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1. [ ntroduction.

Gven a set S of n distinct keys froma key space M= {1,2,...,m} ,
a basic information retrieval problemis to store S so that nenbership
queries "Is j in S ?" can be answered quickly, Two commonly used
schemes are the sorted table and the hash table. In the first case,
a query can be answered in [ 1lg(n+l)7] probes by means of a binary
sear ch. x/ The hash table scheme has a good average-case cost, but requires
Q(n) probes in the worst case for typical hashing schemes. Looking through
various alternative nethods, one gets the feeling that ~ log n probes
nust be necessary in the worst case, if the key space Mis |large and
we only use about mniml storage space. Qur purpose is to study the
truth of this statement. The question is nontrivial, as the existence
of hashing suggests the possibility of schemes drastically different
from and perhaps superior to, the sorted table.

Before presenting technical results, let us try to put the subject
of this paper in perspective. In the literature, efficient nethods have
been devised to performvarious primtives in data nanipul ations [1]{7].
For exanple, a sequence of n "DELETE", "INSERT", "MIN" instructions
can be performed in Qn log n) time. However, |ower bounds to the
conplexity of these problens are |acking, except in rather restricted
nodel s (for exanple, [ 8][14][16]). Since efficient data structures
may utilize the full power of a random access machine (e.g. [19]), it
is of great interest to study the conplexity problenms in nore genera
nodel s, i.e., those equipped with sone address-conputing capabilities,

This paper is one step in that direction, by studying perhaps the sinplest

Y lg denotes logarithm with base 2.



of such data structuring problems. Hopefully, one can derive i nteresting
results for other problems in simlar frameworks. (For related study

regarding bitw se-random access-nmachines, see [5],(6],[9].)



2. The_.Wsdom of Using Sorted Tabl es.

In this section we show that for large key space, flg(n+l) ]
probes are required to answer the nenbership problemin a rather genera
nodel . This nodel enconpasses all comon schenes such as hashing, sorted
tables, and linked list structures. For clarity, we first prove the
result in a sinplified nmodel. The general result will be given in

Theorem 1'.

The Basic Mdel

Let the key space be M= {1,2,...,m} . W are interested in storing

n distinct keys of Minto a table of size n . A table structure T

specifies how any particular set of n keys are to be placed in the

table T. A search strategy s corresponding to T specifies, for

any given key K, howto performa series of probes T(i,) =29, T(i

1)
into the table T, until one can claimwhether K is in T or not. The
search strategy is fully adaptive, in the sense that each probing |ocation
can depend on K and on all the previous probing results. The cost
c(T,») of a (table structure, search strategy) pair is measured by the
nunber of probes needed in the worst case. The complexity f(n,m) isS
the mninmum cost achievable by any such pair. dearly f(n,m < 1lg(n+1)7 .
To get sone feeling on possible inprovenments over the sorted table
scheme, and on the ultimate limtation, we |ook at the sinple case n = 2
m=3. It is easy to see that 2 probes are needed to decide whether
K=2isin Tif a sorted table is used. However, the "cyclic" table
in Figure 1 allows us to answer any query in just 1 probe, as the first
entry of T determnes the entire table. Note that these are the only two
non-i somorphic table structures (up to the renamng of keys and table

| ocations) for this case.



sorted table

1,3} —> | 1 | 3

2 probes

cvelic table

(1,2} —> | 1 2

{23} 1 2 5

{13} =] 3 1

1 probe

Figure 1. The sorted table is not optimal for n =2, m=3.



Thus, sorted table is not optimal for n =2, m=3. W shall
now show, however, that sorted table is optimal as soon as n =2 ,
m= 1L (hence for all n=2, m>1.4).

Any table structure for n =2, m= 4 can be uniquely represented
as a directed graph on four labelled vertices {1,2,3,4} . W draw an
edge i - j if the pair {i, j} is stored as ail,jl . For exanple,
the graph in Figure 2 represents a table structure with {1,4} stored

as Illq , and {2,4} as| 4|2} , etc. For any three vertices

in the graph, the edges between them may or may not forma directed cycle.

It is not hard to show that, for any such graph on four vertices, there
exi st three vertices anmong which the edges are acyclic. In Figure 2,
{1,3,43 is such a set of three vertices. |If we consider the set of
keys corresponding to these vertices as a subspace Wth m=3, we find
that we are storing these keys as a "pernuted" sorted table, i.e., it
differ; fromthe sorted table only in a new ordering 3 <1 < 4 of the
elenents (Figure 3)., But this neans that any searching strategy for this
table structure nust make 2 probes in the worst case. This proves that
f(2,4) > 2, hence the sorted table is optimal for n =2, m>»% .

The preceding statenent generalizes to any fixed n . That is, the
sorted table schene is optimal for any fixed n, provided that the key

space is |arge enough.

Theorem 1. For every n , there exists an N(n) such that

f(n, m) =T 1g(n+tl) 1 for all m> N(n)

Proof . VW need the followi ng |emm, which can be proved by an adversary

argunent .



Figure 2.

Figure 3.

A typical table structure for n =2, m=14,

3 1
1 L
3 L

The "pernuted” sorted table corresponding to
{1,3,4} fromFigure 2.



Lenma 1. If a table structure stores the keys of a table in sorted
order (or according to sone fixed pernutation), then [1lg(n+tl)1 probes
are needed in the worst case by any search strategy, provided that

m > 2n-1 and n >2 .

Proof of Lenma 1. VW will construct an adversary strategy to show that

[1lg(ntl)] probes are required to search for the key value K = n of
the space {1,2,...,m} . The construction is by induction on n . For
n=2and m>3, it is easy to see that 2 probes are required. Let

n. >2 . Assume the induction hypothesis to be true for all n<n

0 0
we Wil prove it for n = Ny m> 2n,-1 and K = n, . By symmetry,
assune that the first probe position p satisfies p < rno/m . The
adversary answers T(p) = p. Then the key n, My be in any position

i where rno/z'] +1<i <n In fact, T(l'no/21+l) t hrough T(n

0" o)
is a sorted table of size n'= |ny/2] which may contain any subset
éf{FnO/ETH_, rno/2‘|+2, . . .,m}, and hence in particular any subset
of the key space M'= {[ng/27+1, lny/27+2, . . .ym-Tn,/27} . The

size m' of M satisfies

m' = m-2[ny/27 > (eny-1) - 2n, /27
> 2|ny/2)-1
=2n' -1 '

and the desired key n, has relative value X' = no-l'no/27 =n' in
the key space M . By the induction hypothesis, Mlg(n'+1)71 nore
probes will be required. Hence the total nunber of probes is at |east
1+ [1lg(n'+1)] = 1+ Flg(Lno/2J+l)1 > rlg(no+lﬂ . This conpletes

the induction step. O



To prove Theorem 1, the idea is to show that, if mis |arge enough,
then for any table structure 7, there is a set 8y of 2n-1 keys with
the following property: given any n-key subset A c Sy the table
structure always arranges the keys of A according to sane fixed
permutation. Lenmma 1 will then inply the [1g(n+1)7 bound.

To this end, let us partition g, the fanmly of n-key subsets
of M inton! parts as follows. For each A:{jl<j2<. o< n}ea,

| et Ty be the table formed under 7 . W assign Ato the group

o(ipiy «wwl) AT, (3).3,,T,G )05, ., T,(E) =3, . The
col | ection {o(il,ie,,,.,in)l(il,ig,, ~+»i ) is a pernutation of 1,2, 0 n@®

forms a partition of ¢ .

Claim If mis sufficiently large, then there exists a set of 2n-1

keys So S {L,2,...,m} such that, for all n-key subsets A cs we

O i)
have Ae c(il,ig,...,in) , Where (il’iz""’in) is a fixed pernutation.

By our earlier discussion, this would inply Theorem 1. |t renmains to
prove the claim W neke use of the follow ng fanous combinatorial

theorem (see, e.g. [3]).

Ransey's Theorem For any k, r, t , there exists a finite number R(k,r,t)

such that the following is true. Let S = {1,2,...,m} With m> R(k,r,t) .
If we divide the famly of all r-element subsets of Sinto t parts,
then at |east one part contains all the r-element subsets of sone k

el enents of S .

Cur claimfollows from Ransey's Theorem by choosing r=n, t =n!

and k = 2n-1 . This proves Theorem 1 with N(n) = R(2n-1, n, n!) . O



General i zati on. As mentioned at the beginning of this section,

Theorem 1 hol ds under nore general conditions. In the general setting,
a table may contain "pointers" and duplicated keys. Formally, we have
a universe M of m keys, a set P of p special synbols (pointers),
and an array T containing q cells. Let S cM be any subset of n
keys. W store S in T where each cell may contain any elenent in
the set syp . Each key in S may appear several tines or none at all.
A rule for determning the above assignment is a table structure 7.
Defining search strategies ., as before, we neasure the cost c(7,)

by the nunber of probes to answer the menbership query in the worst case.

The complexity f( n, mpq) is the mninum cost achievable by such a pair.

Theorem 1'. For any n, p, q, there exists an N(n,p,q) such that
f(n,myp,q) = [1lg(n+tl)] for all m > N(n,p,q) .
*Proof . As the proof is very simlar to that of Theorem 1, we shall only

sketch it. Cearly, we need only prove that f(n,m,p,q) > [1g(n+l)]
for all large m.
Let 7 be any table structure. To each n-key subset S, we assign

2
contains the k-th smallest key in S and i, = n+j if T[¢] contains

a g-tuple (il’iE""’iq) with 1<i, <ntp, where i, = k if T[z]

the j -th pointer. This partitions the famly of all n-key subsets into
(n+p)? classes. If m > R(2n-1, n, (n+p)q) , then by Ramsey's theorem
there exists a set 8, of 2n-1 keys all whose n-key subsets are in
the same class. By definition, all tables for n-key subsets S c 5,
contain identical pointers in each location, and hence tables are

di stinguished only by the keys stored in the tables. Now, in these

10



tables, the set of locations containing a given key depends only on
the relative ranking of the key in the n-key subset. Therefore,

from the viewpoint of search strategies, these are sorted tables (wth
possible mssing keys). By Lemma 1, it takes [1g(n+l)7 probes in

the worst case. As T is arbitrary, this proves the theorem

W may further allow the set S to have non-unique representations
as a table (as is the case of hash tables, search trees), since this
obviously will not inprove the worst-case cost. Thus, the present nodel
allows for the use of linked lists, search trees, and all commDn hashing

t echni ques, etc.

11



3. Wen Is One Probe Sufficient'?

The nunbers N(n) in Theorem 1 are extrenely large even for
moderate n . Thus the result is not too useful in practical terns.
It is of interest to understand f(n,m) for smaller m, W therefore
ask the follow ng equivalent question: Gven n, k , what is the maxinum
m such that f(n,m =k 2 Call this nunber g(n,k) . Hence if, and
only if, there are nore than g(n,k) possible keys, then we have to use
more than k probes in the worst case. The determ nation of g(n,k)

is difficult, but we can determine it in one special case.

3 if n=2,
Theorem 2. g(n,1) =
2n-2 if n>2.
Proof . W shall give a proof for the |ower bound to g(n,1), by

exhibiting a |-probe table structure for the asserted number of keys.
The other part of the proof, i.e., that no table structure can achieve
a |-probe search for a larger key space, involves |engthy case analysis
and will be left to Appendix A

For the case n =2, m=3, the "cyclic" table discussed earlier
has an obvious |-probe search strategy. Now, let n > 2 and m= 2n-2 ,
we describe a table structure allowing a |-probe search strategy.

Consi der the situation as m people sharing an apartnent building
with n rooms. W need a method so that, no matter which n people
appear at the sane tine, we can assign themin such a way that it is
possible to determine if person j is here by looking up the occupant

of one particular room (dependent on j ).

12



W shal | use K.J to stand for the person j (1 <j <n . Let

us call K'a and Kn+j the tenants of roomj , for 1 <j <n-2;

K.J is the lower tenant and }ﬂHj the upper tenant. For room n-I ,
K| 1S @alover tenant, and for roomn , K, is alover tenant, There
are no upper tenants for these two special rooms, (See Figure 4.)

Wien a group of n people show up, we nake the assignnent by the

fol l owing steps.

(i) If room j (1 <j < n-2) has only one tenant present, assign that
tenant to the room

(i) 1f aroomj (1 <j <n-2) has both tenants present, let the
upper tenant go to a room which has no tenants here.

(iii) Those people left unassigned are either tenants whose upper tenants
are also here, or are keys Kn-l s K W assign them so that they
do not occupy the roons of which they are tenants (e.g., a cyclic

shift will do).

The last step can always be acconplished, for we can argue that if there
is at |east one person left in (iii), then there are at least two. |ndeed,
either (a) assume neither K, hor K, is present, then at |east two
rooms j (1 <j < n-2) have both tenants present, or (b) assume exactly
one of Ko1K is present, then there nust be another j (1 <j <n-2)

with both tenants present, or (c) both K, and Knare present.

1
For example, assune in Figure 5, the group {1,2,3,6,7,9,10,12} show up.
Steps (i), (ii), (iii) are illustrated.

To answer if K.:J is in the table, we look at the room of which it

iS a tenant.

13



tenants 9 10 11 12 13 14
1 2 3 4 5 6 7 8

N

room 1 2 3 4 5 6 7

Figure L. The association between tenants and roons in the proof
of Theorem 2.

9 10 12

1 2 3 6 7
step (i) l

| 51 12 6

step (ii) l

L 3|l 121 9| % 10

step (iii)l

2751296110.

Figure 5.  An illustration of steps (i)-@ii) inthe
assi gnnent .
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(a) If K.J is there, then it is in the table.

(b) If an upper tenant of some other roomis there, then K‘j i's not
in the table.

(c) If a lower tenant of sone other roomis there, then x, is in

J
the table.

It is straightforward to verify the correctness of the answers. This
proves g(n,1) > 2n-2 for n > 2 .

It remains to prove the upper bounds for g(n,1) . We have shown
g(2,1) < 4 in Section 2. The proof of g(n,1) < 2n-2 for n > 3

will be left to Appendix A 0

Renar k. It is somewhat surprising that the |-probe schenes used in
the above proof are optimal, as they look quite arbitrary. |n particular,
why do we need two special rooms n-| and n 2 Figure 6 shows that the

schere fails if we have only one special room (and 2n-1 keys). Tpe

arrival of keys 1,2,...,n-1,n+1 will nake the accomodation iMpossi bl e.

15



@ 10 11 12 13 14 15

OOV OO -

Figure 6. Failure of the |-probe scheme with 2n-1 keys.
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4. Searching in Two Probes.

How strong is Theorem1'? It appears to be a robust result,
considering its generality. However, the follow ng surprising result
denonstrates that it depends heavily on the fact that keys outside of

the set S may not be present in the table.

Theorem 3. There exists a nunber N (n) such that, if m> n'(n),
then by adding 1 extra cell in a sorted table, the search can al ways
be acconplished in 2 probes. (The content in the extra cell is allowed

to be any integer between 1 and m.)

Proof . W define a concept called "k-separating systems?. Let

M= {1,2,...,m} and n > 0 an integer. An n-separator F = (Al,AZ,. , .,An)

is an ordered n-tuple of subsets A c M whi ch are nutually disjoint.

An n-separating systemfor Mis a famly of n-separators such that,

for any n elements X o<x, <L <% of M, there exists (not

necessarily unique) a nenber F = (Ai,é,...,An)e? W th x.lEA.1 for

i =1,2,...,n . Let us use q;(xl,xg,...,xn) to denote this F . For
n

Ve UAJ. , use J(F,y) to denote the j with yeA_.J,
J=1

W now show how to design a 2-probe structure with the help of
an n-separating systems% for M. Let % = {Fl’FE""’F/z} . For
each n-tuple a = (x1 <x, <l < xn) drawn fromM, |et
Fi(a
V& organize the table as shown in Figure 7.

> =w(xl,x2,...,xn) . For the nonent assume that % =4 <m .
To test if a nunber yeM is in the table, one first probes at

cell 0 to find i(a) , then makes a second probe at position J(Fi(a>,y) .

The nunber y is in the table if and only if it is in this location.

17



sorted table

N
~
i(a) | x X | K | eeee
0 1 2 3
Figure 7. A 2 -probe table.
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Reason: Let Fi(a) = (Al,AE,...,An) ; if yisin the table, then yeAj
wth j= J(Fi(a),y) , and hence nust be in the j -th cell. "It remains to

exanmine the condition that ¢+ <m. W need the follow ng conbinatorial

| emma.

Lenma 2. There exists an n-separating systemg for Swth

~

%] < L% (g m)™T .

Proof . See Appendix B. O

2
It follows fromthe lemma that, if 1* @ (lg m)n'l<m, then the
2
2-probe scheme works.  The condition is satisfied if m> N'(n) = 216n"

This proves Theorem 3. O

Bob Tarjan [private conmmunication] has inproved the bound N (n)
in Theorem3 to exp(c n log n) by a somewhat different construction.

In the proof of Theorem 3, the table structure used has a "directory"
at cel1 0. To retrieve a key y , one consults the directory to probe
a cell which would containj if and only if y is in the table.
(Tarjan's construction also follows this pattern.) It is of interest
to find tight bounds on m, n for such table structures (call them

canonical 2 -probe structures) to exist. Define a prinitive n-separating

system  for M= {1,2,...,m} to be a fanily of n-separators such

that, for any n distinct elenents X Xpyeeas X of M, there exists

~E
a nmenber F = (Al’Az"“’An) e ¥ wWith each A, containing exactly one x_J.

Let b(m,n) be the mnimmsize of such a prinitive n-separating system

It can be shown that m >%b(mn) is a necessary and sufficient condition

for a canonical 2-probe structure to exist, Ron Gaham [private comunication]
showed that asynptotically b(mn) < o ” log m by a nonconstructive

argument, which inplies the existence of a canonical 2-probe structure

whenever m > exp(cn) for some constant ¢ > 0 .

19



5 . Concl usi ons.
¢ have discussed the conplexity of the "nmembership" retrieval
problem  The main conclusions are, roughly, when the wordsize i S |arge,
sorted tables are optimal structures if only the addressing -power of
a randomaccess machine can be used, but far from optinmal once arbitrary
encoding of the information is allowed in the table. These results are
mainly of theoretical interest, although Theorem 3 suggests that there
may be fast retrieval schemes in nore practical situations. The Ransey
type technique used in the proof of Theorem 1 may have wi der applications.
Ron Rivest [private conmunication] has used it to prove a conjecture
concerning [12]. Below we nention some subjects for future research.
V& have proved the optimality of sorted tables in a rather general
framework (Theorem1'), It would be nice if the threshold value N(n)
can be substantially lowered. Aso the exact determination of quantities
such as g(n,2) poses challenging mathematical questions.
When arbitrary encoding is allowed, we obtained a rather curious
result (Theorem3). In either of the extreme cases m~ n and m> 2l6r12 s
one needs at nmpbst 2 probes to decide if an itemis in a table. In the
former case the addressing power, and in the latter case, the encoding
power contribute to fast retrieval. It would be interesting to study
the problemfor internediate values of m. Tarjan and Yao [18] have
shown that, when m grows at nost polynomially in n , one can retrieve
in Q1) -probes with a Q'n) -cell table. The question is still open
2”5.

for other ranges of m, say, m= Anot her direction of research

is to study the effect of restricting the decoding procedures.

20



A main theme of this paper is to discuss the nenbership problemin
a wor d-1ength-independent framework (by letting m- « ), we |ist sone
open problens of prine inportance in this framework, which are indirectly

related to the nenmbership problem

(1) It is easy to construct simlar nmodels for nore conplex data
mani pul ation probl ems such as executing a sequence of "INSERT", "DELETE",
"Mmy" . W conjecture that, unlike the nembership problem non-constant

| ower bounds exist even if arbitrary encoding is allowed.

(2) The Post-COffice Problem (4] [13]: Consider n points VisVpseensVy
on an myxm lattice (wth m- « ), Can we encode themin cn cells so
that, given any point on the lattice, one can find the nearest v, in
(1) probes? In fact, this problemis unresolved even in the one-

di mensi onal case.

(3) Sorting Networks: In the usual Bool ean networks for sorting n
inputs in {0,1}, it is known [10] that one need only use Q(n) gates
As Vs —=. |f we consider gates that are functions fromuMxM to M ,
can one build a sorting network for n inputs fromM, with Q(n) gates
as m- = ? In general, the study of such networks for function
conputation would be interesting, See Vilfan [20] for sonme discussions

on the formula size voroblems.

21



A Bibliographic Note. The conplexity of the nenbership problem was first

rai sed in Mnsky and Papert [9, pp. 215-221], where it was called the
exact match problem  The nodel was fornulated on a bitw se-access machine,
with the conplexity defined as the average nunber of bits needed to be
examned for a randomtable. This nodel, especially the n = 1 case,

was further exam ned by Elias and Flower [6], but the probl em has not

been solved conpletely even for this special case, Wrdwi se-access models
were used in several recent papers. Sprugnoli's work [15] dealt w th
efficient hash functions, and is closely related to the materials in
Section 4 of the present paper. Tarjan [17] showed that tables of size
Qn) and retrieval tine O(log* n) can be achieved, if mis at nost
polynomial inn ; the retrieval tine was inproved to (1) by Tarjan
and Yao [18]. Aso see Bentley, et. al. [2] and Munro and Suwanda [I1]

for other recent studies on related problens.

Acknowl edgenent . | wish to thank Bob Tarjan for nany hel pful coments,

which led me to include Theoreml'in the paper.
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Appendi x A Proof of Optimality in Theorem 2.

In this appendix we conplete the proof of Theorem 2 by showing that
g(n,1) < 2n-2 for n >3 . For convenience, the inductive proof wll be
organized in the following way. W shall first prove that, for any n > 3
and m=2n-1, a table structure allowing a |-probe search induces
a |l-probe table structure for n'=n-1 and m'=2n'-1 .  Then we
shal | demonstrate that, for n =3 and m=2n-1 =5 , there cannot be
any |-probe table structure. This imediately inplies g(n,1) < 2n-1
for all n >3, conpleting the proof.

Suppose there is a |-probe table structure 7 for n,m= 2n-1 where
n>3, For 1 <j <o2n-1, let 2 be the location to examne when
key j is to be retrieved. Cearly, sone location will be zj for at
least two distinct j .  Wthout loss of generality, assume that

=4,=1, i.e., the content in T[1] determ nes whether key 1

and/or key 2 are in the table. For i = 1,2, let Yi denote the set

of keys j such that T[1] =] inplies the presence of key i in the
table, and let N, ={1,2,...,m}-y, . Certainly, 1T[1]e N, if and only
if key i is not inthe table. Note that lev, and 2e¥, , W

di stinguish 4 possibilities:

Case |. 2eY, , ley

1 2 3
Case |1. 2€Nl,leN2;
Case 111. 2€Yl,leN2;
Case |V. 2(—:Nl,leY2.

Ve shall show that these cases either are inpossible or inply the existence
of a |-probe table structure for n'=n-1 and m' = 2n'-1 . The

following sinple fact is relevant.
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Fact 1. N, | >n-1 for i =1, 2.
ract 1. 2

Proof. ~ Qtherwise, let v; c v.-{i} with |r:|=n . The table T

storing T: wll have T[1]c¢ Y. contradicting the absence of key i . OO

TLemma Al.  Case | is inpossible.

Pr oof . By Fact 1, my >n-1 . Let x,%,...,x ;elN . Then the
set {1,x1,x2,,..,xn_l} cannot be satisfactorily arranged in a table T .
A key x.J incell 1 wuld inply the absence of key 1 , and key 1
incell 1 wuld inply the presence of key 2 . a

ILemma A2.  Case |l is inpossible.
Proof . By Fact 1, |Nl| >n-1 . Let 2,x1,x2, Vst o EN1 ' Then the
set {1,2,x1,x2,...,xn_2} cannot be arranged in a table T . A key x.J

or 2incell 1 wuld inply the absence of key 1 , and key 1 in

cell 1 would inply the absence of key 2 . O

Lemma A3. Case Il and Case IV both inply the existence of a |-probe

table structure for n'=n-1 and n' = 2n'-1 .

Proof . V¢ need only prove the lemma for Case Ill; Case IV merely switches

the roles of keys 1 and 2 in Case I11.
Caim 1. N| = n-I
Jaim 1. NJ =n

Proof. By Fact 1, |N,|>n-1 . Suppose [N | >n-l , let
l,xl,xg,...,xn_le:N2 . Then there is no way to accomodate {E’Xl’XE""’xn l}
inatable T. A key x.J incell 1 would inply the absence of key 2 ,
and key 2 in cell 1 wuld inply the presence of key 1 , W conclude
that |v,| = n-I . O
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Because of Claim 1, we can wite N, = {1,3,4,.. .,n} and
T, = {2, n+l, n#2, . . . ,2n-1}, renamng the keys in {3,4...,2n-1}

if necessary.
Gaim2 Y, ={L2}.

Proof . Otherwise, let {1,2,x} c Y If xe (3,k4.. .»n} , then we

1 -
cannot arrange the set {x, ntl,nt2, . . . . 2n-1}in T, since T[1] = x

woul d inply the presence of key 1 and T{1] = n+j would imply the
presence of key 2 . If xe{ml, nt2,. . . , 2n-1}, then we cannot

arrange the set {x,2,3,...,n} in T by a sinlar reasoning. O
It follows fromdaim 2 that Ny = {3545 .. .y2n-13 .

Caima3. In a table T formed from an n-key subset {1,xl,x2,...,xn l} ,

wher e xj # 2 for 211 j , key 1 always appears in cell 1.

Pr oof . Q herwi se, T[1] = x.J for some | , inplying the absence of

key 1 . O

daim 4. For 3 <j <@2n-1, zj,él.

Pr oof . By aim3, any n-key subset 5, wWith le 8y 2¢ 8, wi |l have
key 1 in cell 1 . Therefore, the key stored in T[1] cannot decide

if jes O

Consi der the set of tables for storing all the n-key subsets
{1, X__L,xz,,_.,xn_l} with X, 4 2 for all j . Because of lains 3 and &,
cell 1 always contains key 1 , and if we elimnate cell 1 from
all these tables, we are left with a |-probe table structure for all the

(n-1) -key subsets of {3 L,...,2n-1} . This proves Lemma A3. O
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We have campleted the first part of the proof for g(n,1) < 2n-2 .
Narmely, the existence of a |-probe table structure for n,m = 2n-1
(n >3) inplies the existence of such a structure for n'=n-I ,

m' = 2n'-1 .

It remains to prove that no |-probe table structure exists for
n=3,m=5., Assume that such a structure exists, we proceed to
denonstrate a contradiction, By the preceding analysis, we can assune
that ¢z, =2, =1, Lzs 85 s #1,7 ={1,2},N = {35},

Y, = {2, 4,51, and N, = {1,3} .

As the nanming of keys L and 5 s still arbitrary, we can assume
that the tables storing sets (1,3,4} ,{1,3,5} ,{1,4,5} are as shown
in Figure Al. (Note that key 1 has to be in cell 1, and the renaining
have to be in a cyclic order.) Next consider how the table structure
arranges S = {2,3,4} and {2,3,5} . Keys 2 and 3 cannot be in

cell 1 because T[1] =2 would inply 1e8 and because T[1] =3

would inply 2¢ s, Thus the arrangements can only be:

{2,3,431 - either (a) (4,2,3) ,

or ®)  (%3,2),
and
{2,3,5}1 -~ either (a)' (5,2,3) ,
or by (5,3,2) ,
where (4i,J,k) neans that cells 1, 2, 3 contain keys i, j, k ,

respectively. There are four possibilities, nanely (a) x (a)',

(a) x (b)', (b) x (a)", and (b) , (b)' .
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test for
keys 1, 2

\

T:

{l:B:h} - 1 3 L
L,4%53 - 1 4 5

f1,3,5y - 1 5 3

Figure aA1. A partial configuration for the |-probe table

structure

test for

keys 1, 2
1 3 L
1 Y 5
1 5 3
Y 3 2
5 2 3

Figure A2. Qur know edge about the table structure after
taking aim5 into consideration.
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Cl aim 5. only (b) x(a)' nmay be possible,

Proof . If (a) x (a)' or (b) x (b)' , then one cannot test in one probe
whether key 4 is in the table (recall that f), £1). If (a) x (B)',
again one cannot test in one probe whether key 4 is in the table --

i f £y, = 2 then the tables (1,3,4) and (5,%,2) cannot be distinguished,
and if 4 =3 then (1,5,3) and (L,2,3) cannot be di stingui shed,

Therefore, the table structure must contain the tables shown in Figure a2, O

How is the set {3,4,5} arranged as a table? One cannot put key 4
or 5 into cell 1 since that would inply the presence of key 2 , Aso,
the arrangement as (3,4,5) would make it inpossible to test for key 3
(since there is a (1,4,5) ). Thus, it has to be arranged as (3,5,L) .

W now assert that Ly = 2 and £, =3, To test for key 5 at
cell 3 cannot distinguish (1,3,4) and (3,5,4) , and to test for
key 4 at cell 2 cannot distinguish (1,5,3) and (3,5,4%) . our
know edge about the |-probe table structure thus far is summarized in
Figure A3.

To fill in the slots for {1,2,4} and {1,2,5} , we note that key 2
has to be put into cell 1 since both keys 1 and 2 are here. The
only possibility for {1,2,5}is (2,5,1); the alternative (2,1,5)
woul d jeopardize the test for key 4, since (1,45) is already there,
This also neans that T[3] = 1 inplies the absence of key L , It
follows that {1,2,4} has to be arranged as (2,1,4) . The known part
of the table structure is shown in Figure ak,

However, there is now no way to test for key 3! |If we probe at

cell 2, the tw tables (3,5,4%) and (2,5,1) cannot be distinguished;
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test for test for test for

keys 1,2 key 5 key L
Y L/
1 3 L
1 L 5
1 p) )
L3 2
> 2 3
3 5 L

Figure A3. More know edge about the table structure.

test for test for test for
keys 1, 2 key 5 key 4

3

103 L
1 L 5
1 5 3
L 3 2
5 2 3
3 5 L
2 5 1
2 1 L

Figure Ak,  Adding (2,5,1) and (2,1,4) to the
structure.
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if we probe at cell 3, the tables (3,3,4) and (2,1,4) will | ook
the same. This contradicts the definition of a table structure allow ng

a | -probe search strategy.

W have thus proved that no |-probe table structure can exist for
n=3, m=5. This conpletes the proof for g(n1) <2n-1 (n >3)

and hence Theorem 2. 0
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Appendi x B,  Proof of Lemma 2,

Let m>k >2 and S = {1,2,...,m} . W shall construct a

2
k-separating system  for S, such that |#| < R (1g m)k'l .

W agree that the O separating systemis ¢, and the |-separating

systemfor any Tis {T}. The system& will be recursively constructed,
in the lexicographic order of (k,m) ., Divide S consecutively into k

al most equal bl ocks 8,,8,,...,8 With |8 |=m = | (mi-1)/k). Ve
shal| define % as the union of the following famlies of k-separators,

to be described in a nonent: ¢, and B(nl’nz‘""’nk) , Where 0 < n, <k

are integers satisfying Zni= k .
|

Let F, = (Ail’AiE" .,Aik) be a k-separator for the set 85

1<i<k. The direct sum F,@F,®...0F, Is the k-separator

(Al,Ag,...,Ak) , Where Aj = L: Aij . Let t > 0 and, for each

1<i<k, & = ({F

i il””Fit} be a famly of k-separators

for 8; - Define the direct sum FOF0...0F, to be the famly
of k-separators for S, = {FpF,...;F} , Where

. = . . D...®F . <J . W now construct as
FJ FlJ@FQJ® @FkJ for 1<j<t a
follows. Let F; (1 <i < k) be ak-separating systemfor S‘l’
constructed recursively. Y For each j , add arbitrary k-separators

into . so that the resulting fanily s has t = nmax |szi| el ements.
|

I J

W now define g = yi@?é@...@?}‘k. For each X <x, <L <K,
there is clearly a k-separator F = (Al,AE,...,Ak) eq that "separates”
the x's (i.e., such that x5 € AJ. for all j ), if all Xy are in the

same block S. .
1

Y ve agree that % =g if k >|[s;|. Also note that, when k > |s,]|,
any k-separator (Al,AE,...,Ak) for s, must have some Aj =0 .
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For each (n,n,,...,n) that satisfies 0 < n, < k and ?ni = Kk,

-

the famly of separators B(nl,ng,,_un is constructed as follows. The

1)
family B(nl,ng,...,nk) is enpty, if there is sone i such that n, > m, .
Gherwise, for each 1 <i <k , let 7 bean n,-separating system

for S; recursively constructed. Denote by B(nl,ng,. : .,nk) the famly

of all k-separators of the form

F = (All) Ale’ o .’Alnl,Agl’ ) ;Agnz

(Ail’AiE"”’Ain YeF! . For any n<x, <L <x in S such
i

4 oo

,.",Ak.[lk) 9 where each

that exactly n; of the x's are in 8; for each i , clearly there

is some k-separator in g(nl,ne,,,o l&j) that separates the x 's.

. 's

Let % = aU( U B(nl,ng,...,nk)> . Then % is a k-separating
n
1

systemfor S, as inplied by the properties of g and 5 stated above.

Let fk(n) denote the size of  constructed this way, Then, by

definition,
: / / il
£, (m) = max{f (Mm/k7), £ (Lm/k})} + 2 f (m,)
k k kL)) O<n <k i=1 " i’
Zni=k
for m>k>2 . (BL)

V& adopted in (Bl) the convention that fo(mi) =1, and £ (mi) =0
|
if n, >m
1

K
Fact 2. For each k >2 , f,(m is a non-decreasing function of m,
Proof . Using (BL), one can prove it by induction on (k,m) ,

| exi cographically. O
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W shall now prove, by induction on k , the follow ng fornula: i

2

f(m < ¥ (gt for m>x>1 . (B2)
The fornula is obviously true for k =1 . Let k >1, we shall prove
(B2), assuming that it is true for all smaller values of k . First we

prove the follow ng fact.

Fact 3. For m= K® , Wwhere t > 1 is an integer, we have

2 k-1
K (1
fk(m) < L (H [ gm )
Proof . Using Bl), Fact 2, and the induction hypothesis, we have
Z‘ni ! (ni'l) .o
£, m) < £k + 2 b 7(lg m) (B3)
0<n.<k for all i
Zni =k
In (B3), the summations y' are over those i wth n, # 0 . The second

termin (B3) is at nost

2 2 -
(zkk_—f )h(k-l) L1, m)k—e < K -KH2 g, k-2

Thus, (B3) inplies

i/W; i nterpret o® tobve 1.
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2 k-2
£,(m) < £, (k) + K (i— 1g m)

2 k-2
< £, (w/x") + 0.4 " (,Ji 1g m)

< ¢ o0

2 k-2
< (logk m) hk (%‘: 1lg m)

2 k-1
< hk (%;lg m) . O

t-1

For general m, let K <m< kt where t > 2 . By Facts 1 and 3,

k-1
£ (@) < ( Tl " )

2

i (1g mFt.

<

This conpl etes the inductive proof for (B2), and hence Lenma 2. O
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