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Abstract

The solution of the differential systemBx = Ax + f where

A and B are n x n matrices and A - AB is not a singular
pencil may be expressed in terns of the Drazin inverse. |t is
shown that there is a sinple reduced form for the pencil

A - 2B which is adequate for the determnation of the general
sobution and that although the Drazin inverse could be determned

efficiently fromthis reduced formit is inadvisable to do so.






! | NTRODUCTI ON

In a recent paper L21 the solution of the differential system
Bx = Ax + £(t), (1.1)

where B and Aare n xn matrices and f is an n-vector has been discussed in
ternms of the Drazin inverse. Although this work gives considerable insight
into the nature of the general solution of (1.1) it should not be assumed that
because the explicit solution can be expressed directly in terms of the Drazin
inverse that economcal algorithms will involve its explicit conputation.

Nunerical analysts will be famliar with this in connexion with the sinpler
problem Ax = b where A is non-singular. Athough the solution is given by
x =47 it is sel dom advisable to conpute the inverse explicitly. However
algorithms for solving Ax = b based on direct nethods do provide the basic

tools for the efficient conputation of 47

mght therefore expect that practical algorithms for solving (1.1), or
closely related algorithms, would provide effective methods for conputing the

if that should be required; we

Drazin inverse and this is indeed true.

2 THE IRAZIN | NVERSE

If Ais annxn matrix then the Drazin inverse [A]of Ais the mtrix X
satisfying the relations

(i) AX = XA
(ii) xaX = X
(iii) xa®™" - 4% where k = Ina(a).
Ind(4), the index of A is the smallest non-negative integer for which
r ank (Ak) = rank (AkH).

The existence and uniqueness of A nay be proved as follows. The proof is
given in matrix terms since we shall need to work in these terms in subsequent
sections. Let J be the Jordan canonical formof A and suppose J is expressed
as the direct sumof C and N where C is associated with the non-zero

ei genvalues and N is associated with the zero eigenvalues and is therefore
nil-potent. W& may wite



T (2.1)

where C is non-singular and N is nil-potent. If k is the smallest integer for
which ™<= 0 it is clear that k is the index of A since

- AT
A o T, Ao | r (2.2)
0 0
ky _ et 1 p
and rank (&%) = rank (& ') = order of ¢. On the other hand rank (&%) >

r ank (Ap+1) when p < k. Qoviously k is the dinension of the largest Jordan
submatrix associated with a zero eigenval ue

Any n x n matrix X may be expressed in the formX = YT~

(ii) and (iii) are satisfied if and only if

and relations (i),

(iv) oY = YJ
(V) YIY = Y
(vi) ya1_ gk

where

J = (2.3)
Partitioning Y conformally with J we may wite
Y = (2‘4)
Equation (iv) then gives
CP = PC (a) , CQ = QN (b)
. (2.5)
NR = RC (¢) , NS = SN (d)



From (b) we have
oo - -0 . (2.6)

Hence Ql\Tk'1 = 0 since Cis non-singular. Continuing in this way we have
. QNk 2 QN'k_3 - o

successively = 0, =0, ...,Q=0. Simlarly from(c) R=0.

Now from (v) and (d)

2

SNS = Sand S°N=S . (2.7)

Hence

s°r = s giving siv' - 0 . (2.8)

Continuing in this way Sl\Tk'2 = O,SNk'3,, ..) s=0. Finally from (vi)

k+1

-1

PC = of giving P=C (2.9)
and hence
¢l o
it , (2.10)
0 0
showing that X is uniquely determned. In proving this result we did not nake

use of the fact that C and N were the direct sum of Jordan matrices but merely

that they were non-singular and nil-potent respectively. Hence to derive the

Drazin inverse it is not necessary to obtain the Jordan canonical formitself
but merely the identification of the nil-potent part, a much sinpler objective.

Wen A is non-singular X is obviously A'l, the usual inverse. Notice that it
is not generally true that AxA = A and hence a solution of a conpatible system
AX= Db is not, in general, given by x = Xb,

3 COWPUTATI ON OF THE DRAZI N | NVERSE

VW have shown that the Drazin inverse of Ais available if we have expressed
Ain the form



! (3.1)

where C is non-singular and Nis nil-potent. A factorization of that formin
which T is unitary has in fact been derived by Golub and Wikinson [ 6 J. |n
that factorization the singular value deconposition was used so as to give
the maximum nunerical stability. A similar reduction could be achieved by a
whol e range of elenentary transformations and this we now describe in general
terns.

V¢ denote the original matrix by A(l). In the rth step a simlarity
transformation, based on nultiplications with elenentary matrices is applied to
S gi ve ) e general formof the matrices £V s adequat el y
illustrated by the fact that

OO NN
A A7 | Rt | A
(4) | ,(a)
(4): 0 0 A32 A31 } n,
A @) , (3.2)
0 || 0 0 A21 } n2
o | o 0 0 } n,

where the significance of the N, wll become apparent in the description of
the rth step which is as follows.

If the-matrix Ag) is non-singular the reduction is conplete. Qherwise prenmultiply

Ag) with a sequence of elementary transformations, the product of which is

denoted by Q(r), such that

L)

Q(r) A(r) T , (3.3)
rr 0 }n

r

7/
where n_is the nullity of Ag). The matrices involved in (SI) may be unitary



(orthogonal, if real) or may be elenentary matrices corresponding to elimnation
techniques. If A(l) had smal| integer elenents the use of rational nunbers

enabl es this reduction to be done exactly. Note that B(r) need not be trapezoidal
so that this reduction can be achieved entirely by pre-multiplications. If we
now post-multiply by (.Q(r))'1 we my wite

et e
o(*) Ag) QN1 —t- - (3.4)
0 0 1
Witing
Q\I") 0
o(r) 1 (3.5)

where T8T) is of order n, then Alrt1) | p(x) 4 (=) (T(r))"1 is again of the
required form Notice that the pre-nultication wth 'l( 7 affects only the
| eadi ng bl ock row of A(r), while the post-nultiplication affects only the
principal leading submatrix. W nust have n,<n
would inply that in the preceding stage n, , was not the full nullity.

I ndeed the Agﬂ i nust be of full row rank at every stage for the sane reason.

’

If the matrix A(q) is entirely nil-potent then we must reach an f\lgvvnich IS
null and the final matrix is of the block formillustrated by

since if n_>n__,this
T r-1

X
X (3.6)

(k+1)

QG herwise we ternminate with an which is non-singular. (In using the

1,k+1 (1) .
synbol k we are anticipating that this is the index of A 2 In this second
case we can annihilate all blocks in the first row except Al\c;‘|12<+1 by further

simlarity transformations. This is adequate;ly illustrated by'the case when
k =3for which A(4) isas in (3.2) V\’ith(ﬂﬁrz non-si ngul ar. Post-multiplication
with



b= (3.7)

I

_J

anni hi | ates A(g) and |eaves all other submatrices unaltered. Pre-multiplication
with P( -1) preserves all the null matrices and changes A(4) and AZR, The (4,2)
and (4, 1) bl ocks may be annihilated successively in a sim | ar way.

Thus according as A(l) is entirely nil-potent or not we achieve a reduction to

one or other of the forms illustrated by

o X X X | ¢ 0 o0 o]
0 X X 0 X
(3.8)
O I I ¢ Jor o o w
- _
with Cnon-singular. W may denote this final matrix by
- —[
N or (3.9)

"]
in the two cases. (Cbviously ¥ =0 while it is easy to see that since the
(i,i+1) blocks are all of full row rank NZ;! 0 (£<Kk). Hence k is indeed the

index.

The Drazin inverse could now be conputed explicity using the product of all the
transformation matrices but it would usually be nore expedient to keep it in

factorized form

4 THE SOLUTI ON OF THE DIFFERENTIAL SYSTEM

Wien B is non-singular the system (1.1) may be witten in the form

1

1

x =B Ax + BT f .

(4.1)

There is a solution corresponding to any f and for arbitrary initial values x.

This solution may be expressed in terns of exp(B~ At)

Singularity of Ain no



way affects the explicit formof the solution. Athough this is a non-trivial
matter we shall assume, in conmon with the paper we have referred to, that we
have satisfactory algorithms for it.

When B is singular but Ais non-singular (L)my be witten in the form
-1 . -1
A 'Bx =X + A”'f (4.2)
ie kx=x . g (say) . (4.3)

The existence and nature of the solution may be examned in terms of the
Drazin inverse of K but there seens to be little point in conputing the latter

explicitly, I ndeed if
-1 [ C
K="T" T, (4.4)
N
t hen
C
Tx = Tx + Tg , (4. 5)
B N
or
C y y o
o= + , (4.6)
| N Z Z a
(v D
= Tx , = Tg. (4.7)
— Z 'q
Hence
Cy =y+0p (4.8)
N =z+q . (4.9)

Si nceNk: 0, (4.9) gives

0= s g, (4. 10)



Mul tiplying (4.9) by 2 and substituting from (4.10)
-y - v 4 Y (4.11)

and continuing in this way

z = =[1 + ND+ .** + ] q where D==é% . (4.12)
Notice that we nust have
X% =1 k~1
zo= (=01 + NDF x4 1] ), (4.13)

and since the conponents of z are linear combinations of those of X, this
means that the initial x  Must satisfy certain conditions for a solution to be
possible.  Provided these consistency conditions are satisfied there is then a
uni que solution corresponding to any g, assuming that it has k-1 derivatives
W observe that in the honogeneous case g = 0, and the only solution of (4.9)
isz=0

Since Cis non-singular the system (4.8) has a unique solution corresponding
toany initial y and this nay be expressed in terns of exp(C-ltL

The solution described above has been given in the spirit of the work based on
the use of the Drazin inverse, but we would submit that even here too nuch
attention has been paid to obtaining explicit expressions. It is nore econonica
to-work with the formexenplified in (3.2). W describe this below and for
conveni ence of presentation we assune that k =3 and onmit upper suffices. A
transformation of variables has then reduced the original systemto one of the
form

[ A A A I N Ty T g ]
44 "3 a2 p i Y4 %4
I3 73 %3
= + .1
7, y, e, (4.14)
SRTTERE R T 1T N N 20 I N 200 I -




where the blocks on the diagonal are square and A , is non-singular. The

_ 44
matri x
O Ay Ay
0 o0 Ay, (4.15)
0 0 0

is the N and A44 is the C of our previous analysis.

The relation (4.14) gives successively

Y9 = =81y % = —€5 ~ A21y19 y3 = —g3 - A31y1 - A325'r2 : (4.16)

Finally we have
bgga = vy ¥ (g = Aggdy= Rppdp = ysFs) (4.17)

and at this stage Tys ¥y and Yy and hence 51, y2 and &3 have al ready been
det erm ned. Notice that when we describe the solution in these terns there is
no need to annihilate the blocks A and A , as we did in section 3 when

13 %42 41
describing a reduction to the form

cC 0
[ } . (4.18)
0 N

Now we nerely have terns involving these A4i on the right of (4.17). At the
end of the next section we show how the volune of work meybe reduced even

further

5 SINGULAR A AYD B

Wien both A and B are singular one cannot proceed as in the previous section.

The use of the Drazin inverse has been concerned with the case when det(A<\B) ¥ 0
ie when the pencil A\B is non-singular in the Kronecker sense (see eg [%5,8 J).
The matrix A-cB is then non-singular for any ¢ which is not a root of the
equation det(A\B) = 0. If one takes any such ¢ then the system (1.1) is

equi valent to
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(4=cB)™'B% = (A-cB) 'ax + (A-cB)”'¢ (5.1)

or
N . A A
Bx = Ax+ . (5.2)

It may be readily verified that Bi = &8, The explicit solution of (5.2) may
be expressed in terns of the Drazin inverse of B. Al though, of course, the
derived solution nust be independent of ¢, its introduction is undesirable.

In practice it would be inportant for A-cB to be, not nerely non-singular, but
wel | conditioned with respect to inversion, otherwise there will be a loss of
accuracy which may be far greater than that resulting from the inherent
sensitivity of the problem

It will be appreciated that one will not necessarily know in advance whet her
A and B are singular or indeed whether det(4\B) £ 0. The nethod descri bed

bel ow, which is anal ogous to that described in section 3 for the conputation of

the Drazin inverse of a matrix, does not require any previous know edge and
does not require the use of the arbitrary scalar c,

W observe that if P and Q are non-singular then pre-multiplication of the
system (1.1) with P and the transformation x = Qy transforms it to the
equi val ent system

PBQy = PAQy + Pf . (5.3)

In our algorithm P and Q are determned as products of elenentary nmatrices
in such a way that (5.3) is typically of the formillustrated by

BZ(LZL)‘B%) 58 84 gy | [ Y A8 A {(yll &
v ng) Bg?) ¥3 ’ A%) Agg) Agﬁ) "Y3 g3
I L T N I R CORCo N " :,
o0 ]l Lo oo A%)_ [3’1 &

i () ,(4) ,(4) (2) -
The diagonal bl ocks are square and AT A ,A33 and 344 are non-singul ar.

(5.4)



1

The matrices Bé?) and ng) are of full Sow rank. In general there are k steps
k+1 .
the process conming to an end when ﬁ;+1k+1 i S non-singul ar
Supgose we have perforned r-1 steps and B( )|s still singular. In this case
Bﬁrr may be reduced to the form
’
o)
(5.5)
0 } n
r

by pre-multiplication with elenentary matrices. Here n, is the nullity of
Bgr) and E(r) is not required to be of upper trapezoidal form |f the same
op%rations are performed on Afi the resulting matrix may be denoted by

2(r) ]
() J bo

Now G r) nust be of full row rank n i since otherw se <§) and B( v) share a

common | eft-hand null vector and thls woul d inply that det A( r) r'XB( 5 0.
Hence G(r) my be nultiplied on the right by elenmentary natrlces to g|ve

(5.6)

[ o] A(P”) , (5.7)

(r+1)

wher e Al is non-singular. If these right-hand transformations are applied

to the full matrices

() o)
and (5.8)

the resulting matrices may be denoted by

G [ ]
! , and C (5.9)
l 0 1 0 0 } A7)

rr
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The rth step is conpletely deternmined by the matrices (Bg and Ag) but if we
apply the transformations to the full n x n matrices and to the current forcing
vector we arrive at an rth derived system of the sane formas the (r-1)th system
fromwhich we started. The B . must be of full row rank otherw se the N

determned in the previous stage woul d have been incorrect.

| f det(A\B)# O we nust either reach a B( r) which is non-singular or one which
is completely null wth ﬁ( )non singular. |f however det(a<\B) = 0 this would
be detected by the al gorlthm since we would reach a stage at which the G 7 of
(5.6) was not of full rank and this would reveal itself when perforning the

el ementary operations on @)

For sinplicity of presentation let us assume that the process term nates when
k =3 so that the final systemis as given in (5.4). W suppress the upper
suffix for convenience. The solution is then given by

Ay = - g
Ropyy = = & = Ay = By (5.10)
Ayavy = = 83 = Aqyy = Ay, = Bygyy = By,

so that the conponents of Ty Vs and yy are all uniquely deternmined and the
initial values nust satisfy equations (5.10) for consistency. Finally

B

23737 Apo¥othgqYy =By - By, -
and the vector in parenthesis is already determned. Since B,, i s non-singular
this has a uni que solution for arbitrary initial ¥y which may be expressed in

t).

terms of exp(B44 4

The el ementary transformations on G(r) woul d usually be carried out in such a
way that A(Iﬂ) would be at least triangular (though possibly even diagonal)
according to the nethod used. The conputation of the vectors Tpr Io1 U3 from
relations(5.10) would therefore be particularly convenient. As we renarked above
if at any stage G(r) is not of full rank this would be exposed automatically in
the execution of the algorithm (W assune here that the algorithm used to
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reduce G(r)is stabl e enough to detect rank reliably!). This can happen only
if det(aA\B) = 0. This situation is not usually covered by the use of the
Drazin inverse. Wen G(r)has a rank deficiency of p then p linear relations
must hol d between conponents of f for the differential equations to be
conpatible. This is discussed in detail in(8]. However the ger\leral
situation may be illustrated by considering what happens when ¢‘'/ has a rank
deficiency of p. This neans that the original systemis equivalent to a system
of the form

y+ e, (5.12)

(@]

Q<l

i

B

s
—
| ==

g
f—“"\(“&_\
—
o
o]
—
O

L

where Mis of full rank, n,=p. Hence the last p conmponents of g nust be zero
for the equations to be conpatible, and the conponents of g are linear combinations
of the original conponents of f.

Wien both A and B are si ngul ar but det(a-\B) # 0, then when we reach the
termnating non-singular the correspondi ng A( )rrust be singular. This
foll ows because the earlier AKl were non-si ngul ar and if A\r wer e non-singul ar
this would inply non-si ngularlty of A

V¥ have remarked that the solution may be expressed in terns of the Drazin
i nverse of (A-CB)'1B and the formof the solution is determned by the index
of (A—cB)-1B. The k introduced above is in fact this index as we now show.

Denoting the successive n x n matrices derived by the algorithm by g&) and B(r)
respectively, A(kH) - cB(kH) has as its diagonal blocks

(et1) _ (kt1) (k1) AGer1)  (et1)

Merterr T Bt e oy B AT (5.13)

are non-singul ar by definition of the algorithm

) let1
(i 1,+1 ~ £k+11::+1 JFoOie

The last k of these and ﬁh pRp
The first is non-singular for any ¢ for which det
for alnmost all c¢.  Cbviously

X - |: AUk 1) o (et ):I =1 (k1)
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is block upper-triangular and its diagonal blocks are

(k1) (k1) 1-1 (et 1)
I_Ak:H,kH Besl k+ K, k17 O

veey 0,0, (5.14)
(k+1)) -1 B(k+1? and hence is of full row rank for

,i-1 i, il
2 =i <k since thisis true of the B(k*1)

(r1) _ g(er1)] -1 (k+1)

Furt her X, = (a

Hence the k of our algorithmis

and since A(k-H) =PAQ, B(k-H)

the index of LA - PBQ

for some non-singular P and @, our k is the index of (A—CB)—TB.

The algorithm we have described works in ternms of full n x n matrices at all
stages in the reduction, though to be sure in later stages only parts of these
matrices are affected by the transformation. W have presented the algorithm
in this way in order to give a closer tie up with earlier work involving the
Drazin inverse. However, if one were concerned with only one forcing vector f,
or if indeed one were interested in several different forcing functions all of
which were known at the time when the reduction was perforned then a
consi derabl e econony would be achieved as follows. Suppose we have conpleted
one stage of the reduction and have reached the reduced system

s2) 5(2)]

i 7 ]
B2 yz] I—A(2) Ag) | ](yz ! &2

22
- l + . (5.15)
0 0 L &1J L 0 Agﬁ)-J L y1-{ &

At this stage the variables in y, are conpletely determned and these variables
undergo no further transformations. W have then

== T g (5.16)

and

2 (2). 2
gz)yz = gz )yz {gz - Béi)ﬁ v a8

- Agg)vz + £, (say) . (5.17)

Hence we can continue with a systemof |ower order. In this way we avoid
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performng any transformations on Bgf) and Aé?) in the next step. The first
stage is wholly typical; in the rth stage we determne n_ nore variabl es and
are left with a systemin n fewer variables. Cbviously if we are interested
in the effect of several forcing functions we can deal with them al
simultaneously. A simlar reduction of effort may be achieved with the

sinpler algorithmof section 4.

6 NUMERI CAL  EXAVPLE

As an illustration of our algorithm we describe its performance on the exanple
used by Canpbell et al[2].

The system of differential equations is

A5C+ BX =D
1 0 2 To7 22 -7 2
2 3 2 x+| 18 14 0| x=|0 , (6.1)
10 =2 0 1 2 1

where we have reordered the equations in order to avoid a row pernutation
during the course of the solution. This makes the process a little easier to
follow. ~Naturally we have used rational elimnation techniques. The authors
gave the general solution to the honbgeneous system as well as that
corresponding to the forcing function b. For convenience of conparison we
have fol | owed the notation Ax + Bx = b used by Canpbell et al

Exposing the row nullity of A gives

4 0 2 (27 =2 =17 ! 2
> 3 2 | x+ 18 14 10 | x= |0 . (6.2)
0O 0 O 27 =21 =15 {_3

W now reduce the rows of B corresponding to the null rows of A In fact there

is only one such row and to facilitate conparison with Canpbell et al we |eave
(3,1) as the non-zero elenent rather than (3,3). This involves the
transformation
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L _2 - 2z 2
L T 9 9 T -59}(3
X = ! y or y2 = X, (6.3)
: Y3773
and leads to
7 23] i T [,
4 L & 27 1 =2 2
1 9 9 T
2 %% g s+ 18 0o o0ly=1o0 ) (6.4)
LOO0 o 27 o0 0 3

At this stage the singularity of B is exposed. The third equation gives

2Ty, =3 e 9xl +Tx, + 5%y +1=0 (6.5)
while for the honogeneous system
OX1 + Txy + 5X, = 0 . (6.6)

Notice that these relations nust hold for all values of t and therefore in
particular for t =0; at t = O they are in fact equations (35) and (29)
respectively of Canpbell et al.

Substituting y, = - 1/9 into the first two equations and remenbering that
y2 =Xog v3 = X?) we have

L: 23 1 _ 4 -
9x2+9x3 X2 2}(:3 11

(6.7)
13 : § . _ ‘
x2 + 5 x3 = 2 P
and the solution is now trivial. The general solution is
t 1 1
x, = 75 (,(0) + 22,(0))e?/ 3 = 2k (135,(0) + Bxy(0)) - £ - 2
1 2/3t 1
x, = = 75 (85,(0) + 16x, 0))e”/ 7" + oz (26x,(0) + 16x,(0)) + 2t (6.8)
x3 = -1-%(’13}(2(0) + 26x3(0))62/3jE - -‘T% (13X2(0) + 8x3(0))- t



17

For the honpbgeneous case the general solution consists nerely of the terns in
(6.8) i nvol vi ng x2(0) and XB(O) with the others omtted. The solutions given
here differ somewhat from those given by Canpbell et al; this results froma
trivial error made by themin the execution of their algorithm

O course this exanple is in some ways deceptively sinple; however this is
equally true of the solution obtained via the Drazin inverse. In general the
system (6.7) above in which the matrix involving the derivatives is non-singular
woul d be reached only after several stages of reduction (in fact k stages where
k is the index associated with the relevant Drazin inverse). The solution of
this reduced system can be expressed in terms of an exponential involving only
an ordinary inverse.
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