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ABSTRACT :

We discuss in this report the numerical procedures which can be used to obtain
the optimal grid when solving by a finite element nmethod a nodel boundary val ue
problemof elliptic type nodelling the potential flow of an inconpressible in-

viscid fluid. Results of nunerical experiments are presented.
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1. | NTRODUCTI ON
Most boundary value problens of Mthematical Physics are solved by either finite
difference or finite elenment nethods ; both methods use a discretization mesh and

for practical problens whose geometry is conplicated, the grid corresponding to
the nesh shows also a high degree of conplication. A natural question which arises
then is how to choose the discretization grid, for a given nunber of nodes, in
order to mnimze sone functional of the error of approximation ; it is clear that
a great deal of such functionals exist and the choice of one of them in view of
obtaining significant results is by itself a non trivial problem

The Optimal grid problemis a conplicated problem nainly for the two follow ng

reasons :

[:] It is a nonlinear broblem even if the partial differential equation nodelling
the problem under consideration is linear. It neans that the optimal grid is
a function of the data producing a given solution.

The exact solution is not known in general and the main difficulty in this
Optinmal grid problemis to find an error functional and a methodol ogy of
solution able to overcome this nmajor difficulty (in view of some studies it
is of course always possible to solve a problemwith a very high accuracy
using an highly refined - and therefore very costly - discretization grid
and then consider this solution as a reference solution, playing the role

- of the exact solution in the remaining part ot the study).

In this report we shall consider as a nodel problem the solution of a Poisson equation
on a domain with a re-entrant corner. Such problenms occur in Fluid Dynam cs when
considering the potential flows of inconpressible inviscid fluids. Using a finite

el ement approximation of this test problem we shall describe a nunerical procedure

to obtain the grid (or triangulation) which mininmzes the truncation error

2...1/2
e, - !uh-u|],Q = ([Q |V (u, ~w) | “dx)
where u (resp. uh)is the exact (resp. approximate) solution. Nunerical experinents
will show how the nmesh has to behave in the neighbourhood of the re-entrant corner
if one wishes to minimze the above truncation error



2. FORMULATION OF A MODEL PRCBLEM

Let Q@ be a bounded domain of 1R2 whose boundary 3Q is denoted by I' in the follow ng.
Ve suppose that T =T _uT,, with T nT,=P(eeFig. 2.1 below) ; we shall suppose
t hat dl'> 0, where dI' is the superficial neasure of T.
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Figure 2.1

W consider on £ the Poisson problem

S-Aw:f inQ,

(2.1)

- ) -
lolr, =6, » Y, =g,

where f,go,gl are sufficiently snooth.
Let X = {XI’XZ} be the generic point of ]RZ, we use the notation dx = dxldxz. Let
“introduce the (classical) space H] (8) defined by

1 _ 3 3 -2

H () = {¢]|¢, 3x," %, L@}
and VocH1 () defined by

_ 1 _
v, = {oloeH (D, ¢=00n T} .

Mul tiplying by ¢ the first equation in (2.1) and using Geen's fornula we obtain

fvwowdx: f6 dx  YoeV .
Q I °



In fact it can be proved that (2.1) has a unique solution which is also the solu-

tion of the linear variational equation

o

sFi nd d)eHl(Q),lMF = g, » such that .
(2.2)

J ViV dX:Jf¢dx+J gl(b dTl VCDEVOy
Q Q I’]

and conversely (see e.g. LI ONS-MAGENES [1], NECAS [2], ODEN- REDDY {3]for such

equi val ence results).

The variational equation (2.2) is actually equivalent

fromthe Calculus of Variations

Find ve H (D), ol =g, such that
(2.3) 0

(¢]

JW)Q@)Wefm,M%=g
wher e

u@=%f[wﬂu-f
9

Q T

1

Example : The problem below is a particular problem (2.1)

and-
Ay = 0in Q,

ﬁw|P0 =0, %’—IFI as shown on Fig. 2.2

£¢ dx - f g ¢ drl .

to the followi ng problem

with @ as shown on Fig. 2.2



Figure 2.2

The Poisson problem (2.4) can be viewed as nodelling the potential flow of an

. + . .
i nconpressi bl e, inviscid fluid, in the cavity  ; the flow velocity v is given by

v = V¢. W shall give in Sec. 6 the results of nunerical experiments concerning
probl em (2.4).

3. - FINITE ELEMENT APPROXI MATI ON OF THE MODEL PROBLEM

3.1. Triangulation of Q. Fundanental discrete spaces.

For simplicity we shall suppose that © is a bounded _polygonal domain of ]R2 (as
in the exanple of Sec. 2). To approximate (2.1) we shall use a finite elenent

met hod. Let introduce a famly (t:h)h of triangulations of Q obeying the follow ng
properties :

(1) t?h is a finite collection of triangles,
(i) U 7= @ : closure of R,
Te ﬂ;
(iii) If T,T'eL’h with T#T'we only have the follow ng possibilities
(a) TnT' =9,
(b) T,T' have a common vertex and only one,
(c) T,T' have a common side and only one.



As usual we denote by h the maximal side length in E’h.
W define now from ‘C'h an approxi mation vy of Hl () by

Vh = {¢h|¢he Co(ﬁ), d)hl'l‘e P] VTe"‘Ch} X

as usual

P, = space of the polynomals in X 1r% of degree <1.

To approxi mate v0 we make the natural sinplifying assunption

(3.1) The points of |I' at the interface of I‘O and 1‘] are vertices of ‘G’h,

W define then an approxination Voh of v, by

Vo = {¢h|¢hevh , ¢ =0onT}

The two spaces vV, and Vo are finite dinensional spaces and

h h

dim (Vh) = nunber of vertices in th'
nunber of vertices on Ty, including the nodes at
the interface of I’ o and 1“1,

dim (V_) = dim (V) _{

From a conputational point of view it is essential to have convenient vector basis

h; in this direction let us define

for Vh and VO

r, = {P[Pe, P vertex of T, }.

Lop = {P|PeZh, P¢ T}

(then dim(Vh) = Card(Zh), dim(Voh) = Card(Zoh)).
To each Pe Zh we associate a function vg defined by

wp (P) = l,wP(Q) =0 VQeZh, Q#P.



Then 3, = {WP}Pe o (resp. By, - {wP}PE L, ) is a basis of Vv, (resp. V ) and
i f ¢he Vh (resp. Voh) we have the expansion

(3.3) ¢, = ) & (P)w
h Pe T h P
h
(resp.
(3.4) 0 = 1 oy (Pwp)
Pe X
oh

3.2 The approxi nate problem

W suppose in this sub-section that g, i s _continuous, that f,g, are pi ecew se
continuous and that their possible discontinuity lines or points are supported
by sides or vertices of\q,.

W define Vgthh by

Ven = {oplop e Vis 0, (P) = g (P) YPe T_n I} .
To approximate (2.1) we approximate in fact the variational problem (2.2) by

Fi nd ll.!he Vgh such that
(3.5)
JQ vwh-vq)h dx = | fh cbh dx + Jl‘ 81h ¢h ar VCbhe Voh s

Y !

wher e fh and 8 are (for exenple) piecewi se linear approximtions of f and 8
It can be proved (see e.g. [3]1, [4]1, [5]) that (3.5) has a unique solution,

it can be also proved (see again [31-[5]) that under reasonable assunptions on
£, 8,0 8 and the fanily (‘iﬁ‘h)h we have

(3.6) lim ||y, -y =0,
wo L2

(1) Moyl

where, for <1>eﬂl,|<1>|1’9=(| 96| %ax) /2.
Q
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3.3. Formulation of the approximate problem as a linear system

From a conputational point of view it is nore convenient to fornulate (3.5) as a
linear system W observe that (3.5) is clearly equivalent to

Fi nd whe Vgh such that
(3.8)

f W)h-VwP dx = J fthdx + J g]thdT Y Wp e/j’oh .
Q Q I

Using the expansion
Gy = ] w@w + [ g @u,
€

-
Qe 2op QeZynly

of wh, we can express (3.8) (and equivalently (3.5)) as a linear systemin the
wh(Q) ,Qe Zoh , Whose matrix is symretric and positive definite ; this systemis

Z ll)h(Q)JVw'dex:wadx+f g. w. dx - ) g(Q)JVW'deX,
Q 'vp h'P 1h'P 0 Q P
(3.10) Qe Zoh Q Q I'] Qezhﬂfo Q

for all P« Zoh .

To solve (3.10) we can use either direct methods (Gauss, Chol esky, etc...) or
iterative (S.OR, Conjugate Gadient with or without scaling, etc...).

From a conputational point of view it is fairly easy to conpute the right hand side
and the matrix coefficients of the linear system (3.10) for the follow ng reasons :

- Since v iS piecewise linear YP, its gradient is a piecew se constant vector ;

- Since:f_ and g1y, are pi ecewi se linear, f w_, and f are piecew se quadratic.

n 4 n"'p n®1h
- The support QP of Vs wher e QP = {xlxe Q, wP(x) # 0}, consists of the union of

those triangles of t;’n with P as one of their vertices.

From these properties the various integrals required by (3.10) have to be done
each time on a very small nunber of triangles and the integrand is,on each triangle,
a | ow degree polynonm al whose integration can be easily carried out exactly.
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4. Formulation of the Gid Optimzation problem
The Gid Optimzation problem will be considered for a famly of triangulations

with
- the same topol ogy,

- the sane nunber of vertices.

Some nodes playing an inportant role (for exanple, separation points between 1‘0
and I‘l or discontinuity points of gl) are fixed. For conputational purposes we
have to nunmber the nodes i.e. the vertices of ‘C; Let Nh = Card (Zh)’ t hen

N ; . i
L = {Pi}i=1 ; weNSenote by a;,8, the two coordinates of P, (i.e. 11. = {ai,Bi})
and define a,BeR by
N N
- h _ h
9,‘ = {ai}i=l s B = {Bi}i=l

We introduce now a subset Ec of ]R2Nh consisting of the nodes corresponding to a
given nunber of nodes and, possibly, several other conditions(some nodes are
fixed, for exanple).

From {a,8} ¢ E; we can define T and therefore the approximate problem

{
’ whe Vgh R
(4.1)

( JQ prh-Vd)h dx = [thcbhdx + T g]hthdl" Y d)h € Voh :
1

. it neans that the solution of (4.1) is in fact a function of {a,B}, once f, 8,7 8

~ o~

are given.
Fol | owi ng Mc NEICE-MARCAL [6] we consider the Gid Optimzation problem bel ow

: . 1 2
(4.2) Min -J |V (w, -v) | “dx
{g,g}eEf 2 Q h

where in (4.2), ¢ is the solution of the continuous problem and where the discrete

sol ution by is a function of «o,B through (4.1).

The above problemis a nonlinear, non-convex progranming problem ; we shall not
discuss in this report the question of existence and uniqueness which is a non

trivial one (in fact the existence property alone is not difficult to prove,
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provi ded that E is "small enough", since in that case conpactness techniques

can usually be used).

The nunerical solution of (4.2) which is a non trivial problemis considered in
Sec. 5.

5. - | TERATIVE SOLUTION OF THE CPTI M ZATI ON PROBLEM

In this section we shall suppose for sinplicity that fh = f,

8y = 8 and t hat

g, =0O(t hen Vgh = Voh). Al these assunptions can be easily satisfied for the

exanple in Sec. 2.

5.1. Refornulation of the Gid Optimzation problem

As nentioned in Sec. 1, the fact that ¥ is not known can be a difficulty ; actually

it is not the case for‘the mnimzation problem (4.2). W have first

(5. 1) %-JQIV(wh—W)|de _ %~JQ|th|2dx - fﬂ VY dx + %-|QI\¢Ide.

From t he above assunptions on f, 8, 8 and from(2.2), (4.1) we have
2
(5.2) J VeV, dx = J fp, dx + f g, dl'= J My | “dx .
Q h Q h F1 1"h Q h
From (5.1), (5.2) we obtain
1 2 1 2 1 2
(5.3) 7-fﬂlv<wh—w)] dx = - z.JQ|vwh| dx + z.Jlewl dx .

Since L}lW)lzdx i s independent of i‘Zn, the mininmzation problem (4.2) can equivalently
be witten

(5.4) Min  {- 1-J v, | 2dx}
' fo,pYer, 2 o Tl ax

or (from(5.2))
(5.4) Mn {-J fy. dx - [ gy dl't
? fa,pler, Jo P r,'n

where in (5.4)], (5.4)2, ll}h is a function of o,B through (4.1). W observe that
Y does not occur in (5.4)], (5.4)2.
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5.2. On the calculation of the derivative of the cost function.
In view of using descent nethods (like steepest descent or conjugate gradient) it

is of fundamental inportance to have at our disposal the derivative, i.e. the
gradient, of the cost function with respect to {a,B}.
We just consider the cost function in (5.4)1, since the second case can be

treated in a simlar way. Let define therefore

it 8-R,
2Nh
(where g is an open set of R containi ng Ef) by
‘J(OLB)—-—[ |V¢| dx,
(5.5)
wh function of a,B through (4.1).
W have
.= 9] d 2
8j = 89'69 + 51- JQ *Vép, dx - E-sa-(fg |vwh| dx)+8a -
(5.6) ~ ~
13

2
ST

we also have by differentiation of (4.1)

~

d
JQ deh V¢>hdx + o (JQ th°V¢hdx)°69 + 5@ (J W}h°V¢hdx)'6§ =

i . 3 d "
(5.7) = (JQ £ ¢ dx)-da + 36 ([Q £ ¢, dx)«6p + 7 ( Ir g 4,dD) & m ¢

- ~ ~ 1
3
+ 5-§ (IP gl¢hdI‘)-6§, Vd>heV0h .
1
Taki ng then ¢h=wh in (5.7), we obtain from(5.6), (5.7) that
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139 2
g— (jQ IVLl)h|2dx)~69L t 358 ([Q |7y, | “dx) <88 +

"‘\
(o]
e
]
N —

9 3 3 e
- = ({ £9,d%) * 8o - == (J £ dx) +68 - 5 (J g, ¥ dl) -8
¢ g SR K] r,
-3 (| g dr)ess
3B &1%h B
£on
which inplies that

3 13 2. 8. 3

(5.8), =12 (fQ vy, | 240 - = <fQ £, ) - <L g0, 4%
N h ~ - !
35 13

- I

o 93 9] : . :
Obt ai ni ng 33& and 15]7; from(5.8)l, (5.8)2, once wh is known, is a painful task, but
Wit hout theoretical difficulty. In view of the numerical treatment of the exanple
of Sec. 2, we shall suppose that f=0, g = const. and give nore details about the

cal culation of the above derivatives.

‘4 be three points of ]R2 vertices of a triangle ; we suppose that the

Let M, ,M,,)
tri angl e M]MZM3 s a positive triangle (see Fig. 5.1) denoted by T, in the sequel.

My

T

o

M] M2
Figure 5.1
Let M, = {aﬂ_,lﬁ:.} , i=1,2,3 ; if ¢ is a polynonial of degree=<1 defined on 'Ij we
use the notation ¢i = ¢(Mi) . i=1,2,3.
It is then quite easy to prove that
(5.9) o0 =1 _ {¢. (b,-b.)+d.(b,-b,)+d. (b, -b,)}
A ’5§2m(T0)123231312’

1

¢ !
(5.9), T - m—To) {¢1 (a3_32)+¢2(al-33)+¢3(32_31)}
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wher e m(To), which is the measure of To’ is given by

2m(T_) = a,(b,=b,)+a,(by=b ) +as(b,-b,) =
(5. 10)

= bl(a3—a2)+b2(a]-a3)+b3(a2-a1).

We obtain from (5.9)1 , (5.9)2

2 1 _ —> —> 2
(5.11) |V| " —=——o (¢, MM +o. M. M. 4 ¢ .M M, )
1 7273 727371 312
(2m(T_))
wher e Vz = V-V, i.e. the inner product of V with itself. W have then from (5.11)"

since V¢ is constant over TO’
(5.12) Voldx = 5 b (6 MM, 4 ¢ MM + o.M M)
' T 2 (2m(T) ) 17273 % %2737 3120

[e]

Let (bheV we have then from (5.12)

h

!

2. — - ; 2
(5.13) f Vo | “dx = % L gmcry @ir ParPar + $2rParfir + ®37Pi782r)
Q etﬁ

where m(T) = neasure of T and where PiT’ i=1,2,3 are the vertices of T in such a

way t hat PITPZTP3T is a positive triangle ; we set ¢h(PiT) = ¢iT , 1=1,2,3 .
) It follows then from(5.9)], (5.9)2,(5.10), (5.13) that the function
2
(.6 > [ 170, e
- Q

is a rational function of the oci,Bi whose partial derivatives are easy to conpute

from the above formulae. W observe also that, in the expansion (5.13)' the coor-
dinates of a given node occur only for those triangles with that node as a vertex ;
this property inplies that nost of the terms in the right and side of (5.13) do
not contain the corresponding ai,Bi and therefore their derivatives with respect

to these paraneters vanish.



- 16 -

Since we supposed f=O we just have to consider now the calculation of -a% ( whdx)'
IT

3 . .

53'( . whdx) ; consider, as on Figure 5.2, a part of T] between the two-fixea nodes
= 1 =

A( Pj) and B( Pj+r)'

Pj+r~1

i*2

Pj+l

=P.
]

Figure 5.2

This edge AB is supported by a line whose equation is X, = mx;+Y ; We suppose,
as on Fig. 5.2, that 0<m<+», W have then, V¢hevh, and with ¢, = ¢(Pk)

1/2 j+r-1

_ s _
(5.14) LTB q>h dl' = ___i“.z. k:Zj (ock+] oak)(¢k+]+¢k)

fromwhich we obtain that for k=j+l,...,j+r-I]

21/2
2 _ (#m9
W can al so use the Bk as independent variables (if ABis not supported by an

hori zontal |ine).

5.3. A conjugate gradient algorithm for solving the Optimn zation Problem
Usual Iy the Grid Optinization problemcan be reduced to a Non Linear Progranmi ng

probl em of the follow ng type

Find ueR" such that
(5.16)
Wi yver

where j ]RN *Ris a c! functional. Let us describe a conjugate gradient algorithm

with scaling ; we choose a Polak-Ribiére type algorithm (see POLAK L7 1) since it
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seens to be nore efficient that the Fletcher-Reevesvariant (cf. POLAK [ 7 1again).

In the sequel S is a symetric, positive definite matrix, the scaling matrix ;

the algorithmis defined as follows
o N .
(5.17) u” eR" given,

(5.18) g° = Vj(u”) ,

-1 o

(5.19) ° = s

~

(5.10) w°

1
Lot

then for n2 0 with un, w" known

find pne]R such that

(5.21)
jup wh < j (u"-pu™) vy p ¢R,
(5.22) M= e
(5. 23) g™ = viw™h
(5. 24) N1 =s~'1gn+|
n+l n+l n ntl n+l n
Sr ,r  -r) (g »,r  -r)
(5. 25) Yoo = = ,
& (s £",r™M g",r™
+H _ n+l n
(5. 26) Wt =y Yo v

In (5.25)" (+,® ) denotes the usual scalar product of ]RN.

The convergence of (5.17)-(5.26) is studied in [ 1(for S=I) where sufficient condi-
tions for the convergence are given. In the particular case of problem (4.2) i.e.

the Giid Optimzation problemwe have used S=I, but we have the feeling that taking
for S an operator which is the discrete analogous of a suitable differential operator
can be beneficial for the convergence ; the precise choice of such an operator is not
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clear at the monent but several alternatives based on discrete second ordre elliptic

operators are under consideration.

Concerning the one-dinensional problem (5.21) we can use a dichotony or Fibonacc
met hod.
In the case of the Gid Optimization problem we have to observe that each cost

function evaluation requires the solution of a discrete elliptic problem (nanely
(4.1)) which is by itself a non trivial task.

6. - NUMERI CAL EXPERI MENTS.
6.1. Description of the test problem
W consider a test problemfollowi ng the exanple of Sec. 2. W took for & the

domain of Fig. 6.1,

(0'0.5) %%—= 0 (3'0.5)
y=0 ro W 1
Q an
(1,0)
(0,0) A _ g
W _
I 0
M
on
(1,-.5) (3,-.5)
Figure 6.1
W have also shown on Figure 6.1 the boundary conditions ; in £ we have
(6.1) Ay = 0.

The initial triangulation is shown on Fig. 6.2 and contains 500 triangles and
291 nodes. W suppose that the nodes on FO’ and also the corners are fixed, but
we can nove all the other nodes.

We have shown on Fig. 6.3, 6.4 the equipotential lines and the stream |ines

respectively.
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6.2. Nunerical results.

We have used the conjugate gradient algorithm of Sec. 5.3 to obtain the optinal
grid ; the problem under consideration is a Non-Linear Programming problem with
562 variables. The discrete elliptic problem (4.1) we have to solve several
times at each iteration has 285 unknowns ; to solve it we have used a direct

met hod based on Chol esky factorization.

As nmentioned before we have used S=I ; the stationarity of the iterates is obtained
in approximately 50 iterations and we have shown on Figures 6.5, 6.6, 6.7 the
computed optimal grid and the correspondi ng equipotential and stream lines.

The conputational tine for 59 iterations is 17 minutes on the computer CIl IRI'S 80 ;
this time include everything (i.e. printing, plotting, etc...). It is clear that the
most demanding part is the Cholesky factorization required by each cost function
evaluation. W think that using a conjugate gradient method scaled by a constant

matrix can inprove substantially the conputational tinme.

From the optimal conputed grid (shown on Fig. 6.5) we observe close to the re-
entrant corner a stretching phenonenon along the stream lines for the triangles
of ‘(‘."h ; far enough of this corner the triangulation is not nodified. Finally the
optimal ’G’;hbehaves at what can be expected fromintuition.

7. - CONCLUSI ON.

We- have considered in this report a procedure for computing the optimal grid in the
finite element approximation of an elliptic test problem The extension to nore
conplicated problens, involving non linearities is still an open problem ; however
follow ng also the ideas devel opped in MARROCCO Pl RONNEAU [8 1 and BEGIS-GLOWINSKI
[ 971 simlar techniques have proved to be very useful for solving free boundary

probl ens and al so optinmum design problems in which the unknown is for exanple

the domain itself. At the monent, in collaboration with Avions Marcel-Dassault/

Bréguet Aviation, we are involved in an active research problem to conpute airfoil
or wing section of optimal shape for the potential flow of a conpressible inviscid
fluid in the transonic range, the flow being modelled by the full potential tran-

soni ¢ equati on.
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