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ABSTRACT :

We discuss in this report the numerical procedures which can be used to obtain

the optimal grid when solving by a finite element method a model boundary value

problem of elliptic type modelling the potential flow of an incompressible in-

viscid fluid. Results of numerical experiments are presented.
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1 . INTRODUCTION

Most boundary value problems of Mathematical Physics are solved by either finite

difference or finite element methods ; both methods use a discretization mesh and

for practical problems whose geometry is complicated, the grid corresponding to

the mesh shows also a high degree of complication. A natural question which arises

then is how to choose the discretization grid, for a given number of nodes, in

order to minimize some functional of the error of approximation ; it is clear that

a great deal of such functionals exist and the choice of one of them, in view of

obtaining significant results is by itself a non trivial problem.

The Optimal grid problem is a complicated problem mainly for the two following

reasons :

-_
cl1 It is a nonlinear problem even if the partial differential equation modelling

the problem under consideration is linear. It means that the optimal grid is

a function of the data producing a given solution.

cl2 The exact solution is not known in general and the main difficulty in this
Optimal grid problem is to find an error functional and a methodology of

solution able to overcome this major difficulty (in view of some studies it

is of course always possible to solve a problem with a very high accuracy

using an highly refined - and therefore very costly - discretization grid,

and then consider this solution as a reference solution, playing the role

- of the exact solution in the remaining part ot the study).

In this report we shall consider as a model problem the solution of a Poisson equation

on a domain with a re-entrant corner. Such problems occur in Fluid Dynamics when

considering the potential flows of incompressible inviscid fluids. Using a finite

element approximation of this test problem we shall describe a numerical procedure

to obtain the grid (or triangulation) which minimizes the truncation error

eh = I\-U/l,~ = /v(uh-u)/2dd'2

where u (resp. u.$ is the exact (resp. approximate) solution. Numerical experiments

will show how the mesh has to behave in the neighbourhood of the re-entrant corner

if one wishes to minimize the above truncation error.
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2. FORMULATION OF A MODEL PROBLEM.

Let R be a bounded domain of R2 whose boundary 3R is denoted by I' in the following.

We suppose that r = ITour , with lYo n r] = 8 (see Fig. 2.1 below)
t

; we shall suppose

ithat
I

dIY> 0, where dr
r 0

s the superficial measure of II'.

Figure 2.1

We consider on s2 the Poisson problem

1
-4J = f in s2,

(2.1)

1 Qlr, = go 9 $!jr = E$ 9
1

where f,go,gl are sufficiently smooth.

Let x = (x 1,x2} be the generic point of R2, we use the notation dx = dx dx

- introduce the (classical) space H'(n) defined by

1 2. Let

and VocH1(Q) defined by

vO = {&IE H'(Q) , $=O on lYo) .

Multiplying by C$ the first equation in (2.1) and using Green's formula we obtain

V$+$ dx =
I

f$ dx w$EV
52 R

0’
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In fact it can be proved that (2.1) has a unique solution which is also the solu-

tion of the linear variational equation

Find JIEH'(S~),$/~ = go Y such that .

(2.21

V$J~V@ dx = w-v
R

rl

g,@ dr 0’

and conversely (see e.g. LIONS-MAGENES Cl], NECAS [23, ODEN-REDDY [3]for such

equivalence results).

The variational equation (2.2) is actually equivalent to the following problem

from the Calculus of Variations

. i

Find $E H'(n), $1, = go9 such that

(2.3)
0

J(q) <J(4) ‘f@~H~(fi),  $lr = go
0

where

Example : The problem below is a particular problem (2.1) with 52 as shown on Fig. 2.2

and-

i
A$ = 0 in s2,

(2.4)

'$1, as shown on Fig. 2.2
0 1
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a$ 0-=an

$=O

r0

Figure 2.2

a$ 0-=
an

a$ 1-=
an

The Poisson problem (2.4) can be viewed as modelling the potential flow of an

incompressible, inviscid fluid, in the cavity Q ; the flow velocity "v is given by
?
vi = V+. We shall give in Sec. 6 the results of numerical experiments concerning

problem (2.4).

3. - FINITE ELEMENT APPROXIMATION OF THE MODEL PROBLEM.

3.1. Triangulation of 52. Fundamental discrete spaces.

- For simplicity we shall suppose that R is a bounded polygonal domain of X2 (as

in the example of Sec. 2). To approximate (2.1) we shall use a finite element

method. Let introduce a family (G,), of triangulations of R obeying the following

properties :

(9 % is a finite collection of triangles,

(ii) U T =W(L closure of R),
TE

5-l

(iii) If T,T'E e;l
with T # T' we only have the following possibilities

(a) TnT' = 0 ,

(b) T,T' have a common vertex and only one,

(c) T,T' have a common side and only one.
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As usual we denote by h the maximal side length in ch.-
We define now from rh an approximation Vh of H'(n) by

vh = ~~hl~hE co(n), @hlTEpl  VTEc$ ;

as usual

p1 = space of the polynomials in x ,x
1 2 of degree 21.

To approximate V. we make the natural simplifying assumption

(3.1) The points of I' at the interface of r 0 and rl are vertices of E
h'

We define then an approximation Voh of V. by

The two spaces Vh and Voh are finite dimensional spaces and

dim (V,) = number of vertices in Z'
h'

dim cvoh> = dim (V,) - number of vertices on To, including the nodes at
the interface of I' o and r

1' >

From a computational point of view it is essential to have convenient vector basis

for Vh and Voh ; in this direction let us define

ch = (PlPc~, P vertex of% }
h '

c
oh

= tPIPEch' '4 ro)

(then dim(Vh) = Card(Ch),  dim(Voh) = Card(Coh)).

To each PE Ch we associate a function w defined by
P

w EV
P h'

(3.2)

wp (P> = 1, w,(Q) =o trQEzh,Q#P.
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ThenBh = {Wp)pE c (resp.  B
h

oh = '"P'P, C
oh

) is a basis of Vh (resp. Voh) and

if @he vh (resp. Voh) we have the expansion

c303)  +h = 1 +,(p)w,
PE Ch

(resp.

c304)  oh = 1 $h(p)wp)  l

PC 'oh

3.2 The approximate problem.

We suppose in this sub-section that go is continuous, that f,gl are piecewise

continuous and that their possible discontinuity lines or points are supported

by sides or vertices ofyfh.

We define V
gh

"'h bY

Vgh = {@hl$hE 'hY @,('> = go(') vpE r. n ch> '

To approximate (2.1) we approximate in fact the variational problem (2.2) by

Find $he V
&

such that

(3.5)

52
V$,.V$, dx =

Infh 'h dx + r glh @h dr ye,' Voh '

1

where f
h and glh

are (for exemple) piecewise linear approximations of f and gl.

It can be proved (see e.g. 131, [41, [51) that (3.5) has a unique solution,

it can be also proved (see again [31-[5])  that under reasonable assumptions on

f' go, gl and the family (eh)h we have

(3*6)  lirn lbkh-$II
h-t0

(3.7) lirn ($,-+I, 52 = '
h+O '

where, for (OeHl, 1+11 52 = (
I

lV$12dx)1'2:
' G?
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3.3. Formulation of the approximate problem as a linear system.

From a computational point of view it is more convenient to formulate (3.5) as a

linear system. We observe that (3.5) is clearly equivalent to

Find $J,E V
gh

such that

(3.8)

R
VI/,J~*VW~ dx =

R
fhwpdx +

rl

glhWpdr v wp doh '

Using the expansion

(3*g) +h = 1 ‘kh(Q)Wp  + 1
QE 'oh Q E Ch n r.

go(QhQ

--_
Of $,' we can express (3.8) (and equivalently (3.5)) as a linear system in the

d',(Q) Y QE Cob Y whose matrix is symmetric and positive definite ; this system is

wQ*vwpdx = lQfhwpdx + 1

rl

glhWpdX - c go(Q) VW
Q~~hnro i-2 Q

*VW dxP
,

To solve (3.10) we can use either direct methods (Gauss, Cholesky, etc...) or

iterative (S.O.R., Conjugate Gradient with or without scaling, etc...).

From a computational point of view it is fairly easy to compute the right hand side

and the matrix coefficients of the linear system (3.10) for the following reasons :

- Since wp is piecewise linear VP, its gradient is a piecewise constant vector ;

- Since-fh and glh are piecewise linear, fhWp and fhglh are piecewise quadratic.

- The support ";ip of wp, where R, = Ixlx~ S2, w,(x) # 01, consists of the union of

those triangles of 't=L, with P as one of their vertices.

From these properties the various integrals required by (3.10) have to be done

each time on a very small number of triangles and the integrand is,on  each triangle,

a low degree polynomial whose integration can be easily carried out exactly.
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4. Formulation of the Grid Optimization problem.

The Grid Optimization problem will be considered for a family of triangulations

with

- the same topology, ._

- the same number of vertices.

Some nodes playing an important role (for example, separation points between I'
0

and rl or discontinuity points of g,) are fixed. For computational purposes we

have to number the nodes i.e. the vertices ofch. Let N

= iPil;hl ;
h

= Card (I,>, then

'h = we denote by ai,

and define a,BelRNh
6; the two coordinates of Pi (i.e. P. = {ai,8i))

1
byw -Y

Nh
~ = “li’i 1

Nh
) B = {Bi}i 1 .= =

We introduce now a subset Ef oflR2Nh consisting of the nodes corresponding to a

given number of nodes and, possibly, several other conditions(some nodes are

. fixed, for example).

From {a,B)c Ef we can define5
'v 'u and therefore the approximate problem

$hEVgh '
(4.1)

i-2
V+,+$, dx = nfh(#&dx  +

I
r glh@hdr v @h ' Voh ;

1

- it means that the solution of (4.1) is in fact a function of {a,@),  once f, go, g1
cy cy

are given.

Following MC NEICE-MARCAL [6] we consider the Grid Optimization problem below

(4:2)
fi
l'(JI,-$>I 2dx

where in (4.2)' $ is the solution of the continuous problem and where the discrete

solution $, is a function of a,6 through (4.1).N Y

The above problem is a nonlinear, non-convex programming problem ; we shall not

discuss in this report the question of existence and uniqueness which is a non

trivial one (in fact the existence property alone is not difficult to prove,
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provided that Ef is "small enough", since in that case compactness techniques

can usually be used).

The numerical solution of (4.2) which is a non trivial problem is considered in

Sec. 5.

5. - ITERATIVE SOLUTION OF THE OPTIMIZATION PROBLEM.

In this section we shall suppose for simplicity that fh = f, glh = g1 and that

go =O(then V
&

= Voh).  All these assumptions can be easily satisfied for the

example in Sec. 2.

5.1. Reformulation of the Grid Optimization problem.

As mentioned in Sec. 1, the fact that + is not known can be a difficulty ; actually

it is not the case for‘the minimization problem (4.2). We have first

(5.1) ; ahbh-$)j2dX = ; 1 lVQh12dx - j
1

vqhov$ dx + 2
I

I $1v 2 dx .
R R R

From the above assumptions on f, go, g1 and from (2.2)'  (4.1) we have

(5.2)
2

Q
V@VQhdx = nfQh dx + r gl+,dr= I Q I dx .

1

R V h

From (5.1)'  (5.2) we obtain

(5-3) ; (o(~h-@)12dx = - + I"$,1 2dx + ; IV$12dx .
R i-2 52

Since
i !a

IV$12dx is independent of T, the minimization problem (4.2) can equivalently

be written

or (from (5.2))

(504)~ Min (-
(a, fhEf 52

f$Jhdx -

w w rl

glQhdr) '

where in (5.4)1, (5.4)2, $, is a function of a,6 through (4.1). We observe thatY -
I/J does not occur in (5.4)1, (5.4)2.
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5.2. On the calculation of the derivative of the cost function.

In view of using descent methods (like steepest descent or conjugate gradient) it

is of fundamental importance to have at our disposal the derivative, i.e. the

gradient, of the cost function with respect to (a,/3).

We just consider the cost function in (5.4)1,  since the second case can be

treated in a similar way. Let define therefore

j : &+lR’

(where 8 is an open set of 1R 2Nh containing Ef) by

I j(a,B) = - $

(5.5) -

I + I
52
V h 2dx ,

Q, function of a,6 through (4.1).cy Y

We have

(5.6)

6j = IV@h/2dx)*6a -

we also have by differentiation of (4.1)

- h+$hdx)*68 =

(5.7)

rl

gl ehdr) l h +

.
Taking then c$~=$~ in (5.7)' we obtain from (5.6)'  (5.7) that
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IV$h/2dx)*6a  + i&j- (j
i-2

lV$,12dx)*6B  +

i-2
f$hdx)*GB - gl$hdr)'da -

which implies that

aj ajObtaining aa and z from (5.8)1,  (5.8)2,  once ljlh is known, is a painful task, but

without the;retica? difficulty. In view of the numerical treatment of the example

of Sec. 2, we shall suppose that f=O, gl= const. and give more details about the

calculation of the above derivatives.

Let Ml,M2,M3 be three points of lR2, vertices of a triangle ; we suppose that the
.

triangle M1M2M3 is a positive triangle (see Fig. 5.1) denoted by To in the sequel.

Figure 5.1

Let Mi = {a.,b.) , i=1,2,31 1 ; if 4 is a polynomial of degrees1 defined on 'I we0
use the notation ai = $(Mi)  , i=1,2,3.

It is then quite easy to prove that

w 1
xl= 2m(To) hl (b2-b3)+~,(b3-b1)+~,(b1-b2~~ ,

(W2 w 1

ax2 = 2m(To) (0, (a3-a2>+~2(al-a3)+~3(a2-al)
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where m(To), which is the measure of To, is given by

2mUo) = al(b2-b3)+a2(b3-bl)+a3(bl-b2)  =
._

(5.10)

= bl(a3-a2)+b2(al-a3)+b3(a2-al).

We obtain from (5.9)1, (5.9)2

(5.11) lV$12 = l
(2m(To))

2 ($1 MT3+Q2$l + Q3"32)2

where $2 = 3*$, i.e. the inner product of 3 with itself. We have then from (5.11)'

since 04 is constant over T0’

(5.12) I 44V 2dx =

TO

1 1 2
7 (2m(To) > ($1~2~3 + 02"3Ml- + $3M72) .

Let $h~Vh we have then from (5.12)

(5.13) I 4 I 1
- (0

- 2

!a
V h 2dx = + 1

T & 2m(T) 1T z + '2TG + '3TplTp2T)
h

where m(T) = measure of T and where P
iT'

i=1,2,3 are the vertices of T in such a

way that PlTP2TP3T is a positive triangle ; we set @,(PiT) = aiT , i=l,2,3 .

It follows then from (5.9)1, (5.9)2,(5.10),  (5.13) that the function

{%6) -+ 144- SW R
v h 2dx

is a rational function of the "i,Bi whose partial derivatives are easy to compute

from the above formulae. We observe also that, in the expansion (5.13)' the coor-

dinates of a given node occur only for those triangles with that node as a vertex ;

this property implies that most of the terms in the right and side of (5.13) do

not contain the corresponding ai,Bi and therefore their derivatives with respect

to these parameters vanish.
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aSince we supposed f=O we just have to consider now the calculation of aa (
I

@ dx),
r h

as on Figure 5.2, a part of I? 1 between the two-fixe a nodes

._

B=P.
3+r

A=P.
J

Figure 5.2

This edge AB is supported by a line whose equation is x2 = mxl+Y ; we suppose,

as on Fig. 5.2, that O<m<+03. We have then,V@hEVh, and with @k = $(Pk)

(5.14) I 2 l/2

2i3
Oh (-jr = (l+m2)

j+r-1

c
k=j

from which we obtain that for k=j+l,...,j+r-1

a I 2 l/2
(5.15)  T ( zB$h dr) = (l+m ; (+k-@k+l>  l

-

We can also use the 6, as independent variables (if AB is not supported by an

horizontal line).

5.3. A conjugate gradient algorithm for solving the Optimization Problem.-

Usually the Grid Optimization problem can be reduced to a Non Linear Programming

problem of the following type

Find uc3RN such that- -
(5.16)

j(u><j(v) VvEIRN

where j : R
N

+lR is a Cl functional. Let us describe a conjugate gradient algorithm

with scaling ; we choose a Polak-Ribiere type algorithm (see POLAK [7 1) since it
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seems to be more efficient that the Fletcher-Reevesvariant (cf. POLAK [ 7 1 again).

In the sequel S is a symmetric, positive definite matrix, the scaling matrix ;

the algorithm is defined as follows

(5.17) u"EIRN given,

(5.18) go = Vj(u') ,cy -

(5.19) E0 = _s-'go

(5.10) w" = r"

then for n> 0 with ,u~, w" known

(5.21)

(5.22)

find p EIEX such that
- n

j (un-pnyn) 5 j (un-pwn> v p EIR,

n+lU = un-pnyn

(5.23)
n+

!z
1
= Vj(u"+l)5 cy

(5.24)
n+

r
1 -1 n+l
=s gcv -

(5.25)

(5.26)

(,S rn+l ,rn+l -rn) (g”+l ,rn+l -rn)

Yn+l =
=

c,s _m'fn> (g'_r">

n+l n+lW = r + yn+yn  l

In (5.25)' (o, l ) denotes the usual scalar product oflRN.

The convergence of (5.17)-(5.26)  is studied in [ 1 (for S=I) where sufficient condi-

tions for the convergence are given. In the particular case of problem (4.2) i.e.

the Grid Optimization problem we have used S=I, but we have the feeling that taking

for S an operator which is the discrete analogous of a suitable differential operator

can be beneficial for the convergence ; the precise choice of such an operator is not
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Figure 6.2

The Initial Grid
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Figure 6.3

Equipotential lines
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Figure 6.4

Stream lines
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clear at the moment but several alternatives based on discrete second ordre elliptic

operators are under consideration.

Concerning the one-dimensional problem (5.21) we can use a dichotomy or Fibonacci

method.

In the case of the Grid Optimization problem we have to observe that each cost

function evaluation requires the solution of a discrete elliptic problem (namely

(4.1)) which is by itself a non trivial task.

6. - NUMERICAL EXPERIMENTS.

6.1. Description of the test problem.

We consider a test problem following the example of Sec. 2. We took for 0 the

domain of Fig. 6.1,

(0'0.5) aQ 0-=2T-l (3'0.5)

(I,-05)

Figure 6.1

We have also shown on Figure 6.1 the boundary conditions ; in fi we have

(6.1) A@ = 0.

The initial triangulation is shown on Fig. 6.2 and contains 500 triangles and

291 nodes. We suppose that the nodes on l" 0’ and also the corners are fixed, but

we can move all the other nodes.

We have shown on Fig. 6.3, 6.4 the equipotential lines and the stream lines,

respectively.
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6.2. Numerical results.

We have used the conjugate gradient algorithm of Sec. 5.3 to obtain the optimal

grid ; the problem under consideration is a Non-Linear Programming problem with

562 variables. The discrete elliptic problem (4.1) we have to solve several

times at each iteration has 285 unknowns ; to solve it we have used a direct

method based on Cholesky factorization.

As mentioned before we have used S=I ; the stationarity of the iterates is obtained

in approximately 50 iterations and we have shown on Figures 6.5, 6.6, 6.7 the

computed optimal grid and the corresponding equipotential and stream lines.

The computational time for 59 iterations is 17 minutes on the computer CII IRIS 80 ;

this time include everything (i.e. printing, plotting, etc...). It is clear that the

most demanding part is the Cholesky factorization required by each cost function

evaluation. We think that using a conjugate gradient method scaled by a constant

matrix can improve substantially the computational time.

From the optimal computed grid (shown on Fig. 6.5) we observe close to the re-

entrant corner a stretching phenomenon along the stream lines for the triangles

of r
h ; far enough of this corner the triangulation is not modified. Finally the

optimaleJ behaves at what can be expected from intuition.
h

7. - CONCLUSION.

We-have considered in this report a procedure for computing the optimal grid in the

finite element approximation of an elliptic test problem. The extension to more

complicated problems, involving non linearities is still an open problem ; however

following also the ideas developped in MARROCCO-PIRONNEAU [8 ] and BEGIS-GLOWINSKI

[ 91 similar techniques have proved to be very useful for solving free boundary

problems and also optimum design problems in which the unknown is for example

the domain itself. At the moment, in collaboration with Avions Marcel-Dassault/

Breguet Aviation, we are involved in an active research problem to compute airfoil

or wing section of optimal shape for the potential flow of a compressible inviscid

fluid in the transonic range, the flow being modelled by the full potential tran-

sonic equation.
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Figure 6.5

The computed Optimal Grid

Figure 6.6

Equipotential lines

Figure 6.7

Stream lines.
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