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Abstract.

A fundamental quantity which arises in the sorting of n numbers
8585500058, Is Pr(a; < ajl P) , the probability that a; < %. assuming
that all linear extensions of the partial order P are equally likely. In
this paper we establish various properties of Pr(ai < aj‘ P) and related
quantities. In particular, it is shown that Pr(ai < bjl P') > Pr(ai < bjl P),
if the partial order P consists of two disjoint linearly ordered sets

A=fa,<a,<...<a}, ={b, <b, <...< bn} and

2
P' = Py {any relations of the form a; < bl} *  These inequalities have

2

applications in determining the complexity of certain sorting-like

computations.
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1. Introduction.

Many algorithms for sorting n numbers {al,ag,...,an} proceed
by using binary comparisons a; aa. to build successively stronger partial
orders P on {ai} until a linear order emerges (see, e.g. Knuth [3]).
A fundamental quantity in deciding the expected efficiency of such
algorithms is J?Jc'(ai < aJ. | P) , the probability that the result of

a, :aj is 2 < a.J when all linear orders consgigtent with P are

equally likely., 1In this paper we prove some intuitive but nontrivial
properties of Pr(ai < aj \ P) and related guantities. These results are
important, for example, in establishing the complexity of selecting

the k -th largest number [T7].

We begin with a motivating example., Suppose that tennis skill can
be represented by a number, so that player x will lose to player y in
a tennis match if x < y . Imagine a contest between two teams
A = {al,ae,. . .,am}- and B = {b]_’bg" . .,bn} where within each team the

players are already ranked as a. < a. < ... < a, and Db

1 o <b2<"'<bn'

1

If the first match of the contest is between al and bl , what is the

probability p that a, will win? Supposing that the two teams have

1

never met before, it is reasonable to assume that all relative rankings
among players of A|JB are equally likely, provided they are consistent

with al<a9_<.,.<am a.ndbl<b2<...<bn. It is easy to show

by a simple calculation that p = m/(mtn) . Consider now a different
situation when the two teams did compete before with results

a., <b, ,a, <b., ,...5a. <Db, 3 in other words, the team B
1 1 e Tt d

players always won. Let p' be the probability for al < bl assuming

that all orderings of elements in AUDB consistent with the known



constraints are equally likely., One would certainly expect that p' > p,
as the additional information indicates that the players on team B are
better than those on team A . However, the proof of this does not seem
to be so trivial. The purpose of this paper is to establish several
general theorems concerning such monotone properties,

We now give a proofji/ that p' > p in the preceding example. It
establishes the result even when A and B are themselves only partially

ordered, provided that ay and bl are the unique minimum elements in

A and B, respectively. ILet us denote by P' the partial order

b e e o 4 4, <b}

obtained by adding the relations {a. < b., a.
i 1t Iy

< .
1 J1 o I

to P = AyUB . We will show that Pr(a; < by | P') /Pr(b; < a) [ P') > m/n,

from which it follows that Pr(a, < b, | P') > m/(m+n) = Pr(al < by | P ).

1

+n-1)1
Consider the sets S of all (m n l)

0 m-1)! (n-1 | possible sequences

of O's and 1's with one element "underlined", where

(1) the sequence is of length mtn , with m O's and n 1's,
(ii) the first character is O ,

(iii) one of the 1's is underlined.

Define the set S, similarly but with first character 1 and with one

1

of the O0's underlined. We get a 1-1 correspondence between SO and

S by complementing both the first character and the underlined character.

1
If xoe SO corresponds to X, € Sl 5> then XO < X in the partial order <
defined on (O,l) ~-sequences as follows: Say that x < y if we can
transform x into y by one or more replacements of ' O1' by ' 10 '; or,

equivalently, x<y i1if x and y have the same number of 0 's, and

*
¥ The proof given here is due to D. Knuth.



for all k the position of the k-th 0 of x is no further to-the
right than the k-th O of y .) List all the pairs of the correspondence
as Xy v Xy 3V Vy o e e e

For a partial order Q on a set X , we say that a 1-1 mapping

A X - {1,2,...,n} is a linear extension of Q if A(x) < MN(y) whenever

x<y in Q. Let A be a linear extension of P' which places

elements of A into the positions where X has a 0 , and elements
of B into the positions where X has a 1 . The correspondence Xy @ Xy

naturally associates to Kx a linear extension kx of P' in which
1 0

the relative order of the a; and also the relative order of the bj are
both unchanged., We therefore obtain a list of inequalities
N(xl) < N(XO) s N(yl) < N(yo) y ..., Where N(Xi) denotes the number

of all linear extensions A  defined above. (For some X s N(xi)
i

may be O .) Summing all the inequalities gives

me (# of linear extensions of P'y (bl < al)

< ne(# of linear extensions of P' | (a, < by) ,
- L L

which is what we wanted to show,

The preceding example suggests the following conjecture. ILet
A = {al,ag}oon)am} b} B = {bl,bg’...,bn} 5] X = AUB 5 and (P’<)
be a partial order on X which contradicts no relation of the form

bJ. < a; (see Figure 1).



Figure 1. A partial order P generated by

AUBU {a2 < bl, a3 < bh} :

P contains no relation of the form bj < ai .



Conjecture. If P' is a partial order obtained from P by adding
relations of the form a, <b, , then Pr(E | P') > Pr(E | ) , where
E is any event of the form (ail < bjl)/\(ai < bj ) A ...A\(ai < bj ).
2 2 t t
In this paper we shall prove several results related to this conjecture,
which in particular implies the conjecture for the case when both A and B
are linear ordered under P (see Corollary 2 to Theorem 1). The general

conjecture, however, remains unresolved.



2. A Monotonicity Theoren.

In this section we shall prove a theorem which implies an important
special case of the Conjecture, namely, the case when A and B are each
linearly ordered under P . 1In fact in this case the Conjecture is true
even if P includes relations of both of the types ay < bj and bk < a, .

Let A = {al < g

<...<am}andB={bl<b <...<bn} be

2 2

linear orders., Let A denote the set of all linear extensions of P = AUB .

A cross-relation between A and B is a set Zc (AxB)U(BxA) ,

interpreted as a set of comparisons ai < bj and bk < 3% . For a cross-
relation 7 , we define 7 = {Mep: Mx) < My) for all (x,y) ¢ 2} .

It will be convenient to represent each Ke% as a lattice path N
in Zg starting from the origin and terminating at the point (n,m)
(see Figure 2), The interpretation is as follows: As we step along A
starting from (0,0) , if the k-th step increases the A (or B )
coordinate from di-1 to i1 thenM maps ay (or bi' respectively)
to k . Thus, in Figure 2, %.(al) =1, K(bl) = 2 , ?\.(bg) =3 ,

Nay) = b, ete.

5)
Let us consider the geometrical implications of a constraint of
the form N(ai) < K(bj) . By definition, as we go along N from (0,0)

to (n,m) , M must achieve an A-value of i before it achieves a
B-value of j . But this means exactly that A must not pass through
the (closed) vertical line segment joining (J,i) to (j,0) . In
general, a set X < AxB represents a set of vertical "barriers" of
this type which for any Keg( » The corresponding lattice path X is

prohibited fram crossing (Figure 3). Of course, a set Y < BxA corresponds

to a set of horizontal barriers in a similar way, with (bj,ai) €Y being



o (n,m)

o

Figure 2.



0 (j,O) B

Figure 3. A vertical barrier corresponding to the
condition %.(ai) < K(bj) .



represented by the line segment joining (0,i) to (j,i) . wWe will
also refer to such wvertical and horizontal barriers as X -barriers
and y -barriers. For a cross-relation Z C (AxB)y (B xA) , we define
Zy = zn(AxB)ansz = ZN(BxA) . Thus Z, and 7z, are the
vertical and the horizontal barriers determined by Z , respectively.
et Z and W be two cross-relations between A and B ., We
say 7 is more A-selective than W if both WX c_ZX and ZY - WY .
(For example, a set of x-barriers is always more A -selective than a
set of y -barriers,) Intuitively, one would think that in this case
linear extensions of Z should have a greater probability for ranking
A's elements below B 's. Let Z' and W' ©be another pair of cross-
relations with Z' being more A -selective than W' . The basic result

we prove i s the following:

Theorem 1. |znZ'|-[WnW'| > |z'nw|-|znw| .

Pr(z' |7 Pr(z' | W .
Corollary 1. Briw 12) > Brl W) when the denominators are not zero.

Corollary 1 follows immediately from Theorem 1, It asserts that the
ratio Pr(z')/Pr(w') is larger when conditioned on Z than when conditioned

on W .

Corollary 2, Pr(V | Z) > Pr(V | W) for any V with Vv, © Z, - In

particular, Pr(X | z) > Pr(X | W) for any X ¢ AxB .

This follows from Corollary 1 by letting Z' = V , and choosing W'

so that W! = p and W.‘Y= v

X Y °

10



Proof of Theorem 1. We will construct a 1-1 mapping of

(' W) x (ZnW') into (20%‘))((%031') . Suppose AeZ' AW and
MeZnW . Let A ) A' be the corresponding lattice paths, and let
{sl, SE"""Sr} be the set of lattice points common to A and A' .

We assume that the s, are labelled so that s, = (0,0) , s. =

1

and as we move along A from sl to S, » We reach Si before s,

Consider the pair of path segments X(si, S5 defined to be the

)

portion of A between (and including) s; and Sis1 ) and x'(si,s

We will call the closed region bounded by these two segments an olive,

provided that the region is non-degenerate (i.e., )T.(si,s. and

1+l)
A (Si’ s, do not coincide). Iet 0750544450

+l) t

(n,m)

i+l .

i+l) ‘

be the set of olives

formed by A and N' . The upper path segment bounding Ok we denote

+ - -
by Ok ; the lower we denote by Ok . Note that, given AUAN' , the

path A can be determined by specifying which Oi contribute O;

to A and consequently, which Oj contribute 03 to AN .

We want to show that for each he Z' NW with M €ZNW' , we can

associate a unique ¢ ZNZ with 3" ewnw' . In fact,  and
will be constructed from the path segments of A and A' SO that

LUp' = NUR' . The rule for obtaining ; (and consequently ') is

as follows:

Tet ; be the same as A except that whenever an olive Ok

+ -
is intersected by a barrier of Z or W, we let O ey .

11



In the example illustrated in Figure L, 0, is penetrated (from below)

by an x-barrier in Z-W , and Oh is penetrated (from the left) by a

y -barrier in W-Z . Note that A always contains the lower boundaries

+

Ok of the penetrated olives Ok To obtain , , we substitute O; ’ Oh

for o; , oi in the path M

To show that J,e ZN7Z' and that the complementary path ;’ eWNnw

~ PN ~ ~

we need only verify that f,, and ll' clear their respective sets of
barriers in Z\ Z' and WUW' respectively in that section,
Suppose Ok is penetrated (from below) by an x -barrier in Z-W ,

: - = +
such as the O in Figure 4, Then M\ contains Ok and A' contains O

2 k *
We want to argue that O;; must clear 7 and Z' , while O;{ must clear
W and W' . First of all, if O; clears W' then it clears w_é and
+ -
T T 1 1
hence ZY . Secondly, Ok clears ZX since Ok clears 7' . It
follows that O; clears both Z and 7' as desired, The fact that
0 clears W and W' can be shown in the same way.

k
Similarly, if O, is penetrated by a y -barrier in W-Z , such as

k
+

k

enable J, 5 ;' to clear their respective barriers.

the 0y in Figure 4, then assigning O (0 u and O}; to ' will

The mapping (MA') - (usp') is 1-1 , since the path A can be

+
for O in those olives O

reconstructed from ; by substituting Ok k K

penetrated by a barrier of Z or W . This completes the proof of

Theorem 1, O

12



Figure L,

Olives which are penetrated by an x -barrier in

Z-W and a y-barrier in W-Z.

13



5. Extension to Disjunctions of Partiagl Orders,

In this section we will consider pairs of cross relations (Z,W)

on A—_—{al<a2<...<am}andB={bl<b <...<bn},whenZ

2
consists of just x-barriers and W consists of just y -barriers. However,
we now incorporate the concept of a disjunction of a set of cross-

relations. For a disjunction 2 =U Z, where Z, C (AxB)U(BxA) ,
i

we let z denote U %i . Suppose x = U Xi and Y = U X:j where
i i J

and Y' = U Y. defined
J

Xic_:AxBandeC_BxA,wth =jL_JXi ;]

similarly. The analogue of Theorem 1 is the following:
~ ~ ~ ~ ~ ~ ~ ~ *
mheorem 2. [xni'| [4ndl > knbl o) Y

As in the case of Theorem 1, here we canh also derive as corollaries

that P_r(.aﬂ._l_?.f;l > P_rLLLL}\A'_l , that is, the ratio Pr(;( /Pr ]:}) is
Pr(y [x') — Er(yly")
larger when conditioned on ;(' than when conditioned on Y' . For

the special case that Yy = y' = § , we obtain

pr(x | x') 2 Pr(x) - (1)

Proof of Theorem 2. As in the proof of Theorem 1, we will show that

for each ke;(m’; with N e;(’ nf&' , we can associate a unique
;e;(ﬂ;(' with J, € ]}ﬂf&’ . Furthermore, , and ' will be constructed
from X and A by interchanging certain path segments. We may assume

without loss of generality that no Xi B X:SL ’ Yj sy Or Y3 have a barrier

which penetrates both AN oand A' .,

*/ ~ ~ ~ ~ ~ ~ ”~ ~
We could of course write this as |xOx'|{yny'| > |x' nyllxny'|

to make it resemble Theorem 1 more.

14



Let 0,,0,,...,0, be the set of olives formed by N and A' .

Thus A corresponds to a subset P < {1,2,...,t} = T such that ~

contains O; iff keP , and with this association A' corresponds to

the subset Q = T-P = ¢ . For a given olive Ok » there may be various

barriers which intersect it. For each Xi , let Gi denote the set
{keT: a barrier from X, intersects Ok} . Similarly, define Gi for X:

H. for Y. and H! for Y! . Observe that
i i i i

~
A -

Nex iff xexi for some i

iff P o Gi for some 1

iff Pe [,&]U = upper ideal in 2T generated by

&% = {Gl,GE,.. .} .
where the meaning of the last statement is as follows.

Definition. For a finite set T , let 2T denote the collection

of all subsets of T partially ordered by set inclusion (i.e., € <D
iff ¢ o D ). An upper ideal in 2T is a subset U cC 2T such that if

S ey then any element S' higher in the partial order (i.e., S < 8' )

T

must also be in 4y . Similarly, a lower ideal £ C 2 has the property

thatifSej:andS'gS,thenS‘eJ:.
As above, we have

>: g iff A A. for some

€y 1 eYJ N

iff PEHS for some J

T
iff Pe [g{C]L = lower ideal in 2  generated by
e c .c
¥ = {Hl,He,...} .

15



Now, what we are trying to show is that for each ;\e;(m:} with
A e;(' an' we can associate a unique ;exﬂ;(' with ' eyny' .

Translating this into the language of ideals, we want:

C . C ' tC
For each Pe [.&]Un[g( ]L with P e [& ]Un[)'s[ ]L there can

be associated a unique Qe [ S N[H ], with Q& e [g[c]Ln[g(‘c]L )

We claim that, in fact, we will be able to find such a mapping for
arbitrary upper ideals U , W' and lower ideals £, ' in 2T .

In other words, there is a 1-1 mapping (P,P%) -~ (Q @) Such that
if Peung and PCel' g then Qeunu and Q e £Ng' . Further,

we will restrict the mapping so that
Pcq . (2)
If (2) holds then

Pey = Qeu since U 1s an upper ideal,

Pe g o= Qc eg' since g¢' 1is a lower ideal.

Thus, we want

Peung Qe U

P°eung g with P < Q .

We claim even further that we can find the required mapping for the more
general domain

Peg Qe u'

ey Ceg with P cq.

c . .
But notice that if u' 1s an upper ideal then u' is a lower ideal. Thus,

the condition

16



becomes
Pegnu' = = Q el with P c @

where |y , being the intersection of two lower ideals, is also a lower

ideal. Of course,

Pcq iff PNQ =p

Thus, the theorem will be proved if we show the following result, which

is actually of independent interest:

For an arbitrary lower ideal I in ET s there is always a

permutation m: W - W such that for all wew , wn=x(w) = p.

For each xeW , let d(x) denote the set {wew: xNw= P} . By

Hall's Theorem [2], it is enough to show that

U ax) | > |
Xe/

for all < W . In fact, for & < W , let dgp(x) denote d(x) ﬂ[J]L .
What we will actually show is the stronger assertion

U d,(x) s (2)
\XWQ,XI > |

for any J c ET . So, suppose f = {Sl,..., Sk} with Si c T . Thus,

vy e U dJ(X) iff ye [QP]L and yNx = P for some xed ,
X e
iff yc Si for some i and yﬂS_.J: ¢ for some j ,

iff y ¢ Si—SJ. for some 1, j .
Therefore, if we can in fact show that there are always at least k

17



different sets of the form Si-SJ. then (6) will follow. However, this
is exactly the result of Marica and SchBnheim [4]. Hence (3) holds and

the theorem follows. O

Theorem 2 can be generalized slightly by allowing the partial order
(P, <) underlying ;( s 1:} s ;(' s fé' to be more than just AUB , i.e.,

P may itself include relations of the form a; <b and bk < a

J ]

In this case, all such relations can also be interpreted as barriers
which cannot be crossed by a linear extension g of P . Since both
paths A and ~' avoid all these barriers then so will any path
L » p' constructed from their path segments.

We should point out that if we weaken the hypotheses on the structure
of (P, <) even slightly then formula (2) (and even (1)) can fail.
To see this, consider the following partial order (P, <) on the set
{al’ag’bl’bg’ c} as shown in Figure 5.

Choose X = X; = ((,1)} , X' = Xj‘_ = {(2,2)} , and all other

Xi ) Xi s IJ_. s %'. to be P . An easy enumeration yields
Wo=8 , [xl=3 = x|, ok | = 1.
Thus,

Pr(;( l%') = < % = Pr(;()

\Nj

which violates (1), Therefore, the assumption that P can be covered by
two linear orders seems to be essential for the general validity of

formula (2).

18
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Figure 5, An example violating formulas (1) and (2).
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L, Conclusions.

We end with some remarks on the Conjecture Pr(E | P') > Pr(E | P)
which is left open in this paper. By Corollary 2 to Theorem 1, we know
that Pr(E | P' yS) > Pr(E | Pys) for any

S=1{a, <a, <...<a, 3b, <b. <...<b._ }. It is tempting to
1 o o I I In

try to prove the Conjecture by making use of the facts

Pr(8 | P) = 2 Pr(s | P).Pr(E | Pys) and Pr(E | P') = L Pr(s | P') . Pr(E | P' US) .
S S

However, as warned by Simpson's paradox [6], such a direct inference is not
possible, and the validity of the Conjecture must depend on deeper properties
of partial orders., A different type of monotonicity property for distributive
lattices, usually called the FKG inequalities, has been treated in the
literature [1],[5]. These may well be relevant to the eventual resolution

of our problem,
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