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Abstract

In the Q,Z algorithm the eigenvalues of Ax = ABx are computed

via a reduction to the form & = AEx where A" and E are

upper triangular. The eigenvalues are given by hi = aii/bii .

It is shown that when the pencil A" - hg is singular or nearly
-_

N
singular a value of hi may have no significance even when aii

and cii are of full size.





1 INTRODUCTION

In a recent paper C 51 we discussed the derivation of the Kronecker

canonical form (K.c.f.)  of the h matrix A-'B (usually referred to as a linear

pencil) using the system of differential equations

Bx = Ax + f(t) (1.1)

as the motivation. A related and in some respects more detailed treatment

has been given by van Doorenr 11 though there a direct attack was made on

the derivation of the Kronecker canonical form.

In recent years the generalized eigenvalue problem

has been the subject  of intensive research. The importance of this problem

stems primarily from the fact that if h and u are an eigenvalue and

eigenvector of (1.2) then

x = ueht (1.3)

is a solution of the homogeneous system

Bx = Ax . (1.4)

One of the most effective methods for dealing with the generalized eigenvalue

problem is the QZ algorithm developed by Moler and Stewart[4]. This

- reduces B and A simultaneously to triangular matrices g and ff such that

g=QBZ and z=QAZ, (1.5)

where Q and Z are derived as the product of elementary unitary transformations.

The problem

is therefore'equivalent'to (1.2) in that the eigenvalues are the same and

corresponding u and v are such that u = Zv. If there are no zero values of

ilbii then the eigenvalues are given by

h. =g

1

ii/cii l (1.7)
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A zero value ofxii presents no special problem unless the corresponding

z
ii

is also zero; it merely implies that the corresponding hi is infinite.

It is simpler to regard such an infinite eigenvalue as a zero eigenvalue of

Bu= Mu. 0.8)

However, if for any value of i we have g..11
= zii = 0 then

0 g det(x-6) = det Q(A-'B)Z = det Q det(A-LB) det(Z) 0.9)

and hence det(A4.B) g 0 since Q and Z are unitary. Conversely if det(A-'B) z 0

and ii-"% is an equivalent triangular pencil then since det(x-') = n(sii-X%ii)

this cannot give the null polynomial unless zii sii = 0 for at least one i.

2 THIS KRONEXKER CANONICAL FORM

Kronecker's  canonical form applies to general pencils A-hB where A and B

may be rectangular matrices. The pencil is said to be singular if either

(i> m f n

or (ii) m = n and det(A-hB) T 0.

Otherwise the pencil is said to be regular; note that regular pencils

necessarily involve square matrices. The pencil X-As is said to be strictly

equivalent to A-'B if there exist non-singular matrices P and Q (not

necessarily unitary) such that

?i = PAQ , %= PBQ . (2.1)

In the remainder of this paper we shall omit the qualification 'strictly'

since we shall not be concerned with any broader concept of equivalence.

Kronecker showed that A-'B could be reduced to an equivalent x-?$in which

the A" and% are of block diagonal form, the blocks in A and B being conformal.

The blocks in the K.c.f. are of three types. In general there will be a

number of blocks of each type in the K.c.f.

(i) Those corresponding to elementary divisors of the form (a-=)I‘ where

a is finite (possibly zero). For these the blocks in x and 5 are Jr(~)  and

Ir respectively where J,(U) is the elementary Jordan matrix of order r
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associated with a and Ir is the identity matrix of order r. These blocks are

said to correspond to finite elementary divisors of A-7433. They are of course

square and of dimension r % r. For reasons which become obvious when we

discuss the other blocks it is often more convenient to think in terms of the

homogeneous pencil pA-hB and of the elementary divisor (~~1-1)~ rather than._
(cd)'.

(ii) Those corresponding to elementary divisors pr of the homogeneous

pencil PA-'B. For these the blocks in x and% are Ir and Jr(O) respectively.

Notice that the identity matrix is now in x and the elementary Jordan matrix

ising.  These blocks are said to correspond to infinite elementary divisors.

Again they are square.

(iii) Elementary Kronecker blocks,usually denoted by LE(h,p) and L;(&k).

These are of dimensions c x (&+I)  and (vl)x r) respectively. They are

adequately illustrated by L2(h,p) for which the blocks in G-"g, A" and% are

(2.2)

respectively. There are no elementary divisors of @-hB corresponding to

these blocks or perhaps we should say that the corresponding elementary

divisor is unity which is independent of ~1 or 1.

We make the following comments. If all of the blocks are of types (i) and

- (ii) then "A and % (and hence A and B) are square. Further since det(G-6)

is the product of the determinants of the diagonal blocks in G-hfi  and

det [pJr(a)-AIr] = (pa4~)~

det [p$-hJr(0)] = pr

(2.3)

(2.4).

we see that det(&-'B)  (and hence det(@-XB)) is not null. In this case then

the pencil is regular.

The blocks corresponding to infinite elementary divisors seem to be decisively

different from those corresponding to finite elementary divisors. This is

deceptive and rather unsatisfactory when we come to practical algorithms. In

a block of type (i) corresponding to a zero value of a the matrix xhas a
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J,(O) and 5 has an Ir. In a block of type (ii) f has an Ir and% has a J,(O);

this is quite natural if we think in terms of a zero elementary divisor of

B-p& In computational terms it would perhaps be more satisfactory to make

the distinction between values for which 1 oll<l and those for whichi al > 1.

For the former we could take blocks J,(U) in x and Ir in 5; for the latter we

take blocks Ir in "A and J,(p) in % where p = I/CL Now a = 00 corresponds

to p = 0 and the whole range is treated in a uniform manner. Strictly speaking

if 11 A 11 2 and II'B 11 2 are very disparate in size then we should distinguish

between those a for which la I& 1 A 112/11 B 11, and those for which

lcJ~/lA112/l14/2. Notice that for the standard eigenvalue problem

II IIB 2= II III 2= 1; since all eigenvalues satisfy the condition [ al ,( [IA iI2

the second set is always empty. This pinpoints an essential difference

between the generalized problem and the standard problem. For simplicity of

notation we shall assume that 11 A iI2 and 11 B II2 are of comparable orders of

magnitude; this is, after all, merely a matter of scaling. Accordingly we

shall distinguish between 1 a 15 1 and ia 1>1. When m f n there must, of course,

be some rectangular blocks in x and%, Indeed if m c n there must be n+n

more blocks of type L than of type Lt
&T

while when m > n there must be m-n

more blocks of types L than of type LE. When m = n and det(A-XB) g 0 we have

already remarked that zot all the blocks could be of type (i) and (ii). Hence

in this case too, blocks of type (iii) must occur and clearly there must be an

equal number of LE and L: blocks, otherwise A" and % would not be square.

However the dimensions of the LE blocks need bear no relation to those of the

L; blocks.
-

It is well known that classical similarity theory, which is concerned with the

standard eigenvalue problem Au = hu, is dominated by the Jordan canonical form

(J.c. f.) J of A. The corresponding K.c.f. of A-XI is J-AI;  in this simple

case the K.c.f. never contains any blocks of type (iii). Now in numerical

linear algebra the J.c.f. is not generally regarded as quite so important for

the following reason. Elementary Jordan blocks of dimension greater than

unity can arise only if A has multiple eigenvalues. However, arbitrary

perturbations in A then lead, in general, to a matrix having distFnct

eigenvalues and hence having a strictly diagonal J.c.f. Moreover blocks of

order greater than unity usual1.y correspond to very sensitive eigenvalues.

Thus if the block J2(a) is perturbed to
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the eigenvalue becomes a +, c2.

(2.5)

However it is salutary to remember that the use of unity elements in the

standard Jordan form is for convenience only. The matrix

a

A =

has the J.c. f.

a 1

! I0 -a

E
1

a 1

(2.6)

(2.7)

but perturbations of order E in A give perturbations of order C in the

eigenvalues. This remark is sometimes important in practice when we are

not concerned with perturbations which are arbitrarily small.

In numerical linear algebra it is the insight provided by the J.c.f.  into the

perturbation of eigenvalues which is its more important aspect. The actual

determination of the J.c.f. plays a much less important role and indeed in

the presence of rounding errors it is an unattainable goal except in special

cases. An important feature is that if A has an eigenvalue a which is very

- sensitive to perturbations in the matrix elements, then A is to that extent

close to a defective matrix, ie a matrix having a block of order greater than

unity in its J.c.f. Hence extreme sensitivity is always related to

defectiveness or near-defectiveness.

Since the K.c.f.  is the generalization of the J.c.f.  the comments we have made

above will obviously apply to the K.c.f. However there are new and important

considerations. As we showed in [5]the number of Kronecker blocks and their

dimensions are determined by considerations of rank; small perturbations in

A and B may well change the ranks of the submatrices involved.



3 REGULAR PENCILS

Our main concern in this note is with the relevance of the K.c.f. for the

QZ algorithm. Accordingly we concentrate on square A and B of order n and

assume for the moment that det(A+B)  f 0. ie that the pencil is regular, and

therefore its K.c.f.  contain no LE or Lz blocks. We write

det( A-M) = arhr + ar ,h
r-l

+ . . . + a0 b s 4, (3.1)

where a is the first non-vanishing coefficient. Notice that r could be

zero inrwhich case det(A-hB) = a0 f 0. The equation det(A-hB)  has r finite

roots, some of which may be zero, though these should not be regarded as

special. For the homogeneous pencil we have

det( @-‘B) = pnmr ( arhr + ar_lhrel  p + . . . + aocir > (3.2)

and det(A-hB) = 0 may accordingly be regarded as a polynomial equation of

degree n having n-r infinite roots. Adopting this convention there are always

n roots a 1' ‘29 l ** 7 OIyl�
Following the convention suggested above we may

regard these a.
1

as divided into two sets, those for which 1 clil< 1 and those

for which 1 ai: >I. For the latter we shall work with pi = l/cxi and hence

infinities are avoided. Corresponding to each ai there is at least one unit

eigenvector u.. We write
1

Au.
1

= aiui  (jail  5 1) , piAui = Bui (1~1 4 1) . (3.3)

Let us consider the simultaneous reduction of A and B to upper triangular

matrices x andz. This can be done entirely by unitary equivalences and it

is upon this theorem that the feasibility of the QZ algorithm depends. We

give -an elementary proof of it which sheds light on the nature of the diagonal

elements in A" and 5. We state the theorem in the following form.

If det(A-hB) f 0 and Au = hBu has eigenvalues a.
1

(reciprocals pi) then there

exist unitary Q and Z such that

Qllz = r , QBZ = 5, (3.4)

where z and 5 are upper-triangular with
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5
ii

= a.k
ii ' sii = ki (I ai1 <I) (3.5)

(3.6)“aii = ki , Tii = Piki (I "il > 1)

and the ki are non-zero. The ai may.be taken to be in any order.

The proof is by induction. It is obviously true when n = 1; we assume it is

true for matrices of order up to n-l and then prove it is true for matrices

of order n.

Corresponding to CI~ we have a unit vector u1 such that

Au1 = alBul ($I$1) PIAul = Bul (lcr,l ,I) l (3.7)

Let

u1
= klel 7 (3. a

where Z
1
is unitary and e 1 is the first column of the identity. Then

AZl el
= cllBZlel or PIAZlel = BZlel . (3.s)

Writing

AZl
=G and BZl=H

we have

(3.10)

Gel
= alHe or PIGel = He1 . (3.11)

-

Now Gel = gl and He1 = hl where gl and hl are the first columns of G and H

respectively. At least one of gl and h 1 is non-null, because if both were then

0 z det(G-AH)  = det(A-'B)det(Zl) (3.12)

and hence det(A-'B)G  0 contrary to hypothesis. From equation (3.11) we have

certainly

hl = HeI f 0 (Iyk 1) , gl = Gel f 0 (b,l > I) .

Let Ql be a unitary matrix such that

QIhl = kle., (I 01~ Is 0 9 Q1q = klel bJ> 1)

(3.13)

(3.14)
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where kl f 0. We have

kl 1bT

QIH
= &lBZ1 = 0”B2i '

QIG = QIAZl =

I

,
0

I A2

r T
1 Ykl “I

&lG
11-1= &lAZ1 = 0

A2

(lyl &I>, (3.15)

&lH = QIBZl =
bkl (

bT
1

J

(b,l >I>, (3.16)

where A
2

and B
2

are square matrices of order n-l. Since

det Qldet(A-hB)det Zl = det(QIAZl - hQIBZl)

= kl (cy">det(A24B2>  (I aI I< 1)

= kl (I-Plh)det(A2-‘B2)  (\cxJ >I) (3.17)

it is clear that the eigenvalues of A u = hB u must be
2 2

a29 a39 .**9 an
whatever the distribution of finite and infinite values this set may have.

From the inductive hypothesis A2 and B2 may be reduced to upper-triangular

form with the required diagonal elements using unitary equivalences, the

proof follows in the obvious way.

Notice that the cli could have been listed in any order and would then occur

in that order in the triangular matrices. Corresponding to each infinite ai

we work with a zero pi and hence obtain a zero diagonal element?
ii

in B".

We cannot have a zero gii coupled with a zeroxii; this is because k. f 0
1

which is itself a consequence of the regularity of the pencil.

4 -SQUARE SINGULAR PENCILS

Suppose now that det(A-AB) g 0, so that the pencil A-hB is singular. Let us

attempt to follow through the proof of the simultaneous reducibility of A and

B to triangular form. If now oil is any number whatever we have det(A-alB) = 0,

and hence there is a non-null unit vector u 1 such that

Au1 = alBul (101~1  5 1) or plAul = Bul (I(r,kl). (4.1)

The argument proceeds as before until we reach the comment that *'at least

one of the vectors g I
and hl must be non-null". We can no longer make this
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assertion since it depended on the hypothesis det(A4.B) f 0.

If nevertheless one or other (or both) is non-null, then exactly as before

we have a reduction to one or other of the forms (3.15) or (3.16) with

kl # 0. Clearly det(A2-hB2) 3 0, since if not this would imply det(A-XB) f 0.

Hence in this case an arbitrary a2 would satisfy det(A2-a2B2) = 0 and we can

continue with the next step of the reduction.

When, on the other hand, both gl and hl are null we have

Since equations (4.2)  imply that

Oe det Zl det(A-XB) = 0
C
det(A2-hB2)

(4.2)

(4.3)

we cannot claim that det(A2-XB2)  g 0 in this case. It may or may not be true.

Notice though that the first stage of the reduction has already assured final

triangular forms in which g,, = %ll = 0.

If we think of the reduction to triangular form as taking place in n-l stages

then there must be at least one stage at which the current reduced matrices

have sii = bii = 0, since if we could complete the reduction without this

happening it would imply det(A-hB) f 0. Notice that if at any stage we
-

reach matrices A
r

and Br such that det(Ar-hBr)  f 0 then from that stage

onwards we cannot choose the values of ai arbitrarily.

The above discussion gives some insight into the degree of arbitrariness of

the ratios of the gii andTii that can arise when det(A-XB) f 0. Not only

must cand 5 have g
ii

= xii = 0 for at least one i, but it appears highly

probable that there will be some non-zero pairs g.. and %
53 jj

(which are not in

any sense small) with arbitrary ratios.

We have not quite proved this because although al was indeed arbitrary, and

could in particular have been taken to be zero or infinity, when kl is zero

we do not obtain non-zero values for the I,1 elements of the reduced A and B.

However, it is easy to see that when Xi..
1 1

= Xii for some i, then in general we
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can have non-zero diagonal elements g.. and %.. with arbitrary ratios.
35 JJ

Consider, for example, the two triangular matrices

A =

‘a
11 al2 “13 a14

0
a23 a24

a33 a34

a44

(4.4)

for which a22 = b22 = 0. If all the other elements in the upper-triangles

are full sized numbers it might be thought that aii/b..  (i = 1, 3, 4) are
1 1

necessarily bona fide eigenvalues, or at least have some meaningful-e

relationship with the problem Au = I,Bu.

However let us consider the matrices AR12 and BR12 where RI2 is a rotation

in the (1,2) plane. In the regular case this transformation certainly leaves

the eigenvalues unaltered. The matrices AR12 and BR12 are of the form

and

where
-

"il = &llC - al2 s "72

bil
= bllc

- b12 s bi2

-bil b:2 b13 b14
0

b23 b24 I

b33 b34

b44 J
= all

s + a12c

‘i
= blls + b12c

I

where c and s are the cosine and sine associated with the rotation.

The zero diagonal elements persist and we now have

"!I allc-a12s
-= .

b:l bllc-b12s

(4* 5)

(4.6)

(4.7)

Unless all/al2 = bll/b12 the right-hand side of (4.7) can take any given

value by a suitable choice of c and s; in particular it can be made to take
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the value zero or infinity. Similarly if we pre-multiply by a rotation in

the (2,j)  we can produce values of a*
33

and bj, having arbitrary ratios. By

pre-multiplication with more complex matrices (they need not, of course, be

unitary) one can produce equivalent triangular matrices AT and B* with

"S2
=b' =

22
0 and having an arbitraryvalue of at /bt

44 44’

The apparently well-determined ratios are therefore of no true significance.

Note however that if the zero elements a22 and b22 are replaced by non-zero

elements, however small, the pencil A-XB becomes regular and now has four

eigenvalues given by the four ratios aii/b...
1 1

In practical applications of

the QZ algorithm one will rarely obtain an exactly zero pair of a.. and bii.
1 1

However if aii = cl and b.. = &2 perturbations -E~ in A and -Ed in B will
1 1

give a singular pencil. This means that if the original data were not exact

or if the rounding errors are involved in the execution of the QZ algorithm,

the emergence of-a negligible pair of gii andTii will usually imply that

even those eigenvalues based on apparently satisfactory pairs of g.. and%..

may be of little true significance.
JJ JJ

So far we have merely shown that when det(A-hB)  E 0 the ratios gii/b.
ii

cannot

be taken at their face value. A natural question to ask is the following.

Suppose the Kronecker canonical form really does have a regular part; this

will correspond to true elementary divisors, finite and/or infinite. Will

equivalent triangular A" and % give the corresponding eigenvalues?

It is easy to see that they will not necessarily do so. Consider for example
-

a pencil A-&B with the K.c.f.

r 2 1 010

102 0 0

A=! 0 0I

1

3 0

0 010 0,

, B =

1

1

0

. (4.8)

This is obviously singular, the elements in its K.c.f.  corresponding to an

Lo, and LTo and elementary divisors (2-h)2  and (3-h). However, multiplying

A and B on the right with a matrix which permutes columns 1, 2, 3, 4 to

2, 3, 4, 1 respectively the matrices become
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0

0

and
0 0

0 0

(4.9)

The matrices are still upper-triangular but all diagonal elements are zero.

Examination of the diagonal elements gives no indication of the perfectly

genuine elementary divisors. If we consider A and B in the form given in

(4.9) it is obvious that non-zero perturbations E 1'
s2, c3, c4 in the

diagonal element of A and non-zero perturbations rll, v2, q3, q4 in the

diagonal element of B make the pencil A-XB regular, with eigenvalues ci/'li.

Indeed provided we do not have E. = r). =1 1
0 for any value of i we can permit

zero values among the Eiand"rl.
3

and these merely lead to zero and infinite

eigenvalues respectively.

This means, somewhat disappointingly that when det(A-&,B) z 0 even quite

respectable elementary divisors may be completely destroyed by arbitrarily

small perturbations. Clearly when A-IB is not exactly singular but merely

very close to singular small perturbations may cause the eigenvalues to move

about almost arbitrarily. However the situation is not quite as bad as this.

Consider the matrices

- A= 1; 11, B= [: ;] (4.10)

i

which correspond to a singular pencil but with a true elementary divisor 2-X

and an eigenvalue of 2. Consider now the neighbouring problem with

(4.11)

for which

det(i-15) = [(*'I) - (I+'Ilh]  (‘4+14~)  - (‘2+1$)(‘3+~$)  l
(4.12)
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For almost all small perturbations &i and qi the equation det(?i-6)  = 0

has a root which is very close to 2. Only very special perturbations affect

this root at all seriously, eg if c4 = q4 = 0 then the roots are s2/q2 and

and these values may be arbitrarily different from 2.

5 NUMERICAL EXAMPLES

The points discussed in the previous section are illustrated by the performance

of the QZ algorithm on a number of simple examples. In examples 1 and 2 we have

taken a pair of matrices A and B of order four and have applied the QZ algorithm

(i) to A and B themselves

(ii) to AP and BP

(iii) to PAP and PBP

where P is the--permutation matrix

: 0 0 0 1

0 0 1 0
..

0 1 0 0

L
0 0 0 1 0 0 0 1 0  0  0  1 0 0 0 1 1
1 0 0 1

0-l
When A-AB is a regular pencil the eigenvalues are identical for all three

problems, but when A4.B is a singular pencil we shall expect some (or all)

of the 'alleged' eigenvalues to be quite different for the three cases. The

computations were performed on my which is a binary floating-point computer

a with a 39 digit mantissa. For convenience of presentation and of comparison

we give only ten decimal digits although 2 39 11.7
$10 l This effectively

suppresses the effect of rounding errors, which are, in any case, of negligible

significance in most of these examples.

ExAMPLFl 1

The matrix A is singular and the matrix B is non-singular and well-conditioned

with respect to inversion. We give the values of the diagonal elements gii
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andxii of the triangular matrices produced by the QZ algorithm and the

ratios % /gii ii
for each of the cases (i), (ii) and (iii).

Case (i) Matrices A and B themselves

z. .
1 1

Xii

-2.7009 9793610-ll

+1.3391 2808010+~

+1.5125 58290,~+0

+2.9622 179791,-1

+6.6666 666671o-1

+y.3367 2721710+0

+2.2688 3743510+o

+I.2745 75935l,+o

Case (ii) Matrices AP and BP

-4.0514 969o41,-11

+I.4342 5854610+o

-t6.6666 66667, o-1

+2.3240 8120810-1

g
ii

zii h. =$ /i;
1 ii ii

-5.9674 3949110-12

+1.3391 2808010+1

+4.7223 0885210-1

+y.4880 o1526~~-1

+6.6666 666671o-~

+y.3367 27216,,~+0

+2.0319 o3548,,+o

+I.4232 O022910+o

Case (iii) Matrices PAP and PBP

-8.9571 5923710-12

+I.4342 5854610+0

+2.3240 812071~~1

+6.6666 6666710-1

zi- ii
Xii

-2.4209 i465710-~2

1.3391 2808010+1

4.7223 0885210-1

9.4880 0152510-1

+6.6666 666671o-1

+y.3367 27216~~+0

+2.0319 03548~,+0

+I.4232 O022910+o

-3.6313 7198510-12

+I.4342 58546,,+0

+2.3240 8120810-1

+6.6666 666671,-l

In each case one of the elements gii is negligible and the three sets of

eigenvalues agree almost to the working accuracy. One of the eigenvalues

is negligible which is to be expected since A is singular and of rank three

and B is non-singular. The computed vectors were also in very close agreement

and all residuals were negligible.
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EXAMPLE2

I
4 3 2
6 4 2 ‘1 r:::;]7A = -1 -1 -2 -2 ’ B =J I 0 0 - 3 -21 l

5 3 2 6 3 13 51
The matrix A is identical with that in example 1 while B differs from that

in example 1 only in its (1,l)  element and is now singular. Further it may

be verified that det(A-IB) e 0 so that the pencil A-hB is singular. The

computed results for the three cases are as follows. Since some of the aii

and some of the 'alleged' Ai are now complex the layout is slightly different

for cases (i) and (iii). A

Case (i) Matrices A and B themselves

3
ii

%
ii

+I.9332 24953,,+0

+3.7405 5267910-10

+3.2187 03829,~-1 + (I.9076 5439710-l)i
+4.7604 9037310-2 - (2.8214 37099,,-l)i

‘A’ i
= z. . /iT

11 ii

+2.4138 047581,+0

+1.9956 6846310-10

+4.6918 93487,,-l

+6.9393 5042110-1

+8.ooyo 3613ylo-1

+1.8743 357l7,$0

+6.8601 3831ylo-2 + (4.0658 5l884lo-l  )i

+6.8601 3831ylo-2 - (4.0658 5188410-l)i
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Case (ii) Matrices AP and BP

5.
1 1

Tii ‘q = %fiii

+4.1298 405011,+0 +6.2714 90903,,+0 +6.5851 01637,,-1

+7.7169 3097710-lo +1.1yoo 68398,,-10 +I.4427  1621710+o

-I. 8933 16o41l~-l +5.3216 43685,,-I -3.5577 6552010-1
-2.8853 9781ll~-1 +2.8902 71747,,-1 -9.9831 3675710-1

Case (iii) Matrices PAP and PBP

s %.
ii ii
-

+6.2346 9195410- 1 -f‘ (2.2113 y6258,0-1)i +4.0831 9328010-I

+9.9724 I7516,,-lo - (3.5371 3815~lo-l~)i +6.5310 8581510-10

+4.1156 630771,-I +7.3322  18461,,-I

. -1.9986 46939,,-1 +5.5039 y1337,,-1

yi = cfiii

+I.5269 1570710+o + (5.4158 'jO06310-I)i

+I*5269 15707I,+o - (5.4158 5006310-1)i

+5.6131  2118410-I
- -3.6312 6832210-I

In each case there is a value of i for which both gii andTii are negligible

as @as to be expected. Naturally there is no agreement between the h.
1

computed from the ratios of these negligible quantities. However the hi

computed from the other ratios are also in total disagreement even though

they came from full sized gii and%... iii) each give a pair
1 1

Cases (i) and (

of complexhi (though they bear no relation to each other) while case (ii)

gives four real A.. Nevertheless all residuals were negligible to working
1

accuracy.
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EXAMPLE3

Case (i)

A =

For this example we took as our basic matrices

The pencil A-+B is obviously singular but there are three genuine elementary

divisors 3-1, 2-h and l-h. The QZ algorithm recognised that both A and B

were upper-triangular and therefore skipped all stages in the reduction and

produced exact answers.

Case (ii) The matrices

A =

-_
-0 3 1 1

0 0 2 1
B =

0 0 0 1

0 0 0 0 -I

-0 1 1 I1
0 0 1 1 /

0

0

0

0

1 /

0
i

were obtained by permuting columns of the basic A and B conformally. Again

the QZ algorithm recognized that the matrices were already upper-triangular

and skipped all steps. However, since all diagonal elements of the A and B

are zero it naturally decided that all eigenvalues were indeterminate and

failed to recognize the genuine elementary divisors.

a

Case (iii) The matrices

-1 1

A= !
3 0

1 2 0 0

1 0 0 0

0 0 0 0

r
1 1 1 0

B= ! 1 1 0 0

1 0 0 0

0 0 0 0-a

were again obtained by permuting the columns of the basic A and B. The QZ

algorithm now involved genuine computation with rounding errors. The

diagonal elements of the computed upper-triangular matrices and the computed

eigenvalues were
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3
ii

IT
ii

hi = 2. ./iY.
11 ii

3.0000 oooool o+o 1.0000 oooool  o+o 3.0000 oooool o+o

1.4142 13562,0+0 1.4142 13562~,+0 1.0000 oooool o+o

1.41~2 13562,,+0 7.0710 67812io+0 2.0000 00000,$0

0.0000 00000 0.0000 00000 Indeterminate

The eigenvalues were given correct to working accuracy.

Case (iv) The matrices

A =

1 1 3 q 1 1  IE

1 2 E 0:

1 E -0 i
1 12E 0

01' B =
1 3E 0 0

I

were derived from the A and B of case (iii) by adding perturbations in the

secondary diagonal. For any non-zero value of E the matrices A and B are

non-singular and the eigenvalues are (exactly) 1, $, $ and i. For E = 0

the pencil is singular but there are three true eigenvalues 3, 2 and 1.

Values of E = 10-9, 10-7, lo-3 and IO-1 were tried and the results were as

follows.

E = IO -9

5. .
11

hi = %fi.ii

-2.0002 54759, ,-8

+3.0734 74417,,-4

+5.7046 435Z,o-1

+~.a 17 54580,,-4

+o. 0000 00000

+ I.0244 82499, ,-4

+5.7040 4~2.28~ o-1

+4.7058 77290, ,-4

Infinite

+3.0000 2627710+o

+I.OOOI  04188~~+0

+2.0000 00000,,+0
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E = ,,--7

%ii
Tii h. = z%. . /%

1 ii ii

-2.0000 17373,,-6

+1.5688 6655610-4

+6.7693 1568210-2

+6.0001 68768,,-6

+o. 0000 -00000

+7.9511 36609,,-5

+2.2164 49806,,-2

+2.9992 6809110-6

E = IO-3

Infinite

+I.9731 3dY4a,0+o

+3.0541 2541510+o

+2.0005 44328,,+0

%l .
1 1

xi hi = z.c .
1 1

+2.5055 38348,,-3

i3.4300 7060310-3

+1.1393 32748,,-3

+I.0211 2352ylo+o

+7.5052 69298,,-3

+1.3738 1757510-2

+2.2795 0521410-3

+1.0211 16748l,+o

+3.3383 72347,,-1

+2.4967 438651o-1

+4.9981 5811410-1

+I.OOOO 06640,,+0

“a
ii

xiii hi = ZJK _
1 1

+4.3852 9o097,0-1 _ +8.7705 8ol93lo-l +5.0000 ooooolo-l

- +2.2803 5085010+o +2.2803 50850,,+0 + I. 0000 oooool  o+o

+ 1.0000 oooool  o+o +3.0000 00000,,+0 +3.3333 3333310-1

+ 1.0000 oooool o+o +4.0000 00000,,+0 +2.5000 ooooo~o-l

This is perhaps the most interesting example. If we think of the matrices

of case (iii) as the basic matrices then those of case (iv) are affected by

two sets of perturbations. First the highly specific perturbations of order

E which we have added to the secondary diagonal. Second the perturbations

equivalent to the rounding errors made in the course of the Q,Z algorithms;

on KDFY  these are relative errors of the order of magnitude 2 -39 . The

rounding errors are not randomly distributed over the whole of A and B

since the last row and column of both A and B contain only one.non-zero
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element and that is of order E. When E is small the matrices to which the

computed results correspond may be regarded as very close to those of

case (iii). As E becomes larger a point must be reached at which the effective

matrices behave as though they were close to an A and B with eigenvalues

The results show this behaviour very clearly. When E = 10-9 there are still

eigenvalues very close to 1, 2 and 3 and there is one infinite eigenvalue

though this comes from an a,, which is of order 10
-8

coupled with a zero bii.
II AI.

Notice that%22, %22, s
44

and%44 are all of magnitude IO-4 ie quite small.

With E = 10-7 the matrix is already losing touch with the original; there are

eigenvalues reasonably close to 2 and 3 but the eigenvalue 1 has been lost.

Most of the gii andzii are quite small.

-3 1
With E = IO we have moved decisively to the regime with eigenvalues 1 ? Tf
1 and l
3 4'

The computed values now have three figures correct and are derived

from sii and zii which are all at least as large as 10-3 . With E = IO-' the

computed eigenvalues are correct to working accuracy and thezii and%ii are

of full size. As is to be expected all residuals corresponding to all

eigenvalues of all matrices are negligible to working accuracy.

Case (v) As a final example we took

113 5-

1 2 3 3 8
a A= i J2 1 3 6 yB=

11 3 5

1 1 1 3 - i

2 2 1 5

2 11 4

1 1 1  3 1

which are derived from exact elementary transformations of the matrix of

case (i). The computed sii, rbii andhi were

%I
ii

xi

i3.1622 7766010+0 i3.1622 7766010+o + I. 0000 oooool  o+o

+1.0259 78352,,-1 +3.4199 2784110-2 +z 9999 99999, o+o
il.7592  67639,,+0 i8.7963 38193,,-1 +2.0000 ooooolo+o

+1.3520 61076,0-11 io. 0000 00000 Infinite

1. =
1

Zi/Gii
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The genuine eigenvalues are preserved to full working accuracy; there is one

infinite eigenvalue but this is derived from an 2ii of order 10-11 coupled

with a zero Tii and clearly shows that the pencil is singular.

GENERALCOMMEPJTS . .

The material presented in this paper should in no way be regarded as

constituting an adverse criticism of the QZ algorithm. In all of our examples,

however pathological, the QZ algorithm has given exact eigenvalues and

eigenvectors of matrices differing from A and B by perturbations of the order

of magnitude of rounding errors. In that sense it continues to give best

possible results.

Our purpose has been to expose the properties of singular pencils and their

consequences for practical algorithms. P van Dooren [I,] has suggested that the

QZ algorithm should be preceded by an algorithm which extracts the singular part

(if any) of the pencil and we strongly support this recommendation. It should

be appreciated that when an attempt is made to recognize the singular part by

means of an algorithm which, in general, will involve rounding errors, decisions

concerning the ranks of matrices are necessarily involved. If van Dooren's

policy is adopted these decisions are made in the most favourable context.
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