
UNION-MEMBER ALGORITHMS FOR NON-DISJOINT SETS

by

Yossi Shiioach

STAN-CS-79-728
January 19 7 9

C O M P U T E R S C I E N C E D E P A R T M E N T
School of Humanities and Sciences

STANFORD UNIVERSITY

Union-Member Algorithms for Non-Disjoint Sets

-I*Yossi Shiloach

Computer Science Department
Stanford University

Stanford, California 94305

January 1979

Abstract.

In this paper we deal with the following -problem. We are given

a finite set U = (u1' l *,u☺ and a set Op = {Sl, l . l j Sm] of subsets

of u. We are also given m-l UNION instructions that have the

form UNION(Si,Sj) and mean "add the set Siu Sj to the collection

and delete S. and S.." Interspaced among the UNIONS are MEMBER&j)
1 3

questions that mean "does ui belong to Sj ?"

We present two algorithms that exhibit the trade-off among the

three interesting parameters of this problem, which are:

1. Time required to answer one membership question.

2. Time required to perform the m-l UNIONS altogether.

3* Space .

We also give an application of these algorithms to the problem of

5-coloring of planar graphs.

Keywords. 5-coloring, height-balanced (AVL) tree, planar graphs,

trie, UNION -MEMBER algorithms.

-I* This research was supported by a Chaim Weizmann Postdoctoral
Fellowship and by National Science Foundation grants MCS 75-22870,
MCS 77-23738.

1

1. Introduction.
.

Suppose we are given a finite set U = {ul,...,un) and a set

$2 = {s,, . ..) S,] such that Sj cU for all l< j <m. The sets- -

in op are not necessarily disjoint. We are also given m-l UNION

instructions that have the general form UNION(Si,Sj) which means:

form a new set S
min(i,j)

which is equal to sp. l

J
Assigning

the index min(i,j) to the new set guarantees that we don't give it

an index of another set. Interspersed among the UNIONS are

MEMBER(i,j) questions which mean: does ui belong to Sj ?

This problem has three interesting parameters.

1. The time required to answer a single MEMBER question.

2. The time required to perform the m-l UNIONS altogether.

3. S-pace.

In Section 2 we shall present two algorithms that exhibit some

trade-off among these three parameters.

The first algorithm answers a membership question in O(k) time,

uses O(I*rYk) space and requires O(1 k log n) time to perform all

the UNIONS. Here I = IS,l + IS,\ + l em + Is,\ + n

represents the input size. A slight modification of this algorithm

requires O(1 k log m) time to perform all the UNIONS. Note that k

need not be a constant. The interesting cases for this algorithm are

when 1 < k < log n .- -

The second algorithm is designed for the case k = log n . This

algorithm uses recent results of Brown and Tarjan [BT] and improves the

time bound for performing all the UNIONS to O(1 log n) . It requires

O(log n) time to answer a membership question and O(1) space,

2

(These bounds are also obtained by the first algorithm upon'substituting

k= log n .)

In Section 3 we give an implementation of these algorithms to the

problem of coloring a planar graph with 5 colors. It yields a time

bound which has the same asymptotic behavior as the recent algorithm of

Lipton and Miller [LM] but is much simpler and faster practically.

3

2. Two UNION -MEMBER Algorithms.

2.1 The First Algorithm.

In the first algorithm we store each of the sets Sl, . . ., Sm in a

trie structure with l/kn fields per node. This data-structure is described

in detail in [K]. A slightly different presentation appears in [T].

The relevant facts about tries, as far as we are concerned, are:

1. A membership question can be answered in O(k) time.

2. Insertion takes O(k) time.

3* Each set S
j

is stored in O((SjI*rYk) space.

As we have mentioned before, k is an arbitrary positive integer which

is not necessarily independent of n .

The last fact implies that the total space that we need to represent

the initial configuration is O(PrYk) . Basically, in order to perform

UNION(Si,Sj) we take the set that has a smaller number of elements,

say 'i 3 and insert its elements one by one into S. .
3

There are,

however, three problems in this approach.

The first -problem is how to retrieve the elements of Si efficiently.

The trie structure does not support it very well and therefore each set

will also be stored as a linked list. This requires O(1) space and

therefore is negligible with respect to O(I*nl/k) . The second problem

is where do we store silJs. .
3

This problem contains, in fact, two

sub-problems, namely where do we store the trie representation of ‘i U ‘j

and where do we store its list representation. In both cases we would

like to store the representations of Siu S. in the space that was
3

occupied by the old representations of S. and S..1 J
In this way we would

not exceed the space limit of the initial configuration. Practically,

we first "clear" (see the third problem) the space that was occupied

bY 'i and then we insert S
i

's elements one by one (reading them from

the list) to the trie that represents S. . This trie would probably
3

have to expand and we let it use the vacant space of Si . Obviously

it won't need more space (assuming that in the beginning we have

allocated I 1S nljk
r

to every original set Sr , 1 < r < m , even if- -

its trie did not require that much space). If, when we insert an

element of S i we find that it has already been in S. , then we delete
3

it fram the list of Si . Finally this list will contain the set Si- S.
3

and then we just have to link it to S.
J

's list to yield a linked list

without repetitions of the new set sp. . Note that the amount of
J

time involved in these manipulations is still O(k\S,\) as if we have

just inserted the elements of Si , one by one, into S. .
3

The third problem is the initialization of our data-structure and

the clearance of spaces of sets that disappear such as Si before.

The solution to Exercise 2.12 in [AHU] allows us to avoid the initialization

and therefore the clearance too. The implementation of this trick

requires an extra 00) space and its time is also dominated by the

overall bound of O(Iak*log n) . It is quite straightforward and we

shall leave the details to the reader.

So far we have shown that our data structure enables us to answer a

membership question in O(k) time and that we don't use more than

O(I nl/k) space in the whole algorithm. Let's show now that the time

required to -perform all the UNIONS is O(1 k log n) ,

Let G = (V,E) be the bipartite graph defined by .

v = VU$; E = {(~~,S~):u,eSj,l<I<_n,l~j~m) l

Let’s consider a UNION(Si3Sj) in which Si is inserted into S. .J

Henceforth we shall assume that the new set will have the name of the

accepting set, S. in this case.
J

Let's consider all the edges of G that are incident with Si .

If C"J3 'i) is such an edge and u1 E S.
3

too, we say that the edge

(upi) disappears when UNION(Si, Sj) is performed. However, if

urk s j then (up3Si) does not disappear but just changes its "name"

to C�13�j) l
Thus, original edges of the graph can either disappear

or change their names. One can easily see that the inherent complexity

of the algorithm is in making edges disappear and in changing their names.

These two operations take O(k) time and therefore can be regarded as

elementary operations. We then have to show that the number of elementary

operations is O(I log n) .

Let’s consider UNION(Si, Sj) again. The number of edges that

disappear is)SinSj(and the number of edges that change their name

is I 'i - Sj \ . If \ Si - Sj \ <, 1 si n Sj \ we will charge the disappearing

edges also for the time involved in changing the name of the others;

yet each edge that disappears will still be charged for at most one edge

that changed its name. Since IEI < I and each edge disappears at most

once, the total number of elementary operations that will be charged on

the accounts of disamearing edges will be O(1) . The accounts of edges

that change their names are charged only when \si - S j I > 1 Si n Sj I .

Since Isi\ 5 Is-j1 this implies that ISi U Sj \ > $ Si . Thus, each

edge can be charged for changing its name. at most log312 n times, and this

yields the desired result. (Note that an edge can change its name more

than log3i2 n times.)

A slight modification of the algorithm above yields a total time

of O(1 k log m) for performing all the UNIONS.

Let an original set denote a set that is an element of $. If,

when we perform UNION(Si,Sj) , we insert the one that contains a smaller

nwnber of original sets into the one that contains more original set,

then we can easily get the bound above.

2.2 The Second Algorithm.

In this case we set k = log n . Thus, we are interested in an

algorithm that answers a membership question in O(log n) time, uses

linear space and is as efficient as possible. Every data structure

(including the previous one) that supports search and insertion in

logarithmic time and linear space can meet these requirements with a

total time of O(I log2 n) for executing all the UNIONS. (One log

term comes from the cost of a basic operation in the data structure

and another one comes from the fact that an edge can be charged O(log 4

times for changing its name.) The following algorithm uses a recent

result of Brown and Tarjan [BT] that enables us to knock down one log

term bringing the total time down to O(I log n) .

This time we shall keep each set in a height-balanced (AVL) tree and

not as a list. These trees will, however, represent sorted lists in the

sense that if we traverse them in inorder, the indices of the ui 's will

be strictly increasing (see [BT]). We also use an auxiliary space of

size n . In order to perform UNION(Si,Sj) in which Si should be

7

inserted into S
j

(i.e., Is-J, I 5 lsj
tree in inorder and put it as a sorted list in the auxiliary space.

.

I) , we first read Si from its

Then we insert Si 's elements one by one in increasing order, into S
j

's

tree, allowing it to expand into the space occupied b;y sirs tree

(which we don't need any more). AS we have mentioned before, there is

a nifty trick that allows us to use this "dirty" space without cleaning

it up first. From the same reason, we don't have to clear the auxiliary

space and it can be used for all the UNIONS.

An AVL tree supports a search in log time and occupies linear

space. Thus, we just have to show that the time bound for carrying out

all the UNIONS is O(1 log I) .

At this point we have to turn to Brown and Tarjan's paper [BT].

This paper deals with fast merging algorithms. Using AVL trees to

represent the sets in a sorted inorder manner, the authors were able

to insert the elements of the smaller set, say Si , one by one to the

tree of the larger set, say S. , in time of O(\si\(l + log 1~~1 - log Isi\)) ,
J

The resulting tree represents si u s . in a sorted inorder manner and
3

therefore can be reused later.

In order to establish an O(1 log I) time bound for our algorithm

we shall use the same graph G as before and charge the operations to its

edges. If lsinsj) 1 ISi-Sjl we charge each of the disappearing

edges by 2(1 + log ISj \ - log ISi\) < 2 log n+l . An edge can disappear

at most once and therefore this account till not cause any trouble. When

I si - ‘j\ > ISiflSjl we charge each edge by 1+ log lSjl - log ISi\ .

By the same reasoning as before, an edge will be charged by this amount

when changing its name at most lo
%I

2 n times. That takes care of

8

the 1 and we are left with log \'j I - log lSil . Let lui,Si) be

an edge which has just been charged by this amount and changed its name

to C�,3�j) l Since sets keep growing all the time, the next time that

our edge will be charged when changing its name from $3 "p' to

(up ss) we will have IspI L l'jl ' This time it will be charged by

log Isql - 1% Is,\ 3 and together with the previous amount it will sum

.

up to

log lsql - log l”pl + log \‘jl
- log lsil I log lsql .

This argument shows that all these amounts form kind of a telescoping

series bounded by log n . Summing everything up, an edge can

be charged once by 2(1 + log \‘jl - log Jsil) for some Si,Sj c U-

and can accumulate at most 2 log n fram charges that are made when it

changes its name. Since I IE <I , the proof is complete,

3* An Application to 5-Coloring of Planar Graphs.

In a recent paper, R. J, Lipton and R. E. Miller [LM] present an

O(n log n) algorithm for 5-coloring a planar graph with n vertices.

However, the constant factor which they provide is derived from the

recurrence relation T(n) = T(hn) + O(n log n) in which h can achieve

values which are very close to 27/28 and the multiplicative constant

of n log n is not very small either. Even if it is just 2 , it would

yield T(n) M 56nlogn, while for all practical purposes

56 > log n .

Lipton and Miller's algorithm follows the lines of the constructive

proof of the $-color theorem which is given in [H]. There is, however,

a much simpler (and constructive) proof of the 5-color theorem which

follows the lines of [O] and can be utilized by the algorithms above,

The proof proceeds by induction on n and the basis for the induction

is trivial. Thus, let's assume that any planar graph with at most n-l

vertices is 5-colorable, and let G be a planar graph with n vertices,

Obviously, if G contains a vertex of degree < 4 we are done. If not,-

there exists a vertex, say v. , of degree 5 . Let vl,...,v
5

be vols

neighbors. At least two of them, say vl and v2 , are not adjacent to

each other. We now contract v. , vl , and v2 into one vertex v,+ ,

yielding a planar graph G' that has n-2 vertices. Let's consider a

5-coloring of G' in which v* has color #l and v3 , v4 , and v5 has

colors #3, 4, and 5, respectively. Now, we can color G by 5 colors

assigning color #l to vl and v
2

and color #2 to v. . The proof is

complete.

10

When one tries to extract an algorithm out of this proof, it seems

that two operations have kind of a contradictory nature. One is the

contraction of two vertices into one (contraction of three vertices can

be regarded as two such steps), and the other is to determine whether

two vertices are adjacent or not. Data structures that support fast

adjacency tests, such as an adjacency matrix, usually require a lot of

space and have poor performance in making contractions. Other data

structures that support contractions in short time require too much

time for adjacency tests. At this point, our algorithms get into the

picture.

Let V be our universal set and let 2 = {S,, . . ., S,) where Si

is the set of vertices adjacent with v. , l<i<n.
1

In these terms,- -

it is easy to see that contraction of v. and v. into one vertex
1 J

transforms to UNION(Si,Sj) and an adjacency test of vi and v.
J

transforms to MEMBER(i,j) . Obviously, the UNION- MEMBER routine is

only a part of the 5-coloring algorithm. We have to store and update

the degrees of the vertices, delete vertices of degree < 4 , and record-

some information that will enable us to expand the graph back from one

"big" vertex (or 5 "big" vertices) to its original size and also trace

the 5-coloring back from the smallest graph to the original one. Thus,

a lot of details should be accomplished if one attempts to design a

complete ?-coloring algorithm out of these ideas. However, the

WON-MEMEER routine is the core of such an algorithm and the most

time-consuming part of it. All the other things can be done in linear time

and space. Both UNION-MEMBER algorithms yield an O(n log n) time bound

for the coloring algorithm, and the second one yields linear space too.

We believe that the constant factor here is much lower than the one in [LM]

and that the algorithm is conceptually simpler,

ll

References

Mm

[BTI

[HI

[Kl

ml

WI

[Tl

A. V. Aho, J. E, Hopcroft, and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass,, (1974).

M. R. Brown and R. E. Tarjan, "A Fast Merging Algorithm,"

Stanford Computer Science Department Report STA&CS-77-625 (1977),

(to appear in Journal ACM).

F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., (1969).

D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and

Searching, Addison-Wesley, Reading, Mass., (1973).

R. J. Lipton and R. E. Miller, "A Batching Method for Coloring

Planar Graphs," Information Processing Letters 7, 4 (1978), 185-188.

0. Ore, The Four Color Problem, Academic Press, (1967).

R. E. Tarjan, "Storing a Sparse Table," Stanford Computer Science

Department Report STAN-CS-78-683, (1978).

12

