Stanford Verification Group September 1879
Report No. 12

Computer Science Department
Report No. STAN-CS-79-740

THE LOGIC OF ALIASING
by
Robert Cartwright and Derek Oppen

Research sponsored by

National Science Foundation

COMPUTER SCIENCE DEPARTMENT
Stanford University




THE LOGIC OF ALIASING

Robert Cartwright
Computer Science Department
Cornell University, Ithaca, N.Y. 14853

Derek Oppen
Computer Science Department
St anford University, St anford, Ca. 94305

Abstract

We give anew version of Hoare's logic which correctly handles programs with aliased variables.
The central proof rules of the logic (procedure call and assgnment) are proved sound and complete.

An earlier version of this paper appeared in the Proceedings of the Fifth ACM
Symposium on Principles of Programming Languages, 1978. This research has been

partially supported by National Science Foundation Grants MCS76- 14293 and
MCS76-000327.



1. introduction

One of the most discredited features common to many programming languages is aliasing,
the ability for a piece of storage to have more than one name in a program. Since changing the
value of one variable explicitly may cause the values of other variables to be changed implicitly, it is
widely argued that aliasing makes writing, debugging and understanding programs more difficult.

The major technical argument against aliasing is that it makes devising intelligible proof rules
for reasoning about programs more difficult -- that programming languages which admit aiasing
cannot be satisfactorily axiomatized. The problem is most acute for assgnment rules and procedure
cal rules. None of the assignment or procedure call rules published to date admit aliasing (see, for
example, [Hoare 1969), [Hoare and Wirth 1973], [Cook 1975}, [Gorelick 1975), [Igarashi, London
and Luckham 1975], [Donahue 1976), [London et al 1978)).

Although prohibition of aiasing is the most severe limitation imposed by existing proof rules,
al place additiona restrictions on procedures and procedure calls*. For instance, the most
comprehensive procedure call rule proposed to date (for EUCLID by [London et d 19783) must:

1. Prohibit aliasing in procedure cals.

2. Disdlow passing procedures and functions as parameters.

3. Require that value parameters be read-only (that is, constant parameters).

4. Prohibit declaring a procedure within a procedure of the same name.

5. Require that globa variables accessed by a procedure be accessble at every point of call.

Our purpose in this paper is to develop a new version of Hoare’s logic which handles
unrestricted aliasing. We therefore concentrate on rules for assgnment and for procedure cdls. The
proof rules we give are no more complex than existing rules of comparable scope which prohibit
dliasing. The tradeoff is that proofs are more tedious when diasing is actually used.

First we give a smple simultaneous assignment rule (similar to that given by [Gries 19771)
and then a smple procedure call rule (patterned after [lioare 1971 J dong lines very similar to the
EUCLID rule by [London et al 19781) for calls where no aliasing is present. Next, we propose
generalized assignment and procedure call rules for contexts where aiasing is permitted. Both
generdized rules collapse to the corresponding smple rules if no aiasing is present.

*[Apt and de Bakker 1977) have proposed procedure call and assignment rules which eliminate all of these
restrictions. except 2. However, their proof rules violate a fundamental principle of Hoare's logic: that proof
rules not modify program text. Their procedure call rule rewrites the entire procedure body, destroying the
direct relationship between asserted programs and the structure of proofs in Hoare's logic. Further. the
Apt-deBakker rules force the correctness of a procedure to be re-established for every syntactically distinct call.



All the rules that we propose in this paper are proved sound and relatively complete (in the
sense of Cook). Although this may seem a tedious and unnecessary exercise, we fedl that it is
essential to give formal justifications for proof rules. The semantics of procedure callsin “real”
programming languages such as Pascal are so complicated that none of the proposed
axiomatizations for such languages in Hoare's logic ({(Hoare and Wirth 1973], [London et al 1978])
is sound. We too found errors in our first attempts at axiomatizing aliasing, and we found these
errors only when trying to formaly justify our axiomatization.

The rules we give in this paper are somewhat more formally stated than is common in the
literature. Since we wished to prove our rules sound, we had to state explicitly what assumptions our
rules require. Consequently, our rules will appear longer and more complicated than most of the
rules of comparable scope in the literature.

2. Mat hemat ical Foundat ions

Before we can formulate and justify our proof rules, we must establish the mathematical
foundations for our version of Hoare’s logic. We introduce three sets of definitions.

2.1 St ate Vectors and Access Sequences

From an informal viewpoint, a state vector is a sequence of bindings of program variables
to data values, and procedure names to procedure bodies (as in a LISP association list). An access
sequence is a canonical name for an entry in a state vector. For example, the access sequence for
the variable x is <"x> (Since x typicaly means the value of the variable x, we use the notation ‘x to
refer to the variable itself). The access sequence for the array element al1} is<’a,1>. An access
sequence can be considered an abstract address.

More formally, we let D denote the set of data vaues that program variables may assume, and

let | and I’ denote the set of program identifiers a, b, c, . . ., and quoted program identifiers ‘a, ‘b, ‘c,

.., respectively. We let B denote the set of procedure bodies. A variable-specifier is any legal

left-hand side of an assgnment statement. A simple variable is a variable-specifier consisting of a

single identifier. For example, a[x] and x are both variable-specifiers; x is a simple variable, but
a[x]is not.

For the sake of smplicity, we limit our attention to a subset of PASCAL restricting the set of
variable-specifiers to simple variables and singly subscripted arrays. We assume the data value
domain for our PASCAL dialect has the form {j€J U Dj}u{jk(J U (DJ.-»DK)} where the sets D,"
j € J, are digoint sets of primitive data objects (for example,’” Integers, characters, booleans) and
(D.»D,) denotes the set of mappings (arrays) from DJ. into D,. We call each set D,' and (DJ. -D,)a
type. These restrictions are made only for explanatory purposes. All of our results generalize to
arbitrary PASCAL data domains. .



We define the access segquence corresponding to the simple variable v as the singleton
sequence <’v>. For a variable-specifier of the form ale] (where aisan array and e is an expression),
the access sequence is <’a, e,> where e, ¢ D is the value of e. We define two access sequences to be
disjoint if and only if neither is an initid segment of the other.

Let H be afinite set of variable declarationsv : T, (wherev isaprogram identifier and T,
is a type) and procedure declarations procedure p(ap) ; Bp (where p is a program identifier, a, isa
sequence of var and vaiue parameter declarations and Bp is the remainder of the procedure body).
We cal H a declaration set. A state vector S consistent with H is a mapping from |
(identifiers) into D (data values) u B (procedure bodies) such that each variable v declared in H is
bound to a data value of type T, and each procedure p is bound to the body procedure p(ctp);
B

Typicdly, we are only interested in a finite restriction of the state vector s -- specificaly the
bindings of the variables and procedure names declared in H. In this case, we can think of s asa
finite sequence of ordered pairs (X, d) where x is a program identifier declared in H and d is its
binding.

We let A and S denote the set of access sequences and the set of State vectors respectively.
2.2 Value and Update Functions

We introduce two functions Vadue and Update to access and modify states, analogous to the
array access and update functions defined by [McCarthy 19631. Value maps a state vector s and an
access sequence a into the binding of ain s. Update maps a state vector s, an access sequence a, and
avaue d into the state vector ', where s’ is identical to s except that the entry within s’ specified by
a has the new value d.

In more formal terms, Value isamapping form Sx A into D u B and Update isamapping
fromSx A x (D uB) into S satisfying the following axioms:

1. Value(Update(s, a, €), a) = efor arbitrary state vector s, access sequence a, and value e,
provided the entry specified by aexists in s.

2. Value(Update(s,a,, ), a,) = Value(s, o) if «, and a, are digoint access sequences and
the entries specified by «, and «, exist in s,

3. Let Select be the standard array access function mapping (D, » Dj) XD, into D,' foralli,j.
Then Value(Update(s, <'v>, d) , <'v, e>) = Select(d, e) for arbitrary state vector s, identifier v,

array value d, and data value e, provided e is in the domain of d.

4. Let Store be the standard array update function mapping (Di"Dj) XD, X Dj into (D, >

4



Dj) for al i, j. Then value (Update(s, <'v, e>, d) , <'v>) = Store(Value(s, <'v>), e, d) for arbitrary
state vector s, identifier v, and data values d and e, provided e and d belong to’ the domain and
range of Value (s, <'v>) respectively.

We extend Valve and Update to apply to sequences of digoint access sequences as follows:

1 Value'(s, <«,, . ., « >) = <Value(s, ) , . ., Value(s,a )> for arbitrary state vector s and
access SequUences o, . .. &, provided the entries specified by «;, ..., a existins.

2. Update*(s, <op, L <d), d >) = Update(. . . Update(s, o, d,)) ... an d ) for
arbitrary access sequences «, . ., «, and vauesd,, ..., d_ provided the specified updates are
well-defined.

3.Leta,..,an be digoint access sequences such that o, o, . ., &, have the form <'v, e,

I-I, .2,. .., k, where ‘v is an identifier; and e, is a data value. Let &, Apr v %k be the

remaining access sequences, and let d denote Value(s<'v>) . Then Update (s, gy a0 > <dy,
*

d >) = Update (s, <, CHPTL PR R <Store(. . .Store(d, e,, d“) o dy), d“, . djn—k>)

provided the specified updates are well-defined.

The final axiom above merely collects updates to various elements of the same array and
combines them into a single update of the entire array. We can use this axiom to convert an
arbitrary sequence of digoint updates to an equivalent set of simple updates (that is, updates of
smple variables rather than array eements). For example,

Upd at e'( s, <<'a, 1>, <b>, <‘a, 4, <>, <1, 2, 3, 4) = Update*(s, <<'a>, <'b>, <'c>>,
<Store(Store(Value (<'a>,s), 1 1), 4, 3), 2 4>

We denote the set of sequences of access sequences by A*.
2.3 Definition of Truth

In this section, we define the syntax and meaning of statements in our verson of Hoare’s logic
2.3.1 The Base Logic

We assume we are given a base first order theory (L, M) (for the program data domain),
congsting of a logical language L with equality and a model M for L, with the following properties:

1. The domain of the model M includes D (datavalues), I’ (quoted identifiers), A (access
sequences), A* (sequences over A), and B (procedure bodies).

2. The variables of L include two digoint sets. | (programming language identifiers) and v, a



set of logical variables which may not appear within programs.

3. The logic includes the binary function e and the unary function Seq. The e operator
concatenates two sequences, that is, Up gl >@<V L,V =<y, ULV, L,V > Seq
maps a data object d (specificaly a quoted identifier, a data value, or an access sequence) into the
singleton sequence <d>. With the functions e and Seq, we can construct arbitrary members of A
and A*.

4. The logic includes al the primitive functions of programming language including array
access and update functions Select and Store. We let ale], where ais an identifier and eisaterm,
abbreviate the term Select(a, e) .

5. The logic includes a characteristic predicate P for each data type T in D. We will use the
familiar notation x : T to abbreviate P,(X).

6. The logic includes the predicates Disjoint and Pair-Disjoint with domains A* and A* x
A* respectively. Disjoint (<o, . .., « >) is true if and only if access sequences « and a. are digoint
for al i, j such that i #j. Pair-disjoint (<°‘l' - am>), <31, - an>) is true if and only if o and
pi aredigoint for al i, j.

Given an arbitrary variable specifier v, we can construct a term v* in L such that the
meaning of v* is the access sequence for v. If v is a Smple variable x, then v* is Smply Seq(x) . If
v isan array element ale), then v* is Seq('a) e Seqte) . We will frequently employ this construction
in our proof rules.

2.3.2 Extended Terms and Formulas

For the sake of clarity, we prohibit formulas of L from using program identifiers as bound
(quantified) variables. In addition, to conveniently handle updates to the state vector, we extend the
logical language L to include updated formulas and terms. We define an extended formula
(term) of L asfollows. An extended formula (term) has a recursive definition identical to that of
an ordinary formula (term) [Enderton 1972} except that there is an additional mechanism (called an
update) for building new formulas and terms from existing ones. Given an extended formula (term)
a, the form [[v «t] ais also an extended formula (term) , where v is a sequence of digoint
variable-specifiers and t is a corresponding sequence of ordinary (not updated) terms in L. We will
call [ v « tJ asimultaneous update. Henceforth, we will ssimply use the term formula (term) to
refer to an extended formula (extended term) .



2.3.3 Hoare Assertions and Statements

Let Q be an arbitrary formulain L and let ST be the program identifiers which occur
inQ; Let H be adeclaration set including declarations for x,, . .., Xn. A Hoare assert/on has the

form

HIQ

Let A be a program segment and P and Q be formulasin L. Let H be a declaration set
including declarations for all the free program variables and procedure namesin A, P, and Q. A
Hoare statement has the form

H|P{A}Q

We define the meaning of Hoare assertions and statements as follows. Let H | Q be an
arbitrary Hoare assertion. The definition of truth for H | Qis identical to the standard first-order
definition of truth for Q [Enderton 1972] except:

1. H| Qis vacuoudly true for states inconsistent with H.

2. The meaning of the updated formula (term) [ v « t J] afor state s is the meaning of the
formula (term) a for state Update™(s, v*, t.) where v* denotes the sequence of access sequences
corresponding to v and t. denotes the interpretation of t under state s.

Let H]P{A}Q be an arbitrary Hoare statement and let Eval be an interpreter (a partial
function) mapping states X program-segments into states. Then H | P{ A } Qis trueif and only if
for al statess either

1. H|Pisfasefors.
2. Eval(s, @) is undefined.
3. Qistruefor Eval(s, A) .

2.3.4 Standard Proof Rules

The standard simple Hoare proof rules have obvious analogs in our version of the logic. The
most fundamenta rules -- consequences, composition, and subgtitution -- have the following form:

1. Conseq uence H|P>Q,H|Q{A}R,H|R>S
P{A}S
2. Composition HIP{A}JQHI|Q{B}R
HIP{AB}R



3. Subdtitution HIP{A}Q
H | P(t/x) { A} Qft/x)

where x is alogical variable and Q(t/x) denotes Q with every free occurrence of x replaced by t
(renaming bound variables) .

The other standard rules which we will take as given are:

4. Declaration H(x'/x, p'/p) u { xT,p:B } | P(x'/x) { A } Q{x/x)
H | P{ begin xT;p:B; Aend } Q

where x:T and p:B are sequences of variable and procedure declarations, and x’ and p’ are
sequences Of fresh program variables and procedure names corresponding to x and p.

2.3.5 Reasoning about Updated Formulas

In order to prove Hoare assertions involving updated formulas, we need speciad axioms about
updates. For digjoint updates modifying entire formulas, the following axioms (derived from the
corresponding axioms for Update®) are sufficient:

1. [xet]Q=Qtx) where x is a sequence of distinct simple variables, and Q is a
* formula containing no updates.

2. Letv,,.., v, be digoint variable specifiers where v, . . . v, have the form ale)},1=0,

.» K, where a is a particular array identifier. Let Vi v Vink be the remaining

variable-specifiers. Let v’ denote the sequence of variable-specifiers a, Vit Vink and let t
denote the sequence of terms <Store(. . . Store(a,e;,t.)) ..., ¢, t, ), CTERER LS Then

[vetlQalvetlQ

Given an arbitrary digoint simultaneous update v « t, we can eliminate the update[ v « t ]
from a formula of the form [ v« t ] Q where Q is update free by using axiom 2 to eliminate all
assignments to array elements and then gpplying axiom 1. We can similarly eiminate al updates
from aformula of theform [ ... ][ v« t] Q where Q is update free by repeatedly applying the
same simplification procedure.



3. Simple Simultaneous Assignment

Given the concept of simultaneous updates within formulas, it is easy to give a smple
smultaneous assignment rule. Let v « t be a Simultaneous assignment to digoint variables v, let v*
be the access sequence termsin L corresponding to v, and let P be an arbitrary formulain L. The
rule is as follows.

H ]Disjoint(v*)
HI[v « tJP{v « t}P

The soundness and relative completeness of this rule follows immediately from the definition
of meaning of statements in the logic and the definition of simultaneous assignment.

4. Simple Procedure Call Rule
In this section we assume that our PASCAL subset:
1. Prohibits aliasing in procedure cals.
2. Disdlows passing procedures and functions as parameters.

3. Requires that the global variables accessed by a procedure be explicitly declared at the head
of the procedure and that these variables be accessible at the point of every call.

Under these assumptions, it is straightforward to formulate a procedure cal rule by treating
procedure cals as smultaneous assignments to the variables passed to the procedure. The assigned
values are any values consistent with the input-output assertions for the procedure.

Let p be declared as procedure p(var xT ;valyT ); global 2; B in the declaration set H.
B may not access any global variables other than z. Let H' be H augmented by the declarations xT
andy:T_(prior declarations of x andy are replaced) . Let P and Q be formulas containing no free
program variables other than x, y, z and x, z respectively. Let v be the free logical fariables of P
and Q, and let x’ and 2’ be fresh logical variables corresponding to x and z. Then the
(non-recursive) simple procedure cal rule has the following form:

H | Disjoint{a®ez*) ,H' |P{B} Q
H | Yv[P(a/x, bly) > Q(X/x2/z)]>[R>[ a z¢ X', 2’ ] S)
HIR{p(ab)}S




It is important to note that the free logical variables x’ and 2’ in the third premise are
implicitly universally quantified. The rule forces R o[ a, z« x, 2’ ] S to be true for arbitrary x’
and 2’ consistent with Yv[P(a/x, b/y) > Q{x'/x, Z/z)). In contrast, the EUCLID procedure call rule
explicitly omits the corresponding quantifier -- permitting false deductions. Like the EUCLID rule,
our rule generalizes Hoare's original rule [Hoare 1971] to apply to aricher programming language.
The main difference is between our rule and its predecessors (Hoare’s original rule and the
EUCLID rule) is that our rule precisely states the assumptions left implicit by the earlier rules.

4.1 Soundness

If Eva/ is properly defined, it is easy to prove the soundness of the smple procedure call rule.
Let sbe an arbitrary state, consistent with H such that H | R is true for s and Eval(s, p(a;b)) is
defined. We must show s is true for Eval(s,p(a;b)) . Let s’ be[[ X', 2’ « X520 1S where X 2o €
the. output values of x and z in the call p(a;b) (that is, the values of x and z in the state Eval([[ x,
y«a bJs b)) .Sinces satisfies both YvIP(a/x, b/y) > Q(x'/x, ’/z)] and R in the second premise,
S must also satisfy [ a,z « X', 2’ ] S. By the definition of Eva/,

Eval(s,p(a,b)) =[[ @, z ¢ x ,zo]] s=azex,2' s
Hence Eval(s, p(a, b)) satisfies s. Q.E.D.

Although the soundness of the procedure cdl rule does not depend on the third assumption
listed above (the accessibility of the procedure globals at the point of every cdl), the assumption is
necessary to prove that Eval obeys static scoping. The natura definition of Eval (which we used in
the soundness proof) employs dynamic scope rules. If the third assumption holds then static and
dynamic scope rules are semantically equivaent.

4.2 Relative Completeness

It is adso reasonably straightforward to prove that the smple procedure cal rule is relatively
complete for non-recursive programs in the sense of [Cook 1975]. Since our base logic includes a
rich collection of logica primitives for describing (access) sequences, the incompleteness results of
[Clarke 19761 do not apply to our version of Hoare’s logic. We assume that the assertion language L
is expressive; that is, that given an arbitrary assertion P in L and a program segment A the
strongest post-condition Q of A given pre-assertion P is definable in L. To show that theruleis
complete relative to the completeness of the other proof rules and the axiomatitation of the extended
base logic, it suffces to show that for any program segment A and post-assertion Q, the weakest
libera pre-condition P is provable. The proof proceeds by contradiction.

10



Assume p’(a’;b’) is a procedure call for which the rule is not complete. Let p(a;b) be the
deepest procedure call in the evaluation of p'(a’;b’) for which the simple procedure call is not
complete. Let H be the declaration set at the point of the call, and let p be declared as procedure
p(var xT,;val y:T, ) global z; B in H. Let S be an arbitrary post-assertion for p(arb). We define
Q asthe strongest post-condition for B given the pre-condition X, y, z= x,, y,, z. By assumption
H |P{B }Q’is provable. We define Q to be 3y'QXy'y) . By the rule of consequence H | P{ B }
Q must be provable. in addition, R =Vx', z'[Q{a/xi, b/yi, zlzi, XIx,2/2)>[a,zex,Z2]S]is
clearly a provable pre-condition of the rule.

Assume R isnot the weakest liberal precondition. Then there exists astate s consistent with H
such that R is false and such that either Eval(s, p(a;b)) is undefined or Sis true for Eval(s, p(a;b)).
Let s’ be[[ X,y «a,b]s. Either Eval(s, B) is undefined or Qistrue for Evalk(s’, B) . In the former
case, Q(a/xi, blyi,z/zi,x’/x,z'/z) must be false for all x, 22 since Qjalxi, bly;, z/zi) isfasefor all x,
z. Hence R is true, generating a contradiction. In the other case Qa/x., bly, z/z, XIx,Z[z) istrue
only for stateswith X’ and z' equal to the values of x and z in Eval(s’, B) . But for such x’ and z',
Eval(s, p(ab)) = [ a, zex, 2] s. Consequently, [ & z « x’, 2’ ] Sistrue for all states satisfying
Qfa/x, by, zlzi,x'/x, Z'/z) implying R is true. Again, we have a contradiction. Q.E.D.

4.3 A Sample Proof

Let's consder a smple example which most procedure cal rules cannot handle. Let p be a
standard integer variable swap procedure defined as follows:

procedure p(var X,y : integer) ;
begin

pfe X=X Ay=y;

Ly €)X

post y=x, A X=y,
end,

By the simultaneous assignment rule, we must show X, y:integer | x=x.ay=y;>[x,yty,x]

y=x;Ax=y, tO establish the declared pre and post-assertions for the swap. By the [ ] substitution
axiom (axiom 1in 2.3.5) ,

0 x, yey, X 1 y-xi A x»:yi = X=X, A y-yi

which is precisely the pre-assertion. Q.E.D.

11



Now let us consider a sample application of the procedure call rule. Assume we want to prove:
a:array integer Of integer, i:integer | a[i]-ao A =i p(ali), i) } a[iolsio Ad=j.

Let H denote {a:array integer of integer, i:integer}; P’ denote the substituted
pre-condition alil=x;i=y;; Q denote the substituted post-condition y'=x;ax’=y; R denote alil=a,
A i=ig; and S denote a[iol-ioAi-ao. By the smple procedure cal rule, we must show

1. H | Disjoint{<'a, i>, <'i>) .
2. The correctness of the input-output assertions for the procedure body.
3.H Ion.yo[P’ >Q)>[Ro[ali]iex,y 18]

Since 1. is trivid, and we have dready proved 2, it suffices to prove 3. First we transform [[
alilie X,y JSinto[a i«Storea,i,x),y 1 S=Storea, i, ) ligl=igy'=ay. Since i=iy by
hypothesis in R,

S e Store(a, io, X") [iO] = io A y’sao E x’-io A y’.ao_

By applying the equality hypothesisin R, we transform x'=ij ay'=a, into x’=iy=ali], which
is an immediate consequence of P > Q' when x.,y;, are instantiated asalil and i respectively. Q.E.D.

4.4 Handling Recursion

Our simple rule can be extended to handle mutually recursive procedures by generalizing
Hoare's original approach to the problem [Hoare 1971). However, we must impose the following
additional restriction on our PASCAL subset to ensure the soundness of the rule:

No procedure named p may be declared within the scope of another procedure named p.

Our ruleis not unique in this respect. Every other proposed procedure call rule (with the
exception of [Apt and de Bakker 1977]) requires an equivalent restriction. The restriction is
necessary because the input-output specifications for a procedure p may be assumed for any
procedure call within a procedure declared in the scope of p.

Let procedure pfvar x:Tx; valy:Ty;global z;B,i= 1,2, ..., n be a sequence of
procedure declarations a the head of some block. Let P, and Q,i=1,. .., nbe assertions containing
no free program variables other than x,y, 2, and x;, z, respectively. Let v, be the free logical
variables in P, and Q.. Let Hbe a declaration set containing the declarations of py,...p_ and let
H’ denote H with these declarations replaced by “forward” procedure declarations which only specify
the procedures’ formal parameters. Let H', denote H' augmented by the declarations x:Tx, y:Ty
(prior declarations of x and y are replaced) . For i=1, . ., n we define the recursion hypothesis I. as
the rule:

12



H | Disjoint(c* ¢ zi')
H | Yv.[P(ec/x, dly,) > Q(x|Ix, Z'/z)] > 0.5[c zex,2.76 ]
H| el{ Pi(c;d) } 82 ‘

where 8 1,92, ¢, d and H are arbitrary. Then the recursive verson of the rule has the form:

H | Disjoint(a®  2*)1,,...]1 FH [P{B.}Q,j=1...n
H | Vvi[Pi(alxi, blyi) E) Q(xi’lxi, zi’/zj] >[R[ a, z - xi’, zi’ 1s]
H | R{p(ab) | S

where 11, 1

W I F H,. | Pj{ Bj } Q’ means we may use the rules I, to proveHjlpj{Bj}Q]..

Unlike Hoare’s origind rule and the EUCLID rule, our recursive rule is relaively complete,
even for programs utilizing mutua recursion. Of the rules previously proposed in the literature, our
rule most closely resembles that of [Gorelick 19751. Gorelick uses a more complex set of potentialy
mutualy re«firsive procedures instead of Py Py and divides the procedure call rule into two
parts. a rule of modification and a rule of invariance. We originally formulated our procedure call
rulesin two part form, but abandoned the approach after we failed to devise a complete two-part
rule. Gorelick achieves relative completeness by restricting actua var parameters to simple variables.

We can prove that the recursive version of the simple procedure call rule is sound by
generdizing the argument we used for the non-recursive rule. First, we construct the sequences of
procedures Poi Pyjp - - » Py - - 1= 1,..,nasfollows We let Poi be a non-terminating procedure
with parameters identical to p; For k-1, 2, ..., welet Py be defined by the procedure pilvar x:Tx;
valy:Ty); global z; Bi(p'k-llpj’ j=0,..., n) , that is, by the same declaration as p; except each call
pj(c, d) within the body of P, is replaced by the call pk_“(c; d) . Clearly, if the evaluation of an
arbitrary call p,(a, b) requires less than k levels of nested calls on p,,p,, . . .p,, then the cdl p, (a,
b) is equivalent to p(a.b). (Note that this statement does not hold if the restriction on procedure
names is violated.) By the soundness of the non-recursive rule and smple induction on k, we know
that the recursive rule is sound if we interpret p. in the premises by Pk-1j j=1,...nandp,inthe
conclusion by Pyiv Without loss of generality we may assume p;(a,b) terminates;, otherwise, the rule is
vecuoudly true. Let k be an integer grester than the maximum recursion caling depth on p, . .., Pn
in the evauation of p,(a b). By assumption, the premises are true for any interpretation of p., j=1,
..., N consgstent with H. Hence they must hold for P; interpreted as Py-1j implying the concfusion
of the rule holds for P;(&Db). Since P, i(a, b) is equivalent to P(a, b) , the conclusion of the rule
must be true. Q.E.D.

13



The relative completeness of the recursive rule can be established by a similar inductive
generaization of the proof for the non-recursive rule. We assume L is expressive. The proof
proceeds by induction on the structure of a program. For every procedure p(var x; val y; global z);
B in the program, we let pre and post assertions be x,y, Z= X, ¥, 25 and 3y’ QXy'/y) respectively,
where Q' is the strongest postcondition for the program segment B given the precondition x,y, Z =
Xo Yo 2o LEL Py . . P, be a sequence of procedures declared at the head of a block B such that
the pre and post assertions for every procedure declared within p P pyae provable. We must
show 1. The pre/post assertion pair for the body of each procedure p, isprovable, and 2. The
weakest precondition for any procedure cdl in the body of B is provable. For each procedure p, We
let P, denote the pre assertion X ¥ 2= Xo0 Yoi Zo; and let Q denote the post assertion 3y’
QXy'ly), where Q' isthe strongest post condition of B, given pre-condition P,

Let g(c, d) be an arbitrary cal in the body B, of p; If qisinterna to P, then the pre and
post assertion of g are provable by assumption. If g is not internal to p;, then the recursion
hypothesis for g is available. In either case, by the same argument we used in the non-recursive
case, the weakest pre-condition of q(e, d) , given an arbitrary post-assertion S, is provable. Hence,
since the remaining rules of the logic are complete by assumption, P,{B,}Q.,i=1,. .. nis provable.
By applying the same argument again, we conclude that the weakest liberal pre-condition of any call
on a procedure in the block body is provable.

By induction on the structure of a program, we can repeatedly apply the previous argument to
derive that the procedure call rule is complete for calls in the body of the program. Q.E.D.

5. Rules for Programs with Aliasing

We now extend our version of Hoare’s |ogic to handle aliasing. The modifications required
are surprisingly minor.

Hoare's origind assignment axiom has the form:
P(e/x){ X« e} P

where x is a smple variable, e is an expression (term in the logical language L) and P is a formula.
This axiom is invalid if x is a reference parameter or an array reference, since there may be
syntacticaly distinct variables in P with access sequences identica to x. While Hoare’s substitution
style axiom can be patched to handle array assignment (by viewing the assignment ale, Jee, asan
abbreviation for the smple assgnment a « Store(a, e, €))) it breaks down in the case of aiasing.

In contrast, our assgnment call rule does not rely on the concept of substitution (although it

collapses to that form in trivial cases) . As a result, our rule is able to handle array assignment and
diasing without any modification.

14



5.1 Reference Parameters

In a programming language with unrestricted reference parameters like PASCAL, we
interpret procedure calls as passing the access sequences (that is, abstract addresses) of the actual
reference parameters to the procedure. In other words, the interpreter (Eval) binds a formal
reference parameter to the access sequence of the corresponding actual parameter. For example, if p
is a procedure with the single reference parameter x, then the procedure cal p(a) , where ais a
variable specifier, binds x to the access sequence for a and evaluates the procedure body. In a
language like PASCAL, every reference to a formal reference parameter is automatically

dereferenced.

If x isaformal reference parameter bound to an actual parameter a, an assignment to x in
the procedure body changes the binding of a (the variable to which x is bound) ; it does not change
the binding of x. The binding of the formal reference parameter x is unchanged for the duration of

the call.

Consequently, we consder PASCAL's notation for referring to forma reference parameters
misleading. To remedy the situation in our PASCAL dialect, we require that every reference to a
formd reference parameter x in the body of the procedure have the form xt instead of x. (We have
taken the t operator from Pascal, where it serves as a “dereferencing” operator for pointers.) For
instance, if x is areference parameter, then the standard Pascal statement X « x + 1 is (implicitly)
written asxt « xt + 1in our dialect. We aso require formal reference parameter declarations to
have the form x;:ref T, instead of x..T..

To accommodate aliasing within our logic, we must extend the set of Hoare assertions to
include terms of the form xt where x is declared in the declaration set H asx:ref T for some type
T. We prohibit the dereferencing operator from appearing in other contexts. The meaning of xT,
given state s consistent with H, isValue(s, Value(s, <'x>)) . The access sequence for xt isthe value
of x. Consequently, the access sequence term for x1 is Smply x.

Our proof rule for assgnments to dereferenced formal reference parameters is identical to our
ordinary assgnment rule:

[Ixtce]]P{xtece}P

where we extend the definition of the Smultaneous update [ v «t] aasfollows. Let abe aterm or
formulain L; let v be a sequence of variable specifiers, possibly including dereferenced formal
reference parameters;, and let t be a corresponding sequence of terms (not containing updates). The
meaning of [ v «tJ afor sisthe meaning of afor Update*(s, v*, ) where Update* is extended to
overlapping access sequences. Update® is defined by exactly the same axioms as before, except that
axiom 2) (Section 2.2) no longer requires the access sequences <aj, . .., a > to be disjoint. Informally,
a smultaneous update v «t with overlapping variable-specifiers is performed in left-to-right order.

15



The soundness and relative completeness of the assignment rule stated above are an
immediate consequence of the fact that

Eval(s, xt « e) = Update(s, x, es)
where e_ is the interpretation of e under state s.

In order to reason about updated formulas containing updates to dereferenced variables, we
need the following axioms about updates. Let P and Q be arbitrary formulas, Up .Uy be arbitrary
terms, and v «t be an arbitrary simultaneous update. Then:

LIvetJ(PAQ=[vet]Palvet]Q
2Lvet]PvQs[vet]PvIvet]Q

SIvet](PoQ=[vet]Po[VeT]Q

4 [vet]-Pas-[vet]P.

5, Ivet]VYxPe Vx[Vvet]Pwherex notfreeint.

6.[vet]]3xPe3x[Vvet] Pwherex not freeint

7.0 V et ]Pi(ul’ .. .,uk)zpi([I Vet ]]"1' - [[V«—t]]uk) for every predicate symbol P.|
(including equality) .

8Lvet] filu, o) =f[vet] Ups - [ vetJuy) for every function symbol f.

These axioms enable us to move updates insde a formula to the point where they apply only
to variable specifiers and logica variables. We aso need axioms for updates to logica variables and

varigble specifiers. Let v TREEAA be variable specifiers and ety be corresponding terms. Let
C.-..00vy . uv, « ...t Ja be an arbitrary updated variable specifier. then:

1.[[...11(vn*-a*):[[...Mvttna-[[...]:n.
2.[...1](vn‘.seq(d)-a*)ax[...Mv«t]]a-u...nsezect(tl,d).

3[...0(v, =a eSeqd)=[.. . JLveta=L... 0LV .. vy ety ot ]
Store(a, d, tn).

16



4.[[...]IDIsjolnt(Seq(vn*)oSeq(a*))al[...]][[v«t]a-l[.--]l[[.vl-»--.vn_l “t,
cewt Ja
n-1

Since updates do not affect logica variables, the following axiom holds for arbitrary updated
logica variable [ ...1X":

5[...]x =x"

The soundness of dl the axioms for updates is an immediate consequence of the definition of
truth for updated formulas.

We can use the axioms for updates to convert an arbitrary formulato update-free form. To
accomplish this transformation, we repeatedly apply the following procedure. First, we push al
updates inside the formula so that they apply only to variable specifiers and logica variables. We
eliminate all updates to logical variables by applying axiom 5) above. Then for each updated
variable specifier [ ... JL v«t] a we perform a case split on the relationship between[ ... ]
Vn* and a* and apply the appropriate reduction (axioms 1), 2) , 3) , or 4) above) to each case,
reducing the complexity of the updates involved.

While the update elimination procedure is of dubious practical value (since it can
exponentially increase the size of aformula) , it demonstrates that our axioms for updates are

complete relative to the unextended base theory.

5.2 Generalized Simultaneous Assignment Rule

Given the generdized concept of update described in the previous section, we can generdize
the simultaneous assignment axiom to permit overlapping variables on the left-hand side of the
statement. The new simultaneous assignment axiom is identical to the old one except that the
digointness premise is omitted. Let v t t be a Smultaneous assgnment statement; P be a formulg;
and H be a declaration set declaring al the program variables appearing in P v, or t Then the
generdlized assgnment rule states

H|[vet]P{vet}P.

The soundness and completeness of the rule are an immediate consequence of the fact tha
Eval(s,v « t)=[[ v t t ] sand the definition of truth for statementsin the logic.

17



5.3 Generalized procedure Cell Rule

Assume our PASCAL subset satisfies the restrictions listed in Section 3. Our generalized
procedure cal rule is nearly identica to the smple rule. Let p be declared as procedure p(var x:ref
T,ivaly:T );global z B in the declaration set H; let P and Q be formulas containing no free
program variables other than x, X7, y, z and x, X7, z respectively; let v be the free logical variables
in P and Q; let x’ and y’ be fresh logical variables corresponding to x and y; let R and S be
formulas; and let H' denote H augmented by x:ref T, y:Ty. and Pair-Disjoint(x, x* e y*) (Where
prior declarations of x and y are replaced). Then:

H | P{B}Q
H | v[P(a*/x, a/x1, bly) > QX/x1,Z/2)]>[R>[ a 2zt x, 2 ] s]
H | R{p(ab)} S

The digointness hypothesis in H' asserts that the access sequences for the forma parameters
are digoint from the passed actua reference parameter access sequences. From this hypothesis we
can deduce that the dereferenced formal reference parameters do not have any of the formal
parameters as adiases. We must add an analogous hypothesis to the declaration rule given in Section
2.34.

5.3.1 Soundness and Relative Completeness

The soundness and relative completeness proofs for the generalized procedure cal rule differ
only in trivial details from the corresponding proofs for the simple rule. The only complication
concerns the definition of Eva/. We must not let Eval be confused by forma parameter names. The
smplest solution is to force Eval to rename the actuad parameters conflicting wih formal parameter
names before evaluating the procedure body. After evaduating the procedure body, Eval performs
the appropriate smultaneous assignment.

5.3.2 A Sample Proof Involving Aliasing
Let swap be the standard integer swap procedure defined by

procedure swap(var x, y ref integer) :
begin
pre Xt-X A y’r-yi;
xt, yt eyt Xxt;
post yt=x; A xt=y,
end, .

18



First we prove the correctness of the pre and post assertions. Let H be a declaration set
including the declaration of swap. Let H, be H augmented by the formal parameter declarations of
swap and the digointness hypothesis. By the smultaneous assgnment rule, proving the pre and post
assertions for swap reduces to proving the verification condition:

H' |xTex, A yt=y, 2 [ x1, yt eyt Xt J(yt=x, A xT=y) .

Moving the update insde generates the equivalent assertion:

-7 | xT=x; A yT=y, 2 [ xT, y? « yt, xT Jyt=x, A [ xT, yt « yt, xT ] xT=y,
which immediately reduces to:

CH [xT=x, AyT=y; 2 xT=x, A [ xT,yT €y, Xt I xt=y,

Since x and y are both ref integers we know that H' |x=y v Disjoint(Seq(x) e Seq(y)) . In
the former case (x-y) , [ xT, yt « yt, xt ] xt-xt reducing the verification condition to

H' |xT=x; A ytey, > xT=x, A xTay,

which is true since x=y. In the other case (x and y digoint), [ xt, yt « y®, xt ] xt=y1, reducing the
verification condition to

H™ [xT=x; A yT=y,>xT=x. A yT=y,
which is an obvious tautology. Q.E.D.

Now let us examine a sample application of the generalized procedure call rule involving
aliasing. Let H include the declarations a:array integer of integer, i:integer, jinteger. ASsume
we want to prove:

H |alil=a; A al ji=ay{ swap(ali), a(j]) } al jl=a; aalil=a, .

By the generalized procedure cdl rule, we must show

H 1 Vxgyolalil=xg a aljl=yy > y'=xg a X'=y,] > [alil=a; a aljlea, > [ ali], a[j] « %", y’ ]
(al j]-aj A alil=a,)l.

Let S denote the consequent of the fina implication. Moving the updates within s’ further
indde yidds

[alilafjlex’, y T aljl=a afalilaljlex’, y' ] alil=a,

19



which reduces to
y=a; A [ ali) aljl « &', y’ J alil=a,,

We instantiate the logical variablesx, ¥, in the major hypothesisas al and a2 respectively,
giving us the hypothess

alil=a, a aljl=a, > y'=a; A x'=a,.

Since the premise of this hypothesis is identical to the minor hypothess, we deduce the new
hypothesis

y"al A X'=32,
Ifinj then S reduces precisaly to this formula On the other hand, if i-j then S reduces to

y=a, A y'=a

which is a simple consequence of the hypotheses i-j, alil=a, aaljl=a,, and y'=a |AX'=a,. QED.

5.3.3 Handling Recursion

The recursive form of the generalized procedure call rule is completely analogous to the
recursve generaization of the smple procedure call rule. The soundness and relative completeness
proofs are also nearly identica to those for the smple rule.

6. Reducing the Complexity of Proofs Involving Aliasing

Although our rules for procedures with aliasing are no more complicated than comparable
rules prohibiting aliasing, they are rather cumbersome to use in practice, because they force all
variable parameters to be passed by reference. Many procedures exploiting aiasing are designed to
work only for asmall subset of the possible aliasing configurations. If all variable parameters are
passed by reference, the pre and post assertions for such a procedure must include a long list of
digointness assumptions.

We believe that a procedural programming language should provide two distinct classes of
formal variable parameters: those which can have aliases and those which cannot. The explicit
gyntactic differentiation between these two classes greatly reduces the number of possible aiasing
configurations, smplifying reasoning about updates.

20



To incorporate this modification into our PASCAL diaect, we establish the following new
syntax for procedures:

procedure p(var w:ref Tw. x:Tx; val y.Ty) ;
aliased global z it

global z,,
B

where w are reference parameters (as described in Section 4.1) , X are variable parameters which
have no aliases within the procedure, y are standard val parameters, z e global variables which
may have diases in the procedure and z, are global variables which may not.

Within the procedure code block B, an assgnment to any parameter v other than a reference
parameter has the standard form:

Vee.

In contragt, al references to a reference parameter must be explicitly dereferenced. Hence, an
assgnment to a reference parameter w has the form:

Wtee.

The generdized procedure cdl rule (without recursion) for this extension of PASCAL has the
following form. Let p be declared as shown above in a declaration set H; let P and Q be formulas in
L containing no program variables other than w, w?, x,y,z,, z, and w, wt, x,z 122 respectively;
let v be the free logical variablesin Pand Q; let w', x', z,".2," be logical varigbles corresponding to
Wt x,z,,2, respectively; let R and S be arbitrary formulas; and let H' be H augmented by w:ref
T, xT,yT,, ad Pair-Disjoint(x, x" e x’ o y* e zz*) (with prior declarations of w, x,y
deleted). Then

H | P{B}Q,
H | viP(a*/w, a/w1, b/x, c/Y)QW'/wT, X'/x, z)'lz), z?_'/zz)]
(R a b, z,, zzc-w’,x',zl’, 22’]] S
H|R{p(abec)} Q

The soundness and relative completeness proofs for the modified rule are essentialy
unchanged from before.

21



7. Eliminating the Remaining Restrictions
Our most general procedure cal rules still require the following restrictions:
1. No parameters or functions may be passed as parameters.
2. Every globa variable accessed in a procedure must be accessible a the point of every call.
3. No procedure named p may be declared within the scope of a procedure p.

As [Donahue 19761 has pointed out, restriction 2 can be eiminated by making the declaration
rule rename new variables within program text. A similar strategy can be used to eliminate
restriction 3. In essence, this approach makes the rules rename program identifiers so that
restrictions 2 and 3 hold after the renaming. We didike the idea, however, because it modifies the
text of a program (and any embedded assertions) in the course of a proof.

Fortunately, neither of these redtrictions handicaps the programmer in any way. They smply
force him to unabiguously name his variables and procedures. For this reason, we believe these two
restrictions are a reasonable part of a practical programming language definition.

In contrast, the remaining restriction--the prohibition of procedures and functions as
parameters--prevents the programmer from using an important language construct. In some
application areas (such as numerical analysis), procedures and functions as parameters are nearly
indispensable. We intend to extend Hoare's logic to handle this language construct in a subsequent

paper.

Acknowledgements

We are grateful to the Stanford Verification group for helpful discussions.

22



References

[Apt and DeBakker 1977] Apt, K. R. and J. W. DeBakker. Semantics and Proof Theory of
PASCAL Procedures, Tech. Rept., Stichting Mathematsch Centrum, Amsterdam, 1977.

[Clarke 1976) Clarke, E. M. Programming Language Constructs for Which It is Impossible to
Obtain Good Hoare-like Axiom Systems’, Proceedings of Fourth ACM Symposium on Principles of
Programming Languages.

[Cook 19751 Cook, S. Axiomatic and Interpretive Semantics for an Algol Fragment, Tech. Rpt. 79,
Dept. of Comp. Sci., Univ. of Toronto, Feb., 1975.

[Donahue 1976] Donahue, J. E. Complementary Definitions of Programming Language Semantics,
Springer-Verlag, Berlin, 1976.

[Enderton1972] Enderton, H. A Mathematical Introduction to Logic, Academic Press, New York,
1972.

[Gorelick 1975]) Gorelick, G. A. A Complete Axiomatic System for Proving Assertions about
Recursive and Non-recursive Programs, Tech. Rpt. 75, Dept. of Comp. Sci., Univ. of Toronto, 1975.

[Hoare 19691 Hoare, C. A. R. An Axiomatic Approach to Computer Programming, CACM 12, 10
) (Oct., 1969) , pp. 332-329.

[Hoare 19711 Hoare, C. A. R. Procedures and Parameters. An Axiomatic Approach, Symp. on
Semantics of Algorithmic Languages, E. Engler (ed.) , Springer-Verlag, Berlin, 1971, pp. 102-i 16.

[(Hoare and Wirth 19731 Hoare, C. A. R. and N. Wirth. An Axiomatic Definition of the
Programming Language PASCAL, Acta Informatica 1 (1971) .

(Igarashi, London, and Luckham 1976] Automatic Program Verification I: A Logica Basisand Its
Implementation, Acta Informatica 4 (1975) , pp. 145-182.

[London et d 19781 London, R. L., J. V. Guttag, J. J. Horning, B. W. Lampson, J. G. Mitchell, and
G. J. Popek. Proof Rules for the Programming Language EUCLID, to appear Acta Informatica.

[McCarthy 1963] J. McCarthy, “A Basis for a Mathematicd Theory of Computation”, in Computing
v Programming and Formal Systems, edited by P. Braffort and D. Hirshberg, North-Holland.

[Oppen1975] Oppen, D. C. On Logic and Program Verification, Tech. Rpt. 82, Dept. of Comp.
Sci., Univ. of Toronto, 1975.

23



