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Abstract

The solution of the differential system Bx = Ax + f where

A and B are n x n matrices and A - hB is not a singular

pencil may be expressed in terms of the Drazin inverse. It is

shown that there is a simple reduced form for the pencil

A - AB which is adequate for the determination of the general

sobution and that although the Drazin inverse could be determined

efficiently from this reduced form it is inadvisable to do so.





1 INTRODUCTION

In a recent paper 12 I the solution of the differential system

B? = fix + f(t) ) (1.1)

where B and A are n ‘>< n matrices and f is an n-vector has been discussed in

terms of the Drazin inverse. Although this work gives considerable insight

into the nature of the general solution of (1.1) it should not be assumed that

because the explicit solution can be expressed directly in terms of the Drazin

inverse that economical algorithms will involve its explicit computation.

Numerical analysts will be familiar with this in connexion with the simpler

problem Ax = b where A is non-singular. Although the solution is given by

x = A-lb it is seldom advisable to compute the inverse explicitly. However

algorithms for solving Ax = b based on direct methods & provide the basic

tools for the efficient computation of A-l if that should be required; we

might therefore expect that practical algorithms for solving (l.l), or

closely related algorithms, would provide effective methods for computing the

Drazin inverse and this is indeed true.

2 THE DRllZIN INVERSE

If A is an n x n matrix then the Drazin inverse [a ] of A is the matrix X

satisfying the relations

(‘> AX=XA-
(i:) XAX = X

(iii) XAk+' = Ak, where k = Ind(A).

Ind(A), the index of A, is the smallest non-negative integer for which

rank (Ak) = rank (AM').

The existence and uniqueness of A may be proved as follows. The proof is

given in matrix terms since we shall need to work in these terms in subsequent

sections. Let J be the Jordan canonical form of A, and suppose J is expressed

as the direct sum of C and N where C is associated with the non-zero

eigenvalues and N is associated with the zero eigenvalues and is therefore

nil-potent. We may write



A=T

2

(2.1)

where C is non-singular and N is nil-potent. If k is the smallest integer for

which Nk = 0 it is clear that k is the index of A since

T-l 9
Ak+l =T

ck+l 0

-t0 0 1 T-l (2.2)

and rank (Ak) = rank (Ak+l> = order of C. On the other hand rank (A') >

rank (API) when p < k. Obviously k is the dimension of the largest Jordan

submatrix associated with a zero eigenvalue.

Any n x n matrix X may be expressed in the form X = TYT-I and relations (i),

(ii) and (iii) are satisfied if and only if

(iv) JY = YJ

(v) YJY = Y

(vi) YJk+' = Jk

where

J= .

Partitioning Y conformally with J we may write

.

Equation (iv) then gives

CP = PC (a) , CQ = W (b)

NR= RC (c> ) NS = SN (d)

i

.

(2.3)

(2.4)

(2.5)
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From (b) we have

cQB?+l=&Nk=o. (2.6)

Hence QNk
-1 = 0 since C is non-singular. Continuing in this way we have

successively QNk
-2 = 0, QNkw3 = 0, i.., Q = 0. Similarly from (c) R = 0.

Now from (v) and (d)

2SNS = S and S N = S .

Hence

S2Nk = SNkol giving SNk-' = 0 .

Continuing in this way SNk-2 = 0, sNk-3, . ..) s = 0. Finally from (vi)

(2.7)

(2*8)

Pck+l = Ck giving P = C-1 (2.9)

and hence

showing that X is uniquely determined. In proving this result we did not make

- use of the fact that C and N were the direct sum of Jordan matrices but merely

that they were non-singular and nil-potent respectively. Hence to derive the

Drazin inverse it is not necessary to obtain the Jordan canonical form itself

but merely the identification of the nil-potent part, a much simpler objective.

When A is non-singular X is obviously A-1 , the usual inverse. Notice that it

is not generally true that AXA = A and hence a solution of a compatible system

AX= b is not, in general, given by x = xb.

3 COMPUTATION OF THE DRAZIN INVERSE

We have shown that the Drazin inverse of A is available if we have expressed

A in the form



(3.0

where C is non-singular and N is nil-potent. A factorization of that form in

which T is unitary has in fact been derived by Golub and Wilkinson [61. In

that factorization the singular value decomposition was used so as to give

the maximum numerical stability. A similar reduction could be achieved by a

whole range of elementary transformations and this we now describe in general

terms.

We denote the original matrix by A ( 11 . In the rth step a similarity

transformation,

AT( >
based on multiplications with elementary matrices is applied to

to give A(*". The general form of the matrices A r is adequately( >

illustrated by the fact that

(4)A =

(4) (4)----I---A44 A43

0 0

0 I 0

0 I 0

(4)
A42

(4)
A41

I n3

1 ?
n2

1 nl

(3*2)

where the significance of the n
i will become apparent in the description of

the rth step which is as follows.

( >If the-matrix ArE
( 1

is non-singular the reduction is complete. Otherwise premultiply

Ar -rr with a sequence of elementary transformations, the product of which is
( >denoted by Q r , such that

Qb) A(T) =

rr I Br( 1

0
(3.3)

where n ( >r is the nullity of A,: . The matrices involved in Q r may be unitary( >
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(orthogonal, if real) or may be elementary matrices corresponding to elimination

techniques. If A ( >1
had small integer elements the use of rational numbers

enables this reduction to be done exactly. Note that B r( > need not be trapezoidal

so that this reduction can be achieved entirely by pre-multiplications. If we

now post-multiply by (Q r )-I( > we may write. .

Qb) AL;) (Q(d)-’
=

Writing

- 0Qr 0

3-0 I

A(*‘)
r+l,r+l

0 I O 1

(3.4)

(3.5)

where T ( >r
is of order n, then Ab-1) = T(T) A(d (T('))-' is again of the

. required form. Notice that the pre-multication with T r affects only the( >

leading block row of A r( > , while the post-multiplication affects only the

principal leading submatrix. We must have nr s nr 1 since if nr > nrwl, this

would imply that in the preceding stage n
( >Indeed the Ait i

r 1 was not the full nullity.

must be of full row rank at every stage for the same reason.
9

If the matrix A(1) ( >kis entirely nil-potent then we must reach an & which is

null and the final matrix is of the block form illustrated by
-

1

0 x x x-
0 0 x x . (3.6)

i 0 0 0 0 0 0 x 0 1

Otherwise we terminate with an
k+& 1)
I,k+l

which is non-singular. (In using the

symbol k we are anticipating that this is the index of A (I)). In this second
(M-1)case we can annihilate all blocks in the first row except Ak+l k+l by further

similarity transformations. This is adequately illustrated by'the case when

k = 3 for which A (4) (4)is as in (3.2) with A44 non-singular. Post-nultiplication

with
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1 I

0

p3 = I
-(A(4))-',(4)

44 43
I

I

6

(3.7)

annihilates A(4)

( >-1 43
and leaves all other submatrices unaltered. Pre+nultiplication

with P preserves all the null matrices and changes A(4) ( >I
3 42

and A4l . The (4,2)
and (4,1) blocks may be annihilated successively in a similar way.

Thus according as A ( >1
is entirely nil-potent or not we achieve a reduction to

one or other of the forms illustrated by

oxxx- -coo0
0 0 x x 0 0 x x-_ 1

i 0 0 0 0 0 0 x’O”O 0 O
1 I- 0 0 0 0 x 0

1

(3.8)

with C non-singular. We may denote this final matrix by

(3.9)

I- -l

in the two cases. Obviously Nk = 0 while it is easy to see that since the

(i,i+l) blocks are all of full row rank N'f 0 (&d k). Hence k is indeed the

ind-ex.

The Drazin inverse could now be computed explicity using the product of all the

transformation matrices but it would usually be more expedient to keep it in

factorized form.

4 THE2 SOLUTION OF THE DIFFXREPJTIAL  SYSTEM

When B is non-singular the system (1.1) may be written in the form

ii = B-'Ax + B-If . (4.1)

There is a solution corresponding to any f and for arbitrary initial values x0.

This solution may be expressed in terms of exp(B-'At). Singularity of A in no
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way affects the explicit form of the solution. Although this is a non-trivial

matter we shall assume, in common with the paper we have referred to, that we

have satisfactory algorithms for it.

When B is singular but A is non-singular (1.1) may be written in the form

-1A B;r: = x + A-If (4.2)

ie Kjr:=
⌧ + g bY> l (4.3)

The existence and nature of the solution may be examined in terms of the

Drazin inverse of K but there seems to be little point in computing the latter

explicitly, Indeed if

K = T?
-C

i I
T, (4.4)

N

then

L C

or

Hence

1 Tjr: = TX+ Tg ,
NJ

Y P- WI= + 9
Z q

= TX ,

cy=y+p

Ni =z+q .

Since =Nk 0, (4.9) gives

= Tg.

(4* 5)

(4.6)

(4.7)

(4.8)

(4.9)

o= Nk-lz+ Nk-lq. (4. IO)
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Multiplying (4.9) by NkB2 and substituting from (4.10)

-8
-I*

Nk
-2

q= z + Nk-2q

and continuing in this way

CI + ND+ l ** + 8-lDk-l~ dz=- q where D = dt.

Notice that we must have

Z ( r= - I + ND+ l ** + Nk-lDk-I
0 1 >qO

(4.11)

(4.12)

(4.13)

and since the components of z are linear combinations of those of x
0

o this

means that the initial x0 must satisfy certain conditions for a solution to be

possible. Provided these consistency conditions are satisfied there is then a

unique solution corresponding to any q, assuming that it has k-l derivatives.

We observe that in the homogeneous case q = 0, and the only solution of (4.9)

is z = 0.

Since C is non-singular the system (4.8) has a unique solution corresponding

to any initial y, and this may be expressed in terms of exp(C%).

The solution described above has been given in the spirit of the work based on

the use of the Drazin inverse, but we would submit that even here too much

attention has been paid to obtaining explicit expressions. It is more economical

to-work with the form exemplified in (3.2). We describe this below and for

convenience of presentation we assume that k = 3 and omit upper suffices. A

transformation of variables has then reduced the original system to one of the

form

! A44 A43 A42 A41

0 0 0 0 0 0 A32 0 0 A A31 0 21 ! J -jr4 y4 g4

$3

J
y3

- 1
- 1g3

jr2
= +

y2 g2. 6 y1 1 Jgl

(4.14)
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where the blocks on the diagonal are square and A
44

is non-singular. The

matrix

. .

is the N and A
44

is the C of our previous analysis.

The relation (4.14) gives successively

Yl = -'l,y2  = -g2 - A21?1, ~3 = -g3 - A3191 - A32i2 .

(4.15)

(4.16)

Finally we have

A44i4 = Y4 + (g4 - A41il - A42Y2 - A43?3) (4.17)

and at this stage y,, y2 and y
3
and hence 9 1, y2 and g3 have already been

determined. Notice that when we describe the solution in these terms there is

no need to annihilate the blocks A
43' A42 and A41 as we did in section 3 when

describing a reduction to the form

(4.18)

- Now we merely have terms involving these A4i on the right of (4.17). At the

end of the next section we show how the volume of work may be reduced even

further.

5 SINGULAR A ADD B

When both A and B are singular one cannot proceed as in the previous section.

The use of the Drazin inverse has been concerned with the case when det(AhB)$ 0

ie when the pencil A-XB is non-singular in the Kronecker sense (see eg /-3,5,8 1 ).

The matrix A-cB is then non-singular for any c which is not a root of the

equation det(A-hB)  = 0. If one takes any such c then the system (1.1) is

equivalent to
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(A-cB)% = (A-&)% + (A-cB)-1f (5.1)

or

It may be readily verified that $2 = A%. The explicit solution of (5.2) may

be expressed in terms of the Drazin inverse of 6. Although, of course, the

derived solution must be independent of c, its introduction is undesirable.

In practice it would be important for A-cB to be, not merely non-singular, but

well conditioned with respect to inversion, otherwise there will be a loss of

accuracy which may be far greater than that resulting from the inherent

sensitivity of the problem.

It will be appreciated that one will not necessarily la?ow in advance whether

A and B are singular or indeed whether det(A-hB) E 0. The method described

below, which is analogous to that described in section 3 for the computation of

the Drazin inverse of a matrix, does not require any previous knowledge and

dn~lr; not require the use of the arbitrary scalar c.

We observe that if P and Q are non-singular then pre-multiplication of the

system (1.1) with P and the transformation x = Qy transforms it to the

equivalent system

PBQjr= PAQy+ Pf . (5.3)

In our algorithm P and Q are determined as products of elementary matrices

in such a way that (5.3) is typically of the form illustrated by

B(4) B(4) B(4) B(4)‘
44 43 42 41-

0 0 B(4)
32

B(4)
31

0 0 O B21  (4)

. 0 0 0 0

A(4)
44

A(4)
43

A(4)
42

A(4)
41

0 A(4)
33

A(4)
32

A(4)
31

0 0 A(4)
22

A(4)
21

0 0

r
1 y4

j Y3
/
y2

I _yl

+

g4

g3

g2

gl

The diagonal blocks are square and All ,(4) A(4) A(4) (4)
22 ' 33 and B44

are non-singular.
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II

(4)The matrices B21 (4)and B32 are of full row rank.
b+1>

In general there are k steps,

the process coming to an end when Bk+l k+l is non-singular.
9

( >Suppose we have performed r-l steps and Brrr is still singular. In this case

Br( > ?

5 r
may be reduced to the form

n
r

(5.5)

by pre-multiplication with elementary matrices.
( >

is the nullity of

Br( > and E
r

Here nr

r? r
is not required to be of upper trapezoidal form. If the same

operations are performed on A ( >,,' the resulting matrix may be denoted by

3 .
n

\ r

(5.6)

Now G r( 1 must be of full row rank n since otherwise A r( > and B ( >r
rf

common left-hand null vector and this would imply that iit

share a
( >

rr
(A r -hB r ) Z 0.( )

Hence G r( >
rr rr

may be multiplied on the right by elementary matrices to give

(5.7)

where A(*')-n-m is non-singular. If these right-hand transformations are applied

to the lfull matricesa

.

F'( >

and

. IL Gr
( >

the resulting matrices may be denoted by

(5.8)

Bb+‘>
r+l,r+l

Bb-+‘>
r+l,r

1
and (5.9)
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( > ( >The rth step is completely determined by the matrices BrE and A,: but if we

apply the transformations to the full n x n matrices and to the current forcing

vector we arrive at an rth derived system of the same form as the (r-1)th system

from which we started. The B!",1,' must be of full row rank otherwise the n

determined in the previous stage would have been incorrect.
r-l

If det(A-hB)jf 0 we must either reach a B ( >r

( >
rr which is non-singular or one which

is completely null with A r non-singular.
rr If however det(A-hB) E 0 this would

be detected by the algorithm since we would reach a stage at which the G r of( >

(5.6) was not of full rank and this would reveal itself when performing the
( >relementary operations on G .

For simplicity of presentation let us assume that the process terminates when

k = 3 so that the final system is as given in (5.4). We suppress the upper

suffix for convenience. The solution is then given by

A22Y2 = - g2 - A2lYl l

- B21Yl

A Y33 3 = - 93 - A3~Y~ - A32Y2 - B3~i?1 - B32i2

(5.10)

so that the components of yl, y2 and y3 are all uniquely determined and the

initial values must satisfy equations (5.10) for consistency. Finally

m

B44y4  =

A44Y4  + cA43Y3  + A42Y2  + A Y41 1 - B43ii3 - B42i2 - B41il + g4’ (5.11)

and the vector in parenthesis is already determined.
Since B44

is non-singular

this has a unique solution for arbitrary initial ya which may be expressed in
.l

terms of exp(B-' A
44 44

t).

The elementary transformations on G r( >

way that A(*')

would usually be carried out in such a

rr
would be at least triangular (though possibly even diagonal)

according to the method used. The computation of the vectors yl, y2, y3 from

relations(5.10) would therefore be particularly convenient. As we remarked above

if at any stage G( >r
is not of full rank this would be exposed automatically in

the execution of the algorithm. (We assume here that the algorithm used to
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reduce G ( >r is stable enough to detect rank reliably!). This can happen only

if det(A-LB) f 0. This situation is not usually covered by the use of the

Drazin inverse. When G ( >r has a rank deficiency of p then p linear relations

must hold between components of f for the differential equations to be

compatible. This is discussed in detail inC8J. However the yyeral
/1

situation may

deficiency of

of the form

be illustrated by considering what happens when G"' has a rank

P* This means that the original system is equivalent to a system

b.12)

where M is of full rank, n.,-p. Hence the last p components of g must be zero

for the equations to be compatible, and the components of g are linear combinations

of the original components of f.

When both A and B are singular but det(A-&,B) f 0, then when we reach the
( 1 ( >terminating non-singular B,: the corresponding A,: must be singular. This

c >follows because the earlier Ait ( >were non-singular and if A,: were non-singular

this would imply non-singularity of A.

We have remarked that the solution may be expressed in terms of the Drazin

inverse of (A-cB)-'B and the form of the solution is determined by the index

a 0f (A-cB)%. The k introduced above is in fact this index as we now show.

Denoting the successive n x n matrices derived by the algorithm by A r and B r( > ( 1

respectively, A(WI > - c@+~) has as its diagonal blocks

A($& - . . . . A@+’  1, Ack+’  >
9 292 11 l

(5.13)

The last k of these and Bk+, k+., are non-singular by definition of the algorithm.
(M-1 > WI >The first is non-singular fok any c for which det(Gl Ict-l - cBk+? IcF1) f 0 ie

9 7
for almost all c. Obviously

x = [ A@‘> - .Bck+’  1) -’ Bck+‘)
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is block upper-triangular and its diagonal blocks are

_ cB(k+1)
k+l,k+l 1 -I Bbl) 0

k+l,k+l' ' .** 0, 0 . (5.14)

Further Xi i =
9 -

l (A@+'))
ii

-1 B(k+l)
i, i-l

and hence is of full row rank for

25i < k since this is true of the B@+I >
i-i-1 l

Hence the k of our algorithm is

the index of [A(~') _ cB(H1)7 -I BCkil) and since Ack+') = PA&, Bck+') = PBQ

for some non-singular P and Q, our k is the index of (A-cB)-'B.

The algorithm we have described works in terms of full n x n matrices at all

stages in the reduction, though to be sure in later stages only parts of these

matrices are affected by the transformation. We have presented the algorithm

in this way in order to give a closer tie up with earlier work involving the

Drazin inverse. However, if one were concerned with only one forcing vector f,:
or if indeed one were interested in several different forcing functions all of

which were known at the time when the reduction was performed then a

considerable economy would be achieved as follows. Suppose we have completed

one stage of the reduction and have reached the reduced system

I
I Iy2

! 1
w
yl

I- -l
I y2I
1 yl 1

.

. (5.15)

At this stage the variables in yl are completely determined and these variables
-
undergo no further transformations. We have then

(A(2))-I
Y1=- 1, (5.16)

and

( >2 - ( )2
B22 Y2 = A22 Y2 + c

(2) (2)
g2 - B21 i, + A21 Y,

3

(2)= A22 Y2 + f2 (say) l (5.17)

Hence we can continue with a system of lower order. In this way we avoid



(2)performing any transformations on B2,, (2)and A2.., in the next step. The first

stage is wholly typical; in the rth stage we determine n more variables and
r

are left with a system in n fewer variables.
r

Obviously if we are interested

in the effect of several forcing functions we can deal with them all

simultaneously. A similar reduction of effort may be achieved with the

simpler algorithm of section 4.

6 NUMERICAL EXAMPLE

As an illustration of our algorithm we describe its performance on the example

used by Campbell et all2].

The system of differential equations is

&+Bx=b

.
2

0 9

- 1 1

(6.1)

where we have reordered the equations in order to avoid a row permutation

during the course of the solution. This makes the process a little easier to

follow. Naturally we have used rational elimination techniques. The authors

gave the general solution to the homogeneous system as well as that

corresponding to the forcing function b. For convenience of comparison we

- have followed the notation A? + Bx = b used by Campbell et al.
.

Exposing the row nullity of A gives

- L -1 0

2 3
0 0

(6.2)

We now reduce the rows of B corresponding to the null rows of A. In fact there

is only one such row and to facilitate comparison with Campbell et al we leave

(3,1) as the non-zero element rather than (3,3). This involves the

transformation
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x =

and leads to

-1 1
9

2 13
9

L 0 0

.l -2
9 9

1

1

a-
9

E
9 i+
0 1

7=x -l--x +
yl 1

2
9 2 9x3

i

Y or Y2 = x2

= x
y3 3

(6.3)

-1

0

0

At this stage the singularity of B is exposed. The third equation gives

-27~~ = 3 -‘ie 9x1 + 7x, + 5x3 + 1 = 0 65)

while for the homogeneous system

9x1 + 7x2 + 5x
3
= 0 . (6.6)

Notice that these relations must hold for all values of t and therefore in

particular for t = 0; at t = 0 they are in fact equations (35) and (29)

respectively of Campbell et al.

Substituting y,, = - l/9 into the first two equations and remembering that-

Y2 = x29 Y3 = X3 we have

and the solution is now trivial. The general solution is

xl = - +y (x2(O)  + 2x3(0))e2/3t - 6 (13x2(o)  + 8x3(0))  - t - 1
9

x2 = - & (8x2(o)  + 16x3 O))e2/3t + Q& (26x2(O) + 16x3(0)) + 2t (6*8)

(6.7)

x3= i3’ (13x,(O)  + 26x3(0))e2/3t - $ (13X2(0) + 8x3(0))- t
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For the homogeneous case the general solution consists merely of the terms in

(6.8) involving x2(O) and x3(O) with the others omitted. The solutions given

here differ somewhat from those given by Campbell et al; this results from a

trivial error made by them in the execution of their algorithm.

Of course this example is in some ways deceptively simple; however this is

equally true of the solution obtained via the Drazin inverse. In general the

system (6.7) above in which the matrix involving the derivatives is non-singular

would be reached only after several stages of reduction (in fact k stages where

k is the index associated with the relevant Drazin inverse). The solution of

this reduced system can be expressed in terms of an exponential involving only

an ordinary inverse.
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