FAST ALGORITHMS FOR SOLVING PATH PROBLEMS

by

Robert Endre Tarjan

STAN-CS-79-734
April 1979

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Fast Algorithns for Solving Path Problens

Robert Endre Tarjanf/
Computer Science Departnent
Stanford University
Stanford, California 94305
April, 1979

Abstract.

Let G = (V,E) be a directed graph with a distinguished source vertex s .

The singl e-source path expression problemis to find, for each vertex v ,

a regular expression P(s,v) which represents the set of all paths in G
froms to v . A solution to this problem can be used to solve shortest
path problens, solve sparse systems of |inear equations, and carry out

gl obal flow analysis [30]. we describe a method to conpute

path expressions by dividing G into conponents, conputing path expressions
on the conponents by Gaussian elimnation, and conbining the solutions.
This method requires Q(m a(mn)) time on a reducible flow graph, where

n is the nunber of vertices in G, m is the nunber of edges in G, and
a is a functional inverse of Ackermann's function. The nethod makes use
of an algorithmfor evaluating functions defined on paths in trees [9,29].
A sinplified version of the algorithm which runs in Qmlog n) time on

reducible flow graphs, is quite easy to inplement and efficient in practice.

CR Cat egori es: 4,12, 4.34, 5.14, 5.22, 5.25, 5.32.

Keywor ds: Ackermann's function, code optimzation, conpiling, domnators,
Gaussian elimnation, global flow analysis, graph algorithm
l'inear algebra, path conpression, path expression, path problem
path sequence, reducible flow graph, regular expression,
shortest path, sparse matrix.

x/ This research was partially supported by the National Science Foundation
under grant McS75-22870-402, by the COffice of Naval Research under
contracts NROLL-LO2 and NOOO1L-76-C-0688, by the | BM Corporation, and
by a Quggenhei m Fel | owship. Reproduction in whole or in part is permtted
for any purpose of the United States governnent.

1

1. | ntroducti on.

The techniques of Gaussian and Gauss-Jordan elimnation, originally
devised to solve systens of equations over the real nunbers, have been
repeatedly rediscovered and applied to other problens. These include shortest
path probl ems [6,10,16], pat h-finding probl ens [4], gl obal flow analysis
[2,12,13,23], and conversion of finite automata to regular expressions [18].

The nost fundanental of these problens is the (single source) path

expression problem Gven a graph G= (V,E) and a distingui shed

source vertex s, find a regular expression P(s,v) for each vertex v
which represents all paths froms to v in G. By reinterpreting
the u,., and * operations used to construct regular expressions,

we can use a solution to the single-source path expression problemto

sol ve other kinds of path problens, including those nentioned above [30].
W thus obtain a general-purpose algorithm for solving any path problem
on a given graph.

This paper describes a deconposition nmethod for computing path
expressions. The method divides the graph G into conponents based
upon the domnator tree of G, conputes a path expression for each
cbnponent by Gaussian elimnation, and conbines the solutions using
an algorithm for evaluating functions defined on trees [9,29]. The
algorithm requires Qma(mn)) time plus time to conpute path expressions
within the conponents, where n is the number of vertices in ¢,

m is the nunber of edges in ¢, and a is a functional inverse of
Ackermann's function. |f Gis a reducible flow graph, each conponent

of Gis a single vertex, and the method requires Q'm a(m,n)) time

total. A though the method is rather complicated, a sinplified version,
which runs in Qmlog n) tine, is quite easy to program and efficient
in practice

The paper contains seven sections. Section 2 reviews the properties
of regular expressions used in the follow ng sections. Section 3
reviews standard nethods of nunmerical linear algebra and describes
their application to the path expression problem This section introduces

the notion of a path sequence for a graph G and shows how, given a

path sequence, one can solve the single-source path expression problem
for any source in time proportional to the Iength of the path sequence
Section 4 presents an Q'ma(m,n)) -tine algorithmfor solving a single-
source path problemon a reducible flow graph if the source is the start
vertex of the graph. Section 5 extends the algorithm so that it

conputes path sequences for reducible flow graphs. Section 6 generalizes
the method to non-reducible graphs. section 7 discusses applications

and suggests further research topics. The appendix contains the basic
graph-theoretic termnology used in the paper, An earlier and nuch

different version of this paper appeared as a Stanford technical report [27].

2. Regular Expressions and Path Expressions.

Let ¢ be a finite al phabet containing neither "A" nor " g,

A reqgul ar expression over g is any expression built by applying the

follow ng rules.

(1a) "A"and " p" are atomic regular expressions; for any aeg,

"a " iS an atomic regular expression.

(1b) | f Ry and R2 are regul ar expressions, then (RlURE) »

* .
(Rl'Re) , and (Rl) are compound regul ar expressions.

In a regul ar expression, A denotes the enpty string, § denotes
the enpty set, y denotes set union, .denotes concatenation, and
* denotes reflexive, transitive closure under concatenation.f/ Thus

each regular expression R over g represents a set c(R) of strings

over ¢ defined as foll ows:
(2a) o(pA) = {0} ; o(@) =P ; o(a) = (a) for aex .

(2b) U(RJ_URQ) = U(Rl)UU(RQ) = {w\wec(Rl) or we G(R2)} ;

o(R *Ry) = 0(By)*0(R,) = {wyw, | w; €0(R)) and w,eo(R,)} 3

G(R*) = Z cr(R)k , Where cr(R)O = {A} and G(R)i = a(R)i'l-o(R) :

k=0

f/ Note that each of the synbols A, #,uy, ., ¥ stands in the text both
for the synbol itself and for a string, set, or operation. W shall
allow the context to resolvethis anbiguity. Also, we shall freely
omt parentheses from regular expressions when the neaning is clear;
we assune the standard operator precedence: * over . over .

The reverse R° of a regular expression R is defined by

(3a) AK=pn; pr=0; a¥=a for aecg.
(5v) (R UR,)" = RjUR;

(Rl'Re)r = Rg‘Ri '

()" = (&))"

Two regul ar expressions Ry and R, are equival ent if a(Rl) = G(Rg).
A regular expression Ris sinple if R=¢ or R does not contain g
as a subexpression. W can transform any regular expression R into an
equival ent sinple regular expression by repeating the following
transformations until none is applicable: (i) replace any subexpression
of the form ;é-Rl or Rl-;b by ¢ ; (ii) replace any subexpression of
the form ;15+Rl or Rl+¢ by R, ; (iii) replace any subexpression
of the form;zS* by A

A regular expression R is non-redundant if R represents every

string in a(R uniquely. W can make this definition precise as

foll ows:
(4a) As H,and a for each acy are non-redundant.
() Let R1 and I'-z2 be non-redundant.

R UR, i s non-redundant if c(Rl) No(Ry) = p .

Ri*R, I non-redundant if each V\EG(Rl-RE) I's uniquely
deconposable into w = W W, Wi th w e G(Rl) and
Wy eU(Rg) .

R; i's non-redundant if each ve O(R*) i's uniquely deconposabl e

Into w = W1W2...W

e with W, € o(R

L) for 1<i < k.

Note that if R* is non-redundant, Af¢ o(R) .

Let G = (V,E) be a directed graph. Any path in Gis a sequence

of edges, which we can regard as a string over E. A path expression P
of (v, w) Is a sinple regular expression over E such that every
stringin o(P) is a path from v to w . Every subexpression of a

path expression is a path expression, whose type can be determned as

fol | ows.
(5) Let P be xa path expression of type (v,w) .
If P= P, UP, , t hen P and P, are pat h expressions of
type (v,w)
If P = Py-P, , then there nust be a unique vertex u such

that P, is a path expression of type (v,u) and P,

is a path expression of type (w,w) .

* . .
If P = P, then v = w and P, is a path expression of

type (v,w) = (v,v).

It is easy to verify (4) using the fact that Pis sinple. Note that
A is a path expression of type (v,v) for any v .

In describing algorithnms to conpute path expressions we shall assune
that each (, ® _and * operation requires constant tine. If we
represent the conputed path expressions by a directed acyclic graph as
described by Aho and Ullman [2, pp. 418-426], this is a reasonable

assunption.

3. Pat h Expression Problens and Path Sequences.

Let G = (V,E) be a directed graph. The single-source path

expression problem for source vertex s is the problem of conputing,

for each vertex veVv , a non-redundant path expression P(s,v) such
that o(P(s,v)) contains all paths fram s to v . The single-sink

path expression problem for sink vertex t is the problem of computing,

for each vertex vev , a non-redundant path expression P(v,t) such

that o(P(v,t)) contains all paths fromv tot . The all-pairs

path expression problemis the problem of conputing, for all pairs v,wev,

a non-redundant path expression P(v,w) such that o(p(v,w)) contains
all paths fromv to w.

In this paper we develop a way to solve path expression problens by
using Gaussian elimnation in combination with methods for deconposing
G into components. In this section we describe how Gaussian elinination
applies to such problems. \% also describe a well-known deconposition
met hod which uses the strong components of G. |n subsequent sections
we present a nore powerful deconposition method based upon the

dom nator tree of G.

Gaussian elimnation was originally devel oped to solve a system of
linear equations Ax = b , where Ais an nxn matrix of real-val ued
coefficients, x is an nxl vector of variables, and b is an n x1

vector of real-valued constants [11]. The nethod consists of two steps.

Step 1 (LU deconposition). Deconpose A into A= LU where L is
unit lower triangular and U is upper triangular.

Step 2 (Frontsolving and backsol ving). Sol ve the triangular systens
Ly = b (frontsolving) and Ux = y (backsol ving).

The resource requirenents of Step 1 dominate those of Step 2 and
thus determine the overall requirements of the al gorithm(5,28], The
nmethod has several pleasant features, including its anmenability to an
i npl ementation that takes advantage of the sparsity of A, avoiding
arithnetic on nunmbers known to be zero [8,22]. It is also possible
to solve Ax = b for multiple right-hand sides by carrying out Step 1
once and repeating Step 2 for each value of b .

Ve apply this nmethod to path expression problens by introducing the

notion of a path sequence, which generalizes Kennedy's node |isting

concept [17]. A path sequence for a directed graph G is a sequence
(Pl’vl’wl)’(PE’vé’wé)""’(Pz’vf’wz) such that

(6a) For 1 <i <, P, 1is a non-redundant path expression of

type (vi,wi)

(éb) For 1 <i <, if v, =w, then pe o(p;) .
(6C) For any non-enpty path p in G, there is a unique sequence
of indices 1<t <<, <ip <t and a unique partition

of p into non-enpty paths p = PsPys . . o Py such that
P € o(p,) for 1 <j < k.
J
Gven a path sequence, we can solve the single-source path expression

problem for any source s by using the follow ng propagation al gorithm X/

Y Ve shall use a syntax resenbling Dijkstra's [7] for expressing
al gorithns.

procedure SOLVE;

initialize: P(s,s) := A; for each veV-{s} do P(s,v) := p od;
oo fori =1 untilrdo
if Vi =W - P(s,vi) = [P(s,vi)-Pi]
O vg # 9y = B(s;wy) = [P(s,w) U [B(s,v;)P, 1] £ od
E’rquSG_VE;

In this and subsequent algorithns, the square brackets denote the
followng sinplification procedure. This procedure, when applied

recursively, produces regular expressions that are not only sinple but also

. . *
contain no subexpressions of the forma-R,, R,cA, OF A .

regul ar exgressi on Qrocedure [R];

il R=RUR, »if R - p-R, []R, =~ R fL

* . -
U R=8 ~if (& =#) o (& = n) -4 L fis

-Lemma 1. Let (Pl’vl’wl)’(P2’v2’w2)" ..,(Pl, vy Wz) be a path sequence
for Gand let v be any vertex. After i iterations of the loop in
SOLVE, P(s,v) is a non-redundant path expression representing exactly p

(if s =v)and all non-enpty paths p froms to v for which there

is a sequence of indices 1§il<i2<. o <ik<i and a partition of
Pinto P = PysDyseeesPp such that pjeG(Pij)for 1<j <k.

Proof . Straightforward by induction on i . O

Theorem 1. Let (Pl,vl,wl), (Pg,ve,wg),. "’(Pl’vl’wl) be a path sequence
for Gand let v be any vertex. After execution of SOLVE, P(s,v) is

a non-redundant path expression representing a1l paths froms to v.

SOLVE is a generalization of the frontsolving-backsolving step in

Gaussian elimnation; its running tine is O(ntg) . To solve a single-
source path expression problemon a graph G, we construct a path
sequence and apply SOLVE once. To solve an all-pairs path expression
problem we construct a path sequence and apply SOLVE n times, once

for each possible source. To solve a single-sink path expression problem
we enploy the follow ng theoremto construct a path sequence for ¢,

and then we solve the correspondi ng single-source problem on a .

Theorem 2. Let (Pl,vl,wl), (PQ’VE’WE)’""(Pz’vl’wl) be a path sequence
T r T .
for a graph G. Then (P/z’w/z’vz)"" ,(Pg,wz,ve),(Pl,wl,vl) is a path

r
sequence for G .

Pr oof . Il mredi ate. O

r

By Theorem 2 it is no harder to conpute a path sequence for ¢ than

to conpute a path sequence for G.

V& can construct a path sequence for an arbitrary graph by using a
met hod anal ogous to Step 1 of Gaussian elimnation. The nethod is sinilar
to Kleene's algorithm for converting a finite automaton into a regul ar
expression [18], except that Kleene uses Gauss-Jordan elimination. Let
G = (V,E) be a directed graph whose vertices are numbered from 1 to n
and identified by nunber. The following procedure conputes a set of path

expressi ons which when properly ordered gives a path sequence.

10

Qrocedure ELI M NATE;
begin

initialize: for v :=1 until ndo for w:=1 until n do P(v,w) := p od od;

~e~—~ la e e atad A~

for each eeEAgUO P(h(e);t(e)) := [P(h(e),t(e)) ye] Od;

~

| oop: &v::luntilndo
P(v, v) 1= [P(v,v)"];

for each u > v such that p(u,v) # g do
P(w,v) = [P(u,v)P(v,v)];
for each w > v such that P(v,w) # P do

P(u, w) := [P(u,w) U [P(u,v)P(v,w)]] ngO"E

end ELIMINATE;

Lemma 2. After the v-th iteration of the |oop in ELIMINATE, the follow ng

statenents are true.

(i) P(ww) for u>wand w< v is a non-redundant path expression
representing exactly the paths fromu to w which contain no
intermediate vertex larger than w .

(ii) P(u,w) for u < worw > Vv jis a non-redundant path expression
representing exactly the non-enpty paths from u to w all of

whose internediate vertices are smaller than minfu,v+1} .

- Proof . Straightforward by induction on v . O

Theorem 3. After execution of ELIMNATE the following statements are

true.

(i) P(uw) for u > wis a non-redundant path expression representing
exactly the paths fromu to w which contain no intermediate
vertex larger than w .

(ii) P(uww) for u < wis a non-redundant path expression representing
exactly the paths from u to w all of whose internediate vertices

are smaller than u .

Theorem 4, Let P(u,w) for u,weV be the path expressions conputed
by ELIM NATE. Then the follow ng sequence is a path sequence: the
elenents of {(P(u,w),u,w) | P(w,w) ¢ {$,A} and U < W) in increasing order
on u, followed by the elements of {(P(w,w),u,w)| P(uw) # $ and u > w

in decreasing order on u .

Proof . The sequence specified in the theorem certainly satisfies (6a)

and (6b). To prove (6c), let p be any non-enpty path in G . Let vy

be the maxi mum vertex on p . Let P, be the part of p fromthe first

occurrence of vy to the | ast occurrence of vy (i f vy only occurs once,

p;) =A). For i >1, let Vs be the |argest vertex occurring on p

after the last occurrence of v;_ , , and let p, be the part of p

fromthe last occurrence of v;_; to the last occurrence of v,

Let v, be the last such v, defi ned (v£=t(p)) . For i >1,

| et v be the largest vertex occurring on p before the first

occurence Of Voiel . Let P_pi4q be the part of p fromthe |ast

occurrence of v_; before to the begi nning of P_piip

Pooj+o
and | et P_os be the part of p from the first occurrence of vy

12

to the beginning of P_pit] Let Vo be the | ast

such v_; defined (v - h(p)) . Then

P= PP pysq? e 2P 19PprPyseesP, With p . e 0(P(v_;,v_;)) for
0<i<k,

e 0(P(v_ ,v_i+l)) for 1 <i <k, and

Pooi+1 i
p; € G(P(vi_l,vi)) for 1<i <1 . lgnoring enpty paths p, » We get
a partition of p which satisfies (6b). It is straightforward but

tedious to show that this partition is unique. g

ELI M NATE thus gives us a way to construct path sequences. The resource
requi rements of the nethod depend in a conplicated way upon the sparsity
of G. By rearranging the computation in the |oop of ELI M NATE and
using appropriate data structures we can inplenent ELIMNATE to run in

n
o(z + v?ll P,V £ plu>vi|-|{P(v,w) ¢ 6| w> v} ‘) time and o(z)
storage space, where fis the length of the conmputed path sequence
[5,28]. (By only storing P(u,w) for pairs wu, wsuch that eventually
P(u,w) £ p , we can avoid spending o(n2) time ininitialization.)

For dense graphs the time bound is O(n3 +m) and the space bound
is O(ne) . For sparse graphs, the resource requirenents depend upon
the vertex numbering chosen. Nunerical analysts have devoted nuch
effort to finding good nunbering schenmes, both for arbitrary sparse
graphs and for graphs with special. structure [5,8,22,28].

All" their techniques except off-diagonal pivoting [II] apply to the
conputation of path sequences.

In order to inprove the efficiency of this nmethod, we shall conbine

it with two deconposition techniques. The idea is to break the problem

13

graph into subgraphs, apply ELIMNATE to construct a path sequence
for each subgraph, and conbine these path sequences into a

path sequence for the original graph. Qur first deconposition technique

is well-known to nunerical analysts and uses the strong conponents of G.

Theorem 5. Suppose G = (V,E) is acyclic (i.e., each strong conponent

is a single vertex) and that the vertices of G are numbered in topol ogical

order. Then the elenents of {(e,h(e),t(e)) | eecE} in increasing order

on h(e) conprise a path sequence.

Pr oof . | medi ate. d

By Theorem 5, any acyclic graph has a path sequence of |ength m,
which can be found in Qn+nm) tine using a linear-tine topol ogical

sorting procedure [19,25].

Theorem 6. Suppose G = (V,E) is a directed graph with strong
CONPONENtS GyyCpyeeesCy » ordered so that no edge |eads from a conponent
G, toaconponent C} with j<i. For 1<i<k, let X, be a
path sequence for Gy and | et ¥, be a sequence consisting of the

el enents of {(e,h(e),t(e)) | n(e) ¢ G, and t(e){ Gi} ordered arbitrarily.
(Not e that T, is enpty.) Then LSFR IR S D SYRRRYR S TR (M ER o8 is a

path sequence for G .
Proof . | medi ate. O

Theorem 6 general i zes the method of Theorem 5to arbitrary directed
graphs. W can find the strong conmponents of a directed graph in 0(n+tm)

time using the algorithmof Tarjan [o4]. Thus Theorem 6gives a nethod

14

|4 |

for finding a path sequence in Qn+n) tine plus the tinme to find
path sequences for the strong conponents. The length of the sequence

is Om plus the total length of the strong conponents' sequences.

15

4, Conputing Path Expressions for Reducible Flow G aphs.

Al though deconposition using strong conponents is efficient and
useful in practice, many problem graphs have one or only a few strong
conponents. In the remaining sections of this paper we develop a nore
power f ul decomposition techni que based upon dominators. W begin by
considering reducible flow graphs. A flow graph G = (V,E,x) is a

directed graph with a distinguished start vertex r such that every

vertex in Gis reachable fromr . By Theorem 6we need only consider
strongly connected graphs, sothis reachability condition is no restriction.

A reducible flow graph ¢ = (V,E,r) is a flow graphthat can be

reduced to the graph consisting of the single vertex r and no edges

by means of the follow ng transformations:

T, (remove a loop): If e is an edge such that h(e) = t(e) , delete
edge e .
T, (remove a vertex): If w#r is a vertex such that all-edges e

with t(e) = w have h(e) = v for sonme vertex v , contract w
into v by deleting w and all edges entering w, and converting
any edjge e With h(e) = winto an edge e' with h(e') = v

and t(e') = t(e)

This definition is due to Hecht and Ullman [14]; there are many ot her

equi val ent definitions of reducible flow graphs [12,14,15,26]. Intuitively
a flow graph is reducible if every cycle has a single entry fromthe

start vertex. These graphs play an inmportant role in global flow analysis,
because the control flow of a reasonably well-structured program can be

modelled by a reducible flow graph [3,20].

16

As the reduction by T and T2 takes place, each vertex in the
reduced graph represents a subgraph of the original graph, called a
region, and each edge in the reduced graph represents an edge in the

original graph. W define this notion formally as follows.
(7a) Each vertex and edge in the original graph represents itself.

(7p) | f T, is applied to delete an edge e , then vertex h(e) = t(e)
in the reduced graph represents the union of what h(e) and e

represent.

(7C) If T, is applied to contract vertex w into vertex v , then

2
V in the reduced graph represents the union of what v , w

and all the deleted edges e with h(e) =v , t(e) =w
represent. Any new edge e' represents what the corresponding

old edge e represents

It is not hard to show that each region is indeed a subgraph of @G
and that the regions corresponding to the vertices of any reduced graph
are vertex-disjoint [31], Furthernmore every region | has a unique

header vertex v such that any edge e with h(e)¢1, t(e)el has

t(e) = v [31]. The header is the unique vertex in the region which has
not yet been contracted into another vertex. Wen the reduction is
conplete, r represents a region conprising the entire graph g
If a flow graph is reducible, there is a reduction order VisVpreeesVy 19V =T
of the vertices such that the graph can be reduced to r in the followng

way [26]: For i from1l to n-1 , we apply T, to delete all |oops

at v., then we apply T2 to contract v, into another vertex vj with

17

j>1i . After deleting all vertices except v =T, We apply T, to
delete all loops at r. This way of carrying out the reduction has the
followi ng property. |If we regard the repeated application of T, at a
vertex v, foll owed by the application of- T, to delete v, as a single
step, then between any two steps the entry vertex of any region has no
edges entering it fromwthin the region.

Ve shall assunme henceforth that the vertices of G are nunbered
froml tonin a reduction order and identified by nunber. W shall
al so assume that header(v) for v # ris the vertex into which v is
eventual |y contracted, that cycle(v) for any vertex v is the set of

edges in G represented by edges del eted when applying to delete | oops

T
at v , and that noncycle(v) for v £ r is the set of edges in G
represented by edges del eted when applying T, to delete v . The following

| emma states sone basic properties of header , cycle , and noncycle.

Lemma 3. Suppose G is a reducible flow graph whose vertices are

nunbered in a reduction order. Let v be any vertex and let e be

any edge. Then

(i) if v#r, header(v) >v;

(‘ii) either h(e) = header(t(e)) orh(e) <t(e) ;

(iii) if eecycle(t(e)) then heidi(h(e)) =t(e) for sone i >0; and
(iv). if eenoncycle(t(e)) then header’(n(e)) # t(e) for all i >0

but headeri(h(e)) = header @e)) for some i > 0 .

Proof . Straightforward. O

18

The al gorithm of Tarjan [26] conputes a reduction order and

associated arrays header , cycle , and noncycle in O(m (m,n))

time. Using this information we can solve the single-source path
expression probl em whose source vertex is r. The algorithm
resenbl es the nethods of Ullman[31] and G aham and Wegnan [31p] for
solving "forward" data flow problems; we discuss this resenblance at
the end of the section.

The al gorithm conputes path expressions as the reduction proceeds,
using a data structure representing the current regions. The data
structure consists of a forest whose vertices are the vertices of G
and whose edges are the pairs (header(v),v) such that v has been

contracted into header(v) . Thus this header forest consists of one

tree per region; the tree representing a region contains exactly the
vertices in the region and has the header of the region as its root.
Wth every vertex v in the forest is associated a non-redundant path
expression R(v) . The algorithm manipulates the forest by means of

four operations:

I NITIALI ZE(v) : Forma tree with one vertex v and associated path
expression R(v) := A .

UPDATE(V,R) If vis aroot, assign R(vV) := R,

LINK(v,w): If v and w are roots, conbine the trees with

roots v and w by making v the parent of w.

EVAL(v): Ifr:vo_.vl—.vg-»...-»vk=visthetree

path from the root r of the tree containing v
to v, return a non-redundant path expression

equi valent to R(vo) . R(vl) . : R(Vk) :

19

The algorithm maintains the following invariant: If | is a region and
v is avertex in| , then EVAL(v) represents exactly all paths in |

fromthe header of | to v .

procedure REDUCE;

begi n’
initialize: for each vev do INITIALI ZE(v) od;
| oop: for v :=1 until n-1 do
P:= 5 Q := P
L‘lh‘i"i‘ff‘ e enoncycle(v) do P := [PU [EVAL(h(e))-e]] od;
for each ec_cycle(v) do Q:=[QUIEAL(n(e))-e]] od;
UPDATE(v, [P-[Q 11);
LINK(header(v),v) od;
finalize: P(r,r) : = O3

for each ee cycle(r) do p(r,r) := [P(r,r)U[EVAL(h(e))-e]] od;
P(r,r) := [P(r,r)*];
for v := 1 until n-|~(10 P(r,v) := [P(r,r)-EVAL(vV)] 99,

~~~ A

end REDUCE;

Lemm 4. After the v-th iteration of the loop in REDUCE, EVAL(u)
for any vertex u represents exactly all paths in the current region I

containing u fromthe header of | to u .

Proof . By induction on v . The lemm is certainly true before the

first iteration of the loop. Suppose the lemma is true before the v-th

iteration of the loop. Let I, be the current region containing v and

1

20



let | be the current region containing header(v) . Let I, be the

3
region containing v after T, is applied to elimnate all loops at v .
Let I, be the region containing v after T, is applied to contract
v into header(v) ; i.e., after the v-th iteration of the |oop.

I, consists of I1 and the edges in cycle(v) . I, consists of
I, ,15 » and the edges in noncycle(v) ; the header of I, is the
header of |

.

I, contains no edges entering v . |t follows from the induction
hypothesis that the value of Q after the v-th iteration is a non-redundant
path expression representing all paths from v to v in I, whi ch do not
contain v as an internediate vertex. Thus Q* represents all paths in
I, fromv to v . It also follows from the induction hypothesis that

the value of P after the v-th iteration is a non-redundant path expression
representing all paths in I, from the header of I, tov whi ch do not

contain v as an internediate vertex.

If uis avertex in I then the paths in I), from t he header

3,
of I, touare exactly the paths in 15 from the header of I3
tou. If uis avertex in I, the paths in I, from the header

of 'h to u are exactly the paths p partitionable into

* . .
P= PysP»Ps; » where Py € o(P) , pgeG(Q ) , and |::3 is a path in
I, from t he header of I, tou. Thus adding edge (header(v),v)
to the forest and replacing the old value (p) of P(v) by [Po[Q*]]

guarantees that the lemma holds after the v-th iteration of the | oop. i

21



Corol lary 1. After execution of REDUCE, R(v) for any vertex v £ r
is a non-redundant path expression representing exactly the set of
paths from header(v) to v all of whose internediate vertices are

smal | er than header(v)

Proof . For any vertex v #r , let I, be the region containing v

after the v-th iteration of the loop in REDUCE. Let R(v) be the path
expression conmputed for v during this iteration. By Lemm 4,

R(v) is a non-redundant path expression representing all paths in

I, fromheader(v) tov . Any path in G from header(v) to v
whi ch | eaves I, nust contain header(v) twce, since the only way

to enter I, is through header(v) . O

Theorem 7. Let v any vertex. After execution of REDUCE, P(r, v)

is a non-redundant path expression representing all paths from r to v.

Proof.  Lemma L holds after the last iteration of the loop in REDUCE

A proof simlar to that of Lemma 4 shows that P(r,r) as conputed in

the final part of REDUCE is a non-redundant path expression representing
all paths fromzr to rin g. It follows fromLenma 4 that the
-corrputed value of P(r,r) for v # r is a non-redundant path expression

representing all paths fromr to v in G . O

Procedure REDUCE requires Q(n+n) tine plus time for n calls
on INNTIALIZE, n-I calls on UPDATE, n-l calls on LINK and mtn-1
calls on EVAL; thus the forest manipul ati on operations dominate the
running time or the algorithm Tarjan [29] describes two ways to

impl ement the forest operations. The first is a sinple method

22



cal | ed path compression which requires Qmlog n) tine. The second

Is a sophisticated off-line method which by preprocessing the entire
sequence of EVAL and LINK operations is able to performall the forest
mani pulation in Qma(mn)) tine... (It is easy to precompute the
sequence of EVAL and LINK operations perforned by REDUCE.) Farrow [9]

presents another Q(m a(mn)) -tine nmethod called stratified path

conpression. This method has the advantage of being on-line, although
the proof of its time bound is very conplicated.

By using either of the Qma(mn)) -tine algorithns for forest
mani pul ation we obtain a nmoderately conplicated Qm a(mn)) -tine
i mpl ementation of REDUCE. By using path conpression we obtain an
Qmlog n) -tinme inplenmentation of REDUCE which is remarkably sinple
and efficient. W favor the latter inplenentation for practical
applications.

Ullman's al gorithm for forward data flow analysis [31] is essentially
i dentical to REDUCE except that it uses 2-3 trees to carry out the forest
operations. Its time bound is Qmlog n) but it is nore conplicated
than our nethod using path conmpression. Gaham and Wegman's al gorithm [12]
is a version of REDUCE which uses no auxiliary data structure but carries
out a form of path conpression on the original graph. Its tine bound
is Qmlog n) but it also is nmore conplicated than our method using
path conpression. Experimental conparisons between these methods would

be val uabl e.

23



5. Conputing Path Sequences for Reducible Flow G aphs

Some kinds of data flow analysis, such as the conputation of live
variables [17], require that information be propagated backward rather
than forward through the control flow graph of the program W can
carry out such backward data flow analysis by solving a single-source
path problemon the reverse of the control flow graph. Since reducibility
is not preserved by graph reversal, the algorithmof Section 5is
i nadequate for this purpose. In this section, we shall nodify REDUCE
so that it conputes a path sequence for any reducible flow graph. By
using such a path sequence and applying Theorem 6 if necessary, we can
sol ve single- and mul ti-source path problems on any flow graph which is
reduci bl e or whose reverse is reducible, This provides an efficient way
to do backward data flow analysis.

In order to develop this algorithm we need to examine the inplenentation
of the header forest operations. W shall describe a generic inplenentation
of which path conpression [29] and stratified path compression [ 9]
are special cases. W shall use this generic inplenmentation in an
extension of REDUCE which conputes path sequences.

The generic inplenmentation uses a conpressed forest to represent the

header forest. Wth each vertex vj of the conpressed forest is

associated a path expression §(v) . The nethod maintains the follow ng
i nvariants.
(8a) For each tree T in the header forest, there is a corresponding

tree T of the conpressed forest which contains the sane

vertices as T .

2L



C

(8b) If v-w inatree T  of the conpressed forest, then

v>w inT. |Inparticular, corresponding trees T and T®

have the same root.
(8C) For anyvertexv,letr:vo-‘vl-u..-»vk=vbethe
path in the header forest froma root to v , and |et

r=w,-w -...-w =V bethe path in the conpressed

0 1 4
forest froma root to v . Then R(vy) - R(vy).. . . .R(v)
and S(wo).s(wl).. . .S(wz) are equival ent non-redundant

path expressions.

The conpressed forest is represented by an array ancestor such
that ancestor(v) is the parent of v in the compressed forest; if
ancestor(v) = O then v is a root. The followi ng procedures inplenent

the forest operations.

procedure | N TI ALI ZE(v);

begin ancestor(v) := 0; S(v) := A end;

procedur e UPDATE(V,R);

procedure LINK(v,w);

ancestor(w :=v;

25



regular expression procedure EVAL(v);
begin
non-determnistically execute COMPRESS(u) for an

arbitrary sequence of vertices u;

let VorVys . o oWy be such that v = Vi ancestor(vi) =V 1 for
for 1<i <k, and ancestor(vo) = 0;
EVAL := if k= 0 = A
[ & # -»s(vl).s(vg). 80wy fi
end BAL;
procedur e  COMPRESS(u) ;
if ancestor(ancestor(u)) # 0 -
S(u) := S(ancestor(u)) . S(u);
ancestor(u) := ancestor(ancestor(u)) fi;

It is evident that COVPRESS preserves (8a)-(8c); thus the procedures
above are a valid inplenentation of the header forest operations. The

following lemm is easy to prove using the results in Section 4.

Lenma 5. If v is any vertex such that ancestor(v) # 0 , then S(v)
is a non-redundant path expression representing exactly the set of paths
from ancestor(v) to v all of whose internmediate vertices are smaller

than ancestor(v)

EVAL is a non-deternministic procedure which is free to choose an
arbitrary sequence of vertices u on which to execute COVPRESS(u) .
W obtain a specific inplementation by including a mechanism for making

this choice. Path conpression uses the follow ng version of EvAL.

26



regular expression procedure EVAL(v);
if ancestor(v) = 0 - EVAL := A

[l ancestor(v) # 0 - PATH COMPRESS(v); EVAL : = S(v) fi;

pr ocedure PATH COWPRESS(V);

if ancestor(ancestor(v)) # 0 -

PATH COVMPRESS( ancest or (V) ) ;
S(v) := S(ancestor(v)) .S(v);

ancestor(v) := ancestor(ancestor(v)) fi;

Stratified path conpression uses a nore conplicated conpression mechani sm
which requires the naintenance of additional data structures [9].

The follow ng version of REDUCE uses the generic inplenmentation of
the header forest operations to conpute a path sequence. Procedures
EVAL and COVPRESS are nodified so that they add elenments to the path

sequence as a side effect.

27



procedure REDUCE AND- SEQUENCE;
begi n

initialize: LgLeach.veV QQVINITIALIZE(V) od;

o~

sequence := the enpty sequence;

| oop: for v :=1 until n-1 do
P = f; Q= p
for each eenoncycle(v) (19V P .= [PUEVAL AND SEQUENCE(e)] %

for each e e cycle(v) do Q:= [QUEVAL AND_SEQUENCE(e)] od;

addl : if [Q*] £ A - add ([Q*],v,v) to sequence f,L,

UPDATE(v, [P+ [Q'1]) :

LINK(header(v),v) od;

finalize: Q:=@; --
for each eccycle(r) do Q :=[QUEVALAND SEQUENCE(e)] od;
add2: fiv{[Q*];é A - add ([Q*],r,r) to sequence fi;

for od

~~~

end REDUCE_AND_SEQUENCE;

regular expression procedure EVAL AND SEQUENCE(e);

begi n
non-determnistically execute COVMPRESS AND SEQUENCE(u) for
an arbitrary sequence of vertices u;

let Vor Vir o - eV be such that h(e) = Vi ancestor(vi) =V for

1<i <k, and ancestor(vo) = 0;

e

if k = O -EVALAND SEQUENCE :
[x # 0 ~ EVAL_AND SEQUENCE := 5(v,)-e;
for i kel by -Lumil 1o
add (EVAL_AND_SEQUENCE,v,,t(e)) to sequence;
EVAL_AND_SEQUENCE := S(v,) « EVAL_AND SEQUENCE od fi_

end EVAL_AND_SEQUENCE;
28

pr ocedure COWPRESS/ D- SEQUENCE(u) ;

if ancestor(ancestor(u)) #0 -
add (S(u),ancestor(u),u) to sequence,
S(u) := S(ancestor(u)).s(u);

ancestor(u) := ancestor(ancestor(u)) fi;

Theorem 8. The sequence conputed by REDUCE-AND SEQUENCE is a path

sequence for G .

Proof. The proof is simlar to the proof of Theoremk but a little nore
conplicated. W shall assume for purposes of the proof that statenent
add 1 al ways adds ([Q*],v,v) to sequence , whether or not [Q*] =A;
simlarly for statement add 2. This nodification does not affect the
properties of sequence in which we are interested.

Lenma 5 and an inspection of REDUCE AND SEQUENCE show that the conputed
sequence satisfies (6a) and (6b). To prove (6c), let p be an arbitrary

path in G. Let vo = h(p) . For i >1, let vy be the first vertex

on P such that v, > v.i_ Let v, be the last vertex so defined

1. k

(v, is the largest vertex on p). |Let Vi = t(p) . Let pr,, be the

k
part of p fromthe first occurrence of v, to the last occurrence of v

Let p,.,q be the part of p follow ng Poy - For 0 <i < k-l , let

Posiq be the part of p fromthe last occurrence of v, before p2i+2

to the begi nning of Pospn- Let Poy be the part of p fromthe first
occurrence of v, to the beginning of Pojpp - Then D = DyyPrseeesDyiyq

where p,, for 0 <i <k is a path fromv, to v.. containing no

1

vertex greater than Vi and P, for 0 <i <k is a path fromv1

to W

i1 all of whose internediate vertices are |less than v,

29

k

For 0<i<k, inec(Q*(Vi)) » Where Q(vi) for vy #r
is the value of Q conputed during the v, -th iteration of the |oop
i N REDUCE_AND SEQUENCE, and Q(r) is the value of Q conputed during
the final part of REDUCE- AND-SEQUENCE. In order to represent p as
in (6c), it remins for us to (i) partition each path Pos41 for
0 <i <k-lI into a sequence of paths represented by triples appearing
in sequence between ([Q(Vi)*],vi,vi) and ([Q(Vi+l)*]’vi+l’vi+l) ,
and (ii) partition Pojsl into a sequence of paths represented by
triples appearing in sequence after ([Q(vk)*]’vk?vk) .

Consi der any path p,, , for 0 <i <k-1 . Let e, be the |ast

1
ot bk

edge on this path-. Then (ei) = Vi o and h(ei) is a descendant

of v., in the conpressed tree just after the v, -th iteration of the

1
loop in REDUCE-ND- SEQUENCE. W partition Posel into

Poiv1 = Poir1,0'Ppit1, 1’ ""P2i+l,£ as follows. Let j= 0 and

(0)

Poit1 Repeat the following step until it no |onger applies.

Pojy1 .

General step. Suppose h(ei) is not a descendant of h(ﬁég;l) in

the conpressed tree when edge ey is processed by REDUCE.
Consi der the nmonent when h(ei) becomes a non- descendant

of h(_‘p\l‘}\’) . This event nust be caused by an execution

2i+1
of COVPRESS(u) such that ancestor(u) = h(pégll) .
Let Poi+1, j be the part of pe(ill from the begi nni ng
to pg}rl to the last occurrence of u . Partition
B0y 1000 B = ppguy, oS0 and repiace)
by |+l

30

Consi der a single execution of the general step, Path égi;l must
{ *

i i S\ * .
contain u since h(pé;il) - u - h(ei) in the header tree. Thus

pg(i}rl can be partitioned as stated. Execution of COMPRESS(u) causes

(s(u) » h(PéijZl)’ U to be added to sequence ; pei+l’jec(s(u)))
(j+1))

After execution of COVPRESS, h(ei) Is a descendant of u = h(pei+1

in the conpressed tree.

(1)

Suppose the general step is executed ¢ times, Let p2i+l,1z = Pgiiq .

By the discussion above, there is a subsequence of triples

(Po,uo,wo) s (Pl’ul’wl) s (Pz-l’uz-l’wz-l) appearing in sequence after

([Q(vi)*],vi,vi) and before triples of the form (®u,v,, and such that

R

D . ek for 0<j< -1 . Furthernore h(e.) is a descendant
2i+l,J | - - i

of h(p,.) in the conpressed tree just after all compression IS
2it1, 1

finished during the execution of EVAL AND _SEQUENCE(e;) . The operation

of E’VAL_AND_SEQUENCE(ei) adds a triple (Pz’ h(p2i+l ,e) , vi+l) such

t hat Poi41,q © G(PE) to sequence . Thus we obtain a satisfactory
partition of Pojt] -

The partitioning of Pojes1 Is the same as the partitioning of
P;4p fOr 1 <i < k-1 except that the path Poiel, must be further
partitioned into paths represented by triples (s(v),ancestor(v),v)
added to sequence during the final part of REDUCE AND SEQUENCE.,

The details are straightforward.

V& obtain by the method above a partition of an arbitrary path p

which satisfies (6c) if we ignore enpty paths in the partition.

Showi ng that the partition is unique is tedious but not difficult.

The crucial point is that for any pair u > v , only one triple of

31

the form (P,u,v) appears in sequence . W |eave the details to the

reader. d

REDUCE_AND_SEQUENCE requires Q(mlog n) time to construct a path
sequence if path conpression is used to-implement the forest operations
and Qma(mn)) if stratified path conpression is used. The length of
the path sequence constructed is proportional to the running time. It
Is interesting to note that the version of the algorithm which carries
out no conpression generates essentially the sane path sequence as

ELI M NATE

30

6. Deconposition Using Dom nators.

In this section we generalize the algorithm of Section 5 so that
it becomes a deconposition method applicable to all graphs, The
reduci bl e graphs play a role in this method anal ogous to the role of
acyclic graphs in deconposition by strong conponents, Just as a graph
is acyclic if and only if a11 its strong conponents are single vertices,
a graph is reducible if and only if all its conponents in the new
deconposition are single vertices.

The concept we use is that of a single-entry region, which we nake
precise as follows. For an arbitrary flow graph G = (V,Er), we say
a vertex v dom nates another vertex wif v £ wand v lies on

every path fromr to w

TLemma 6 [1]. There is atree T, called the domnator tree of @,

such that v is a proper ancestor of w in T if and only if v
domnates w. \Vertex ris the root of T and D contains every

vertex in g .

For any vertex v #r , we denote by idom(v) the parent of v

in T . Vertex idom(v) is called the i mediate dom nator of v and

is the unique vertex which dominates V. and is dominated by every other
domnator of v . The domnator tree defines the single-entry regions
of G the following lemma is a technical statement of this fact.

(Note the simlarity between this |ema and Lemma 3.)

Lemmay. For any edge e , idon(t(e)) is an ancestor of h(e) in T .

Pr oof Every path from r to t(e) contains idom(t(e)) . By adding

edge e to any path fromr to h(e) , we get a path fromzr to t(e)

33

Thus any path fromr to h(e) contains idon(t(e)) , and by Lemma 6
idom(t(e)) > h(e) in T . O

For any edge e , let & be an edge such that t(e) = t(e) and
n(e) = h(e) if h(e) =idon(t(e)) , h(e) = u where
idon(t(e)) auih(e) inTif t(e) #idon(h(e)) . Let

G=(V,Er), where E={c|eecE}. W call G the derived graph

of G Figures |-3 illustrate a graph, its domnator tree, and its
derived graph. Note that there are three kinds of edges in the derived
graph. If t(e) = idon{h(e)) , then e =e is an edge in T, If
t(e) ih(e) in Tthen eis aloop. Oherwise & |eads from one
sibling to another in T .

[Figure 1]

[Figure 2]

[Figure 3]

W call the strong camponents of G the dominator Strong components

of G It is not hard to prove that a graph is reducible if and only if
all its domnator strong camponents are single vertices. The idea of
_our algorithmis to use Gaussian elimnation (or some other nethod) to
campute a path sequence for each doninator strong conponent of G, and
to conbine these path sequences to forma path sequence for G by using
a cémbination of the nethods in Sections 3 and 5. The algorithm

mani pul ates the dominator tree in the same way that REDUCE_AND SEQUENCE
mani pul ates the tree defined by the header pointers. Henceforth when

we refer to descendants and ancestors we nmean with respect to the

dom nator tree T .

34

Y
u

The algorithm assumes that the dominator tree of g is known and
that the vertices are nunbered from1l to n so that idom(v) > v
for each vertex v# r . The algorithmrequires the follow ng informtion:
for each vertex u the set children(u) of vertices v such that
idom(v) = u , the set tree(u) of edges e such that t(e) = u and
h(e)
t(e)

edge e in G. This information and the vertex nunbering can be

idom(u) , and the set nontree(u) of edges e such that

1

u and h(e) # idom(u) ; for each edge e the corresponding

conputed in Q(m a(myn)) time using the dominators al gorithm of
Lengauer and Tarjan [21].

The al gorithm groups together vertices with a common parent and
processes these sibling sets in increasing order by parent. The al gorithm
processes the set of siblings children(u) for each vertex u as
follows. For each edge e such that h(e) is a child of u, the
al gorithm uses EVAL AND SEQUENCE to compute a path expression p(g)
representing all paths in G fram h(e) to t(e) which end wth
edge e and contain only proper descendants of h(e) as internediate
vertices. ~ Then the al gorithm conputes a path sequence X, for the
subgraph au of G induced by chil dren(u) . Substituting 2(e) for
for each edge e appearing in this path sequence produces a sequence

that represents every path in G starting and ending at a child
of u and containing only proper descendants of u as intermediate
vertices.

The al gorithm concat enat es T onto the end of the path sequence,
By applying SOLVE to Yo the al gorithm computes for each child v

of u a path expression R(v) which represents all paths in ¢ from

35

u to v containing only proper descendants of u as internediate
vertices. The algorithm conpletes the processing of the sibling set
by executing UPDATE(v,R(v)) ; LINK(u,v) for each child v of u .

The al gorithm finishes by computing a path expression Q representing
all paths fromr to r and adding additional triples to the path
sequence just REDUCE_AND SEQUENCE does. The al gorithm appears in nore

detai |l bel ow.

procedur e DECOMPCSE_AND SEQUENCE; .
begi n
initialize: for each vev do INITIALI ZE(v) od,

sequence = the enpty sequence;

| oop: for u:=1 until n do
derive: for each ve children(u) do

for each e e non-tree(v) do
P(e) := EVAL AND SEQUENCE(e) od od;
el i mnate: conpute a path sequence Xu for G ;
substitute: formYufrom x,uby repl acing each occurrence of an
edge e in a path expression by P(e);

seguence := sequence concatenat ed with Yu;

solve : for each ve children(u) do R(v) := p;
for each ectree(v) do R(V) := [R(v)Ue] od od;

for each (P,w,x) e Y in order do-
Lfv W= X - R(W :=[R(w)-P]
[w#x - R(x) := [R(x) UI[R(w)-P]] fi od;
update: for each ve children(u) do

UPDATE(v,R(v)); LINK(u,v) od od;

36

finalize: Q := P
for each e enontree(rlvdo Q := [QUEVAL _AND SEQUENCE(e)] oﬁdh;J
if [Q*] # A add ([Q*],r,r) to sequence fi;

for v := n-1 by -1 until 1 do add (S(v), ancestor(v), V)

~~r—

to sequence 2(1
gﬂg DECOVPCSE AND- SEQUENCE;

This nethod conbines the techniques of Section 3 with the method

of Section 5, The parts of the program labelled initialize , derive ,

update , and finalize are adapted from REDUCE_AND SEQUENCE and serve
to conmbine the path sequences conputed for the dom nator strong components
(in elimnate-- and substitute)into a path sequence for the entire
graph. The two |oops labelled solve conprise a version of SOLVE

W can inplenent step elimnate using ELI M NATE on the strong
conponents of au and conbining the results as described in Theoremé.
Step substitute can be performed either after or during the computation
of Xy 3 the latter is preferable.

The next |emma expresses the properties of the values conputed by
DECOVPOSE_AND_ELI M NATE; its proof conbines the ideas in Theorem 1 and
Corollary 1.

Llemm 8. (i) For each edge e in G such that eecnontree(t(e)) ,

'P(Z) as conputed by DECOVPOSE_AND_SEQUENCE is a non-redundant path

expression representing exactly the paths in G from h(e) to t(e)

which end with edge e and contain only proper descendants of h(e)

as intermediate vertices.

(ii) For each vertex v in G, R(v) as conputed by DECOMPOSE AND SEQUENCE

s a non-redundant path expression representing exactly the paths in G

37

from idom(v) to v which contain only proper descendants of idom(v)
as internediate vertices.
(iii) For each vertex uin G, Y, as conput ed by DECOMPOSE AND SEQUENCE

,w) satisfying

is a sequence Y = (Ppvyu), (Byyvpy)s oo o (v p,w,

(6a), (6b), and

(9) For any non-enpty path p in G which starts and ends at a child
of u and contains only proper descendants of u as intermediate vertices,
there is a unique sequence of indices 1 < i,<ig << ik < and

a unique partition of p into non-enpty paths p = P1sPps - s Py such

t hat p; € G(Pij) for 1 <i <k.

Proof . Straightforward by induction on the number of times the |oop

I n DECOVMPOSE_AND_SEQUENCE is executed. O

Theorem 9. Procedure DECOVPCSE _AND SEQUENCE correctly conputes a path

sequence for ¢ .

Proof . Anal ogous to the proof of Theorem8. (O

DECOVPOSE_AND_ELI M NATE thus provides a way to conmpute path sequences
“in arbitrary graphs. The running tine of the nethod is Q(m a(m,n)+t)

if stratified path conpression is used to inplement the forest operations
and Q((mlog n)+t) if path conpression is used, where t is the tine
to find path sequences for the dominator strong conponents of G . The

| ength of the path sequence produced is either o(m a(mn))+ 2 or
Qmlog n)+ ¢, where ¢ is the total length of the path sequences for

the dom nator strong conponents.

38

7. Remarks.

In this paper we have described fast algorithnms for solving path
expression problens on reducible or alnost-reducible graphs. The fastest
nmethod requires Q(ma(m,n)+t) time to conpute a path sequence for an
arbitrary directed graph, where t is the anount of time required to
compute path sequences for the dominator strong conponents. A slower
but much sinpler nmethod requires Qmlog n + t) time and promses to
be easy to program and efficient in practice.

By using our algorithms in conbination with the mapping technique
described by Tarjan[30], we can solve many kinds of path problens,
including finding shortest paths, carrying out forward and backward
gl obal flow analysis, and solving sparse systens of |inear equations.
There are two rather different ways of doing this. The first is to
use the solution to a path expression problem as a general - purpose
straight-1ine program which solves any particular path problem by
properly interpreting y, ., and * . The second is to use an algorithm
for solving a path expression problemto solve a particular path problem
by reinterpreting y, ., and * within the algorithm this avoids the
internediate step of first constructing a directed acyclic graph
representing a set of path expressions. The choice between these two
met hods depends upon the tine and space available and whether we want
to solve one or many path problens on the sane graph.

For path problems in which the operation corresponding to + is
i denpotent, the non-redundancy and uni queness conditions in (6) and
Theorem 1 are not necessary and can be dropped [30]. In such cases we

can use the sophisticated al gorithm of Tarjan [29] tO carry out the

39

forest manipulation operations and achieve an Q(m a(m,n) +t) time
bound [27]. It does not seem possible to adapt this nethod to satisfy
non-redundancy, however. The only interesting path problem known to
the author which does not have the idenpotent property is the solution
of sparse systems of |inear equations. For this problem another form
of tree manipul ation described by Tarjan [29] gives a rather sinple
Q(m a(m,n) +t) -tinme algorithm [28].

The nmethod of deconposition by domnators is a kind of single-elenent
"tearing" [5] in which the clever use of data structures allows us to
make the conbining step very efficient. The result may be generalizable
in various directions. For instance, on problem graphs for which there
Is no natural start vertex we would like to know how to pick a start
vertex which gives the finest deconposition. It may also be possible
to extend the technique to regions with two or nmore entry vertices. W

| eave these questions to the anbitious reader.

40

Appendi x: G aph Theoretic Term nol ogy.

A directed graph G= (V,E) is a finite set V of vertices and a

finite set E of edges such that each edge e has a head h(e) ¢v and
atail t(e) ev. W regard the edge e as leading from h(e) to t(e) ,
and we say the edge e |leaves h(e) and enters t(e) ., W usually
denote the nunber of vertices by n and the nunber of edges by m.

A loop is an edge e with h(e) =t(e) . A path p = €15€s . 1€ is

a sequence of edges such that t(ei) = h(ei+l) for 1 <i <k-1 . The
path is fromh(p) = h(el) tot(p) = t(ek) . The path contains edges
€383 00ns €y and vertices h(el),h(eg),__. %h(ek),t(ek) and avoi ds all
other edges and vertices. There is a path of no edges from any vertex

to itself. Acycle is a non-enpty path froma vertexto itself. A graph
is acyclic if it contains no cycles.

The reverse ¢ of a graph Gis the graph forned by replacing
each edge e with an edge e° such that n(e’) = t(e) and t(e¥) = h(e)

If G = (V,Ep)

G, if , ¢V, and E c5. G, i's the subgraph of G, induced by

v, if v, and E, = {e eE2|h(e),t(e)eVl},

A vertex v is reachable froma vertex win a graph Gif there

and G, = (vg, E,) are gr aphs, Gy i S a subgraph of

is a path from v to w Gis strongly connected if every vertex is

~ reachable from every other vertex. The strong conponents of ¢ are its

maxi mal strongly connected subgraphs. These conmponents are uniquely
defined and partition the vertices of G.
A flow graph G = (V,E,r) is a graph with a distinguished start

vertex r such that every vertex is reachable fromr . A (directed,

rooted) tree T = (V,E,r) is a flowgraph with |E| = |v|-1 . The start

41

vertex r is the root of the tree. Any tree is acyclic, and if v
is any vertex in T, there is a unique path fromrtov . |[f v
and w are vertices in atree T and there is a path fromv to w,
V is an ancestor of wand wis a descendant of v . \% denote
this relationship by v.~w . If in addition v #w, v is a proper

ancestor of wand wis a proper descendant of v , denoted by v Xw .

If there is an edge fromv to w, v is the parent of w and wis
a child of v, denoted by v. - w. Two vertices with a comon parent

are siblings. In a tree each vertex has a unique parent (except the

root, which has no parent).

Lo

[1]

(2]

(3]

[10]

Ref er ences

A V. gho and J. D. Ulman, The Theory of Parsing, Translation, and
Conpi ling, Volume I1: Conpiling, Prentice-Hall, Englewod diffs,
N.J. (1972), 915.

A V. gho and J. D. Ul nman, Principles of Conpiler Design,

Addi son- sl ey, Readi ng, Mass., 1977, L08-517.

F. E Alen, "Control flow analysis," SIGPLAN Notices 5, 7 ((1970),
1-19.

R C Backhouse and B. A Carré, "Regular algebra applied to
path-finding problens," J. Inst. Maths. Appliecs. 15 (1975), 161- 186.
J. R Bunch and D. J. Rose, "Partitioning, tearing, and nmodification
of sparse linear systens," J. Math. Analysis and Applics. 48 (1974),
5Th-593.

B. A cCarré, "An algebra for network routing problems,” J. Inst.
Mat h. Applics. 7 (1971), 273-294.

E. W Dijkstra, A Discipline of Programmng, Prentice-Hall,

Engl ewood diffs, wn.J., 1976.

|. s. Duff, "A survey of sparse matrix research, " proc. |EEE 65 (1977),
500-535.

R Farrow, "Efficient variants of path conpression on unbal anced
trees," unpublished nmanuscript, 1978.

R Floyd, "Algorithm 97: shortest path," Comm_ ACM 5 (1962), 345.

G E Forsythe and C. B. Mler, Conputer Solution of Linear Al gebraic
Equations, Prentice-Hall, Englewood diffs, N.J.,1967.

S. L. Gahamand M Wgman, "A fast and usually linear algorithm for
global flow analysis," Journal aov23 (1976), 172-202.

M. S. Hecht, Flow Analysis of Conputer Programs, Elsevier, New York,

M S. Hecht and J. D. Ulman, "Flow graph reducibility," SIAM J.

Conmput. 1 (1972), 188-202.

M S. Hecht and J. D. Ulnan, "Characterizations of reducible flow
graphs,” Journal ACM 21 (1974), 367-375.

D. B. Johnson, "Efficient algorithnms for shortest paths in sparse
networks," Journal ACM 24 (1977), | -13.

43

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

K. W Kennedy, "Node listings applied to data flow analysis,"

Conf. Record of the Second ACM Symp. on Principles of Prog. Lang.

(1975),10-21.

S. C Keene, "Representation of events in nerve nets and finite
automata, " Automata Studies, C. Shannon and J. McCarthy, eds.,
Princeton University Press, Princeton, N J., 1956, 3-40,

D. E KXnuth, The Art of Conputer Programming, Volune 1. Fundanental

Al gorithms, Addison-Wesley, Reading, Mss., 1968, 258-265.

D. E Knuth, "An empirical study of FORTRAN programs," Software
Practice and Experience 1 (1971), 105-133.

T. Lengauer and R E. Tarjan, "A fast algorithm for finding

domnators in flow graphs,” Trans. on Prog. Lang. and Systens 1

(1979), to appear.

D. J. Rose; A, H Sherman, R E. Tarjan, and ¢. F. whitten,

"Algorithms and software for in-core factorization of sparse

symetric positive definite matrices," Conputers and Structures 10
(1979), 411-hai8.

M Schaefer, A Mthenatical Theory of @ obal Program Optim zation,
Prentice-Hall, Englewood Qiffs, NJ., 1973.

R E. Tarjan, "Depth-first search and linear graph algorithms,"

SIAM J. Conmput. 1 (1972), 146-160.

R Tarjan, "Finding donminators in directed graphs,” stav J. Conput, 3
(1974), 62-89.

R E. Tarjan, "Testing flow graph reducibility," J. Conp. and Sys,

Sci ences 9(1974), 355-365.

R E. Tarjan, "Solving path problems on directed graphs,” Technical Report
STAN-CS-75-528, Conputer Science Departnent, Stanford University, 1975.
R E. Tarjan, "Gaph theory and CGaussian elimnation," Sparse Mtrix
Conputations, J. R Bunch and D. J. Rose, eds., Academc Press,

New Yor k, 1976,3-22.

R E. Tarjan, "Applications of path conpression on balanced trees,"
Journal ACM to appear.

R E Tarjan, "A unified approach to path problens," Technical Report
STAN-CS-79-729, Conputer Science Department, Stanford University, 1979;
also Journal ACM submtted.

J. D Ullman, "Fast algorithms for the elimnation of common subexpressions,"
Acta Informatica 2 (1973), 191-213.

44

22

Figure 1.

A flow graph G,

L5

20
(——

2l

(o)

11

Figure 3. The derived graph of ¢ . The vertex sets of the

domi nator strong conponents are {1,2} , {3}, {4},

5y, {63, {7,8} , {9} , {10} , {11,12}, {13} .

L7

