, or as the first 128 quarter-words of
memory. Some registers are dedicated to specia-purpose applications, while others are available for
general-purpose  use. The ingruction set has been designed to deal efficiently with registers and
with memory locations addressed by a small offset from aregister. In addition, specia instructions
are provided for saving and restoring registers during interrupts, traps, and subroutine calls. The
registers and their uses are described in the following sections.

2.2.1 Register Files

There are sixteen register files (REG_FILEs) in the S| architecture. Each consists of
thirty-two singleword registers. REG_FILE[0] is reserved for use by the hardware and microcode.
The other fifteen register files may be put to any use by software.

The processor status word sdects which register files are being used by the current context
and the previous context (one register file for each context). The user may access only the
thirty-two registers in the register file associated with the current context. The executive, however,
may access either context, and so which register file is used depends on which context is being
accessed. The processor status word isdiscussed in Section 2.5.1. Contexts are discussed in Section
24,

The organization of registers into register files facilitates context switching. Each of severa
users may have his own register file that the executive can specify smply by changing a field in the
processor status word. Similarly, each of severd trap or interrupt handlers within the executive can
have a dedicated register file and need not save the registers of the previous context.

22.2 Genera-Purpose Registers

The contents of the first single-word of the current register file iscaled REQJ, the second R[1],
and so forth. When not otherwise modified, the term register will hereafter be used to mean one of
the thirty-two registers in the current register file. Other registers (e.g., PC or STP) will be referred
to specificaly by name,

Many instruction formats can make specia use of registers. Some registers have redtrictions
on, or extensions of, these special uses. Registers addressed as memory have no specid properties.

Registers 8 through 31 can be used as generd-purpose registers in al instructions that make
specid use of registers. Registers 0 through 7 have certain specid-purpose uses but they can aso be
used as genera-purpose registers, with some restrictions. Registers 0 through 3, for example, cannot
be used in short-indexed mode (see Section 4.2.3.3). Other restrictions concerning references to
register 3 are discussed in Section 2.2.3.1 and Section 2.2.3.2. Register uses and restrictions are
summarized in Section 2.2.4.
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2.2.3 Dedicated-Function Registers

Certain genera-purpose registers in the S| have specia functions associated with them. One
register serves as a stack pointer, while others may serve as operands in three operand instructions.
These registers and their uses are described below. They are summarized in Section 2.2.4.

2.2.3.1 Program-Counter

The program-counter (PC) is a 30-bit register that points to (contains the address of) the
ingtruction in memory that is currently being executed. Because instructions consist of single-words
and so are aligned on single-word boundaries, the contents of the PC must aways be a multiple of
four. The PC always points to the beginning of the instruction being executed (that is, it is not
advanced when the extended words of a multi-word instruction are fetched).

References to register 3 are interpreted as references to the PC in certain circumstances. PC is
used instead of R[3] whenever register 3 is specified as an index register within an address
caculation. This includes indexing in indirect address pointers (see Section 4.2.5). In al other cases,
R[3] is treated as ageneral-purpose register. All non-indexing references to register 3 use R[3]. It
should be emphasized that PC itself is not a general-purpose register, and does not reside in any
register file.

2.2.3.2 Stack-Pointer (SP) and Stack-Limit (SL)

The S| maintains a stack for saving values during traps, interrupts, and subroutine calls.
The location and extent of the stack in memory is specified by the contents of two registers: the
stack-pointer (SP) and the stack-limit (SL). SP points to the first free location on that
(upward-growing) stack and SL points to the first location past the end of the area reserved for

stack growth.

The five-bit sP_ID field in the user status word (see Section 2.5.2) specifies which
genera-purpose register will be used as SP. The register immediately following SP is interpreted as
the SL register. Hence SP =R[SP_ID] and SL =R[SP_ID + 1] The values 3 and 31 for SP-ID
are illegal; an attempt to set SP-ID to either value will cause a hard trap.

The SP-ID can be set by specia ingtructions (see Section 5.14). The usua practice isto use
the two highest-address registers (registers 30 and 31) as the SP and SL respectively.

2.2.3.3 RTA and RTB

Registers 4 and 6 are given the special names RTA and RTB respectively. They are of
specia interest in three-address ingtructions, When double-word quantities are involved, then RTA
is considered to be registers 4 and 5 together, and RTB is considered to be registers 6 and ‘7
together. Registers 5 and 7 aso have the names RTA 1 and RTB 1 respectively. See Section 4.1.2
for adescription of the uses of RTA and RTB.
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2.2.4 Summary

The tables below summarize the uses of the registers that have been discussed in the previous
sections.

Reqgister Primary Use Other Uses/Redtrictions Pertinent Sections
R[0] General-Purpose  Restricted indexing 222,4.233
R[1..2] General-Purpose  No short indexing 222, 4233

R([3] General-Purpose  Indexing uses PC instead 222,2231

R(4] General-Purpose  RTA 222, 2233

R[5] General-Purpose  Low-order half of RTA DW  2.2.2, 2.2.3.3

R[6] Genera-Purpose  RTB 222, 2233

R[7] General-Purpose  Low-order half of RTB DW  2.2.2,2.2.3.3
R[8..31] Genera-Purpose  --- 22.2

Table 2-I

Registers and their Uses

Register  Primary Use Other Uses/Redtrictions Pertinent Sections
PC Program-Counter  Indexing uses PC for R[3] 223.1,222
SP Stack-Pointer Cannot be R[3] or R[31] 2232, 222
SL Stack-Limit Always register after SP 2232, 222

RTA Third Operand Same asR[4] (or cR[41]|R[6]>) 2233 222
RTB Third Operand SameasR[6] (or cR[6]||R[7}2) 2233, 222

Table 2-2
Dedicated-Function Registers and their Uses
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2.3 Address Transformation

The S| maps 30-bit, virtual, quarter-word addresses into 34-bit, physical, quarter-word
addresses. The address transformation uses two levels of paging, specified by asegment table and
up to 1024 page tables. A page is made up of 512 single-words (2" quarter-words). There are up
to 22° physical pages in memory; hence the physical address space contains 9% quarter-words. A
virtual address space contains up to 1024 segments (specified by the segment table). Each segment
contains 512 pages (specified by one of the page tables). This gives a virtua address space of up to
230 quarter-words.

The location of the current segment table is specified by two 34-bit registers. the segment table
pointer (STP) and the segment table limit (STL). If the content of the STP isin therange 0 . . 127
(aregister address), then absolute addressing is in effect; the mapping from virtual addresses to
physica addresses isthe identity mapping. Otherwise, the STP contains the physica address of the
segment table, and the STL contains the physical address of the first location beyond the end of the
segment table. STP<32:33> and STL<32:33> must equal zero, because table entries are single-words
and therefore must-be aligned on single-word boundaries.

Each segment table consists of a contiguous list of segment table entries (STE) (also called page
table pointers). Each page table consists of a contiguous list of 512 page table entries (PTE). Both
segment table entriess and page table entries have the following  format:
cFLG<0:6> || ACCESS<0:5> || PGNO<0:22>>. Either may be null (FLG<0><0), indicating that the
entry specifies no page. FLG contains flag bits. ACCESS indicates the access bits and isused only
in page table entries. PGNO is the physical page number (page number x oll. page address). (See
Sections 2.3.1 and 23.2 for further discussion of the FLG and ACCESS fields.)

FLG ACCESS PGNO |

0 67 12 13 35

Figure 2-4
PTE or STE

Each STE specifies the physical address of a page table, or is null. A null STE indicates that
the page table does not exist. STE. PGNO is used as the most-significant 23 bits of the physica
address of the page table (the least-significant 11 bits are zero). page tables fill exactly one page (of
5 12 singlewords). Each PTE specifies the physical address of a page, or is null. A null PTE
indicates that the page does not exist. As with the STE, PTE.PGNO is used as the
most-significant 23 bits of the physical address of the page (and the least-significant 11 bits are
Zero).

The segment tables and page tables are indexed by the 30-bit, virtual address (VA). The
physica address (PA) is cdculated as follows, VA<0:9> isinterpreted asa single-word offset from
the address contained in the STP. The physical address of the STE is STP+cVA<0:9> || 2%0>. If
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absolute addressing is not selected and the address of the STE is greater than or equal to the
contents of STL then ahard trap occurs. If the selected STE is null then a hard trap occurs.
STE. PGNO specifies the physica page number of the desired page table, that is, the desired page
table starts at physical addresseSTE. PGNO || 11x02. VA < 10: 18> is interpreted as a single-word
offset from the beginning of the page table. The. physical address of the PTE is, therefore,
cSTE. PGNO || VA<10:18>] 2%0>.  If the selected PTE is null then a hard trap occurs.
PTE. PGNO specifies the physicd page number of the desired page (i.e., the page starts at physica
address <PTE. PGNO || 11x02). VA <19:29> specifies the quarter-word offset from the beginning
of the page. The physical addressis, finally, PA=cPTE. PGNO || VA<19:29>>.

In generd, an address transformation involves two memory references, the first to the segment
table, the second to the page table. No memory reference is needed for the STP or STL since they
are hardware registers inside the processor. Two page map caches insde each processor contain (for
the most recently used pages) the complete translation from virtual page address to physical page
address. One page map is for addresses of instructions, the other for addresses of data. Whenever
anecessary trandation is not resident in a page map, the necessary entry is fetched from memory
and placed in the page map. Another page map entry may be evicted in the process. The evicted
entry is not written out to memory (because it cannot have changed).

The processor hardware actualy contains two sets of segment table pointer/limit registers, one
set for the executive (EXECSTP and EXECSTL) and the other set for the user (USERSTP and
USERSTL). A pointer/limit pair specifies an address space (i.e., a segment table/page table/page
mapping). The address space specified by EXEC_STP and EXECSTL registers is called the
executive address space. Similarly, the USER_STP and USERSTL registers specify the user
address space. The CRNT_MODE and PREV_MODE fields of the PROCSTATUS word
determine which address space is referenced during an address caculation (see Sections 2.5.1 and
2.4). Each hardvare page map entry contains abase-bit which identifies which of the two address
spaces (executive or user) the entry is associated with.
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2.3.1 Flag Bits: The FIX-field

Each STE and PTE has a7-bit FLG field. Thisfield is used to indicate whether the table
entry isvalid and to record software flags. FLG<0> is called the VALID bit. If VALID=0 then the
STE (or PTE) isconsidered to be a null entry; that is, it specifies no page. If VALID=1 then the
STE (or PTE) isnot null and isinterpreted as a pointer to aphysical page as described in Section
2.3.

The bits of FLG<1:6> are reserved for softwareflags. They can be used by programs (eg.,
an operating system) to record information concerning the STE or PTE. They have no defined
function within the architecture.

2.3.2 Access Modes

Both STEs and PTEs contain an ACCESS field. STE.ACCESS is unused. PTE. ACCESS,
however, specifies any restrictions on accessing the page pointed to by the PTE. PTE. ACCESS can
distinguish pages used for instructions and those used for data. It also controls when data cache
entries are allocated and when changes to the data cache go through to physical memory. (The
cache is discussed in Section 5.15). Many different high-level access modes (eg., “locd data” and
“gatic code’) can be specified using combinations of the ACCESS hits.

It should be noted that absolute addressing (see Section 2.3) does not utilize the access modes
in the standard way. This is because absolute addressing bypasses the segment table/page table
address transformation.  The approach to access modes for absolute addressing is discussed in

Section 2.3.2.1.

INSTRUCTIONS PTE.ACCESS<0> specifies whether a word on the indicated page
may be used as an ingtruction. 1f INSTRUCTIONS=0 then a hard
trap will occur when a location from the indicated page is accessed as
an instruction.

DATA PTE. ACCESS& specifies whether a word on the indicated page
may be used as data. If DATA-O then a hard trap will occur when
alocation from the indicated page is accessed as an operand of an
ingtruction (except as noted in the instruction descriptions, Section 5).

READALLOCATE PTE.ACCESS<2> indicates the course of action after encountering a
reed miss. If READ_ALLOCATE=! then any read miss will
allocate and fill a data cache entry. If READ_ALLOCATE=0 then
aread miss will not allocate a data cache entry, but will cause data to
be read directly from memory.

WRITEALLOCATE PTE.ACCESS<3> indicates the course of action after encountering a
write miss.  If WRITE_ALLOCATE=1 then any write miss will
alocate and update a data cache entry. If WRITE_ALLOCATE=0
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then a write miss will not allocate a data cache entry. All write hits
will smply update the data cache entry.

WRITE-ONLY PTE.ACCESS<4> is used to prohibit reading from a page that is
write-only.  Reading of an operand from a page marked with
WRITE-ONLY-1 will cause a hard trap. (Note that
WRITE_ONLY=1 does not necessarily mean that the page in
guestion can be written into; that is controlled by the
WRITEALLOCATE and WRITE-THROUGH bits.)

WRITE_THROUGH PTE.ACCESS<5> controls the updating of memory upon a write to
the data cache. If WRITE_THROUGH-=1 then any write will
update memory. If the write is a data cache hit then the data cache
will be updated as well. If the write is a data cache miss, then a data
cache entry will be allocated and written if and only if
WRITE_ALLOCATE=1.

Certain combinations of access bits are given special meanings by the hardware. The
combination WRITE_ALLOCATE=0 and WRITE_.THROUGH=0 specifies that a page is
read-only. An attempted write to a read-only page will cause a hard trap. The combination of
INSTRUCTIONS=0 and DATA =0 specifies an |/O page. If an instruction other than an I/O
instruction operates on an /O page then a hard trap will occur.

Various combinations of the above six hits provide useful, high-level access modes. A page
may be specified to be for local data with the combination DATA=1, WRITE_ALLOCATE=1, and
READ_ALLOCATE-=1. A data cache miss caused by reading an operand from a local-data page
causes the missed word to be read from memory and placed in the data cache. Writes to loca-data
pages do not necessarily write through to main memory. Whenever it is important that the memory
shadow of a local-data page be made identical to the cache, cache control instructions must be
executed to update memory, It isintended that the private variables of a process be identified as
local-data pages. (All other access hits are zero.)

Cached read data may be specified by DATA= 1 and READ_ALLOCATE= 1. A data cache
miss in a cached-read-data page causes the missed word to be read from memory and placed In the
. data cache. No writes are alowed to a cached-read-data page because WRITE_ALLOCATE=0
and WRITE-THROUGH-O. Instructions cannot be fetched from a cached-read-data page. (All

other access bits are zero.)

Static code is specified by INSTRUCTION&I, DATA=1,and READ_ALLOCATE=1. A
dtatic-code page is smilar to a cached-read-data page; however, locations on a static-code page can
be accessed as ingdtructions. It is intended that shared routines will be identified as static-code. (All

other access hits are zero.)

Shared data is indicated by DATA=1and WRITE_THROUGH-=1. Words from shared-data
pages are never placed in the data cache. A write to a shared-data page writes through to main
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memory without writing in the data cache (WRITE_ALLOCATE=0), and aread from a shared
page reads directly from main memory (provided that the data cache does not dready contain the
word). Locations that are heavily shared by multiple processors are intended to be on shared-data
pages, eliminating the necessity to perform repeated cache sweeps when passing small amounts of
data between processors. (All other access bits are zero..)

The S| hardware does not check for illegal combinations of access bits. Such checking
should be performed by operating system software when setting up PTEs.

2.3.2.1 Access Modes and Absolute Addressing

When absolute addressing is sdlected (STP < 128) no choice is given for the access bits.
Instead, the bits INSTRUCTIONS= 1, DATA=I, READALLOCATE= 1,
WRITE-ALLOCATE=], WRITE_ONLY=0, and WRITE_.THROUGH=0 are aways used.
However, no trap will occur due to a violation of these bits while in absolute addressing mode (e.g.,
I/0O can be done to a page even though it is not an 1/0 page). The bits are used only to indicate
the caching algorithm for-absolute addressing.
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2.3.2.2 Summary

Bit Name Description

0 INSTRUCTIONS If = O then cannot access locations on this page as ingructions.
1 DATA If = O then cannot access locations on this page as data.

2 READALLOCATE If « 1 then a read miss will alocate a cache entry.

3 WRITEALLOCATE  If = 1 then awrite miss will alocate a cache entry.

4 WRITE-ONLY If « 1 then cannot read an operand from this page.

5 WRITE-THROUGH If = 1 then any write will update memory.

Table 2-3
Bits of STE.ACCESS and PTE.ACCESS

Use Combination (Bits specified =0)

Read Only WRITEALLOCATE, WRITE-THROUGH
1/0 Page INSTRUCTIONS, DATA

Table 2-4
Special Defined Combinations of ACCESS bits

Use Combination (Bits specified =1)
Loca Data DATA, WRITEALLOCATE, READALLOCATE
Cached Read Data DATA, READALLOCATE
Static Code INSTRUCTIONS, DATA, READALLOCATE
Shared Data DATA, WRITE-THROUGH

Table 2-5

Useful Combinations of ACCESS bits
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2.4 Address Contexts

Section 2.3 describes the existence of the two address spaces maintained in the S
architecture, executive and user. Instructions, however, do not refer directly to either the user or
executive address space. They refer to the current or previous address space.

When a program (either executive or user) refersto itself or its data (Le., its own address
space), it refers to the current address space. Access to the current address space is controlled by
PROC-STATUS. CRNT-MODE. (See Section 2.5.1 for a description of PROCSTATUS.) If
CRNT_MODE-=0 then the current address space is the user address space. If CRNT_MODE-=1
then the current address space is the executive address space. User programs operate exclusively in
the current address space with CRNT_MODE-=0.

Executive programs may be called by other programs (both user and executive) as the result
of any one of various traps (see Section 6). In this Stuation the executive program is able to refer to
the address space of the program that called it. The caling program’s address space is called the
previous address space. Access to the previous address space is con trolled by
PROC-STATUS. PREV_MODE in the same way that PROCSTATUS. CRNT-MODE controls
the access to the current address space (PREV_MODE=0 gives user address space,
PREV_MODE-=1 gives executive address space). User programs cannot access the previous address

sp ace.

Instruction operands select between the current and previous address space by means of the
P-bit in extended operands and indirect address pointers. The P-bit is discussed in Section 4.2.6.

Current (previous) context includes both the current (previous) address and the current
(previous) register file. PROC-STATUS, CRNT_FILE (PROC-STATUS, PREV_FILE) specifies
which register file should be accessed when an addressing calculation specifies the current (previous)
address space.

2.4.1 Shadow Memory

The firgt thirty-two single-words of an address space are called shadow memory. This term is
derived from the fact that they overlap or are shadowed by the currently selected register file
(because references to the first 128 quarter-words of an address space are normdly interpreted as
references to the current register file instead). Shadow memory cannot be accessed by the user, but
Is accessible to the executive (when accessing the previous address space).

The use of shadow memory is controlled by the USE-SHADOW-PREV hit in the processor
status word (See Section 2.5.1). When USE_SHADOW _PREV= 1, al references to addresses
0.. 127 in the previous context will cause the shadow memory of the previous context to be
accessed. When USE_SHADOW _PREV =0, the previous register file is accessed instead.

Assume the USE-SHADOW-PREV bit in the processor status word is set. The followirl
instruction loads the second shadow memory word from the previous context into the location
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whose (hypothetical) symbolic name is SECOND.

| MQV SECOND,c!P 4> +"!P" means access previous context l
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2.5 Status Words

Status words partially define the current state of a program’s execution. They contain
information about current and previous contexts, and about conditions such as arithmetic overflow
and trace modes. There are two types of status. processor status and user status. As a generd rule,
processor status contains privileged information which the user may not modify, and user status
contains per-user information which the user program may modify at will. (The user status does
not apply just to user mode programs, Programs running in executive mode are also affected by the
user status. However, the user status is automatically changed whenever a switch from user mode to
executive mode occurs, and so the executive may be thought of as adistinct “user” so far as user
dtatus is concerned.)

2.5.1 Processor

The processor status word (PROCSTATUS) contains information about the current state of
aprocess. This includes information such as the extent of the stack and the currently accessible
address space. The fields in their order of occurrence from most-significant bit to least-significant
bit are shown below.

CRNT_FILE<0:3> Current register file. Thisisthe number of the register file that will be
accessed in dl references to the current context. Note that REG _FILE([O]
is reserved for use by hardware and microcode, and so CRNT_FILE will
normally have a non-zero value.

PREV _FILE<0:3> Previous register file. This is the number of the register file that will be
accessed in all references to the previous context. (Such references may be
additionally controlled by the USE-SHADOW-PREV hit, however.)
Note that REG_FILE[0] is reserved for use by hardware and microcode,
and so PREV_FILE will normaly have a non-zero value.

USE_SHADOW_PREV Use shadow memory. When set to one, this bit causes references to
memory locations 0 . . 127 in the previous context to reference shadow
memory instead of registers. The user isnot allowed to access the
previous context (P-bit=1will cause a hard trap to occur), and therefore
the user cannot access shadow memory. See Section 2.4.1 for more on
shadow memory. Address spaces and the P-bit are discussed in Section
4.2.6.

PRIO<0:2> Processor priority level. Interrupts with INTUPT_AT_LVL<i>=1 where
i < PRIO will cause the S-| to be interrupted. See Section 5.16 for a

description of the interrupt architecture.

EMULATION<0:1> Emulation mode. When equa to zero, causes the S| native instruction
set to be executed. When non-zero, specifies the emulation of one Of
three other instruction sets.



§25.1 Memory and Registers Page 19

TRACE_ENB Trace-trap enable. Used to enable trace-traps after each instruction. See
Section 6.3 for adescription of the trace feature.

TRACE_PEND Trace-trap pending.. Used to indicate that atrace-trap is pending. See
Section 6.3 for a description of the trace feature.

CRNT_MODE Current mode. Specifies whether the current context is executive or user.
Zero means User, one means executive.

PREV-MODE Previous mode. Specifies whether the previous context is executive or
user. Zero means USer, one means executive.

UNUSED<O: 1 7> Reserved for future use.

Changing the processor status word causes a change in state for the currently executing
process. This change of state often involves changing the current context (see Section 2.4). In order
to make this change of context correctly, PROCSTATUS cannot be loaded in its entirity from an
arbitrary 36-bit word. If the execution of an instruction causes the loading of a new
PROC-STATUS (e.g., traps, interrupts), then the new PREV-MODE must be loaded from the old
CRNT-MODE. Similarly, the new PREVFILE must be loaded from the old CRNT_FILE. The
PREV-MODE and PREV _FILE fields of the word which is being loaded into PROCSTATUS
areignored. Thisoperation is called loading partial processor status. PROCSTATUS is dways
loaded inthis way unless specifically mentioned otherwise. The only instructions that load the entire
PROC-STATUS word are RETFS and WFSIMP (see Sections 5.9 and 5.14).

A similar process is involved when loading a new PROCSTATUS while checking for
trace-traps (see Section 6.3). In this case a change in state occurs when the TRACE-.PEND bit of
PROC-STATUS is updated during the instruction-execution sequence.

2.5.2 User

User status is contained in a single register named USER-STATUS. It contains a large
. number of subfields, each of which is described below. CARRY and the error-bits FLT _OVFL,
FLT_UNFL,FLT_NAN, INT-OVFL, and INTZDIV are described as being not sticky. This
means that they are either set or cleared by any ingtruction that can affect them. As an example, if
an ADD instruction produces an integer overflow while trapping is disabled
(INT_OVFL_MODE-=1), the INT-OVFL bit of PROCSTATUS will be set to one. If a MULT
ingtruction is then executed and no integer overflow occurs during the multiplication, INT-OVFL
will be reset to zero. Each error bit isaso reset when the appropriate trap is initiated, before a copy
of USER-STATUS is saved on the stack. The conditions that affect CARRY and the error-bits
for both integer and floating-point instructions are described in Section 5.2.3 and Section 5.3.2. The
fields of USER-STATUS are shown below in order of occurrence from most significant to least

significant.
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SP_ID<0:4>

CARRY

FLT_OVFL

FLT_UNFL

FLTNA N

INT_OVFL

INTZDIV

FLT-OVFL_MODE<0:1>
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Stack-pointer identity.  Specifies the register that will be used in all
references to the stack-pointer (SP). The stack-limit register (SL) is
considered to be the next contiguous register. SP_ID=3 or SP_ID=31is
illegal. See Section 2.2.3.2. for details.

Carry-out of arithmetic operations. Set to zero or one by the most
recently executed integer arithmetic instruction. Note that CARRY is
not sticky. See Section 5.2.3.1.

Floating overflow. Always set by floating-point arithmetic instructions.
Set to one if the result of the most recently executed floating-point
instruction was greater than or equal to MAXNUM (i.e. MOVF). This
bit is not sticky. See Section 5.3.2.1.

Floating-underflow. Always set by floating-point arithmetic
instructions.  Set to one if the result of the most recently executed
floating-point instruction was less than or equa to MINNUM+ 1 (i.e.
MUNF). This bit not sticky. See Section 5.3.2.1.

Floating-point result is “Not A Number” (NAN). Always set by
floating-point arithmetic instructions. Set to one whenever NAN is the
result of a floating-point operation. This bit isnot sticky. See Section
53.2.

Integer overflow. Set to one when the result of the most recently
executed integer arithmetic instruction is greater than or equal to
MAXNUM. This bit is not sticky. See Section 5.2.3.2.

Integer-zero-divide. Set to one when a divide-by-zero has occurred in
the most recently executed integer instruction . This hit is not sticky.
See Section 5.2.3.3.

Determines the action that is taken when floating overflow occurs.
FLT_OVFL_MODE=0 causes the instruction to soft-trap without
storing aresult. FLT_OVFL_MODE= 1 causes the floating point
infinity of correct sign (either OVF or MOVF) to be stored as the
result: FLT_OVFL_MODE=2 causes a floating-point number of
correct mantissa and sign, but with wrapped-around exponent to be
stored as the result. FLT_OVFL_MODE=3 isundefined (an attempt
to set FLT_OVFL_MODE to 3 will cause a hard trap).

FLT_UNFL_MODE<0:1> Determines the action that is taken when floating underflow occurs.

FLT_UNFL_MODE=0 causes the instruction to soft-trap without
storing aresult. FLT_UNFL_MODE= 1 causes the floating point
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FLT_NAN_MODE<O0: |>

INT_OVFL_MODE

INT_Z_DIV_MODE

RND_MODE<0:4>

UNUSED<0:7>

FLAGS<0:3>
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infinitesmal of correct Sgn (either UNF or MUNF) to be stored as the
result.  FLT_UNFL_MODE=2 causes a floating-point number of
correct mantissa and sign, but with wrapped-around exponent to be
stored as the result. FLT_UNFL_MODE-=3 is undefined (an attempt to
st FLT_UNFL_MODE to 3 will cause a hard trap).

Determines the action that is taken when NAN is the result of a
floating-point operation. FLT_NAN_MODE=0 causes the instruction
to soft-trap without storing aresult. FLT_NAN_MODE-= 1 causes
NAN to be stored as the result. FLT_NAN_MODE=[2,3] are
undefined (an attempt to set FLT_NAN_MODE to 2 or 3 will cause a
hard trap).

Determines the action that is taken when integer-overflow occurs.
INT_OVFL_MODE=0 causes the instruction to soft-trap without
storing a result. I trapping is disabled (INT_OVFL_MODE-=1), all
instructions except for SHFA to the (true) left store the low-order bits
of the result. SHFA to the (true) left stores the correct sign followed by
the low-order bits of the (true) result.

Determines the action that is taken when integer divide-by-zero occurs.
INT_Z_DIV_MODE=0 causes the instruction to to soft-trap without
storing aresult. INT_Z_DIV_MODE-=1 causes zero to be stored as the

result.

Rounding mode. Selects the rounding mode to be used. See Section
5.3.1 for a description of the rounding modes.

Reserved for future use.

Contains various software-definable flag bits. These bits have no
defined meaning in the architecture.
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3 Data Types

Data in the S is uniformly represented as quarter-, half-, single- or double-words. For
many operations it is useful to interpret the bits in these words in various ways. Each of these ways
of viewing data constitutes a data type. Instructions may interpret their operand data as being of a
certain type. The same data may be interpreted in different ways by different instructions.

S ingtructions operate on the following data types. boolean, integer (signed and unsigned),
floating-point, indirect address pointer, byte (single-word and double-word), byte pointer, block, and
flag. To be fetched as the operand of an instruction, data must be on pages marked with DATA= 1
(see Section 2.3.2). The data types are described below.

3.1 Boolean

The boolean data type is a bit vector in any of the four standard precisions (quarter-word,
half-word, single-word, and double-word). The bits are numbered from left to right, as shown in
the figures of Section 2.1.

rFor example, the following assembles as the QW hit vector 001000101. 1

L— 185 ___J
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3.2 Integer

The S| has two different formats for integers: unsigned and signed. Unsigned integers
represent only non-negative quantities while signed integers can represent both negative and
non-negative quantities in two’'s-complement notation. Either format may be represented in any of
the four standard precisions (quarter-word, half-word, single-word, and double-word).  For
example, quarter-word, unsigned integers can represent quantitiesin therange 0 . . 511 whereas
quarter-word, signed integers represent quantities in the range -256. . 255.

For ease of description the largest positive signed integer in a given precision is termed
MAXNUM. Correspondingly, the negative signed integer with the largest magnitude is termed
MINNUM. For example, in quarter-word precision MAXNUM=255(377) and MINNUM =-256

(400g). More generally, in any precison MAXNUM has al bits but the leftmost set to one, and
MINNUM has al bits but the leftmost set to zero. (This is a consequence of the nature of the
two's-complemen t representation of integers.)

The following shows signed and unsigned interpretations of various integer quarter—woﬂl;
constants.

105 ssigned and unsigned interpretation is 105
673 sunsigned 673, signed -105

-105 sunsigned 673, signed -105

-1 sunsigned 777, signed -1

The bit pattern for the first example is 001000101, and for the next two is 110111011. The
leftmost bit isinterpreted asthe sign bit (1=negative) in the signed case. Note that in All.
precisions the signed vaue -1 has al bits set to one. |
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3.3 Floating-point

S floating-point numbers are always (implicitly) normalized and may be represented in
three different precisions (half-word, single-word, and double-word).  The floating-point
representation is made up of three fields SIGN, EXP, and MANT. These fields, along with an
implicit hidden bit, determine the value of the floating-point number. The formats are:
cSIGN || EXP<0:5> || MANT<0:10>> for half-words, <SIGN || EXP<0:8> || MANT<0:25>> for
single-words, and cSIGN || EXP<0:10> || MANT <0:59>> for double-words.

[sch] EXP l MANT ]

0 1 67 17

Figure 3-I
Half-word Foating-Point Format

ISIGN l EXP MANT |

0 1 910 35

Figure 3-2
Singleword Floating-Point Format

SIGN EXP MANT

0 1 11 12 71

Figure 3-3
Double-word Foating-Point Format

SIGN represents the sign of the floating-point number (O=non-negative, 1=negative). EXP
specifies the exponent.  For half-word precision, EXP is the exponent in excess-32 format. For
singlewords, EXP is the exponent in excess-256 format, and for double-words, EXP is the
exponent in excess- 1024 format. SIGN, MANT, and the hidden-bit make up the mantissa. The
hidden-bit is always the complement of SIGN, so for positive numbers the hidden-bit equals one.
The mantissa, for postive numbers, can be written as the concatenation of SIGN, the binary-point,
the hidden-bit, and MANT, that is, mantissa=cSIGN| . || hidden-bit || MANT> with "."
representing the binary-point. (Thisis, of course, a slight abuse of the concatenation notation, as
the binary point is not really afield.) Positive floating-point numbers have their mantissa in the
range 0.5<mantissa< 1. Floating-point zero is represented as integer zero (which is an exception to
the SIGN/hidden-bit correspondence, because zero has SIGN=0 and hidden-bit=0).

I 1
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The following shows the octal representation of some non-negative floating point numbers in
various precisons.

0 18.8 in all precisions
204000 31,8 HW
004000 121 (-32) HW
377777 ;1 (2132) - (2128) HW
200400, ,8 ;1.8 sw
890400, ,0 1 24 (-256) sw
377777, ,-1 1 (21256) - (29228) sw
200100, ,8«0 ;1.8 DW
000100, ,8«8 ;21 (-1024) ow
|_ 377777, -1 -1 1 (291024) - (21962) DW _—j

The full specification of a floating-point number (including both positive and negative
numbers) is as follows. Note that the one's-complement and two's-complement operations are
performed in the same number of bits as the argument to the operation.

Definition Positive Numbers Negative Numbers

mantissa cSIGN|| . || hidden-bit | MANT>  2’s-comp(cSIGN|| . || hidden-bit | MANT>)
exponent EXP - excess I's-comp(EXP) - excess
number mantissa x (2¢Xponent) - mantissa x (2eXPonent)

Floating-point zero is represented as integer zero
Table 3-I

Floating-Point  Representation

Negative floating-point numbers have hidden-bit=0 because SIGN= 1. Negative number
mantissas are in the range 0.5<mantissasl. Note that the above definition specifies that mantissas
are always non-negative (hence the minus sign in the above table description of the value of a

negative number).
rThe following shows the octa representation of some negative floating point numbers in vario&

precisions.

574000 :-1.0 HW
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774000 ; - (21-32) HW
400000 i ~ (2132) HW
577488,,0 ;-1.8 SW
7774880, ,0 ;- (21-256) SW
400000, , 8 i - (21256) SW
577700, ,8«0 }-1.8 DW
777788,,86 » O i - (29-1824) DW
L 400008,,0 e 0 i - (211824) DU __—J

The floating-point format permits a simple trandlation between positive and negative
floating-point  numbers. The floating-point representation of -x is equa to the two's-complement of
the floating-point representation of x. (The entire word is two’'s-complemented, ignoring sub-field
boundaries. The hidden bit is determined by the new SIGN hit.)

An outline for a proof that two’s-complement negation works correctly on floating-point
numbers follows. If MANT = O then no carry from the two's-complement operation can reach the
EXP field, since it will be absorbed by the right-most, non-zero MANT-bit. Therefore, the
EXP-field will be ones-complemented. |f MANT = 0O then there are three cases. Case 1: The
floating-point number was originally negative. The mantissa was, therefore, 1.0 and the
floating-point number was -26*P°"€Nt When this number is two's-complemented, the MANT-field
is gill zero but the EXP-fidld is two's-complemented. The mantissa becomes 1/2 and the carry from
the fraction has increased the exponent by one. This gives (1/2)x2¢xPonent+i o gexponent 4,0
negative of the original number. Case 2: The floating-point number was originally zero. The
two’'s-complement of zero is zero. Case 3: The floating-point number was origindly positive. The
mantissa was, therefore 1/2 and the floating-point number was (1/2)x2¢¥P°"¢"t \When this number
is two's-complemented, the MANT-field is dtill zero but the EXP-fidd is two's complemented. The
mantissa becomes 1.0 and the carry from the fraction has decreased the exponent by one. (It
increased the EXP but decreased the one's-complement of the EXP). This gives -( 1.0)x28xponent-1
or -(1/2)x2°XPONeNt tha negative of the origina number.

Besides zero, there are five floating-point numbers that have special meanings attached to
them. The positive, floating-point number with the greatest magnitude (in a given precision) has
the meaning of positive infinity This number is designated o¥F. (It should be noted that the
largest, pogitive, signed-integer, in a given precison, is termed MAXNUM. Correspondingly, the
negative, sgned-integer with the largest magnitude is termed MINNUM. It is often convenient to
speak of afloating-point number in terms of the signed-integer with the same bit representation.
For example, OVF is the same as MAXNUM in that if MAXNUM is interpreted as a
floating-point number, it turns out to be the largest floating-point number (i.e.,, OVF).) "The
two’s-complement of OVF (i.e.,, MINNUM+1) has the meaning negative infinity. It is termed
MOVF. (The terms OVF and MOVF come from overflow and minus overflow, respectively.) The
smallest, positive, floating-point number has the meaning of positive infinitesimal and is termed
UNF; it has the same bit representation asthe integer 1. The largest, negative, floating-point
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number has the meaning of negative infinitesimal and is termed MUNF. MUNF is the
two’s-complement of UNF, and so has the same bit representation as the integer -1. (The terms
UNF and MUNF come from and minus underflow, respectively). The floating-point number with
the same bit representation as MINNUM has the meaning of undefined. It is termed NAN,
meaning not a number. Floating-point instructions take these specia interpretations into account.
Certain bits of USER-STATUS control the action taken when one of the exceptions associated with
these special numbers occurs (eg, overflow with OVF). See Section 2.5.2 for details of
USER-STATUS and see Section 5.3.2 for details of floating-point exception handling.

Name Meaning Equivalent integer representation
OVF Postive overflow MAXNUM
MOVF  Negative overflow MINNUM+ 1 (-MAXNUM)
UNF Positive infinitesimal +1
MUNF  Negative infinitesmal -1
NAN Indeterminate (“not a number”)  MINNUM

Table 3-2

Floating-Point Exception Representation

NOTE: The signed integer (Section 3.2) and floating point formats employed in the S| have
an important and useful property: the same agorithms can be used to compare the value of a datum
interpreted in either format. However, specid floating-point symbols such as OVF and NAN are
not properly interpreted by integer instructions.
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3.4 Indirect Address Pointer

An indirect address pointer (IAP) is a single memory word that is interpreted as a pointer into
memory.  Its format is shown below. 1AP. P denotes the address space being referenced.
IAP.IREG and IAP.ADDR together describe the memory location to be addressed. The IAP, as
used for indirect addressing, is discussed in Section 4.2.5. The P-hit is described in Section 4.2.6.

P | IREG ADDR

01 56 35

Figure 3-4
Indirect Address Pointer
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3.5 Byte

A single-word byte is a bit vector with alength intherange O .. 36 . A double-word byte isa
bit vector with a length in the range 0.. 72. (A zero-length byte of course contains no
information, but it is permitted to use a byte pointer specifying such a byte.) The position and
length of a byte are specified by a byte pointer, as described in Section 3.6.

3.6 Byte Pointer

A byte pointer completely specifies a byte somewhere in memory. The byte pointer conssts of
two singlewords. Thefirst single-word isan indirect address pointer (IAP). The |AP specifies a
memory single-word or double-word which contains the byte. The second singleword of the byte
pointer is a byte selector. It has two half-word fields POSITION and LENGTH
(cPOSITION<0:17>)] LENGTH& 17>5). POSITION isthe bit number of the first bit in the
byte. LENGTH is the number of bits in the byte.

P | IREG ADDR

POSITION LENGTH

01 56 17 18 35

Figure 3-5
Byte Pointer
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3.7 Block

A block congists of a contiguous list of words. The words may be any of the four standard
precisions (quarter-word, half-word, single-word, double-word). Ail of the words within a block,
however, are of the same precison. Some ingtructions which operate on blocks implicitly treat the
elements of the block as being of some other specific type; for example, STRCMP (Section 5.13)
treats the block elements as signed integers.

3.8 Flag

The flag is a singleword data type with only two vaues: the bit representations which are dl
bits zero and ail bits one (i.e., integer 0 or -1 in two’s-complement notation). A flag of ail ones
means true, ail zeros means false.



§ 4 Instruction Formats and Addressing Modes Page 31

4 Instruction Formats and Addressing M odes
4.1 Instruction Classes

The S provides a rich variety of ways in which the operands for a given operation may be
accessed. These ways are called addressing modes.  All S+l instructions can be specified with no
more than three single-words. The first word specifies the instruction selected. In general, the
second and third words are optional in that they specify extended addressing modes if needed.
Therefore, depending on the number of extended operands, S instructions may consist of one, two,
or three words.

The  genera format  for the firs word of an  instruction is
cOPCODE<0:11> || OD1<0:1 1> || OD2<0:1 1>>. The first twelve hits specify the opcode, the second
twelve describe how the first operand is accessed, and the last twelve bits describe how the second
operand is accessed. (Note that in jump instructions the second operand is caled J, not OD2.)

The opcode indicates which ingtruction is being selected. It aso specifies the precison of the
arguments (the data values the instruction operates on). Depending on which ingtruction is selected,
the opcode may aso indicate more information so as to fully describe the ingtruction (e.g., which
direction to shift, what condition to skip on, etc.). Sections 4.1.2, 4.1.1, 4.1.3, 4.1.4, and 4.1.5 describe
the five classes to which instructions belong: two-address (XOP), three-address (TOP), skip (SOP),
jump (JOP), and hop (HOP).

OD1and OD2 are operand descriptors (OD). They describe the arguments upon which the
instruction operates. The full specification of an operand may require an extrainstruction-word
per argument. This use of extra instruction-words is termed extended addressing. The process
whereby the vaue described by the OD is determined is caled operand evaluation The result of the
operand evaluation of OD1iscalled OP1, and that for OD2 is called OP2. The various means of
describing operands (addressing modes) are discussed in Section 4.2.

The evauation of al operands (including jump or skip destinations) logicaly occurs before the
execution of the instruction and before the PC isupdated. The order of operand evaluation is
undefined. Operand evaluation produces no side effects.
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4.1.1 Two-Address (XOP)

§4.1.1

XOP

001

002

11 12

Figure 4-I
XOP

23 24

35

The two-address ingtructions are generally used to specify operations that involve one source
and one destination. Typically OP1is used as the destination and OP2 as the source. The XOP
field isthe opcode. OD 1 and OD?2 are the ODs that describe the arguments to the instruction. The
results of the operand evaluation of OD 1 and OD2 are OP 1 and OP2, respectively. When an
XOP ingtruction stores two results, it stores OP2 before OP1.

Some XOP instructions leave one or both operand descriptors unused. As arule, an XOP

instruction with only one operand uses OD1, and OD2 must be zero.

rAn XOP instruction iswritten as the instruction mnemonic followed by OD 1 and ODl
specifications, in that order. For example, let X and Y be SWs. The following illustrates an
XOP ingtruction which sets X to Y (that is, the singleword register or memory location whose
symbolic name is X is made to contain the contents of Y).

MOV X,Y +X is the destination, Y is the source

If only one operand descriptor is specified, then FASM will use it for both OD1and OD2, or
just OD1, depending on whether or not both operands are used by the instruction.

INC CounT s COUNT«COUNT+1; INC uSes both 00’s

RUS RTA s RTA-USER_STATUS; RUS uses only 001

_
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4.1.2 Three-Address (TOP)

| te T 001 ‘ o2

0 910 11 12 23 24 35

Figure 4-2
TOP

Three-address instructions alow the specification of three arguments (generaly two sources
and one destination). They specify two general memory locations (which may, of course, be registers)
and possibly one of the registers RTA or RTB. This format provides most of the power of full
three-address ingtructions (instructions specifying three genera memory locations) but only costs two
bits in the instruction word (for T) as compared to twelve bits for a third general operand

descriptor.

The TOP field isthat portion of the opcode that indicates the instruction selected, the
precision, and any- other information needed to fully specify the operation. OD 1 and OD2 are
general operand descriptors. OP1and OP2 are the results of the operand evaluations of OD 1 and
OD2, respectively. T specifieshow OP1, OP2, RTA, and RTB areto be used as argumentsto the
operation. The first argument to the operation is called S 1, the second is called $2, and the third
DEST. In most (but not al) cases the instruction takes S1and S2 as input and uses DEST as the
location for its output. When a TOP instruction stores more than one result, it stores S2 before S 1,
and S 1 before DEST. The following table shows how the T field selects S 1, $2, and DEST.

T HEST 1 $2

00 OP1 OPI OP2
01 OPI RTA  OP2
10 RTA OPI OP2
1 RTB OP! OP2

Table 4|
Specification of S 1, $2, DEST

A TOP instructionis written as an opcode mnemonic followed by DEST, S1, and 82 in that l
order. For example, let X and Y be SWs. The following shows the various T fields.

ADDX,X,Y 1T field = 00; XeX+Y

ADD X,RTA, Y ;T field = 01; XeRTA+Y
ADD RTA, X, Y ;T field = 10; RTAX+Y
ADDRTB, X, Y :T field = 11; RTBeX+Y

In the case T=0, where by definition OP1isused for both $1and DEST, it is not necessary to
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write the operand twice. Thus the first example above may be written:
ADD X,Y ;T field = 00; XeX+Y

FASM automatically fills in the T field based on the operand descriptors written after the
Lopcode mnemonic. l

The selection of DEST, S1, and 82 by the T field is asymmetric with respect to OD 1 and
OD2. As a generd rule (which has exceptions), whenever aTOP instruction is not symmetric with
respect to S1and S2, it comes in two forms, an ordinary form and a “reverse” form. The reverse
form is just like the normal form except that the use of S1and S2 is reversed.

rFor example, one can write: l

SUB X,RTA,Y ;i XeRTA-Y
but one cannot write:
SUB X,Y,RTA sillegal!

because no T-field value corresponds to that arrangement of operands. One can get the
intended effect by using the reverse form of the SUB instruction.

SUBV X,RTA,Y ;s XeY-RTA

because whereas SUB computes S I-S2, SUBY computes S2-S 1. I
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4.1.3 Skip (SOP)

l SOP l SKP ' 001 002

0 78 11 12 23 24 35

Figure 4-3
SOP

Skip instructions are used for short range transfers of control. The format allows aforward
skip of 1 .. 7single-words, a stationary skip of zero single-words, or a backward skipof 1. .8
single-words relative to the first word of the current ingtruction. (In this respect the word skip is
used more broadly than in other machine architectures, because the S-I can skip backwards, and
forwards over more than one instruction.) The SOP field specifies the opcode (including the
condition on which the skip will be taken). OD1 and OD2 are general operand descriptors and the
results of their operand evauation are OPl and OP2 respectively.

The SKP field specifies the number of instruction single-words to skip. SKP is considered to
be a signed constant in the range -8..7 . If the skip instruction results in not skipping, then
control flow is not interrupted (Le., the instruction following the skip instruction is executed next). If
the instruction results in skipping, then the next instruction to be executed has an address of
PC+4xSIGNED(SKP) (i.e, the address of the skip ingtruction offset by SKP single-words).

rA skip ingtruction is written as an opcode mnemonic followed by the two operand d@criptTol”jt
and the name of the location to be skipped to. For example, let X and Y be single-words. The
following ensures that X<Y. FASM automatically determines the PC offset in the skip
instruction.  (If only the larger or smaller of X and Y were of interest, then the MAX or MIN
ingtructions might be used instead; this piece of code makes X the larger and Y the smaler of
the two.)

SKP.GEQ X,Y,NEXT ;if X2Y then go to NEXT
EXCH X,Y s else swap X and Y
NEXT : C ;jcontinue with program

. As another example, this code computes the product of all odd integers from 1 to 15.

MOV X, #1 ;X counts odd integers

MOV RESULT, #1 sRESULT accumulates product
LOOP: ADD X, #2 ;step X to next odd integer

MULT RESULT, X smultiply it in

L SKP.LSS X,#15.,L00P ; iIf X<15. then go to LOOP l
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4.1.4 Jump (JOP)

JOP IPRI 0ol J
0 101112 2324 35
Figure 4-4
JopP

The jump instructions allow two different ways of specifying the destination of the jump,
PC-relative and general. The choice depends on the PR bit (PR=1for PC-relative and PR=0 for
general). The JOP field is the opcode and OD1is a genera operand descriptor. The result of the
operand evauation of ODI1 istermed OP1. The PC-relative bit PR selects how J is to be
interpreted as the jump-destination (JUMPDEST). If PR=1then Jis considered to be a signed
12-bit constant and is used as the number of single-words to offset from the PC. Therefore,
JUMPDEST=PC+4xSIGNED(J); the range of arelative jump is from PC~(2048 single-words) to
PC+(2047 single-words) If PR=0, JUMPDEST is set equal to the address of the operand that is
computed by interpreting J as an OD-field. With PR=0 any address can be specified (at the
possible expense of an-extra instruction-word). It should aso be noted that with PR=0, J may not
specify an immediate constant or a register.

A JOP ingruction is written as the opcode mnemonic followed by the operand (if aoplicabm
and the jump destination. For example, let X be a SW. FASM determines the vaue of the PR
bit inthe following instruction, depending on how far away the location named AWAY is from
the jump instruction.

JMPZ.GEQ X, AWAY ;go to AWAY if X28 l
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4.1.5 Hop (HOP)

‘ HOP DISPLACEMENT

0 1112 35

Figure 4-5
HOP

Thereis only one hop instruction, JJATCH. The HOP field is the opcode. It does not have
an OD1or OD2 field. Instead, bits 12 to 35 of the instruction word as used as a 24-bit signed
displacement, which is added to the PC to form an unconditional-jump address.

rAn HOP is written as the opcode mnemonic followed by the the jump destination, as f01a JOP.

l JPATCH PATCH. AREA s go to PATCH.AREA l
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4.2 Addressing Modes

The addressng modes of the S| are efficient and powerful. Many operands can be specified
using only the fields in a single instruction-word, If it is necessary to access the full 228 singleward
address space then extended addressing may be employed at the expense of an extra instruction
sngleword per extended address. Indirection is dso available in (and only in) extended addressing
mode.

The addressing modes were designed with both high-level and low-level languages in mind.
All of the common addressing modes used in assembly language programming are available.
Addressing modes designed explicitly to implement high-level language constructs have aso been
included. An important example of thisis the concept of pseudo-registers, in which datawithin a
small offset of aregister pointer (e.g., a stack pointer) may be accessed using only a single
instruction-word.

Unless otherwise stated, al addresses are quarter-word addresses. They are 30-bit integers in
the range 0 .. 2%0_1 . Operand evaluation isthe process of fetching the argument of an instruction.
Address calculations within operand evaluation have no side effects (and are restartable). Such
address calculations produce results which are truncated to the low-order thirty bits and do not
affect such arithmetic flags as carry or overflow. During an ingtruction’s execution, the PC remains
unchanged.

4.2.10perand Descriptor Format

An operand descriptor (OD) is al2-bit field of an instruction-word, and describes an
argument to that instruction. The OD has three subfields: X, MODE, and F. OD. X specifies
short (0) or extended (1) addressing. As arule, if an X bit of an operand descriptor is 1 then a
corresponding extended word follows the instruction word for use by that operand descriptor.
(Recall, however, that in a JOP instruction with PR=1, the J(OD2) descriptor has no X hit.) If
both operand descriptors have OD.X=1, then the extended word for OD2 follows the first
‘instruction-word, and after that is the extended word for OD1.OD. MODE and OD. F are used to
determine an addressing mode or to calculate a memory location. If an OD is unused in an
instruction then it must be identicaly zero. (If it is non-zero, a hard trap will occur.)

- The numbering of the bits in the diagram below is relative to the start of the field.

X | MOOE F

01 56 11

Figure 4-6
Operand Descriptor (OD)

4.2.2 Extended Addressing Formats
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If an instruction requires more than a single-word to specify an operand, additional
snglewords caled extended-words (EWs) are used. The possible formats of the EWs are described
in the following sections.

4.2.2.1 Long-Constant Format

Long-constants are used to specify immediate values that are too large to represent in an OD.
They require an additional ingtruction-word of the format shown below.

EW

Figure 4-7
Constant Extended-Word (EW)

4.2.2.2 Fixed-Based Format

In those cases when the OD cannot specify a particular memory location, extended addressing
is required. Fixed-based addressing requires an extra instruction-word (shown below).

P |v=8{( 8 I S ADDR

0 12 34 56 35

Figure 4-8
Fixed-Based Extended-Word (EW)

4.2.2.3 Variable-Based Format

When indexing through two registers, or a register and a pseudo-register, variable-based
addressing must be used. Variable-based addressing uses an additional instruction-word of the
format shown below.

P V=} O Il s REG DISP

0 12 34 56 1011 35

Figure 4-9
Variable-Based Extended-Word (EW)

4.2.3 Short-Operand Addressing

An operand descriptor (OD) fully describes a short operand (SO). If OD. X =0 (short-operand
mode) then the argument to the instruction is exactly SO. If OD.Xw=], then SO is used in later
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phases of the operand evauation procedure (see Section 4.2.4). Short-operand mode gives access to
the 32 registers, short (integer) constantsin therange -32.. 31, and memory locations indexed
through the registers and offset by no more than a short constant. The decision as to which of the
above isto be accessed depends on the contents of OD.MODE. Only the current address space
may be referenced. (See Section 2.3 for a description of the concept of address space.)

Note that OD. MODE=2 is reserved for future use and if used will result inahard trap.

4.2.3.1 Register-Direct

OD. MODE-O gives register-direct mode, that is, the result of the operand evaluation (SO) is
the contents of one of the 32 registers. The register number is specified by OD.Fand must be in
the range 0 .. 31 or ahard trap will occur. (SO=R[OD.F1)

rFor example, here OD 1 and OD?2 are register direct. The instruction negates RTA. 1

NEG RTA ;RTA«-RTA (same as NEG.SRTA,RTA) l

4.2.3.2 Short-Constant

OD. MODE-= 1 gives short-constant mode. In this case, $O=SIGNED(OD.F), which is a
constant in the range-32..31.

rFor example, here the #0 is assembled as a short constant: 1

L MOV RTA, #2 iRTA«B I

4.2.3.3 Short-Indexed

OD. MODE in the range 3 . . 31 gives short-indexed mode, which alows easy access to smdll
memory areas indicated by registers. The memory locations that can be accessed in this addressing
mode are cdled pseudo-registers. The address calculation uses R[OD. MODEL as a base and then
offsets that base by SIGNED(OD. F) single-words (i.e., range -32 . . 31 single-words). SO is the
contents of the resulting address (SO=M[R[OD.MODE}+4xSIGNED(OD.F))). If OD. MODE=3
then PC is used instead of R[3] (see Section 2.2.3.1). Note that R[0],R[1], and R[2] cannot be used
in short-indexed mode because OD. MODE-=0 selects register-direct mode, OD. MODE= 1 selects
short-constant mode, and OD. MODE=2 isreserved and therefore hard-traps.
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An interesting special case of pseudo-registersisthe top few locations on the stack. Let SP be
the stack pointer specified by SP_ID (and assume SP_ID is not O, 1, or 2). The following

instructions access stack locations in short-indexed mode. In this way local variables can be kept
on the stack and easily accessed.

ADD -1(sP), #7
EXCH -2 (SP), -1 (SP)
SKP. EQL -5(SP) , -1(SP)

;add 7 to top SW on stack

s sWap top two single-words of stack
;skip next instruction if equal

As another example, suppose that register R contains the address of arecord structure. Then
short-indexed mode can be used to access components of the record.

MOV Y, 1(R) ;move second uord of register to Y
l MULT RTB, (R}, 2(R) iproduct of first and third words to RT B

]
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4.2.3.4 Summary

Instruction Formats and Addressing Modes

MODE Mode Name Short-Operand(SO)

0 Register-Direct  R[OD.F]

! Short-Constant  SIGNED(OD. F)

2 Reserved (hard trap)

3 Short-Indexed  M[PC+4xSIGNED(OD. F)]
4..31 Short-Indexed

M[R[OD.MODE}4xSIGNED(OD.F)]

Table 4-2
Short-Operand Mode

§4.2.34

F-fidd R ange

0. 31
-32..31
-32.. 31
-32.. 31
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4.2.4 Extended Addressing

Unlike short-operand addressing, extended addressing allows an instruction to access the
entire 223 singleword address space. This generdity requires an additiona instruction-word for

each extended operand.

OD. X= 1 is used to select extended addressing. OD, MODE specifies how the extended-word
(EW) will be interpreted (i.e, long-constant, fixed-based, or variable-based). The interpretation of
OD. F depends on OD. MODE, and is described in detail in the following sections. The result of
an extended address cdculation is itsef an address. A long-operand (LO) isthe contents of memory
at that address, except in the case of long-constant mode, where LO is the result of the evaluation of
the constant (there being no intermediate addresses).

Indirection is specified by setting EW. I=1. A full discussion of indirect addressing appears in
Section 4.25. EW. Sis used to facilitate array indexing and is described in Section 4.2.4.4. EW. P
controls access to the previous address space and is discussed in Section 4.2.6.

4.2.4.1 Long Constant

Long constants are specified by setting OD.X=1and OD.MODE=1. The address caculation
then uses OD. F to indicate how the EW isto be interpreted (i.e., how the EW should be extended
to a double-word or which register should be used for indexed long-constant mode). In this context
OD. F is consdered to be an unsigned constant in the range 0 . . 63 .

It should be noted that having OD.F=0 is a special case and isnot long-constant addressing
mode. It will be discussed further in the sections on fixed-based and variable-based addressing
(Sections 4.2.4.2, 4.2.4.3). OD.Fintherange4 .. 31 results in ahard trap since these values are
reserved for future use.

4.2.4.1.1 Immediate Long-Constant

If OD. Fisintherange 1..3thenthe address calculation isinimmediate long-constant
mode. In this mode, LO=SIGNED(EW). If LO isto have precision smaller than a single-word (i.e.,
guarter-word or half-word), then the low-order bits of EW are used, and the bits not so used are
ignored. If the precison is single-word, then al of EW is used. Thus for quarter-word, half-word,
and single-word precisions, the values 1, 2, and 3 for OD.F &l behave alike. If the precision is
double-word, however, then OD.F specifies how the single-word EW is extended into the
double-word format. OD. F=1 right-justifies EW into LO and sign-extends into the high-order
word. OD. F=2 also right-justifies EW into LO but zero-extends into the high-order word.
OD.F=3 left-justifies EW into LO and zeros out the low-order word.

The various types of long constant syntax appear below: 1

MOV RTB, #c186125103113> ;RTBearbitrary SW constant
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The following sequence of instructions illustrates the several cases of sign extension. The two
columns on the comment field indicate the value in RTA (DW) after the execution of each
instruction.

shigh order SW of RTA: oW order SW of RTA:

MOV.D.D RTA, #c2> ; 0 2
ADO.D RTA,#cleBo i | 2
ADD.D RTA,#c!Se-1> ; | 1

L ADD.D RTA, #c-1> ; 2 0 _]

When an immediate long constant is used as a half-word or quarter-word then no check for
overflow is made. Instructions may not require NEXT (immediate operand), asit is undefined and
will result in a hard trap.

4.24.1.2 Indexed Long- Constant

Indexed long constant mode is selected by having OD.MODE=1 and OD, F in the range
. 32..63. In this mode, the extended word is indexed by a register, selected by OD. F;
LO=SIGNED(EW)+R[OD.F-32). Overflow is not checked during the addition of EW and the
register’s contents. This sum is truncated to 36 bits. Quarter-word and haf-word precisions use the
low order hits of this result as the LO. Double-word precison uses this result, sign-extended into
the high-order word, as the LO.

For example, the following instructions illustrate various uses of indexed constants. T&
comment field gives an aternative instruction with a similar effect. (The effects may not be
identical because indexing does not detect arithmetic carry or overflow. This fact may sometimes
be used to advantage.)

NOV RTA, #c288>(RTB) ;ADD RTA, #c2088>,RTB
SKP.GEQ #cl>(RTA),#c-15(RTB),FOO 1 SKP.GEQ #c2>(RTA},RTB,FOO

The following instruction sets RTA to (RTA+ )x(RTA-1) (which is RTA2-1)in asingle

instruction. There is no aternative implementation of this operation. It is assumed that RTA
contains neither MAXNUM or MINNUM.

| MULT RTA, #cl> (RTA) , #c-1> (RTA) I
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4.2.4.1.3 Summary

»w N — O

.31
32..64
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Extended-Word |nterpretation

Special case of fixed- or variable-based addressing (SO =0)
EW right-judtified, sign-extended into high-order single-word
EW right-justified, zero-extended into high-order single-word
EW |eft-justified, zeros to low-order single-word

Reserved for future use (hard trap)

Indexed congtant: SIGNED(EW)+R[OD. F-321

Table 4-3
Long-Constant Mode
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4.2.4.2 Fixed-based Addressing

Fixed-based addressing is used to access locations that are offset by up to 2%0 quarter-words
from the value specified by SO. A fixed-based address calculation uses EW. ADDR and EW. S as
well as SO to compute the address of a LO.

Address calculation occurs in stages. SO is calculated first as described in Section 4.2.3 and
then shifted left EW. S places. (For afull discussion of EW. S see Section 4.2.4.4.) Theresult is
then added to the 30-bit base address EW.ADDR to produce the address of a LO, that is,

LO=M[EW.ADDR+sOx2EW*S1 |f Ew I-1, indirect addressing is then used (see Section 4.2.5).
Fixed-based addressing is selected in two different ways. If OD. X=1,EW. V=0 and
OD. MODE = 1 or 2 then the operand is computed as described above. If OD. X= 1, EW. V=0,

OD. MODE= 1 and OD.F=0, then the operand is computed (as described above) with zero used in
place of SO.

For example, let SP be the stack pointer, and let TABLE be the address of a table of Q_Wl
The following instructions illustrate fixed-base addressing.

MOV RTA,c3@> ;alternativeto MOV RTA,RTB (address in QWs)
MOV.H.H RTA,c22> ; set high order HW of RTA equal to low order HW

The following sets RTA to the QW in TABLE indexed by the top stack element.
MOV.Q.Q RTA,cTABLE>(-1(SP))

The following two instructions set RTB to the address of atable of quarter-words, and then
RTA to the second QW in the table.

MOVADR RTB,TABLE

MOv.Q.Q RTA,cl>(RTB) l

4.24.3 Variable-based Addressing

Variable-based addressing usesEW. DISP and EW. REG to supply additional information
for the operand evaluation. EW.DISP is interpreted as asigned offset from R{EW.REG]. The

offsetisintherange -22%..224-1 ,

Address calculation occurs in stages. The first stage involves adding RIEW.REG] to
SIGNED(EW. DISP). This produces a base value which is used in subsequent calculations. The
rest of the operand calculation proceeds as for fixed-base addressing, using this computed base
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value in place of EW.ADDR. SO iscalculated (see Section 4.23) and then is shifted left EW. S
places. (For a full discussion of EW. Sfield see Section 4.2.4.4). The resulting vaue is added to the
base value to produce the address  of the LO. Therefore,

LO=M[R[EW.REG}+SIGNED(EW. DISP)+5Ox2EW 5]

Variable-based addressing is selected in two different ways. If OD. X=1,EW. V=l and
OD. MODE = 1 or 2 then the operand is computed as described above. If OD.X=1,EW.V= 1,
OD. MODE=1and OD. F=0, then the operand is computed (as described above) with zero used in
place of SO.

For example, let TABLE be the address of atable of QWs, and SP be the stack pointer. T&
following instructions illustrate various uses of variable-base addressing. The first two
instructions set RTA to the RTA-th QW in the table.

MOVAOR RTB,TABLE
MOV.G.Q RTA,c(RTB)>(RTA)

The following sets RTA to the RTA-th QW in the table, counting from the QW given by the
top SW on the stack.

MOV.Q.Q RTA, cTABLE (RTA)>(-1(SP))

4.2.4.4 Indexing Into Data Structures. The Sfield (EW.S)

EW. Sisincluded in the fixed-based and the variable-based extended formats to facilitate
indexing into data structures (e.g., arrays). It is often the case that many elements of a data structure
are accessed sequentialy. If one wanted to access a quarter-word structure in such a manner, one
could use OD. X-I, OD. MODE-=index register, OD. F=0, and EW.ADDR=base address of the
structure. The contents of the index register would be an offset to the addressin EW.ADDR. It
(the contents of the index register) would also be the index of the element in the structure. To
- access the next dement in the structure the contents of the index register would be incremented by
one. It must be remembered, however, that addresses on the S| are quarter-word addresses. If the
elements of the Structure are not of quarter-word precision then it would no longer be correct to add
one to the index register to obtain the offset for the next element of the structure. Either the offset
in the register would have to be shifted after incrementing, or an increment larger than one (1)
would be needed (eg., for single-words, four would be added). Using an additiona shift instruction
is undesirable because it would decrease code density, and aso because it would cause a pipeline
interlock which would slow the execution of the code. Using a larger increment would make it
difficult to use the index register’s contents as the index into the structure because the offset in the
register would be some multiple of the actual index. The solution chosen by the designers of the
S listo use afidd EW. Sto specify how many bits to shift the SO to make memory appear to be
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the desired precison. EW. Sequa to 0, 1, 2, or 3 causes the “apparent memory precision” to be
guarter-, half-, single-, or double-word, respectively. If one wanted to access a single-word data
structure (using fixed-based addressing), the method outlined above would work if one set EW. Sto
2. The contents of the index register would then specify both the “single-word offset” (i.e., the
guarter-word offset divided by 4) to the base of the structure and the index of the element within
the structure.  The address calculation would then shift this “ single-word offset” left two bits,
converting it into a quarter-word offset. The resulting address would be the actua location of the
data element. To increment the index, the register contents would be incremented by one. The shift
by EW. Stakes care of adjusting the precision, and since it is part of the operand calculation, no
pipeline-interlock occurs.

For example, let SP be the stack pointer and let TABLE be the address of a table of SWs. T:I
following illustrates how the shift field facilitates indexing into this table. RTA is set to the SW
element of the table one SW beyond the SW indexed by the top SW in the stack. Informally,
RTA «table(stack(SP-1)+ 1). The shift field EW.S is specified by the number following the
up-arrow "1,

MOVADR RTB,TABLE
MOV RTA,c4 (RTB)o(-1(SP)) 12 I

4.2.5 Indirect Addressing

Indirect addressing may be used during extended addressing by setting EW. I= 1. It is used
for accessng memory through pointers that are stored as single-words in memory. With EW. I= 1,
the LO that is calculated in previous addressing stages is now interpreted as an indirect address
pointer (IAP) (see Section 3.4). The fields of the IAP are then used to compute the address of the
actud operand. This operand is termed the indirect long operand (ILO).

P | IREG ADOR

01 5 6 35

Figure 4- 10
Indirect Address Pointer

There are two different types of indirection which can be selected. IAP.IREG determines
which one is used. If IAP.IREG=0 then IAP.ADDR is used as the address of the ILO. Thus,
ILO=M[IAP. A DDR]. This is termed simple indirection. If IAP. IREG=0 then indexed indirection
isused. Inthiscase RIIAP.IREG]isadded to IAP. ADDR to produce the address of the ILO so
that ILO=M[R[IAP.IREG}+IAP.ADDR]. Note that R[0] can not be used in the above
computation, since IAP.IREG=0 specifies simple indirection.
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Like all addressing operands, the IAP operand evaluation logically occurs before the
instruction execution and before the PC is updated, Sinceit has no side effects, it is restartable.
The IAP caculation is done modulo 2*° and does not set carry or overflow flags. See Section 4.2.7
for more details on addressing restrictions and exceptions. The interpretation of the P-bit is
discussed in section 4.2.6. .

For example, assume resister P contains the address of the first word of any node in a circular, '
doubly-linked list of nodes consisting of three single words: a“next link”, a“last link” and a
“data pointer” which points to a SW quantity. The following illustrates use of indirection.

MOV P, (P) +advance P to point at the “next” node

MOV P, 1(P) ;backup P to point at the “last” node

MOV P,ce(Pi> sadvance P to the “next” of “next” node

MOV P, cm (P) ithis does the same thing a different way

EXCH <85(8(P}),c85(1(P)) 1 swap data-pointer(last) with data-pointer (next)

EXCH ce8>(8(P)),ce8>(1(P)) ;swap dataliast) with data(next)
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4.25.1 Summary

IAP. IREC  Mode Name ILO

0 Simple Indirection MIIAP.ADDR]

1..31 Indexed Indlirection  M[R[IAP.IREGHIAP.ADDR]
Table 4-4

Indirect Address Pointer (IAP)
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4.2.6 Address Space Switching: The P-hit

Bit zero of fixed-based EWs, variable-based EWs, and IAPs is interpreted as a previous
context bit (P-bit). The P-bit specifies the address space that will be used in the computation of an
extended operand. The interpretation of the P-bit is always done as the last step of a given phase
of address calculation (e.g., it isdone just before LO isfetched, and again just before ILO is fetched
in an indirect address calculation). The PREV_MODE, CRNT-MODE, PREV_FILE,
CRNT_FILE, and USE_SHADOW _PREY fields of PROCSTATUS determine the effects of the
P-bit. (See Section 2.5.1 for a description of PROCSTATUS.)

The purpose of the P-bit is to facilitate communication between a program and the executive.
If a (user or executive) program traps, then the P-bit alows the executive routine that handles the
trap to access the memory space of the program that trapped. CRNT-MODE (PREV_MODE)
indicates whether the current (previous) context isin user or executive mode. CRNT-MODE-O
(PREV_MODE-=0) means that the current (previous) context isin user mode. CRNT_MODE-=1
(PREV_MODE=1) means that the current (previous) context is in executive mode.

P=0 means that the address space being referenced is the same as that selected by
CRNT-MODE. It is used by both the executive and the user each to access its own address space.
The executive may access operands in the previous address space by using aP-bit equal to 1. If a
user (i.e.,, a program with CRNT-MODE-O) attempts to access the previous address space by using
a P-bit equal to 1, a hard trap will occur.

Only one change of address space is alowed in the evaluation of a single operand since this is
al that isneeded to allow the executive to access the trapping program’s address space. Therefore,
if a P-bit equal to 1 has aready been encountered in an address calculation, encountering another
one will cause a hard trap.

Since the interpretation of the P-bit is aways done as the last step of the address calculation,
if an AP isfetched from a given address space (either current or previous), then the IREG and
ADDR fields are also interpreted as being in that same address space. After all these other fields
have been evaluated, the P-bit of the IAP is then interpreted. If IAP. P=0, then the ILO isfetched
from the same address space asthe IAP. If IAP. P= 1 and the AP isin the current address space,
then the ILO is fetched from the previous address space. All other cases will hard-trap.

The first instruction below uses the P-bit in the extended word to access the RTB-th
sngleword in TABLE inthe previous address space. The second uses an |AP to achieve the
same effect. Note that the e symbol causes FASM to set the P-bit in the IAP constant, but
specifiesindirection in the EW.

MOV RTA,c!P TABLE (RTB)>
MOV RTA,cele TABLE (RTB) | >
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4.2.7 Addressing Restrictions and Exceptions

Without exception, instructions that require NEXT(OP) or ADDRESS(OP) where OP is
either a short-constant or along-constant will hard-trap.

If an instruction requires two EWs, the first is used to calculate OP2, and the second to
caculate OP 1.

All ingtructions which move addresses (e.g., MOVADR) peform the address interpretation
procedure to the point just before the virtua-to-physica trandation, and store the resulting 36-bit
number (possibly with the P-bit=1) in the destination. See Section 2.3 on virtual-to-physical

address trandation.

A hard trap will occur if an instruction has a jump destination which isin the previous
context. Jumps to registers are undefined.

Note that the PC is a 30-bit positive number (Le., is zero-filled to the left in indexing).
Referencesto register R3] are interpreted as references to the PC under certain conditions. PC is
used instead of R[3] whenever R[3]is specified as an index register within an address caculation.
This includes indexing off of R[3] in indirect address pointers (see Section 4.2.5). All other
references to R{3] refer to the contents of general-purpose register number 3.

For an ingtruction to be executable, the two words following the first word of the instruction
must be valid instruction words (Le., they must exist in the address space and be on a page with
access mode INSTRUCTION=1). This applies even when those two words are not part of the
instruction and even when they cannot possibly be executed as part of any instruction. Thisisan

effect of pipdining.

There are two cases where crossing the memory/register boundary may cause hard traps.
Instructions that begin within two single-words of the boundary (inclusive) will cause a hard trap
when executed. Ingtructions that have operands or sequences of operands (e.g., NEXT(operand))
that are addressed in register-direct mode (see Section 4.2.3.1) and that cross the memory/register
boundary will cause a hard trap. Operands that are accessed as the first 128 quarter-words of
memory Will never cause a memory/register boundary hard trap (but may cause traps such as
alignment error, €c.).
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Short-Operand sO oD. MODE OD.F
Register-direct R[OD.F] 0 0..31
Short-constant SIGNED(OD. F) ! -32.. 31
Short-indexed M[PC+4xSIGNED(OD. F)] 3 -32.31
Short-indexed M[R[OD.MODE}4%xSIGNED(OD.F)]  4.. 3l -32.. 3
OD.X =0
Table 4-5
Short-Operand  Addressing  Summary
Long-Constant LO OD.F EW extension to double-word
Immediate SIGNED(EW) ! right-justified, sgn-extended
Immediate SIGNED(EW) 2 right-justified, zero-extended
Immediate SIGNED(EW) 3 left-justified, low order zero
Indexed SIGNED(EW)+R[OD. F-321  32..63

OD.X=1,O0D.MODE=1

Table 4-6
Long-Constant Addressing Summary
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LO oD. MODE BD.

MIEW.ADDR+SOx2EW+S] . |9 OD.F

M[EW.ADDR] 1 0

OD.X=1,EW.V=0
Table 4-7
Fixed-Based Addressing Summary

LO QD. MODE OD.F
MIR[EW.REG}HSIGNED(EW.DISP)+sOx2EW:S] . 1o OD.F
M[R[EW.REG}+SIGNED(EW. DISP)] ! 0

OD.X=1,EW.V=1

Table 4-8
Variable-Based Addressing Summary

ILO IAP.IREG

MI[IAP.ADDR] 0
MIR[IAP.IREG+IAP.ADDR]  1.31

EW.I=1

Table 4-9
Indirect Addressng Summary

§4238
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429 FASM Addressing Summary

In the following tables, lower case symbols denote FASM expressions (these tables correspond
one-to-one with the previous section).

Short-Operand SO FASM
Register-direct R[r] %r
Short-constant sc #5C

Short-indexed MIPC+4xsc] sc( 9)
Short-indexed MIR[r}+4xsc]  sc(r)

r=register 0.. 31, sc= short constant -32 . . 31

Table 4-10
FASM Short-Operand Addressing Summary

L one-Constant LO (DW) FASM
Immediate SIGN_EXTEND(Ic)e Ic  #<!'S o lco
Immediate Oelc #clco
Immediate IceO #clc o 02
Indexed le+R[r] wclco(r)

lc= long constant (SW), r = register

Table4-1 1
FASM Long-Constant Addressng Summary
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LO FASM

Mix+s0x2M]  exa(so)ish
Mix] cx>

X = address, so = short operand, sh=shift0..3
(in x:e=indirect, !P = previous context)

Table 4-12
FASM Fixed-Based Addressing Summary

LO FASM

MIRIr}+x+s0x2*"]  cx(r)o(so)fsh
MIR([r]+x] ex(r)

X = Offset, r = register, so = short operand, sh = shift 0.

(inx: e=indirect, !P = previous context)

Table 4-13
FASM Variable-Based Addressing Summary

L FASM

MIx] @x
MIR[r}+x]  ex(r)

X = address, r = register

Table 4-14
FASM Indirect Addressing Summary

.3

§4.2.9
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5 Instruction Descriptions

The indruction set of the S| contains many powerful instructions for manipulating various
data types. The instructions are designed to make the implementation of high-level languages easier
and more efficient in terms of both storage and speed. The formats for the instructions are
described in Section 4.1.

Ail Sl ingtructions are written as an opcode name followed by zero or more modifiers. These
modifiers are separated from the opcode field and from each other by the "." character (i.e.,
opcode{ . modifier)).  In the instruction descriptions that follow, ail the possible values of a
modifier-field are listed within curly brackets at the position which they should occur in the
instruction. One modifier from each set in the curly brackets must be used. (An exception to this
rule is that if precison modifiers are omitted, then single-word precision is assumed.) The order of
the modifier-fields isimportant (e.g., MOV.Q.S is not the same asMOV .S.Q).

Essentially ail three-operand instructions that are asymmetric with respect to S1and S2in
their operation are- provided in reverse form (i.e., where an instruction uses Sloperation S2, the
reverse ingtruction uses S2 operation Sl). This is indicated by appending the letter "V" to the end
of the opcode name (e.g., SUB and SUBV, or SHF and SHFV). Instructions for commutative
operators such as ADD are symmetric in St and S2, and so need no reverse forms.

Unless otherwise stated, ail operands required for the execution of an instruction are
prefetched, that is, all address computations (including indirection) are done and all operands are
available before the operation specified by the instruction is performed and before results are stored.

5.1 Instruction-Execution Sequence

The execution of an ingtruction can be logicaly divided into a number of stages which make
up the instruction-execution sequence. These stages are described in order in the following

paragraphs.

The first stage is concerned with processing interrupts. (See Section 5.16 for a description of
the interrupt architecture.) If an interrupt is pending at this time, the interrupt is serviced by
jumping to the interrupt handler specified in the appropriate interrupt vector. Return from the
interrupt handier restarts the instruction-execution sequence, so that if further interrupts are
pending, they will aso be serviced. If no interrupts are pending, control passes immediately to the
next stage.

The second stage of the instruction-execution sequence processes trace-traps trace-trap.
TRACE-PEND is sampled and reset. If atrace-trap is pending (TRACE_PEND=1), then atrap
occurs and the trace-trap handier is executed. Upon return, the trapping instruction is restarted
from the beginning. Interrupts are processed again. The TRACE-PEND flag is sampled again,
but unless the trace-trap handler changed the saved PROCSTATUS, TRACE-PEND is
necessarily zero, since was reset before the trace-trap began. If a trace-trap is not pending
(TRACE__PEND=0), control passes to the next stage.
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Before-instruction exceptions are handled in the third stage. These include exceptions such as
page-faults and illegal memory-access traps that can be detected before instruction execution has
begun. If any before-instruction exception is detected, the exception is handled, and when the
exception handier reutrns, control is passed back to the beginning of the first stage. Interrupts are
processed again. The TRACE-PEND flag is sampled again, but unless the exception handler
changed the saved PROCSTATUS, TRACE-PEND is (again) necessarily zero. Thus, repeated
before-instruction exceptions can occur without causing superfluous trace-traps.

The fourth stage of instruction execution simply saves the value of TRACE-ENB for use
after the part of instruction execution which may change PROCSTATUS. We call this saved
value TRACE_ENBg

During the fifth stage of instruction execution, the instruction body is executed, possibly
affecting the user dtate.

Some lengthy instructions are interruptable.  Interrupts occurring within interruptable
instructions save INSTRUCTION-STATE (an otherwise inaccessible hardware register) on the
gack. The saved INSTRUCTION-STATE alows the interrupted instruction to restart at the
proper point when the interrupt handier returns. A zero vaue for INSTRUCTION-STATE
means that the instruction body has not begun execution, i.e., that the instruction can be restarted

from the beginning.

In the sixth stage of instruction execution, TRACE-PEND is set to TRACE-PEND v
TRACE_ENB(, . Thus, if tracing was enabled when this instruction commenced (or if this
ingtruction itself sets TRACE-PEND), a trace-trap will occur after this instruction completes (i.e., a
the beginning of the next instruction). Hence, the trace-trap handier receives atrap after the last
instruction in a sequence of instructions to be traced, as well as before the first instruction in the
sequence.

After-instruction exceptions such as integer overflow are handled in the seventh and last
stage of instruction execution. If the handler of an after-instruction exception restarts the
instruction (which will not normally be the case), another trace-trap may occur immediately
(depending upon the value of TRACE-PEND). A second trace-trap is appropriate in this case,
since ‘the ingtruction isactualy being executed twice.
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The forma description of the above instruction-execution sequence for a single S| processor
(S 1_Uniprocessor) is shown below.

define s- 1 _Uniprocessor =
do forever
program-counter « pc-nxt-instr Next .
Check-Interrupts next
if Trace-Trap--Pending
then Trace-Trap
else Fetch-Instruction-Word next
Decode-Opcode
fi next
Trace-Trap-Pending « Trace-Trap-Pending v Trace-Trap-Enable
reverof od;
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5.2 Integer

5.2.1 Signed Integer

Signed integer instructions operate upon the signed integer data type (see Section 3.2). The
instructions perform addition, subtraction, multiplication, integer divison, remainder, and modulus
functions. Negation, absolute value, min, and max are aso provided. Non-commutative operations
such as subtraction are provided in both norma and reverse forms . These reverse ingdructions are
indicated by a "vV" as the last character of the opcode string. (e.g., SUB becomes SUBV).
Ingtructions that alow extended-precision operations (e.g., multiplying two single-word integers and
producing a double-precision result) have an "L" as either the last or penultimate character of the

opcode.

Two different remainder functions are provided: rem and mod. The result of mod has the
same sign as the divisor of the operation (or is zero), wheress the result of rem has the same sign as
the dividend (or is zero). In both cases, however,

DIVIDEND = (DIVISOR x QUOTIENT) + REMAINDER
and
ABS(REMAINDER) < DIVISOR

For example, -5mod 3= 1(QUOTIENT _ ,=-2) while-5rem 3=-2(QUOTIENT  =-1).

Integer division (QUO, DIV, etc.) produces QUOTIENT,.,,, not QUOTIENT .. For
example, the result of (~1)/2 is zero, not -1. The SHFA.RT instruction can be used to produce
QUOTIENT, . inthe case that the divisor is a power of two. By contrast, the QUO2 series of
instructions produces QUOTIENT,.,,, like al QUO instructions. This may al be summarized by
noting that QUO and DIV instructions always round the quotient towards zero, while SHFA.RT
rounds towards negative infinity. (See Section 5.7 for shift instructions.)

Section 5.2.3 describes the possible side effects of signed-integer instructions (CARRY,
INT_OVFL, and INT_Z_DIV).
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ADD

Instruction: ADD . {Q,H,S,D}
Class: TOP Integer add

Purpose: DEST«S1+82. The integer sum of S1and S2 is stored in DEST.
Side Effects: CARRY, INT_OVFL

Precison: S 1, S2, and DEST all have the precision specified by the modifier.
Formal Description:

define ADD. p: ghsd = TOP [p;pip) Add(S1,s2) » sum, ¢, ov NeXt

Int_Overflow? nextS-1
(dest« sum also Carry «cl;

rCarry is set by the following instruction. Note that 777 has the signed interpretation -1 and t&
unsigned interpretation 29- 1.

L

ADD.Q RTA,#c333>,H#c777> iRTA=332
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ADDC

Instruction: ADDC . {Q,H,S,D}
Class: TOP Integer add with carry

Purpose: DEST«S1+S2+CARRY
Side Effects: CARRY, INT_OVFL
Precison: S 1, 2, and DEST dl have the precison specified by the modifier.

Formal Description:

define ADDC. pighsde T O P [p;p;pl Add_With_Carry(Sl, s2, Carry} » sum, c, ov next
Int_Overflow? next
(deste sum also Carry «c);

Carry is set after the execution of the first instruction, and cleared after the second. 1
ADD. QRTA, #c6665,#c777> 1 RTA=665
ADDC.Q RTA,RTA,#1 ;RTA=667

The following adds two long integers at X and Y represented as a pair of DWs with the
low-order DW having the higher address. The result is stored in X and NEXT(X).

ADD.D X+18,Y+18
ADDC.D X,Y

Similarly, suppose that NUM | and NUM2 are two blocks of single-words, each of length N
(N22) and representing an N-word integer, with lower-order words having higher addresses.
These can be added and the result stored in an (Ntl)-word block NUM3 in this manner:

MOV RTB, #cN-1> ;RTB counts words

ADD RTA, cNUM1>{RTB},cNUMZ2>{RTB} ; add | ow-order words

MOV <NUM3+1>(RTB),RTA i store low-order result
LOOP: ADDC RTA,cNUM1-15(RTB),cNUM2-15(RTB) ;add next words plus carry

MOV cNUM3>(RTB) , RTA ;store next word

DJMPZ. GTR RTB, LOOP ;DJMPZ doesn’t alter carry!

CMPSF.LSS RTA,cNUMl> sproduce sign-extension of

CMPSF.LSS,RTB, cNUM2> s NUML and NUM2

ADDC cNUM3>,RTA,RTB ;produce high-order result
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SUB

Instruction: SUB . {Q,H,S,D}
Class. TOP

Purpose: DEST«S1-52

Side Effects: CARRY, INT_OVFL

Precision: S1,S2, and DEST all have the precision specified by the modifier.
Formal Description:

define SUB. p:qhsd = TOP [pspsp)  Subtract(S1,s2) » dif, ¢, ov next

Int_Overflow? next
{dest « dif also Carry «c);

Page 63

Integer subtract

rThis example subtracts 1 from -1 to obtain -2. After execution, CARRY is t, INT_OVFLi

clear, and RTA contains -2.

SUB RTA, #-1,#1 ;RTA=-2

L

_
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SUBV

Instruction; SUBV ., {Q,H,S,D}
Class: TOP Integer subtract reverse

Purpose: DEST«S2-S 1

Side Effects: CARRY, INT_OVFL

Precision: S1,52,and DEST all have the precision specified by the modifier.
Formal Description:

define SUBV. pighsd s TOP [p; p; p) Subtract(s2,S1) » dif, ¢, ovnext

Int_Overflow? next
{dest « dif also Carry «c¢);

rThe long constant below is a SW minus one in signed interpretation. 1

SUBY RTA,H#c777777777777>,H41 s RTA=42 I
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SUBC

Instruction: SUBC . {Q,H,S,D}
Class: TOP Integer subtract with carry

Purpose: DESTe«S1-S2-1+CARRY

Side Effects: CARRY, INT_OVFL

Precison: S 1,52,and DEST al have the precison specified by the modifier.

Forma Description:

define SUBC. p: ghsd = TOP [pspspl Subtract-With-Carry (S1,s2, Carry) - dif, ¢, ov next

Int_Overflow? next
(dest« dif also Carry «cl;

rLet X and Y be two pairs of DWs representing a long integer with the low-order DW haviing I
the lower address. The following sets X to the difference of X and Y.

SUB.0 X,Y

L SUBC.D x+10, Y+18 I
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SUBCV

Instruction: SUBCV . {Q,H,S,D}
Class: TOP Integer subtract with carry reverse

Purpose: DEST«S2-Si-1+CARRY

Side Effects: CARRY, INT_OVFL

Precison: S1, S2, and DEST al have the precison specified by the modifier.

Formal Description:

define SUBCV. pighsd: TOP [pspspl Subtract-With-Carry (s2,51, Carry) = dif, ¢, ov next

Int_OQverflow? next
(dest « dif also Carry «cj};

[rhe following illustrates suscv. 1
SUB RTA, #2,#1 sRTA=+1, carry clear
L SUBCV RTA, #2, RTA ;RTA=-2, carry set l
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MULT

Instruction: MULT . {Q,H,S,D}
Class: TOP Integer multiply

Purpose: DEST«LOW_ORDER(S 1%S2)
Side Effects. INT-OVFL

Precison: S 1, S2, and DEST dl have the precision specified by the modifier.

rINT-OVFL is set by the following instruction which multiplies 333 octa by 3, giving a result
larger than can fit in nine bits. 1221 octal.

MULT.Q RTA,#c333>,#3 ;RTA=221
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MULTL

Instruction: MULTL . {Q,H,S)}
Class. TOP Integer multiply long

Purpose: DEST«S 1xS2

Precision: S1and $2 have the same precision as the modifier. DEST has a precision twice that of
the modifier.

rThe following instruction does not set INT,OVFL since the result fits in a halfword. 1

MULTL.Q RTA,#c3335,#3  ;RTA=081221



§521 Instruction Descriptions Page 69

QUO

Instruction; QUO . {Q,H,S,D)
Class: TOP Integer q uotien t

Purpose: DEST«S1/$2. QUO rounds its result towards zero.
Side Effects: INT_OVFL,INT_Z_DIV

Precison: S 1, $2, and DEST dl have the precison specified by the modifier.

l The following illustrates a ssimple quotient calculation. 1

QUO.Q RTA, #c345>,#3 1RTA=114 I
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QuUOV

Instruction: QuUOV . {Q,H,S,D)
Classs TOP Integer quotient reverse

Purpose: DEST«S2/S1 QUQOV rounds its result towards zero.
Side Effects: INT_OVFL,INT_Z_DIV

Precision: S 1, $2,and DEST all have the precision specified by the modifier.

The following illustrates aquotient calculation. 1

QUOY.Q RTA, #cll4>,H#c3450 1RTA=3 I
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QUOL

Instruction: QUOL . {Q,H,S}
Class: TOP Integer quotient long

Purpose: DEST«S1/82. QUOL rounds its result towards zero.
Side Effects. INT_OVFL,INT_Z_DIV

Precision: S 1, NEXT(S1), 82, DEST have the same precision as the modifier. S 1 has a precision
twice that of the modifier.

rThe following illustrates taking a quotient with along dividend.

QUOL.Q RTA, #cl1221>,#3  ;RTA=333
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QUOLV

Instruction: QUOLV . {Q,H,S)
Class. TOP Integer quotient long reverse

Purpose: DEST«S2/S1. QUOLV rounds its result towards zero.
Side Effects: INT_OVFL,INT_Z_DIV

Precison: S 1 and DEST have the same precision as the modifier. $2 has a precision twice that of
the modifier.

rThe following illustrates taking a quotient with along dividend.

QUOLY.Q RTA, #c333>,#cl221> 1RTA=3

L _
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Quo2

Instruction: QUO2 . {Q,H,S,D}
Class: TOP Integer quotient by power of 2

Purpose: DEST«S1/2%2 QUO2 roundsits result towards zero. The SHFA .RT instruction may be
used to divide by a power of two, rounding towards negative infinity. S2 may be
negative, in which case a multiplication by a positive power of two is performed.

Side Effects: INT-OVFL (INT-OVFL is not set during the 252 portion of the operation. This
exponentiation is done with unlimited precision.)

Precison: S 1, S2, and DEST all have the precision specified by the modifier.

rThefoIIowi ng divides -3 by +2, giving a different result than SHF.RT with the same opera

QUO2 RTA, #-3,#1 1RTA=-1

nds.
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Quozv

Instruction: QUO2V . {Q,H,S,D}
Class: TOP Integer quotient by power of 2 reverse

Purpose: DEST«$2/25!. QUO2V rounds its result towards zero. The SHFAV.RT instruction may
be used to divide by a power of two, rounding towards negative infinity. S1 may be
negative, in which case a multiplication by a postive power of two is performed.

Side Effects: INT-OVFL (INT_OVFL is not set during the 2>* portion of the operation. This
exponentiation is done with unlimited precision.)

Precison: S 1, $2, and DEST dl have the precision specified by the modifier.

rThe second instruction illustrates the use of negative shifts. 1

QUOZV RTA,#1,#-2 sRTA=-1
QUG2Y RTA,RTA,#1 ;RTA=2
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QuozL

Instruction; QUO2L. {Q,H,S}
Class. TOP Integer quotient by power of 2 long

Purpose: DEST«S1/252. QUO2L rounds its result towards zero. $2 may be negative, in which
case a multiplication by a positive power of two is performed.

Side Effects: INT-OVFL (INT_OVFL is not set during the 252 portion of the operation. This
exponentiation is done with unlimited precision.)

Precision: $2 and DEST have the same precision as the modifier. $1has a precision twice that of
the modifier.

I The following divides the long operand by 16 (decimal). 1

|

QUO2L.Q RTA,#c1221>,H#4 ;RTA=G1 l
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QuOo2LV

Instruction: QUO2LV . {Q,H,S}
Class: TOP Integer quotient by power of 2 long reverse

Purpose: DEST«$2/25!. QUO2LV rounds its result towards zero. S1 may be negative, in which
case a multiplication by a postive power of two is performed.

Side Effects; INT-OVFL (INT-OVFL is not set during the 25! portion of the operation. This
exponentiation is done with unlimited precision.)

Precision: S| and DEST have the same precision as the modifier. $2 has a precision twice that of
the modifier.

In the first ingtruction RTA is to be interpreted as a HW destination. In the second instruction l
RTA is to be interpreted as a QW destination, a QW shift argument, and a HW operand,
respectively. Note that the second instruction leaves the contents of RTA unchanged

(independent of its interpretation).

QUOZLY.H RTA,#-11,#11  ;RTA=11888 (HW)
QUO2LV.Q RTA, RTA,RTA sRTA=11 (QW) l
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REM

Instruction: REM . {Q,H,S,D}
Class: TOP Integer remainder

Purpose: DEST«SIrem $2. The result is the remainder produced by a division that rounds
towards zero (as in the QUO instruction). The result (DEST) has the same sign as the
dividend (S1), or iszero. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the M OD
operation.

Side Effects: INT_Z_DIV

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

rThe following illustrate the results of various combinations of signs. l
REM.Q RTA,#5,#3 ;RTA=2
REM.Q RTA,#5,#-3 sRTA=2
REM.Q RTA,#-5,43 JRTA=-2

REM.Q RTA,#-5,#-3 1RTA=-2 I
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REMV

Ingtruction: REMV . {Q,H,S,D}

Class: TOP Integer remainder reverse

Purpose: DEST«S2remS1. The result is the remainder produced by a division that rounds
towards zero (as in the QUOV instruction). The result (DEST) has the same Sign as the
dividend (S2), or is zero. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the M OD

operation.
Side Effects: INT_Z_DIV

Precision: S 1, S2, and DEST al have the precision specified by the modifier.

The following illustrate the results of variews combinations of signs. l
REMV.Q RTA, #3,#5 +RTA=2
REMV. Q RTA, H-3, #5 ;RTA=2
REMV.Q RTA,#3,#-5 iRTA=-2
REMY.Q RTA,#-3,#-5 ;RTA=-2 ‘
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REML

Instruction: REML . {Q,H,S)
Class: TOP Integer remainder long

Purpose: DEST«S1rem §2. The result is the remainder produced by a division that rounds
towards zero (as in the QUOL instruction). The result (DEST) has the same sign as the
dividend (Sl), or is zero. Note that the MOD function provided in many high-level

languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects; INT_Z_DIV

Precision: $2 and DEST have the same precision as the modifier. S1 has a precision twice that of
the modifier.

rThefollowi ng illustrates the remainder using along dividend.

REML, Q@ RTA, #c123455,#c380> s RTA=245
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REMLV

Instruction: REMLV . {Q,H,S}
Class: TOP Integer remainder long reverse

Purpose: DEST«S2rem S1. The result is the remainder produced by a division that rounds
towards zero (asin the QUOLV instruction). The result (DEST) has the same Sign as the
dividend ($2), or is zero. Note that the MOD function provided in many high-level

languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects; INT_Z_DIV

Precision: S1and DEST have the same precision as the modifier. S2 has a precision twice that of
the modifier.

rThe following illustrates a remainder using a long dividend. |

REMLV. Q RTA, #c388>,#c12345> 1RTA=245
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MOD

Instruction: MOD . {Q,H,S,D}
Class: TOP Integer modulus

Purpose: DEST«S1mod $2. The result is the remainder produced by a division that rounds
towards negative infinity, The result (DEST) has the same sign as the divisor (S2), or is
zero. Hence when the divisor is pogtive the result is the number-theoretic reduction of
S1in the modulus s2. Note that the MOD function provided in many high-level
languages such as PASCAL actualy performs the REM operation, not the MOD

operation.
Side Effects: INT_Z_DIV

Precison: S 1, S2, and DEST dl have the precision specified by the modifier.

The following illustrates the result of various combinations of signs. l
MOD.Q RTA,H#5,43 1RTA=2
MOD.Q RTA,#5,4-3 iRTA=-1
MOD.Q RTA,#-5,43 iRTA=1

L NDDt Q RTA' #"'Sl #'3 : RTA“2 I
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MODV

Instruction: MODV . {Q,H,S,D)
Class: TOP Integer modulus reverse

Purpose: DESTcS2 mod St The result is the remainder produced by a division that rounds
towards negative infinity. The result (DEST) has the same sign as the divisor (S), or is
zero. Hence when the divisor is positive the result is the number-theoretic reduction of
S2 in the modulus SI. Note that the MOD function provided in many high-level
languages such as PASCAL actualy performs the REM operation, not the MOD
operation.

Side Effects: INT_Z DIV

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

The following illustrates the result of various combinations of signs. ‘
MODV.Q RTA,#3,45 sRTA=2
MODV.Q RTA, #-3, #5 i RTA=-1
MODV.Q RTA,#3,H#-5 jRTA=1

| MOOV.Q RTA,#-3,#-5 1RTA=-2 l
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MODL

Instruction: MODL . {Q,H,S}
Class: TOP Integer modulus long

Purpose: DEST«S1 mod S2.  The result is the remainder produced by a division that rounds
towards negative infinity. The result (DEST) has the same sign as the divisor (S2), or is
zero. Hence when the divisor is positive the result is the number-theoretic reduction of
S1in the modulus S2. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects; INT_Z_DIV

Precision: S2 and DEST have the same precision as the modifier. $1 has a precision twice that of
the modifier.

rThe following illustrates the modulo operation using a tong dividend.

MOBL.Q RTA, #cl2345>, Hc30880 s RTA=245
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MODLV

Ingtruction: MIODLV . {Q,H,S}
Class: TOP Integer modulus long reverse

Purpose: DEST«S2 mod SI. The result is the remainder produced by a division that rounds
towards negative infinity. The result (DEST) has the same sign as the divisor (S 1), or is
zero. Hence when the divisor is postive the result is the number-theoretic reduction of
S2 in the modulus SI.  Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INT_Z_DIV

Precision: S| and DEST have the same precision as the modifier. S2 has a precision twice that of
the modifier.

rThefoIIowi ng illustrates the modul o operation using along dividend.

‘ MODLY.Q RTA,#c3808>5, #c12345> s RTA=245
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DIV

Instruction: DIV . {Q,H,S,D}
Class: TOP Integer divide

Purpose: DEST«S1/S2; NEXT(DEST)«S1rem S2. DIV is like doing both a QUO instruction and
a REM instruction.

Side Effects: INT_OVFL,INT_Z_DIV

Precison: S 1, $2, DEST, and NEXT(DEST) all have the same precison as the modifier.

rThe following produces a quotient-remainder result.

DIV.Q RTA,#c3455,#3 ;RTA=114801 (two QWs)
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DIVV

Instruction: DIVV . {Q,H,S,D}
Class: TOP Integer divide reverse

Purpose: DEST«S2/S 1; NEXT(DEST)«S2rem Sl. DIVV is like doing both a QUOV instruction
and a REMV instruction.

Side Effects: INT_OVFL,INT_Z_DIV

Precision: Sl, $2, DEST, and NEXT(DEST) ail have the same precision as the modifier.

| The following produces a quotient-remainder result. 1

|

DIVY.Q RTA, #3,#c345> ;RTA=1148081 (two QWs) |
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DIVL

Instruction: DIVL . {Q,H,S}
Class: TOP Integer divide long

Purpose: DEST«S1/S2; NEXT(DEST)«S1rem S2. DIVL is like doing both a QUOL instruction
and a REML instruction.

Side Effects: INT_OVFL, INTZDIV

Precision: $2, DEST, NEXT(DEST) have the same precision as the modifier. Sl has a precision
twice that of the modifier.

rThe following produces a quo'tient-remainder for a long operand.

DIVL.Q RTA, #c12345>, #c3088> s RTA=33245( two QWs)
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DIVLV

Instruction: DIVLV . {Q,H,S}
Class: TOP Integer divide long reverse

Purpose: DEST«S2/S 1; NEXT(DEST)<S2remS 1. DIVLV is like doing both a QUOLV
instruction and a REMLV instruction.

Side Effects: INT_OVFL, INTZDIV

Precision: S|, DEST, NEXT(DEST) have the same precision as the modifier. S2 has a precision
twice that of the modifier.

rThe following produces a quotient-remainder for along operand.

OIVLY.Q RTA, #c30085,#cl12345> ;RTA=33245 (two QWs)
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INC

Instruction: INC . {Q,H,S,D}
Class. XOP Integer increment

Purpose: OP 1«OP2+ 1

Side Effects: CARRY, INT_OVFL

Precision: OP 1 and OP2 have the same precision as the modifier.

Formal Description:

define INC, p:ghsd & XOP [p; p) Add(op2,1)> sum, c, ov next

Int_Overflow? next
(opl « sum also Carry«cl;

rThe following adds one to RTA. |
INC RTA,RTA 1RTA«RTA+1
FASM allows this instruction to be abbreviated simply to:

L

INC RTA +RTA is both source and destination l
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DEC

Ingruction: DEC . {Q,H,S,D}
Class. XOP Integer decrement

Purpose: OP1<OP2-1

Side Effects: CARRY, INT_OVFL

Precision: OP 1and OP2 have the same precision as the modifier.

Forma Description:

define DEC. pighsd= XOP [p;p] Subtract (op2,1)- dif , c, ov next

Int_Overflow? next
(ople dif also Carry «c);

I The following subtracts one from RTA. 1

DEC RTA :RTA<RTA-1

This instruction subtracts one from BAR and puts the result in FOO.

DEC FOO,BAR + FOO«BAR-1 l
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TRANS

Ingruction: TRANS . {Q,H,S,D} . {Q,H,S,D}
Class: XOP Integer transfer

, Purpose: OP1«SIGN_EXTEND(OP2). Take the integer specified by OP2 and sign-extend it to
make it an integer of the precision of the first modifier. Store the result in OP1. More
precisely, OP2 is sign-extended if OP1islonger than OP2. It isunchanged if OP 1 and
OP2 are the same length (in which case TRANS behaves just like MOV). If OPlis
shorter than OP2, then a “sign-compressed” copy of OP2 is stored in OP1, provided the
correct numerical value of OP2 can be expressed in the precision of OP1; if it cannot,
INT-OVFL is signalled.

Side Effects: INT-OVFL

Precision: OP1 has the precision of the first modifier and OP2 has the precision of the second

modifier.
rThe second ingtruction illustrates the sign-extension of TRANS. l
MOV. H.QRTA, #-1 ; RTA=880777 (HW)

TRANS.H.Q RTA,#-1 s RTA=777777 (HW) l

L



Page 92 Instruction Descriptions §5.2.1

NEG

I nstruction: NEG.{QH,S,D}
Class. XOP Integer negate

Purpose: OP letwo's-complement(OP2)
Side Effects: CARRY, INT_OVFL
Precision: OP 1 and OP2 have the same precision as the modifier.

Formal Description:

define NEG. piqhsd = XOPIpipl Subtract (0,0p2) = dif , ¢, ov next
Int_Overflow? next
(op2 « dif al SO Carry « ¢}

The following negates the value in RTA.
NEG RTA sRTA«-RTA

This piece of code jumps to TWOPOWER if the non-negative single-word integer in HUNOZ
is an exact power of two (where zero is considered to be such a power).

NEG RTA, HUNOZ 1 RTA«-HUNOZ
ANOCT RTA, HUNOZ s RTAcone’s-complement (RTA) AHUNOZ

JMPZ.EQL RTA,TWOPOWER  :jump i f RTA now is zero

The BITCNT instruction can be used to do the same thing if zero is not to be considered- a
power of two. l
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ABS

Instruction: ABS . {Q,H,S,D)
Class. XOP Integer absolute value

Purpose: OP l«abs(OP2)

Side Effects: CARRY, INT_OVFL

Precision: OP 1 and OP2 have the same precision as the modifier.
Formal Description:

define ABS.p:qhsd s X O PIlpsplifop22 0O
then (opl « 0p2 also /nt_Oufl «0)

else Subtract (0,0p2) = dif, ¢, ov next
Int_Overflow? next
op2edif
fi;

The following takes the absolute value of RTB and puts it in RTA. 1

ABS RTA,RTB sRTA«|RTB| |
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MIN

Ingtruction;: MIN . {Q,H,S,D}
Class: TOP Integer minimum.

Purpose: DEST«min(S1,52). The smaller of the Signed integers S 1 and S2 is placed in DEST.
Precision: S 1, S2, and DEST al have the precison specified by the modifier.
Formal Description:

define MIN. p:qhsd= TOP [pspsp)  dest « (if S1<s2 then S1 else s2fi);

| The following sets RTA to 0 if RTA is negative. 1

I MIN RTA,RTA,#8
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MAX

Instruction: MAX . {Q,H,S,D}
Class: TOP Integer maximum

Purpose: DEST«max(S 1,52). The larger of the signed integers St and S2 is placed in DEST.
Precison: S 1, 82, and DEST all have the precison specified by the modifier.
Forma Description:

define MAX. p:qhsd = TOPpipsp) dest & (if S1>s2 then S1 else s2fi);

rThe following sets RTA to 100 if RTA is greater than 100. 1

L MAX RTA,RTA, #c108.> l
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5.2.2 Unsigned Integer

Unsigned integer instructions operate upon the unsigned integer data type (see Section 3.2).
The indructions perform unsigned multiplication and unsigned integer divison. Ingtructions that
allow extended-precision operations (e.g., multiplying .twe single-word integers and producing a
double-precision result) have an "L" as the last character of the opcode.

These instructions were designed to be used for arithmetic on numbers of arbitrarily great
precision (as exemplified by “bignums’ in MacLISP). Note that ADD and SUB work correctly for
bignum arithmetic.

Section 5.2.3 describes the possible side effects of unsigned-integer instructions (INT_OVFL
and INTZDIV).
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UMULT

Instruction: UMULT . {Q,H,S,D}
Class: TOP Unsigned integer multiply

Purpose: Do an unsigned multiplication of S$1and $2 and place the low-order {quarter, half, single,
double]-word of the result in DEST.

Side Effects; INT-OVFL

Precison: S 1, 82, and DEST dl have the precision specified by the modifier.

rThe following ingtruction puts the low order QW of the unsigned square of 2°-1in RTA. This l
value is the low-order nine bits of 2182‘°t|, that is, 001. Since the full result is greater than
2%-1, INT-OVFL is also set.

UMULT.Q RTA,?777,?777
The only difference between UMULT and MULT isthat UMULT sets INT-OVFL whenever

MULT does, and, in addition, whenever the high order bit of one of its operands is s&t, and the
L(unsigned) magnitude of the other operand is greater than unity. l
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UMULTL

Instruction: UNIULTL . {Q,H,S)}
Class: TOP Unsigned integer multiply long

Purpose: Do an unsigned multiplication of Siand S2 and place the result in DEST.

Precision: S 1and S2 have the same precision as the modifier. DEST has a precision twice that of
the modifier.

rThe following instruction puts the unsigned square of 2%-1in RTA. Thisvalue is 2!8-21%1, I
that is, 776001.

UMULTL.Q RTA,?777,?777
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ubiv

Instruction: UDIV. {Q,H,S,D}
Class: TOP Unsigned integer divide

Purpose: The result of unsigned, integer division, $1/82, is placed in DEST. The unsigned, integer
remainder, Slrem S2, is placed in NEXT(DEST);.

Side Effects: INT_OVFL,INT_Z_DIV

Precison: S 1, S2, DEST, and NEXT(DEST) dl have the same precision as the modifier.

rThe following sets RTA to the unsigned quotient-remainder of 2°-3 divided by twenty-two.

l ubIv.Q RTA,?775,?26 ; RTA=827803 ( two QWs)
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UDIVL

Ingtruction: UDIVL . {Q,H,S}
Class: TOP Unsigned integer divide long

Purpose: The result of unsigned, integer division, $1/82, is placed in DEST. The unsigned, integer
remainder, S1rent S2, is placed in NEXT(DEST);

Side Effects; INT_OVFL, INTZDIV

Precision: $2, DEST, and NEXT(DEST) all have the same precision as the modifier. S1 has a
precision twice that of the modifier.

The following sets RTA to the unsigned quotient-remainder of 377377 (octal) divided by 777|
(octal).

UDI VL.QRTA; ?377377,?777 +RTA=377776 (two QWs)
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5.2.3 Instruction Side Effects

USER-STATUS records three types of side effects that can occur during the execution of an
integer instruction. (See Section 2.52 for a description of USER-STATUS.) They are: CARRY,,
INT_OVFL (integer overflow), and INT_Z_DIV (divide-by-zero).  All of these bits in
USER-STATUS are not sticky, that iS, if an instruction can set one of these bits, it must either set
or clear that bit.

5.2.3.1 CARRY
For each instruction shown, USER_STATUS.CARRY is set if the following formula is true
with the indicated substitutions. CARRY is cleared if the formula is fase. C_IN refers to the dtate
of CARRY at the beginning of the instruction (used in ADDC, SUBC, and SUBCV).
CARRY = (X 1<0AX2<0) v [(X 1<0 vV X2<0) A (X 1+X2+X 32 0)]

In the following table, the result of the instruction equals X1+X2+X3; "~" means
one’s-complement; and "~1" iSthe two’s-complement of 1.

[nstruction X1 X2 X3

ADD s s2 0

ADDC sl 82 C-IN

SuB S| ~52

SUBV ~S1 82 !

SUBC S ~82  C-IN

SUBCV ~S1 82 C-IN

INC ! oP2 0 (e, OP2 = -1)

DEC 1 oP2 0 (i.e, OP220)

NEG 0 ~O0P2 1 (ie, OP2 = 0)

ABS 0 ~OP2 | (e, OP2 = 0)
Table 5

Conditions for setting CARRY

No other ingtructions change CARRY.

l For example, the following instruction sets CARRY .

INC RTA, #-1 ;RTA+8

L |
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5.2.3.2INT_OVFL

USER-STATUS. INT-OVFL is set when the result of an operation will not fit in the
destination, that is, if the destination precision is {Q,H,S,D}, then overflow occurs if the result is not
between -2{8:17:35.71} g 2{8473571_ 1 jncusve.  Instructions which set/clear INT-OVFL are:
ADD, ADDC, SUB, SUBV, SUBC, SUBCV, INC, IIMP, 1JMPZ, IIMPA, ISKP, DEC, DIMP,
DIMPZ, DIMPA, DSKP, FIX, SHFA, SHFAV, MULT, QUO, QUOV, QU02, QUO2V, QUOL,
QUOLV, QUO2L,QUO2LY, DIV, DIVV, DIVL, DIVLV, NEG, ABS, TRANS, UMULT,
UDIV, and UDIVL. No other instructions change INT-OVFL. It should be noted that
INT_OVFL is not set during the exponentiation in the QUO2 class of instructions. For these
ingtructions, unlimited precision is available for the 25 section of the computation.

The condition for determining INT-OVFL is smplified when consdering the addition and
subtraction instructions (ADDs, SUBs, INC, DEC, IJMPs, D JMPs, ISKP, and DSKP). With these
instructions, INT-OVFL is set when the carry into the high-order bit of the result is not the same
asthe carry out of that bit.

When an integer overflow  occurs, the action teken depends on  the
USER-STATUS. INT_OVFL_MODE bhit. If equal to zero, atrap occurs and no value is stored.
If equal to one, all instructions (except SHFA to the left) store the low-order bits of the result.
SHFA to the left stores the correct sign followed by the low-order bits of the result.

rFor example, the following instruction sets INT-OVFL. l

| NC RTA, #c377777,,777777> +RTAMINNUM; constant is MAXNUM l

5.2.3.3INT_Z_DIV

USER-STATUS, INT_Z_DIV is set when a divide-by-zero occurs in an integer division.
Instructions which set/clear INT_Z_DIV are. QUO, QUOYV, QUOL, QUOLV, REM, REMV,
REML, REMLV, MOD, MODV, MODL, MODLV, DIV, DIVV, DIVL, DIVLV, UDIV, UDIVL.
No other ingtructions change INT_Z_DIV.

When an integer divide-by-zero occurs, the action taken depends on the

USER_STATUS.INT_Z_DIV_MODE bit. If INT_Z_DIV_MODE=0 then a trap occurs and no
vaue is stored in the destination. If INT_Z_DIV_MODE-=1 then zero is stored and no trap occurs.

5.3 Floating Point

Floating-point instructions operate on the floating-point data type (see Section 3.3). The
instructions include addition, subtraction, multiplication, division, absolute value, negation,
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minimum, maximum, and scaling by powers of two. Reverse instructions are provided for the
non-commutative operations (subtraction, divison, and scding). These reverse ingructions have a
"V" added to the end of the opcode mnemonic (e.g., FSC becomes FSCV). Extended-precision
operations are provided for multiplication and division (e.g., multiplying two single-word
floating-point numbers and producing a double-precision result). Multiplication (FMULTL)
produces an extended-precision product and division (FDIVL, FDIVLV) utilizes an
extended-precision dividend.

All operations producing a floating-point result normalize that result. (See Section 3.3 for a
discussion of the floating-point format. This format does not permit the representation of
unnormaized numbers.)

5.3.1 Rounding Modes

During floating-point operations, rounding of the result may be necessary. With the
exception of the FIX instruction, the rounding mode used is specified by
USER_STATUS.RND_MODE, as described below. The FIX instruction allows the explicit
specification of a rounding-mode or the use of RND-MODE.

Let F be the magnitude of the difference between a true floating-point result, R, and the
greatest representable floating-point number N which is less than or equal to R, expressed as a
fraction of the least-significant representable bit of R.

The bits of RND-MODE have the following functions (reversals of rounding direction
accumulate):

RND_MODE<0> 0: Round as specified by RND_MODE<I:4>.
1: Reserved.

RND_MODE<I> O:If F= 0O, round as specified by RND_MODE<2:4>; otherwise deliver R
exactly.
1: If F= 1/2thenround as specified by RND_MODE«<2:4>; otherwise round
to the floating-point number nearest to R.

RND_MODE<2> 0: Round toward negative infinity.
1: Round toward positive infinity.

RND_MODE<3>  0: No €ffect.
1. If and only if N’s mantissa's least significant bit is a one, reverse the
rounding direction.

RND_MODE<4> 0: No effect.
1: If and only if R is negative, reverse the rounding direction.
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Various combinations of the above bits provide a variety of rounding modes. Some of the
more common modes are:

RND MODE (octal)  Function Modifier for FIX
0 Floor FL

! Diminished Magnitude DM

4 Ceiling CL

5 Augmented Magnitude

12 Half Rounds Toward Positive HP
14 PDP-10 FIXR Rounding
15 App. PDP-10 FLTR Rounding

Table 5-2
Useful Rounding Modes

5.3.2 Instruction Side Effects

USER-STATUS records three types of side effects that can occur during the execution of a
floating-point instruction. (See Section 2.5.2 for a description of USER-STATUS.) They are:
FLT-OVFL (floating overflow), FLT_UNFL (floating underflow), and FLT_NAN (floating
undefined). All of these bitsin USER-STATUS are not sticky, that is, if an instruction can set one
of these bits, it must either set or clear that bit.

5.3.2.1 FLT,OVFL and FLT,UNFL

USER_STATUS.FLT_OVFL is st when a floating-point instruction produces a result with
an exponent that is too large to be represented in the EXP-field of the destination (i.e., OVF or
MOVF). (See Section 3.3 for a description of the floating-point data type.) In a similar way,
FLT_UNFL is set when a floating-point instuction’s result has a negative exponent whose
magnitude is too large to be represented in the destination’s EXP (i.e., UNF or MUNF). Floating
underflows and overflows generaly occur in two Stuations. The first situation is that the result of
an op.eration (e.g., FMULT) is out of range of the EXP-field. The second situation is when the
result ‘will fit, but the post-normalization of that result causes the exponent not to fit.

All ingtructions that produce floating-point results set/reset FLT-OVFL and FLT_UNFL. It
should be noted that FSC and FSCV do not set either overflow or underflow during their
exponentiation calculations.  In these two instructions, the 2% part of the calculation is done with

unlimited precision.

When a floating underflow (overflow) occurs, the action taken depends on the
USER-STATUS. FLT_UNFL_MODE (USER-STATUS, FLT_OVFL_MODE) fidd.



§5321 Instruction Descriptions Page 105

FLT UNFL MODE<0:1> Result

0 Trap and do not store any value in the result
1 Store the infinitesma with the correct sign (UNF or MUNF)
2 Store the floating-point number with the correct sign and
mantissa, but with a wrapped-around exponent
3 Not defined
Table 5-3

USER-STATUS-UNFL-MODE

FLT OVFL_MODE<0:l> Result

0 Trap and do not store any value in the result
Store the infinity with the correct sign (OVF or MOVF)
2 Store the floating-point number with the correct sign and
mantissa, but with a wrapped-around exponent
3 Not defined
Table 54

USER_STATUS_OVFL_MODE

See Section 5.3.2.3 for adiscussion of how OVF, MOVF, UNF, and MUNF propagate in
floating-point instructions (when they do not trap).

l The first instruction sets FLT_OVFL, the second sets FLT_UNFL. |

FSUBV. H RTA, #8,H#c400008>
FSC. HRTA, #<8846008>, #-1

5.3.2.2 FLT,NAN

USER-STATUS, FLTNAN is set when a NAN is the result of a floating-point operation.
All instructions that require floating-point arguments and produce floating-point results set/reset

FLT_NAN.
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When an undefined floating-point number (NAN) is produced the action taken depends on
the USER_STATUS.FLT_NAN_MODE bit. If FLT_NAN_MODE=0 then a trap occurs and no
vaue is stored in the destination. If FLT_NAN_MODE-=1 then NAN is stored and no trap occurs.

See Section 5.3.2.3 for a discussion of how NAN propagates in floating-point instructions
(when it does not trap).

5.3.2.3 Exception Propagation

When the traps are disabled (as explained in the previous sections) the exception values
(OVF, MOVF, UNF, MUNF, NAN) can propagate through floating-point instructions. The
diagrams below describe how the exceptions propagate through addition, multiplication, and
divison.  Floating-point subtraction behaves with respect to exception propagation asif FNEG
were gpplied to the second argument, and then FADD applied,

FMIN and FMAX propagate the exceptions as regular floating-point numbers (i.e.,
MOVF<-X<MUNF<0<UNF<X<OVF), but the result is NAN if either argument is NAN.
FNEG(MOVF)=OVF, FNEG(OVF)=MOVF, FNEG(MUNF)=UNF, and FNEG(UNF)=MUNF.
Similarly, FABS(MOVF)=OVF and FABS(MUNF)=UNF. FTRANS acts as an identity function
for all five exceptions. FIX of any special floating-point symbol produces an intermediate NAN
result and stores the result on the basis of FLT_NAN_MODE. The exponentiation portion of the
FSC and FSCV is effectively done in infinite precision and will not produce an exception; the
subsequent multiplication follows the rules given below.

In the following tables, X and Y are assumed to be any positive floating-point numbers,
excluding the specid floating-point symbols 0, UNF, and OVF.

Addition (A+B)

A B=— MOVF -Y MUNF 0 UNF Y OVF NAN
MOVF MOVF  MOVF MOVF MOVF MOVF MOVF NAN NAN
-X MOVF  -X-Y X -X -X -X+Y OVF NAN
MUNF MOVF  -Y MUNF MUNF NAN Y OVF NAN
0 MOVF  -Y MUNF 0 UNF Y OVF NAN
UNF MOVF  -Y NAN UNF UNF Y OVF NAN
X MOVF X-Y X X X X+Y OVF NAN
OVF NAN OVF OVF OVF OVF OVF OVF NAN
NAN NAN NAN NAN NAN NAN NAN NAN NAN

Figure 5-I
Floating-point Exception Propagation (t)
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Mul tiplication (AxB)

A B— MOVF -Y MUNF 0 UNF Y OVF NAN
MOVF OVF OVF NAN 0 NAN MOVF MOVF NAN
-X OVF XxY UNF 0 MUNF -XxY MOVF NAN
MUNF NAN UNF UNF 0 MUNF MUNF NAN NAN
0 0 0 0 8 0 0 0 NAN
UNF NAN MUNF MUNF 0 UNF UNF NAN NAN
X MOVF  ~XxY MUNF 0 UNF XxY OVF NAN
OVF MOVF  MOVF NAN 0 NAN OVF OVF NAN
NAN NAN NAN NAN NAN NAN NAN NAN NAN
Figure 5-2
Floating-point Exception Propagation (x)

Division (A/B)

A B=—» MOVF -Y MUNF 0 UNF Y OVF NAN
MOVF NAN OVF OVF NAN MOVF MOVF NAN NAN
-X UNF XY OVF NAN MOVF -XIY MUNF NAN
MUNF UNF UNF NAN NAN NAN MUNF MUNF NAN
0 0 0 0 NAN 0 0 0 NAN
UNF MUNF  MUNF NAN NAN NAN UNF UNF NAN
X MUNF  -X/Y MOVF NAN OVF XY UNF NAN
OVF NAN MOVF MOVF  NAN OVF OVF NAN NAN
NAN NAN NAN NAN NAN NAN NAN NAN NAN

Figure 5-3

Floating-point Exception Propagation (/)

Page 107
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FADD
Instruction: FADD . {H,S,D)
Class: TOP Floating-point add

Purpose: The floating-point sum, $1 plus S2, is rounded according to RND_MODE and stored in
DEST.

Side Effects: FLT_OVFL,FLT_UNFL,FLT_NAN

Precison: S 1, S2, and DEST al have the precison specified by the modifier.

To add 1.0 to RTA ether of the first two instructions could be used. Note that FASM provi

an interpretation of floating-point constants. The third instruction doubles RTA. Alternatively,
FMULT, FSC, or FDIV might be used.

FADD RTA, #c288488,,0>
FADD RTA, #cl.8>

FADD RTA,RTA sRTA«2%RTA; FSC RTA,#1 is perhaps cheaper
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FSUB

Instruction: FSUB . {H,S,D}
Class: TOP Floating-point  subtract

Purpose: The floating-point difference, S1 minus s2, is rounded according to RND_MODE and
stored in DEST.

Side Effects: FLT,OVFL, FLT_UNFL, FLTNAN

Precison: S§1, S2, and DEST al have the precision specified by the modifier.

rThe following subtracts a floating point value of one from RTA.

FSUB RTA,#cl.8> 1RTA«RTA-1.8
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FSUBV

Instruction: FSUBV .{H,S,D}
Class: TOP Floating-point subtract reverse

Purpose: The floating-point difference, S2 minus $1, is rounded according to RND_MODE and
stored in DEST.

Side Effects: FLT_OVFL,FLT_UNFL, FLTNAN

Precison: S1,82, and DEST al have the precison specified by the modifier.

l The following subtracts RTA from a floating point value of one.

FSUBV RTA, #cl.@> ;RTA<1.8-RTA

L _
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FMULT

Instruction: FMULT , {H,S,D}
Class: TOP Floating-point multiply

Purpose: The floating-point product, St times S2, is rounded according to RND_MODE and stored
in DEST.

Side Effects: FLT_OVFL,FLT_UNFL, FLTNAN

Precison: S1, S2, and DEST al have the precison specified by the modifier.

rThe following ingtruction doubles the value in RTA. Alternately, FSC, FADD, or FDIV mizht
be used for this purpose.

FMULT RTA,#c2.8> 1RTA«RTA%2. 0 ‘
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FMULTL

Instruction;: FMULTL . {H,S)
Class: TOP Floating-point multiply long

Purpose: The floating-point product, S 1 times S2, is rounded according to RND,MODE and stored
in DEST. Note that the long result format will have more than twice as many MANT
bits as either operand.

Side Effects: FLT_OVFL, FLTUNFL, FLTNAN. (These can occur only if one of the
floating-point exception values occurs as an argument. If both arguments are
ordinary floating-point numbers, the result cannot overflow or underflow, because the
long result format has a larger EXP field than the operands do.)

Precision: S 1 and $2 have the same precision as the modifier. DEST has precision twice that of
the modifier.

The following instruction will give RTA ail significant bits of the square of the value in 1
(unless overflow or underflow occurs).

FMULTL RTA,X,X;RTAX12 |
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FDIV

Instruction: FDI V' . {H,8,D)
Class: TOP Floating-point divide

Purpose: The floating-point quotient, S divided by S2, is rounded according to RND,MODE and
stored in DEST.

Side Effects: FLT_OVFL,FLT_UNFL, FLTNAN

Precison: S1, S2, and DEST all have the precison specified by the modifier.

The following instruction doubles the value in RTA. Alternatively, FADD, FMULT or Fﬂ:_
might be used.

| FDIV RTA, #c200008,,8> ;RTARTA/8.5=2%RTA l
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FDIVV

Instruction: FDIVV . {H,S,D}
Class: TOP Floating-point divide reverse

Purpose: The floating-point quotient, S2 divided by S1, is rounded according to RND_MODE and
stored in DEST.

Side Effects: FLT_OVFL,FLT_UNFL, FLTNAN

Precision: S 1, $2, and DEST ail have the precison specified by the modifier.

l The following code might be used to set RTA to its reciprocal. 1

L

FOIVV RTA,RTA,#cl.8> |
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FDIVL

Instruction: FDIVL . {H,S}
Class. TOP Floating-point divide long

Purpose: The floating-point quotient, $1 divided by S$2, is rounded according to RND_MODE and
stored in DEST.

Side Effects: FLT_OVFL,FLT_UNFL, FLTNAN

Precision: s2 and DEST have the same precision as the modifier. $1 has precision twice that of
the modifier.

The following uses a long 1.0 to reciprocate RTA. Note that this is NOT the same constant i
would be used for FDIV.

FD 1 VL RTA, #c20081000000803 « 8>, RTA l
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FDIVLV

Instruction: FDIVLV . {H,S}
Class: TOP Floating-point divide long reverse

Purpose: The floating-point quotient, S2 divided by S1, is rounded according to RND_MODE and
stored in DEST.

Side Effects: FLT_OVFL,FLT_UNFL, FLTNAN

Precision: S1 and DEST have the same precision as the modifier. $2 has precision twice that of
the modifier.

The following uses a SW 1.0 to reciprocate RTA. Note that this is NOT the same constant i
would be used for FDIV.H.

! FOIVLV.H RTA, #c208488, ,8> ‘
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FSC

Ingruction: FSC . {H,S,D}
Class: TOP Floating-point scale

Purpose: The floating-point product, S1times 252, is rounded accordi ng to RND_MODE and
stored in DEST. S 1 is a floating-point number and 2 is a signed integer.

Side Effects: FLT_OVFL, FLT_UNFL, FLT_NAN. (FLT_OVFL and FLT_UNFL are not set
during the 952 portion of the operation. This exponentiation is done with unlimited
precision.)

Precison: S 1 and DEST have the same precision as the modifier. $2 is a single-word.
| The following instruction may be used to double the value in RTA. Alternatively, FADD, |
FMULT, or FDIV might be used.

I FSC RTA,#1 s RTARTA*21 (1) =2%RTA l
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FSCV

Ingruction: FSCV . {H,S,D}
Class: TOP Floating-point scde reverse

Purpose: The floating-point product, $2 times 95! is rounded according to RND_MODE and
stored in DEST. $2 is a floating-point number and S1 is a sSigned integer.

Side Effectss FLT-OVFL, FLT_UNFL, FLTNAN. (FLT-OVFL and FLTUNFL are not set
during the bl portion of the operation. This exponentiation is done with unlimited
precision.)

Precision: $2and DEST have the same precision as the modifier. S1is a single-word.

rThe following two instructions set RTA to the average of X and Y. l

FADD RTA, XY

FSCV RTA, #-1,RTA
L _
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FIX

Ingtruction:  F1x. {FL,CL,DM,HP,US} . {Q,H,S,D} . {H,S,D}
Class: XOP Fix floating-point number

Purpose: Convert the floating-point number specified by OP2 into an integer and storeit in OP 1.
Use the rounding mode specified by the first modifier.

Side Effects: INT_OVFL

Precision: OP 1 has the precision of the second modifier. OP2 has the precision of the third
modifier.

rThe following converts a floating poi Nt val ue in RTA into an integer. The exact result depeids ’
on the value and the rounding mode specified in USER_STATUS.RND_MODE.

, FIX.US RTA,RTA l
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FLOAT

Ingtruction: FLOAT . {H,S,D} . {Q,H,S,D}
Class. XOP Float fixed-point number

Purpose: Convert the integer specified by OP2 into a floating-point number and store it in OP 1.
Side Effects: FLT_OVFL. (This can occur only in the cases of FLOAT.H.S and FLOAT.H.D.)

Precision: OP 1 has the precision of the first modifier. OP2 has the precision of the second
modifier.

rThe following loads RTA with the floating point value 1.0.

FLOAT RTA, #1 1 RTA=200488,,8 (SW)
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FTRANS

Ingtruction: FTRANS . {H,S,D} . {H,S,D}
Class. XOP Floating-point transfer

Purpose: Take the floating-point number specified by OP2 and make it a floating-point number of
the precison of the first modifier. Store the result in OP1.

Side Effects: FLT_OVFL, FLT_UNFL, FLTNAN. If OP2 has no greater precision than OP 1,
then these can occur only if OP2 is one of the floating-point exception values.

Precision: OP2 has the precision of the second modifier. OP1 has the precision of the first
modifier.

rThe following illustrates the precision ateration possible with FTRANS. The exact val u;‘i
produced will, in general, depend on the rounding mode defined in the
USER_STATUS:RND_MODE.

I FTRANS.S.D RTA,#c2801000208088 « 8> ;RTA=200430, ,0=1.8 l
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FNEG

Instruction: FNEG . {H,S,D}
Class. XOP Floating-point negate

Purpose: Take the floating-point negation of OP2and store it in OP1. The primary difference
between NEC and FNEC is that FNEC properly propagates the floating-point exception
values. They also have different side effects.

Side Effects: FLT-OVFL, FLT_UNFL, FLTNAN

Precison: OP 1 and OP2 have the Same precison as the modifier.

I These examples show how floating-point exceptions are propagated by FNEC. 1

FNEG.H RTA, #c202081> s RTAMUNF, s i gna | FLT_UNFL
FNEG.H RTA,#c408081> iRTA<QVF, s i gna | FLT-OVFL
FNEG . H RTA, #c480008> {RTAeNAN, s i gna | FLT_NAN l
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FABS

Instruction: FABS . {H,S,D}
Class. XOP Floating-point absolute value

Purpose: Take the floating-point absolute value of OP2 and store it in OP1. The primary
difference between ABS and FABS isthat FABS properly propagates the floating-point
exception values. They also have different sde effects.

Precision: OP 1 and OP2 have the same precision as the modifier.

Side Effects: FLT-OVFL, FLT_UNFL, FLTNAN

l These examples show how the uses of FABS and ABS on floating-point numbers differ. I

ABS. H RTA, #c-I> tRTA<UNF, no side effects
FABS.H RTA, #c-1> ;RTAUNF, signal FLT_UNFL
ABS. H RTA, #c377777> +RTA<OVF, no side effects

FABS. H RTA, #c377777> 1RTA«OVF,signa | FLT-OVFL
ABS.H RTA , #c-408088> ;RTAeNAN, signal INT_OVFL
FABS.H RTA,#c-408808>  ;RTAeNAN, s igna IFLT_NAN l
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FMIN

Instruction: FMIN . {H,S,D}
Class: TOP Floating-point minimum

Purpose: DESTemin(51,52). The smaller of the floating-point numbers S1and $2 is placed in
DEST. The primary difference between MIN and FMIN isthat FMIN properly
propagates tle dha tng-point exception values.

Precison: $1,52, and DEST dl have the precision specified by the modifier.

| This instruction sets RTA to the smaller of X and 43.0. l

FMIN RTA,X,#c43.8>
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FMAX

Instruction: FMAX . {H,S,D}
Class: TOP Floating-point maximum
Purpose: DEST«max(S1,82). The larger of the floating-point numbers S1and S2 is placed in

DEST. The primary difference between MAX and FMAX isthat FMAX properly
propagates the floating-point exception values.

Precison: S 1, $2,and DEST all have the precison specified by the modifier.

rThiS sequence of instructions takes the number FOO and “clips’ it to be within the Windog!_
(0.0,1.0].

FMAX RTA,F00,?8.0 : larger of FOO and 8.8 tO RTA
FMIN FOO,RTA,?1.8 ;emaller of that and 1.8 to FDO

_ _
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5.4 Move

Move instructions are used to move operands and/or addresses of operands to memory
locations and/or registers. Many words may be moved by the single instructions MOVMQ and
MOVMS. Single registers can be saved and loaded with a single instruction using SLR or
SLRADR. Virtual or physical addresses can be loaded using MOVADR or MOVPHY. The
precisions associated with each move instruction are described in the instruction descriptions.
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MOV

Instruction: MoV . {Q,H,8,D} . {Q,H,S,D)
Class. XOP Logical move

Purpose: OP1<OP2. If OP2 has greater precision than OP1, the low-order bits of OP2 are used.
If OP2 has smaller precision than OPI, it is zero-extended to the left. This is best
thought of as a “logica” or “unsigned” move operation. No condition bits (e.g., carry or
integer-overflow) are affected. Note that the TRANS ingtruction can be used to perform
sign-extended or truncated integer moves, and FTRANS to perform moves of

floating-point numbers.
Precison: The two modifiers specify the precisions of OP1 and OP2 respectively.
Formal Description:

define MOV. pl: qhsd, p2: ghsd &  XOP[pl; 21 ople low (pl, zero-extend(op2, 72));

rThe following copies the low-order QW of RTA into the high-order QW. 1

l MOV.Q.Q RTA,c23> l
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MOVMQ

Instruction:. MOVMQ . {2..32,64,128)
Class. XOP Move many quarter-words

Purpose: Moves the number of quarter-words, specified by the modifier, from the locations starting
at ADDRESS(OP2) to the locations starting at ADDRESS(OPI). If the source and
destination regions overlap, the result is undefined. If either OP1 or OP2 is an
immediate constant, a hard trap will occur.

Precison: This ingtruction deals with quarter-words for both source and destination precisions.

| The following copies the three high-order QWs from RTA into RTB. 1

I MOVMA. 3 RTB, RTA '
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MOVMS

Instruction: MOVMS .{2..32)
Class. XOP Move many single-words

Purpose: Moves the number of single-words, specified by the modifer, from the locations starting at
ADDRESS(OP2) to the locations starting at ADDRESS(OPL). If the source and
destination regions overlap, the result is undefined. If either OP1or OP2is an
immediate constant, a hard trap will occur.

Precison: This instruction deals with single-words for both source and destination precisions.

rThe following saves al the registers from RTA on in ablock starting at SAVEBK.

ROVRS.28 SAVEBK,RTA

L |
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EXCH

Ingtruction: EXCH . {Q,H,S,D}
Class. XOP Exchange words

Purpose: Exchange the values OP1and OP2. If either OP 1 or OP2 is an immediate constant, a
hard trap will occur.

Precision: OP 1and OP2 each have the precision specified by the modifier.
Forma Description:

define EXCH. p: ghsd = XOP [p,RW; p,RW] let temp =o0p2
thenop2« oplnext opl «temp;

l The following swaps RTA and RTB. 1

I EXCH RTA, RTB ‘
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SLR

Instruction; SLR.{0..31)}
Class. XOP Save and load register

Purpose: OPlis replaced by the contents of the register named by the modifier. The contents of
the register is then replaced by OP2.

Precision: A 11 operands involved are single-words.
Forma Description:

define SLR.nin0to3l: X OP [S;S] let temp =RI[n)
then RInle«op2 next opletemp;

The first instruction moves RTA into RTB and zeros RTA. The second and third instructioﬂ;;
illustrate the results when one of the operands is the register specified in the instruction. The
fourth illustrates the result when the operands are the same.

SLR. 4 RTB, #8 ; RTB<RTA, RTA«B

SLR. 4 RTA, FOO salternate NOP

SLR.4 FOO,RTA  ;alternate ROV FOO,RTA

SLR4 FOO,FOO  ;alternate EXCH RTA,FOO _—J
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SLRADR

Ingtruction: SLRADR .{0..31}
Class. XOP Save and load register with address

Purpose: OP1 is replaced by the contents oOf the register named by the modifier. The contents of
the register isthen replaced by ADDRESS(OP2).

Precision: A 11 operands involved are single-words.
Formal Description:

define SLRADR, i: n0to31= XOP [S;5,A] let temp =R (n]
then RInl« Address (op2) next ople tempt

The first instruction moves RTA into RTB and puts ADDRESS(FOQ) in RTA. The secorl
and third instructions-illustrate the results when one of the operands iS the register specified In
the instruction.  The fourth illustrates the result when the operands are the same.

SLRAOR.4 RTB,FOO ; RTB«RTA, RTA<ADDRESS (FO0)
SLRAOR. 4 RTA, FOO ;alternate NOP
SLRADR.4 FOO,RTA jalternate MOV FOG,RTA; ROVAOR RTA,RTA
l_ SLRADR.4 FO0O,F0O0 jalternate ROV FOO,RTA; ROVADR RTA,FOO _-]
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MOVADR

Instruction: MOVADR
Class; XOP Move address

Purpose: OP1<ADDRESS(OP2). If OP2 is an immediate constant, a hard trap will occur.
Precison: OP 1 is a single-word.
Formal Description:

define MOVADR = XOPI[S;S5,A]l ople Address {op2);

rThe first instruction loads RTA with the address of the operand FOO. 1

MOVADR RTA,FO0 ;RTA<ADDRESS (FOO)
I MOVADR--RTA,RTA ;RTA«20 octal (RTA is register 4, at address 4%4=28) l



Page 134 Instruction Descriptions §5.4

MOVPHY

Instruction: MOVPHY
Class. XOP Move physical address

Purpose: OP1«PHYSICAL_ADDRESS(OP2). If OP2 is an immediate constant, ahard trap will
occur. If ADDRESS(OP2) isintherangeO. . 127 then the physical address of the
correponding shadow memory location will be used. See Section 2.4.1 for a discussion of
shadow memory.

Redtrictions: Illega in user mode.

Precison: OP1 is a single-word.

Formal Description:

define MOVPHY & XOP-IS; S, PA3  opl ¢ Physical-Address (op2);

I The following loads RTA with the pAysical address of FOO. 1

, MOVPHY RTAFOO ;RTAePHYSICAL_ADDRESS (FOO) |
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55 Flag

Flag instructions produce results that are of the flag data type. The flag data type is discussed
in Section 3.8. The flag results are always single-words. A flag is either al zeros or al ones. All
zeros means true. All ones means false.

CMPSF compares two words according to a specified condition. It returns true if the
condition was satisfied and false if it was not. BNDSF checks if its argument is within a given
bounds and returns the appropriate flag.
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CMPSF

Instruction: CMPSF . {GTR,EQL,GEQ,LSS,NEQ,LEQ} . {Q,H,S,D}
Class: TOP Compare and set flag

Purpose: DEST«S 1 condition S2, where condition is the first modifier.
Precison: S 1 and S2 have the same precision as the modifier. DEST isa single-word.

Formal Description:

define CMPSF. rel: acond.p: ghsd & TOP [S;p; p]  dest « (if rel(S1,s2) then -1 else Ofi);

Let X, Y, and Z be single-words, with Y=NEXT(X). The following code implements settim_g—’
RTA to xif Zx0and to Y otherwise. It uses indexing rather than a conditional jump or skip.
Such use of indexing can often make more effective use of instruction pipelining than jumping
or skipping.

CMPSF.GEQ RTA,Z,#8
MOV RTA, cYo(RTA) sindexing with flag result

CMPSF.LSS can be used to produce an extended-sign word for a number. TRANS or
FTRANS can be used to sign-extend a number to one of the four standard precisions, but this
trick is useful in dealing with numbers of very large precision.

CMPSF.LSS RTA,NUM, #8 sall bits of RTA get the sign bit of NUM

The effect of CMPSF.lcond can be obtained by an AND or ANDCT followed by a
CMPSF.EQL or CMPSF.NEQ,

ANDCT RTA,F00, BAR sthis behaves as would the fictional
CMPSF. EQL RTA ,#8 iinstruction CMPSF.NON RTA,FOG,BAR
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BNDSF

Instruction: BNDSF . {B,MIN,M1,0,1} . {Q,H,S,D}
Class: TOP Bounds-check and set flag

Purpose: The first modifier determines if $2is compared against a constant and S1, or against Sl
and NEXT(S 1). If thefirst modifier isB then if S1<S2<NEXT(S1) then DEST«TRUE
else DEST«FA LSE. If the first modifier is one of MIN, M 1, 0, and 1 then if
constant<S2<S 1 then DEST«TRUE e€lse DEST«FALSE. Constant=- 1 if the first modifier
isM 1. Constant=0 if the first modifier is 0. Constant4 if the first modifier is 1. If the
first modifier is MIN then constant is the negative number with the greatest magnitude
for the precison specified by the second modifier.

Precision: S| and S2 have the same precision as the second modifier. DEST is a single-word. If
NEXT(S1), 0, 1, -1, or MIN is used it also has the same precision as the second modifier.

The following two ingtructions are adternate implementations for setting RTA to -1 if X contains l
the ASCII representation of a digit, and to 0 otherwise. In the first instruction FASM places the
string "09" on a data page automatically.

BNDSF.B.Q RTA, ("89"],X
BNDSF.8.Q RTA,#11,#c-"8">(X) ;X must be a register l
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5.6 Boolean

Boolean instructions operate upon the boolean data type (see Section 3.1). All boolean
instructions can operate on any of the four data precisions (QW,HW,SW ,DW). Both operands must
be of the same precision. The result of a boolean operation has the same precision as the operands.
Note that none of the condition bits (e.g., carry or integer-overflow) can be set by boolean

instructions.

The three-operand boolean instructions ANDTC, ANDCT, ORTC, and ORCT are not
symmetric in their use of S 1 and $2. Nevertheless, instructions named ANDTCV, ANDCTV,
ORTCV, and ORCTV are not provided. This is because the reverse form of ANDTC is provided
by ANDCT, of ANDCT by ANDTC, of ORTC by ORCT, and of ORCT by ORTC.
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NOT

Ingtruction: NoT. {Q,H,S,D}
Class. XOP

Purpose: OP |«one’s-complement(OP2)
Precison: OP 1 and OP2 have the same precision as the modifier,
Forma Description:

define NOT, p:ghsde XOP(psplople=~op2;

The following is an alternate to NEG RTA.

NOT RTA, #c-1>(RTA) sRTA«-RTA

Page 139

Logical (bit-wise) NOT
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AND

Instruction: AND . {Q,H,S,D}
Class: TOP Logica (bit-wise) AND

Purpose: DEST«S 1nS2

Precision: S1, §2, and DEST all have the precison specified by the modifier.

Formal Description:

define AND. p:ghsd - TOPI[pspspldest « Sl A s2;

The following instruction illustrates the effect of all possible combinations of bitsin the
operands.

AND.Q RTA,#3,#5 ; RTAel
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ANDTC
Ingtruction: ANDTC . {Q,H,S,D}
Class: TOP Logical (bit-wise) A ND true/complement
Purpose: DEST«S [aone’s-complement(S2). Note that the “TC” in  ANDTC means

“True-Complement” and refers to the fact that S1and one’s-complement(S2) respectively
are operands to the AND function, The reverse form of ANDTC is ANDCT, not
ANDTCV.

Precision: S 1, s2,and DEST all have the precison specified by the modifier.
Formal Description:

define ANDTC.p:iqhsd s T O P [pspspldest « Sl A (-s2);

rThe following instruction illustrates the effect of all possible combinations of bits in t&
operands.

ANDTC.Q RTA,#3,#5 1RTA=2

Suppose that MASK is a mask whose one-bits select certain (possibly non-contiguous!) hits of
WORD. These bits are to be regarded as a “field”, and the contents of that field decremented as
an integer “in place” in WORD, without affecting non-selected bits of WORD. This can be
done as follows.

AND RTA, WORD, MASK ;RTA<WORD with non-selected bits zeroed
DEC RTA szeroed bits propagate the borrow

AND RTA, MASK smask out non-selected bits

ANDTC WORD, MASK smask out SELECTED bits in WORD

l OR WORD, RTA smerge the two results I
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ANDCT

Instruction: ANDCT . {Q,H,S,D}
Class: TOP Logical (bit-wise) AND complement/true

Purpose: DEST «one’s-complement(S 1)AS2. Note that the “CT” in ANDCT means
“Complement-True” and refers to the fact that one’s-complement(S1) and S2 respectively
are operands to the AND function. The reverse form of ANDCT is ANDTC, not
ANDCTV.

Precision: S 1,52, and DEST all have the precison specified by the modifier.

Formal Description:

define ANDCT. p:ghsde  TOP [p;psp] dest «(=S1) A s2;

rThe following instruction illustrates the effect of all possible combinations of bits in t&
operands.

ANOCT.Q RTA,#3,#45 i RTA=4 l
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OR

Instruction: OR . {Q,H,S,D}
Class TOP Logica (bit-wise) OR

Purpose: DEST«S 1v82

Precison: S 1, 82, and DEST al have the precison specified by the modifier.

Formal Description:

define OR. p:ghsd = TOP [psps p] dest « S1 v s2;

The following instruction illustrates the effect of all possible combinations of bitsin the
operands.

OR.Q RTA,#3,#5 iRTA=7
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ORTC
Ingruction: ORTC . {Q,H,S,D}
Class: TOP Logical (bit-wise) OR true/complement
Purpose: DEST«S Inone’s-complement(S2). Note that the “TC" in ORTC means

“True-Complement” and refers to the fact that S1 and one’s-complement(S2) respectively
are operands to the OR function. The reverse form of ORTC is ORCT, not ORTCV.

Precison: S 1, $2, and DEST al have the precison specified by the modifier.
Formal Description:

define ORTC. p: ghsde  TOPI[p;p;p] dest « sl v (-s2);

The following instruction illustrates the effect of all possible combinations of bits in t&
operands.

ORTC.Q RTA,#3,#45 1RTA=773

Suppose that MASK is amask whose one-bits select certain (possibly non-contiguous!) bits of
WORD. These hits are to be regarded as a “field”, and the contents of that field incremented as
an integer “in place” in WORD, without affecting non-selected bits of WORD. This can be
done as follows.

ORTC RTA, WORD, MASK +RTAWORD with non-selected bits set to one
INC RTA sone bits propagate thecarry
AND RTA, MASK ;mask out non-selected bits
ANOTC WORD, MASK smask out SELECTEO bits in WORD
I_ OR WORO,RTA imerge the two results —l
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ORCT
Instruction: ORCT . {Q,H,S,D}
Class: TOP Logical (bit-wise) OR complement/true
Purpose: DEST «one’s-complement(S 1)AS2. Note that the “CT” in ORCT means

“Complement-True” and refers to the fact that one’s-complement(S1) and S2 respectively
are operands to the OR function. The reverse form of ORCT is ORTC, not ORCTV.

Precison: S 1, $2, and DEST all have the precison specified by the modifier.
Formal Description:

define ORCT, p:ghsd- T OPIpipipldest «(=51) v s2;

The following instruction illustrates the effect of all possible combinations of bits in tﬂ!;
operands.

l ORCT.Q RTA,#3,#5 1RTA=775 \
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NAND

Instruction: NAND . {Q,H,S,D}
Class TOP Logical (bit-wise) NAND (NOT of AND)

Purpose: DEST «one’s-complement(S 1nS2)
Precision: S 1, S2, and DEST dl have the precison specified by the modifier.
Formal Description:

define NAND. pighsde T O Plpipipldest e (Slas2);

rThe following instruction ilustrates the effect of alt possible combinations of bits in the l
operands.

NAND.Q RTA,#3,45 ; RTA-776 l
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NOR

Instruction: NOR . {Q,H,S,D}
Class TOP Logica (bit-wise) NOR (NOT of OR)

Purpose: DEST «one's-complement(S 1vS2)

Precison: S 1, S2, and DEST dl have the precision specified by the modifier.
Formal Description:

define NOR. p:qhsd - TOP [pspspl dest «=(S1v s2);

The following instruction illustrates the effect of all possible combinations of bits in t&
operands.

NOR.Q RTA, #3,45 1RTA=770 l
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XOR

Instruction: XOR . {Q,H,S,D}
Class: TOP Logical (bit-wise) exclusve OR

Purpose: DEST «(S 1none’s-complement(S2)) V (one’s-complement(S 1)AS2)
Precison: S 1, 2, and DEST all have the precison specified by the modifier.
Formal Description:

define XOR. p:ghsd = TOP(pipipldeste Sl @ s2;

The following instruction illustrates the effect of all possible combinations of bits in t&
operands.

XOR. @ RTA, #3,#5 1RTA=6

The following code exchanges the two words QUUX and ZTESCH. (A better way to do thisis
with the EXCH ingtruction, but this example demonstrates an interesting information-preserving
property of XOR.)

XOR QUUX, ZTESCH
XOR ZTESCH, QUUX

XOR QUUX, ZTESCH I
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EQV

Instruction: EQV .{Q,H,S,D} .
Class: TOP Logical (bit-wise) equivalence

Purpose: DEST«(S 1AS2) v (one’s-complement(S l‘)/\one's—com plement(S2))
Precison: S1, S2, and DEST dl have the precison specified by the modifier.
Formal Description:

define EQV. piqhsde TOPIpipspldeste-(S1®s2),

rThe following instruction illustrates the effect of all possible combinations of bits in t& |
operands.

EQV.Q RTA,H#3,45 ;RTA=771
The following code exchanges the two words QUUX and ZTESCH. (A better way to do this is
with the EXCH instruction, but this example demonstrates an interesting information-preserving

property of EQV.)

EQV QUUX, ZTESCH
EQV ZTESCH, QUUX

EQV QUUX,ZTESCH l
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5.7 Shift and Rotate

The shift and rotate instructions provide logica and arithmetic shifting of operands. Since al
shift and rotate instructions are non-commutative, each instruction is aso provided in its reverse

form (e.g., SHF and SHFV).

Note that a left shift (rotate) by N is equivalent to a right shift (rotate) by -N for al the
instructions in this section except for DSHF and DSHFV. The effect of these instructions is

described individually.
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SHF

Ingtruction: SHF . {LF,RT} . {Q,H,S,D}
Class TOP Logical shift

Purpose: DEST«S | logically shifted {left,right} by S2. Bits shifted in are zero bits; bits shifted out
are lost. Note that a left shift by $2 is identica to a right shift by ~S2.

Precision: §2 isasingle-word. DEST and S 1 have the precision specified by the second modifier.

Formal Description:

define SHF. dirslfrt. psqhsds TOP [p3p3S] dest « shift (S1, case dir of

LF: s2;
RT: -s2;
end) 3
l The following shows the effect of a positive left-shift argument. 1

| SHF.LF.Q RTA,#-1,H41 iRTA=-2 ’
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SHFV

Instruction: SHFV . {LF,RT} . {Q,H,S,D}
Class. TOP Logica shift reverse

Purpose: DEST«S2 logically shifted {left,right} by S1. Bits shifted in are zero bits; bits shifted out
are lost. Note that a left shift by $1isidenticd to aright shift by -S 1.

Precison: St is a singleword. DEST and S2 have the precison specified by the second modifier.

Formal Description:

define SHFV.dirslfrt. pighsds TOP [p;Sspl dest « shift (s2, case dir Of

LF: S1;
RT: - Sl
end) ;

I The following shows the effect of a negative left-shift argument.

SHFV.LF.Q RTA,#-1,#1 1RTA=8
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DSHF
Instruction: DSHF . {LF,RT}.{Q,H,S)
Class. TOP Logica double-width shift
Purpose: S 1 [INEXT(S1)= is logically shifted {leftright} by S2 positions. The

{ high-order,low-order] 9, 18, or 36 bits of the result (corresponding to Q, H, S
respectively) are then stored in DEST. Note that <S1j| NEXT(S1)= is not treated as a
“long” operand, but as wo separate operands (which is why the mnemonic is DSHF and
not SHFL). This is useful for multi-word shifts of any of the three precisions allowed.
Long right shifts must start at the right end of the multi-word vector, and long left shifts
must start at the left end of the vector. Note that DSHF.RT by X is equivalent to
DSHF.LF by (9-X), (18-X), (36-X).

Precision: S 1| NEXT(S 1) is considered to be two {Q,H,S}-precision words (rather than one
{H,S,D}-precision word) for alignment purposes.

The following illustrates the result of shifting along operand. 1
OSHF.LF.Q RTA, #c123456>, 41 i RTA=247

Suppose that a 30-word block of bits MARKERS is to be logically shifted in place three bits to
the left. This can be done as follows.

MOV RTB, #8 +RTB indexes MARKERS from left to right
LOOP: DOSHF . LF ¢cMARKERS>(RTB),#3 ;produce one result word

ISKP.LSS RT8B, #29. ,L00P i increment RTB and loopif< 29,

SHF.LF MARKERS+23.,#43 ;do the last word in single precision

The same block of bits can be logically shifted three bits to the right as follows. Note that the
operation must proceed in the other direction within the block, i.e. from right to left.

MOV RTB, #23. +RTB indexes MARKERS from right to left
. LOOP: DSHF.RT cMARKERS> (RTB) , #3 ; produce one result word

DSKP.GTR RTB, #8,L00P s decrement RTB and | oop i f >0

SHF. RT MARKERS, #3 ;do the last word in single precision

The same block of bits can be arithmetical/y shifted three bits to the right by using the same
Lloop but changing the last SHF.RT ingtruction to SHFA .RT. ‘
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DSHFV
Ingtruction: DSHFV . {LF,RT}. {Q,H,S)
Class: TOP Logicad double-width shift reverse
Purpose: S$2|INEXT(S2)> is logically shifted {leftright} by S 1 positions. The

{high-order,low-order} 9, 18, or 36 bits of the result (corresponding to Q, H, S
respectively) are then stored in DEST. Note that <S2 || NEXT(S2)> isnot treated as a
“long” operand, but as two separate operands (which is why the mnemonic is DSHFV and
not SHFLV). Thisis useful for multi-word shifts of any of the three precisions allowed.
Long right shifts must start at the right end of the multi-word vector, and long | eft shifts
must start at the left end of the vector. Note that DSHFV.RT by X is equivalent to

DSHFV.LF by (9-X), (18-X), (36-X).

Precision: <S2||NEXT(S2)> is considered to be two {Q,H,S}-precision words (rather than one
{H,S,D}-precision word) for aignment purposes.

Let X be a DW. Assume RTA contains the negative of the amount by which we wish to shift 1
left. To store the shifted result in RTA the following instruction may be used.

OSHFY.RT RTA, #c44>(RTA) X l

L
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SHFA

Instruction: SHFA . {LF,RT}.{Q,H,S,D}
Class: TOP Shift  arithmetically

Purpose: DEST«S1 arithmetically shifted {left,right} by S2. Shifts to the (true) left introduce zero
bits; shifts to the (true) right replicate the sign bit and discard bits shifted out the low end.
This is equivalent to a multiplication or division by a power of two, where it is
understood that such a division rounds towards negative infinity. For division by a
power of two, rounding towards zero, the QUO2 instruction should be used instead. Note
that a left shift by St1is equivaent ta a right shift by -S1.

Side Effects: INT_OVFL will be set if any bit that iSto be shifted into the sign bit does not equal
the original sign bit. This may occur when shifting left with $2>0 or by shifting right
with $2<0. During untrapped integer-overflowv SHFA stores the correct sign followed
by the low-order bits of the correct result.

Precison: S2 is a single-word. DEST and S have the precison specified by the second modifier.

rThe following two instructions illustrate the difference between SHF.RT and SHFA .RT. l

SHF.RT.Q RTA,#-1,#1 ;RTA=377
SHFA.RT.Q RTA,#-1,#1 1RTA=777



Page 156 Instruction Descriptions §5.7

SHFAV

Instruction: SHFAV . {LF,RT} . {Q,H,S,D}
Class: TOP Shift arithmeticaly reverse

Purpose: DEST«S2 arithmetically shifted {left,right} by Sl. Shifts to the (true) left introduce zero
bits; shifts to the (true) right replicate the sign bit and discard bits shifted out the low end.
This is equivalent to a multiplication or division by a power of two, where it is
understood that such a division rounds towards negative infinity. For division by a
power of two, rounding towards zero, the QUO2V instruction should be used instead.
Note that a left shift by S1is equivaent to a right shift by -S1.

Side Effects: INT-OVFL will be set if any bit that is to be shifted into the sign bit does not equal
the original sign bit. This may occur when shifting left with $1>0 or by shifting right
with S1<0. During untrapped integer-overflow SHFA stores the correct sign followed
by the low-order bits of the correct result.

Precision: S 1isasingle-word. DEST and S2 have the precision specified by the second modifier.

J The following instruction sets INT-OVFL. 1

|

SHFAV.LF RTA,#7,H#3 iRTA=200 \
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ROT

Instruction;: ROT.{LF,RT}.{Q,H,S,D}
Class: TOP Logical rotate

Purpose: DEST«S 1 rotated {left,right} by $2. Rotation introduces bits shifted out of one end into
the other end, so that no bits are lost. Note that a left rotation by S2 is equivalent to a

right rotation by -S2.
Precison: $2 is a singleword. DEST and S1 have the precison specified by the second modifier.
Formal Description:

define ROT. dir: ifrt.p:ghsde  TOP [p: p;S]  Rotate (S1, dir, s2);

I The following illustrates a right rotation by a positive amount. 1

ROT.RT.Q RTA,#1,41 sRTA=4008 l
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ROTV

Instruction: ROTV . {LF,RT} . {Q,H,S,D}
Class: TOP Logica rotate reverse

Purpose: DEST«S2 rotated {left,right} by S 1. Rotation introduces bits shifted out of one end into
the other end, so that no bits are lost. Note that a left rotation by S1 is equivalent to a
right rotation by -S'1.

Precision: S 1 isasingle-word. DEST and S2 have the precision specified by the second modifier.

Formal Description:

define ROTV. dir: Ifrt. p:qhsd=  TOP [p;S; p} Rotate (s2, dir, S1)

I The following illustrates a left rotation by a negative amount. 1

ROTV.LF.Q RTA,#-1,43 1RTA=40] |
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5.8 Skip and Jump

Skip and jump ingtructions alow control to be transferred to locations other than that of the
next sequentia ingtruction. Skip instructions are used for short-range transfers, while jumps are
used to transfer control anywhere in the 30-bit-address space. In many cases, the skips or jumps
occur only if a condition that is specified by a modifier to the instruction istrue. Skips or jJumps
can occur on an arithmetic condition (ACOND) which can be any one of the following :

ACOND ={GTR,EQL,GEQLSS,NEQLEQ}

These correspond to the conditions »,=,2,<,=,< respectively.

Skips may occur on logical conditions (LCOND) as well as arithmetic conditions for the SKP
instruction. The LCONDs are:

LCOND ={NON,ALL,ANY,NAL}

These correspond to the logical conditions that relate two operands (say OP 1 and OP2) as shown in
the table below. Here OP2 is considered to be a mask whose one-bits select bits of OP1to be

tested.

Modifier Condition Meaning
NON (OP1AOP2)=0 If no masked bits are 1
ALL (one's-complement(OP1 A OP2)) = O If dl masked bits are 1
ANY (OP1 A OP2)= O If any masked bit is 1

NAL (one’s-complement(OP1 A OP2)) = 0  If notall masked bits are |

Table 5-5
LCOND modifier descriptions

By combining the ACONDs and the LCONDs, we get the arithmetic and logical conditions
(ALCONDs) shown below:

ALCOND ={GTR,EQL,GEQ,LSS,NEQ,LEQNON,ALL ANY,NAL}

All skip instructions are members of the skip instruction class (SOP). See section 4.1.3 for a
discussion of this instruction class. The skip instructions are used to perform short jumps in the
range -8..7 single-words relative to the current PC (the first word of the instruction that is
currently executing). The offset of the jump is specified by the four-bit SKP field of the opcode
(OPCODE. SKP). Since OPCODE.SKP fully specifies the jump destination, both OP 1 and OP2
can be used in comparison operations.
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All jump instructions are members of the jump instruction class (JOP). See section 4.1.4 for a
discussion of this instruction class. The jump instructions are used to transfer control to a genera
memory location. The low twelve-bits of the instruction specify a JUMPDEST, that is, the location
to which control will be transferred if the condition specified in the jump ingtruction is true. OP 1
specifies a general word that can be tested against the condition specified by the ACOND modifier.
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SKP

Instruction: SKP . {GTR,EQL,GEQ,LSS,NEQ,LEQ,NON,ALL,ANY,NAL} . {Q,H,5,D}
Class: SOP Skip on condition

Purpose: If OP1 ALCOND ORP2 is true (where ALCONDe{GTR, EQL, GEQ, LSS, NEQ,LEQ,
NON, ALL, ANY, NAL)), control istransferred to the specified location that is within
-8..7 single-words of the current PC. If ALCOND is false, control is transferred to
the next instruction. The number oOf single-words to skip is specified by OPCODE.SKP.

Precison: The precison of OP 1 and OP2 is specified by the second modifier.
Formal Description:

define SKP. rel:alcond. p:qhsde SOP [p; p] if rel(opl, 0p2) then Skip fi;

The following instructions compute the function “If RTA is 0dd Then RTA«3xRTA+1 g-
RTA«RTA/2" repeatedly while RTA> 1.  Note that FASM determines the SW off
automatically from the JUMPDEST operand.

THREEN:
SKP.LEQ RTA, #1,D0NE
SKP.NON RTA,#1,RTAEVN ;skip if RTA has an even integer
MULT RTA, #3 smultiply by three
ADD RTA, #1 ;add one - result must be even,
RTAEVN: i so fall into even case
QUO2 RTA, #1 ;this is better than Q U O RTA,#2

JHPA THREEN

DONE: Ce I
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ISKP

Instruction: 1SKP . {GTR,EQL,GEQ,LSS,NEQ,LEQ}
Class: SOP Increment, then skip on condition

Purpose: OP 1«OPI+l. CARRY is not affected. Then if OPI ACOND OP2 (where
ACONDe{GTR,EQL,GEQ,LSS,NEQ,LEQ}), control is transferred to a location that is
within -8 . . ‘7 single-words of the current PC. If ACOND is fase, control is transferred
to the next instruction.  The number of single-words to skip is specified by
OPCODE.SKP.

Side Effects: INT_OVFL may be st by the incrementing operation.

Precision: OP1and OP2 are both single-words.

Formal Description:

define ISKP. rels acond ¢ SOPIS,RW;Sl Add(opl, 1) »sum,c,ovnext
Int_Overflow? next
(if rel (sum, op2) then SKip fi also

opl € sum also
Carry « ¢)

rThe following is atypical loop of the form, “For location I«M Thru N Do . .". The inner partgf_
the loop must not exceed 8 SWs when assembled.

movI,M

ISKP.LEQ 1 ,N,LOCP l

LOOP:
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DSKP

Instruction: DSKP . {GTR,EQL,GEQ,LSS,NEQ,LEQ)
Class: SOP Decrement, then skip on condition

Purpose: OP 1<OP I-I. CARRY is not affected. Then if OP1 ACOND OP2 is true (where
ACONDe¢{GTR,EQL,GEQ,LSSNEQ,LEQ}), control is transferred to a location that is
within -8..7 singlewords of the current PC. If ACOND is fase, control is transferred
to the next instruction. The number of single-words to skip is specified by
OPCODE.SKP.

Side Effects: INT_OVFL may be Set by the decrementing operation.
Precison: OP 1 and OP2 are both single-words.
Formal Description:

define DSKP. rel: acond 8 SOP ES, RW; sl Subtract (opl,1)s dif, ¢, ovnext
Int_OQverflow? next
(if rel (dif,0p2) then Skip fi also
opl & difalso
Carry «c};

rThe following instructions search an array of N SWs starting & TABLE for the largest index_I—I
such that TABLEI[I]=1. Assume that TABLE(0] contains O to ensure loop termination, and that
N single-words follow this entry. In the following, | must be a register. Note that since the loop
is one ingtruction long the SW skip offset is zero. ? 0 the base address TABLE
compensates for the fact that the address calculation occurs the decrernentation operation,
but the skip condition is tested after the decrementation operation. In turn, "N+1" is used
instead of "N" in the initialization to compensate for this compensation.

MOV |, 2<N+1> t+Nisan assembly literal symbol
l LOOP: OSKP.NEQ | ,cTABLE-15(1),LOOP
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JMP

Instruction: JMP . {GTR,EQL,GEQ,LSS,NEQ,LEQ}
Class. jopP Jump on condition

Purpose: If OP1 ACOND NEXT(OPI) is true (where ACONDe{GTR, EQL, GEQ, LSS, NEQ,
LEQ}), contral is transferred to the location specified by JUMPDEST. If the condition is
fdse, control is transferred to the next instruction.

Precison: OP 1 and NEXT(OP 1) are both single-words.

Formal Description:

define JMP.rel:alcond=  JOP [p,NR] if rel(opl, Next (opl}) then Jump fi;

The following loop searches down a chain of pointers for a specified tail pointer FOOPTR. Lﬁ_
P be a register and HEAD the address of the first link in the chain. Note that NEXT(P) Is
implicitly used by this routine to hold the comparison operand.

MOV.D.D P,#cHEAD « FOOPTR> 1ini tial ize P and NEXT (P}
LOOP: MoV P,(P)

JMP. NEQ P, LOOP l
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JMPZ

Ingtruction: JMPZ . {GTR,EQL,GEQ,LSS,NEQ,LEQ)} . {Q,H,S,D}
Class: JOP Jump on condition relative to zero

Purpose: If OP1 ACOND NEXT(OP1) is true (where ACONDe{GTR, EQL, GEQ, LSS, NEQ,
LEQ]}), contral is transferred to the location specified by JUMPDEST. If the condition is
false, contral is transferred to the next instruction.

Precision: OPlisasingle-word.

Formal Description:

define JMPZ.rel: acond. p: qghsd s JOP [plif rellopl,0)then Jump fi;

l The following jumps to A WAY iff RTA<1.0. 1

L

JMPZ.LEQ Hc-1.8>5(RTA),AWAY l
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JMPA

Instruction: JIVIPA
Class: JOP Jump aways

Purpose: Jump unconditionally to JUMPDEST. OD1 must be identically zero or a hard trap will
occur.

Formal Description:

define JMPA E JOPIX,Ul Jump;

rThe following instruction jumps to the RTA-th address stored in the table at VECTS. 1

JMPA c@JVECTS(RTA)> l
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IJMP

Ingtruction: 1 Jvp . {GTR,EQL,GEQ,LSS,NEQ,LEQ}
Class: JOP Increment, then jump on condition

Purpose. OP1<OPI1+1. CARRY is not affected. Then if OP1 ACOND NEXT(OP 1) is true
(where ACONDe{GTR,EQL,GEQ,LSS,NEQ,LEQ}), control is transferred to the location
specified by JUMPDEST. If the condition is false, control is transferred to the next
instruction.

Side Effects INT_OVFL may be set by the incrementing operation.

Precison: OP 1 and NEXT(OP I) are both single-words.

Forma Description:

define IUMP.rel:aconds  JOP [p,NRW] Add(opl,1)+sum ¢, ov next
Int_Overflow? next
(if rel (sum, Next {opl)) then Jump fi also

opl € sum also
Carry «c¢l;

rThe following is a typica loop of the form, “For location 1M Thru N Do . .". The inner part of
the loop may be any length when assembl ed.

MOV.D.D | , [MeN] sM,Nar e assembly literals

IJMP.LEQ 1,L00P : l

LOOP:
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IJMPZ

Ingruction: WMPZ . {GTR,EQL,GEQ,LSS,NEQ,LEQ)
Class. JoP Increment, then jump on condition relative to zero

Purpose: OP 1<OP1+1. CARRY isnot affected. Then if OPI ACOND O is true (where
ACONDe{GTR,EQL,GEQ,LSS,NEQ,LEQ)}), control is transferred to the location
specified by JUMPDEST. If the condition isfalse, control is transferred to the next
instruction.

Side Effects: INT_OVFL may be set by the incrementing operation.

Precison: OP 1 is a single-word.

Formal Description:

define IUMPZ.relsacond=- JOP[p,RW]  Add(opl,1)» sum, c, ovnext

Int_Overflow? next
(if rel(sum,0Y then Jump fi also opl&€sumalso Carryecl;

| The following increments N and jumps to AWAY if N=0. 1

IJMPZ.EQL N, AWAY I
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[JMPA

Instruction: | JMPA
Class: JOP Increment and jump aways

Purpose: OP [«OP 1+ 1. CARRY is not affected. Jump unconditionaly to JUMPDEST.
Side Effects: INT_OVFL may be set by the incrementing operation.

Precison: OP 1 is a single-word.

Formal Description:

define 1IIMPA &= JOP [p,RW] Add(opl,1)~ sum, c, ov next

Int_Overflow? next
(Jump also op 1 « sum also Carry «c);

rThe following is an extremely inefficient way to add RTA into RTB, assuming that intega'_
overflow traps are disabled. However, it shows off the IIMPA instruction.

LOOP: DSKP.EQL RTA,#-1 idecrement RTA; skip next instruction if - 1
IJMPA RTB,LOOP sotherwise increment RTB and loop

— !
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DJMP

Ingtruction:. DJMP . {GTR,EQL,GEQ,LSS,NEQ,LEQ}
Class: JOP Decrement, then jump on condition

Purposes OP1<OPI-1. CARRY is not affected. Then if OP1 ACOND NEXT(OP 1) is true
(where ACONDe{GTR,EQL,GEQ,LSS,NEQ,LEQ}), control istransferred to the location
specified by JUMPDEST. If the condition is false, control is transferred to the next
instruction.

Side Effects: INT_OVFL may be set by the decrementing operation.

Precison: OP 1 and NEXT(OP 1) are both single-words.

Formal Description:

define DJMP. rel: acond & -- JOP [p,NRW]  Subtract (opl,1)~ dif, ¢, ov N€X1
int_Overflow? next
(if rel(dif, Next (op1)) then Jump fi also

opl e dif also
Carry « ¢l

The following is a typical loop of the form, “For location I«M Step -1 Thru N Do ...". The I
inner part of the loop may be any length when assembled.

MOV.D.D |, [MeN] sM,N are assembly literals

DJMP. GEQI, LOOP I

LOOP:
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DIMPZ

Instruction: DJMPZ . {GTR,EQL,GEQ,LSS,NEQ,LEQ}
Class: JOP Decrement, then jump on condition relative to zero

Purpose: OP1<OP 1-I. CARRY isnot affected. Then if OP1 ACOND O is true (where
ACONDe{GTR,EQL,GEQ,LSSNEQLEQ}), control is transferred to the location
specified by JUMPDEST. If the condition is false, control is transferred to the next
instruction.

Side Effects: INT_OVFL may be set by the decrementing operation.

Precison: OP Iisa single-word.

Forma Description:

define DIMPZ. rel: acond = JOP [p,RW] Subtract (opl, 1)~ dif , ¢, ov next
Int_Overflow? next

(if rel (dif, 0) then Jump fi also ople dif al SO Carry « ¢);

rThe following decrements N and jumps to AWAY if N=0. 1

DJMPZ.EQL N, AWAY |
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DIJMPA

Instruction: DJIMPA
Class: JOP Decrement and jump aways

Purpose: OP 1«OP |-1. CARRY is not affected. Jump unconditionaly to JUMPDEST.
Side Effects: INT_OVFL may be set by the decrementing operation.
Precison: OP 1 is a single-word.

Formal Description:

define DIJMPA &  JOPI[p,RW] Subtract (opl, 1)= dif , c, ov next
Int_Overflow? next
(Jump also ople dif alSO Carry «c;

rThe following decrements N and jumps to AWAY.

DJIJMPAN,AWAY

L |
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BNDTRP

Instruction: BNDTRP . (39M|N9M1'091} . {Q,H,S,D}
Class: XOP Bounds check and trap on failure

Purpose: Check if OP1 and OP2 satisfy the bounds condition that is specified by the first modifier.
If the condition is not satisfied then a bounds trap will occur. The following conditions
are associated with the first modifier:

Modifier Meaning
B - [Both] OPl< OP2 < NEXT(OP1)
MIN - [MINimum] MINNUM s OP2s OP!
M 1 - [Minust] -1 <OP2<OPI
0 - [Zero] 0<0OP2<0OPI
1-[One] 1< OP2 < OPI

Table 5-6

BNDTRP modifiers and meanings

Precison: The precison of OP 1 and OP2 is specified by the second modifier.

I The following two equivalent instructions both trap if RTA|>1.0

BNDTRP.B |-1.0 «1.8],RTA
BNDTRP.Q #c2.0>5,H#cl.B8>(RTA)
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5.9 Routine Linkage

Routine linkage instructions include the instructions to jump to and and return from
subroutines and coroutines. Instructions are also provided for returning from traps and interrupts
(see Section 6).  The subroutine linkage conventions for the S-1 are described in a separate
document.

The JSR ingtruction is used to jump to subroutines. OP1and the PC of the next instruction
to be executed (PC-NEXTJINSTR) are pushed into the /SR save area(JSR_.SAVE_AREA) on
the stack. It's format is shown in Figure 5-4. Control is then passed to the routine at the address
specified by JUMPDEST. See Section 4.1.4 for a description of how JUMPDEST is computed.
Return from a subroutine is accomplished using the RETSR ingtruction. The stack is decremented
so that the old OP | value that was previously saved in the stack and the return address are now
popped off and saved in OP1 and PCNEXTJINSTR respectively.

I oP1 |
| cB%@|| PC-NEXT-1 NSTR<B:29>> |
0 35
Figure 5-4
JSR Save Area Format

The JCR ingtruction is used to jump between coroutines. It alows easy transfer of control
between two routines by using OP 1, OP2 and NEXT(OP2) to transfer information. NEXT(OP2)
contains the return address to the coroutine that is not currently executing. No locations on the
gtack are involved.

There are three return instructions that are used for returning from traps and interrupts.
They restore different amounts of information including status words and the return PC. RET is
used to return from instructions such as TRPSLF which do not save either PROC-STATUS or
USER--STATUS in the save area. RETUS does a return and restores USER-STATUS. This is
used for returning from soft-errors (see Section 6.1). RETFS does a return and restores full status,
that is, both PROCSTATUS and USER-STATUS are loaded from the save area. Note that the
return. addressis the first single-word from the end (highest memory location) of all save areas.
PROCSTATUS (if present) is the second single-word, while USER-STATUS (if present) is the
third single-word from the end of the save area. The formats of the save areas for traps and
interrupts are shown in Figures 6-3 to 6-7. Note that the RETFS restores the entire
PROCSTATUS word from the save area rather than loading partial processor status (as described
in section 2.5.1).

There are two ingtructions that are used to force the processor to execute trap sequences under
program control: TRPSLF and TRPEXE. TRPSLF can be used by either the executive or the
user to cause a trap to one of the TRPSLF_VECS that exist in the same address space as the
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instruction executing the TRPSLF instruction. TRPEXE can be used by either the executive or the
user to cause atrap to the executive. The vectors for TRPEXE start at location TRPEXEVECS
in the executive's address space.

The TRPSLF and TRPEXE instructions both deliver parameters to their respective trap
handlers by passing information in the form of two double-word trap parameter operands
(TRP_PARM_OP{1,2}{ 0. .1]. See Figure 6-6). The interpretation of these operands depends on
the value of the trap parameter descriptor single-word (TRAP_PARM_DESC_SW) which is located
in the trap vector for both TRPSLF and TRPEXE (see Figure 6-2).

The TRP_PARM_DESC_SW forms an extension to the opcode by describing ways in which
the trap parameter operands can be interpreted. It is a single-word consisting of the four
quarter-words labeled QW[ 0. . 3] respectively. QW([0] and QWI[1] must be identically zero.
QWI[2] describes how OP2 of the trapping instruction will be passed into the trap routine in the
double-word TRP_PARM_OP 1[0:1]. QW[3] describes how OP 1 of the trapping instruction will be
passed into the trap routine in TRP_PARM_OP1[0:1). QWI[2]) and QWI[3] have identical format
and interpretation, They are interpreted as TMODE-fields (as described below).

The tables below show how the trap parameter operands are interpreted based on the vaue
of TMODE. Table 5-7 lists the primary uses for the different values of TMODE. Table 5-8
shows how the contents of TRP_PARM_OP{1,2}{0:1] are interpreted depending on the value of
TMODE. This table aso shows the cases that cause an error trap occurs when interpreting
TMODE. The left or right arrows represent left or right justification with zero-filling respectively.

TMODE  Primary Use

Check an unused operand descriptor.

Deliver a PC-relative jump descriptor.

Deliver the entire operand descriptor.

Deliver a pointer operand (cannot be an immediate).
Deliver a quarter-word value operand.

Deliver a haf-word value operand.

Deliver a singleword value operand.

Deliver a double-word value operand.

~N O o1l BN — O

Table 5-7
TMODE Vaues and their Uses



Page 176 Instruction Descriptions

TMODE  Trap Condition TRP_PARM_OP{1.2}[0]

§5.9

TRP_PARM _OP{1,2}[1]

<0 always — —
0 OD{1,2}=0 undefined undefined
never -0D{1,2} undefined
2 never -OD{1,2} extended word for OD{1,2}*
3 IMMED(OP{1,2)) A DDRESS(OP{1,2))** undefined
4 never QW «OP{1,2}*** undefined
5 HW dignment HW «OP{1,2)%** undefined
6 SW dignment SW OP{1,2} undefined
7 SW aignment OP{1,2}<0:35> OP{1,2}<36:7 | >***
>7 always -—- -
* If TMODE-=-2, then the extended word for OD{1,2} is stored in TRP_PARM_OP{1,2}{1]if

the extended-word exists, otherwise TRP_PARM _OP{1,2}{1] is undefined.

HK If TMODE=3, TRPEXE stores ADDRESS(OP{1,2}) with P-bit- 1.

X X X IfTMODE=4..7, immediates are properly sign-extended and justified according to

the value of OD.F.

Table 5-8
Interpretation of TMODE

The RET instruction is used for returning from TRPSLF instructions since it pops OP1
parameters off the stack in addition to the return PC. RETFS is used to return from TRPEXE
instructions since it restores the status words in addition to popping the PC and the parameters.



§5.9 Instruction Descriptions Page 177

JSR

Instruction: JSR
Class: JOP Jump to subroutine

Purpose: The return address and OP 1 are pushed onto the stack and SP is adjusted accordingly.
The format of the JSR save areais shown in Figure 5-4. Control is then transferred to
JUMPDEST. If this instruction would cause SP>SL, a hard trap will occur and the stack
will not be affected. (The RETSR instruction is normally used to return from a
subroutine caled by JSR.)

Precision: A Il operands involved are single-words.

Side Effects; SP«SP+8

rThe following pushes ADDRESS(FOO) and RTA on the stack before jumping to BAZ. 1

JSR RTABAZ

I-FOO: e ¢+ return address |
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JCR

Instruction: JCR
Class. XOP Jump to coroutine

Purpose: OP1 and OP2 are exchanged. NEXT(OP2) is prefetched and stored temporarily. The
PC_NEXT_INSTR of the routine that executed the JCR instruction is saved in
NEXT(OP2). The value NEXT(OP2) that was prefetched is then loaded into PC and
control passes to the coroutine.

Precision: A 11 operands involved are single-words.

rSuppose that each of two coroutines has an associated stack. Let there be a double-word “sav
area’ SAVE.AREA which contains the stack pointer and program counter for the currently
inactive coroutine. Whichever coroutine is actudly running uses register SP as its stack pointer,
and of course uses PC asits program counter. Then the following instruction makes the current
coroutine inactive, and -activates the other coroutine after setting up its stack pointer and saving
the current one.

JCR SP, SAVE. AREA ;call other coroutine

L _
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ALLOC

Instruction; ALLOC . {1..32)
Class: XOP Allocate stack locations

Purpose: This instruction is commonly used to save registers on the stack. It causes 1 . . 32
single-words starting at ADDRESS(OP1) to be moved into the memory locations starting
at SP. OP2 is added to the vaue of SP, producing a new value for SP (OP2 is therefore
a number of quarter-words, not a number of single-words). OP2 should be at least as
large as four times the modifier, but this may not be checked for by the hardware. If this
instruction would cause SP>SL, a hard trap will occur and the stack will not be affected.
If the source and destination overlap, the result is undefined.

Side Effects: SP«SP+OP2

" Precision: All operands involved are single-words.

rThefoIIowi ng saves al the registers and reserves an additional DW on the stack as well. |
ALLOC.32 %8, ?4x<40+2>

Note that the modifier is a decimal number, but the numbers in the operands are octal. The
same ingruction could be written

L ALLOC.32 %8, ?4%<32,+2>

_
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RETSR

Instruction: RETSR
Classs XOP Return from subroutine

Purpose: Return from a subroutine that was invoked by the JSR ingtruction. The stack pointed to
by OP2 (usually SP) is decremented by eight, removing the saved OP 1 value and the
return address. OP1 is then loaded with this old OP| value, and control is transferred to
the location specified by the return address (See Section 5.9 for a description of the JSR
ingtruction and the JSR save area).

Side Effects: SP«ADDRESS(OP2)-8

Precision: A 11 operands involved are single-words.

Formal Description:

define RETSR & XOP ES; S,NR]  Check_ Jump-Address (Next (op2)<6:35>) next
(Sp « Address(op2) al soO

opl € op2 al so
pc-nxt-instr « Next(op2)<6:33>);

The following code calls BAZ, which returns to FOO, saving and restoring RTA on the stack. I
Assume SP is the stack pointer.

JSR RTA, BAZ
FOO: s return here

BAZ: ;cal led routine

RETSR RTA, (SP) l
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RET

Instruction: RET
Class. XOP Return and pop parameters

Purpose: Return from an exception without restoring registers. Note that OP 1=1 for a return from
TRPSLF. OP I+ 1 single-words (OP 1 parameters + return address) are popped off the
stack pointed to by ADDRESS(OP?2) (usualy SP), and the stack is adjusted. All popped
words except the return address are thrown away and ignored.  Control is then
transferred to the location specified by the return address.

Side Effects: ADDRESS(OP2)«ADDRESS(OP2)-4-OP Ix4

Precison: All operands involved are single-words.

Formal Description:

define RET® XOP IS, R; SRl  Check_Jump_Address(op2<6:35>) next

(Sp « Address(op2) - shiftlopl,2)also
pc-nxt-instr «op2<6:33>);

rThe following returns from a previous JSR call, throwing away the operand previousy pushi
on the stack by the JSR.

I RET #1,(SP)
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RETUS

Instruction: RETUS
Class: XOP Return, restoring user status

Purpose: Return from an exception that requires USER-STATUS to be restored (e.g., soft traps).
OP 1+2 single-words (OP 1 parameters + old USER-STATUS + return address) are
popped off the stack pointed to by ADDRESS(OP2), and the SP is adjusted.
USER-STATUS s loaded from the value in the stack. All other popped words except
the return address are thrown away and ignored. Control is then transferred to the
location specified by the return address.

Side Effects: SP«ADDRESS(OP2)-8-OP Ix4

Precison: A Il operands involved are single-words.

| The following returns from a soft trap (The soft-trap save area is shown in Figure 6-4). |

| RETUS #11, (SP) I
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RETFS

Ingtruction: RETFS
Class. XOP Return, restoring full status

Purpose: Return from an exception that requires both USERSTATUS and PROCSTATUS to
be restored (i.e., hard traps, TRPEXE and interrupts. See Section 6.6 for a description of
the save areas associated with each of these). OP1+ 3 single-words(OP | parameters +
USER-STATUS + PROCSTATUS t return address) are popped off the stack, and the
SPisadjusted. USER-STATUS isloaded from the value saved in the stack. The entire
PROCSTATUS word is loaded from the value saved in the stack (as opposed to loading
partial processor status; see Section 2.5.1 for a description of partial processor status). All
other popped words except the return address are thrown away and ignored. Control is
then transferred to the location specified by the return address.

Redtrictions: Illega in user mode.
Side Effects: SP«ADDRESS(OP2)- 12-OP 1x4

Precison: A 1l operands involved are single-words.

rThe following returns from an interrupt.

RETFS #1,(SP)

L _
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TRPSLF

Instruction: TRPSLF . { 0. .63}
Class: XOP Trap to self

Purpose: Causes a trap to a routine in the current address space. The trap vectors start at |ocation
TRPSLF_VECS in the current address space. A particular vector in this block is selected
by the modifier. The trap vector specifies a handler address and a
TRP_PARM_DESC_SW. The save area contains two double-word trap operands, PC,
and PC_NEXT_INSTR. The interpretation of the operands is based on the TMODE
fieldsin TRP_PARM_DESC_SW. See Section 5.9 for a complete discussion of these
fields and how they are interpreted.

rThe following causes a trap to the “number 0" trap routine in the current address space wiﬂ\_
operands X and Y.

TRPSLF, 8X;Y
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TRPEXE

Instruction: TRPEXE . {0.. 63 }
Class: XOP Trap to executive

Purpose: Causes atrap to aroutine in the executive's address space. The trap vectors start at
location TRPEXE_VECS in the executive' s address space. A particular vector in this
block is selected by the modifier. The trap vector specifies a handler address, a
TRP-PARMDESCSW, USERSTATUS and PROCSTATUS. The save area
contains two double-word trap operands, PC, the old USER-STATUS and
PROCSTATUS, and PCNEXTJINSTR. The interpretation of the operands is based
on the TMODE fields in TRP-PARMDESCSW. See Section 5.9 for a complete
discussion of the uses of TRPEXE.

rThe following causes a trap to the “number 0" trap routine in the executive's address space wiﬂu_
operands X and Y.

TRPEXE.0X, Y I
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5.10 Stack

A stack is specified by any two consecutive single-words in memory (or in registers). The S
interprets these locations as a stack-painter and a stack-limit.  The meaning of these terms differs
dightly whether we are talking about upward-growing stacks or downward-growing stacks. The
interpretation of which of these two single-words is the stack-pointer and which is the stack-limit
depends on whether we are talking about upward-growing stacks or downward-growing stacks. In
the description of stacks that follows, note that an upward-growing stack and a downward-growing
gtack can exist together in memory at the same time. In this case, the same register is used for the
SP of the upward-growing stack as is used for the SL of the downward-growing stack (and

vice-versal).

Upward-growing stacks grow towards higher memory locations. Instructions that operate on
upward-growing stacks use the “UP” modifier with the stack instruction. For upward-growing
gtacks, OP is the stack-pointer and NEXT(OP) isthe stack-limit. The stack-pointer points to the
next free location on the stack. Thus, a push onto an upward-growing stack involves saving the
value in the location specified by the stack-pointer and then incrementing the stack pointer. The
stack-limit for an upward-growing stack is the location immediately following the stack-pointer (i.e,
stack-limit=NEXT (stack-pointer)). It points to the first location beyond the end of the stack.

Downward-growing stacks grow towards lower memory locations. Instructions that operate on
downward-growing stacks use the "DN" modifier with the stack instruction. For downward-growing
stacks, OP is the stack-limit and NEXT(OP) is the stack-pointer. The stack-pointer points to the
top item on the stack. Thus, a push onto a downward-growing stack involves incrementing the
stack pointer and then saving the operand in this location. The stack-limit for an upward-growing
stack is the location immediately preceding the stack-pointer. It points to the last stack location into
which information can be stored.

The sP_ID field of USER-STATUS specifies a particular upward-growing stack for implicit
use by certain instructions such as JSR and ALLOC; the SP and SL for this stack must be in
* registers. By contrast, the instructions in this section can operate on any arbitrary stack specified by
an explicit operand,
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ADJSP

Instruction: ADJSP . {UP,DN}
Class: XOP Ad just (arbitrary) stack pointer

Purpose: Adjust the size of an {upward-growing, downward-growing] stack. OP2 is the a
single-word two’ s-complement number which is (added to, subtracted from] OP1for
ADJSP.{UP,DN}. Thus, ADJSP with a positive OP2 makes a stack larger while AD JSP
with a negative OP2 makes a stack smaller.

Side Effects: If OPI+OP2>NEXT(OPI) for ADJSP.UP or NEXT(OP 1)-OP2<OP 1 for
ADJSP.DN, a hard trap will occur.

Precision: Both OP| and OP2 are single-words.

rThefoIIowing throws away the top 4 stack elements. Let SPL be the address of a stack l
pointer/limit DW.

ADJSP, UP SPL, #4

L _
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PUSH

Ingtruction: PUSH . {UP,DN} . {Q,H,S,D}
Class. XOP Push onto (arbitrary) stack

Purpose: Push OP2 with precision specified by the second modifier onto an upward-growing or
downward-growing  stack.

Side Effects: If OP 1+{1,2,4,8}>NEXT(OP 1) for PUSHUP or NEXT(OP1)-{1,2,4,8}<OP1 for
PUSH.DN, a hard trap will occur.

Precison: Both OP1and OP2 are single-words.

rThe following pushes RTA on astack. Let SPL bethe address of a stack pointer/limit Dq',

I PUSH.UP SPL,RTA l
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POP

Instruction: POP .{UP,DN} .{Q,H,S,D}
Class: XOP Pop from (arbitrary) stack

Purpose: Pop OP2 with precision specified by the second modifier off of an upward-growing or
downward-growing  stack.

Precison: Both OP | and OP2 are single-words.

The following pops the top value on a stack into RTA. Let SPL be the address of a stacl
pointer/limit DW.

l POP.UP SPL,RTA l
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511 Byte

The byte data types (single-word and double-word) are described in Section 3.5.  Byte
pointers and byte selectors are described in Section 3.6. Byte instructions access bytes via byte

pointers.

| p | rec | ADDR
| POSITION LENGTH
01 56 17 18 35
Figure 5-5
Byte Pointer

The instruction modifier {S,D} specifies the byte precision that the instruction works with
(S=single-word byte, D=double-word byte). Let MBL be the maximum byte length for for a given
precision byte. Single-word bytes have MBL=36. Double-word bytes have MBL=72. Any byte
instruction will hard-trap if POSITION+LENGTH > MBL. Furthermore, the IAP must point to
the beginning of a single-word or the instructions will hard-trap. This restriction on the IAP and

the rule concerning MBL implies that single-word bytes may not cross single-word boundaries.

There are three immediate instructions which use only a byte selector (a <position,,length>
single-word) to access an immediate byte.
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LBYT

Instruction: LBYT . {S,D}
Class: XOP Load (unsigned) byte

Purpose: OP2 is the (source) byte pointer. OPI is the destination word which receives the
zero-extended byte. POSITION+LENGTH>MBL causes a hard trap.

Precision: OP1 has the same precision as the modifier. OP2 is a byte pointer. OP2 points to a
byte with a precison specified by the modifier.

rThe following sets RTA to the exponent field of the single-word floating-point number ﬂ_

LBYT RTA, (Xe1,,113
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LIBYT

Instruction: LIBYT .{S,D}
Class: TOP Load immediate (unsigned) byte

Purpose: S2 is the (source) byte selector. S1 contains the (source) immediate byte. DEST receives
the zero-extended byte.

Precision: S| and DEST have the same precision as the modifier. S2 is a byte selector. The byte
contained in S1 has the same precison as the modifier.

rThe following sets RTA to the exponent field of the single-word floating-point number 1

LIBYT RTA,X,#c1,,11>5 I
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LSBYT

Instruction: LSBYT . {S,D}
Class: XOP Load signed byte

Purpose: OP2 is the (source) byte pointer. OPI is the destination word which receives the
sign-extended byte. POSITION+LENGTH>MBL causes a hard trap.

Precision: OP1 has the same precision as the modifier . OP2 is a byte-pointer. OP2 points to a
byte with a precison specified by the modifier.

rThe following sets RTA to the signed value of the sign and exponent fields of the singlewom
floating-point number X.

l LSBYT RTA, [Xe 121 l
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LISBYT

Instruction; LISBYT . {S,D)
Class: TOP Load immediate signed byte

Purpose: S2 is the (source) byte sdector. S1 contains the (source) immediate byte. DEST receives
the sign-extended byte.

Precision: S 1 and DEST have the same precision as the modifier. S2 is a byte selector. The byte
contained in S 1 has the same precision as the modifier.

rThe following sets RTA to the signed value of the sign and exponent fields of the single-word l
floating-point number X. Notice that a short constant can be used, because the position of the
byte is zero.

l LISBYT RTA,X,#12 l
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DBYT

Ingtruction: DBYT . {§,D}
Class: XOP Deposit byte

Purpose: OP2 contains, as its low-order bits, the byte to be stored. OP1 is the byte pointer that
locates the byte to be replaced.

Precision: OPlisabyte pointer. It pointsto abyte with the same precision as the modifer. OP2
has the same precison as the modifier.

The following sets the mantissa of the single-word floating-point number X to the twenty-sul
low order bits of RTA.

DBYT IX «12,,321,RTA
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DIBYT

Ingruction: DIBYT . {S,D}
Class: TOP Deposit immediate byte

Purpose: DEST is the destination word for the immediate byte. S1 contains, asitslow order bits,
the byte to be stored. S2isthe byte selector that controls the placement of the byte in
DEST.

Precision: S 1 and DEST have the same precision as the modifier. S2 is a byte selector.

rThe following sets the exponent field of the single-word floating-point number in RTA to zlaro.

| DIBYT RTA,#8, #cl,,11>
—
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ADJBP

Instruction: ADJBP . {S,D}
Class: TOP Adjust byte pointer

Purpose: S is the source byte pointer. $2 specifies the number of bytesto adjust S1 by. DEST
receives S 1 adjusted by the number of bytes specified by S2.  In more detail, if
SI.LENGTH-=0 then S 1 is copied into DEST. Otherwise, DEST becomes S 1 adjusted
forward or backwards by S2. If S2 is positive, the byte pointer is advanced. If S2 is
negative, the byte pointer is backed up. $2=0 causes Sl to be copied into DEST. The
adjustment assumes that single-word bytes are contained in single-words and
double-word bytes are contained in double-words (i.e., POSITION+LENGTH<MBL).
The adjustment will not cause DEST.ADDR to overflow into DEST.IREG. Instead, the
adjustment is done modulo 2*° {no hard trap occurs on wrap-around).

Precision: S| and DEST are byte pointers and the bytes they specify have precision equal to the
modifier- S2 is a single-word.

The following advances the byte pointer at BP by one byte. I

ADJBP BP, #1

Suppose that TABLE is a vector of NBY TES four-bit bytes, packed nine per single-word.
Suppose that a purported index into this table isin RTB. This code checks the purported
index for validity and then produces the desired bytein RTA, or zero if the index wasinvalid.
It produces a flag indicating whether the index is valid, and then selects one of two byte pointers
to adjust. If the index isvalid, a byte pointer to the beginning of the tableis adjusted to point
to the desired byte; if not, a byte pointer to a zero-length byte is produced. Loading a byte using
a zero-length byte pointer aways produces a zero. Note the "13" in the ADJBP instruction: it
causes the indexing by RTA to be double-word indexing, because byte pointers are two words

long.

BNDSF.O RTA, #cNBYTES-1o,RTB ;RTA«-1 if index okay, else O
ADJBPRTA,cBPTRS+18>(RTA)13,RTB jget ptr to desired byte, or nul | ptr
LBYT RTA,RTA y load byte into RTA

BPTRS: TABLE «8,,4 sbyte pointer to beginning of TABLE
TABLE»8,,0 ;zero-length byte pointer l
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5.12 Bit

Bit instructions operate on the boolean data type. Theseinstructions are concerned with
individual bits and their ordering. BITRV and BITRVV reverse the order of the low-order bits
of aword. BITEX and BITEXV extract bits from a word, according to a mask, and then squeeze
them to the right of the destination. This isuseful ‘for extracting a set of flags in order to do an
N-way branch on them. BITCNT counts the number of one-bits in a word. This was designed for
counting the number of elements in a PASCAL set. BITFST gives the position of the first
(left-most) one bit in aword. This isuseful for computing the index of the first element of a

PASCAL st
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BITRV

Instruction: BITRV.{Q,H,S,D}
Class: TOP Bit reverse

Purpose: Reverse the order of the $2 low-order bits of Sl, and zero-extend the result into DEST.
Precison: S 1 and DEST have the same precison as the modifier. S2 is a single-word.

Formal Description:

define BITRV. p: ghsd &  TOP[p;p;S] if (s2<0) v (s2> Bits(p) )
then Hard-Error
else dest &« Reverse_Bits(S1, s2)

fi;

I The following reverses all nine bits of its operand. 1

|

BITRV.Q RTA,H#cl235,#11 ;RTA=624 l
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BITRVV

Instruction: BITRVV ., {Q,H,S,D}
Class: TOP Bit reverse reverse

Purpose: Reverse the order of the S1 low-order bits of $2, and zero-extend the result into DEST.
Precison: $2 and DEST have the same precision as the modifier. S1 is a single-word.

Formal Description:

define BITRVV. pighsd ® TOP [p;p;S] if (S1<0) v (S1> Bits (p))
then Hard-Error
else dest  Reverse_Bits (s2, S 1)

fi;
rThe following reverses all nine bits in the operand. 1

) BITRVV RTA,#11,#c624>  ;RTA=123 l



§ 512 Instruction Descriptions Page 201

BITEX

Instruction: BITEX . {Q,H,S,D}
Class: TOP Bit extract

Purpose: Extract the bits of St selected by the one-bits of S2. Squeeze these selected bits to the
right and zero-extended into DEST.

Precision: S|, S2, and DEST all have the precision specified by the modifier.
Formal Description:

define BITEX, piqhsd=  TOP[p;p;p] dest « Extract-Bits (Sl,s2);

The following extracts aternate bits from the operand. 1
Bl TEX.QRTA, #c765>, #c5255 iRTA=37

This code does an eight-way dispatch based on CARRY, INT_Z_DIV_MODE, and FLAGS<0>
in USER-STATUS,

RUS RTA sread USER-STATUS into RTA

BITEX RTA,#c810008, ,40080818> iselect bits

JMPA ceDISPTABLE> (RTA) 12 jdispatch through table of IAPs
DISPTABLE:

NDNEDFTHEM 1 to this address if no bits were set

FLAG s1to this address if onlyFLAG<B> set

ZDIV 1and s o On...

ZDIVFLAG

CARRY

CARRYFLAG

CARRYZDIV

CARRYZDIVFLAG |
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BITEXV

Instruction: BITExV . {Q,H,S,D}
Class: TOP Bit extract reverse

Purpose: Extract the bits of S2 selected by the one-bits Of S1. Squeeze these Selected bits to the
right and zero-extended into DEST.

Precison: S 1, §2, and DEST all have the precision specified by the modifier.

Formal Description:

define BITEXV. p:qhsde TOPI[p;p;pl dest « Extract-Bits (s2,51);

| The following extracts a group of seven bits from the operand.

BITEXY.Q RIA,#c765>5,H#c525> i RTA-127

L _
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BITCNT

Ingtruction;: BITCNT . {Q,H,S,D}
Class: XOP Bit count

Purpose: OP lenumber of one bits in OP2
Precison: OP | is a single-word. OP2 has the same precision as the modifier.
Forma Description:

define BITCNT. p:ghsd 8 XOP [S;p] opl & Number_of I_Bits (op2) ;

The following sets RTA (flag-style) if RTA has odd parity. l

BITCNT RTA,RTA
CMPSF.ALL RTA,#1

The parity of an arbitrarily long block of bits can be obtained by using the XOR instruction to
condense the block. (The XOR operation essentially causes pairs of one-bits to cancel.) If
TABLE is a block of N single-words (N>2), this code sets RTA (flag-style) if TABLE has odd

parity.

X OR RTA, cTABLE+N-1>, cTABLE+N-25;RTA gets XOR of two words

MOV RTB, #cN-3o sRTB counts all other words
LOOP: XOR RTA, cTABLE> (RTB) +XORin next uord

0OSKP.GEQ RTB, #9,L.00P s loop until all words done

BITCNT RTA,RTB scount result as before

CMPSF.ALL RTA,#1

A non-zero integral power of two aways has a two's-complement representation with exactly one
bit set. Assuming that HUNOZ contains a positive single-word integer, this code jumps to
TWOPOWER if HUNOZ is an exact power of two.

BITCNT RTA,HUNOZ ;RTA«l if HUNOZ is a power of two
DJMPZ.EQL RTA, TWOPOWER 3 jumpt o TWOPOWER i fRTA-1is zero

If zero isto be considered a power of two, DJMPZ.EQL can be changed to DJMPZ.LEQ.
Alternatively, a trick involving the NEG ingtruction can be used instead.

—
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BITFST

Instruction: BITFST . {Q,H,S,D}
Class. XOP Bit number of first one hit

Purpose: If OP2=0 then OP1t-| else OP l«biz number of the leftmost one bit in OP2
Precison: OP 1 is a single-word. OP2 has the same precision as the modifier.

Formal Description:

define BITFST.pighsds  XOP [S;p] opl &« Number_of First_I_Bit (0op2);

The following sets RTA to floor(log2(RTA)) with RTA assumed to be a non-zero unsignai;
singleword integer.

BITFST RTA,RTA
SUBV RTA, #c43>

Suppose that location MASK contains a non-zero single-word. This piece of code congtructs a
byte pointer in (double-word) RTA to the smallest byte containing all the one-bitsin WUNOZ.

BITFST RTA,HUNOZ snumber of leading zero bits

BITRV RTAl,HUNOZ, #c36.> ;reverse HUNOZ into RTAl

BITFSTRTAL snumber of trailing zero bits

ADD RTAL,RTA snumber of surrounding zero bits

SUBV RTALl,#c36.> s length of smallest containing byte
MOV.H.D RTALl,RTA tput position in high halfuord of RTAL
MOVADR RTA, HUNDZ smake IAP tO HUNOZ in RTA
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5.13 Block

Blocks are discussed in Sections 3.7. The ingtructions in this section are used for comparing,
moving, and initidizing blocks. Block I/O ingtructions are described in Section 5.17.

STRCMP isused to compare two blocks (or strings). BLKINI initializes ablock to agiven
scalar value. BLKMOV copies one block to another location. BLKID does a BLKMQV, but
transfer a block from and INSTRUCTION page to a DATA page. This alows instructions to be
accessed as data. BLKDI transfers from a DATA page to an INSTRUCTION page, allowing data
to be executed as instructions. See Section 2.3.2 for a discussion of INSTRUCTION and DATA
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STRCMP

Instruction: STRCMP . {RTA,RTB}
Class. XOP String  compare

Purpose: Consider the two blocks OP 1 and OP2 to be strings of quarter-word characters. The
blocks have the same length. {RTA,RTB} contains the block length in quarter-words.

Signed comparison is used, and each quarter-word character is compared separately. The
result of the comparison is computed as shown in the following table and is stored back
into {RTA,RTB}. The result vaues are designed to have two useful properties. Fird, the
result (as a signed integer) bears the same relation to zero that STRING1 does to
STRING2. Second, the vaue can be used as an index into the string no matter what the

result, because bit 0 being set does not affect indexing.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION-STATE.

Condition Result

STRINGI= STRING2 0
STRINGL > STRING2  n
STRING1< STRING2  -2*%n (i.e MINNUM+n)

where n is the position of the first character to differ

Table 59
STRCMP Results

-Precision: OP1and OP2 are blocks. The elements of the blocks are quarter-words. RTA and
RTB are single words.
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rThe following sets RTA to the result of comparing the eighty-character blocks at X and Y. l

MOV RTA,?128 1128 octal =88 decimal
STRCMP.RTA X,Y

The following illustrates a more general sort of comparison. Assume that XLENGTH contains
the length of a string beginning at X and YLENGTH that of string at Y. For the purposes of
this comparison we will imagine that appended to the two strings are infinitely many imaginary
characters defined to be “less than” ail real characters. We will then define the result of the
comparison as the result of a STRCMP performed on these extended strings. (This definition is
similar to that used in some high-level languages).

MIN RTA, XLENGTH, YLENGTH 1set RTA to minimum real length
INC RTB,RTA ; save one greater in RTB for unequal case
STRCMP.RTA X,Y ;do comparison
JMPZ .NEQ RTA,DONE sdifference found
SKP.EQL XLENGTH, YLENGTH,DONE ;done if strings are equal length
MOV RTA,RTB sRTB is index of “imaginary” character
SKP.LEQ XLENGTH, YLENGTH,DONE ;set high-order bit if necessary
OR RTA, #c400008, ,8> ;or DIBYTRTA,#1,#l to save a word!

DONE +RTA contains result
L .
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BLKMOV

Ingtruction: BLKMOV . {RTA,RTB}
Class: XOP Block move

Purpose: OP2 is the source block. OP1isthe destination block. {RTA,RTB} specifies which
register contains the quarter-word transfer length.

The semantics of the BLKMOV instruction are such that if the source and destination
blocks overlap, no word in the source block is overwritten until after it has been

transferred to the destination block.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION-STATE.

Precision: OP 1 and OP2 are blocks. The elements of the block have quarter-word precision.
RTA and RTB are single-words.

he following moves all registers into an area starting at RECS. The original contents of RT'A
must be saved temporarily in SAVRTA since RTA is used to contain the quarter-word  transfer

length.

SLR, 4 SAVRTA, ?4x48 ;save RTA and load with transfer length
BLKMOV, RTA REGS, %8 ydo block transfer
MOV REGS+4xRTA,SAVRTA  ; f ix up saved RTA |
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BLKINI

Instruction: BLKINI . {RTA,RTB} . {Q,H,S,D}
Class: XOP Block initidize

Purpose: OP2 is the scaar initidization value. OPI is the block to be initidlized. {RTA ,RTB}
specifies the register containing the number of quarter-words to be initialized.

Caution: This instruction may cause a non-zero value to be stored in  INSTRUCTION-STATE.
Precision: OP1is a block. OP2 has the same precision as the second modifier. The elements of
the block also have the same precision as the second modifier. A hard trap will occur if

the contents of {RTA,RTB} is not a multiple of the block-element precison. RTA and
RTB are single-words.

rThe following zeros registers 8 through 31. l

MOV RTA, ?4x39 s1set RTA to number of QWs
BLKINI.RTA %8,H0 sinitialize block
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BLKID

Instruction: BLKID . {RTA,RTB}
Class. XOP Block transfer instructions to data

Purpose: OP2 is the source block. OPI1 is the destination block. {RTA,RTB} specifies which
register contains the quarter-word transfer length. The source block must be on a page(s)
marked with INSTRUCTION4 The destination block must be on a page(s) marked
with DATA= 1.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION-STATE.

Precision: OP1and OP2 are blocks. The elements of the block have quarter-word precision.
RTA and RTB are single-words.

l The following transfers a single word instruction at INST into RTA. I

NOV RTA, ?4 ;load RTA uith QW transfer length
BLKIO.RTA, INST : load RTA uith instruction
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BLKDI

Ingtruction: BLKDI . {RTA,RTB)}
Classs XOP Block transfer data to instructions

Purpose: OP2 is the source block. OPI is the destination block. {RTA,RTB} specifies which
register contains the quarter-word transfer length, The source block must be on a page(s)
marked with DATA-l. The destination block must be on a page(s) marked with
INSTRUCTION4

Caution: This ingruction may cause a non-zero vaue to be stored in INSTRUCTION-STATE.

Precision: OP1and OP2 are blocks. The elements of the block have quarter-word precision.
RTA and RTB are single-words.

rThe following transfers a DW value in RTA to atwo word instruction at INST. ]

MOV RTB, 718 1setRTB to QW transfer length
l BLKDI.RTB INST,RTA imove RTA to instruction space '
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5.14 Status

Status instructions are used to manipulate the USER-STATUS and PROC_STATUS words.
Instructions exist for reading, writing, and jumping based on logical conditions (LCONDs). The
LCOND:s are described in Section 5.6. See Section 2.5 for a description of the status words.
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RUS

Instruction: RUS
Classs XOP Read user status

Purpose: OP 1«USER_STATUS. OP2 is unused.

Precison: OP 1 is a single-word. OP2 is unused (OD2 must equd zero).

rThe following sets RTA to USER-STATUS. Note that FASM supplies the zero operand.

RUS RTA

L _
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JUS

Instruction: JUS . {NON,ALL,ANY,NAL}
Class. JOP Jump on selected user status bits

Purpose: If OP 1 LCOND USER-STATUS (where LCONDe{NON,ALL,ANY,NALY}) is true,
control is transferred to the location specified by JUMPDEST.

Precison: A 1l operands concerned are single-words.

Let ERRORS be a mask for several bitsin USER-STATUS. The following jumps to ZI P]‘_
any of these bits are set.

I JUS ERROR&ZIP I
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JUSCLR

Instruction: JUSCLR . {NON,ALL,ANY,NAL})
Class: JOP Jump on sdlected user status bits and clear

Purpose: TEMP«USER_STATUS. USER-STATUS is then loaded according to
USER_SATUS«USER_STATUSAone's-complement(OP1). If OPI LCOND TEMP
(where LCONDe{NON,ALL,ANY,NALY}) is true, control is transferred to the location
specified by JUMPDEST. Note that a hard trap will occur if clearing the specified bits
would produce an illegal value for USER-STATUS.

Precision: A 1l operands concerned are single-words.

rLet ZDIV be the mask for the INT_Z_DIV bit in USER-STATUS. The following jumps to
YOW and clears this bit if it is set.

JUSCLR <ALL 2D IV, YOW l
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WUSJIMP

Instruction: WUSJMP
Class. JOP Write user status and jump

Purpose: USER_STATUS<OP]. Control is then transferred to the location specified by
JUMPDEST. Note that a hard trap will occur if anillegal value of USER-STATUS is
specified.

Precision: A 1l operands concerned are single-words.

I The following sets the USER-STATUS to NEWUS and jumps to AWAY.

WUSJIMP  NEWUS, AWAY
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SETUS

Instruction: SETUS
Class. XOP Set specified user status bits

Purpose: USER_STATUS<USER_STATUSvOPI. OP2 is unused. Note that a hard trap will
occur if an illegal value of USER-STATUS is specified.

Precision: OP1is asingleword. OP2 is unused (OD2 must equal zero).

rThe following sets the low order bit in USER-STATUS.

SETUS #1
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CLRUS

Instruction: CLRUS
Class. XOP Clear specified user status bits

Purpose: USER_STATUS<USER_STATUSnhone's-complement(OP 1). OP2 is unused. Note that a
hard trap will occur if anillegal value of USER-STATUS is specified. The JUSCLR
ingtruction can clear specified user status bits and smultaneoudy test them.

Precison: OP 1 is a singleword. OP2 is unused (OD2 must equal zero).

rThe following clears the low order bit in USER-STATUS. 1

[ CLRUS #1 l
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RSPID

Instruction: RSPID
Class; XOP Read SPJD

Purpose: OP 1«USER_STATUS.SP_ID. OP2 is unused.

Precison: OP1is a singleword. OP2 isunused (OD2 must equa zero).

The following loads the top stack element into RTA, without first knowing which register is t&
stack pointer (aslong asitisnot RTA!).

RSPID RTA ;RTAestack register number
I MOV RTA,ce>(RTA)42 +RTAetop of stack l
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WSPID

Instruction: WSPID

Class. XOP Write SPJD

Purpose: USER_STATUS.SP_ID«OPI. If OP1>31 or OP1<0, the result is undefined. A hard
trap will occur if OP1=3 or OP =31 (these are illegal values for SP_ID). OP2 is unused.

Precison: OP 1 is a sngle-word. OP2 is unused (OD2 must equa zero).

rThefollowi ng sets the stack pointer/limit to the last two registers. 1

WSPID #36 ; SP=%36, SL=%37 I
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RRNDMD

Instruction;: RRNDMD
Class. XOP Read rounding mode

Purpose: OP 1«USER_STATUS.RND_MODE. OP2 is unused. See Section 5.3.1 for a description
of rounding modes.

Precison: OP | is a single-word. OP2 is unused (OD2 must equa zero).

rThe following jumps to FLOOR if floor rounding is specified by USER-STATUS. 1

RRNDMD RTA

L JMPZ.EQL RTA,FLOOR I
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WRNDMD

Instruction: WRNDMD
Class. XOP Write rounding mode

Purpose: USER_STATUS.RND_MODE<OPI. If OP1>31 or OP 1<0, the result is undefined.
OP2 is unused. See Section 5.3.1 for a description of rounding modes.

Precison: OP 1 is a singleword. OP2 is unused (OD2 must equal zero).

I The following sets the USER-STATUS to specify floor rounding. 1

l WRNDMD  #8 _l
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RPS

Instruction: RPS
Class; XOP

Purpose: OP 1«PROC_STATUS. OP2 is unused.

Restrictions: lllega in user mode.

Precison: OP 1 is a single-word. OP2 is unused (OD2 must equal zero).

| The following sets RTA to PROC_STATUS.

RPS RTA

Page 223

Read processor status
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WFSJIMP

Instruction: WFSJMP
Class: JOP Write full status and jump

Purpose: USER_STATUS<OP 1. PROC_STATUS<NEXT(OP1). Note that NEXT(OP 1) is
loaded directly into PROCSTATUS without interpreting the PREV/CRNT _FILE or
PREV/CRNT_MODE fields in the special way that is done when loading partial

processor status. (See Section 2.5.1 for a discussion of processor status.) Note that a hard
trap will occur if anillegd value of PROCSTATUS is specified.

Redtrictions: Illega in user mode.

Precison: A 1l operands concerned are single-words.

l The following sets PROCSTATUS to NEWPST and jumps to BRAZIL. 1

l WFSIMP NEWPST,BRAZIL |
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RCFILE

Instruction; RCFILE
Class, XOP

Purpose: OP 1«PROC_STATUS.CRNT_FILE. OP2 is unused.

Redtrictions: Illega in user mode.

Precision: OP 1 is a single-word, OP2 is unused (OD2 must equal zero).

| The following sets RTA to the current file number.

L

RCHLE RTA

Page 225

Read CRNT_FILE
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WCFILE

Instruction: WCFILE
Class; XOP Write CRNT_FILE

Purpose: PROC_STATUS.CRNT_FILE<OP 1. If OP 1> 15 or OP 1<0, the result is undefined.
OP2 is unused.

Redtrictions: 1llega in user mode.

Precison: OPlisasngleword. OP2isunused (OD2 must equa zero).

rl'he following sets the current file number to the value in RTA.

WCFILE RTA




§5.14 Instruction Descriptions Page 227

RPFILE

Instruction: RPFILE
Class; XOP Read PREV_FILE

Purpose: OP 1«PROC_STATUS.PREV_FILE. OP2 isunused.
Redtrictions: Illega in user mode.

Precision: OP 1 is a singleword. OP2 is unused (OD2 must equal zero).

l The following loads RTA with the previous file number.

RPFILE RTA
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WPFILE

Instruction: WPFILE
Class; XOP Write PREV_FILE

Purpose: PROC_STATUS.PREV_FILE<OP 1. If OPI>15 or OP1«0, the result is undefined.
OP2 is unused.

Redtrictions: Illega in user mode.

Precison: OP 1 is a single-word. OP2 is unused (OD2 must equal zero).

I The following sets the previous file number to the valuein RTA. 1

| WPFILE RTA I
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RPID

Instruction: RPID
Class. XOP Read processor identification number

Purpose; OP1«PROC_ID. OP2 is unused.
Redtrictions. 1llega in user mode.

Precison: OP 1 is a single-word. OP2 is unused (OD2 must equa zero).

l The following sets RTA to the processor ID number.

RPID RTA

| _
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5.15 Cache and Map

Each S| processor has two private caches to reduce memory access times for those sections of
memory that are frequently accessed. One cache is for instructions. The other is for data. The
instruction cache retains only locations from pages marked with INSTRUCTIONS=1, the data
cache retains locations from pages marked with DATA =1. (See Section 2.3.2 for details on access
modes.) Instruction words may not, in general, be accessed as data(except as immediate operands).
Specia ingtructions are provided for converting instructions to data and data to instructions. (See
BLKID, and BLKDI in Section 5.13 for details.)

Each cache uses physical addresses to tag entries, allowing the software to switch virtual
addresses spaces without sweeping the cache. This eiminates the problem of clogging the cache
with multiple copies of shared read-only information.

For purposes of communication or synchronization, it may be necessary to insure that certain
variables are not present in the cache of a specific processor. Access modes serve this purpose and
are described in Section 2.3.2. In addition, specia instructions are provided to sweep the caches
(SWPIC and SWPDC). Sweeps may either update main memory, invaidate the cache residents, or
both.

No instructions are provided which, when executed on processor PA, cause the cache of
processor P tobe swept (A = B). This necessary function will be accomplished by directing a
specia interrupt from PA to Py which causes Py to sweep its own cache.

Each processor aso has two page map caches. These contain, for the most recently used
pages, the complete trandation from virtual page addresses to physical page addresses. See Section
2.3 for a discussion of the virtual-to-physical trandation. One map is for the addresses of
instructions and the other is for the addresses of data. Special sweep commands are provided for
the maps (SWPIM, SWPDM).

Two other commands are discussed in this section: WEPIMP and WUPIMP. These write
into the executive/user segment pointer/limit registers (see Section 2.3).
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SWPIC

Instruction: SWPIC . {RTA,RTB} . {V,P}
Class. XOP Sweep ingruction cache

Purpose: Sweep the instruction cache by {Virtual,Physical} addresses, killing residents. To kill
means to remove cache residents without updating memory. Updating is not provided for
the instruction cache since residents in the ingtruction cache cannot be modified. OP1is
the block to be swept. {RTA,RTB} contains the number of quarter-words to be swept
(which must be amultiple of four (4) or a hard trap will occur).

The address sequence generated by the ingtruction may be interpreted by the hardware as
either virtual or physical addresses, depending on the modifier (V=virtual,P=physical).
Physical-address sweeps are legal only in executive mode to prevent the user from
degrading system performance by sweeping addresses which not in its address space.
Virtual-address sweeps are lega in both user and executive mode.

In the case of physical-address sweeps, the microcode may, for efficiency reasons, choose to
sweep the entire cache, if a very large sweep range is specified. No sweep-range
optimization is performed for virtual-address sweeps.

Redtrictions: 1llegal in user mode.

Caution: This ingtruction may cause a non-zero vaue to be stored in INSTRUCTION-STATE.

Precision: OP 1 is a block. OP2 is unused (OD2 must equal zero). RTA and RTB are
single-words.

rThe following sweeps al instructions from START up to but not including the foIIowiri
instructions.

MOV RTA, <. -START> sset RTA the number of intervening QWs

l SWPIC.RTA.V START i Sweep cache |
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SWPDC

Ingtruction: swepc . {RTA,RTB} . {V,P} . {U,UK}
Class. XOP Sweep data cache

Purpose: Sweep the data cache by {Virtual, Physical) addresses, (updating, updating and killing);
resdents. To kill means to remove cache residents without updating memory. No
instruction is provided for killing data cache residents without updating. OP 1 is the
block to be swept. {RTA ,RTB} isthe number of quarter-words to be swept (which be a
multiple of four (4) or a hard trap will occur)

The address sequence generated by the instruction may be interpreted by the hardware as
either virtual or physical addresses, depending on the modifier (V=virtual,P=physical).
Physical-address sweeps are legal only in executive mode to prevent the user from
degrading system performance by sweeping addresses which not in its address space.
Virtual-address sweeps are legd in both user and executive mode.

In the case of physical-address sweeps, the microcode may, for efficiency reasons, choose to
sweep the entire cache, if a very large sweep range is specified. No sweep-range
optimization is performed for virtua-address sweeps.

Redtrictions: 1llegal in user mode.

Caution: This instruction may cause a non-zero vaue to be stored in INSTRUCTION-STATE.

Precision: OP 1 is a block. OP2 is unused (OD2 must equal zero). RTA and RTB are
single-words.

rl'he following updates the registers, without removing them from the data cache (i.e., not killing l
- them).

MOV RTA, 7?2086 i set RTA to number of QWs
SWPDC.RTA.V.U %@ 1 sWeep cache l
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SWPIM

Instruction: SWPIM . {E,U}
Class. XOP Sweep instructions page map

Purpose: Sweep the ingstruction page map, killing (executive, user}-space residents. SWPIM is used
for eliminating residents of the instruction page map. It does not update main memory
since page map residents cannot be modified. OP1 is interpreted as a virtual address, and
the tranglation entry for the page containing that virtual address is removed from the
page map. OP2 is unused. Since SWPIM operates on only one page map resident at a
time, it is fast and not interruptable.

Redtrictions: 1llegal in user mode.

Precision: OP 1 is a single-word. OP2 is unused (OD2 must equal Zzero).

The following kills the page map entry for the next lower addressed ingtruction page in the useﬂ;;
address space.

SWPIM.U .-40600
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SWPDM

Instruction: SWPDM . {E,U}
Class. XOP Sweep data page map

Purpose: Sweep the data page map, Killing (executive, user)-space resdents. SWPDM is used for
eliminating residents of the instruction page map. It does not update main memory since
page map residents cannot be modified. OPlisinterpreted as avirtual address, and the
trangation entry for the page containing that virtual address is removed from the page
map. OP2 isunused. Since SWPDM operates on only one page map resident at atime,
it is fast and not interruptable.

Redtrictions: Illega in user mode.

Precison: OP1 is a sngleword. OP2 is unused (OD2 must equa zero).

The following kills the-page map entry for the data page containing the virtual address specifii
in RTA.

I SWPDM. U RTA __]
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WUPJMP

Instruction: WUPJMP
Class. JOP Write user segment table pointer and jump

Purpose. USER_STP«OP 1. USER_STLeNEXT(OP 1). PC«JUMPDEST. A hard trap will
occur if either OP 1 or NEXT(OP1) contains an address that is not amultiple of four.
This ingtruction aso kills all user residents of the instruction and data page maps.

Redtrictions: lllegal in user mode.

Precison: OP I is a singleword. NEXT(OP1) is a single word.

rThe following sets the user segment table to the six SWs pointed to by RTA and jumijz
NEXT.

MOVPHY- RTA, (RTA)
ADD RTA1,RTA,#46

l WUPJMP RTANEXT I
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WEPIMP

Instruction: WEPJIMIP
Class: JOP Write executive segment table pointer and jump

Purposes EXEC_STP«OP 1. EXEC_STLeNEXT(OP |). PC«JUMPDEST. A hard trap will
occur if either OP 1 or NEXT(OP1) contains an address that is not a multiple of four.
Thisinstruction also kills all executive residents of the instruction and data page maps.
Notice that the jump destination is computed in the old executive context, but the location
actualy transferred to will be within the new executive context.

Redtrictions: 1llega in user mode.

Precison: OP 1 is a single-word. NEXT(OP 1) is a single word.

The following sets the executive segment table to the six SWs pointed to by RTA and jumpsl
NEXT.

MOVPHY RTA, (RTA)
ADD RTA1,RTA, #6
WEPIMP RTA, NEXT l
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5.16 Interrupt

Interrupts occur during the first stage of the instruction-execution sequence (see Section 5.1).
When an interrupt has been accepted, control is transferred to an interrupt handler whose address is
contained in the interrupt-vector associated with the particular interrupt that occurred. The
interrupt-vector format isshown in Figure 5-6. The occurrence of an interrupt also causes
information to be put on the stack in an interrupt save area (INTUPT_SAVE_AREA). The
format of this save areais shown in Figure 5-7. The concepts of save areas and vectors are
discussed in Section 6. The interrupt-parameter is used to pass information about the interrupt to
the interrupt handler. The way in which interrupt requests are handled is discussed in the
following paragraphs.

| new USER-STATUS
| new PROC_STATUS
l handler address

Figure 5-6
Interrupt Vector Format

interrupt parameter

|
USER-STATUS |
l
|

| PROCSTATUS
| P | |5%8 | |PC_NEXT_I NSTR<B: 295>
0

35

Figure 5-7
Interrupt Save Area Format

The interrupt architecture of the S-1 allows for eight levels of priority. The priority of the
processor is specified by PROC_STATUS.PRIO<0:2>. The priority of any interrupts that are
pending and that are enabled is specified by the eight-bit register INTUPT_AT_LVL<0:75.
INTUPT_AT_LVLI[il=1 means that one or more interrupts are pending and have been endbled at
level I.

Associated with each priority level i(and thus with INTUPT_AT_LVL<i>) are two 36-bit
registers INTUPT_PEND[] and INTUPT_ENBI[] The interrupt-pending registers
INTUPT_PEND[O0..7]) can each accept interrupt requests from up to thirty-two devices in bits
0.. 31. Bits32.. 35 are unused. If device j with priority i requests an interrupt,
INTUPT_PENDI(il<j> is set equal to one. The second register at each priority level isthe
interrupt-enable register INTUPT_ENB[O.. ‘7 L. INTUPT_ENB[:] provides interrupt-enable bits
for the thirty-two devices that are handled by INTUPT_PENDI[i]l ASwithINTUPT_PEND,
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INTUPT_ENB<32:355 is unused.

If INTUPT_PENDIiJ<j> and INTUPT_ENB[i]<j> are both equal to one for any
combination of i and f, INTUPT_AT_LVL[]will be set to one. Zero isthe highest priority and
seven the lowest.  If there exists a priority i, such that INTUPT_AT_LVLI[i]- 1 and
PROC_STATUS.PRIO>i, the processor will be interrupted. If more than one bit of
INTUPT_AT_LVL is s, the device with the highest priority (smallest magnitude) will be the one
that interrupts the processor. Within a given interrupt level i, bit zero has the highest priority and
bit thirty-one the lowest. Note that devices with priority=7 cannot interrupt the processor because
PROC_STATUS.PRIO can never be greater than seven. Note also that if
PROC_STATUS.PRIO=0, the processor cannot be interrupted at ail.

Each interrupting device has a unique interrupt vector INTUPT_V EC) and a unique bit at
priority i in INTUPT_PEND(:] associated with it. when a device interrupt occurs the appropriate
bit of INTUPT-PEND is set and the interrupt-parameter is stored in a calculated position of
INTUPT_PARMI[0:255), a RAM located in the S| processor. (The calculation is to create an
INTUPT-VECNUM, described below.) When an interrupt from a device has been accepted (as
described above), control is transferred to the address specified by the handier address in the
interrupt vector. The INTUPT_PENDI[il<j> bit that caused the interrupt is cleared. New
USER_STATUS and PROC-STATUS words are also loaded from the interrupt vector. The old
USER--STATUS and PROC-STATUS words are saved in the interrupt save area
(INTUPT-SAVE-AREA). The interrupt-parameter, which contains information about the cause
of the interrupt, is also saved in INTUPT-SAVE-AREA. The format of INTUPT-SAVE-AREA

is shown in Figure 5-7.

Instructions are provided to read, write, set and clear INTUPT_ENB and INTUPT-PEND.
There are aso ingtructions to read and and write an interrupt-parameter. Ail interrupt instructions
are lega in both executive and user mode.

. Two terms that are used in the following instruction descriptions are INTUPT_LVL_NUM
and INTUPT. VEC_NUM. INTUPT_LVL_NUM is a 3-bit interrupt level-number (ILN),
right-justified in a single-word field of zeros (i.e., €33%0 || ILN<0:2>2). It is used to specify a
priority level. INTUPT-VECNUM is a S-hit level-number (ILN) concatenated with a 5-bit
interrupt bit-number (IBN) within the level, all right-justified in a single-word (i.e.,
<28x0 || ILN<0:2> | IBN<0:4>2). It uniquely specifiesa particular interrupt vector number. (Note
that the INTUPT-VECNUM is aso the location of the interrupt-parameter inINTUPT_PARM.)
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RIEN

Instruction: RIEN
Class: XOP Read interrupt enable

Purpose: OP2 is an INTUPT_LVL_NUM. OP1 gets the contents of the interrupt-enable register
associated with priority level OP2 (INTUPT_ENB[OP2)).

Redtrictions: Illega in user mode.

Precison: OP 1 and OP2 are both single-words.

I The following loads RTA with the enable bits for the highest priority level. 1

L RIEN RTA, #8 |
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WIEN

Instruction: WIEN
Class. XOP Write interrupt enable

Purpose: OP lis an INTUPT_LVL_NUM. The interrupt-enable register associated with priority
level OP 1 (INTUPT_ENB[OP1)) is set to OP2. If OP2<32:35> = 0, then a hard trap will

occur.
Restrictions: lllega in user mode.

Precison: OP 1 and OP2 are both single-words.

The following enables ail interrupts at the second-highest priority level. 1

WIEN #1,H#c=20> i
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SIEN

Instruction: SIEN
Class. XOP Set specified bits in interrupt enable

Purpose: OPlis an INTUPT_LYL_.NUM. The interrupt-enable bits (for priority level OP1)
corresponding to the one bits of OP2 ae set to one (ie,
INTUPT_ENB[OP 1]«OP2 v INTUPT_ENB[OP 1)).

Precison: OP 1 and OP2 are both single-words.

rThe following enables for interrupt by the third-highest priority device at the third-highest |
priority level.

SIEN #2, #c108008, , 8>
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CIEN

Instruction: CIEN
Class: XOP Clear specified bits in interrupt enable

Purpose: OP 1 is an INTUPT_LVL_NUM. Clear the interrupt-enable bits (for priority level OP 1)
corresponding to the one bits of OP2 (ie,
INTUPT_ENB[OP 1]cone’s-complement{(OP2) A INTUPT_ENB[OP 1)).

Precison: OP 1 and OP2 are both single-words.

rThe following disables interrupts by the fourth-highest priority device at the fourth—high@t_
priority level.

I CIEN #3, #c40088, ,08> l
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RIPND

Instruction: RIPND
Class. XOP Read interrupts pending

Purpose: OP2 is an INTUPT_LVL_NUM. OP] gets the contents of the interrupt-pending
register associated with priority level OP2 (INTUPT_PEND[OP2)).

Precison: OP1and OP2 are both single-words.

rThefoIIowi ng sets RTA to the pending interrupts at the fourth-lowest priority level. 1

| RIPND RTA, #4 I
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WIPND

Instruction; WIPND
Class; XOP Write interrupts pending

Purpose: OP 1lisan INTUPT_LVL_NUM. Theinterrupt-pending register associated with priority
level OPI(INTUPT_PEND[OP1)) is set to OP2. If OP2<32:35>= 0O, then a hard trap

will occur.

Precison: OP | and OP2 are both single-words.

rThe following sets interrupts pending for ail devices at the third-lowest priority level. 1

| WIPND #5, #c-20>
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SIPND

Instruction: SIPND
Class: XOP Set specified interrupt-pending bits

Purpose: OPlisan INTUPT_LVL_NUM. The interrupt-pending bits (for priority level OP1)
corresponding to the one bits of OP2 ae st to one (e,
INTUPT_PENDI[OP1)«OP2 VINTUPT_PEND[OP 1)).

Precison: OP1 and OP2 are both single-words.

The following sets an interrupt pending for the second-lowest priority device at the l
second-lowest priority level.

l SIPND #6, #c48> I
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CIPND

Instruction: CIPND
Class. XOP Clear specified interrupt-pending bits

Purpose: OPlisan INTUPT_LVL_NUM. Clear the interrupt-pending bits (for priority level
OP1) correspondilng to the one bits of OP2 (i.e,
INTUPT_PENDIOP | J-one’s-complement(OP2) A INTUPT_PEND[OP1]).

Precision: OP1and OP2 areboth single-words.

rl'he following clears any interrupt pending for the lowest priority device a the lowest prior@
level.

I CIPND #7,H#c20> l
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RIPAR

Instruction: RIPAR
Class. XOP Read interrupt parameter

Purpose: OP2 isan INTUPT_VEC_NUM. OP1 gets the contents of INTUPT_PARM[OP2].

Precison: OP1! and OP2 are both single-words.

rThe following sets RTA to the interrupt parameter for vector 1.

RIPAR RTA,#1

L _
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WIPAR

Instruction: WIPAR
Class: XOP Write interrupt parameter

Purpose: OP 1lisan INTUPT_VEC_NUM.INTUPT_PARM[OPI]isset to OP2.
Precison: OP 1 and OP2 areboth single-words.

l The following sets the interrupt parameter for vector 1 to RTA. 1

| WIPAR #1,RTA l
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5.17 Input/Output

The S| performs 1/0O via 1/O buffers. The number of I/O buffers is implementation
dependent (with upper bound 2%). The Mark 11 contains eight //0 buffers (IOBUF[0:7]). Each of
the eight IOBUFs contains 2K single-words. Each IOBUF is connected to exactly one //0 Processor
(IOP) through a smple interface (IOBUF_IFACE) in the IOP. One IOP may be connected to
multiple IOBUFs. Devices on the IOP’s internal bus (IOP-BUS) address the IOBUF either as
32-bit words or as pairs of 16-bit words. These 32-bit words are right-justified in the 36-bit
memory. The extrafour bits allow the S-| processor to use the buffers as auxiliary storage. The
IOBUF_IFACE can be configured by the IOP so that the addresses of the IOBUF can start at any

(aligned) 1OP-BUS address.

The 0P and devices on the IOP-BUS can read and write locations in the IOBUF as normal
IOP-BUS locations (including &bit, 16-bit, and 32-bit writes). The S| processor can read and
write IOBUF locations in asingle cycle as 36-bit single-words. A synchronization mechanism is
provided to prevent simultaneous access. One set of trandation hardware is located between the
eight IOBUFs and the main data path of the S| processor. This hardware is able to do four

different types of trandations in each direction.

|IOBUFE to Processor Processor to 1OBUE Name
Bit stream Bit stream

B
8 bits right-justified in QW QW<1:8> in 8 bits a
16 hits right-justified in HW ~ HW<2:17>in 16 bits  H
32 hits right-justified in SW ~ SW<4:35> in 32 bits S

QW=quarter-word, HW=half-word, SW=single-word.

Table 5-10
Processor/IOBUF Trandations

Certain areas within each |IOBUF are, by convention, dedicated to IOP/S-1 control
communication.  All device interrupts are forwarded through an 10P to the S| processor.
Interrupts are described fully in Section 5.16.  When a device interrupt occurs, the |OP writes
control information into the control section of the IOBUF (including the INTUPT-PEND register
number, the INTUPT-PEND bit number, the interrupt-parameter). The IOP then interrupts the
S 1 processor. The S processor immediately processes the interrupt and interprets the control
information in the IOBUF. It should be noted that before the IOP writes the control area of
IOBUF, it busy-waits until the previous interrupt has been serviced by the S| processor.

Similarly, when the S-I processor needs to interrupt the IOP, it sets up the contents of
another portion of the control area of the appropriate IOBUF and executes an ingtruction which
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causes the |OP to interrupt and interpret the IOBUF control area. The S-| processor also does a
busy-wait to avoid conflicts.

There are instructions to fill and empty an IOBUF, and to interrupt an 10P. All 1/0
ingtructions are lega in ether executive or user mode.

When an operand is to be interpreted as a IOBUF address, the following procedure is used.
The virtua address which results from the operand address calculation must reside on an 1/O page
(see Section 2.3.2). The standard virtual-to-physical address transformation takes place (see Section
2.3). The resulting physica address is not interpreted as a physica address in memory, but rather
asan |OBUF physical address (IOBUF-PHYADDR). IOBUF-PHYADDR has the following
format: <7x0 || IOBUF_NUM<0:8> || ADDR_IN_IOBUF<0:17>>. IOBUF_NUM refers to the
number of the IOBUF to be accessed. (On the Mark IIa IOBUF_NUM must be in the range
0.. 7.)ADDR_IN_IOBUF specifies the 32-bit-word address within the selected IOBUF. If
IOBUFNUM islarger than the maximum available, or if ADDRINJOBUF is not a valid
32-hit-word address within an IOBUF, or if the first seven bits of IOBUF-PHY ADDR are not
zero, or if the virtual address specified was not on an /O page then a hard trap will occur.

This virtua-to-physical transformation alows the executive to maintain control over the 1/0
buffers, even though the 1/0O instructions are legal in user mode. It is up to the executive to set up
the transformation to a valid IOBUF address and to indicate that the virtual pageisavalid I/O

page.
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BLKIOR

Ingtruction: BLKIOR . {RTA,RTB} . {B,Q,H,S}
Class: XOP Block I/O read and translate

Purpose: Transfer from an IOBUF to main memory. OPI is the destination memory block.
{RTA,RTB} contains the quarter-word block length. OP?2 is the source IOBUF block.
{B,QH,S} specifies the type of translation befween the IOBUF and the processor.

Caution: This ingtruction may cause a nhon-zero value to be stored in INSTRUCTION-STATE.

Precision: OPlisablock. OP2isan 10BUF block. RTA and RTB are single-words.

rAssume BUFFER is a legitimate IOBUF address. To read eighty characters from the 10BUF I
(starting a BUFFER) toa block in memory starting a IMAGE the following instruction
sequence could be used.

Mov RTA,?128 ;set RTA to eighty QWs
BLKIOR.RTA.Q IMAGE,BUFFER ;do read
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BLKIOW

Ingtruction: BLKIOW . {RTA,RTB)} . {B,Q,H,S}
Class. XOP Block 1/0 write and trandate

Purpose: Transfer from main memory to an IOBUF. OPI is the destination IOBUF block.
{RTA,RTB} contains the quarter-word block length. OP2 is the source memory block.
{B,Q,H,S} specifies the type of trandation between the processor and the IOBUF.

Caution: This instruction may cause a nhon-zero value to be stored in INSTRUCTION-STATE.

Precision: OP 1 is an IOBUF block. OP2 is a block. RTA and RTB are single-words.

Assume BUFFER isalegitimate IOBUF address. To transfer the two characters "$1" into the |
IOBUF darting at BUFFER the following instruction sequence could be used.

MoV RTA,H#H2 - 1set RTA to two QUs
BLKIOW.RTA.Q BUFFER,#c"S1",,8> j;do write

L _
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INTIOP

Instruction: INTIOP
Class: XOP Interrupt 1/0O processor

Purpose: OP1is an IOBUF address. The IOP connected to the IOBUF containing OP1is
interrupted. OP2 is unused.

Precision: OP 1 is a single-word (and must transform to a valid IOBUF_PHY_ADR). OP2 is
unused (and hence OD2 must be zero).

rAssume BUFFER is a legitimate IOBUF address. The following instruction will interrupt :he
I/O Processor containing BUFFER.

INTIOP BUFFER

L _
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5.18 Performance Evauation

The S| has several double-word counters which can be configured to count different events.
These counters are all be readable in user mode, but they are be writable only in executive mode.
Each counter has enable bits associated with it, accessible only in executive mode. Counter zero is
always enabled, by convention, to count real-time cycles.
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RCTR

Instruction: RCTR
Class. XOP Read counter

Purpose: OP2 is a counter number. OP1 gets the contents of the counter specified by OP2.

Precison: OP1 is a double-word. OP2 is a single-word.

I The following sets RTA (DW) to the current real -time cycle count. 1

l RCTR RTA, #8
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WCTR

Instruction: WCTR
Class. XOP

Purpose: OP 1 is a counter number. Write OP2 into the counter specified by OP 1.

Redtrictions: Illega in user mode.

Precison: OP1 is a sngleword. OP2 is a double-word.

The following zeros the red-time cycle counter.

WCTR #8, 48

§5.18

Write counter
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RECTR

Instruction: RECTR
Class: XOP Read enable hits for counter

Purpose: OP2 is a counter number. OP1 gets the contents of the enabling register for the counter
specified by OP2.

Redtrictions: Illega in user mode.

Precison: OP 1 is a double-word. OP2 is a single-word.

| The following reads the enabling bits for counter COUNT into RTA.

—_

RECTR RTA, COUNT
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WECTR

Instruction: WECTR
Class. XOP Write enable bits for counter

Purpose: OP1 is a counter number. Write OP2 into the enabling register for the counter specified
by OPI.

Redtrictions: Illega in user mode.
Precison: OP 1 is a single-word. OP2 is a double-word.
l The following writes ENABLE into the enabling register for counter COUNT.

WECTR COUNT,ENABLE
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5.19 Miscellaneous

The ingtructions in this section fit no generd category.
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NOP

Instruction: NOP
Class. XOP No operation

Purpose: NOP may have operands, but it performs no operation and stores no result. It aways
transfers control to the next Instruction. The operand addressing calculations are carried

through; while the operands themsaves are not referenced, an invalid addressing mode
will cause a hard trap.

Precison: OP 1 and OP2 may be any precison since they are not fetched.

rThe following three instructions are, respectively, one, two and three word NOPs. 1

NOP #8, #8
NOP #8, #c@>

l NOP #c85, c(8)>(SP} 12 l



§5.19 Instruction Descriptions Page 261

JPATCH

Instruction: JPATCH
Class. HOP Jump to patch

Purpose: JPATCH is an unconditional jump instruction which uses cOD1||OD2> as a signed
24-hit offset from the PC to form the jump address. It is intended for use by a debugger,
to dlow a single-word instruction to be replaced by ajump to a patch area. The use of
JPATCH inordinary user eode is discouraged; for most purposes JMPA should be used
instead.

Precision: OP 1 and OP2 may be any precison since they are not fetched.

| This ingtruction occupies only one instruction word.

JPATCH PATCH. AREA
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XCT
Instruction: XCT
Class: XOP Execute
Purpose: Execute the instruction OP1.  If that instruction requires extended-words, then

NEXT(OPI) and NEXT(NEXT(OP1)) are used as necessary. During execution of the
instruction OP 1, PC means the PC of the XCT instruction, not the address of OP 1.
Similarly, PC_NEXT_INSTR means the PC of the instruction following the XCT. PC is
used in dl indexing off Register 3 during the interpretation of the executed instruction.
PC and PC_NEXT_INSTR are stored on the stack as specified when executing a
context-saving instruction (e.g., TRPSLF or instruction which traps due to an error).
Chaining XCT ingtructions is legd; in this case PC and PC-NXTJINSTR dways refer to
those of the first XCT in the chain. OP2 of an XCT is unused. If OP1 of an XCT
instruction is an immediate constant (either long, short, or indexed) then a hard trap will
occur. If an enabled interrupt occurs during the execution of an XCT chain, the
interrupt will be serviced, and the XCT chain will be restarted upon return. OP 1 (and
the next two single-words following OP1) of an XCT must be located on a page marked
with DATA =1.  As with all instructions, the two single-words following the X CT
instruction itself must be on a page marked with INSTRUCTIONS=1.

The XCT instruction must have its operand in the current address space. The instruction
being executed by XCT may access the previous address space with the same effect as if
that ingtruction were executed in-line.

XCT isvery dow.

Precison: OP1is a singleword. OP2 is unused (OD2 must equa 0).

| Let SP be the stack pointer. Assume an entire instruction has been pushed on the stack, l
followed by the negative of the number of extended words that the instruction used. The
following executes the stacked instruction.

L

XCT c-2 (SP)>(-1(SP)}12 |
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RMW

Instruction: RMW
Class: TOP Read/modify/write

Purpose: In one memory cycle (and hence indivisibly with respect to other processors in a
multiprocessor system), DEST«S2 and then §2¢$ 1.

Precison: S 1, s2, and DEST are dl single-words.

7

rThe following illustrates the use of RMW to implement a test-and-set lock for interprocessg

communication, The lock is a single-word flag which is -1 if some processor has seized the lock
and O if the lock is free.

|

SE1ZE: RMW RTA,#-1,L0CK ;attempt to seize Jock
JMPZ.NEQ RTA,SEIZE sbusy-wait if someone else has it
\ - jdo ... i F lock was zero (now l have i t)

FREE: MOV LOCK, #8 ;release the lock
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WAIT

Instruction: WAIT
Class: XOP Wait for interrupt

Purpose: Cause the processor te wait for an interrupt.
Redtrictions: lllegal in user mode.

Precision: OP 1 and OP2 are unused; hence OD 1 and OD2 must be zero.

l The following instruction waits for an interrupt. 1

L WAIT _I
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HALT

Instruction: HALT
Class: JOP Halt this processor

Purpose: Halt the processor. Execution continues at JUMPDEST when the halted processor
continues. HALT only hdts the processor that executes it. OP1 is unused.

Redtrictions: Illega in user mode.

Precison: OP1is unused (OD1 must be zero).

rThe first instruction continues at CONT; the second halts immediately upon continuation' ]

HALT CONT

L _
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6 Traps and Interrupts

Traps and interrupts provide a convenient means of handling exceptional conditions that
arise during program execution. They make use of trap vectors and interrupt vectors to direct
control to exception handling routines. Each type of trap (as well as interrupts) has a Mock of
vectors associated with it. These vector blocks are located a fixed addresses in memory. (See Figure
6-1.) The trap vector associated with each particular trap (interrupt) is located at a fixed offset
from the beginning of its vector block. See Section 6.5 for the formats of the different types of trap
vectors.

A trap (interrupt) causes a new PC to be loaded from the sandler address that is specified in
the trap vector. The low order 30-bits of the handler address specify the address of the routine that
will service the exception (the high-order bits are ignored). Other information such as status words
may also be loaded from the vector associated with the particular trap (interrupt). These values are
loaded after the previous state Of the processor has been saved on the stack. The group of words
that is stored on the stack is called a save area.

The save area associated with a trap (interrupt) may contain information that is used by the
routine that will handle the trap (interrupt). Information that is put in the save area typically
includes the PC of the next instruction to be executed, status words, and information needed to
determine the cause of the trap (interrupt). The formats of the various different types of save areas
are shown in Figures 6-3, 6-4, and 6-5.

6.1 Soft Traps

A soft trap can occur as the result of certain types of instruction execution errors (e.g.,
integer-overflow). It causes control to be transferred to the handler address that is specified in
SFTERRVEC. Soft-trap vectors are located in the same address space in which the soft trap
occurred (i.e. user traps to soft-trap vectorsin the user’ s address space and the executive traps to
soft-trap vectors in the executive's address space.  See Figure 6-1). They start at address
SFTERRVECS and occupy 400, single-words giving a maximum of 85 vectors (three words per
vector). The format of SFTERR_VEC is shown in Figure 6-2.

Soft traps cause a number of words to be saved in the soft-trap save area. These are shown in
Figure 6-4. USER-STATUS is saved in atemporary location, and a new value isloaded from the
soft-trap vector. When al values shown have been stored on the stack, control is transferred to the
handler specified by the handler address in the soft-trap vector.

The RETUS ingtruction is used to return from soft traps. Itisdescribed in detail in Section
5.9 along with the return instructions.

6.2 Hard Traps
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A hard trap can occur asthe result of certain types of illegal operations (e.g., attempting to
write a read-only page of memory). It causes control to be transferred to the handler address that is
specified in HRDERR_VEC. The hard-trap vectors start a& location HRDERR_VECS and occupy
10005 single-words (thus, maximum number of vectors is 170). All hard-trap vectors are located in

the executive's address space. They are shown in Figure 6-1.

During the processing of a hard trap, the old PROCSTATUS and USER-STATUS are
first saved in temporary locations. New PROCSTATUS and USER-STATUS are then loaded
from the trap vector. Note that the new PROCSTATUS defines a new stack and thus the location
of the save area. The remainder of the information that is put into save areas depends on the type
of hard trap. There are three types of hard traps. nested hard traps, fatal hard traps, and
recoverable hard traps.

Nested hard traps are due to hard errors that occur within a hard trap or interrupt initiation.
They save the address of the hard-trap vector from which the nested hard trap occured in
NESTED-HARD-SAVE-AREA. Fatal hard traps are hard traps from which recovery is not
normal. Information about the trap is saved in FATAL-HARD-SAVE-AREA. Recoverable hard
traps are hard trgps from which recovery is the norma case. Information needed to effect recovery
is saved in RECOV_HARD_SAVE_AREA. The formats for the save areas of the above
mentioned types of hard traps are shown in Figure 6-3.

The RETFS instruction is used to return from hard traps. It isdescribed in detail later onin
this section.

6.3 Trace-Traps

Trace-trapping occurs before instructions when trace-trapping is enabled. It is useful for
debugging purposes, and for performance evaluation. The trace-trap feature uses two bits in
PROCSTATUS (TRACE_PEND and TRACEENB) to ensure that the proper number of trace
traps occur, and that they occur at theright times.  After interrupts are processed during the first
stage of the instruction-execution sequence, the TRACE-PEND bit is sampled and reset. If
TRACE_PEND-=|, then a trace-trap will occur immediately. If TRACE-PEND=0O, then the
instruction-execution sequence will proceed normally. The detalls of the trace-trap mechanism are
described in Section 5.1.

6.4 Interrupts

Interrupts are similar to traps in the sense that they have vectors and save areas associated
with them. The interrupt vectors are located after the trap vectors in the user's address space as
shown in Figure 6-. The main description of the interrupt architecture is discussed in the Section
5.16 aong with the descriptions of the interrupt instructions.
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6.5 Vector Locations and Formats

USER QW ADDRESS EXEC
ADDRESS SPACE (OCTAL) ADDRESS SPACE
4000
{TRPSLF_VECS)
vectors for vectors for
" TRPSLF” "TRPSLF"
from USER from EXEC
6000 Page 1
{SFTERR_VECS)
vectors for vectors for
soft errors soft errors
from USER from EXEC
10000
{ TRPEXEJECS )
vectors for
"TRPEXE" Pa e 2
T rom EXEC
or USER
|
14000
{HRDERR_VYECS)
vectors for
hard errors Page 3
f rom EXEC
or USER
20000
{INTUPT_VECS)
interrupt
vectors Pa e 4
24000 "
Page 5
| | | | !
| | | | ?
| | | |
Figure 6-I

Trap and Interrupt Vector Locations
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SFTERR_VEC ' new USER-STATUS

| handier address

35

HRDERR_VEC new USER-STATUS

new PROC-STATUS

handler address

35

| NTUPTJEC l new USER-STATUS

| new PROC-STATUS

| handler address

35

TRPSLF_VEC | TRP_PARM_DESC_SW

handler address

35

TRPEXE_VEC TRP_PARM_DESC_SW

new USER-STATUS

new PROC-STATUS

handler address

Figure 6-2
Trap and Interrupt Vector Formats

35
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6.6 Save Area Formats

Yectorb lock: HRDERR-VECS

Return instruction: RETFS

Yectorb |ock: HRDERR-VECS

Return instruct ion: RETFS

Vector block: HRDERR-VECS

Return instruction: RETFS

Trapsand Interrupts

NESTED-HARD-SAVE-AREA

| address (vec tor caus i Nng error) I
| cP| |S%B] |PC<B:29>> |
I INSTRUCTION-STATE |
| USER-STATUS |
I
|

PROC-STATUS |
cP||5%8| IPC-NEXT-I NSTR<@:29>> |
0 35
FATAL-HARD-SAVE-AREA

| error number !

| First word of instr causing error
] cP | |5%8 | |PC<B:29>> |
| INSTRUCTION-STATE |
| USER-STATUS |
| PROC-STATUS |
| cP||5%8]|PC_NEXT_INSTR<@:29>> |
0 35
RECOV_HARD_SAVE_AREA

| parameter necessary for recovery l

[ parameter necessary for recovery |

l

parameter necessary for recovery |

first word of instr causing errorl

l
|
|
| cP | |5%8 | [PC<B: 295> |
|
|
|
|

INSTRUCT | ON-STATE |
USER-STATUS |
PROC-STATUS |

cP||5%8| IPC-NEXT-1 NSTR<B:29>> |
0 35

Figure 6-3

Hard-Trap Save Area Formats

§6.6



§6.6

Traps and Interrupts

Page 271

SOFT-TRAP-SAVE-AREA

Vector block : SFTERR_VECS

address (DEST)

Return instruction; RETUS

Ffirst word of DEST

second word of DEST |

first word of Sl |

second word of Sl

first word of 52

second word of 52

irst word of instr causing error,

cbx8 || PC<B:23>> |

INSTRUCTION-STATE |

USER--STATUS |

cbxB|| PC-NEXT-l NSTR<B:29>> ]

i
|
|
|
l
0

35

Figure 6-4
Soft-Trap Save Area Format

INTUPT_SAVE _AREA

Yec tor b 1 ock: INTUPT_VECS

interrupt parameter

INSTRUCTION-STATE

Return instruction: RETFS

USER-STATUS

PROC_STATUS [

cP||5%8|| PC-NEXT-I NSTR<B8:29>> |

0

35

Figure 6-5
Interrupt Save Area Format
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TRPSLF_SAVE_AREA

Vec tor b | ocks TRPSLF_VECS TRP_PARM_OP1 (8]

Return inetructiont RET TRP_PARM_OP1 (1]
TRP_PARM_0OP2 (8]
TRP_PARM_OP2(1]
cbxB | |[PC<B:29>>

cBx8 | [PC_NEXT_INSTR<8:239>>
0 35

Figure 6-6
TRPSLF Save Area Format

TRPEXE _SAVE_AREA

Vec tor b | ock:  TRPEXE_VECS | TRP_PARM_OP1 (8] |
Return instruction: RETFS ‘ TRP_PARM_OP1 (1] |
TRP_PARM_OP2 [8] |
TRP_PARM_0OP2 (1]
cbx@| |PC<B:29>>
USER-STATUS
PROC_STATUS
c6x8 | |PC_NEXT_INSTR<B:23>>

Figure 6-7
TRPEXE Save Area Format
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Vector Name Error_Condition

TRACE-VEC Trace-trap. due to TRACE _PEND=|
STK_OVFL_VEC SP > SL

PG_FAULT_VEC Page fault for a page not in memory
ADDRESS_MD_VEC lllega access mode (VA.ACCESS isillegal)
USER_P_VEC User attempt to access previous context with P-bit={

EXEC_ONLY_VEC User attempted to execute a privileged instruction

Table 6-1
Recoverable Hard-Trap Vector Descriptions

Error Number  Description

Error during soft trap

l

2 Address not digned

3 register-boundary  error

4 P-bit used twice, operand of XCT, or jump dest
5 Trap descriptor out of range

6 [llegal instruction

7 lllega F-field

8 Non-zero unused OD-field

9 Register number out of bounds

10 Short-operand addressing mode 2

1 Unused

12 Jump to the registers

13 Immediate as destination, ADDRESS(), jump destination, NEXTY(), or XCT
14 [llegal byte pointer

15 [llegal block aignment

16 I/0O buffer physical address is out of range

Table 6-2
Fatal Hard-Trap Error Numbers
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Vector Name

FLT_OVFL_VEC
FLT_UNFL_VEC
FLT_NAN_VEC
INT_OVFL_VEC
INT_Z_DIV_VEC
BND_CHK_VEC

Traps and Interrupts §6.6

Error Condition

Integer-overflow and INT_OVFL_ENB=1
Floating-overflow and FLT_OVFL_ENB= 1
Floating-underflow and FLT_UNFL_ENB=1
Zero-divide and INT_Z_DIV_MODE=0
Bounds check error

Table 6-3

Soft-Trap Vector Descriptions
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8 Appendix: Instruction Summary

DATE: 17DEC78 2207 BTH;

MODS :

QHSD = Q, H, S, D;
QHS = Q, H, S;
HSD = H, S, D:

HS = H, S

SD = S, D;

BOHS = B, Q, H, S;
BQ = B, Q;

ACOND = GTR, EQL, GEQ, LSS, NEQ, LEQ;
LCOND o NON, ALL, NAL, ANY;
ALCOND = GTR, EQL, GEQ, LSS, NEQ, LEQ, NON, ALL, NAL, ANY;

RND = FL, CL, DM, HP, US;
'LFRT LF, RT;

UPDN = UP, DN;

VP = v, P

EU = E, U,

UUK = U, UK

BND = B, MIN, M|, 0, 1,
RTARTB = RTA, RTB;

MQLEN =2, 3, 4, 5, 6, 7, 8 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

’ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 64, 128;

NOT031 =0, 1, 2, 3, 4, 5 6, 7, 8 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31;

N1TO32 =1, 2, 3, 4, 5 6, 7, 8 9, 10, 11, 12, 13, 14, 15 16, 17, 18,
19; 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32;

N2TO32 = 2, 3, 4, 5, 6, 7, 8 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

NOTO063 = O, 1, 2, 3, 4, 5 6, 7, 8 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

END;

CLASSES :

§8
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“SIGNED INTEGER”

ADD .QHSD :TOP;
ADDC .QHSD :TOP;
SuUB .QHSD :TOP;
SuBv .QHSD :T0P;
SUBC .QHSD :T0P;

SUBCV .QHSD :TOP;

MULT .QHSD :TOP;
MULTL .QHS :T0P;

QuUO .QHSD :TOP;
Quov .QHSD :TOP;
QuoL .QHS :TOP;

QUOLV  .QHS :TOP;

QuUO2 .QHSD :TOP;
Quozav .QHSD :TOP;
QuozL .QHS :TOP;
QUO2 LV .QHS :TOP;

REM .QHSD :TOP;
REMV .QHSD :T0P;
REML .QHS :TOP;

REMLV .QHS :TOP;

MOD .QHSD :TOP;
MODV .QHSD :TOP;
MODL .QHS :TOP;

MODLV .QHS :TOP;

DIV .QHSD :TOP;
‘DIVV .QHSD :TOP;
DIVL .QHS :TOP;

DIVLV LQHS :TOP;

INC .QHSD :X0P;
DEC .QHSD :XOP;

TRANS .QHSD .QHSD :XOP;

NEG .QHSD :XOP;
ABS .QHSD :XOP;

Appendix: Instruction Summary
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MIN
MAX

.QHSD :TOP;
.QHSD :TOP;

Appendix: Instruction Summary

§8
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“UNSIGNED INTEGER”

UMULT .QHSD :70P;
UMULTL .QHS :TOP;

ubDIv .QHSD :TOP;
UDIVL .QHS :T0P;
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“FLOATING POINT"
FADD .HSD :TOP;

FSUB .HSD :TOP;
FSUBV .HSD :TOP;

FMULT .HSD :T0P;
FMULTL  .HS :TOP;

FDIV .HSD :TOP;
FDIVV .HSD :TOP;
FDIVL .HS :TOP;
FDIVLV  .HS :TOP;

FSC .HSD :T0P;
FSCV .HSD :T0P;
FIX . R ND.QHSD .HSD : XOP;

FLOAT .HS D .QHSD:X0P;
FTRANS ,HSD .HSD :XOP;

FNEG .HSD :X0P;
FABS .HSD :X0P;
FMIN .HSD :TOP;

FMAX .HSD :T0P;
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n MOVE n

MOV .QHSD .QHSD :X0P;
MOVMQ .MQLEN :XOP;
MOVMS .N2T032 :X0P;

EXCH .QHSD :X0P;

SLR .NOTO31 :XOP;
SLRADR  .NOTO31 :XOP;

MOVADR :X0P;
MOVPHY  :XOP;

Appendix: Instruction Summary
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“FLAG”

CMPSF
BNDSF

.ACOND .QHSD :TOP;
.BND .QHSD : TOP;

Appendix: Instruction Summary

§8



§8 Appendix: Instruction Summary Page 283

“BOOLEAN"
NOT .QHSD :XOP;
AND .QHSD :TOP;

ANDTC .QHSD :TOP;
ANDCT .QHSD :T0P;

OR .QHSD :TOP;
ORTC .QHSD :TOP;
ORCT .QHSD :TOP;
NAND ,QHSD :TOP;
NOR .QHSD :TOP;
XOR .QHSD :TOP;

EQV .QHSD :T0P;
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“SHIFT AND ROTATE"

SHF .LFRT .QHSD : TOP;
SHFV .LFRT .QHSD :TOP;
DSHF .LFRT.QHS:TOP;

DSHFV .LFRT .QHS:TOP;

SHFA .LFRT .QHSD :T0P;
SHFAV .LFRT .QHSD :T0P;

ROT .LFRT .QHSD :TOP;
ROTV .LFRT .QHSD:TOP;

Appendix: Instruction Summary
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"SKIP AND JUMP"

SKP

ISKP
DSKP

JMP
JMPZ
JMPA

[IMP
[IMPZ
[JMPA

DIMP
DIMPZ
DIMPA

BNDTRP

JPATCH

.ALCOND .QHSD:50P

.ACOND :50P;
.ACOND :S0°P;

.ACOND :J0P;
+ACOND .QHSD :J0P;
:JOP;;

.ACOND :J0P;
.ACOND :J0P;
:J0P;

.ACOND :J0P;
.ACOND :J0P;
:JoP; -
.BND.QHSD:X0P;

:HOP;

Appendix: Instruction Summary
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“ROUTINE LINKAGE”

JSR - JOP;
JCR :XOP;

ALLOC .N1T032 :XOP;

RETSR :XOP;
RET : XOP;
RETUS : XOP;
RETFS : XOP;

TRPSLF  .NOTO63 :XOP;
TRPEXE .NOTO63 :XOP;

§8
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“STACK”
ADJSP .UPDN :XOP;

PUSH .UPDN .QHSD :XOP;
POP .UPDN .QHSD : XOP;
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“BYTE”

LBYT
LIBYT

LSBYT
LISBYT

DBYT
DIBYT

ADJBP

.S D :X0P;
.SD:TOP;

.S D :XOP;
.SD:TOP;

.SD :X0P;
.SD :T0P;

.SD:TOP;

Appendix: Instruction Summary
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llBlTll

BITRV
BITRVV

BITEX
BITEXV

BITCNT
BITFST

.QHSD
.QHSD

.QHSD
.QHSD

.QHSD
.QHSD

:TOP;
:TOP;

‘TOP;
2 TOP;

:XOP;
+X0P;

Appendix: Instruction Summary
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"BLOCK"

STRCMP

BLKMO*®J
BLKINI

BLKID
BLKDI

-RTARTB

-RTARTB
-RTARTB

-RTARTB
-RTARTB

Appendix: Instruction Summary

1 XOP;

+XOP;
.QHSD :XOP;

+XOP;
1 X0P;

§8



§8 Appendix: Instruction Summary Page 291

“STATUS REGISTER”

RUS :XOP;
JUSCLR  .LCOND :J0P;
Jus .LCOND :J0P;
WUSIMP  :JOP;
SETUS 1 X0P;
CLRUS : X0P;

RSPID : XOP;
WSPID :X0P;

RRNDMD  :XOP;
WRNDMD  :XOP;
RPS :XOP;
WFSIMP : JOP;
RCFILE :XOP;
WCFILE :X0P;
RPFILE :XOP;
WPFILE  :XOP;

RPID + X0P;
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“CACHE AND MAP”

SWPIC .RTARTB .VP :XOP;
SWPDC .RTARTB .VP .UUK:XOP;

SWPIM .EU :XOP;
SWPDM .EU :XOP;

WUPJMP :J0P;
WEPJMP  : JOP;

§8
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“INTERRUPT”

RIEN :XOP;
WIEN 1 X0P;
SIEN +XOP;
CIEN :XOP;

RIPND :XOP;
WIPND :XOP;
SIPND :X0P;
CIPND :XOP;

RIPAR 1 X0oP;
WIPAR :XOP;
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“INPUT/QUTPUT”

BLKIOR .RTARTB .BQHS :XOP;

BLKIOW .RTARTB .BQHS:XO0P;

INTIOP :XoP;

§8
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“PERFORMANCE EVALUATION”

RCTR +XOP;
WCTR :XOP;
RECTR 1 XOP;

WECTR :XOP;
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“MISCELLANEOUS”

NOP :X0P;
XCT :XOP;
RMW :TOP;
WAIT +X0P;

HALT : JOP;
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"HOKEY FOR SIMULATOR AND I/0 MEMORY”

SETSTK
SETSYM
JMPCC
TIMER
INCHRW
INCHRS
OUTCHR
INTFE
BRIOM
BWIOM
RIOM
WIOM
JCOMNZ

:XOP;
: X0P;
1 X0P;
:XO0P;
: XOP;
:X0P;
1 XOP;
:1X0P;
.BQ:X0P;
.BQ:X0P;
:XOP;
:XOP;
:JOP;
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i "END"
END;

Appendix: Instruction Summary
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9 Appendix: S-1 Formal Description

defineacond ={GTR, EQL, GEQ, LSS, NEQ, LEQ};

define Add{Addend, Augend) » Sum, Cout, Overflow next Continuation =
Add-With-Carry (Addend, Augend, 0)- Sum, Cout, Overflow next
Continuation;

define Add-With-Carry (Addend, Augend, Cin) - Sum, Cout, Overflow next Continuation =
let x = Addend, y= Augend
then let 2
=c0:x> + c0:y> + zero-extend Kin, width(x) + 1)
then let Sum = low (width (x),2),
Cout = z<0>,
Overflow =(x<0> = y<0>) A (x<0> » z<1>)
then Continuation;

define alcond m{GTR, EQL, GEQ, LSS, NEQ, LEQ, NON, ALL, NAL, ANY};

define ALL (Argl, Arg2) e ( (= Argl) A Arg2) = 0;

define ANY(Argl, Arg2) = (Argl A Arg2) = 0;

definebcnum s{MN, ML, O, 1};

define Bits(p) =
case pof (% number of bits for given precision %)
Q: 9;
H: 18;
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S: 363
D: 72;
end;

define Block_Memory_Address_Is_a_Registers Use-Shadow; {x terms missing %)

define bghs = (B, Q, H, S} |

define Bytes(p) =
{x number of bytes for given precision %)

define Dest « Value «Mladdress (Dest) 1 « Value;

define Dfetch (M1 Addressl) - Word next Continuation e {x ought to hack memory faults %)

let Word =M{Address)

then Continuation; {x ought to use data cache %)

define’ EQL (Argl, Arg2)= Argl = Arg2;

define eu = {E, Ul

define Extract-Bits (Field, Mask) =
let x = Field,
y = Mark,
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Z = zero-extend (0, width (Field) )
then while y » 0
do if y<0> then z « shift {(z,1) v unsigned (x<0>) fi next
(x « shift (x,1)also y « shift {y, 1))
od next
Z3

defineGEQ(Argl, Arg2) e Argl 2 Arg2;

define GTR(Argl, Arg2) = Argl > Arg2;

define As & {H, S} ;

define Asd = {H, S, Di;

define Ifetch (ML Address}}» Word next Continuation = {x ought to hack memory faults %)
let Word =M IAddress]
then Continuation; {x ought to use instruction cache )}

define Int_Overflow? lalso | next3 Continuation =
if OV
then if Int_Ovfl_Enb then Overflow-Trap else Int_Ovfl «1 next Continuation fi
else Continuation
fi;

define Jumpe pc-nxt-instr « jump-address; {x see Calculate-Jump-Target *)

definelcond={NON, A L L, NAL, ANY};
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definelEQ(Argl, Arg2) = Argl < Arg2;

definelfrt={LF,RT};

define Long(p) e
case p of
Q: H;
H: S;
S: D;
end;

{(x long version of a precision x)

define LSS (Argl, Arg2)e Argl < Arg2:

define M [Address] =
let address<0:27>= Address
then if Memory- Address_Ils_a_Register (address)
then R [address<23:27>]
else physical-memory [address]
fi;

define Memory- Address_Is_a_Register (Address) =
(Address<0:22> = 0) A (= Block._Memory_Address_Is.a_Register) ;

defineNAL(Argl, Arg2) = ( (- Argl) A Arg2) = 0 ;

define NEQ (Argl, Arg2) = Argl » Arg2;
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define NON(Argl, Arg2) = (Argl A Arg2) = 0 ;

define Number- of First_I1_Bit( Field) =
let x =c0: Field>,
n<0:35>=- 1

then if x = 0
then repeat n en + 1 also x e shift (x,1) untl x<0> taeper

fi next n;

define Number_of 1_Bits (Field) «
let x = Field, n<0:35>= 0

then while x = 0 do if x<O> then n « n+ 1 fi next x « shift {x,1} od next n:

define qhs =4Q, H, S} ;

define ghsd «{Q, H, S,D};

define Reverse-Bits (Field, Count) =
let x = Field,
y = zero-extend (0, width (Field) ),
n<0:35>= Count
then while n> 0
donen- 1 aso
{y « shift {y,1) v unsigned(low (1, x)}} next x e shift (x,=~1))

od next

definernd e{FL, CL, DM, HP, US}:

define SKip = pc-nxt-instr « program-counter + signed (opcode.SKP);
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define Subtract (Minuend, Subtrahend) - Difference, Cout, Overflow next Continuation =
Subtract--With-Carry (Minuend, Subtrahend, 1)~ Difference, Cout, Overflow next
Continuation ;

define Subtract_With_Carry (Minuend, Subtrahend, Cin)- Difference, Cout, Overflow
next Continuation =
let x = Minuend, y= Subtrahend
then let z
=c0:xo + c0:~ y> + zero-extend Kin, width (x) + 1)
then let Difference = low (width (x),2),
Cout = z<0>,
Overflow = (x<0> = y<0>) A {y<0> = z<l>)
then Continuation;

define updn = {UP, DN} 3

define vp =1V, P},

defineuuke {U, UK} 3
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10 Appendix: The S-1 Assembler (FASM)
10.1 Preliminaries
10.1.1 Instruction and Data Spaces

It is assumed that the user is familiar with the S| architecture and in particular understands
about page table access bits. These are the bits that control what kind of access can be made by the
processor to its pages. The output from FASM specifies certain page table access bits for the
various output segments. In more detail, an output segment is either an instruction segment or a
data segment, corresponding to the page table access bits INSTRUCTIONS and DATA. During an
assembly, FASM maintains a number of spaces, each of which is either an instruction space or a
data space. Just how many of these spaces there are and how they are mapped into the output
segments is described in Section 10.3.

10.1.2 Passes

FASM makes three passes over the input file. This is necessary to do agood (but not perfect)
job on optimizing the use of PR type jumps. During the first pass, FASM assumes that all jumps
will NOT bein PR mode. This causes labels to be set to the maximum possible value that they
might attain. During the second pass, FASM attempts to use PR type jumps for jumps in I space,
when the jump destination isin | space only and not external. By the end of the second pass al of
the labels have been set to their final correct values. During the third pass, the code is actually
assembled and output.

10.1.3 Character Set

The character set understood by FASM is the superset of ASCII used at the Stanford
Artificia Intelligence Lab. Certain important characters are used by FASM that are not present in
standard ASCIl. FASM does, however, allow substitutes for these characters from standard ASCII.
The following table lists the alowable substitutions:

Stanford ASCII  ASCII Stanford ASCII  ASCII

cand > | and | « (left arrow) =

o ? T (up arrow) A (caret)

A(“and” sign) & »* (not-equal) *

v (“or” sign) ! - (not-sign) '
Table10-1

FASM Character Set
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10.2 FASM Formats
10.2.1 Expressions

The primary building block of a FASM statement is the expression. An expression is made
up of terms separated by operators with no embedded blanks. A single term with no operatorsis a
legd expresson. An expression may have one or more attributes. The possible attributes are:
register, instruction value (IV AL), data value (DV AL), and external value (XV AL). These attributes
are derived from the terms and operators that make up the expression.

When an expression is encountered, FASM attempts to perform the indicated operations on
the specified terms.  Sometimes, the value of a term is not available (for example, is undefined or is
externd) at the time the expression is evaluated. Sometimes this is permissible and sometimes it will
cause an eror. In the descriptions that follow it will sometimes be said that an expresson must be
defined at the time it is evaluated.

10.2.1.1 Operators
The following are the valid operators along with their precedences.

+- %/ 3% -t v&ala=n
11225553333334

The first four are the usual arithmetic operators of addition, subtraction, multiplication and
divison. Plus is ignored as a unary operator. Minus may also be used as a unary operator. 8 is
equivalent to - asaunary operator, % isaunary operator which forces the entire expression to
have the register attribute. The next four operators are Boolean. They are logical negation,
inclusive or (either ! or v), logical and (either & or A) and exclusive or (either # or =). The last
operator is the logical shift operator. A1B has the value of A left-shifted B bits. A logical right
shift is performed if B is negative. Each operator has a precedence which is used to determine
order of association. For operations with the same precedence, association is to the left.

Angle brackets <> (also known as brokets and pointy brackets) may be used to parenthesize
arithmetic and logica expressions. (Parentheses () themsealves may not be used for this purpose; they
are usad to indicate index registers.) A parenthesized (or rather, broketed) expresson may take more
than one line, in which case the value of the last line is used as the value of the expression.
However, ALL the lines are evaluated and then all the values are thrown out except for the last
one. These evauations may have side effects like defining symbols, or executing macros, €tc.



§102.1.2 Appendix: The S-A Assembler (FASM) Page 307

10.2.1.2 Terms

A term in an expression may be a number, a symbol, a literal, a text constant or a
value-returning pseudo-op.

10.2.1.2.1 Numbers

A string of digitsisinterpreted as a number in the current radix unlessit endsin adecimal
point in which case it is assumed to be a decima number. The radix is initially base 8 (octal) and
may be changed with the RADIX pseudo-op. A floating point number has digits on both sides of
a decima point and may be followed by an E, an optiona + or - and a one or two digit exponent,
which is assumed to be a decimal number and should not have an explicit decimd point.

10.2.1.2.2 Sy mbols

A symbol is a one to twelve character name made up from letters, numbers, and the characters
. and §. (A symbol may actually contain more than twelve characters, but all characters after the
twelfth are ignored.) A symbol must not look like a number; for example, 43. is an integer and 0.1 is
a floating point number, whereas 0..1,1.E5, and 2.3E.5 are symbols. Symbols have values and
attributes. The values are 36-bit numbers which are used in place of the symbol when it appears in
an expression. The attributes are:  register, instruction value (/VAL), data value (DVAL),
half-killed, external value, and macro name.

Just the single character . is a symbol whose value is the current location counter. It is ether
an IVAL or a DVAL, depending upon which space is currently being assembled into. The symbols
RTA and RTB have been predefined to have the values %4 and %6 respectively. Register values
are in the range 0..37;. If asymbol is a macro name, then insteed of having a value, the symbol
has a macro definition associated with it. This macro definition is expanded when the symbol is
Seen under certain circumstances and the expansion is used in place of the symbal in the expression.
(See the section on macros for more detaills on macro definition and expansion.)

When asymbol with the register attribute appears in an expression, then the expression is a
register expression and itself has the register attribute. At most one externad symbol may appear in
an expression. It does not matter how it appearsin the expression, it is assumed to be added in.

. This causes the expression to be an XVAL. If an IVAL (DVAL) ever appears in an expression
then the whole expression isan IVAL (DVAL) with one exception. An IVAL (DVAL) minus an
IVAL (DVAL) isno longer an IVAL (DVAL). Note: in arelocatable assembly all relocation is
done by ADDITION of the | space or D space relocation or of an external symbol’s value.
Therefore using the negative of an IVAL, DVAL or external value will not have the right effect.

10.2.1.2.3 Literals

A literal isany set of assembler statements enclosed in [ ] (called square brackets). A literal
directs the assembler to assemble the statements appearing insided the square brackets and store
them a some location other than where the current location counter points. The vaue of the literal
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for use in an expression is the address where the first single-word of the literal is assembled. There
are certain restrictions on just what may appear inside a literal. Certain pseudo-ops are Illegal
ingde of literals (see the section on pseudo-ops). Currently, labels are not permitted inside a literd,
although this may change in the future. Thesymbol . is not affected by the fact that it is
referenced from inside aliteral. It will have the value it had at the point where the literal was
begun even though the litera may have assembled some statements aready.

Just where the literal is assembled is determined by several factors. First it is determined
whether the literal is an instruction-space or adata-space literal. This is determined in the
following manner. If the next characters immediately after the [ that begins the litera are !l or !D,
then the literd is an instruction- or data-space literd, respectively. If not, then the literal will be an
instruction-space literal if it contains any opcodes. Otherwise it will be a data-space literal. All
instruction-space literals will be assembled starting at the current location counter when aLIT
pseudo-op is encountered while in instruction-space. A similar statement is true of the data-space
literals. Certain other pseudo-ops cause an implicit LIT to be done firt.

10.2.1.2.4 Text Constants

An ASCII text constant is enclosed in double-quotes and has the value of the right-adjusted
ASCII characters packed one to a quarter-word. For example:

" abn

is the same as the number 141 1424 If more than four characters are specified, then only the vaue

of the last four will be used. If the trailing double-quote is missing, the assembler will stop
accumulating characters when it sees the end of line. Thelast four characters will be used in the
constant and no error message will be given.

10.2.1.2.5 Vaue-returning Pseudo-ops

Some pseudo-ops generate values and may be used as terms in an expression. See the
descriptions of the individual pseudo-ops for a description of the values they return.
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10.2.2 Statements
10.2.2.1 Statement Terminators

How a statement is terminated will depend upon the exact type of statement. In general, a
statement is terminated with a line-feed, a #, or' a semicolon that begins a comment that terminates
a the next line-feed. Some statements, like symbol definitions, can aso be terminated with a space
or atab.

10.2.2.2 Symbol Definition

Symbols may be defined to have specific values with the assignment statement or by declaring
the symbol to be a label. The assgnment statement has two forms:

SYMBOL«~expression Or SYMBOLe«expression

An = may be used in place of at. These statements define or redefine the symbol to have the
value of the expression. The expresson must be defined at the time the assgnment statement is
processed. Any atributes of the expresson are passed on to the symbol (except for the kalf-killed
attribute). For example, if the expression has a register value, then the symbal is given the register
atribute.  In addition if the second form is used (with two left-arrows) then the symbol will
additionally be given the half-killed attribute. This attribute is not used by the assembler but is
passed on to the debugger, where it means that the symbol should not be used in symbolic typeout.
It does not affect the ability to use the symbol for type-in.

A symbol may be declared to be a label by saying ether of:
SYMBOL: or SYMBOL: :

These both define the symbol to be equal to the location counter. The attributes of the location
counter are passed on to the symbol. The double colon (::) causes the symbol to be half-killed.

It is legal to redefine a symbol’s value with an assignment statement but it is not possible to
redefine a label’s value or to define as a label any symbol that has previoudy had a value assigned.

An assignment statement can itself be an expression and has the value of the expression to
the right of the arrows. Therefore it is possible to assign the same vaue to multiple symbols as
follows:

AeBeeCe¥%1

which will define al of A, B and C to have the register value 1. An assignment statement is
terminated by most any separator, including space and tab. Thereforeit is possible to have more
than one assignment statement per line, or have an assgnment statement on the same line with other

statements.
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10.2.2.83 S| Instructions

An S instruction is a statement that can cause the assembly of one, two or three
single-words. It is made up of an opcode with modifiers followed by a list of operands.

10.2.2.3.1 Operands

An operand may be in any one of the following formats: (in the following ... .. | may be used
inplaceofe..... o).

expression

This may be aregister expression or not. If so, it is assembled as register direct, otherwise as an
absolute address. If the operand is a hop, skip, or jump destination, then the difference between the
expresson and the location counter (.)isused as the signed displacement, if possible.

?expression

This assembles as either a short or long constant depending upon the value of expression. It is
dangerous to use an as yet undefined symbol in the expression, as the assembler might decide to
switch from one length to another, which would confuse the rest of the assembly. If the expression
is in the range -3'2.. 31 (decimal) the assembler will generate a short constant. If not, it will
generate a long, sign-extended constant. A data word (see below) may not appear in the expression
unless it is enclosed in brokets.

#expression

This assembles as ashort constant. It doesn’t matter if the expression has a register value or not. It
isan error if the expression cannot be expressed as a short constant.

expression(register expression)

This is a short index. The expression inside the parentheses must have a register value. If the
internal assembler switch BADRSI is off (the default state), the expression before the parentheses is
assumed to be a number of single-words and must be in the range -32 . . 31 (decima). If the
switch is on, it is assumed to be a number of quarter-words and must be divisible by 4. The result
of divison by 4 must be in the range -32 . . 31 (decimadl). If the expression before the parentheses
IS omitted, zero is assumed.

Hcexpressiond
Thisis aformat-l long constant (right justified with zero fill).

Hcexpression « B>
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Thisis a format-3 long constant (left justified with zero fill). The spaces around the « are optional.
HclSe expression>

This is a format-2 long constant (right justified, sign extended).
Hcexpression>(register expression)

Thisis anindexed constant. The first expression is the constant and the second expression is the
index register (which may be zero but may not be omitted).

ciPe expl {exp2)>(exp3 (expd) ) texpd

Thisisthe general form of an extended word. The P and e are optional and cause the P bit and |
bit respectively to be set in the extended word. If exp2 is present, the extended word is in
variable-based format (V-bit=1); otherwise it is in fixed-based format. Expl is the base or signed
displacement and is considered a quarter-word address (note that in short indexing, the
corresponding expresson may be a signed singleword value). Everything after the > is optional. If
nothing is there, a short operand (SO) of short constant O is generated. If something is there, the
outer set of parentheses must be present. These are mnemonic, indicating that the SO that’'s insde
the parentheses is fetched. The SO inside the parentheses may be either a short index (which
requires the use of another set of parentheses as described above) or register direct (in which case no
other parentheses are used) which must evauate to a register value. Finaly, if theTexp5 is present
(which it may be even if (exp3(exp4)) is omitted), the value of exp5 isused as the S field of the
extended word.

lexpression

Thisformat forces the operand to have the value of the low 12 bits of expression. No extraword
will be assembled for an extended word in the case that the value has the 40004 bit on. It is
possible with this format to generate illegal indgtructions. It is meant for hand or program patching
of code.

‘Here are some examples:

c!P Table(R3) o(-3(SP})12
c Table >(RS) or ¢ Table(R5) >
ce Tableo((SP))

10.2.2.3.2 Opcodes and Modifiers

An opcode is built out of a base opcode name followed optionally by a . and an opcode
modifier and another . and another modifier, etc. The modifiers are standard as defined in the
opcode files. Numeric modifiers are in decimal without a decima point. So, for example,
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SLR.8
is different from
SLR.10

It is adso possible to use an already defined symbol as a modifier. For example, if A has been
defined by A«%5 then SLR.A assembles the same way as SLR.5 does. Note that an expresson may
NOT be used in place of a modifier. For example, SLR.4+1is not permitted in place of SLR.5 .
Also note that if there is a conflict between a legd modifier name and a symbolic value, the legal
modifier name will win. For example:

Mleel
BNDTRP.M1.S XXX,YYY

will NOT be the same as:
BNDTRP.1.S XXX,YYY

because M 1 isalegd modifier for BNDTRP and takes precedence over the lookup of the symbol
M1

Modifiers should not be omitted from ingtruction opcodes, with one exception: a precison
modifier {Q, H, S, D} which is omitted will be assumed to be S. Modifiers should be written in the
order defined by the instruction descriptions.

The opcode must be separated from the operand list by spaces or tabs.

10.2.2.3.3 Ingtruction Types

There are five basic S instruction types, SOPs, JOPs, XOPs, TOPs, and HOPs. For the
assembler, they differ as to the number and interpretation of operands.

‘An SOP is atwo operand instruction with a skip destination. The skip destination is just
like athird operand, and should evaluate to the quarter-word address of the instruction that isto
be skipped to. Both of the operands must be present. If the skip destination is missing, then the
instruction is assembled so as to skip over the next instruction, however long it is. For example,

ISKP.GTR %1, #108,EXIT
assembles a conditiona skip to the label EXIT. During the last pass of the assembly, the assembler

checks to see that the skip is within range. This means that the value of the skip destination
operand must be within -8. .7 of the location of the SOP.
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A JOP is a two operand instruction, the second of which is the jump destination. If only one
operand is specified, then which operand it is assumed to be depends upon the exact opcode. Some
opcodes expect only one argument, in which case that argument is the jump destination (JIMPA, for
example). The opcodes JSR and JCR expect one or two operands. If only oneis supplied it is
assumed to be the jump destination. For other JOPs, if there is only one argument, it is assumed to
be OPI and the jump is assembled to skip over the next instruction (just as for an SOP with an
omitted skip destination). The assembler will try its best to assemble the jump with the PR-bit on
(it even takes a whole extra pass through the source file just for this). For example,

[JMPZ.NEQ %2,L00P
assembles a jump to location LOOP.

An XOP is a two operand instruction, one of which must be specified. If exactly one is
given, then, depending upon the specific instruction, either it is used for both operands or the
second operand is defaulted to be register zero (7.0). For example,

TNC COUNT
assembles the same as
I NC COUNT, COUNT.

A TOP is athree operand instruction, where one of the operands is restricted. There are 4
possible combinations for the operands, involving use of RTA and RTB. If only two operands are
given, then T=00 isused (DEST=51=0P1). If thefirst operand’svalueisRTA, then T= 10 is used
(DEST=RTA, S1=0PI). If it is RTB, T=11 is used (DEST=RTB, S1=0OPIl). If the second
operand’s value is RTA, then T=01isused (DEST=OPI,S1=RTA). Any other format isillegal.
For example,

ADD RTA,F00,BAR

assembles a T= 10 TOP.

An HOP is a one operand ingtruction. It takes a jump destination like a JOP and assembles
it as a pc relative single-word offset directly into the OD1 and OD2 fields. No extended words are
ever used. Thisinstruction typeis specifically for the JPATCH instruction, which can jump to
PC-<22%5x4 through PC+<22%_1>x4. Note that this is not the full virtual addressing range of the
SH. This ingtruction, therefore, is not recommended for branching. Use JMPA instead, which can
jump to any location in the address space. JPATCH is provided so that a debugger can “patch” an
ingtruction location and clobber only one single-word.
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10.2.2.4 Data Words

A data word is much like a short index in that it can specify indexing. For example,

-1

39,,7 ;A single-uord uith 30 in its left half-uord
; and 7 in its right half-word
e-4 (SP)
(aon ! 1
2
4 ]

are all data words. If indexing is used, then the value in the register field is assembled into bits
<1:5> and the value of the expression surrounding the index is assembled into bits <6:35>. If
indexing is not used, then the value is stored in the entire word, bits <0:35>. If ane is present, the
sign bit of the word is turned on. This is the P-bit in an indirect word. The word “surrounding” is

used because of the following effect:

S1ODLA
B
c3

will assemble with TT in the index fidd and with the address of the litera - 1 in the address field.
Thisis useful if TT for example ranges from 1 to 3.

Data words may be used anyplace where an instruction might have been used. They may be
used in long constants and in literals. They are legd insde any broketed expression.
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10.3 Absolute and Relocatable Assemblies

An assembly is either absolute or relocatable.  Initially it is assumed that the assembly is
relocatable. Certain things in the input file may cause the assembler to try to change its mind if it is
not too late. The pseudo-ops ABSOLUTE and RELOCA will force absolute and relocatable
respectively. A LOC will force absolute.

In a relocatable assembly, there is one instruction space and one data space. These spaces may
be interleaved in the input file (by use of ISPACE, DSPACE and X SPACE pseudo-ops) but will
be separated into two digoint spaces in the output. The data space will be output immediately after
the instruction space and it is up to the linker to further relocate it to begin on a page boundary (or

whatever).

Whenever a word is assembled, the attributes of the expressions involved in the assembly of
that word are passed on to the word itself. The assembler outputs instructions to the linker to
relocate every IVAL by adding to it the starting address of the instruction segment and similarly for
DVALs and the starting address of the data segment. Notice that this does not do the right thing
for the difference between an IVAL and a DVAL. This is because the assembler does not keep

track of whether the relocation should be postive or negative.

In an absolute assembly, no relocation is done. There may be multiple instruction and data
spaces. The pseudo-ops IPAGE and DPACE cause the assembler to move the location counter to a
new page boundary and switch to the indicated space. The assembler output will contain multiple
spaces which occur in the same order as the IPAGE and DPACE statements. The LOC pseudo-op
may be used to set the value of the location counter to any desired absolute address (with some

restrictions). It cannot be used to change spaces.

AnIPAGE or DPAGE or LOC pseudo-op may not be used in a relocatable assembly and an
ISPACE, DSPACE or XSPACE pseudo-op may not be used in an absolute assembly.
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10.4 The Location Counter

The location counter is asymbol internal to the assembler that has the value of the
guarter-word address where the next word will be assembled. It has either the IVAL or DVAL
attribute depending upon the use of the IPAGE, DPAGE, ISPACE, DSPACE and XSPACE
pseudo-ops. Initidly it hastheIVAL attribute and for an absolute assembly, it has initial value

100005 Fora relocatable assembly it hasinitial value 0. The symbol . may be used to reference

the location counter. It cannot be defined with an assignment statement or used as a label.
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10.5 Pseudo-ops

Thefollowing isalist of al the pseudo-ops in alphabetical order. Wherever the construct
e text e is used, the e represents the first non-blank, non-tab character appearing after the
pseudo-op and text is al of the characters between the matching pair of these characters.

.ALSO, < conditionally assembled text > rest of program
.ELSE, < conditionally assembled text > rest of program

These pseudo-ops conditionally assemble the text in brokets depending upon the success or
fallure of the immediately preceding conditional. Thereis an assembler internal symbol called
.SUCC which is set when aconditiona succeeds and is cleared when one fails. .ALSO will succeed
if . SUCC is set and .ELSE will succeed if it is clear. If a conditional succeeds, .SUCC is st both at
the beginning and at the end of the conditionally assembled text. This enables the inclusion of
conditionas within conditionals while using .ALSO or .ELSE following any outer conditional. For
example,

| FNA-B,<IFIDN <X>,<Y>,<...>>
LELSE < . ..>

Here, the .ELSE tedts the success of the IFN A-B independent of whether the IFIDN succeeded or
failed.

.AUXO <filename>

Prepares the file <filename> to receive auxiliary output. Auxiliary output can be generated
with the AUXPRX and AUXPRYV pseudo-ops. The auxiliary output file remains open until the
next AUXO or the end of the assembly is encountered. It is probably most appropriate to do the
AUXO during just one pass of the assembly. This can be done, for example by

IF3, <.AUXG FOO.BARI[P,PN]I>

. INSERT <fi lename>
Starts assembling text from the new file <filename>. When the end of file isreached in the
new file, input is resumed from the previous file. .INSERTs may be nested up to a level of 10.

LENGTHetexte
Has the vaue of the length of the string text. A CRLF counts as one character.
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.QUOTE@text@
Legd only inside a macro definition. It allows the assembler to see text without scanning it
for a DEFINE or a TERMIN.

. SWITCH sunanel, suvail, suname2, suval2, ...
Sets internal assembler switch "swnamel,2,.." to the value in the expression “swvall,2,...". The

currently existing switches are:

BADRSI If set, al short indexes are assumed to be quarter-word
addresses and must be divisible by four. Otherwise a short
index is considered a single-word index.

ABSOLUTE
Forces the assembly to be absolute.

ASCllgtexte

Assembles text as ASCII characters into consecutive quarter-words, padding the last used
sngleword with zeros. This pseudo-op may cause more than one word to be assembled as long as
it is not enclosed in any level of brokets. However, the “value’ of this pseudo-op is the value of the
last word it would assemble. So if it is used in an expression, the arithmetic applies only to the last
word. If it is enclosed in brokets, then dl but the last word are thrown away. For example,

1+ASCII /ABCOEFG/
is the same as

ASCI | /ABCD/
<ASCIl | /EFG/>+1

but not the same as
1+<ASCI1 /ABCDEFG/>
which is the same as

1+ASCI | /EFG/
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ASCIIVetexte
Is the same as ASCII except that macro expansion and expression evaluation are enabled
from the beginning of text asin PRINTV. \ and ‘ may be used asin PRINTV.

ASCiZstexte
Same as ASCI| except that it guarantees thatat least one null character appears at the end of

the string.

ASCIZV s texte
Isthe same as ASCIIV except it does ASCIZ.

AUXPRXetexte
Thetext is output to the auxiliary file. An error message is generated if no auxiliary file is
open.

AUXPRVgtitexte
Is the same as AUXPRX except that macro expansion and expression evauation are enabled
from the beginning of zext asin PRINTV. \ and‘ may be used asin PRINTYV.

BLOCK expressi on
Adds expressions4 to the location counter.  That is, the expression is the number of
single-words to reserve. The expression must be defined when the BLOCK pseudo-op is

encountered.

BYTE (s1)b11,b12,b13 ,... (s2)021,b22,623 ,...

The BYTE pseudo-op is used to enter bytes of data. The s-arguments indicate the byte size
. to be used until the next ssargument. The b-arguments arethe byte values. An argument may be
any defined expresson. The BYTE pseudo-op may not evaluate to more than one word. The
s-values are interpreted in decimal radix. Scanning is terminated by either > or >, so aBYTE
pseudo-op may be used in an operand or in an expression. For example,

MOV A, #cBYTE (7)15,12>
MOY B, [1+<BYTE (7)15,12>]

COMMENT & text e
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The text is totdly ignored by the assembler.

DEFINE name argument 1ist
This pseudo-op is used to define a macro. See the section on macros for a description.

DPAGE

If the current space is ingtruction space, it does an implicit LIT, advances the location counter
to the next page boundary, and sets the space to data.  If the current space is data, it merely
advances to the next page boundary. This pseudo-op may not appear inside of aliteral or in a
relocatable assembly.

DSPACE

This is a no-op if the current space is aready data. Otherwise it switches to data space and
restores the location counter from the last value it had in data space. This pseudo-op may not
appear inside of a literal or in an absolute assembly.

END express i on
Indicates the end of the program. The expression is taken to be the starting address. This

pseudo-op may not appear inside of a literal. END forces an implicit LIT to be done first for both
instruction and data space. The expression must be defined when the END pseudo-op is
encountered.

EXTERNAL syml, sym2, sym3,. . .

This pseudo-op defines the symbols in the list to be “externd” symbols. The symbols in the
list must not be defined anywhere in the program. Only one external reference may be made per
expression. The value of the external will be ADDED by the linker to the word containing the
expresson regardless of the operation the expresson says to perform on the externa symboal.

IF1, < conditionally assembled text > rest of program
IFN1, < conditionally assembled text > rest of program
IF2, < conditional iy assembled text > rest of program
IFNZ, < condi tionai iy assembled text > rest of program
IF3, < condi tionai iy assembled text > rest of program



§10.5 Appendix: The S| Assembler (FASM) Page 321

IFN3, < conditional iy assembled text > rest of program
Assembles conditionally assembled text if the assembler isin passl, 2 or 3for IF I, IF2 and IF3

or if the assembler isnot in pass 1, 2 or 3 for IFN1, IFN2, IFN3.

IFDEF symbol,< conditionally assembled text > rest of program
IFNDEF symbol,< conditionally assembled text > rest of program
Assembles conditionally assembled text if the symbol is defined or not for IFDEF and IFNDEF

respectively.

IFE expression,< conditionally assembled text > rest of program
IFN expression,< conditional iy assembled text > rest of program
IFL expression,< conditionally assembled text > rest of program
IFG expression,< conditional Iy assembled text > rest of program
IFLE expression,< conditionally assembled text > rest of program
IFGE expression,< conditionally assembled text > rest of program

Assembles conditionally assembled text if the condition is met. If the condition is not met, then
the program is assembled as if the text from the beginning of the pseudo op to the matching > were
not present. For IFE the condition is “the expression has value zero,” for IFN it is “the expression
has non-zero value,” etc. In any case the expression must not use any undefined or external
symbols. The comma, < and > must be present but are “eaten” by the conditional assembly
statement.  In deciding which is the matching right broket, al brokets are counted, including those
in comments, text and those used for parentheses in arithmetic expressions. Therefore one must be
very careful about the use of brokets when also using conditional assembly. For example, the
following example avoids a potential broket problem:

IFN SCANLSS, c
SKP. NEQ A, "<" ;> MATCHING BROKET

JMPA FOUNOLESS
>;END OF IFN SCANLSS

The broket in the comment is used to match the one in double quotes so that the conditional
assembly brokets will match.

IFIDN <stringl>, <string2>,< conditionally assembled text > rest of program
IFDIF <stringl>,<string2>,< conditionally assembled text > rest of program

These are text comparing conditionals.  The strings that are compared are separated by
commeas and optionally enclosed in brokets. If the strings are identical (different for IFDIF) then the
text inside the last sat of brokets is assembled as for arithmetic conditionals.
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IFB <string>,< conditionally assembled text > rest of program
IFNB <string>,< conditionally assembled text > rest of program

These text testing conditionals compare the one string against the null string. They are
equivalent to

IFIDN <string>,<>,< . . .>...
IFDIF <string>,<>,<...>. ..

INTERNAL sym1, sym2, sym3, . . .
Defines each symbol in the list as an “internad” symbol. This makes the vaue of the symboal
available to other programs loaded separately from the one in which this statement appears.

IPAGE

If the current space is data space, it does an implicit LIT, advances the location counter to the
next page boundary and sets the space to instructions. If the current space is ingtructions, it merely
‘advances to the next page boundary. This pseudo-op may not appear inside of aliteral or ina
relocatable assembly.

ISPACE

Isano-op if the current space is already instructions. Otherwise it switches to instruction
space and restores the location counter from the last value it had in instruction space. This
pseudo-op may not appear insde of aliteral or in an absolute assembly.

LIST
. Increments listing counter. Listing is enabled when the count is positive. The count is set to
one a the beginning of each pass. XLIST is used to decrement the count.

LIT

Forces dl literas in the current space (instruction or data) that have not yet been emitted to be
assembled darting at the current location counter. It has no effect on the literals in the “ other”
space. This pseudo-op may not appear inside of a literd.
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LOC expressi on
Sets the location counter to the specified quarter-word address. May not appear insde of a
literd or in arelocatable assembly.

MLIST
Increments macro listing counter. Macro expansion listing is enabled when the count is
positive. The count is set to one at the beginning of each pass. XMLIST is used to decrement the

count.

PRINTV ¢ text e

Printstext on the console. It is identical to PRINTX except that macro expanson may occur
within the text. \and‘ may be used within the text as in macro arguments and expression
evaluation. See the section on special processing in macro arguments for an explanation of \ and
processing. Macro expansion is intially enabled at the beginning of text and may be disabled with \.

PRINTX e texte
Prints text on the console.

RADIX expression
Sets the current radix to expression. The radix may not be set |ess than two.

RELOCA
Forces the assembly to be relocatable.

REPEAT expression, <body>

Assembles body concatenated with acarriage return expresson many times. The expression
must be defined at the time the REPEAT pseudo op is encountered. The expression must be
non-negative. If it iszero, the body will not be assembled.

TERMIN
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This pseudo-op is legal only during a macro definition. It is used to terminate a macro
definition. See the section on macros for a description

TITLE name other-text
Sets the title of the program to name. Everything else on the line is ignored.

XLIST
Decrements listing counter. Ligting is enabled when the count is positive. The count is set to
one at the beginning of each pass. LIST is used to increment the count.

XMLIST

Decrements macro listing counter. Macro expansion listing is enabled when the count is
positive. The count is set to one at the beginning of each pass. MLIST is used to increment the
count.

XSPACE
Has the effect of ISPACE if the current space is data and DSPACE if the current space is
ingtructions. This pseudo-op may not appear inside or a literal or in an absolute assembly.
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10.6 Macros

The FASM macro facility shows a strong resemblance to those of FAIL (the macro assembler
for the PDP-10 developed and used at the Stanford Artificid Intelligence Laboratory) and MIDAS
(the macro assembler for the PDP-1O developed and used at the M.1.T. Artificia Intelligence
Laboratory), which are hereby acknowledged.

Macros are essentially procedures that can be invoked by name at almost any point in the
assembly.  They can be used for abbreviating repetitive tasks or for moving quantities of
information from one part of the assembly to another (in fact even from one pass to another).
Macro operation is divided into two parts. definition and expansion.

The macro facility does differ in an important way from other assmeblers, however. Macro
expansion in FASM is performed at the “read-next-character” level whereas in other assemblers it
is done at symbol lookup time during expression evaluation. Due to this difference, in FASM,
macro expansion inherently produces “string” output rather than evaluated expressions as is
sometimes the case in other assemblers. Wherever a macro cal is seen, the effect can be predicted
by substituting the body of the called macro in place of the call.

10.6.1 Macro Definition
Macros are defined using the DEFINE pseudo-op which has the following format:

DEFINE macroname argument | ist
body of macro definition
TERMIN

This will define the symbol macroname to be a macro whose body consists of al the characters
starting after the CRLF that ends argumentlist and ending with the character immediately
preceding the TERMIN.

10.6.1.1 The Argument List

Basicdly, the argument list isa list of forma parameters for the macro. This is similar to the
list of formal parameters for a procedure in a“high” level language. The parameters are symbol
names and are separated by commas. The number of macro argumentsisin the range 0. . 64 .
The macro argument list is terminated by either a; or a CRLF.

Each macro argument has certain attributes associated with it. In FASM these attributes are
balancedness, gensymmedness, and parenthesizedness. From now on, it shall be said that an
argument is or is not balanced, is or is not gensymmed, and that certain pairs of parentheses can or
cannot parenthesize an argument. If an argument isn't balanced or gensymmed then it is said to be
normal.

Argument attributes are specified by enclosing a string of characters in double quotes
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preceding an argument in the argument list. The attributes specified by that string are “sticky”, that
is, they apply to al following arguments until the next such string is specified. The characters B
and G may appear in the string to indicate that the argument is to be balanced or gensymmed
respectively. There are four parenthesis pairs, namely: ( and ),[ and ],< and >, and { and }. Any
of these characters may appear in the string to indicate that that set of parentheses may be used to
parenthesize that argument. One fina thing that may appear in the string is a statement about the
concatenation character for the macro body. If the string '=e appears, where e is any character other
than CRLF, then ¢ will be the concatenation character. If the string O! appears, then there will be
no concatenation character. Only the last statement made about the concatenation character will

apply.

At the beginning of the argument list, the attributes have the following defaults: ! is the
concatenation character, arguments are neither balanced nor gensymmed, and any pair of
parentheses may be used to parenthesize an argument. Whenever an attribute string is encountered,
the previous set of attributes are forgotten and the new one applies to future arguments until the
next string is specified.

Here are some examples of valid macro definition lines:

DEFINE MAC

DEFINE MAC1A,B,C

DEFINE MAC2"'.=" " A,B, "G" C
DEFINE MAC3"((B1)"A, "[8!"B

With these definitions, MAC has no arguments and has ! for the concatenation character.
MACI1 has three norma arguments, A, B and C with ! for the concatenation character. MAC2 has
two norma arguments A and B, a gensymmed argument C and uses ' as the concatenation character.
MAC3 has a balanced argument A, for which () and [] can be used as parentheses and a normal
argument B for which [J can be used as parentheses. MAC3 has no concatenation character.

10.6.1.2 The Macro Body

The macro body begins a the character following the CRLF a the end of the define line and
ends with the last character before the matching TERMIN. Within the macro body, FASM replaces
al delimited occurrences of formal parameters with a mark that indicates where the actual
parameter should be substituted. Any character that is not a symbol constituent is considered a
delimiter for this purpose. The concatenation character is dso considered a delimiter. However, the
concatenation character is deleted wherever it occurs and will not appear in the macro body
definition. The concatenation character is useful to delimit a formal parameter where, without the
concatenation character, the formal parameter would not have been recognized assuch.  For
example,

DEFINE MAC A,B,C
PUSH.UP.S &P,B
PUSH.UP.S SP,C



§106.1.2 Appendix: The S-1 Assembler (FASM) Page 327

JSR AIRTN
TERMIN

If X,Y and Z were substituted for the formal parameters A, B and C, then the third line
would assemble asJSR XRTN. Without the concatenation character, it would aways assemble as
JSR ARTN regardless of the actua vaue of the parameter A.

In addition to scanning for formal parameters in the macro body, FASM also scans for
occurrences of the names DEFINE and TERMIN. It keeps a count of how many it has seen so that
it can find the TERMIN that matches the DEFINE that began the macro definition. This alows a
macro body to contain a macro definition entirely within it. For example,

DEFINE MAC1 A
DEFINE MAC!A
TERMIN

TERMIN

defines a macro called MAC1 which contains a complete macro definition sequence within itself.

Note that FASM does NOT recognize either comments or text constants as specia cases in its
search for DEFINEs, TERMINs and forma parameters. Therefore, the user must be careful when
using the words DEFINE and TERMIN in those places. They WILL be counted in order to find
the TERMIN that marks the end of the current definition. There is a pseudo-op called .QUOTE
that can be used if it is desired to inhibit FASM from seeing a DEFINE, TERMIN or macro
parameter. .QUOTE is like an ASCIZ statement, taking the first nonblank character after the
QUOTE as adeimiter and passing all characters up to the matching delimiter through to the
macro definition. For example,

DEFINE MAC
thow to put a.QUATE /DEFINE/ in a comment
TERNL N

will define MAC's body to be

show to put a DEFINE in a comment
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10.6.2 Macro Calls

A macro cal occurs whenever a macro name is recognized in a context where macro calls are
permitted.  When this happens, the macro call is processed in two distinct phases. The first is
argument scanning and the second is macro body expansion.

10.6.2.1 Argument Scanning

Argument scanning is the process of assigning text strings to the formal parameters of a
macro. These text strings come from the input stream. If aformal argument is not assigned a
string, then it is assigned the null string as its value, unless the argument is defined to be
gensymmed. In that case, the argument is assigned a six character string beginning with G and
followed by 5 decima digits which represent the value of an internal counter which is incremented
before being converted to a text string.

Argument scanning is performed for those macros that have formal parameters. If a macro
does not have any forma parameters, then the character that terminates the macro name is left to be
reprocessed after the macro expansion is complete even if it is a comma.

If the macro has formal parameters, then how the argument scan is done depends on the
character immediately following the macro name. If it is a CRLF, then the argument scan is
terminated and all of the formal parameters are assigned the null string or are gensymmed as
appropriate. The CRLF is left to be reprocessed after the macro expansion is complete.

If the character following the macro name is a space or a tab, then al immediately following
spaces and tabs are thrown out. The entire sequence of spaces and tabs can be considered to be the

macro name ddimiter.

If the character following the macro name is a ( then the macro call is said to be a
parenthesized call, otherwise it is a normal call. A parenthesized call differs from a norma cal in
-the way argument scanning is terminated. Inanormal call, argument scanning is terminated by
either CRLF, semicolon, or the argument terminator for the last argument. If terminated by a
CRLF or semicolon, the terminator is left to be reprocessed after macro expansion is complete. In a
parenthesized call, only the matching ) can terminate the cal. The) is not reprocessed after the
macro expansion is complete.  The following paragraphs will describe the syntax of macro
arguments and explain how they are terminated. The phrase ".. macro cal terminator” refers to the
character that terminated either the norma or parenthesized call, as described in this paragraph.

10.6.2.2 Macro Argument Syntax

The first macro argument begins with the first character following either the ( that demarks a
parenthesized call or the macro name delimiter in anormal call. This character is looked at by
FASM to determine how to scan the argument.

If the first character is a left parenthesizing character that belongs to the set of characters that
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may be used to parenthesize the argument that is being scanned (as determined by the character
string in force at the time this formal parameter was seen in the macro define line), then the
argument is taken to be ail characters following that open parenthesis until, but not including, the
matching closed parenthess. ANY characters may appear between the parentheses. Only the
particular type of parentheses that enclose the argument are counted in finding the matching closed
parenthesis. This type of argument is caled a p'arenthesized argument.

If the first character isacomma, then the argument is the null string.

If the first character is a macro call terminator, then this argument and al further arguments
arenot assigned strings.  That is, if the arguments are gensymmed, they will be assigned unique
gensymmed strings, and if they are not gensymmed they will be assigned the null string.

If the first character is not one of the above, then argument scanning depends on whether the
argument is to be balanced or not. If the argument is not to be balanced, then the argument is
taken to be ail characters from the first character until, but not including, a comma or macro call
terminator. If the terminator is a comma, it is thrown out; a macro cal terminator, however, will be
kept to terminate the macro call.

If the argument is to be balanced, then al types of parentheses are treated the same. A count
is kept of the parenthesis level. If there are no unbaanced parentheses, then a comma or macro call
terminator will terminate the argument as if it were a norma argument. Also, if the parentheses are
balanced, any closed parenthesis will terminate the argument and the cdl. If it is a parenthesized
cal, the closed parenthesis must be a) or an error is reported. If it is not a parenthesized call, the
parenthesis will be left to be reprocessed after the macro call is complete. In either case, the
remaining forma parameters are assigned the null string or gensymmed as appropriate.

10.6.2.3 Special Processing in Macro Argurnents

Ordinarily, macro arguments are the quoted forms of the strings that appear between
delimiters within the macro call. However, it is possible to call a macro or even evaluate an
expresson from WITHIN amacro argument DURING the macro argument scan.

If a macro argument is not parenthesized, then the appearance of the character \ (backdash)
-in the argument will enable macro calls to be recognized during the scanning of the macro
argument. The appearance of a second \ will again disable this feature. If amacro call is detected
during this time, then that new macro is expanded and its expansion appears as if it were written in
line in the macro argument that is currently being read. Every time anew macro cdl is seen and
macro argument scanning is started, the macro-in-argument recognition feature is disabled until
re-enabled by a\. The\ character itself is discarded.

Perhaps this will be clearer if explained in terms of the actual implementation. FASM
maintains a flag, called the \ flag which when set enables macro expansion. This flag is pushed
when a macro name is recognized and initiaized to be off at the beginning of the argument scan. It
is complemented every time a \ is seen in the input. When the entire macro call has been scanned
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(but expansion has not yet started) the \ flag is popped.

In fact, the \ flag has wider application than just in macro calls. It is aso applicable at
expresson evaluation time. Normally it is set during expression evaluation, thereby alowing macros
to be expanded. It is perfectly legal to use \ during expression evaluation to inhibit macro
expansion.

There is a second feature, analogous to the \ feature, which alows the expresson evauator to
be called during a macro argument, or in fact even at expression evaluation time. If a pair of *
(backquote) characters surround an expression, the expression evaluator is caled upon to produce a
value, which may possibly be null, which is then converted into a character string of digits
representing that value in the current radix. The conversion aways treats the value as a 36 bit
unsigned integer. A null value is converted to the null string. The surrounding backquotes act in a
smilar way to parentheses in arithmetic expressions, in that multiple lines may be used, but only the
expresson on the last line is converted. This converted string is used in place of the backquoted
expression.  As in the case of \ this can occur in non-parenthesized macro arguments or in
expresson evauation. The' characters themselves are thrown out.

Following are some examples of the use of these features:
Xeel FOO'X*:  JMPA FOO1

will assemble as
FOO1: JMPA F001

If FOO was a macro name, it would have been expanded in the previous example. This could be
inhibited with:

\FOO\ ‘X *: JMPA F001
Next consider:

DEFINE MAC

XeeX+1

X1TERMIN

FOO ‘MAC*:

will define the label FOO2 while incrementing X to be 2. The next time FOO'MAC': appears, the
label FOO3: will be generated.

It is sometimes useful to extract the value of a symbol in a macro argument before the macro
call changes that vaue
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DEFINE MAC A
BAR««BAR+1
AxBAR

TERMIN

MAC ‘BAR'

will call MAC with the current value of BAR. Without the backquotes, the string BAR would be
passed to the macro and used where “@ appears which is after BAR is incremented.
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I1 Appendix: S-1 Formal Description Syntax
11.1 The S| Architecture Notation

The S-i Architecture Notation is aLISP-like language. It has a modified LISP syntax.
Thereis an interpreter/debugger which executes procedures in the language, and a pretty-printer
which takes the L1SP-like code and produces afile which isaversion of the code rendered in an
ALGOL- or PASCAL-like syntax. Thisisthe format that appears under the heading “Formal
Description” with each ingtruction description, and in other places as well. In this description we
shal exhibit the LISP-like and PASCAL-like notations side-by-side.

The basic data objects in the language are numbers and bit fields. A number is sSimply a
sggned integer. A bit field is an object with definite widtk (the number of hits), contents (values for
each of the bits), and alignment, which is a number for the leftmost bit, following bits have
successvely higher integer indices. (Internally, bit fields are represented as S-lists of integers
(content width aignment). For many purposes, one can think of an integer as abit-field in
two’'s-complement form with half-infinite width, sign-extended to the left))

An integer can be notated in the ordinary decima notation, with an optiona sign. It can aso
be notated in octa by preceding it with a "s".

Examples: 12 + 14 -10 «7777 e-43

A hit field can be notated in the “LISP” syntax by writing <jk>n, where j, k, and n are alil
numbers. This specifies a field k-j+1 bits wide, aligned so that the leftmost bit is bit number j, and
whose contents are the low k-j+1 bits of the two’s-complement representation of n.  In the
“PASCAL” syntax this is written as n<jk>.

There are also one-dimensional arrays of hit fields, called memories. These cannot be
constructed dynamically, but must be pre-declared (this is discussed later).
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11.2 Symbols

Non-numeric tokens, or symbols, occur in four distinct varieties: constant symbols, substitution
variables, identifiers, and keywords. They are distinguished by their spelling, and in the “PASCAL”
syntax dso by the use of specia fonts:

Type “LISP" syntax *PASCAL" syntax
constant al upper case all upper case, gothic font
substitution  capitalized, or leading % italic font, usually capitalized
identifier all lower case all lower case, gothic font
keyword leading $ boldface

Table 1 I-I

Symbal Types and Fonts

Actuadly, only the first two characters of the symbol are examined in performing this
classification. The letters A-Z and digits O-9 are considered to be capitals, and al other characters,
even specia characters such as "-" and "x", are considered to be lower-case. A “capitaized” symbol
is one whose first character is upper-case and whose second is lower-case.

When a “LISP -syntax symbal is rendered into “PASCAL’ syntax, a leading § or % is elided
(because the font carries the necessary information). Also, any "-" characters are changed to “_"
characters ("-" is the standard LISP “break” character, while "_" is the standard “break’ character

for PASCAL-like languages.)

Examples of PASCAL syntax:

constant QHS D LF RT MODE

subdtitution variable ~ Address Extended-Word # foo Extended-word ***
identifier program-counter od X n

keyword if while case

.Examples of LISP syntax:

constant Q HSD LFRT MODE

subgtitution variable  Address Extended-Word %p %foo Extended-word ***
identifier program-counter od X n

keyword $if $while $case

sorx Note:  ‘Extended-Word” and “Extended-word” are two different substitution variables. The
first is the preferred form.

Constant symbols are used in much the same way as scalar data type elements ark in
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PASCAL: to provide constant values for control purposes with a manifestly meaningful name.
Substitution variables are similar to Algol-style call-by-name parameters, and will be discussed
below. Identifiers are ordinary call-by-vaue variables, their values may be numbers, bit fields, or
constant symbols; they are aso used as names for memories. Keywords are used to identify certain
control constructs, and as noise words.

In presenting the “PASCAL” syntax here, we will use font changes in lieu of the capitalization
and leading "$" conventions. Thus, we will write:

“if okay then Operation else Error fi’

with “if”, “then”, “dlse”, and "fi" in boldface; “okay” in gothic letters; and “Operation” and “Error” in
italics to mean

"$if okay $then Operation $else Error $fi"
in the L1SP syntax.
11.3 Forms

In the “LISP” syntax, asin real LISP, nearly al forms except numbers and symbols are
written as a list of forms enclosed in parentheses. Such a form may mean one of three things:

(2) If the first element is an identifier, then it is a procedure call or function call. The
identifier is the name of the function, and the other elements of the list are the arguments,
which are evaluated before the function is called.

Examples: (shift x n) (+y z) (> ab)
(2) If the first dlement is a keyword, then it is a special form , a control construct of some kind.
Example: (§while x $do y)

The keyword "$while" signifies a specid form, The keyword "§do” is a (required) noise
word.

(3) If the first element is a substitution variable (or a constant symbol) with a global macro
definition (which has not been shadowed by a local definition -- never done in practice!),
then it is a macro call,

Example: (Calculate-Operand 2 $next Operation) The symbol “Calculate-Operand”
signifies a macro call, with the parameters "2" and “ Operation”, and the noise word
"$next".

(If the first lement is a substitution variable with some loca binding, or a globa binding which is
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not amacro definition, then its definition is substituted in and the three-way classification is tried
again. See the description of macros below.)
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11.4 Primitive Functions and Other Identifiers

The language provides a number of identifiers with function definitions which are useful for
manipulating bit fields. Recall that the arguments to all functions are fully evaluated before
invoking the function on the result. Some globa identifiers are also predefined with useful bit-field
values. (In the descriptions that follow, Greek |etters are meta-variables which range over forms.
The “LISP” syntax is shown on the left, and the “PASCAL” syntax to the right. If the syntax is
common to both, as in the case of symbols, they are shown centered.)

(+ a 8)  addition a+f
(-apB) subtraction a-p
(Aap) logicd and aAp
(vap) logicd or avp
(e ap) logicd xor «ef

$0 $false

These identifiers initially have as value aone-bit field containing a O.
$1 $true

These identifiers initidly have as value a one-bit field containing a 1.

N.B. $0 and $1 are usually used with the bit-field concatenation construct -- see below.

Tablel1-2
Arithmetic and Logical Functions

These arithmetic and logical operators will accept either integers or bit fields. If both are
integers, then an integer results. If oneisan integer and the other a bit field, then the integer is
first converted by two’s-complement truncation to a bit field of the same width asthe other
-argument.  If both are bit fields, they must be the same width, or an error will result; the value is a
bit field of the same width, aligned so that the high bit is bit number zero. In no case is overflow

detected.

(=) logical not -«
If ais an integer, the result is an integer. If aisabit field, the result isabit field of
the same width, aigned so that the high bit is bit number zero.

N.B. There is no unary minus. However, if one writes "(- 0 «) ", then the
pretty-printer will render it as "- " rather than as“0-«".

(< a B) signed less than x< P
(> a B) sgned greater than o« >0
(s« pB) sgned less than or equal as<p
(zap) sgned greater than or equal a 2 8
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If either argument is a bit field, it isfirst converted to an integer by considering it as a
signed two's-complement representation.  If both arguments are bit fields, they must be
the same width (for error-checking purposes). The two integers are compared, and the
result is a bit field exactly one bit wide, whose content is 1 if the specified relation
holds, and O otherwise.

(= a B) equal o =0

(= o B3) not equa o = @
These operators compare their arguments for equality. The arguments may be two
integers, two bit fields of the same width, an integer and a bit field (in which case the
latter is sign-extended, or the former is truncated -- the two interpretations are
equivaent), or two symbolic constants.

(sgned @) Sgn extension signed(a)
If the argument is a integer, that integer is returned. If it is a bit field, an integer
produced by sign-extending the bit field “to infinity” is returned.

(unsigned @) unsigned interpretation unsigned(a)
If the argument is a integer, it must be non- negative (otherwise an error occurs), and is
returned. If it is abit field, an integer produced by zero-extending the bit field “to

infinity” is returned.

(sign-extend a g) sign extension sign-extend(a, @)
The argument 8 must evaluate to anon-negative integer, or to one of the symbolic
constants Q, H, S, D, or A (which mean 9, 18, 36, 72, and 30, respectively). The
argument a must evaluate to a bit field whose width is no greater than g. A field 8
wide containing the same signed value as a is returned, aligned so that the left bit is bit

0.

(zero-extend a g) Zero extension zero_extend(a, B)
The argument 8 must evaluate to a non-negative integer, or to one of the symbolic
constants Q, H, S, D, or A (which mean 9, 18, 36, 72, and 30, respectively). The
argument a must evaluate to a bit field whose width is no greater than 8. A field 8
wide containing the same unsigned vaue as a is returned, aligned so that the left bit is

bit 0.

(low « B) extract low bits  low(«, B)
The argument B8 should produce a bit field, and a should produce an integer, bit field,
oroneof Q H,S, D, orA. The unsigned vaue of a specifies how many hits should be
extracted from the low end of 8 (the width of 8 must be no less than specified by «).
The result is aigned so that the leftmost bit is bit 0.

(high o B) extract high bits high(a, 8)
The argument 8 should produce a bit field, and a should produce an integer, bit field,
oroneof Q, H, S, D, or A. Theunsigned value of a specifies how many bits should be
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extracted from the high end of g (the width of 8 must be no less than specified by a).
The result is aigned so that the leftmost bit is bit 0.

(shift ag) shift field shift(a, B)
The argument a should produce a hit field, and should produce an integer or hit field.
A field is returned which is as wide as the field a, and which has the same alignment,
with contents equal to those of a shifted a distance 8, where positive g is to the left, and
the shift loses bits without any overflow detection and shifts in zero hits.

(redlign aBe) redign field realign(a, @, €

The arguments a and 8 must produce numbers (not bit fields), and € must produce a bit
field, in in which case the width of ¢ should be 8-a+1; or an integer, in which case the
integer is truncated without overflow checking to asigned field of that width. The
result isacopy of e realigned so that the leftmost bit is bit number a

N.B. This is dmost never used explicitly by the programmer, but is used implicitly by
control constructs which bind identifiers, such as $let (q.v.). It is also used by the
construction <«:8>n -- see below.

(extract-bits a B ¢) extract subfield e<a:B>

<a:3>€

The arguments a and g must produce numbers (not bit fields), and ¢ must produce a bit
field. A bit field is returned of width g-a+ 1, whose contents are those of hits « through
B of e. Theresult isaligned so that the leftmost bit is bit O (not bit a'). It is permitted
to abbreviate the field specifier "<j:j>" to simply "<j>", thus selecting asingle bit.
Through a bit of clever programming, the “LISP’ syntax has an alternative form
<a:B>¢, which is similar to the “PASCAL’ form, except for putting the operator up
front, as with most LISP constructs. This syntax enforces a rule that a and g, the forms
themselves, must be explicit numbers, and not any old numeric- valued expression.
This is to force the programmer to use the operators low, high, and shift when variable
fields are involved. Another twist isthat if in <a:8>¢, the form e is explicitly anumber,
then that expression is parsed as (realign ag ¢) rather than as (extract-bits « 8 €) -- see
above.
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Bla)

The form a must produce a bit field or a non-negative number; the form 8 must
produce an array (memory). The unsigned value of a must lie within the declared
range of subscripts for the array. The bit field selected from the array 8 by aisthe
result.  Through a bit of clever programming, the “LISP” syntax has an aternative
form [«]B, which is similar to the “PASCAL” form, except for putting the operator up
front, as with most LISP constructs. A specia twist of the [...] syntax is that if the form
g is explicitly asubstitution variable, then the form [«]g is not parsed into (word ag),
but into (8 al), which is a macro call. In this way one can make a macro call look like

an ordinary array reference.

(concatenateal a2...3 g g ...d ...an) concatenate hit fields

call|a2|l.

A kkag| ] | an>

By specia arrangement, concatenate can take any number of arguments. The bit fields
are concatenated together in order, leftmost argument being leftmost in the result field.
The width of the result is the sum of the widths of all the arguments. The result is
aligned- so that the leftmost bit is bit 0. The “LISP” syntax has an alternative notation
identical to that of the “PASCAL” syntax. The arguments are enclosed in "=>" and
seperated by "|I". If before any argument the phrase "kx" appears, where k is an explicit
number, it is as if the argument had been written that many times. This is often used
in con junction with $0 and $1.

Example: <6+0|| program-counter ||2+0>
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11.5 Specid Forms

(In the descriptions that follow, Greek letters are meta-variables which range over forms. The
“LISP” syntax is shown on the left, and the “PASCAL” syntax to the right.)

($if « B ¢€) if « then @ else e fi
The form « must evaluate to a bit field exactly one bit wide. (Such bit fields are typically the
result of predicate operators such as "<") If that bitis al, then 8 is evaluated, and otherwise

¢ is evauated.

Example:

($if (>s12) s1s2) if Sl >s2 then ol €else s2fi
($case a case a of

(setl B1) setl: B1;

(set2 B2) set2: 62

(setn Bn)) setn: Bn;

end
The form ais evauated, and the resulting value should occur in one of the sets. If it isfound
in setj, then B is evaluated,

A “set” may be any one of the following:
(a] asymbolic constant or an integer

[b] (integer $to integer) integer..integer
] (x1x2...xn) X1,X2,....xn
where each x| is a set of type[a] or [b]
Example:
($case reg case reg of
((01 2 (4 $to 31)) Foo) 0,1,2,4..3 1: Foo;
((3) Bar)) 3. Bar;
end
Wet (v 1= al let vl = 4,
. (v2 = a2) V2= a2,
(vn = an)) vn=an
8) then @8
Theformsa, .. .. an are al evauated; then their values are al simultaneously assigned to the
identifier specificationsv 1, .. .. vn, which congtitute new loca variable bindings. Findly, the

form B isevaluated in this new environment. An identifier specification g can be just an
identifier, or it can be of the form (extract-bits « 8 ¢), where « and g are integersand e is an
identifier. In the latter case, the result of (realign a g ) is what is assigned to the identifier e.
This alows the precise width and alignment of the newly-bound identifier to be specified.
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Example:
($let ((x = Field) let x = Field,
(<0:35>n = 0)) n<0:35>= 0
Continuation) then Continuation
($while « $do ) while a do 8 od

The form a is evaluated, and should result in a one-bit field. If this field contains a 1, then g
is evaluted, the result thrown away, and the process is iterated. If ever evauating a produces
a0, then a ‘*garbage” result is returned, which isillegal to use for any operation on bit fields.

($repeat a until B) repeat a until (3 taeper
The form a is evauated, and the result is thrown away. Then the form g is evaluated, which

should produce a one-bit field. If this field contains a 0, then the process is iterated. If ever
evauating B produces a I, then a “garbage’ result is returned, which is illegal to use for any
operation on hit fields.

($do-forever @) do forever & od
The form a-is evaluated and the result thrown away for an indefinitely large number of
iterations.

($prefix x a) prefix(x o)

x must explicitly bean identifier. amust also be an identifier, possibly after resolution of
substitution variables. The effect isasif asingle identifier had been written in place of the
#prefix-form, whose name is that of x, followed by a“-" (“LISP" syntax) or a"_" (“PASCAL”

syntax), foliwed by that of a
Example: ($prefix address Op) is the same as address-opl, assuming that the substitution

variable Op has the substitution value “opl”.

($nextagBe...n) a next B next € next . . . next i
Theforms g B,¢,.... n are evaluated in order. The results of al but the last are thrown away.

The reault of the last form is the result of the $next-form.

($alsoafe...n) aalsoBalsoealso...alson
Theforms a, B,¢,. ... n are evauated in an arbitrary order. No defined result is produced.

(« a B) o« p
Thisisthe assignment statement. It is very complicated because of the variety of forms
permitted on the left-hand side:
identifier
identifier< jk>
array(n]
array[n J< jk>
$let ... §thena
#if n$then al $else a2 §fi
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where a, al, a2 are themselves forms permissible on the left-hand side of "«". (The last two
cases are useful when a macro is used to compute which identifier is to be assigned to.)

11.6 Globa Register and Memory Declarations

Loca identifiers can be declared using the let statement. Globdly available identifiers and
arrays can be declared using the “toplevel” register and memory statements. (There is no way to

locally declare an array.)
The general form of a register declaration iS:
($register < jk>identifier) register identifier<j: k>;

This defines a globally available register whose width is k-j+1 and whose leftmost bit is bit number
j. The bit range limits j and k muse be integers.

Examples:

($register <0:35>user-status) register user_status<0: 35>

@register <0:27>program-counter) register program_counter<0:27>
The generd form of a $memory declaration is:

($8memory <jk>[m:nlidentifier) memory identifier Em: nl <j:k>;

This defines a globally available array of bit fields. Each bit field is k-j+1 bits wide, with the
leftmost bit being bit number j. There are n-m+1 such bit fields in the array, numbered from m

through n.
Examples:

($memory <0:35>(0:511Iregister-file) memory register-file [0:511]<0:35>
($memory <0:35>[0:4095]physical-memory) memory physical-memory [0: 40953 <0:35>
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11.7 Macros and Substitution Variables

A macro may be thought of as a procedure which takes al of its arguments “by name®, in the
Algol sense (however, as we shall see, the rules for scoping variables are different from those of
Algoal). It may also be thought of as a piece of text to be used in place of a call on that macro, with
specified arguments subgtituted into specified places in the macro definition.

A macro definition isa “top-level” declaration, such as the register and memory declarations.
It has the general form:

(= <prototype> <body>) define <prototype> =<body>;

Whenever an instance of the prototype (a macro call) is seen as aform of the language, a copy of
the body may be substituted for it, possbly with dterations determined by matching the macro call
againgt the formal prototype in the definition.

The simplest type of macro has no parameters. It is merely an abbreviated name for a piece
of text which is evaluated whenever the name of the macro is encountered. The name must be a
substitution variable; the body may be any valid form. For example, with this definition:

(= Jump (¢« pc-nxt-instr jump-address))
define Jump = pc_nxt_instr € jump-address;

then writing “Jump” as a form would be entirely equivalent to writing “(« pc-nxt-instr
jump-address)” (L1SP syntax) or “pc,nxt,instr & jump-address” (PASCAL syntax).

In the more general case, a macro prototype may be an arbitrarily complicated list structure,
provided the first element of the outermost list level is a subgtitution variable (which isthe name of
the macro). A cal on this macro must be a similar list structure, with the first element of the
outermost list level being the name of the macro. To substitute the macro body for the call, one
matches the call against the forma prototype. Wherever a substitution variable occurs in the formal
prototype, the corresponding expression in the call is matched to it. If an identifier or keyword
occurs in the forma prototype, that same identifier or keyword must appear in the macro cdl, as a
“noise word”. When the match has been completed, then the body may be used, with the provison

. that any occurrences of the matched-against substitution variable parameters in the body be
replaced by the matching expressions in the cdll.

For example, consider:

(= (Memory-Address-ls-aRegister Address)
(A(=<0:22>Address 0) (-~ Block-Memory-Address-Is-aRegister)))

define Memory-Address-1s-a-Register (Address) =
(Address<0:22> = 0) A - Bloch_Memory_Address_Is_a_Register;



Page 344 Appendix: S| Formal Description Syntax §11.7

Then if one were to write:

(Memory-Address-ls-a-Register address-op 1)
Memory-Address-Is-a-Register (address_op1)

it would be exactly the same as writing:

(A(=<0:22>address-op10) (-~ Block-Memory-Address-Is-a-Register)))
laddress_opl<0: 22> = 0) A - Blockh_Memory_Address_ls_a_Register,

because the parameter “add ress-op 1" is substituted for occurrences of “Address’ in the body of the
macro definition.

There are three extra features which can be used in the forma prototype to control the matching.

(1] 1f theform
($velabc...2) albicl..lz
appears in the-forma prototype, then the match succeeds if the corresponding part of the
cal isan identifier or keyword which isinthelist g b, c, ., z.

(2] If the form

(e x y) Xey
appears in the formal prototype, where "¢" is actually the character epsilon, then the form y
must be (or resolve via subgtitutions to) aform

(§setal a2...an) {al,2,..an}
Then the match succeeds only if the corresponding part of the call isin the set (whose
elements may be constant symbols, integers, or integer ranges “(m §ton)" (“LISP,’ syntax) or
“m.n" (“PASCAL’ syntax), as with case sets). If thisis true, then that same part of the call
is matched against x (which is normaly a substitution variable).

(3] If the form
(= x a) X=ol
appears in the formal prototype, it is just as if x itself had been written (where x must be a
substitution variable), except that if the macro call hastoo few elements at the list level
containing the = construction, so that no part corresponds to x, then the match still
succeeds, with x corresponding to «. In this way a serves as a “default value” for x.

Macro cdls in the “LISP” syntax all look pretty much aike, according to the above rules. To permit
some syntactic variety in the “PASCAL” syntax, specid cases of the “LISP’ syntax are defined to

pretty-print in special ways.

The standard syntax for macro calls (and prototypes) is used when no keywords occur at the top list
level of the call, and one of the specid formats described below is not involved. In this case the

macro name is printed, followed by a left parenthesis, followed by all the arguments separated by
commeas, followed by a right parenthesis.
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(Reverse-Bits Field Count) Reverse- Bits{ Field, Count)

If no parameters are present, then just the name of the macro is printed, without parentheses. Thus
the two “LISP” forms “Jump” and "(Jump)" are both rendered in the ‘PASCAL” syntax as smply
“Jump”. It isrecommended that the second “LISP" form be avoided.

If keywords (boldface) are present in the cdll, then the rule is to first write the macro name and all
parameters up to the first keyword as a standard call; then print the keywords and other following
parameters in order, using a comma as a separator in case two non-keyword arguments are adjacent:

(Add s 152 $- sum c oV $next <more>)
Add(sl, s2) -sum,c, ovnext More

If a macro cal has exactly four elements, and the second and fourth are "{" and "1", then the call (al
B 1) is pretty-printed in the form "o[g]". (Recall that in the “LISP” syntax the expression "[BJ«" is
parsed as (al g )) iff ais explicitly a substitution variable.)

Example:
(e [Number])index-reg
(8if (= Number 3)
c6x§0||Program-Counter||2%x$0>
<0:35>[Number]Register))

(= (Index-reg /[ Number /I)
($if (= Number 3)
(concatenate $0 $0 $0 $0 $0 $0 Program-Counter §0 $0)
(extract-bits 0 35 (Register /[ Number /1))

define = Index-reg INumber]
if Number =3
then c6+0|| Program-Counter ||2+0>
else R [INumber] <0: 35>
fi;

‘Here we have, in the middle expression, expanded out al the funny syntactic forms into regular
“LISP-like” syntax to show explicitly the interpretation involved. (The character "/" is used to
“quote”’ the following character so that it will be interpreted as a letter rather than a speciad syntactic
character.)

As a specid case, it is permitted to use a constant symbol as the name of a macro. This is usualy,
but not always, used in conjunction with one of the following specia formats.

If the second element of the cal in the “LISP’ syntax is "$i", then instruction macro format is used.

The name and the arguments after the "$i" are printed in order, separated by ".".
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(MOV $i S D) MOV.SD

If the second element of the call inthe “LISP” syntax is"e", then selector macro format is used.
There must be only one argument after the "e"; it is printed, then a".", and then the name of the

macro.
(MODE e od1) od LMODE

If the name of the macro is XOP, JOP, TOP, or SOP, then a very funny format is used.

11.8 Comments

Comments may be inserted in the “LISP” syntax in the usua way: acomment begins with a
semicolon, and is terminated by the end of the line. Such comments are rendered into the
“PASCAL” syntax in one of two ways. If the comment begins with more than one semicolon
(usually three and a space are used), then the form "$§comment<the comment>;” is used. Such
comments are normally used outside of other forms. If the comment begins with only one semicolon,
then the form "(x <the comment> x)" is used; the comment is right-justified (thrown against the
right-hand margin). Such comments can be put in most reasonable places within aform.

The comment is set in the font used for identifiers and constant symbols. However, if a "%" is
within the comment, it is thrown away, and succeeding characters up until the next punctuation
character (space tab,;.!? " ‘) are set in the font used for subgtitution variables.
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11.9 Standard Programming Techniques

A special technique which the language was designed to exploit involves the use of
continuations. A continuation is a piece of code which is normaly to be executed, if another piece
of code (in a macro body) executes “successfully”. In case of falure, however, the continuation is to
be ignored, and some alternative action taken.

Suppose, for example, that we want to access a register operand. Normally we want to get
back the contents of theregister. If thereisan error, for example trying to fetch a double-word
beginning at register 31, then we want to abort the operation entirely. Now if we merely wrote:

.« let op=Access-Register-Operand (Num,Prec) then <more>

then there is no smple way in the macro Access_Register_Operand to abort the operation <more> in
case of an accessing error.  The solution is to make the piece of code <more> explicitly available to
the macro, so that it can decide whether or not it should be executed:

Acce:s_Re}isteLOperand (Num,Prec) » op next <more>
We then write the definition as follows:

define Access-Register-Operand (Num,Prec) + Result next Continuation =
if (Prec= D) A (Num = 31)
then Alignment-Error
else let Result = case Prec of
Q: R [Numl<0:9>;
H: R [Numl<0:17>;
S: R [Numi;
D : cR[Num] | |R[Num + 11>
end
then Continuation
fi;

Now there are severa interesting things to note here. One is that if the macro decides that the
- precision is "D" and the register number is 31, then the continuation is never executed at all, but
rather the macro Alignment-Error (which presumably involves the code for taking an error trap).
In any case, whatever it was that was going to be done when the register operand had been accessed
is completely aborted. Another thing is that the text “Continuation” is substituted wholesde into the
body of the macro definition. This means that the identifier matched to the subgtitution variable
“Result” will be locally bound in the $iet statement, and then will be visible to the code text in
“*Continuation”. Thus substitution variables do not behave like Aigol cal-by-name parameters.

Writing

Access-Register-Operand (op.MODE,S} » value next n & value + 1
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isexactly like writing

if(S=D) A (opl. MODE = 31)
then Alignment-Error
else let value =case S of
Q: Rlopl.MODE]<0:9>;
H: Rlopl.MODE}<0:17>;
S Rlop.MODEI];
D: cRlopl.MODEI]||R{opl.MODE + 115
end
then N « value + 1
fi

whence it is clear that the binding of “value’ is available to the continuation "ne value + 1”.

Another thing continuations are good for is “returning more than one value”. Suppose we
want to add two bit fields and a carry-in bit and get not only the sum but also carry-out and
overflow bits. Thisis difficult to do using the functional notation "Add(sl,s2,cin)" without using
obscure side effects. Using the notion of a continuation we write the definition:

define Add ( Addend,Augend,Cin ) » Sum, Cout, Overflow next Continuation =
let X = Addend, y= Augend
then let z = c0:x> + c0:y> + unsigned {(Cin)
then let Sum = low (width (x}, 2),
Cout = 2<0>,
Overflow =(x<0> = y<0>} A (x<0> = z<1>)
then Continuation;

Then if we write the call
Add (sl,5s2,¢in) - sum, cod, ov next <more>
this is exactly the same as writing

clet x =351, y =52
then let z = cO||x> + ¢0|]y> + unsigned (cin)
then let sum = low (width (x}, 2},
cout = z<0>,
ove (x<0> =y<0>) A (x<0> = z<1>)
then <more>

Thus the identifiers sum, cout, and ov are all available to the continuation <more>. (So are the
identifiers X, y, and 2! The identifiers x and y are used in case the evauation of Addend and
Augend involve side effects. The identifier z is used to save time and to make the code more
readable. However, because the Algol “copy rule’ is purposely not used, in order to allow just such
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“identifier conflicts’ when desired, one must be careful not aso to alow undesirable conflicts to
occur. This requires care on the part of the programmer.)

Note that by convention the keyword "$-" is used to precede variables to be bound by the
macro in a $let statement for the benefit of the continuation. This is meant to remind the reader of
the assgnment arrow “«",

Also by convention, the keyword “next” or ‘also” is used to precede to continuation to a macro.
These keywords, when not appearing as part of a macro cal, are used to denote language constructs
that enforce or avoid ordering of execution. By convention these keywords are used in macro calls
to indicate the same ordering or lack of ordering. Sometimes a macro may need to be caled in one
place usng “next” and in another place using “aso”. This is the reason the "vel" construct is
provided: one may write the macro prototype (for example):

(Overflow? ($vel $also #next) Continuation) [“LISP"]
Overflow? alse| next Continuation ["PASCAL"]

The generd rule (in the “PASCAL’ syntax) is that if several “statements’ appear separated by next,
then they are executed in order, barring any errors, and if they are separated by aso, then they may
be permuted into any other order among themselves before being executed; but then if any
statement is a macro cal it may receive the remainder as a continuation. (This is only an intuitive,
not a precise, description.  In particular, it doesn't deal with the possibility of permuting the
statements so that a macro call islast. The intended interpretation is that it receive a “null
continuation”. The interpreter for the language, running on a serid machine, in fact executes aso in
exactly the same way as it executes next. In this context the distinction is thus only a teleologica
one, a commentary on the code.)
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12 Index

ABS, 93, 102.
ABSOLUTE, 318.
absolute addressing, 9, 14.
ACCESS, 9, 12.
access modes, 12, 230.
A COND, 159.

ADD, 61, 101-102.
ADDC, 62, 101-102.
ADDR, 28, 46, 48.
ADDR_IN_IOBUF, 250.
ADDRESS, 3.
address, 5, 38.

address context, 16.
address space, 10, 51.
address transformation, 9.
addressing modes, 31, 38.
ADJBP, 197.
ADJSP, 187.
aignment, 2-3, 5.

A LLOC, 179.

ALSO, 317.

AND, 140.

ANDCT, 142.
ANDTC, 141.

ASCII, 318.

ASCIIV, 318.

ASCIZ, 319.
ASCIZV, 319.
‘AUXO, 317.
AUXPRYV, 319.
AUXPRX, 319.
base-bit, 10.
binary-point, 24.

bit instructions, 198.
bit vector, 22, 29.
BITCNT, 198, 203.
BITEX, 198, 201.
BITEXV, 198,202.
BITFST, 198, 204.
BITRV, 198-199.
BITRVV, 200.
BLKDI, 205, 211, 230.
BLKID, 205, 210, 230.
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BLKINI, 205,209.
BLKIOR, 251.
BLKIOW, 252.
BLKMOQV, 205,208.
BLOCK, 319.
block
data type, 30, 205.
instructions, 205.
BNDSF, 137.
BNDTRP, 173.
boolean, 22.
data type, 138, 198.
instructions, 138.
byte, 2, 29.
BYTE, 319.
byte
data type, 190.
instructions, 190.
byte pointer, 2, 29, 190.
byte selector, 29, 190.
cache, 10, 230.
data, 230.
instruction, 230.
sweeps, 230.
cached read data, 13.
CARRY, 19-20, 101.
CIEN, 242.
CIPND, 246.
CLRUS, 2 18.
CMPSF, 136.
COMMENT, 319.
context, 16, 18, 51.
context switching, 6.
coroutines, 174.
-CRNT_FILE, 18, 51.
CRNT_MODE, 19, 51.
current address space, 16.
current context, 6, 51.
DATA, 12, 22, 205.
data cache, 12, 230.
data type, 22.
block, 30, 205.
boolean, 22, 138, 198.
byte, 29, 190.
byte pointer, 29, 190. .
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byte selector, 190.
flag, 30, 135.
floating-point, 24, 104.
indirect address pointer, 28.
in teger, 23.
DBYT, 195.
DEC, 90, 101-102.
DEFINE, 320.
DEST, 3, 33.
DIBYT, 196.
DISP, 46.
DIV, 85, 102.
divide-by-zero, 20, 102.
DIVL, 87, 102.
DIVLV, 88, 102.
DIVV, 86, 102.
DJMP, 102, 170.
DIMPA, 102, 172.
DIMPZ, 102, 171.
double-word, 4.
boundaries, 5.
byte, 29.
DPA GE, 320.
DSHF, 153.
DSHFV, 154.
DSKP, 102, 163.
DSPACE, 320.
ELSE, 317.
EMULATION, 18.
END, 320.
-EQV, 149.
error bit, 19.
EW, 38, 43, 51-52.
exceptiona conditions, 266.
EXCH, 130.
EXEC_STL, 10.
EX EC-STP, 10.
executive address space, 10.
EXP, 24, 104.
exponent, 24.
extended addressing, 3 1, 38, 43, 48.
extended operand, 43.
extended-precision, 60, 96, 102.
extended-word, 38, 43.
EXTERNAL, 320.
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F, 38, 103.

FABS, 123.

FADD, 108.

FA TAL HA RD-SA VE_A REA, 267,270.

fatal hard traps, 267.

FDIV, 113.

FDIVL, 115.

FDIVLV, 116.

FDIVV, 114.

field, 2.

figure
Byte Pointer, 29, 190.
Constant Extended-Word (EW), 39.
Double-word Floating-Point Format, 24.
Fixed-Based Extended-Word (EW), 39.
Floating-point Exception Propagation (x), 106.
Floating-point Exception Propagation (+), 106.
Floating-point Exception Propagation (/), 107.
Four Quarter-Words, 4.
Half-word Floating-Point Format, 24.
Hard-Trap Save A rea Formats, 270.
HOP, 37.
Indirect Address Pointer, 28, 48.
Interrupt Save Area Format, 237,271.
Interrupt Vector Format, 237.
JOP, 36.
JSR Save Area Format, 174.
Operand Descriptor (OD), 38.
PTE or STE, 2, 9.
SingleWord, 4.
Singleword Floating-Point Format, 24.
Soft-Trap Save Area Format, 271.
SOP, 35.
TOP, 33.
Trap and Interrupt Vector Formats, 269.
Trap and Interrupt Vector Locations, 268.
TRPEXE Save Area Format, 272.
TRPSLF Save Area Format, 272.
Two Haf-Words, 4.
Variable-Based Extended-Word (EW), 39.
Virtual-to-Physical Address Trandation, 11.
XOP, 32.

FIX, 102-103, 119.

fixed-based addressing, 39, 46.

flag, 30.
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data type, 30, 135.
instructions, 135.
software, 12, 21.

FLAGS, 21.

FLG, 9, 12.

FLOAT, 120.

floating-point
data type, 24, 102, 104.
instructions, 102.
NAN, 20.

FLT_NAN, 19-20, 105.

FLT_NAN_MODE, 21, 105.

FLT_OVFL, 19-20, 104.

FLT_OVFL_MODE, 20, 104.

FLT_UNFL,19-20, 104.

FLT_UNFL_MODE, 20, 104.

FMAX, 125.

FMIN, 124.

FMULT, 111.

FMULTL, 112

FNEG, 122.

Forma Description
aignment, 332.
bit field, 332.
con tents, 332.
continuations, 347.
function call, 334.
memories, 332.
number, 332.
procedure call, 334.
symbols, 333.
width, 332.

FSC, 117.

FSCv, 118.

FSUB, 109.

FSUBV, 110.

FTRANS, 121.

half-word, 4.

half-word boundaries, 5.

HALT, 265.

handler address, 266.

hard trap, 250, 266-26".
address transformation, 9.
addressing, 40, 5 |-52.
byte instructions, 190.
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fatal, 267.
nested, 267.
recoverable, 267,
returning from, 267.

hidden bit, 24.

HIGH-ORDER, 3.

HOP, 37.

hop instruction, 37.

HRDERR_VEC, 268.

[, 43, 46, 48.

I/O buffer, 249.

I/O page, 13.

1/O Processor, 249.

IAP, 28-29, 48,5 1.

IBN, 238.

identity mapping, 9.

IF 1, 320.

IF2, 320. --

IF3, 320.

IFB, 322.

IFDEF, 321.

IFDIF, 321.

IFE, 321.

IFG, 321.

IFGE, 32 1.

IFIDN, 321.

IFL, 321.

IFLE, 32 1.

IFN, 321.

IFN 1, 320.

IFN2, 320.

IFN3, 320.

IFNB, 322.

IFNDEF, 321.

.1 IMP, 102, 167.

[IMPA, 102, 169.

| IMPZ, 102, 168.

ILN, 238.

ILO, 3, 48, 51.

immediate byte, 190.

immediate constant, 36.

immediate long-constant, 483.
implementation-dependent features, 249.

ING, 89, 101-102.
indexed indirection, 48.

I ndex
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indexed long constant, 44.
indexing, 39.
indirect address pointer, 28-29, 48, 52.
indirect addressing, 43, 46, 48.
indirect long operand, 48.
input/output  instructions,  249.
INSERT, 317.
INSTRUCTION, 205.
INSTRUCTION-STATE, 58.
ingtruction cache, 230.
ingtruction class, 3 1.
ingtruction-execution  sequence, 57, 237.
INSTRUCTIONS, 12.
instructions

hit, 198.

block, 205.

boolean, 138.

byte, 190.

descriptions, 57.

flag, 135.

floating-point, 102.

input/output, 249.

integer, 60.

interrupt, 237.

jump, 159.

miscellaneous, 259.

move, 126.

performance evaluation, 254.

rotate, 150.

shift, 150.

signed integer, 60.

skip, 159.

stack, 186.

Status, 2 12.

trap, 174.

unsigned integer, 96.
INT_OVFL, 19-20, 102.
INT. OVFL-MODE, 21, 102.
INT_Z_DIV, 19-20, 102.
INT_Z_DIV_MODE, 21, 102;
integer

data type, 23.

ingtructions, 60.

signed, 23.

unsigned, 23.
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integers
signed, 23.
unsigned, 23.
INTERNAL, 322.
interrupt, 57, 174, 266.
ingtructions, 237.
interrupt  bit-number, 238.
interrupt handler, 6.
interrupt level-number, 238.
interrupt save area, 238.
interrupt vector, 238, 266.
interrupt-parameter, 237, 249.
interruptable instructions, 58.
INTIOP, 253.
INTUPT_AT_LVL, 237.
INTUPT_ENB, 237.
INTUPT_LVL_NUM, 238.
INTUPT_PARMI0:255)], 238.
INTUPT_PEND, 237,249.
INTUPT_SAVE_AREA, 237-238, 270.
INTUPT_VEC, 238,268.
INTUPT_VEC_NUM, 238,
IOBUF, 249.
IOBUF_IFACE, 249.
IOBUF_NUM, 250.
IOBUF_PHY_ADDR, 250.
IOBUF physical address, 250.
0P, 249.
IOP. BUS, 249.
IPAGE, 322.
IREG, 28, 48.
ISKP, 102, 162.
ISPA CE, 322.
J, 31, 36.
.JCR, 178.
JMP, 164.
JMPA, 166.
JMPZ, 1665.
JOP, 36.
JPATCH, 37,261.
JSR, 174, 177.
JSR.SAVEAREA, 174.
Jump
general, 36.
PC-relative, 36,
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jump instructions, 36, 159.
JUMPDEST, 3, 36.
JUS, 214.

JUSCLR, 215.

LBYT, 191.

LCOND, 159.
LENGTH, 29, 317.
LIBYT, 192.

LISBYT, 194.

LIST, 322.

LIT, 322.

LO, 3, 43, 46, 48.

LOC, 323.

local data, | 3.
long-constant, 39, 43, 52.
long-operand, 43.
LOW-ORDER, 3.
LSBYT, 193.

M, 3.

MANT, 24.

mantissa, 24.

MAX, 95.

maximum byte length, 190.
MAXNUM, 23, 26.
MBL, 190.
memory/register boundary, 52.
MIN, 94.

MINNUM, 23, 26.
miscellaneous ingtructions, 259.
M LIST, 323.

mod, 60.

MQD, 81, 102.

MODE, 38.

modifiers, 57.

MOD-L, 83, 102.
MODLV, 84, 102.
MODV, 82, 102.

MQV, 127.

MOVADR, 133.

move ingtructions, 126.
MOVF, 26.

MOVMQ, 128.
MOVMS, 129.
MOVPHY, 134.
MULT, 67, 102.

§ 12



§12 Index Page 359

MULTL, 68.

MUNF, 26.

N, 103.

NAN, 20, 26.

NAND, 146.

NEG, 92, 101-102.

negative infinitesmal, 26.

negative infinity, 26.

NESTED_HARD_SAVE_AREA, 267,270.

nested hard traps, 267.

NEXT, 3.

next free location, 186.

NOP, 260.

NOR, 147.

normalization, 24, 103-104.

NOT, 139.

not a number, 26.

null, 9, 12.

oD, 31, 38-39.

ODl, 3L

0oD2, 31.

OP1, 3,31, 52

OP2, 3, 31, 52.

opcode, 3 1, 60.

operand, 3 1.
evaluation, 31, 38.
prefetching, 57.

operand descriptor, 31, 38-39.

operand evaluation, 31.

OR, 143.

ORCT, 145.

ORTC, 144.

overflow, 26, 102, 104.
floating-point, 20.
integer, 20.

OVF, 26.

P, 16, 28, 43, 51.

PA, 9.

page, 9.

page map, 10,230.

page number, 9.

page table, 9.

page table entries, 9.

page table pointers, 9.

page-fault, 58.
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paging, 9.

partial processor status, 19.

PC, 7, 52.

PC- NEXTINSTR, 174.

performance evaluation instructions, 254.

PGNO, 9.

physical address, 9, 230.

POP, 189.

POSITION, 29.

positive infinitesmal, 26.

positive infinity, 26.

PR, 36.

precision, 4, 3 1.

prefetching, 57.

PREV _FILE, 18, 51.

PREV_MODE, 19, 51.

previous address space, 16.

previous context, 6, 19, 51.
bit, 51.

PRINTV, 323.

PRINTX, 323.

PRIO, 18, 237.

priority, 18, 237.

PROC-STATUS, 51,237.

processor status word, 6, 16, 18.

program-counter, 7.

pseudo-registers, 38, 40.

PTE, 9.

PUSH, 188.

quarter-word, 4.

QUO, 69, 102.

QuO02, 73, 102.

QUO2L, 75, 102.

QUO2LYV, 76, 102.

QUO2V, 74, 102.

QUOL, 71, 102.

QUOLYV, 72, 102.

QUOTE, 3 18.

QuoVv, 70, 102.

R, 3, 103.

RADIX, 323.

RCFILE, 225.

RCTR, 255.

READ_ALLOCATE, 12.

read miss, 12.
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read-only, 13.
RECOV-HARDSAVEAREA, 267,270.
recoverable hard traps, 267.
R ECTR, 257.
REG, 46.
REG_FILE, 6.
register, 6, 8.
register file, 6, 16, 18.
register-direct, 40.
RELOCA, 323.
rem, 60.
REM, 77, 102.
REML, 79, 102.
REMLYV, 80, 102.
REMV, 78, 102.
REPEAT, 323.
RET, 181.
RETFS, 183, 26.
RETSR, 180.
return

from hard trap, 267.

from soft trap, 266.
RETUS, 182, 266.
reverse ingtructions, 60, 102.
RIEN, 239.
RIPA R, 247.
RIPND, 243.
RMW, 263.
RND.MODE, 21, 103.
ROT, 157.
rotate instructions, 150.
ROTV, i58.
rounding modes, 21, 103.
RPFILE, 227.
RPID, 229.
RPS, 223.
RRNDMD, 221.
RSPID, 219.
RTA, 7, 33.
RTB, 7, 33.
RUS, 213.
S, 43, 46.
S-1_Uniprocessor, 58.
s1,3 33
s2, 3, 33.
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save area, 266.
hard trap, 267.
JSR, 174.
soft trap, 266.
segment, 9.
segment table, 9.
en tries, 9.
limit, 9.
pointer, 9.
SETUS, 217.
SFTERRVEC, 268.
shadow, 13.
shadow memory, 16, 18.
shared data, 13.
SHF, 151.
SHFA, 102, 155.
SHFAV, 102, 156.
SHFV, 152.
shift ingtructions, 150.
short operand, 39.
short-constant, 40, 52.
short-indexed, 6, 40.
short-operand mode, 39.
sde effect
CARRY, 101.
floating-point instructions, 104.
FLT_NAN, 105.
FLT_OVFL, 104.
FLT_UNFL, 104.
INT_OVFL, 102.
- INT_Z_DI1V, 102
integer ingtructions, 101.
SIEN, 241.
SIGN, 24.
SIGN.EXTEND, 3.
SIGNED, 3.
sgned integer
ingtructions, 60.
simple indirection, 48.
single-word, 4.
boundaries, 5.
byte, 29.
SIPND, 245.
skip ingtructions, 35, 159.
SKP, 35, 161.
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SL,7, 20.

SLR, 131

SLRADR, 132.

SO, 3, 39, 46.

SOFT-TRAP-SAVEAREA, 270.

soft trap, 266.

software flag, 12, 21.

SOP, 35.

SP, 7, 20.

SP_ID, 7, 20.

stack, 7, 19, 174, 186.

stack instructions, 186.

stack-limit, 7, 20.

stack-pointer, 7, 20, 186.

datic code, 13.

status instructions, 2 12.

status word, 18.
processor, 18.
user, 19.

STE, 9.

gticky, 19, 101, 104.

STL, 9.

STP, 9.

STRCMP, 205-206.

SUB, 63, 101-102.

SUBC, 65, 101-102.

SUBCV, 66, 101-102.

subroutines, 174.

SUBV, 64, 101-102.

SWITCH, 318.

SWPDC, 230,232.

SWPDM, 230, 234.

SWPIC, 230-231.

SWPIM, 230,233.

T, 33.

table
Arithmetic and Logical Functions, 336.
Bits of STE.ACCESS and PTE.ACCESS, 15.
BNDTRP modifiers and meanings, 173.
Conditions for setting CARRY, 101.
Dedicated-Function Registers and their Uses, 8.
FASM Character Set, 305.
FASM Fixed-Based Addressing Summary, 55.
FASM Indirect Addressing Summary, 56.
FASM Long-Constant Addressing Summary, 55.
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FASM Short-Operand Addressing Summary, 55.
FASM Variable-Based Addressng Summary, 56.
Fata Hard-Trap Error Numbers, 273.
Fixed-Based Addressng Summary, 53.
Floating-Point Exception Representation, 27.
Floating-Point Representation, 25.
Indirect Address Pointer (IAP), 50.
Indirect Addressing Summary, 54.
Interpretation of TMODE, 175.
LCOND modifier descriptions, 159.
Long-Constant Addressing Summary, 53.
Long-Constant Mode, 45.
Processor/IOBUF Trandations, 249.
Recoverable Hard-Trap Vector Descriptions, 273.
Registers and their Uses, 8.
Short-Operand Addressing Summary, 53.
Short-Operand Mode, 42.
Soft-Trap Vector Descriptions, 274.
Specia Defined Combinations of ACCESS bhits, 15.
Specification of St1, S2, DEST, 33.
STRCMP Results, 206.
Symbol Types and Fonts, 333.
TMODE Vadues and their Uses, 175.
Useful Combinations of ACCESS hits, 15.
Useful Rounding Modes, 104.
USER-STATUSOVFL-MODE, 105.
USER_STATUS_UNFL_MODE, 104.
Variable-Based Addressng Summary, 54.

TERMIN, 323.

three-address instruction, 7, 33.

-TITLE, 324.

TMODE, 175.

TOP, 33.

TRACE_ENB, 19, 58.

TRACE_PEND, 19, 57.

trace-trap, 19.

TRANS, 91, 102.

trap, 174, 266.
bounds, 173.
ingtructions, 174.

trap handler, 6.

trap vector, 266.
hard, 266.
soft, 266.

TRPEXE, 174, 185.
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TRPEXE-SAVEAREA, 271.
TRPEXE_VEC, 268-2609.
TRPEXE_VECS, 174.
TRPSLF, 174, 181, 184.
TRPSLF-SAVEAREA, 271.
TRPSLF. VEC, 268-269.
TRPSLF_VECS, 174.
two-address instruction, 32.
uDIV, 99, 102.
UDIVL, 100, 102.
UMULT, 97, 102.
UMULTL, 98.
undefined, 26.
underflow, 104.
floating-point, 20.
UNF, 26.
unsigned integer --
instructions, 96.
UNUSED, 19, 21.
USE-SHADOW-.PREV, 18, 51.
USER-STATUS, 19, 101-105.
USER-STL, 10.
USER_STP, 10.
user address space, 10.
user status word, 19.
V, 46.
VA, 9.
VA LID, 12.
variable-based addressing, 39, 46.
vector block, 266.
virtual address, 9.
WA IT, 264.
WCFILE, 226.
WCTR, 256.
.WECTR, 258.
WEPIMP, 230, 236.
WFSIMP, 224.
WIEN, 240.
WIPAR, 248.
WIPND, 244,
word, 2.
word boundary, 2.
WPFILE, 228.
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WRITE-ONLY, 13.
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WRITE-THROUGH, 13.
write miss, 12.
WRNDMD, 222.
WSPID, 220.
WUPIMP, 230, 235.
WUSIMP, 216.

X, 38.

XCT, 262.

XLIST, 324.

X M LIST, 324.
XOP, 32.

XOR, 148.
XSPACE, 324.
ZERO-EXTEND, 3.
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