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1. Introduction,

The theory of G-stability arises from investigating the stability of the linear
multistep method

k k
E QYnt; =h Z Bif (yn+5)

J=0 J=0

for solving the general non-linear system of differential equations

v = f(Y)
where f: €8 — @8 satisfies some monotonicity condition
Re (f(u) — f(v),u—v) <0 VYuve CS5 (1.1)

Here (-, ) is some appropriate inner product in € 5, This condition ensures that
the true solution of the differential equation is stable, For let 4 and v be two
solutions of y' == f(y). Then it is easy to see that

ad—tllu(t) — o(t)]* = 2Re (f(U) — f(v), u —v)

where || || is the norm corresponding to the given inner product. With the exception
of section 5, in this paper we will restrict ourselves to the case s = 1 for smplicity.
By the theory presented in (1), this means no loss of generality. The inner product
isusualy smply (u, v) = Bw.

In practice it is often easier to study the stability of the “one-leg method”

k k
E aYynt; =hf (E ,Bjyn—i—j) (1.2)
=0

=0

since this involves the function f evaluated at only one point, It has been shown that
results for this problem can be easily transformed into results for the corresponding

linear multistep method.
For the method (1.2), define the generating polynomials p and & by

k

o) = Y aie?

=0

k
o) = E ﬂjS‘j-

=
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Wc will often refer to (1.2) as “the method (p,0)". If we define the forward shift
operator E by
EYyn = yn41,

then we can rewrite (1.2) as
P(E)yn = hf(o(E)yn).

Frequently we will use capital |etters to denote k-vectors with the convention that

).

Yo= (ym Ynt-lye .o Yntk—1

If G isany real symmetric positive definite matrix, we can define the G-norm of
the vector Y, by
Yl = YR GYn

The method (p, o) is termed G-stable if there is a real symmetric positive
definite matrix G for which

12114 — 1 Z0l1% < Re (0(E)2, p(E)20) (1.3)

for all vectors Z, = (2, 2n+1y+ , » 2nti—1), 2 € C. This will imply stability
of the numerica procedure in the following sense. Let {y,'} and {y»''} be two
sequences which satisfy (1.2) with different initial conditions, where f is assumed
to satisfy (1.1) and (p, o) is G-stable, Then if z, =y, — y,", it can easily be
shown that [|Znt1lle < [1Zallc-

It was shown in [1] that G-stability is equivalent to A-stability. So a matrix
G satisfying (1.3) exists for a method (p, o) if and only if the A-stability condition
holds, Re p(¢)/o(¢) > O for ¢| > 1. This is equivaent to requiring that the
stability region of the method include the entire left half plane, where the stability
region S of amethod is defined as the set of complex points ¢ for which the roots
of the polynomial p(¢)—go(¢) areinside the unit circle, or lie on the unit circle
and are simple roots,

A method for constructing G-stability matrices was originally proposed in
[2]. However, that method is not guaranteed to produce positive definite matrices.
Nonetheless, it has been successfully used by Dan Andrée and has never failed
to produce positive definite matrices in practice. A new agorithm is developed
in [1] which is guaranteed to produce positive definite matrices. That algorithm,
which will hereafter be referred to as I’, has been used to obtain all of the results
presented here.



For any A-stable method (p, o), the agorithm I’ will gcncratc a complex
matrix M such that the real part of M*M is the required G-matrix, More in-
teresting than the matrix itself, however, are some of the quantities which can
be computed from G. These are described in the following sections in which we
summarize some of the important results of [1]. The interested reader should refer
to that paper for amore detailed discussion of the theory,

Section 7 then contains a summary of some numerical results for the backward
differentiation, Adams-Bashforth, and Adams-Moulton methods of various orders.

2. Condition Numbers

One quantity which is of interest to compute is the condition number of the
matrix M produced by the algorithm. Thisis defined by

s(M) = [|M]J2]]M 2.

This is important because the theory of G-stability guarantees bounded solutions
only in terms of the G-norm, We see that

WY& =v?gy
= YHMHMY
= |MY|J2.

Hence we know [|MYy |l < [[MYall2 <+ <||MYs]l2. For a bound on the 2-
norm of the solution Y,, itself, we have

IYntillz = IM™ MYtz
< MY NIM Y g1 ]l
< IM7H2lIM Yoll2
< k(M) Yoll2.

The G-stability of the method might seem somewhat meaningless if it turned
out that the algorithm produced matrices M with extremely large condition num-
. bers. In most cases of practical interest the condition number is of moderate size,
although in some casesit is on the order of 1000, see section 7.

3. Generalizations of G-stability and the computation of b(0).

If a method is G-stable, its stability region contains the entire left half plane,
{g: Reg < 0}. Not al practical methods are G-stable, however, and we often wish
to investigate methods which are not. For such methods there are two questions
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we may want to consider, Firstly, what sort of contractivity condition for f must
we replace (1.1) by in order to ensure that (p,o) provides a stable solution when
applied to y' = f(y). Secondly, we may wish to know how fast the numerical
solution might grow if f fails to satisfy such a condition.

Consider a method (p, o) whose stability region contains the arbitrary “disk”

{¢: Re (733:7?) < 0}. Define the modified method (o*,¢*) by

p,=ap+to 3.1
0" =cp+da, (3.1)
Then the difference equation p(E)yn = go(E)yais equivalent to o"(E)yn=4¢"0"(E) yn

where ¢* = (ag +b)/(cg + d). So ded y(o*, @) is G-stable, since its stability
region contains the left half plane, (o~ Re ¢* < 0}. In other words,

P(s)
o*(c)
In [1] it is shown that applying the method (p,o) to the differentia equation

y'= f(Y) isequivalent to applying (o",0") to the problem y' = f(y), where the
modified function f* is defined by

hi"(y) = ahf(u(y)) + bu(y)
with u(y) given by the solution of
chf(u)+ du=1y.

So we will obtain a stable numerical solution provided T satisfies the condition
(1.1). Hence f must satisfy the condition

Re >0 for [¢|>1. (3.2)

hl () Tl T Paw— ) <0 vu v, (3.3)

In summary, then, we see that (p, ) will provide a stable solution in some
norm for the problem y' = f(y) provided that f satisfies (3.3). The matrix defining
the norm in question can be obtained by applying the algorithm I’ to the modified
polynomials p* and ¢ as defined in (3.1).

As a specia case we could let (g, b, ¢, d) = (1, —m, 0, 1} if the stability region
were to contain the haf plane {q: Re ¢ < m}. A method satisfying this condition
has been called (G,m)-stable in [2]. However, rather than handling (G,m)-stability
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in this manner, it is preferable to treat it as a specia case of a morc gencral
situation in which (3.2), which guaranteed the G-stability of (¢°*,6°) , is replaced
by

Re ‘—,Pig—g >m() for [¢|>4. (3.4)

(G,m)-stability is then equivaent to the condition that (3.4) be satisfied for
(a b, c,d)=(1,0,0,1)andm( 1) =m. The reason for considering this generaliza-
tion is that it is useful in studying the growth of solutions to y' = f(y) when f
does not satisfy (3.3). Or, equivaently, when T does not satisfy (1.1).

Define the polynomials p** and ™" by

p"(¢) = p"(0¢) — m(0)o" (6¢)
™) = o"(). 3

The algebraic condition (3.4) is then equivaent to

i

Re 28> o o l¢| > 1,

so ($*,a*) is G-stable, The agorithm I’ can be applied to (p**,¢**) to yidd a
positive definite matrix G**(0O),
Suppose now that f* satisfies not (1.1) but rather a condition of the form

Re (/" () -f*(v), u — v) < pJu —v|*
It has been shown in [1] that if we then apply a method (p*,o") which satisfies
(3.4) to an arbitrary vector Z, for the equation y' = f Y ), we will obtain a new
vector Z,4) satisfying
1Znt- 110y — O Znll ey < 2ah — m(0))|o” (E)znl (3.6)
. where G*(0) =©~1G**(6)0—* with © = diag(0, ?,. . ., 6%). Furthermore,

20" (E)zn|? < b(0)(1Zn+1llm0) + 611 Znll & o)),

where }

2l0"* ()]
b(8) = max -
@) zo,...h[uzxng--@)+ ol
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Using this bound in (3.8) when wh > m(0) and the bound |o*(E)zs|? = O when
ph < m(0) gives a bound in the G*(O)-norm for the growth in the solution of the
one leg method:

Yot1lleo@y < 0l Yall oy

where

r, if wh < m(6)
9 = (3.7)

(o172 _
oA L ", if m(d) < b < m(6) + 1/6(6).

The quantity b(¢) can be calculated in practice as the largest eigenvalue (in modulus)
of the generalized eigenvalue problem

26757 =(§ o)+ (550 )

B =8, 81" B

the vector consiting of the coefficients of o**. Values of b(8) are tabulated in section
7.

where

4. Computation of m(f).

For expository purposes we define the region S, for a method (p, o) to be
the set of complex numbers ¢ such that the polynomia p(¢) — go(¢) has roots of
modulus no greater than 4, and only simple roots of modulus 6.

We are often confronted with the problem of trying to determine some of
the important characteristics of the region S for some method (p, o). For ex-
ample, we may want to determine the largest value of m for which the haf plane
{9: Reg < m} is contained in S;. Or we may want to know the diameter of the
largest disk contained in both S; and the left half plane which is tangent to the
imaginary axis at the origin. Wc refer to these as the half-plane case and the
disk Case respectively.

These and other such questions can be answered by studying the generalized
method (p°, &) for ajudicious choice of the parameters a, b, c and d in (3.1). If
it is assumed that (p’, o°) will be (G, m(O))-stable for some value of m(0), we can

compute m(0) as .
m(6) = min Re p(5)

=0 o*(¢)’
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The condition Re g—% > m(9) for |¢] > 8 will then be satisfied by the minimum

principle for harmonic functions. So m(0) can be easily computed by a good one-
dimensional minimization routine.

As an example, the two questions posed above are answered for the stability
region of the 5-step Backward Differentiation method. Let 8 = 1 and let m; be
the value of m(1) for the half-plane Case, (a, b, ¢, d= (1, 0, 0, 1). This turns out to
bem; = -2.327, Thisis the answer to the first question, since S must contain the
half plane {g: Req <m;}, Smilarly, inthe disk case (a, b, ¢, d) = (0, 1, 1,0) and
we find that m, = —0.388. Since S must then contain the disk {q: Re1/q < my},
the diameter we seek is—1/mp = 2.717.

Figure 1 shows the complement of the region S as well as the two regions
determined above. Vaues of m(f) computed for different methods and values of
6 are summarized in section 7.

2N
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5. Applications to linear systems with variable coefficients: ¢(6).

Consider now the application of the one-leg method (p,0) to a linear system
with variable coefficients,

dy _ )
T J(¢, y)y + p(t).

The difference equation becomes
P(E)Yn = hJoO(E)yn -+ Pn,

where J,, = J(o(E)tn, o(E)ys) and p, = p(o(E)t,). Here y € IR®, we are consider-
ing s-dimensional systems. In this case, the G-norm of a vector Y,, (each of whose
components is now an s-vector) is defined by

N P
| Yol = E Z 9,5 (Yn+i—1, Yntj—1)-

i=1 =1

From a result in [1] , we know that if {y,} satisfies this one-leg difference
equation, then {o(E)y,} will satisfy the corresponding linear multistep difference
equation. So we would like to bound ||o(E)yx||-

The companion matrix formulation of this difference equation is

0 I 0 0 ... 0
0 0 I 0 ... 0
Yn+1= . . . ' . Y”+P"
6o 0o 0 0 I
i € €3 ¢4 " " ¢
ECnYn-l_Pn
where
¢; = —(aw] — hBiJn) " (@j—1 — hBj—1J0)
0
Py )



Suppose that there exists a matrix G*(8) asin section 3 such that || Y- +-1“G‘(0) <

(03| Y,.||G.(o) in the homogeneous case p, = 0. Then it follows that in the in-
homogeneous case, we have

1Yn+1lla*e) S ICullao)ll Yallgroy + \/9kx0) (6] — Aficn) " pall
L O Yalloroy =+ \/ 95k(0) (el — ABidn) ™ pall
where g5.(0) is the (k,k) & ement of G*(8). Applying this bound recursively gives
IYnllg @y < (6)"11Yollc*0y
+ /o0 il(o')""” ool — hprdoes) " potll. D

In order to bound |lo(E)yall, note that p(E)yr, = hJo(E)ys+ pn leads to

_—;Pn
So
lo®ul <1 o) (o) Eompunl +| 5]} 62
Let .
o em = Zee)
221y 1Zoll&+s) ’
SO that

(o8) = Zep(E))un

< VNIYullary. (5.3)

. It follows from Lemma 3.4 of [1] that it is sufficient to consider the one-dimensional
case in the dctermin_ation of A, that is we need only consider scaler z;. Hence A

can be found by solving a generalized eigenvalue problem of the same form as the
one used to compute b(O).

Combining (5.2) and (5.3) gives

Bl < H — By

(VAllY, nIIG‘(0)+“ Pnll)



Using (5.1) then gives

loE)yal < HI — By ’ (V& @ 1 bl

n

+ M@ Y0 1l (] —hBd—1) " Pt |l

v=1

+ @}'Pn)
. ﬂk ((9’)"HYollc'<o)
< \/Mgril0 ,.h T~ v
Vi) H " 9i(0)
+ L )" ol = hBedy—1) " poil]
v=1
15 <Pl
Sl
Agei(0)

Because of this bound, the quantity

of8) = \/ Age(6)

Is of interest and has been tabulated in section 7. Because of the form of the bound,
it may be that the quantity ¢(0)/a, IS even more interesting.

6. Checking the algorithm.

It isinteresting to test the matrix G constructed numerically by checking to
sce whether points in the stability region of the corresponding method do indeed
lead to bounded solutions in the G-norm for the linear test equation y' = Ay. This
IS a reassuring test of both the theory and the implementation of the algorithm
I". For this test equation, the method (2) becomes

P(E)Yn = hAa(E)yn,
which can be rewritten as

PE)yn — qo(E)yn =10
10



where ¢ = h\. Letting the polynomid ¢ = p — go gives

®oYn + d1Yn+1-+++* + GeYnt+k = 0.
This equation can be solved for y,, yielding

%0 ¢ k—1
k= — - 1= = Yy k—1
Yn+- b Yn S Yn+ & n-+ )

which can be employed to give the following matrix equation

Yn+1 0 1 0 0 ... 0 \/\ ¥n
Yn-4-2 0 0 1 0o ... 0 Yn+1

yn-!-.k—l 6 Oﬂ 0 0 e i n-i-'k—-ﬁ
\ y"'H‘\j \—% K> —%3 _% Y _Qaij \ldn+k—1

If we denote the above companion matrix by Cy, we have the relationship Yn+41=
CaYn. Hence, stability means that

ICsYulle < [IYnllas

i.e., that ||Cylle < 1. Thus we would expect [\|< 1 for al solutions N of the
generalized eigenvalue problem

CHGCyw = \Gz.

This should hold for al values of ¢ inthe stability region, Recall here that ¢ =
p — qo. In practice we have solved this cigenvalue Sroblem for values of g lying

on the boundary of various “disks’ {¢: Re (%ﬁ'—ﬁ < m} which should lie in

S(p, o). For example, for the disk {¢: Re (I/g) < m}, we caculate max |\ at the
- points ¢g=0, gg= I/m, and g3=(m—1)/(m?+ 1). If max |[\| < 1 at ¢1,4, and
g3, then by other considerations we know that max |\ < 1 in the convex hull of
{1, ¢ 93,33} Thisisthe region shown in figure 2.

All experiments have indeed given max |Al < 1. Furthermore, as expected, the
result max |A| = 1 was found whenever the point g was actualy on the boundary
of S(p, o).

11
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Figure 2 !

7. Numerical results,

The quantities m(0), b(®), c(8), and n(v) have been calculated for the backwards
differentiation methods, the Adams-Moulton methods, and the Adams-Bashforth
methods of low order. In each case, the calculations were done for various values
of the stepnumber k& and for 6 ranging from 1.3 down to 1.0. In the case of half-
plane stability regions for the backwards differentiation methods, values of 8 less

than 1.0 were aso allowed,

We recall that
m(#) is defined on page 6, see aso fig. 1 on page 7.
b(B) is the factor occurring in the expression on page 6 for the growth

factor 8', when ph > m(6).
c(0) is defined on page 10. It relates a weighted sum of the local errors

to the global error for the linear multistep method.
k(M) isthe Euclidean condition number of the transformation from

Euclidean to G-norm, see page 3.

The coefficients of p and afor each method can be found in [3] or [4], for
example. The tests were al run on the modified polynomias p** and o** defined

by (3.5).
All calculations were performed on an IBM 370 computer using double preci-

sion.
12



For k== 2 and k = 3, we have also plotted §' as a function of 8 for various
values of ph, according to the definition (3.7). These functions are approximated
by piecewise polynomials interpolating the values of 8 given in the tables,

13



Backwards Differentiation Methods, half-plane case

5] k=2 k=3 k=4 k=5 k=6
m(8) 0.257 0.261 0.211 -0. 255 -1.436
b(8) 1.457 1.186 1.096 0. 861 0. 606
1.3
c(8) 0.996 1.055 0.994 0. 960 1.076
< (M) 6.291 | 32.70 82. 41 246.8 814. 0
m(8) 0.181 0.182 0.021 - 0. 698 -2.401
L b(6) 1.397 1.176 1.015 0. 749 0. 497
' c(8) 1.021 | 1.070 0. 950 0.971 1.154
k(M) 6.064 | 28.33 62. 48 83.7 583. 5
m(8) 0.095 0.081 | -0.256 -1.347 - 3. 840
- b(8) 1.352 1.158 0.910 0.629 0.392
' c(8) 1.057 1.027 0.927 1. 007 1.278
K (M) 5.897 | 20.42 47. 81 36. 1 412. 4
m(8) 0.000 | -0.083 | -0.667 -2.327 -6. 075
o- b(8) 1.333 1.072 0.788 0.506 0. 296
1
c(8) 1.111 0. 959 0.923 1.077 1.471
« (M) 5.828 | 14.80 36. 62 99. 88 286. 5
m(8) | -0.117 | -0.330 | -1.293 -3.868 -9. 719
: b(8) 1.237 0. 959 0. 653 0.388 0.211
| c(8) 1.047 0.916 0. 945 1 19'8 1.774
< (M) 5.042 | 11.47 27.92 72.31 195. 0

14




k=2 k=3 k=4 k=5 k=6
m(6) -0. 281 -0.708 -2.289 -6.426 -16. 05
b(6) 1.123 0. 824 0.513 0. 279 0.141
c(6) 0. 989 0. 895 1. 004 1.400 2. 267
K (M) 4,329 9. 046 21.10 51. 46 130.0
m(6) -0.520 -1.311 -3. 969 -10.98 -27.96
b(9) 0.990 0.672 0. 377 0. 186 0. 086
c(8) 0. 940 0. 899 1.120 1.745 3.115
K (M) - 3.689 7.161 15. 75 35. 87 83. 69
m(0) -0. 889 -2.338 -7.031 -19. 86 -52.96
b(8) 0. 837 0.512 0. 254 0.112 0. 047
c(se) 0. 904 0.942 1.337 2.363 4,705
k (M) 3.120 5.648 11.57 24. 39 52.31
m(6) -1.500 -4, 245 -13. 26 -39.63 -114.0
b(8) 0. 667 0. 354 0. 152 0. 059 0. 022
c(0) 0. 889 1.051 1.752 3.575 8.076
K (M) 2.618 4,418 8. 338 16. 09 31.45
m(6) -2.625 -8.279 -28.10 -92.81 -300. 3
b(6) 0. 485 0.214 0.078 0. 026 0. 008
c(8) 0.911 1.292 2.616 6. 331 16. 71
k (M) 2.182 3.414 5. 864 10. 25 18. 06
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k=2 k=3 k=4 k=5 k=6
m(H) -5. 056 -18. 74 -73. 65’ -286.7 -1111
b(6) 0. 305 0.106 0.031 0. 008 0. 002
c(0) 1. 007 1. 847 4,772 14. 36 46. 70
K (M) 1. 806 2.596 4. 005 6. 252 9. 806
m(6) | -12.00 -57. 85 -294. 7 -1519 -7928
b(6) 0. 148 0. 036 0. 008 0. 002 3.0x10
c(9) 1. 289 3.428 12. 40 51.34 229.1
K (M) 1. 488 1.937 2.640 3.622 6. 513
m(6) | -49.50 |-403.9 -3535 ~3.2x10% -3.0x10°
b(9) 0. 039 0. 005 0.611x10 > 6.8x10 > 7.3x10
c(8) 2.311 11. 57 76. 00 568.1 4588
k (M) 1.221 1.412 1. 667 1.973 2.338
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Backwards Differentiation Methods, disk case

6 k=3 k=4 k=5 k=6
m(8) 0.171 0. 062 -0.044 -0.173
s b (6) 5. 493 5.013 4. 454 3.938
' c(9) 0. 896 0.924 0.978 1.055
k (M) 19. 07 70.71 274.9 1212
m(8) 0.128 6.024x10 3 -0.117 -0.288
b(6) 4. 989 4. 444 3.935 3.517
L.2
c(8) 0.895 0.944 1.016 1.111
K (M) 16. 95 61.62 247.0 1150
m(8) 0. 059 -0.073 -0.218 -0. 477
1 b(8) 4.307 3. 830 3. 462 3.182
R c(9) 0. 930 1. 000 1.084 1.192
« (M) 16. 09 56. 41 243.7 1028
m(6) -0.071 -0.183 -0. 368 -0. 893
: b (o) 3. 365 3.273 3. 064 2.820
| c(8) 1.108 1.120 1.175 1.274
« (M) 20. 96 54. 36 162. 4 526. 1
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Adams-Bashforth Methods, disk case

0 k=2 k=3 k=4 k=5 k=6
m(6) -0. 819 -1. 386 -2.289 -3.774 -6. 261
1.3 b(e) 2.304 1. 587 1.176 0. 882 0. 545
Kk (M) 2.964 8.812 35.93 132.0 390. 8
m(6) -0.871 -1.508 -2.558 -4.348 -7.454
1.2 b(8) 2.202 1.484 1. 083 0. 787 0.503
K (M) 2.774 7. 888 31. 27 104.0 289.0
m(6) -0,931 -1. 654 -2.896 -5.101 -9.085
1.1 b(6) 2.100 1.379 1. 002 0. 697 0. 440
K (M) 2.590 7. 085 27.65 '81.93 216.0
m(6) -1. 000 -1. 833 -3.33 -6.122 -11. 40
1.0 b(6) 2.000 1. 273 0. 806 0. 482 0.272
K (M) 2.414 6.427 18. 14 52.93 155. 6
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Adams-Moulton Methods, disk case

8 k=2 k=3 k=4 k=5
m(6) -0.082 -0. 213 -0. 359 -0. 542
b(6) 3. 654 3. 247 2.925 2.660
1.3
c(6) 1. 083 1.172 1. 267 1.379
K (M) 4. 896 22.35 84.19 338.7
m(6) -0. 107 - 0. 247 -0. 410 -0. 622
b(6) 3. 563 3.143 2.814 2.544
1.2
c (8) 1. 083 1. 173 1. 275 1. 401
K (M) 4,523 19. 14 68. 55 276.0
m(0) -0.135 -0. 287 -0.471 -0.720
b(8) 3. 487 3.048 2.711 2.438
1.1
c(8) 1. 083 1.176 1. 286 1. 432
Kk (M) 4. 149 16. 21 55. 50 233.4
m(6) -0. 167 -0. 333 -0.544 -0. 844
b(86) 3.429 2.963 2.563 2.167
1.0
c(9) 1. 083 1.181 1.301 1. 468
K (M) 3.777 13. 54 37.94 107.0
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3-step Backwards Differentiation Method, disk case
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2-step Adams-Moulton Method, disk case

2_5 T T T T T T T T 1 T T T T T 1 1 T T T T L
i I ‘\QI\I‘I\
2.0 I— —_
15 F .
i F—"”’—F’A_
Yo ]
i ]
05— —_
! ]
f ) 1 1 1 ' i A L { l 1 J 1 i ' J 1 1 1 I 1L 1 1 l 1 1 1 AL -1
0.0 1.05 11 115 12 15 13

THETA x
3-step Adams-Moulton Method, disk case

2 0o - r s 1 3 171*'?"1 Forol o6 T T 'x_l\\_
2.0 |- ,
jl
]

15 .
10 _
05 |— —

r L L 1 1 I L 1 1 L I | E . N 1 l 1 o 1 | 1 e 1 1 L L1 3 1
O'01 1.05 1.4 115 12 125 3

THETA

23

WBY.5 HeNW

G0'0 A8 GO0 BL SI°0-

WBYS HeNKW

GO0 A9 GO°0- 8L -€°0-



Acknowledgments.

The authors would like to thank Petter Bjgrstad and Stephen Nash for their
comments on the manuscript of this paper. Computer time was provided by the
Stanford Linear Accelerator Center.

References.

[1) Dahlquist, G.G. G-stahility is Equivalent to A-stability, BIT 18 (1978), pp.
384-401.

, On the Relation of G-stahility to Other Concepts for Linear Multistep
Methods, In Topics in Numerica Analysis 1, JH. Miller, Ed., Academic
Press, London, 1977, pp. 67-80.

[3] Gear, C.W. Numerical Initial Value Problems in Ordinary Differential
Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.

[4] Lambert, J.D. Computational Methods in Ordinary Differential Equations,
John Wiley & Sons, London, 1973.

[2]

24



