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Abstract.

The study of constructing reliable systems from unreliable components

goes back to the work of von Neumann, and of Moore and Shannon. The present

paper studies the use of redundancy to enhance reliability for sorting and

related networks built from unreliable comparators. Two models of fault-

tolerant networks are discussed. The first model patterns after the concept

of error-correcting codes in information theory, and the other follows the

stochastic criterion used by von Neumann and Moore-Shannon. It is shown,

for example, that an additional k(Zn-3) comparators are sufficient to render

a sorting network reliable, provided that no more than k of its comparators

may be faulty.
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1. Introduction.

Consider sorting networks that are built from comparators, where each

comparator is a 2 input - 2 output device capable of sorting two numbers

(Figure 1). It is of interest to construct sorting networks for n inputs

using a minimum number of comparators (see Knuth [4]>. The problem seems

to be difficult, and so far no networks substantially better than Batcher's

sorting networks (Batcher [l]) are known for general n. In this paper we

look into this problem in a new setting. Suppose that some of the comparators

are potentially faulty, how can we construct economic networks that still

sort properly ? We shall assume that, for a faulty comparator, the inputs

are directly output without a comparison (Figure 2).

The study of constructing reliable systems from unreliable components

goes back to the work of von Neumann [7], and Moore and Shannon [5].

Currently, the subject of fault-tolerant computing is an active area of

research (see, e.g. [6]>. The present paper studies the use of redundancy

to enhance reliability for a particular problem, similar in spirit to the

work on switching networks by Moore and Shannon [5].

From the standpoint of analysis of algorithms, our models resemble

the problem of sorting with unreliable comparisons. In that direction, a

study of binary search with allowance for unreliable comparisons was done

in [2].

2. Definitions and Notations.

An n-network a is a finite sequence of the form [$ $1 [i2:j2].  .. [ir:jr] 3

where each pair I; :j 1, with '
R R

lG1llSjg<n, is called a comparator. Any input
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Figure 1, A comparator.
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Figure 2. A faulty comparator.
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-t
vector x = <x

Iax2
,...,xn> c R" of n real numbers is transformed into an

output vector F & R" by the network CC, as described below. Associate

with a comparator [i,j] the mapping from R* to R" defined by

<x1,x2,...,xn> i:j = <x;,x;,...,xn>,[ I

where
xi R

=X if J, & {i,j), and X: = min (x~,x~) , X; = max {xi,xj)'

The network 01 then defines a mapping from R" into Rn by successively

applying the mappings induced by [il:jl],  b,:j,], . . . . and [i,:j,].  In

other words, for any n
i&R, the output ; = x'a is defined by

and

p= x’
9

x” R)= $a-1)
lia:jJ 9 for lcR<r,

& = $r) .

We shall represent an n-network a as shown in Figure 3, where from

left to right each comparator ba:jd is drawn as a vertical bar connecting

the i -th and the j -th lines. We input x'= <x 1’X2J”. xn> from the left

end, with line i carrying x..
1

As a comparator [it: ja] is passed, the

smaller of the two incoming numbers moves to the upper line $3 and the

larger to the lower line j, (see Figure 4 for an example). Thus, between

the R-th and the (R+l)-st comparators, the number carried by line i is

the i-th component of the vector $ RI
. In particular, (Li> i

is the

number found on line i at the right end of a . -0)We call x the R-th

state vector of input x relative to a .

A vector x'= <x
lax2

,...,x > is sorted if x
n

1 &x2 G...Cx. A
n

sorting network for n elements, or an n-sorter, is an n-network a such that,

for any input x' E Rn, the output vector x'ol is sorted. For instance, the

network in Figure 3 is easily seen to be a 4-sorter. For each n, let S(n)

3
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4th line

Figure 3. A 4-network a = [1:3][2:4] p:2][3:4'1[2:3].
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denote the minimum number of comparators required by any n-sorter. It is

known [4] that, for large n, we have n log2n < S(n) ( $ n(log2n):!  .

Let us now consider the situation when "faulty comparators" may be

present. As the effect of having faulty comparators is equivalent to

deleting them from the network, an n-sorter may no longer be an n-sorter

if there are faulty comparators. Indeed, since the usual emphasis in the

design of sorting networks is to avoid redundant comparisons, it is expected

that every comparator is crucial in an efficient sorter. It is, therefore,

an interesting question whether economic sorting networks would have to

look quite different when some fault-tolerant properties are required.

We shall discuss two models, with different fault-tolerant criteria, in the

following sections. The first model (Section 3) patterns after the concept

of error-correcting codes in information theory, and the other (Section 5)

follows the criterion used in von Neumann [7] and Moore-Shannon [5] .

3. The k-Fault Model.

Let k 2 0 be an integer. We are interested in constructing n-sorters

which can sort properly if no more than k of its comparators are faulty.

Formally, a k-tolerant n-sorter is an n-sorter a such that, if any k (or

fewer) of its comparators are removed, the resulting n-network is still an

n-sorter. Let Sk(n)  be the minimum number of comparators needed in any

k-tolerant n-sorter. Trivially S,(n) < (k+l)S(n), since we can obtain a

k-tolerant n-sorter by replacing every comparator in an optimal n-sorter

with k+l copies. Our main result in this model is the following theorem,

which states that any n-sorter can be made k-tolerant by appending to it a

network with O(kn) comparators. The rest of this section is devoted to



a proof of Theorem 1.

Theorem 1. If a is an n-sorter, then there exists an n-network B with

k(2n-3) comparators, such that af3 is a k-tolerant n-sorter.?

Corollary. Sk(n) < S(n) + k(2n-3).

We need the following "zero-one principle" 4 .Cl

Lemma 1. Let 5 be an n-network. If x'c is sorted for every t E (O,ljn,

then 5 is an n-sorter.

proof. See Knuth[4, Sec.5.3.4, Theorem Z]. 0

Let 8 denote the n-network [1:2][2:3] . ..[i.i+l]...[n-2:n-l][n-l:n]

[n-2:n-l]...[i:i+l]...[1:2] (see Figure 5), and 6 = Ok the concatenation

of k such networks. Clearly, 6 consists of k(2n-3) comparators.

Proposition 1. Let 5 be any network obtained from the n-network a@ by

deleting some k' comparators where k' c k. Then & is sorted for any

We shall prove Proposition 1 below. Theorem 1 then follows immediately

in view of Lemma 1.

Write 5 = aiB', where a' and f3' are the networks resulting from

a and 6 respectively when some a and b comparators have been removed,

-k -k
with a+b<k. In the remainder of this section, we will use x, y, etc.

exclusively for vectors in own.
+ +

For any vector x, we use xs to denote

-f
the sorted vector that has the same number of O's as x. We first show that

+
the difference between xa'

-+
and x is at most 2a in terms of their

S

Hamming distance. (The Hamming distance D<z,G> of g and c, for z, G

E Hmn,
+

is the number of components where x and G differ.) We then

t
We use C@ to denote the concatenation of a and f3.
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Figure 5. The network 0 for six inputs.

show that the network @', with at least k-b >, a "good" copies of 8,

can reduce that distance to zero.

Lemma 2. D ( z[i:j] , ;[i:j] > C D ( 2 , $ ) for any comparator [i:j].

proof. It suffices to show that

D ( <xi,xj>[1:2]  , <yi,yj>[1:2]  > G D ( <xi,xj> , <yi,yj’ ).

This is clearly true if the right hand side is either 0 or 2. Now, when

the right hand side is 1, that means one of (<xi,xj>, <yi,yj>} has exactly

one 0, and the other has either two or no 0. In either case, we have

D ( g[i:j] , ;[i:j] ) = 1 , a

Lemma 3. D(gp:j],$)6D(z,q)+2.

proof. It suffices to prove that

D ( <xi,xj>[l:2]  , <yi,yj> > c D ( <*;,xj' , <y;,y.' > + 2 ,
3

which is obviously true. tJ



Lemma 4. Let a' be an n-network obtained from the n-sorter a by deleting

-t
some a comparators. Then for any x,

D ( ;a' , Zs > G 2a c

-f -F
where x is the sorted version of x.

S

+uu -%
proof. Let x denote the R-th state vector of x relative to a as

-+(Udefined in Section 2, and y
-t

the state vector of x relative to a' in

the corresponding interval. Then, according to Lemmas 2 and 3,

-t(JQ -a)
D(* ,Y ) 6 2 x (the number of deleted comparators among

the first R of a)

by induction on R. Therefore, D&' , Za> < 2a, and the lemma follows

-t -+
since x(X=x

Se
a

-f
Now we consider the effect of 8' on X(X'. The network 8 is designed

-3. +
so that if a vector z differs from zs only by a transposition, i.e.,

+Z = <o,o ). .* 0 ,...o,i,i,...,i,...,i ,...,l> (d denotes the complement of d),

then 8
-F

can carry out the desired swap for z. In general, 8 applied to

+
an arbitrary vector z which is not sorted reduces the Hamming distance of

-f -+Z and z s by at least 2.

Lemma 5. D<& , zs, G Id&) - 2 if D(l,ts) > 0.

-a) +
proof. Let z denote the state vectors of z relative to 8. Suppose

-b
there are m O's in the components of z, the following facts can easily be

checked.

Fact A.
-+(U +

D(z ,zs)
-+(U= 2x(the number of l's in the first m components of z ).

Fact B. -a) +
D(z ,zs) is non-increasing as R increases.

4m-1)
Fact C. (z )m = 1.

proof of Fact C.
+(m-1)

Note that (z lrn = ma* {z z I.p2,.*v m Since D(z,ts)

’ 0, Z1’Z2’“‘,Zm can not all be 0. q

8



We now prove Lemma 5. Case(l) uppose z~+~= 0. +(m-1)
Then (z > =

m+l
0

+(m-1)
and (z >m

= 1 by Fact C. The m-th comparator [m:m+l] will swap the two

j(m)components, and hence z has one fewer l's in the first m components

than d(m-l) . The lemma then follows from Facts A and B. Case(2) uppose

Z =
m+l 1. j(m)Then Fact C implies that (z )m= 1. It is easy to see that

+(2n-m-3)
(z >

+(2n-m-3) = 0.m
= 1 and (z >m+l

The (2n-m-2)-th comparator

[m:m+l] +(2n-m-3)then swaps these two components in z +(2n-m-2), causing z

to have one fewer l's in the first m components than ;(2n-m-3)
. The

lemma again follows from Facts A and B. a

Fact D. Let y be any n-network, then D(&,g,) $ D<z,t ).S
Lemma 6. Assume D(t,zs) S 2a, and let B' be a network obtained from B

by deleting no more than k-a comparators. Then t@' = ts.

proof. Write fi = p+p)*~*+k) , where each +i) is acopyof 8.

Let @'=y (l)y(2) . . Jk) such that for some 1 C il < i2 <...< i S k ,

y(i,) = B(ia) = 8 for all R. If we write w(j> = ;py2) . . .$1
and

w(o) += ZY then as j increases, D(w(3; )
S does not increase by Fact D, and

in fact decreases by at least 2 when j = i
R

and D(w'j',; ) > 0 by Lemma 5. Thus

D(w(~),~ ) < 2a - 2a = 0. As w(~) = ZB' , this implies th:t t@' = ts. aS
Proposition 1 is an immediate consequence of Lemma 4 and Lemma 6. This

completes the proof of Theorem 1.



4. Networks Related to Sorting.

The k-fault model of the previous section extends naturally to

comparator networks for other tasks, such as merging and selection.

An (m,n)-merging network a is an (m+n)-network such that, for any

+ m+n
X& R satisfying x1 6 x2 <...< xm and x

m+l 6 *m+2
<4...< x

ny
the

-fvector *a is sorted. Let M(m,n) denote the minimum number of

comparators needed by a. An mf-network 6 (minimum-finding) for n inputs

is an n-network such that, for any
n

&R, (ZB), = min~xl,x2,...,xn~.

Let Y(n) denote the minimum number of comparators needed by f3 . It is

known that Y(n) = n-l and

% nlg(m+l) 6 M(m,n) 6 (n+m)( bgm1/2 + m/2 rkd >
(Batcher p, Sec.5.3.41, Floyd p,Sec.5.3.4  Theorem F], Yao and YaoCg] ).

The k-fault model for sorting networks can immediately be generalized to

these networks. Let
Mk' m,n)

and Y,(n) denote the corresponding minimum

number of comparators for such networks with k-fault tolerance.

Theorem 1 implies immediately that

5'
m,n) < M(m,n) + k(2(m+n) - 3).

For Yk(n), we have the following theorem.

Theorem 2. Y,(n) = (k+l)(n-1) for k 20.

proof. Let a be any k-tolerant mf-network for n inputs. For each j,

1 <j $n, there must be at least k+l comparators in a of the form k,j].t

Otherwise, when all comparators of the form k,j] are faulty, the input

.
<x~,x~,...,~~> with xR = 1 - 6aj will not have the correct output under a .

Thus, Y,(n) 2 (k+l)(n-1). The reverse inequality follows from the fact that

k+l
a= f3 , where f3 = b-l:n] b-2:n-l]... [i:i+l].., p:2], is a k-tolerant

mf-network. a

t
We use *:jI: I to denote any comparator of the form E 1i:k where k=j.
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5. The Stochastic-Fault Model.

In the preceding two sections, we discussed fault-tolerant networks

in a framework allowing at most k faulty comparators. We have seen that

the additional price paid for reliability varies with the function of the

network. For sorting or merging networks, only O(kn) comparators are

needed in addition to the basic cost of nlog2n or higher; whereas for

minimum-finding, the extra cost is k times the original basic network.

For very large networks, the assumption of no more than k faulty

comparators may be too restrictive. It is reasonable to expect that some

fixed fraction, say 10 -4 , of the basic units are faulty. A natural

extension of the previous model then leads to the following question.

How many comparators are needed to construct an n-sorter which remains

reliable if any 10 -4 of the comparators in it are faulty? Unfortunately,

reliable networks in this case do not exist when 4n is large (n > 10 +l>.

Indeed, we assert that if a fraction of l/h-l> of the comparators may

be faulty, then there does not exist any reliable n-sorter in this sense.

For any n-sorter a, let j E (2,3,...n} be such that at most l/&l>

of the comparators in a are of the form *:j , then a clearly willc 1
not sort all inputs properly if all such comparators p:j] are faulty

(cf. the proof of Theorem 2). In view of this fact, we will define a

more relaxed, stochastic model that is very similar to the models studied

in von Neumann 173, Moore and Shannon [5].

A Stochastic Model. Let 0 < E, 6 < 1 and n be an integer. An n-network

a is an (&,&)-stochastic n-sorter if the random n-network a', obtained

from a by deleting independently each comparator with any fixed probability

6' s 6, is an n-sorter with probability at least 1-c.

11



In an (c,g)-stochastic  n-sorter, we shall refer to 6 as the fault

probability (of the comparators), and E as the failure probability (of the

network). Let S(',&) (n) be the minimum number of comparators required by

any (&,6)-stochastic n-sorter. Similarly, we can define (E,&)-stochastic

merging networks for m+n inputs, (&,6)-stochastic  mf-networks for n

inputs, and the corresponding complexity Mk,U
(m,d, Y(Ey6)(n> .

A conventional method of achieving reliability is to replace a basic

component by several unreliable components which simulate the basic component

with high reliability [5] [7J. In our case, connecting in series m comparators,

each with 6 probability of fault, gives the effect of a single comparator

with fault probability
m

6 . If a is an n-network with N comparators

(none are faulty), the network f3 obtained from a by replacing each

comparator with m comparators in series is called the canonical m-redundant

network of a. The probability for 6 to be a network performing the same

mapping as ~3 is at least (l- 6m)N, which is greater than 1-E for large

N if m > (log(N/&))/log(l/&).

Definition. For given E, 6 and network a, the canonical m-redundant

network @ of a with m chosen just large enough so that f3 becomes an

(&,6)-stochastic  network is called the canonical (&,&)-stochastic network

simulating a.

It follows from the preceding discussion that, for fixed E, 6, an

arbitrary network cx with N comparators may be simulated by its canonical

(&,6)-stochastic  network which is of size O(Nlog2N). It is of interest to

study the optimality of this basic strategy for enhancing reliability. AS

this method exploits redundancy in a primitive way, it is also not surprising

that more efficient constructions exist for many problems. We shall bear out

12



these points in the following results. The first result illustrates

the optimality of the canonical construction for minimum-finding.

Given n > 1 and m > 0, let m. = L(m+i-l>/(n-l)l
1 for 16 i< n.

The mi'S form a partition of m into n-l almost equal parts in that

Cm.=m and m
1 I i- mjl s 1 for all i, j; they are also the unique set of

i
n-l numbers satisfying these conditions (see [3, Sec.1.2.4, Ex.381).

Define is6 ,p = l-L (l-6mi). It is easy to see that g6 ,(m> is a
l<i<n Y

non-decreasing function of m for fixed n and 6<1.

Theorem 3. Let 0 < c, 6 < 1. Then Y("")(n) = m where m is the

smallest positive integer satisfying g
d )

m 2 1 - E,

Corollary. For any fixed 0 < E, 8 < 1, Y(E'")(n) = O(nlog2n)  as n -f O".
t

proof. The network
ml

[n-lin] b-2in-1]
m2 . . .

[2:31mnW2 fi:21mn-' i s

easily seen to be a valid mf-network with probability g 6,n(m),  which is

at least 1-c by the definition of
g6Yn'

This proves that Y (E'")(n) < m .

To prove the reverse inequality, we observe that, in any (E,&)-stochastic

mf-network a for n inputs, we must have
R.

I-I Cl- sJ> al- E,
2 <j @

(5.1)

where R.
J

is the number of comparators of the form [ 1*:j .

Fact E. Let k > 0 be an integer and 0 < 6 < 1 a real number. The

expression (l-6
kl

)(l-6 k2 >, where kl and k2 are non-negative integers

satisfying kl+ k2 = k, is maximized when Ik 1- kg1 S 1.

proof of Fact E. Otherwise, assume that the maximum is achieved at (kl ‘k2)

with kl > k2+ 1. Then

t The 0 notation means that there exist constants a,b>O such that

a(nlog2n) 6 Y (Ey'?n) < b(nlog2n).

13



kl
k

(1 - 6 )(l - 6 2, > (1 - 6
kl-1 k2+1

Hl-6 1.

This implies

6
kl k2 kl-1

+6 <6 +6
k2+1

Y

6
k2 kl-1

or (1 - 6) < g (1 -6) ,

or k > k  - 1 ,
2 1

which is a contradiction. n

In Equ.(5.1) let J?, = c $J,.  .
2$j<n J

By repeated application of Fact E,

R.
the expression l-I (l-6 J, is maximized when I$!, i- ‘jl $ 1 for all

2$j$n

2 *i,j<n.2 Therefore

R*
g&R) 5 I-I (1 - 6 Jl

2< jp

21-c.

This implies that R 2 m. We have proved Theorem 3. a

To prove the corollary, let t = log&(1 - (1-c) l/h-l)) I
, m = p](n-1)

and m" = ( LtJ-l)(n-1). It is easy to check that g 6 n(m') >, 1-c and
Y

ggyn(m") < 1-E . The monotonicity of g
6,n

then implies that m" 5 Y ("')(n) < m'.

It is easy to check that, for fixed 0 < E, 6 < 1, we have t = @logn) as

n + 03. This implies that m' = O(nlogn), m" = O(nlogn), and hence

Y(E,6)(n) = O(nlogn).

The canonical (&,6)-stochastic  network may not always be the best

solution possible, as the following example shows.

Consider the 3-sorter a = [2:3][1:2][2:3], and its canonical

(&)-stochastic sorter 6 = [2:3]m[l:2]m[2:3]m.  By definition, the value

of m is the smallest positive integer such that (1 - l/2 m 3
> > 1 - c.

14



.

3

It follows that

m= r-log20 - (1-d l/3)1 .

For E << 1, the total number of comparators in 6 is then

3m Q 3(log2(l/d + log23) + O(E).

We shall now show that, there exist (&,%)-stochastic 3-sorters using only

210g2(l/E) + O(ln ln(3/&)) comparators. That is, the canonical construc-

tion uses nearly 50% more comparators than is necessary when c-+0.  The result

follows from the next theorem.

Theorem 4. &")(3) = 2
log2(1/&) + O(lnlnU/E))

log2(l16)

proof. We first compute Yw+3)
Y which according to Theorem 3 is the

smallest m satisfying

(1 -SW21)(1  - slmq > 1 - &c .
Writing m' = rm/21,  we obtain

1 - 6m' 2 (1 - d
4

= l - % E+ O(E2).

This leads to

m 3 2m' - 2

2 2
log2(1/c)+  O(l)‘

log2(1/6)  l

As S(Ey")(3) 2 Y(Ey6)(3),  we have proved that

To prove the reverse inequality, we construct a 3-sorter

~1~ = [2:3]([1:2][2:3])' (Figure 6). We shall prove that, for some constant c,

the network
%

with R = (log2(1M + c lnln(3/E))/~0g2(1/6) iS an

(E,6)-stochastic 3-sorter. This then proves the theorem.

15



Writing x for 2:3c 1 and y for 1:2[: I , we can denote all by the

string all=  yxyxy.. .xy. For added clarity, we also use the subscripted

notation a&=YO*lYl*2Y2' l 'XRY& where x. and y. refer to the i-th 2:3
1 1 I: 1

and 1:21: I comparators; respectively. It is easy to see that, when comparators

are deleted, the resulting network cl;! fails to be a valid 3-sorter if and

only if ai does not contain a.substring which belongs to yx+y or +XY *,

i.e., a;? & y+x*.u x:y+ u x*. Thus the probability pR that ai fails is

less than pl+p2+p3 where

1) ap y+x* with probability

Pl= c k (
l$k$R+l

~-k+l)(l-6)k &22+1-k (5.2)

since we must have
%

= yi yi .,.yi xi xi . ..x. where 1 S k S R+l ,
1 2 j j+l j+2 k

1 $ j S k, and 0 < il < . ..< i. < i.
J+l<

. ..<i
J k

SR.

After simplifications, Equ.(5.2) becomes

Pl
= (l-s)*(a+l)*sR c (k~l)(l:6)k-l @k-l)

l<kG'R+l

= (l-a).(R+l)*&R .

2) cpzx*y+ with probability p2 = pl = (l-6)*(&+1)*6 R
, since network

a&

is symmetric with respect to left-right reversal.

with probability

P3= c (k)(l-s)k $2+1-k
OSk<R k

= gR+l c
O&k<&

($(l-&)k &R-k

16



Figure 6 The network cxR in the proof
of Theorem 4.
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Therefore
pR = Pl+P2+P3 < 3ta+1>sR . It can be verified that by choosing

R = where lnc>,3,
Y

we will have i 3(R+1)6
R

pL 6 &. This proves the theorem. a

6. Concluding Remarks.

We have studied efficient ways to achieve fault-tolerant ability in

some particular problems. The canonical redundancy method sometimes yields

economic networks (as for minimum-finding in both models), but not always

(it works poorly for sorting in both models). It would be of great interest

to find other general principles besides the canonical method.

Some related open problems:

1. For fixed E, 6, we know that clnlogn G M(&,')(n) < c2n(lognj2.

Question: Determine the order of M (E'6/(n). Similarly, we know that

clnlogn 6 S(Ey6)(n) 6 c2n(logn)3, and better estimates for S("'6)(n) are

to be found. It seems that these functions should not be O(nlogn), as

Y("')(n) = O(nlogn) and minimum-finding is intuitively a much simpler

problem.

2. For fixed 6, determine S (E,6+3) as E + 0. In particular, is our

construction optimal?

3. The interpretation of a network as a string , and the probability of

fault being the probability of a random substring not containing some

particular patterns gives rise to questions in a more general setting, which

may be of interest by themselves.
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