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Abstract.

The study of constructing reliable systems from unreliable conponents
goes back to the work of von Neumann, and of More and Shannon.  The present
paper studies the use of redundancy to enhance reliability for sorting and
related networks built from unreliable conparators. Two npdels of fault-
tolerant networks are discussed. The first nodel patterns after the concept
of error-correcting codes in information theory, and the other follows the
stochastic criterion used by von Neumann and Moore-Shannon. |t js shown,
for exanple, that an additional k(2n-3) conparators are sufficient to render
a sorting network reliable, provided that no nore than k of its conparators

may be faulty.
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1 | ntroducti on.

Consi der sorting networks that are built from conparators, where each
conparator is a 2 input - 2 output device capable of sorting two nunbers
(Figure 1). It is of interest to construct sorting networks for n inputs
using a m ni mum nunber of conparators (see Knuth [4]). The probl em seens
to be difficult, and so far no networks substantially better than Batcher's
sorting networks (Batcher [1]) are known for general n. In this paper we
look into this problemin a new setting. Suppose that some of the conparators
are potentially faulty, how can we construct econonic networks that still
sort properly ? W shall assume that, for a faulty conparator, the inputs
are directly output without a conparison (Figure 2).

The study of constructing reliable systens from unreliable conponents
goes back to the work of von Neumann [7], and More and Shannon [5].
Currently, the subject of fault-tolerant conputing is an active area of
research (see, e.g. [6]). The present paper studies the use of redundancy
to enhance reliability for a particular problem simlar in spirit to the
work on switching networks by More and Shannon [5]

From the standpoint of analysis of algorithns, our nodels resenble
the problem of sorting with unreliable conparisons. |In that direction, a

study of binary search with allowance for unreliable conparisons was done
in [2].

2. Definitions and Notations.

An n-network o is a finite sequence of the form [i :j ] [i,:3,]. . [i,:3.],

where each pair [iQ:j JL]’ with 1<i <j,<n, is called a conparator. Any input
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Figure 1. A conparator.
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Figure 2. A faulty conparator.



vector x = <x1,x2,...,xn> £ R" of n real numbers is transformed into an
output vector ¥y ¢ R" by the network o, as described bel ow. Assocjate
with a conparator [i,j] the mapping from R" to R" defined by
i = ' ' LB
<K SXysee X > [.jl SK[aKpseee,x!>,

wher e x;l, =x, if g4 {i,j}, and x; = mn {xi,xj} : x3 = max {xi,xj}.

2
The network o then defines a mapping from R™ into R" by successively
appl ying the mappings induced by [il:jll’ [izzjzj’ . and [ir:jr]' In

other words, for any x ¢ Rn, t he out put ;= xa is defined by
>(0)_
x -—

®y

>
20, Q(l_l)[izzjz] , for 1 <8<~ ,
and z_fa =§(r)
W shall represent an n-network o as shown in Figure 3, where from
left to right each conparator [i2=jQJis drawn as a vertical bar connecting
the i -th and the j -th lines. W input ;=<X1,x2,...,xn>fromthe | ef t

end, with line i carrying X. . As a conparator [iQ:jJL] is passed, the

smal ler of the two incom ng nunbers noves to the upper line iz’ and t he

larger to the |ower |ine jo (see Figure 4 for an exanple).  Thus, between
the 2-th and the (g+1)-st conparators, the nunber carried by line i is
the i-th conponent of the vector Q( 2), In particular, (5&1)i is the
nunmber found on line i at the right end of o . W call Z%) the 2-th
state vector of input >'<* relative to o .

A vector x = <x1,x2,...,xn> is sorted if X < X, € ...%€ X A

sorting network for n elenents, or an n-sorter, js an n-network a such that,

-
for any input X e Rn, the output vector xa s sorted. For instance, the

network in Figure 3 is easily seen to be a 4-sorter. For each n, let S(n)
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Figure 3. A 4-network a = [1:3][2:4] [1:2][3:4][2:3].
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Figure 4. For input vector X = <7,}0,2,8>, one has x )=<2,10,7,8>,
+(4
;(2)= <2,8,7,10>, and output ;d = x )= <2,7,8,10>.



denote the mnimum nunmber of conparators required by any n-sorter. It is
known [4] that, for large n, we have n 1og2n € S(n) g 21; n(logzn)2 .

Let us now consider the situation when "faulty conparators" may be
present. As the effect of having faulty comparators is equivalent to
deleting them from the network, an n-sorter may no longer be an n-sorter
if there are faulty conmparators. Indeed, since the usual enphasis in the
design of sorting networks is to avoid redundant conparisons, it is expected
that every conparator is crucial in an efficient sorter. It is, therefore,
an interesting question whether econonmic sorting networks would have to
l ook quite different when some fault-tolerant properties are required.

We shall discuss two nodels, with different fault-tolerant criteria, in the
followi ng sections. The first nodel (Section 3) patterns after the concept
of error-correcting codes in information theory, and the other (Section 5)

follows the criterion used in von Neumann [7] and Moor e- Shannon 5] .

3. The k-Fault WNbdel.

Let k 3 0 be an integer. W are interested in constructing n-sorters
which can sort properly if no nore than k of its conparators are faulty.

Formally, a k-tolerant n-sorter is an n-sorter ¢ such that, if any k (or

fewer) of its comparators are removed, the resulting n-network is still an
n-sorter. Let Sk(n) be the mni num nunber of conparators needed in any
k-tol erant n-sorter. Trivially Sk(n) < (k+1)S(n), since we can obtain a
k-tolerant n-sorter by replacing every conmparator in an optimal n-sorter

with k+1 copies. Qur main result in this nmodel is the followi ng theorem
which states that any n-sorter can be nade k-tolerant by appending to it a

network with o0O(kn) conparators. The rest of this section is devoted to



a proof of Theorem 1.
Theorem 1. If o is an n-sorter, then there exists an n-network B with
k(2n-3) conparators, such that aB is a k-tolerant n-sorter.?
Corol lary. Sk(n) € s(n) + k(2n-3).

W need the follow ng "zero-one principle" [4]
Lemma 1. Let £ be an n-network. If XE is sorted for every x e {0,117,
then £ is an n-sorter.
proof. See Knuth[4, Sec.5.3.4, Theoremz]. B3

Let 6 denote the n-network [1:2][2:3] . ..[i:i+1]...[n-2:n-1] [n-1:n]
[n-2:n-1]...[i:i+#1]...[1:2] (see Figure 5), and B = 6“ the concatenation
of k such networks. Cearly, B consists of k(2n-3) conparators.

Proposition 1. Let & be any network obtained from the n-network a8 by

del eting sonme k' conparators where k'< k. Then ;:*g is sorted for any
x e {0.1}".

W shall prove Proposition 1 below. Theorem 1 then follows imediately
in view of Lemma 1.

Wite & =o'B' where a° and B' are the networks resulting from
a and B respectively when some a and b conparators have been renoved,
with a+ b < k. |In the remainder of this section, we wll use x_,> )7 etc.
exclusively for vectors in {O,l}n. For any vector ; we use 25 to denote
the sorted vector that has the same number of O's as x. W first show that
the difference between xa' and >-<>s is at nost 2a in terns of their

> >

. . . . > > -> -
Hammi ng distance. (The Hamming distance D(x,y) of x and y, for x, vy

n . > -> .
e {0,1} ", is the number of conponents where x and y differ.) W then

We use aB to denote the concatenation of o and B.



Figure 5. The network 6 for six inputs.

show that the network B', with at least k-b 2 a "good" copies of 8,
can reduce that distance to zero.
Lemmm 2. D ( x[i:j], ¥[i:j])<«D(x, y) for any conparator [i:j].
proof. It suffices to show that
D ( <xi,xj>[1:2] , <yi,yj>[1:2] ) < D( <Xi’xj> , <yi’yj> ).
This is clearly true if the right hand side is either 0 or 2. Now, when
the right hand side is 1, that neans one of {<xi,xj>, <yi’yj>} has exactly
one 0, and the other has either two or no O. In either case, we have
D ( x[i:j], ¥[i:xj]) =1, O
Lemma 3. D ( k[i:j] , ¥) <D (x,y)+2.
proof. It suffices to prove that
D ( <xi,xj>[1:2] , <yi’yj> ) < D ( <xi’xj> , <yi,y:u> ) + 2

which is obviously true. [



Lenmma 4. Let o' be an n-network obtained fromthe n-sorter o by deleting

-+

some a conparators. Then for any x,

-> ->
D ( xa' | X ) € 2a .

-> i } ->

wher e X, is the sorted version of x.
>(L
X( )

+
pr oof . Let denote the %-th state vector of x relative to o as
>(2)

->
defined in Section 2, and y the state vector of x relative to a in

the corresponding interval. Then, according to Lenmmas 2 and 3,

D ( ;(2), ;(2) ) €2 % (the nunmber of deleted conparators anong

the first 2 of a)

by induction on &. Therefore, D(;oa', xa) € 2a, and the lenmma follows
since xa = ;s. a

Now we consider the effect of B' on ;oc'. The network 6 is designed
so that if a vector ; differs from}fs only by a transposition, i.e.,

= <,0,...0,...0,1,1,...,1,...,1,...,1> (d denotes the conpl ement of d),

then & can carry out the desired swap for Z. In general, 6 applied to
an arbitrary vector Z which is not sorted reduces the Hammi ng di stance of

7 and ZS by at |east 2.

Lemma 5. D(z6 , ZS) < D(;,Zs) -2 if D(;’;s) > 0.
proof . Let Z(Q) denote the state vectors of ‘>z relative to 8. Suppose

->
there are m Os in the conmponents of z, the following facts can easily be

checked.

>(2) = (%)

>
Fact A, D(z ,zs) = 2x(the nunber of I's in the first m conponents of z ).

Fact B. is non-increasing as £ increases.

pGM2)
Fact C. (;(m—l))m = 1.
proof of Fact C. Note that (:7:(“‘—1))m z }. Since D(;,Zs)

= max {(z,,z,,...
1°°2° *“m

>0, .,z can not all be 0. U

2152y



>(m-1)

W now prove Lemma 5. Case(l) .uppose z 41" 0. Then (z )m+1 =0
and (_>(m 1)) =1 by Fact C.  The mth conparator [m:m+1] will swap the two
conponents, and hence 7 (m) has one fewer |'s in the first m conponents
t han z(m 1). The lemma then follows from Facts A and B. Case(2) uppose
Zm+1= 1. Then Fact C inplies that 'Z(i“))m= 1. It is easy to see that
(_z>(2n-m_3))m = 1 and (;(anm‘3)) = 0. The (2n-m-2)-th conparator
[m:m*1] then swaps these two conponents in z(zn'm'3), causi ng 7(2n-m-2)
to have one fewer |'s in the first m conponents than Z(Z“"m_3), The

lemma again follows from Facts A and B. o
Fact D. Let y be any n-network, then D(;Y’;s) < D(;,ZS).

Lemma 6. Assune D(;,;S) < 2a, and let B' be a network obtained from8
by deleting no nore than k-a conparators. Then ZB' =2

(1)8(2)...B(k), where each B(i)

.
proof. Wite B =28 is a copy of 6.

W, @ 0

Let B' =y such that for sone Leip <i, <..<i <k,
y(lz) = B(ISL) =06 for all 2. If we wite w(j) = Zy(l)y(z),,,y(j) and
(0)_ - . (j) -
w "=z, then as j increases, D(w ,zs) does not increase by Fact D, and
in fact decreases by at least 2 when | =i . and D(W(J)’z )30 by Lenmma 5. Thus

(k) zs) 2a - 2a = 0, As w(k) = ZB' , this inplies that Z8' = ZS. a
Proposition 1 is an inmediate consequence of Lemma 4 and Lemma 6. This

conpl etes the proof of Theorem 1.



4, Net works Related to Sorting.

The k-fault nodel of the previous section extends naturally to
conparator networks for other tasks, such as merging and selection.

An (m,n)-merging network o is an (mtn)-network such that, for any

xe O™ satisfying x; ¢ %, €...¢x and X_, 6 x ., €...<x_, the
vector Xq is sorted. Let M(m,n) denote the mninum nunber of
conparators needed by a. An nf-network B (minimumfinding) for n inputs
is an n-network such that, for any % € Rn, (;B)1 = min{xl,xz,...,xn}.
Let Y(n) denote the mni num number of conparators needed by B . It is
known that Y(n) = n-I and
% nlg(m+1) 6 M(m,n) < (n+m) ( [lgm]/2 + m 2 llgn]
(Batcher [1, Sec.5.3.4], Fl oyd [A,Sec.5.3.4 Theorem F], Yao and Yao[8] ).
The k-fault nodel for sorting networks can inmediately be generalized to
these networks. Let Mk(m,n) and Y, (n) denote the correspondi ng m ni mum
nunber of comparators for such networks with k-fault tolerance.
Theorem 1 inplies inmediately that
Mk(m,n) < M(m,n) + k(2(m+n) - 3).
For Yk(n), we have the follow ng theorem
Theorem 2. Y, (n) = (k+1)(n-1) for k 20.
proof. Let « be any k-tolerant nf-network for n inputs. For each j,

1 <3 <n, there nust be at least k+1 conparators in o of the forml-_"‘,j]-+

O herwise, when all conparators of the form[*,j] are faulty, the input

i 1 = - i a
K Koo e X > with Xy 1 623. will not have the correct output under .
Thus, Y,(n) » (k+l)(n-1). The reverse inequality follows from the fact that
a= g1, where g = [0-1:n] [n-2:n-1]... [i:i+1]... [1:2], is a k-tol erant

mf-network. O
.'.

W use [*:j to denote any conparator of the form E]_ where k=j.

10



5. The Stochastic-Fault Model.

In the preceding two sections, we discussed fault-tol erant networks
in a framework allowing at nost k faulty conparators. W have seen that
the additional price paid for reliability varies with the function of the
net wor K. For sorting or nmerging networks, only 0(kn) conparators are
needed in addition to the basic cost of nlogzn or higher; whereas for
mninumfinding, the extra cost is k tinmes the original basic network.

For very large networks, the assunption of no nore than k faulty
conparators may be too restrictive. |t is reasonable to expect that sone
fixed fraction, say 10'4, of the basic units are faulty. A natural
extension of the previous nodel then leads to the follow ng question.

How many conparators are needed to construct an n-sorter which remains

-4 of the conparators in it are faulty? Unfortunately,

reliable if any 10
reliable networks in this case do not exist when n js |arge (n > 1o4+1),
Indeed, we assert that if a fraction of 1/(n-1) of the conparators may
be faulty, then there does not exist any reliable n-sorter in this sense.
For any n-sorter o, let j ¢ {2,3,...n} be such that at nost 1/(a-1)
of the conparators in a are of the form[:j], then o clearly will
not sort all inputs properly if all such conparators [*:j] are faulty
(cf. the proof of Theorem2). In view of this fact, we will define a
more relaxed, stochastic nodel that is very simlar to the nodels studied

in von Neumann [7], Mbore and Shannon [5].

A Stochastic Mdel. Let 0 <g,§< 1 and n be an integer. An n-network

a 1s an (& & -stochastic n-sorter if the random n-network a', obtained

fromo by deleting independently each conparator with any fixed probability

§'¢6,is an n-sorter with probability at |east 1-e.

11



In an (g,8)-stochastic n-sorter, we shall refer to § as the fault

probability (of the conparators), and ¢ as the failure probability (of the
g(€,9)

net work) . Let (n) be the mnimm nunber of comparators required by
any (g€,8)-stochastic n-sorter. Simlarly, we can define (g,8)-stochastic
merging networks for m + n inputs, (g,8)-stochastic nf-networks for n

(&, ¥ m)

inputs, and the corresponding conplexity M
A conventional method of achieving reliability is to replace a basic
conmponent by several unreliable conponents which sinulate the basic conponent
with high reliability [5] [7]. In our case, connecting in series m conparators,
each with 6 probability of fault, gives the effect of a single conparator

with fault probability 8™ If ais an n-network with N conparators

(none are faulty), the network 8 obtained froma by replacing each

conparator with m conparators in series is called the canonical mredundant

network of o, The probability for B to be a network performng the same
mapping as o is at least (1- (Sm)N, which is greater than 1l-e for |arge
N if m > (log(N/€))/1log(1l/8).

Definition. For given g, ¢ and network a, the canonical mredundant
network B of o wth m chosen just large enough so that B8 beconmes an

(e,8)-stochastic network is called the canonical (& & -stochastic network

simulating o.

It follows from the preceding discussion that, for fixed €, 6, an
arbitrary network ¢ wth N conparators may be sinulated by its canonical
(e,8)-stochastic network which is of size O(NlogzN). It is of interest to
study the optinality of this basic strategy for enhancing reliability. As
this method exploits redundancy in a primtive way, it is also not surprising

that nore efficient constructions exist for many problens. W shall bear out

12



these points in the following results. The first result illustrates

the optimality of the canonical construction for mnimmfinding.
Gvenn>1 and m>0, let m =|(mi-1)/(a-1)] for 1gi<n

The m.'s forma partition of m into n-1 alnost equal parts in that

£m =m and mi-mjl < 1 for all i, j; they are also the unique set of
|
n-1  nunbers satisfying these conditions (see [3, Sec.1.2.4, Ex.38_]).

Define g, (m)= T (1-6mi). It is easy to see that g, (m) is a
§,m 1<i<n 8,n

non-decreasing function of m for fixed n and § < 1.

(5,6)(n) -

Theorem 3. Let 0 <g, 6 < 1. Then ¥ m where m i s the

smal | est positive integer satisfying ch n(m); 1 - e,

Y(e,c‘i) t

Corollary. For any fixed 0 <¢g, § < 1, (n) = @(nlogzn) as n > o,

™ ) a™-2 ¢ ~"n-1
proof.  The network [n-1in] “[n-2in-1] © ' [2:3] [1:2] i s
easily seen to be a valid nf-network with probability 05 n(m), which is
at least 1-¢ by the definition of 8s.n" This proves that Y(E’G)(n) <m.

b

To prove the reverse inequality, we observe that, in any (g,8)-stochastic

nf-network o for n inputs, we nmust have
L.
m (1-63)31- ¢ (5.1)
2¢ja

wher e JLJ. is the nunber of conparators of the form E*Jl

Fact E. Let k > 0 be an integer and 0 < § < 1 a real nunber. The

k k
expression (1-§ 1)(1—5 2), wher e kl and k2 are non-negative integers
satisfying k;+k, =k, is maxinized when ]kl— k2| < 1.

proof of Fact E.  Otherw se, assune that the naxinmumis achieved at (kl,kz)

wth k1 > k2+ 1. Then

U The @ notation means that there exist constants a, b >0 such that

a(nlogzn) < Y(e’aen) S b(nlogzn).

13



k k k,-1 k.+1

1-6d1-62>(1-61)1-62 ).
This inplies
k k k,-1 k,+1
1
S +c§2<<8l +62 )
3 k,~1
or 52(1—5)<61(1—6-),
or k2>k1 -1,
which is a contradiction. O
In Equ.(5.1) let g =5 2. . By repeated application of Fact E,
2¢jgn

L.

the expression [ (1-§ J) is maxinized when [gi— 2.] <1 for all
2¢jgn J

2 < i, j ¢ n. Therefore
4
g, () x> @m (1 -¢§"7)

§,n .

2¢ Jsn

>1 - €.
This inplies that ¢ 3y m W have proved Theorem 3. OO

1/(n-1)

To prove the corollary, let t = 1086(1 ~ (1-¢) ), m' = [t](n-1)

and m" = ([t]-1)(n-1). It is easy to check that gé’n(m') > 1-¢ and
gﬁ’n(m") < 1-¢ . The nonotonicity of gé’n then inplies that m" g Y(E’d)(
It is easy to check that, for fixed 0 <g, § <1, we have t = O(logn) as
N> This inplies that m' = &(nlogn), m" = O(nlogn), and hence
149 (n) = o(alogn).
The canonical (g, §)-stochastic network nmay not always be the best
solution possible, as the follow ng exanple shows.
Consider the 3-sorter o = [2:3][1:2][2:3], and its canoni cal
(& -stochastic sorter g = [2:3]"[1:2]™[2:3]™. By definition, the value

of m is the smallest positive integer such that (1 —1/2m§3> 1 - €.

14
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It follows that
m = [-log,(1 - (1-e)/%)]
For ¢ << 1, the total nunber of comparators in g8 s then
3m ~ 3(log2(1/e) + 1og23) + 0(e).
W shall now show that, there exist (& 9%-stochastic 3-sorters using only
Zlogz(l/e) + 0(1n 1n(3/e)) conparators. That is, the canonical construc-

tion uses nearly 50% nore conparators than is necessary when ¢-+0. The result

follows from the next theorem
log2(1/€) + 0(1nln(3/e))

logz(l/G)

Theor em 4. S(E’S)(3) =2

proof. W first compute Y(E’G)(B), which according to Theorem 3 is the

smal | est m satisfying
a -s™2yq - slm2ly >

Witing m'=[m/2], we obtain
1 - 6™ 3 (1 -¢e)?
=] - %e+ O(ez).

This leads to
m 3 2m' - 2

10g2(1/€)+ o(1)"

2 2 logz(l/é)

3

As 5(6,5)(3)2 Y(e,d)(3)’ we have proved that

log,(1/e)+ 0(1)

S(E,G)
logz(l/G) .

(3) > 2

To prove the reverse inequality, we construct a 3-sorter
=[9. . .18 (Ei
az'—[z.sj([l.zj[z.j]; (Figure 6). W shall prove that, for some constant c,
the network o, with & = (1og2(l/e) + ¢ 1n1n(3/€))/log2(1/6) is an

2
(e,8)-stochastic 3-sorter. This then proves the theorem

15



Witing x for [2:] and y for [1:2| , We can denote ay by the
string Gg= YXYXY.. .XYy. For added clarity, we also use the subscripted
notation cx_z=y0x1y1x2y2._.xgy£ wher e x.land Yo refer to the i-th[2:3]
and [1:2| conparators; respectively. It is easy to see that, when conparators
are deleted, the resulting network oa,jv fails to be a valid 3-sorter if and
only if oc,jv does not contain a.substring which belongs to yx+y or xy+x,

. x * * L. . .
i.e., aS'Ley+x Ay x,y+ux. Thus the probability Py t hat oc;& fails is

| ess than P1*Py*P4 wher e

)

1) oj e y'x with probability

b = 5k (2;1)(1—6)1{ §28+1-k (5.2)
1<kge+1
since we nust have OL;L ol SN FRERRRS S i 91 . X, Where 1 £k g &1,
12 it tye2
1 <j <k, and 0511<. ..<iJ.<iJ.+1< . ..<iksz.

After sinplifications, Equ.(5.2) becones

(1-8)-(2+1)-6% 5 (¥ y(r-s)k"1 g2 (k-1)
1<ksg+1571

Py

(1-8)~(a+1)+8" |

*
2) oc;L £ X y+ with probability p2=p1=(1—6)'(2+1)'52, since network g

is symetric with respect to left-right reversal.

L

L

3) aj ex with probability

= I (Ha-ek 2k
0<k<d
=M (ha-ok stk
0<kg4
- 62+1

16




p

Figure 6 The network @, in the proof
of Theorem 4.

17



Therefore Py = p1+p2+p3 < 3(g+1)52 . It can be verified that by choosing

_ {1n(c/e) + 2(1nln(c/e))
it Tn(1/8) , Where lInc =3,

we will have Py < 3(£+1)52 6 €. This proves the theorem d

6. Concl udi ng RemarKks.

We have studied efficient ways to achieve fault-tolerant ability in

some particular problens. The canonical redundancy nethod sometines vyields
econonmi ¢ networks (as for mnimumfinding in both nodels), but not always
(it works poorly for sorting in both nodels). It would be of great interest
to find other general principles besides the canonical nethod.

Some rel ated open problens:

M(E,&)

1. For fixed ¢, 8, we know that c¢_nlogn < (n) < czn(logn)z.

1

M(E’d%n).

Question: Determine the order of Simlarly, we know that

5(6,6)

c,nlogn < S(E’d)(n)s Czn(logn)B, and better estimates for (n) are

1
to be found. It seems that these functions should not be 0(nlogn), as
Y(E’d)(n) = O(nlogn) and mnimumfinding is intuitively a nuch sinpler
probl em

2. For fixed §, determ ne 8(6’6)(3) as e~ 0. In particular, is our
construction optinmal?

3. The interpretation of a network as a string , and the probability of
fault being the probability of a random substring not containing some

particular patterns gives rise to questions in a nore general setting, which

may be of interest by thenselves.
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