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Abstract

In the Q2 algorithmthe eigenval ues of Ax = ABx are conputed
via a reduction to the formAx = ABx where A and B are

upper triangular. The eigenvalues are given by A= aii/bii :

It is shown that when the pencil K-2Bis singular or nearly

singul ar a val ue of A, Ry have no significance even when a4

and b,, are of full size.






! | NTRODUCTI ON

In a recent paper [51 we discussed the derivation of the Kronecker
canoni cal form(K.c.f,) of the N matrix A-'B (usually referred to as a |inear
pencil) wusing the system of differential equations

B = Ax + (1) (1.1)

as the notivation. A related and in sone respects nore detailed treatment
has been given by van Dooren[ 1] though there a direct attack was nade on
the derivation of the Kronecker canonical form

In recent years the generalized eigenval ue problem
Au = \Bu (1.2)

has been the subject of intensive research. The inportance of this problem
stens primarily fromthe fact that if A and u are an eigenval ue and
ei genvector of (1.2) then

X = uext (1.3)
is a solution of the honbgeneous system
Bk = AX . (1.4)

One of the nost effective nmethods for dealing with the generalized eigenval ue
problemis the QZ al gorithm devel oped by Mbler and Stewart| 4] . This
reduces B and A simultaneously to triangular matrices B and ¥ such that

B-aBz and 4 = QAZ |, (1.5)

where Q and Z are derived as the product of elementary unitary transformations.

The problem
v = 2\Bv (1.6)

i s therefore'equivalent'to (1.2) in that the eigenvalues are the sanme and
corresponding u and v are such that u = Zv. If there are no zero values of
%ii then the eigenvalues are given by



A zero val ue of bii presents no special problem unless the corresponding

~

& is also zero; it nerely inplies that the corresponding 7\1 is infinite.

It is sinpler to regard such an infinite eigenvalue as a zero eigenval ue of

Bu = pAu . (1.8)
However, if for any value of i we have ’511 = %’ii = 0 then
0 = det(A-\B) = det Q(A-\B)Z = det Q det(A-AB) det(Z) (1.9)

and hence det(A-\B) = 0 since Qand Z are unitary. Conversely if det(A-'B) =0
and A\B is an equivalent triangular pencil then since det(AnF) = ﬂ(?éii—x%ii)

this cannot give the null polynonial unless “a’.l.l =b,. = 0 for at least one i.

2 THE KRONECKER CANONI CAL FORM

Kronecker's canonical form applies to general pencils A-\B where A and B

may be rectangular matrices. The pencil is said to be singular if either

(i) m # n

or (ii) m=n and det(A\B) = 0.

QG herwise the pencil is said to be reqular; note that regular pencils
necessarily involve square matrices. The pencil KB is said to be strictly
equivalent to A-\B if there exist non-singular matrices P and Q (not
necessarily unitary) such that

T = PAQ, B - PBQ . (2.1)

In the renmainder of this paper we shall omit the qualification "strictly'

since we shall not be concerned with any broader concept of equivalence.

Kronecker showed that A-'B could be reduced to an equival ent AF in which
the & and B are of block diagonal form the blocks in A and B being conformal.
The blocks in the Kc.f. are of three types. In general there will be a

nunber of bl ocks of each type in the Kec.f.

(i) Those corresponding to elenentary divisors of the form (oc—7\)r wher e
ais finite (possibly zero). For these the blocks in 4 and B are Jr(oc) and

Ir respectively where Jr(a) is the elementary Jordan matrix of order r



associated with a and Ir is the identity matrix of order r. These blocks are
said to correspond to finite elenentary divisors of A-\B, They are of course
square and of dimension r x r, For reasons which become obvious when we

di scuss the other blocks it is often nore convenient to think in terms of the

honogeneous pencil pA-AB and of the elenentary divisor (ocu—x)r rather than

(ii) Those corresponding to elenmentary divisors ur of the honbgeneous
penci| pA-AB. For these the blocks in % and B are Ir and Jr(o) respectively.
Notice that the identity matrix is now in A and the elementary Jordan nmatrix
is in B. These blocks are said to correspond to infinite elementary divisors.
Again they are square.

(iii) Elenentary Kronecker blocks, usually denoted by L8(7\,u) and L:‘;(X,u)-
These are of dinensions € x (e+1) and (1+1) x n respectively. They are
adequately illustrated by L2(7\,u) for which the blocks in uﬁ—?\%, K and% are

TR 0 1 0 O 0O 1 ©0
and (2.2)

respectively. There are no elenentary divisors of pA-\B corresponding to
these blocks or perhaps we should say that the corresponding el enentary
divisor is unity which is independent of pu or A.

W make the following comments. If all of the blocks are of types (i) and
(ii) then X and B (and hence A and B) are square. Further since det (pA-7B)
is the product of the determinants of the diagonal blocks in uX—ﬁB and

det [ (0)AT.] = (nan)” (2.3)
det [uI_-\J_(0)] - u’ (2.4).
we see that det(uﬁ-xﬁ) (and hence det(pA-\B)) is not null. In this case then

the pencil is regular.

The bl ocks corresponding to infinite elementary divisors seem to be decisively
different from those corresponding to finite elenentary divisors. This is
deceptive and rather unsatisfactory when we conme to practical algorithnms. In
a block of type (i) corresponding to a zero value of a the matrix % has a



Jr(O) and B has an I. Inablock of type (ii) % has an I and B has a Jr(o);
this is quite natural if we think in terns of a zero elenmentary divisor of
B-pA, In conputational terns it would perhaps be more satisfactory to nmake
the distinction between values for which | «l<1 and those for whichi al > 1.
For the fornmer we could take bl ocks Jr(o‘) in X and I in B; for the latter we
take blocks I_in 4 and J (8)in B where B
topg =0 and the whole range is treated in a uniform manner. Strictly speaking

1/a. Now a = o corresponds

if Al , and I's Il , are very disparate in size then we should distinguish

bet ween those a for which |a <1 A |l2/ll B ”2 and those for which

lal>]al /I| B [I Notice that for the standard eigenvalue problem

[1B] 5 = ||I|| 5 = 1; since all eigenval ues satisfy the condition | «f < HA[
the second set is always enpty. This pinpoints an essential difference
between the generalized problem and the standard problem For sinplicity of
notation we shall assune that | A ||2 and | B ||2 are of conparable orders of
magni tude; this is, after all, merely a matter of scaling. Accordingly we
shal | distinguish between | a |< 1 and jo [>1. Wen m# n there nust, of course,
be some rectangul ar bl ocks in i a.nd'ﬁ Indeed if m< n there nust be n-m
more bl ocks of type IEthan of type L while when m> n there nmust be mn
nore bl ocks of types L than of type L Wien m = n and det(A-AB) = 0 we have
al ready remarked that not all the bl ocks could be of type (i) and (ii). Hence
inthis case too, blocks of type (iii) must occur and clearly there must be an
equal nunber of L and LT bl ocks, otherw se X and B would not be square.
However the di mensions o? t he L bl ocks need bear no relation to those of the
L bl ocks.

It is well known that classical simlarity theory, which is concerned with the
standard ei genval ue problem Au = Au, is domnated by the Jordan canonical form
(Juc. f.) J of A The corresponding K.c.f. of A-AI is J\I; in this sinple
case the K c.f. never contains any blocks of type (iii). Now in punerical
linear algebra the J.c.f. is not generally regarded as quite so inmportant for
the following reason. Elenentary Jordan blocks of dinension greater than
unity can arise only if A has nultiple eigenvalues. However, arbitrary
perturbations in A then lead, in general, to a matrix having distinct

ei genval ues and hence having a strictly diagonal J.c.f., Moreover blocks of
order greater than unity usually correspond to very sensitive eigenval ues.
Thus if the block Jz(a) is perturbed to




a1
(2.5)

e a
1
the eigenval ue becomes a + 7.

However it is salutary to renenber that the use of unity elements in the
standard Jordan formis for convenience only. The matrix

A= | ] (2.6)

has the J.c. f.

a 1
[ ] (2.7)
0 -a

but perturbations of order € in A give perturbations of order € in the
ei genval ues. This remark is sonetinmes inmportant in practice when we are
not concerned with perturbations which are arbitrarily snall

In nunerical linear algebra it is the insight provided by the J.c.f. into the
perturbation of eigenvalues which is its nore inmportant aspect. The actua
determination of the J.c.f. plays a nuch less inportant role and indeed in
the presence of rounding errors it is an unattainable goal except in specia
cases. An inportant feature is that if A has an eigenvalue a which is very
sensitive to perturbations in the matrix elenents, then A is to that extent
close to a defective matrix, ie a matrix having a block of order greater than
unity inits J.c.f. Hence extreme sensitivity is always related to

def ectiveness or near-defectiveness.

Since the K.,c.f. is the generalization of the J.c.f. the conments we have made
above will obviously apply to the K.c.f., However there are new and inportant
consi derati ons. As we showed in [:5j]the nunber of Kronecker blocks and their
di mensions are determned by considerations of rank; small perturbations in

A and B may well change the ranks of the subnmatrices involved



3 REGULAR PENCI LS

Qur main concern in this note is with the relevance of the K c.f. for the

Q@ algorithm  Accordingly we concentrate on square A and B of order n and
assune for the noment that det(A-\B) # 0. ie that the pencil is regular, and
therefore its K,c.f. contain no L, or L: bl ocks. W wite

r r-1
det( AAB) = a)” +a A +. .. +a (r<n) (3.1)

wher e a, is the first non-vanishing coefficient. Notice that r could be
zero in which case det(A-\B) = a, £ 0. The equation det(A<\B) has r finite
roots, sone of which may be zero, though these should not be regarded as
special. For the honpbgeneous pencil we have

r-1

_ r
det(p‘A—’}\B):pn I‘( ar7\r + ar_17\ Ll+...+aOLl ) (3.2)

and det(A\B) = 0 may accordingly be regarded as a pol ynoni al equation of
degree n having n-r infinite roots. Adopting this convention there are always
n roots 1, G . y e Fol | owi ng the convention suggested above we my
regard these a.l as divided into two sets, those for which | ocilé 1 and those
for which | oc.l} >1, For the latter we shall work with Bi = 1/oc.l and hence
infinities are avoided. Corresponding to each a; there is at |east one unit
ei genvect or u.. W wite

Au. = ociu.(lorilé 1),BiAu.1 = Bui (|oci] < 1) . (3.3)

Let us consider the simltaneous reduction of A and B to upper triangular
matrices A and B. This can be done entirely by unitary equival ences and it
is upon this theoremthat the feasibility of the Q al gorithm depends. W
give -an elementary proof of it which sheds light on the nature of the diagonal
elements in & and B. W state the theoremin the fol | owi ng form

I f det(A-\B) # 0 and Au = ABu has ei genval ues a. (reciprocals Bi) then there
exi st unitary Q and Z such that

Qaz = & , Q8z = B, (3.4)

where & and B are upper-triangular wth



~ _ o~ _
B T GF s By Tk (I 0‘1161) (3.5)
B =k by =Bk (o> 1) (3.6)
and the ki are non-zero. The o, may be taken to be in any order.
The proof is by induction. It is obviously true when n = 1; we assune it is

true for matrices of order up to n-I and then prove it is true for matrices

of order n.

Corresponding to a, we have a unit vector u, such that

Bu, (la)l<1) Byauy = By (Jogl >17). (3.7)

Au,' = 061

Let

u, = Z,e (3.8)

wher e Z1 is unitary and &, is the first colum of the identity. Then

AZ, e, = «,BZe, or B,AZe = BZe, (3.9)
Witing

Az, =G and Bz, = H (3.10)
we have

Ge,I = oc1He1 or [31(1—631 = He1 . (3.11)

Now Ge1 = & and He, = h1 wher e g and h1 are the first colums of Gand H

1
respectively. At | east one of g and h1 is non-null, because if both were then

0 = det(GAH) = det(A-\B)det(Z,) (3.12)

and hence det(A-\B) = 0 contrary to hypothesis. From equation (3.11) we have
certainly

h1=He1740(|a1l$‘|),g1=(}e1740 (I(x1| > 1) . (3.13)
Let Q, be a unitary matrix such that

Qh, = ke, (|oc1ls‘l) y Q8 = ke, (Ioc,|[>1) (3.124)
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where k, # 0. W have
T
k1 l b1 —{ !"oc1k,| a1 I
QH = QBZ, - QG  QAZ (loy| =1), (3.15)
1 1771 0 B2 J ’ T T l‘ 0 A 1 ’
2
T T
k| ey Baky bﬂ
Q0 = Qhz, = y Q= QB2 = eyl >1), (3.16)
0 | A B
| 2 l 2J
where A, and B, are square matrices of order n-1. Si nce

2 2

det Q,det(A-\B)det Z, det(Q1AZ1 - 7\Q1BZ1)

= k, (e;-\)det(4,-\B,) ([, l<1)
= &y (1-g\)det(4,08,) ([, >1) (3.17)

it is clear that the eigenval ues of A2u = XBzu must be a2,a3, ceny O
what ever the distribution of finite and infinite values this set may have
From the inductive hypothesis A2 and 32 may be reduced to upper-triangul ar
formwith the required diagonal elements using unitary equivalences, the

proof follows in the obvious way.

Notice that the oy coul d have been listed in any order and would then occur
in that order in the triangular matrices. Corresponding to each infinite o
we work with a zero Bi and hence obtain a zero diagonal elemsnt’?ii in B.

W cannot have a zero 3&1 coupled with a zero'%ii; this is because k.l £0
which is itself a consequence of the regularity of the pencil.

4 - SQUARE SI NGULAR PENCI LS

Suppose now that det(A-\B) = 0, so that the pencil A-AB is singular. Let us
attenpt to follow through the proof of the simultaneous reducibility of A and

B to triangular form If now e, is any nunber whatever we have det(A—a1B) =0,

and hence there is a non-null unit vector u1 such t hat

Au, = cx1Bu1(|oc,'|£ 1) or B,Au, = Bu1(|oc,|l<1). (4.1)

The argunment proceeds as before until we reach the comment that "at | east
one of the vectors 9, and h, must be non-null". W can no longer meke this



assertion since it depended on the hypothesis det(A-\B) 74 0.

If neverthel ess one or other (or both) is non-null, then exactly as before
we have a reduction to one or other of the forms (3.15) or (3.16) with
k, £ 0. dearly det(Az-XBz) = 0, since if not this would inply det(A=\B) # O.

Hence in this case an arbitrary o, would satisfy det(4 —oc2B2) = 0 and we can

2
continue with the next step of the reduction.

2

VWhen, on the other hand, both g and h1 are null we have

' o | v |
, BZ, = (4.2)
0 | B,

Since equations (4.2) inply that

0 = det 2, det(A\B) = 0 {de‘c(Az—’)\BZ)} (4.3)
we cannot claim that det(Az—XBz) =0inthis case. It may or may not be true.
Notice though that the first stage of the reduction has already assured final
triangular forns in which 5“ = %11 = 0.

[f we think of the reduction to triangular formas taking place in n-1 stages

then there nust be at |east one stage at which the current reduced matrices

A~

have a;; = %ii =0, since if we could conplete the reduction without this
happening it would inply det(A\B) # 0. Notice that if at any stage we
reach matrices Ar and Br such t hat det(Ar-XBr) 'f‘ 0 then from that stage

onwards we cannot choose the val ues of a; arbitrarily.

The above discussion gives sonme insight into the degree of arbitrariness of
the ratios of the gii and %/ii that can arise when det(A-\B) = 0. Not only
must & and B have . = %ii = 0 for at least one i, but it appears highly

i
probabl e that there will be some non-zero pairs ’a“jj and %jj (which are not in

any sense small) with arbitrary ratios.

W have not quite proved this because although «, was indeed arbitrary, and

1

could in particular have been taken to be zero or infinity, when k1 is zero

we do not obtain non-zero values for the 1,1 el ements of the reduced A and B.

However, it is easy to see that when ’é’il = %ii for some i, then in general we



10

can have non-zero di agonal elenents éﬁj and %JJ\M th arbitrary ratios.

Consi der, for exanple, the two triangular matrices

‘ n B b
1 T2 *3 4y D1 Py Pz Py
. b
0 83 Ay R )
A= ) B = b b 4'4
%33 %y 33 34
b
) 44
for which 855 = b22 = 0. If all the other elenents in the upper-triangles

are full sized nunbers it night be thought that aiiébij(i =1, 3,4) are
necessarily bona fide eigenvalues, or at l|east have some meani ngful

relationship with the problem Au = A\Bu.

However |et us consider the matrices AR12 and BR12 wher e R12 is a rotation

inthe (1,2) plane. In the regular case this transformation certainly |eaves
the eigenval ues unaltered. The matrices AR12 and BR12 are of the form
[ a! al a a, 7l -
11 12 13 14 b%1 b%2 b13 b14
0 a23 a24 0 b23 b24 | ( )
and 4¢5
b b
33 %y 33 "3
a b
L 44 44
wher e
1 -— \j —
811 = #19° T 312 S Blp = BqqS T B0 WK (1.6
4.6
] — - ! =
Plg = PyyC = byp 8 Plp = byqs * bypo J

where ¢ and s are the cosine and sine associated with the rotation.
The zero diagonal elenents persist and we now have

A -
11 #9780

= . (4.7)

4 —
bly  byq0P,8

Unl ess a11/a12 = b11/b12 the right-hand side of (4.7) can take any given
value by a suitable choice of ¢ and s; in particular it can be nmade to take



11

the value zero or infinity., Simlarly if we pre-multiply by a rotation in
the (2,3) we can produce val ues of a*y5 and biy having arbitrary ratios. By
pre-multiplication With nmore conplex matrices (they need not, of course, be
unitary) one can produce equivalent triangular matrices A' and B with

1 - b = i i ' L

ads b22 0 and having an arbitraryval ue of a44/b44.

The apparently well-determned ratios are therefore of no true significance.

Not e however that if the zero elenments a,, and b22 are replaced by non-zero

22

el ements, however small, the pencil A-\B becones regular and now has four

ei genval ues given by the four ratios aii/bii' In practical applications of

the QZ algorithmone will rarely obtain an exactly zero pair of a.. and bii'
11

However if a;; = e, and b'1'1: €, perturbations -, in A and €5 in B wll

give a singular perlci . This neans that if the o:igi nal data were not exact
or if the rounding errors are involved in the execution of the QZ algorithm
the emergence of-a negligible pair of gii and’fo'ii will usually inmply that

even those eigenval ues based on apparently satisfactory pairs of ?j' and%J.J

may be of little true significance.

So far we have nerely shown that when det(A-\B) = 0 the ratios gii/gji cannot
be taken at their face value. A natural question to ask is the follow ng.

Suppose the Kronecker canonical formreally does have a regular part; this
will correspond to true elementary divisors, finite and/or infinite. WII
equivalent triangular A and B give the correspondi ng eigenval ues?

It is easy to see that they will not necessarily do so. Consider for exanple
a pencil A-AB with the K.c.f.

[21 )00 K {

o 2|00 1

_ | _

A= 90|30 | B7 | . (4.8)
Lo olofo. 0

This is obviously singular, the elements in its K.c.f, corresponding to an
Los and LZ and el ementary divisors (2—7\,)2 and (3-h).  However, nultiplying
A and Bon the right with a natrix which pernutes colums 1, 2, 3, 4 to

2, 3,4, 1 respectively the matrices beconme
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1 1 0
0 2 0
0olo o33 oo y (4.9)
00 0] o0, o]0 0| o]
The matrices are still wupper-triangular but all diagonal elements are zero.

Exami nation of the diagonal elenents gives no indication of the perfectly
genuine elementary divisors. |If we consider A and B in the formgiven in
(4.9) it is obvious that non-zero perturbations €;. €, €3 &y in the

di agonal element of A and non-zero perturbations N1y Moy N3y n4 in the

di agonal el enent of B nake the pencil A-\B regular, with eigenval ues ai/ni.
I ndeed provided we do not have § =M = 0 for any value of i we can permt
zero val ues anong the s and n; and these nerely lead to zero and infinite

ei genval ues respectively.

This means, sonewhat disappointingly that when det(A\B) = 0 even quite
respectabl e elenentary divisors nmay be conpletely destroyed by arbitrarily
smal | perturbations. Clearly when A\B is not exactly singular but nerely
very close to singular small perturbations nmay cause the eigenvalues to nove
about alnost arbitrarily. However the situation is not quite as bad as this.
Consi der the matrices

A= , B= (4.10)

whi ch correspond to a singular pencil but with a true elementary divisor 2=\
and an eigenvalue of 2. Consider now the neighbouring problem wth

2+e e, 1+n1 M5
, B= (4.11)

=2
il

3 4 13 Ty

for which

aet (A28) = [(2+e)) - (1+n,0\] (e, ) = (ep=n ) (e5=n ) . (4.12)
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For alnost all snall perturbations e, and Ul the equation det(ﬁéxﬁ) =0

has a root which is very close to 2. Only very special perturbations affect
this root at all seriously, eg if 84 =Ty = 0 then the roots are 82/n2 and
83/n3 and these values nmay be arbitrarily different from 2.

5 NUMERI CAL EXAMPLES

The points discussed in the previous section are illustrated by the perfornmance
of the QZ algorithm on a number of sinple exanples. In exanples 1 and 2 we have
taken a pair of matrices A and B of order four and have applied the Q algorithm

(i) to A and B thensel ves
(ii) to AP and BP
(iii) to PAP and PBP

where P {s ”h -PTWHUt t{ n matrix

Al
g0 ¢

When A\B is a regular pencil the eigenvalues are identical for all three

o

o

probl ens, but when A<\B is a singular pencil we shall expect sone (or all)

of the 'alleged eigenvalues to be quite different for the three cases. The
conput ati ons were perfornmed on KDF9 which is a binary floating-point conmputer
with a 39 digit mantissa. For convenience of presentation and of conparison

10-7. This effectively

we give only ten decimal digits although 239 =
suppresses the effect of rounding errors, which are, in any case, of negligible

significance in nost of these exanples.

EXAMPLE 1
4 3 2 5 s 1 3 14
6 4 2 7 3 3 3 5
A=l 4 2 2] B= |0 o0 3 =
5 3 2 6 301 3 5

The matrix A is singular and the matrix B is non-singular and well-conditioned

o~

with respect to inversion. W give the values of the diagonal elenents N
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and/%ii of the triangular matrices produced by the QZ algorithmand the
rati os gii/ﬁi for each of the cases (i), (ii) and (iii).

~
a. .
11

-2.7009 9793610-11
+1.3391 2808O1O+1
+1.5125 582901O+O
+2,9622 1797910—1

éiii
-5.9674 39491, ,~12
+1.3391 280801d+1
+4.7223 08852, =1
+9.4880 01526, ,~1

g
~2.4209 14657, ,~12
1.3391 28080, ;+1
4.7223 0885210-1
9.4880 01525, 1

Matrices A and B thensel ves

Case (ii)

i1
+6.6666 66667, -1
+9.3367 27217, 3+0
+2.2688 37435, +0
+1.2745 75935, 4+0

Matrices AP and BP

~s
b. .
ii

+6, 6666 6666710-1
+9, 3367 272161d+o
+2,0319 035481d+o
+1.4232 00229, 5+0

Case (iii) Matrices PAP and PBP

b5
+6, 6666 6666710—1
+9,3367 27216, 5+0
+2.0319 03548, +0
+1.4232 00229, +0

~
N =/

-4.0514 96904, —11
+1.4342 58546, 5+0
+6,6666 66667, -1
+2.3240 81208, -1

-8.9571 59237, =12
+1.4342 58546, 5+0
+2. 3240 8120710—1
+6. 6666 66667, ~1

~
Ay =8/

-3.6313 7198510—12
+1.4342 585461d+o
+2, 3240 8120810—1
+6. 6666 66667, 1

In each case one of the elenents a;i is negligible and the three sets of

ei genval ues agree alnost to the working accuracy. One of the eigenval ues

is negligible which is to be expected since A is singular and of rank three
and B is non-singular. The conputed vectors were also in very close agreenent
and all residuals were negligible.
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EXAVPLE2
4 3 2 5 f 2 1 3 4 1

6 4 2 1 '3 3 3 5|

Pela g 2200 BT oo -3 2|

5 3 2 6 3 13 5 J

The matrix A is identical with that in exanple 1 while B differs from that
inexanple 1 only inits (1,1) element and is now singular. Further it nay
be verified that det(A-\B) = 0 so that the pencil A-\B is singular. The
computed results for the three cases are as follows. Since sone of the a;
and sone of the "alleged '\, are now conplex the layout is slightly different
for cases (i) and (iii). .

Case (i) Matrices A and B thensel ves

~
CF b;

+1.9332 24953, 5+0
+3.7405 52679, ,-10

+3.2187 03829, -1 + (1.9076 5439710—1)1
+4.7604 90373, -2 - (2.8214 37099, ,-1)i

r _ % /3
o= E /R

+8, 0090 3613910—1
+1.8743 3571710+O

+2.4138 04758, 4+0
+1,9956 68463, ,-10
+4.6918 93487, 1
+6.9393 50421, /=1

+6. 8601 3831910-2 + (4.0658 51884, -1
+6.86o13831910-2- (4.0658 5188410-1)1
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Case (ii) Matrices AP and BP

~ [ong o

2 iy YAV
+4.1298 40501, 5+0 +6.2714 90903, +0 +6.5851 01637, =1
+1.7169 30977, 410 +1.1900 6839810—10 +1.4427 16217, 5+0
~1. 8933 16041, 4~ +5.3216 43685, -1 -3.5577 65520, ,~1

-2.8853 9781110—1 +2, 8902 7174710—1 -9,9831 3675710—1

Case (iii) Matrices PAP and PBP

T i
+6.2346 91954, -1 + (2.2113 96258, ,~1)i +4.0831 93280, 1
+9.9724 17516,,-10 - (3.5371 3815210-10)1 +6.5310 85815, ,~10
+4. 1156 63077, =1 +7.3322 18461, =1
. -1.9986 46939, +5.5039 91337, 4=
Ny = aii/%ii

+1.5269 15707, +0+ (5.4158 50063, ,~1)i
+1. 5269 15707,5+t0 = (5.4158 5006310—1)1
+5.6131 21184, 4~
-3.6312 68322, ;-1

In each case there is a value of i for which both gii andclé.l.1 are negligible
as was to be expected. Naturally there is no agreenent between the A,
conputed from the ratios of these negligible quantities. However the 7‘1
computed from the other ratios are also in total disagreement even though
they cane from full sized gii and%_.. ~ Cases (i) and (\iii) each give a pair
of complex A, (though they bear no relation to each other) while case (ii)
gives four real Xi. Neverthel ess all residuals were negligible to working

accuracy.



7

EXAMPLE3
Case (i) For this exanple we took as our basic matrices
"3 1 1 0 11 1 0
0 2 1 0 0] 1 1 0
A1 o o0 1 o]l B ]0o o 1 o
0 0 O o_l 0 0 0 ©
- -

The pencil A-\B is obviously singular but there are three genuine el ementary
divisors 3-A, 2-h and 1-A. The QZ al gorithm recognised that both A and B
were upper-triangular and therefore skipped all stages in the reduction and
produced exact answers.

Case (ii) The natrices
o 3 1 — 1
0 1 1 !
A= |0 0 2 I . B= 0 0 I 1
o 0 0 o 0 0 1
0 0 0 0 0 0 0 0
. ! .

were obtained by permuting colums of the basic A and B conformally. Again
the Q algorithm recognized that the matrices were already upper-triangular
and skipped all steps. However, since all diagonal elements of the A and B
are zero it naturally decided that all eigenvalues were indetermnate and
failed to recognize the genuine elementary divisors.

Case (iii) The natrices
11 3 o0 1 1 1 0
1 2 0 0 1 1 0 0
I 0 0 0 I 0 0 0
A=10 0 o0 o B=10 0 0 o

were again obtained by pernuting the colums of the basic A and B. The &Z
al gorithm now involved genuine conmputation with rounding errors. The
di agonal elenents of the conputed upper-triangular matrices and the conputed

ei genval ues were
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% b A= R/
3.0000 OOOOO,' O+O 1.0000 OOOOO1 O+O 3.0000 OOOOO,' O+O
1.4142 13562104'0 1.4142 13562,‘0+O 1.0000 OOOOO,l O+O
1.41~2 13562104'0 7.0710 67812;104-0 2.0000 00000104'0
0.0000 00000 0.0000 00000 | ndet erm nat e

The eigenvalues were given correct to working accuracy.

Case (iv) The matrices
11 3 el 1 11 e
1 2 & 0] 1 1 28 0
A=l 1 ¢ o> BT 1 3% 0
|
s 0 0] e 0 O oj

were derived fromthe A and B of case (iii) by adding perturbations in the

secondary diagonal. For any non-zero value of € the matrices A and B are
non-singul ar and the eigenvalues are (exactly) 1, %,%-and %. For € = 0
the pencil is singular but there are three true eigenvalues 3, 2 and 1.
Values of & = 10—9, 10_7, 107> and 107! were tried and the results were as
fol | ows.
e =109

%11 o5 A= E L/
-2.0002 54759, 0—8 +0, 0000 00000 Infinite
+3.0734 74417, 44 + 1.0244 82499, 4-4 +3.0000 2627710+O
+5.7046 4352210—1 +5.7040 492281 0—1 +1, 0001 041881O+O

+9.41 17 5458010—4 +4.7058 7729010—4 +2, 0000 OOOOO1O+O



a
i

-2.0000 17373, -6
+1,5688 6655610—4
+6.7693 15682, (=2
+6,0001 68768, -6

¥
+2.5055 38348, ,=3
+3.4300 70603, -3
+1.1393 32748, ;-3
+1.0211 235291d+0

~
a. .
I

+4.3852 9009710—1
+2.2803 508501d+0
+ 1.0000 00000 d+0

1

+ 1.0000 OOOOO,l o+O

This is perhaps the nost
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v, .
ii
+0. 0000 -00000
+7.9511 3664910—5
+2.2164 4980610—2

+2.9992 6809110—6

+7. 5052 6929810-3
+1.3738 1757510—2
+2.2795 0521410—3
+1.0211 167481d+0

€ = 10'1

ii
+8,7705 8019310—1
+2,2803 5085O1d+0

+3, 0000 OOOOO1d+O

+4. 0000 OOOOO1O+O

i nteresting exanple.

Infinite

+1.9731 34944, 45+0
+3, 0541 2541510+O
+2, 0005 443281O+O

Ao ELb

+3.3383 72347, 41
+2.4967 43865, ;-1
+4.9981 58114, -1
+1,0000 06640, ;+0

A = 5. /B

i il Tiia

+5.0000 00000, ~1

+ 1. 0000 OOOOO1 d+O

+3.3333 33333,51

+2. 5000 OOOOO1O—1

[f we think of the matrices

of case (iii) as the basic matrices then those of case (iv) are affected by

two sets of perturbations.

First
e which we have added to the secondary diagonal

the highly specific perturbations of order
Second the perturbations

equivalent to the rounding errors made in the course of the QZ algorithns;

on KDF9 these are relative errors of the order of magnitude 2739 The

rounding errors are not

random y distributed over the whole of A and B

since the last row and colum of both A and B contain only one.non-zero
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element and that is of order ¢, Wien € is small the matrices to which the
conputed results correspond may be regarded as very close to those of
case (iii). As e becomes larger a point nust be reached at which the effective

matrices behave as though they were close to an A and B with eigenval ues

17 1 1
1, -2-, -3-a.ndz.

The results show this behaviour very clearly. \Wen ¢ = 1079 there are still
ei genval ues very close to 1, 2 and 3 and there is one infinite eigenval ue
though this comes from an a,, which is of order 10_8 coupled with a zero bii'
Notice that "?'22, %22, ’544 amd%44 are all of magnitude 1074 ie quite small.
Wth e = 107/ the matrix is already losing touch with the original; there are
ei genval ues reasonably close to 2 and 3 but the eigenvalue 1 has been |ost.

Most of the %.. andb.. are quite small.
11 11

, - . . . : 1
Wth e = 107 we have noved decisively to the regime with eigenvalues 1, 5
lBand 14_ The conputed val ues now have three figures correct and are derived
1

1‘rom§ii and %/ii which are all at least as large as 1073, Wth e =107 the

comput ed ei genval ues are correct to working accuracy and the ’éii and %ii are
of full size. As is to be expected all residuals corresponding to all
ei genval ues of all matrices are negligible to working accuracy.

Case (v) As a final exanple we took
T 1 3 5 1113 - 1i
2 3 3 8 2 2 1 5
A=l2 1 3 6d,B= |, 11 4
1 1 3 5 1 1 13

which are derived from exact elementary transformations of the matrix of
. ~ ~
case (i). The computed 3y Py and 7\.1 wer e

3| Pii A =8/
+3.1622 17660, ;+0 +3.1622 77660, +0 +1./0000 00000, +0
+1.0259 78352, -1 +3.4199 27841, -2 +2. 9999 99999, 40
+1.7592 67639, 5+0 +8.7963 38193, -1 +2.,0000 00000, ;+0

+1. 3520 6107610—11 +0. 0000 00000 Infinite
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The genuine eigenvalues are preserved to full working accuracy; there is one
D . . . . -11

infinite eigenvalue but this is derived from an gii of order 10 coupl ed
with a zero %ii and clearly shows that the pencil is singular.

GENERAL COMMENTS

The material presented in this paper should in no way be regarded as
constituting an adverse criticismof the Q algorithm In all of our exanples,
however pathol ogical, the QZ algorithm has given exact eigenvalues and

ei genvectors of matrices differing from A and B by perturbations of the order
of magnitude of rounding errors. In that sense it continues to give best
possible results.

Qur purpose has been to expose the properties of singular pencils and their
consequences for practical algorithms. P van Dooren l_1] has suggested that the
Q algorithm should be preceded by an algorithm which extracts the singular part
(if any) of the pencil and we strongly support this recommendation. It should
be appreciated that when an attempt is made to recognize the singular part by
neans of an algorithm which, in general, Wl involve rounding errors, decisions
concerning the ranks of matrices are necessarily involved. |f van Dooren's

policy is adopted these decisions are nade in the nost favourable context.
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