UNION-MEMBER ALGORITHMS FOR NON-DISJOINT SETS

by

Yossi Shiioach

STAN-CS-79-728
January 1979

COMPUTERSCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Uni on- Menber Al gorithns for Non-Disjoint Sets

Yossi Shil oach ¥/
Conput er Science Departnent

Stanford University
Stanford, California 94305

January 1979

Abstract.

In this paper we deal with the following -problem W are given
a finite set U= (uy ' M@‘@ and a set # = {sl, -~;'0a‘Sm} of subsets
of u. W are also given ml UNION instructions that have the
formUNION(Si, SJ.) and nmean "add the set ;U SJ. to the collection
and del ete S'l and sj.” | nt erspaced anbng the UNIONs are MEMBER(i,J)
questions that mean “"does u, belong to 55 2"

Ve present two algorithns that exhibit the trade-off among the
three interesting parameters of this problem which are:

1. Time required to answer one nenbership question.

2. Time required to performthe ml| UuNIONs al t oget her.

3. Space .

W also give an application of these algorithms to the problem of

5-coloring of planar graphs.

Keywor ds. 5-coloring, hei ght-bal anced (AvL) tree, planar graphs,
trie, UNION - MEMBER al gorithmns.

¥/ This research was supported by a Chaim Wi zmann Postdoct or al

Fel | owshi p and by National Science Foundation grants MCS 75-22870,
MCS 77-23738.

1. [ntroduction.

Suppose we are given a finite set U = {ul,...,un} and a set
= {8,. ..,8 } such that 5, U for all 1< j _<m The sets
in # are not necessarily disjoint. W are also given m| UNON
instructions that have the general form UNION(Si,SJ.) whi ch neans:
forma new set S

which is equal to S, US Assi gni ng

min(i, J) i
the index mn(i,j) to the new set guarantees that we don't give it
an index of another set. Interspersed anmong the UNIONs are

MEMBER(i,j) questions which mean: does u bel ong to Sj ?

This problem has three interesting paraneters.

1 The tinme required to answer a single MEMBER questi on.
2. The time required to performthe ml| unNIoNs al t oget her.

3. S pace.

In Section 2 we shall present two algorithms that exhibit sone
trade-of f anong these three parameters.

The first algorithm answers a nenbership question in QKk) time,
uses o(Ionl/k) space and requires O(I k log n) tinme to perform all
the UNIONs. Here | = |s;| - [s5] « v o - |s | - n
represents the input size. A slight nodification of this algorithm
requires O(I k log m) time to performall the UNNONs. Note that k
need not be a constant. The interesting cases for this algorithm are
when 1 < k <log n .

The second algorithmis designed for the case k = log n . This
al gorithm uses recent results of Brown and Tarjan [BT] and inproves the

time bound for performing all the UNONsto o(z log n) . It requires

0(log n) time to answer a nenbership question and (1) space,

(These bounds are also obtained by the first algorithm upon substituting
k=1log n.)

In Section 3 we give an inplenentation of these algorithnms to the
probl em of coloring a planar graph with 5 colors. It yields a time
bound which has the sane asynptotic behavior as the recent algorithm of

Lipton and MIler [LM but is nuch sinpler and faster practically.

2. Two UNION - MEMBER Al gorithns.

2.1 The First A gorithm

In the first algorithmwe store each of the sets 817 w8 in a

1
1/k fields per node. This data-structure is described

trie structure with n
indetail in[K. A slightly different presentation appears in [T].

The relevant facts about tries, as far as we are concerned, are:

1 A nenbership question can be answered in Qk) tinmne.
2. Insertion takes Q' k) tine.

3. Each set SJ. is stored in o(\sJ.\-nl/k) space.

As we have nentioned before, k is an arbitrary positive integer which
I's not necessarily independent of n .

The last fact inplies that the total space that we need to represent
the initial configuration is O(I-nl/k) . Basically, in order to perform
UNION(si,Sj) we take the set that has a smaller nunber of elenents,
say S, and insert its elements one by one into S.J. There are,
however, three problens in this approach.

The first -problemis howto retrieve the elements of 8 efficiently.
The trie structure does not support it very well and therefore each set
will also be stored as a linked list. This requires Q1) space and

1/k

therefore is negligible with respect to 0(I-n™”7) . The second problem

is where do we store SiUSiJ' This problem contains, in fact, tw
sub-probl ems, nanely where do we store the trie representation of SiUSJ-
and where do we store its list representation. In both cases we woul d

like to store the representations of S, U S. in the space that was

J

occupied by the old representations of S. and SJ. In this way we woul d

not exceed the space Iimt of the initial configuration. Practically,
we first "clear" (see the third problen) the space that was occupied
by S, and then we insert Si's el ements one by one (reading them from
the list) to the trie that represents S.J . This trie would probably
have to expand and we let it use the vacant space of 8, - Qovi ously
it won't need nore space (assunming that in the beginning we have
al | ocated |sr]nl/k to every original set s , 1 <r<m, evenif
its trie did not require that much space). If, when we insert an
el ement of Si we find that it has already been in S.J , then we delete
it from the list of 8, . Finally this [ist will contain the set 8, - S.J
and then we just have to link it to Sj's list to yield a linked Iist
Wi thout repetitions of the new set SiLJSj. Note that the amount of
time involved in these manipulations is still o(k|s,|) as if we have
just inserted the el ements of S, , one by one, into sJ.

The third problemis the initialization of our data-structure and
the clearance of spaces of sets that disappear such as 8, bef ore.
The solution to Exercise 2.12 in [AHU] allows us to avoid the initialization
and therefore the clearance too. The inplenmentation of this trick
requires an extra O(I) space and its time is also doninated by the
overal |l bound of 0(I-k-logn) . It is quite straightforward and we
shall leave the details to the reader.

So far we have shown that our data structure enables us to answer a
menbership question in Qk) tinme and that we don't use nore than

O(Ixﬂfk)space in the whole algorithm Let's show now that the tine

required to -performall the untoNs is O(I k log n) ,

Let ¢ = (V,E) be the bipartite graph defined by

V= Vus ; E = {(uz,Sj):uzesj,lSISn,lSJSm}.

Let's consider a UNION(Si,SJ.) in which SjL is inserted into S.J.
Henceforth we shall assune that the new set will have the name of the

accepting set, S.J in this case.

Let's consider all the edges of G that are incident with s, .
If (uz’ Si) s such an edge and u, ¢ S-;, too, we say that the edge
(uz’si) di_sappears_when UNION(Si, SJ.) is performed. However, if
uz’ésj t hen (uz,si) does not disappear but just changes its "neme"
to (uz, SJ.) . Thus, original edges of the graph can either disappear
or change their nanes. One can easily see that the inherent conplexity
of the algorithmis in making edges disappear and in changing their names.
These two operations take Q(k) tine and therefore can be regarded as
el enentary operations. W then have to show that the nunber of elenmentary
operations is O(I log n) .

Let's consi der UNION(8y Sj) again. The nunber of edges that
di sappear is |Si“Sj\ and the number of edges that change their nane
is]Si-sjl. | f |si-sj|§|sinsj]vxevxﬂl charge the disappearing
edges also for the tinme involved in changing the name of the others;
yet each edge that disappears will still be charged for at nost one edge
that changed its name. Since |E| <1 and each edge disappears at nost
once, the total nunber of elementary operations that will be charged on
the accounts of dissppearing edges will be Q1) . The accounts of edges
that change their names are charged only when |8 =S 3 | > s n 5, | .

Since |si| < |s this inplies that \siusj|>%si. Thus, each

s
edge can be charged for changing its name. at nost 1085/2 ntimes, and this

yields the desired result. (Note that an edge can change its name nore
t han log5/2 ntines.)

A slight nodification of the algorithm above yields a total tine
of o(t k log m for performng all the UN O\s.

Let an original set denote a set that is an elenent of » . If,

when we performUNION(si,sJ.) , We insert the one that contains a smaller
number of original sets into the one that contains nore original set,

then we can easily get the bound above.

2.2 The Second Al gorithm

In this case we set k =log n. Thus, we are interested in an
al gorithm that answers a nenbership question in 0(log n) timnme, uses
linear space and is as efficient as possible. Every data structure
(including the previous one) that supports search and insertion in
logarithmc time and |inear space can neet these requirenents with a
total time of o(z 1og2 n) for executing all the UNTONs. (One |og
term conmes from the cost of a basic operation in the data structure
and another one comes fromthe fact that an edge can be charged 0(log n)
times for changing its nane.) The follow ng algorithm uses a recent
result of Brown and Tarjan [BT] that enables us to knock down one log
termbringing the total time down to o(1 log n)

This time we shall keep each set in a height-bal anced (AvL) tree and
not as a list. These trees will, however, represent sorted lists in the
sense that if we traverse themin inorder, the indices of the u, 's will
be strictly increasing (see [BT]). W also use an auxiliary space of

size n. In order to perform UNION(S:.L,SJ.) i n which S; shoul d be

inserted into SJ. (e,]85] < lSJ.|), we first read S, fromits
tree in inorder and put it as a sorted list in the auxiliary space.

Then We insert 8; 'S el ements one by one in increasing order, into Sj 's
tree, allowing it to expand into the space occupied by si's tree

(which we don't need any nore). Aswe have mentioned before, there is
a nifty trick that allows us to use this "dirty" space w thout cleaning
it up first. Fromthe same reason, we don't have to clear the auxiliary
space and it can be used for all the UN ONs.

An AVL tree supports a search in log time and occupies |inear
space. Thus, we just have to show that the tine bound for carrying out
all the UNONsis Oo(I log I) .

At this point we have to turn to Brown and Tarjan's paper [BT].

This paper deals with fast nerging algorithms. Using AVL trees to

represent the sets in a sorted inorder manner, the authors were able

to insert the elenents of the snaller set, say s, . one by one to the

tree of the larger set, say ? , in time of o(|s;|(1 + Iog \sjl - log |si[)) :
The resulting tree represents § US 5 in a sorted inorder manner and
therefore can be reused |ater.

In order to establish an O(I log I) time bound for our algorithm
we shall use the same graph G as before and charge the operations to its
edges. |If |siﬂsj| > |si-sa.| we charge each of the disappearing
edges by 2(1 + log |sJ_ | - log |Si|) <2log n+1l . An edge can disappear
at nost once and therefore this account will not cause any trouble. \Wen
ysi-sjl > |sinsj| we charge each edge by 1+ log lSJ.\ - log [s, | .
By the sane reasoning as before, an edge wll be charged by this amount

when changing its nane at nost I0g;5/2 n times. That takes care of

the 1 and we are left with 1og |Sj | - |Og Is;] . Let (uz’si) be
an edge which has just been charged by this amount and changed its nane
to (uz,sj) . Since sets keep growing all the time, the next time that
our edge will be charged when changing its nane from (uz’ s) to

b

(u,s Sq) we will have ISPI > s This time it will be charged by

51
log |sq| - log |S_p| » and together with the previous amount it will sum
up to

log |Sq| - log lspl log |Sj| - log ISiI < log lsql

This argument shows that all these amounts form kind of a telescoping

series bounded by |log n . Summing everything up, an edge can

be charged once by 2(1 + longJ.I - log \Sil) for sone Si,sj c U

and can accunulate at nmost 2 log n from charges that are nade when it

changes its name. Since |g <1, the proof is conplete,

3. An Application to 5-Coloring of Planar G aphs.

In a recent paper, R J. Lipton and R E. MIller [IM] present an
Qnlog n) algorithmfor 5-coloring a planar graph with n vertices.
However, the constant factor which they provide is derived from the
recurrence relation T(n) = T(A) + Q(n log n) in which A can achieve
val ues which are very close to 27/28 and the multiplicative constant
of nlogn is not very small either. Even if it is just 2, it would
yield T(n) ~ 56 n logn , while for all practical purposes
56 >log n .

Lipton and Mller's algorithm follows the lines of the constructive
proof of the $-color theoremwhich is given in [H. There is, however,

a nuch sinpler (and constructive) proof of the 5-color theorem which
follows the lines of [0] and can be utilized by the algorithns above,

The proof proceeds by induction on n and the basis for the induction
is trivial. Thus, let's assume that any planar graph with at most n-|

vertices is 5-colorable, and let G be a planar graph with n vertices,

Qoviously, if Gcontains a vertex of degree <L we are done. If not,
there exists a vertex, say v, , of degree 5. Let Vyreees Ve be vy 's

nei ghbors. At least two of them say vy and v, , are not adj acent to

each other. W now contract Vo o Yy and v, into one vertex Ve oo

yielding a planar graph ¢* that has n-2 vertices. Let's consider a

5-coloring of G' in which v, has color #1 and vz, V), and v has

colors #3, 4, and 5, respectively. Now, we can color G by 5 colors

assigning color #1 to v, and v, and color #2 to v

1) o The proof is

conpl et e.

10

Wien one tries to extract an algorithmout of this proof, it seems
that two operations have kind of a contradictory nature. One is the
contraction of two vertices into one (contraction of three vertices can
be regarded as two such steps), and the other is to determ ne whether
two vertices are adjacent or not. Data structures that support fast
adj acency tests, such as an adjacency matrix, usually require a lot of
space and have poor performance in making contractions. Qher data
structures that support contractions in short tine require too nuch
time for adjacency tests. At this point, our algorithnms get into the
picture.

Let V be our universal set and let » ={s,..,5 1 where &,
is the set of vertices adjacent withv. , 1<i<n. In these terns,
it is easy to see that contraction of V. and v. into one vertex

J
transforms to UNION(Si,sJ.) and an adj acency test of v, and v.

J
transforms to MEMBER(i,j) . Cbviously, the UNTONN MEMBER routine is

only a part of the 5-coloring algorithm W have to store and update

the degrees of the vertices, delete vertices of degree <& , and record
some information that will enable us to expand the graph back from one
"big" vertex (or 5 "big" vertices) to its original size and also trace
the 5-coloring back fromthe snallest graph to the original one. Thus,

a lot of details should be acconplished if one attenpts to design a

conpl ete 5-coloring al gorithm out of these ideas. However, the
UNION - MEMBER routine is the core of such an algorithm and the nost
tinme-consumng part of it. Al the other things can be done in linear tine
and space. Both UNI ON- MEMBER al gorithms yield an Q(n log n) tinme bound
for the coloring algorithm and the second one yields |inear space too.

VW believe that the constant factor here is nuch |ower than the one in [LM

and that the algorithmis conceptually sinpler,

11

Ref er ences

(aHU] A V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Anal ysis

of Conputer Al gorithnms, Addison-Wsley, Reading, Mass,, (1974).

(BT] M R Brown and R E. Tarjan, "A Fast Merging Al gorithm"
Stanford Conputer Science Departnent Report STAN-CS-77-625 (1977),

(to appear in Journal ACM.
[H] F. Harary, G_aph Theory, Addison-Wesley, Reading, Mass., (1969).

[X] D. E. Knuth, The Art of Conputer Programming, Vol. 3: Sorting and

Searching, Addi son-Wsl ey, Reading, Mss., (1973).
(zM] R J. Lipton and R E. Mller, "A Batching Method for Coloring

Planar Gaphs," Information Processing Letters 7, 4 (1978), 185-188.

[0] 0. Oe, The Four Color Problem Acadenic Press, (1967).

[T] R E. Tarjan, "Storing a Sparse Table," Stanford Conputer Science
Department Report STAN-CS-78-683, (1978).

12

