
SU326 P30-65

COMPUTATIONS  RELATED  TO G-STABILITY  OF
LINEAR  MULTISTEP METHODS

bY
Randall LeVeque,  Germund Dahlquist and Dan Andree

STAN-CS-79-738
May 1979

COMPUTER  SCIENCE  DEPARTMENT
School of Humanities and Sciences

STANFORD  UNIVERSITY





SU 326 P30-65

Computations Related to G-Stability of
Linear Multistep Methods

Randall LeVeque’
Germund Dahlquist”

Dan Andrbe*’

Abstract.-In Dahlquist’s recent proof of the equivalence of A-stability and
G-stability[l], an algorithm was presented for calculating a G-stability matrix
for any A-stable linear multistep method, Such matrices, and various quantities
computable from them, are useful in many aspects of the study of the stability of
a given method, For example, information may be gained as to the shape of the
stability region, or the rate of growth of unstable solutions, We present a summary .
of the relevant theory and the results of some numerical calculations performed for
several backward differentiation, Adams-Bashforth, and Adams-Moulton methods
of low order.

. *Department of Computer Science, Stanford University, Stanford, CA 94305.

**Department of Numerical Analysis, Royal Institute of Technology, S-10044,
Stockholm, Sweden.

This work was supported in part by Department of Energy contract No. EY-76-
S-03- 0326 PA%30 and by a National Science Foundation graduate fellowship. It
is issued as a report both at Stanford and at Stockholm. The paper was produced
using Tj$, a computer typesetting system created by Donald Knuth at Stanford.





1. Introduction,

The theory of G-stability arises from investigating the stability of the linear
multistep method

for solving the general non-linear system of differential equations

Y’ = f(Y)
where f: C ’ + (13 ’ satisfies some monotonicity condition

Re(f(u)-f(v)+-v)<O VU,VE Q:! (1 1).
Here (e, 0) is some appropriate inner product in CE ‘. This condition ensures that
the true solution of the differential equation is stable, For let u and 2) be two
solutions of y’--= f(y). Then it is easy to see that

- WI2 = 2Re (f(u) - f(v), u - v>

where ]lj is the norm corresponding to the given inner product. With the exception
of section 5, in this paper we will restrict ourselves to the case s = 1 for simplicity.
By the theory presented in [I], this means no loss of generality. The inner product
is usually simply (u, v) = Ev,

In practice it is often easier to study the stability of the “one-leg method”

k

z: a3Yn+3*=hf(&$yn+3j  l(1 2)

j=O

since this involves the function f evaluated at only one point, It has been shown that
results for this problem can be easily transformed into results for the corresponding
linear multistep method.

For the method (1,2), define the generating polynomials p and u by

k

P(C) = C aj!?j,
j=O
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Wc will often refer to (1.2) as “the method (~,a)“.  If we define  the forward shift
operator E by

Eyn = yn+l,

then we can rewrite (1.2) as

P(E>Yn  = hf(#JYn)a

Frequently we will use capital letters to denote k-vectors with the convention that

Yn = (yn, Yn+lp 0 0 l I Yn+C--dT*

If G is any real symmetric positive definite matrix, we can define the G-lraornz  of
the vector Yn by

IIY II 2
nG = YiGYn.

The method (p,ti) is termed G-stable if there is a real symmetric positive
definite matrix G for which

for all vectors Zn = (Zn,Zn+l,,  , ,,z~+~-I),  Zj e a. This will imply stability
of the numerical procedure in the following sense. Let {vn’} and {yn”} be two
sequences which satisfy (1.2) with different initial conditions, where f is assumed
to satisfy (1.1) and (~,a)  is G-stable, Then if Zn = yn’ - yn”, it can easily be
shown that II%a+lIlG  < II&JIG*

It was shown in [I] that G-stability is equivalent to A-stability. So a matrix
G satisfying (1.3) exists for a method (p,u) if and only if the A-stability condition
holds, Re ~($)/a($)  > 0 for 1~1 > 1. This is equivalent to requiring that the
stability region of the method include the entire left half plane, where the stability
region S of a method is defined as the set of complex points q for which the roots
of the polynomial P(J) - qu(f) are inside the unit circle, or lie on the unit circle
and are simple roots,

A method for constructing G-stability matrices was originally proposed in
[2]. However, that method is not guaranteed to produce positive definite matrices.
Nonetheless, it has been successfully used by Dan And&e and has never failed
to produce positive definite matrices in practice. A new algorithm is developed
in [l] which is guaranteed to produce positive definite matrices. That algorithm,
which will hereafter be referred to as I’, has been used to obtain all of the results
presented here.
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For any A-stable method (~,a), the algorithm I’ will gcncratc a complex
matrix IM such that the real part of MHM  is the required G-matrix, More in-
teresting than the matrix itself, however, are some of the quantities which can
be computed from G. These are described in the following sections in which we
summarize some of the important results of [l], The interested reader should refer
to that paper for a more detailed discussion of the theory,

Section 7 then contains a summary of some numerical results for the backward
differentiation, Adams-Bashforth, and Adams-Moulton methods of various orders.

2. Condition Numbers

One quantity which is of interest to compute is the condition number of the
matrix M produced by the algorithm. This is defined by

44 = ll~ll2ll~-‘ll2*

This is important because the theory of G-stability guarantees bounded solutions
only in terms Oi the G-norm, We see that

II VI ;= YHGY
= YHMHMY

= IIMW

Hence we know llMYn+ll12 < IllMY < 0 ma < IIMYoll2.  For a bound on the 20
norm of the solution Yn itself, we have

lly~+lll2 = II~-1~Ka+ll12

< Il~-‘ll2lI~Ka+1  II2
< II~-‘ll2llMYoll2
< +w5ll29

The G-stability of the method might seem somewhat meaningless if it turned
out that the algorithm produced matrices IM with extremely large condition num-

. hers, In most cases of practical interest the condition number is of moderate size,
although in some cases it is on the order of 1000, see section 7.

3. Generalizations of G-stability and the computation of b(0).

If a method is G-stable, its stability region contains the entire left half plane,
{q: Re q < 0). Not all practical methods are G-stable, however, and we often wish
to investigate methods which are not. For such methods there are two questions
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we may want to consider, Firstly, what sort of contractivity  condition for f must
we replace (1.1) by in order to ensure that (p,a) provides a stable solution when
applied to y’ = f(y). Secondly, we may wish to know how fast the numerical
solution might grow if f fails to satisfy such a condition.

Consider a method (~,a) whose stability region contains the arbitrary “disk”

IQ: Re (s) - 19< 0 Define the modified method (d,o*) by

P* =ap+bU
u* = cp + da, (3 1).

Then the difference equation p(E)y, = qu(E)y,is  equivalent to p*(E)y,  = q*a*(E)  yn

where q* = @a +6>/h +o so c ear y p*, a’) is G-stable, since its stability1 1 (
region contains the left half plane, {q*: Re q* 2 0). In other words,

(3 2).

In [l) it is shown that applying the method (p,u) to the differential equation
Y’ = f(Y) is eQuivalent to applying (/,u*) to the problem y’ = f(y), where the
modified function f is defined by

hf*l(Y)  = aw4Y)) + WY)

with u(y) given by the solution of

&f(u) + du = y.

So we will obtain a stable numerical solution provided f satisfies the condition-
(1.1). Hence f must satisfy the condition

(Nf (4 - f (4) + b(u - 4
4f(4 - f(v)) + 4u - 4) < 0 vu, 2). (3 . 3)

In summary, then, we see that (p,u) will provide a stable solution in some
norm for the problem y’ = f(y) provided that f satisfies (3,3).  The matrix defining
the norm in question can be obtained by applying the algorithm I’ to the modified
polynomials p* and u* as defined in (3.1).

As a special case we could let (a, b, c, d) - (1, -m, 0,l) if the stability region
were to contain the half plant {q: Re q 5 m}. A method satisfying this condition
has been called (G,m)-stable in [2]. However, rather than handling (G,m)-stability
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in this manner, it is preferable to treat it as a special case of a more gcncral
situation in which (3.2), which guaranteed the G-stability of (p*,u*) , is replaced
bY *

Re P (I)- > m(e)
u*(S)

for  ItI > 8. (3 4).

(G,m)-stability is then equivalent to the condition that (3.4) be satisfied for
(a, b, c, d) = (1, 0, 0,l) and m( 1) = m. The reason for considering this generaliza-
tion is that it is useful in studying the growth of solutions to y’ = f(y) when f
does not satisfy (3,3), Or, equivalently, when f does not satisfy (1.1).

Define the polynomials p** and a** by

(3 5).

The algebraic condition (3.4) is then equivalent to

Re P**(E) > 0
u**(E)

for Isl > 1,

SO ($*,a**) is G-stable, The algorithm I’ can be applied to (p**,u**) to yield a
positive definite matrix G**(O),

Suppose now that f^ satisfies not (1.1) but rather a condition of the form

Re f(u) -f*(v), u - v> < plu - vj2@

It has been shown in [l] that if we then apply a method ($,u*) which satisfies
(3.4) to an arbitrary vector Zn for the equation v’ = f(y), we will obtain a new
vector Z,+l satisfying

. where G’(B) = Qw1G**(8)QB1 with Q = diag(0,  02,. . ., ok). Furthermore,

where

(3 6).



Using this bound in (3.6) when & > m(0) and the bound Iu*(E)z,J~  > 0 when
& < m(O) gives a bound in the G*(O)-norm for the growth in the solution of the
one leg method:

iYn+l IlG*(O)  I< e’ll r,llG*(O)t

where

1
4 if

8’ w () l+b(B)(ph-m(O))

( >

l/2

1 -b(O)(~h-m(O))  ’ if (3 7).

The quantity b(0) can be calculated in practice as the largest eigenvalue (in modulus)
of the generalized eigenvalue problem

where
P** = (pi’, p;*, .o 6) pi*),

the vector consiting of the coefficients of cc**. Values of b(B)  are tabulated in section
7.

4. Computation of m(e).

For expository purposes we define the region So for a method (p,u)  to be
the set of complex numbers q such that the polynomial p(c) - qu($)  has roots of
modulus no greater than 0, and only simple roots of modulus 8.

We are often confronted with the problem of trying to determine some of
the important characteristics of the region So for some method (p,u) . For ex-
ample, we may want to determine the largest value of m for which the half plane
{q: Re q < m} is contained in So. Or we may want to know the diameter of the
largest disk contained in both So and the left half plane which is tangent to the
imaginary axis at the origin. WC refer to these as the hulf-plane  case and the
disk case respectively.

These and other such questions can be answered by studying the generalized
method (p*, a*) for a judicious choice of the parameters a, b, c and d in (3.1). If
it is assumed that (p’, u’) will be (G, m(O))-stable for some value of m(O), we can
compute m(0) as

*
P k>m(O) = min Re -

Isl=a u*(f) ’

6



The condition Re @ > m(0) for ItI> 8 will then be satisfied by the minimum
principle for harmonic functions. So m(0) can be easily computed by a good one-
dimensional minimization routine.

As an example, the two questions posed above are answered for the stability
region of the 5-step Backward Differentiation method. Let 8 = 1 and let ml be
the value of m(1) for the half-plane Case, (a, b, c, d) = (1, 0, 0,l). This turns out to
be my = -2.327, This is the answer to the first question, since S must contain the
half plane {q: Re q < ml}. Similarly, in the disk case (a, b, c, d) = (0, 1, 1,O) and
we find that m = -0.368. Since S must then contain the disk {q: Re l/g ( mz},
the diameter we seek is -l/m = 2.717.

Figure 1 shows the complement of the region S as well as the two regions
determined above. Values of m(0) computed for different methods and values of
8 are summarized in section 7.

Figure 1,
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5. Applications to linear systems with variable coefficients: c(B).

Consider now the application of the one-leg method (p,o) to a linear system
with variable coefficients,

The difference equation becomes

P(E)Yn= hJno(E)Yn  + Pm

where Jn = J(~(E)L,  Q(E)Y*) and Pn = p(a(E)t& Here y F: IRS, we are consider-
ing s-dimensional systems. In this case,  the G-norm of a vector Yn (each of whose
components is now an s-vector) is defined by

-_ k k

IIY 11n g = C C Si,j(Yn+i-19  Yn+j-1).
i=l j=l

From a result in [I] , we know that if {yn} satisfies this one-leg difference
equation, then {u(E)y,} will satisfy the corresponding linear multistep difference
equation. So we would like to bound l/a(E)Ynll,

The companion matrix formulation of this difference equation is

c2 c3 c4 ’ ’ ’ c,,

E CnYn+ Pn

where
c; = --(ald-h~~n>-‘(~j-1I-hhpj-~Jn)J

P, =
0

,tad - hpkJ,)-lPn 4
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Suppose that there exists a matrix G*(B) as in section 3 such that IIYn-

W211 r,ll&o, in the homogeneous case pn = 0. Then it follows that
homogeneous case, we have

t-d
in the in-

IIrn+1 Ilcyq m<= lIcnllG*(d)II  r,llG”(0)  + $i&#) I@d - hbcJn)--hll

< 6’11 ynl!G’(0) + dz ll(aJ - hpkJn)-lPnII-

where g&,(O)  is the (k, k) 1e ement of G*(8). Applying this bound recursively gives

(5 1)’
u--l

In order to bound I~u(E)Y,II,  note that p(E)yn = hJno(E)y,  +p, leads to

4') Yn -
P
-1EE,Jna(E)yn  =

P P
ok

-$P(E)
>
yn- gPn@

so

b’(E)y,II  < (I- &J&)-l
II

o E
ak II (II (0

Let

so that

II(0UE - 'PtE))Yn < dllynllG*(Q)*
ak II

(5 2).

(5 3).

. It follows from Lemma 3.4 of [I] that it is sufficient to consider the one-dimensional
case in the dcterminstion of X, that is we need only consider scaler zje Hence X
can be found by solving a generalized eigenvalue problem of the same form as the
one used to compute b(O).

Combining (5.2) and (5.3) gives

* Il+‘)Ytall  < (I- ‘Jnh)-’II ak
(hiI ynllG’(e)  + 11 $P,/$
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Using (5.1) then gives

l~u(E)&xll  < (I - b)-’II cr,, IKh (e’)*  11 &llG’(Q

+ &Gi f&y II (QJ - wk&-l)-lPv-l  II
u-1

II (I - k J&)-l
(e’)n 11 hIlG*(6)

ak m

n\\
+ 2’ (o’),-,  II (ffkl - hpkJ,-l)-‘Pv-l II

u-1

-_
Il$P II

+lmiv>

Because of this bound, the quantity

is of interest and has been tabulated in section 7. Because of the form of the bound,
it may be that the quantity @)/al, is even more interesting.

6. Checking the algorithm.-
It is interesting to test the matrix G constructed numerically by checking to

see whether  points in the stability region of the corresponding method do indeed
lead to bounded solutions in the G-norm for the linear test equation y’ = Xy. This
is a reassuring test of both the theory and the implementation of the algorithm
I’. For this test equation, the method (2) becomes

P(E)Yn  a hWE)Yn,

which can be rewritten as

P(E)Yn - V(E)Yn = 0

10



where q - F,X,  Letting the polynomial 4 = p - qu gives

&Yn + +l%a+l  + ’ * ’ + $k!ha+k = 09

This equation can be solved for yn+k, yielding

yn+k EB__
yn+k-1)

which can be employed to give the following matrix equation

0 1 0 0 ’. . . 0
0 0 1 0 ,(, 0
. a . . .

’ Yn
3r,+1

.

I

.. .

Yn+k-2

&+k-1

If we denote the above companion matrix by Cd, we have the relationship Y,+l =
C$Yn.  Hence, stability means that

Ilc&dG  < IiynllG,

i.e., that IICJIG  < 1. Thus we would expect 1x1 < 1 for all solutions X of the
generalized eigenvalue problem

This should hold for all values of 4 in the stability region, Recall here that 4 =
p - QU.  In practice we have solved this cigenvalue problem for values of q lying
on the boundary of various “disks” {q: Re

(
v$$$) < m} which should lie in

S(p,u).  For example, for the disk {q: Re (l/q) < m), we calculate max IAl at the
. points q1 = 0, 42 = l/m, and q3 = (m- i)/(m2 + 1). If max lhi < 1 at ql,a, and

43, then by other considerations we know that max 1x1 < 1 in the convex hull of
{ql,a, ~,?j3}.  This is the region shown in figure 2.

All experiments have indeed given max /Xl < 1, Furthermore, as expected, the
result max 1x1 = 1 was found whenever the point  q was actually on the boundary
of S(P) 4
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Figure 2 ’

7, Numerical results,

The quantities m(9), b(B), c(B), and n(M) h ave been calculated for the backwards
differentiation methods, the Adams-Moulton methods, and the Adams-Bashforth
methods of low order. In each case, the calculations were done for various values
of the stepnumber k and for 0 ranging from 1.3 down to 1.0. In the case of half-
plane stability regions for the backwards differentiation methods, values of 6 less
than 1.0 were also allowed,

We recall that
m(0) is defined on page 6, see also fig. 1 on page 7.
b(B) is the factor occurring in the expression on page 6 for the growth

factor 8’, when $J > ~(0).
c(0) is defined on page 10, It relates a weighted sum of the local errors

to the global error for the linear multistep method.
K(M)  is the Euclidean condition number of the transformation from

Euclidean to G-norm, see page 3,

The coefficients of p and a for each method can be found in [3] or [4], for
example. The tests were all run on the modified polynomials p** and u** defined
by (3.5). ,

All calculations were performed on an IBM 370 computer using double preci-
sion.
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For k = 2 and k = 3, we have also plotted 8’ as a function of 0 for various
values of ti, according to the definition (3.7). These functions are approximated
by piecewise polynomials interpolating the values of 0 given in the tables,

13



Backwards Differentiation Methods, half-plane case

1.2

1.1

a

1.0

. 9

n-0) 0.257 0.261 0.211 .. -0.255 -1.436

b(e) 1.457 1.186 1.096 0.861 0.606

de) 0.996 1.055 0.994 0.960 1.076

K(M) 6.291 32.70 82.41 Z46.8 814.0

m(e)

b(e)

de)

K(M)

0.181

1.397

1.021 -_

6.064

0.182 0.021 -0.698 -2.401

1.176 1.015 0.749 0.497

1.070 0.950 0.971 1.154

28.33 62.48 -83.7 583.5

m(e) 0.095 0.081 -0.256 -1.347 -3.840

ww 1.352 1.158 0.910 0.629 0.392

de) 1.057 1.027 0.927 1.007 1.278

K(M) 5.897 20.42 47.81 36.1 412.4

m(e) 0.000 -0.083 -0.667 -2.327 -6.075

b(8) 1.333 1.072 0.788 0.506 0.296

cm 1.111 0.959 0.923 1.077 1.471

K(M) 5.828 14.80 36.62 99.88 286.5

de) -0.117 -0.330 -1.293 -3.868 -9.719

b(e) 1.237 0.959 0.653 0.388 0.211

de) 1.047 0.916 0.945 1. 19'8 1.774

K(M) 5.042 11.47 27.92 72.31 195.0

k=2 k=3 k=4 k=5 k=6

14



8

.8

. 7

. 6

.5

. 4

n-0)

b(e)

de)

K(M)

-0.281 -0.708

1.123 0.824

0.989 0.895

4.329 9.046

m(e) -0.520 -1.311

We) 0.990 0.672

de) 0.940 0.899

K W -- 3.689 7.161

m(e)

we)

de)

K (M)

-0.889 -2.338

0.837 0.512

0.904 0.942

3.120 5.648

m(e)

b(e)

c 03)

K (Ml

-1.500 -4.245

0.667 0.354

0.889 1.051

2.618 4.418

m(e)

b(W

c (N

K (Ml

-2.625 -8.279

0.485 0.214

0.911 1.292

2.182 3.414

k=2 k=3 k=4

-2.289

0.513

1.004

21.10

-3.969

0.377

1.120

15.75

-7.031

0.254

1.337

11.57

-13.26

0.152

1.752

8.338

-28.10

0.078

2.616

5.864

15

k=5

-6.426

0.279

1.400

51.46

-10.98

0.186

1.745

35.87

-19.86

0.112

2.363

24.39

-39.63

0.059

3.575

16.09

-92.81

0.026

6.331

10. 2,: o

k=6

-16.05

0.141

2.267

130.0

-27.96

0.086

3.115

83.69

-52.96

0.047

4.705

52.31

-114.0

0.022

8.076

31.45

-300.3

0.008

16.71

18.06



8

-3

.2

.1

m(e) -5.056 -18.74

ww 0.305 0.106

de) 1.007 1.847

K (Ml 1.806 2.596

I
-73.65'

0.031

4.772

4.005

m(e) -12.00

b(e) 0.148

c(e) 1.289

K (M) 1.488

-57.85

0.036

3.428
-_

1.937

-294.7 -1519 -7928

0.008 0.002 3.ox1o-3

12.40 51.34 229.1

2.640 3.622 6.513

m(e) -49.50 -403.9 -3535

b(B) 0.039 0.005 0.611~10-~

c(e) 2.311 11.57 76.00

K (Ml 1.221 1.412 1.667

k=4 k=5 k=6

-286.7 -1111

0.008 0.002

14.36 46.70

6.252 9.806

-3.2~10~

6.8x1o-5

568.1

1.973

-3.0x105

7.3x10+

4588

2.338
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Backwards Differentiation Methods, disk case

8 k=3 k=4 k=5 k=6

m(e) 0.171 0.062 -0.044 -0.173

b(e) 5.493 5.013 4.454 3.938
L.3

c(e) 0.896 0.924 0.978 1.055

K(M) 19.07 70.71 274.9 1212

m(e) 0.128 6.024~10-~ -0.117 -0.288

b(W 4.989 4.444 3.935 3.517
L . 2

c ( 0-1 0 . 8 9 5 0 . 9 4 4 1.016 1.111

K(M) 16.95 61.62 247.0 1150

m(e) 0.059 -0.073 -0.218 -0.477

b(e) 4.307 3.830 3.462 3.182
- . 1

CM) 0.930 1.000 1.084 1.192

K (M) 16.09 56.41 243.7 1028

m(e) -0.071 -0.183 -0.368 -0.893

b(W 3.365 3.273 3.064 2.820
. 0

c(e) 1.108 1.120 1.175 1.274

K(M) 20.96 54.36 162.4 526.1
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Adams-Bashforth Methods, disk case

8

1.3

1.2

1.1

1.0

i

a

m(8) -0.819 -1.386 -2.289 -3.774 -6.261

Me) 2.304 1.587 1.176 0.882 0.545

K(M) 2.964 8.812 35.93 132.0 390.8

m(e) -0.871 -1.508 -2.558 -4.348 -7.454

wu 2.202 1.484 1.083 0.787 0.503

K(M) 2.774 7.888 31.27 104.0 289.0

m(e) -0,931 -1.654 -2.896

b(e) _ 2.100 1.379 1.002

K(M) 2.590 7.085 27.65

-5.101 - 9 . 0 8 5

0.697 0.440

'81.93 216.0

m(e) -1.000 -1.833 -3.33 -6.122

b(8) 2.000 1.273 0.806 0.482

K(M) 2.414 6.427 18.14 52.93

-11.40

0.272

155.6

k=2 k=3 k=4 k=5 k=6
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AdamtiMoulton Methods, disk case

8 I I k=2 I k=3 I k=4 I k=5

m(e) -0.082 -0.213 -0.359 -0.542

b(e) 3.654 3.247 2.925 2.660
1.3

de) 1.083 1.172 1.267 1.379

K(M) 4.896 22.35 84.19 338.7

m(e) -0.107 -0.247 -0.410 -0.622

b(W 3.563 3.143 2.814 2.544
1.2

c (0) 1.083 1.173 1.275 1.401

K i-M) 4.523 19.14 68.55 276.0

m(e) -0.135 -0.287 -0.471 -0.720

b(8) 3.487 3.048 2.711 2.438
1.1

de) 1.083 1.176 1.286 1.432

K(M) 4.149 16.21 55.50 233.4

n-0) -0.167 -0.333 -0.544 -0.844

b(e) 3.429 2.963 2.563 2.167
1.0

de) 1.083 1.181 1.301 1.468

K (M) 3.777 13.54 37.94 107.0
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20step Backwards Differentiation Method, half-plane case ,
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3-step Backwards Differentiation Method, disk case
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2-step Adams-Bashforth Method, disk case
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3-step Adams-Bashforth Method, disk case
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29step Adams-Moulton Method, disk case
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3-step Adams-Moulton Method, disk case
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