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Abstract.

A fundamental quantity which arises in the sorting of n numbers

app**.9an is Pr(ai < aj \ P) , the probability  that ai < a. assuming
J

that all linear extensions of the partial order P are equally likely. In

this paper we establish various properties of Pr(ai < aj 1 P) and related

quantities. In particular, it is shown that Pr(ai < bj 1 P') 2 Pr(ai < bj 1 P) ,

if the partial order P consists of two disjoint linearly ordered sets

A= {al< a2 < . . . < am] , B = {bl < b2 < . . . < b ] andn
P' = PU {any relations of the form ak < ba) . These inequalities have

applications in determining the complexity of certain sorting-like

computations.
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1. Introduction.

Many algorithms for sorting n numbers [al,a2,...,an} proceed

by using binary comparisons ai: a.
J

to build successively stronger partial

orders P on {ai] until a linear order emerges (see, e.g. Knuth [3]).

A fundamental quantity in deciding the eqected efficiency of such

algorithms is -(a, < a; 1 p> Y the probability  that the result of
L J .

a. :a. is ai < a. when all linear orders consistent
1 J J

equally- likely. In this paper we prove some intuitive

properties of Pr(ai < aj 1 P) and related quantities.

important, for example, in establishing the complexity

the k-th largest number [7].

We begin with a motivating example. Suppose that

with P are

but nontrivial

These results

of selecting

are

tennis skill can

be represented by a number, so that player x will lose to player y in

a tennis match if x < y . Imagine a contest between two teams

4 = (al’a2~ . . ., am)- and B = (blybgy . . ..bn] where within each team the

-players are already ranked as a1 < a2 < . . . < am and bl < b2 < .., < bn .

If the first match of the contest is between al and bl , what is the

probability  p that a1 will win'? Supposing that the two teams have

never met before, it is reasonable to assume that all relative rankings

among players of AuB are equally likely, provided they are consistent

with a < a3 < . . . < a1 - m and bl < b2 < . . . < bn . It is easy to show

by a simple calculation that p = m/(m+n) , Consider now a different

situation when the two teams did compete before with results

a. <b. ya. <b. ,...,a. <b.
5 Jl I2 J2 =t Jt

; in other words, the team B

players always won. Let p' be the probability  for al < bl assuming

that all orderings of elements in AIJB consistent with the known
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constraints are equally likely. One would certainly expect that p' 2 p ,

as the additional information indicates that the players on team B are

better than those on team A . However, the proof of this does not seem

to be so trivial. The purpose of this paper is to establish several

general theorems concerning such monotone properties.

-I*We now give a proof that p' > p in the preceding example. It

establishes the result even when A and B are themselves only -partially

ordered, provided that a1 and bl are the unique minimum elements in

A and B, respectively. Let us denote by P' the partial order

obtained by adding the relations {a. < b. , a. < b. , . . . . a.
"1 Jl i2 J2

<b. ]
l-t Jt

to P =AuB. We will show that Pr(al< bl \ PT)/Pr(bl < al \ Pr) 2 m/n ,

from which it follows that Pr(al < bl 1 P') > m/(m+n) = Pr(al < bl I P ) ,

Consider the sets sO of all
(m+n-1):

(m-l)!(n-1 ! possible sequences

of O's and l's with one element "underlined", where

( >i the sequence is of length m+n , with m O's and n l's,

(ii) the first character is 0 ,

(iii) one of the l's is underlined.

Define the set Sl similarly but with first character 1 and with one

of the O's underlined. We get a l-l correspondence between So and

sl
by complementing both the first character and the underlined  character.

If XOE so corresponds to x ES1 1, then x0 < xl in the partial order <

defined on (091) -sequences as follows: Say that x < y if we can

transform x into y by one or more replacements of ' 01' by ' 10 '; or,

equivalently, X<Y if x and y have the same nuTflber of 0 's, and

*
J The proof given here is due to D. Knuth.
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for all k the position of the k-th 0 of x is no further to.the

right than the k-th 0 of y .) List all the pairs of the correspondence

as xO ++ XlY Yo*Yp  l ** l

For a partial order Q on a set X , we say that a l-l mapping

1: X -+ {1,2,...,n] is a linear extension of Q if h(x) < h(y) whenever

x<y in Q. Let h
x1

be a linear extension of P' which places

elements of A into the positions where 5 has a 0 , and elements

of B into the positions wnere x1 hasa 1. The correspondence x0 +, x1

naturally associates to h a linear extension h of P'
xl

in which
xO

the relative order of the ai and also the relative order of the b
3

are

both unchanged, We therefore obtain a list of inequalities

N(Xl) 5 N(xo) Y N(yl) <, N(yO) , . . . , where N(xi) denotes the number

of all linear extensions h
X .

defined above. (For some xi ,
1

N(xi)

may be 0 .) Swnming all the inequalities gives

me(# of linear extensions of -J(bl< "1)

< n*(G of linear extensions of P' U (a, < b,) ,
t I,-

which is what we wanted to

The preceding example

I I

show.

suggests the following conjecture. Let

A = {alya2, •**~a~) Y B = {bl,b2,...,bn] y X = AuB, and (P,<)

be a -partial order on X which contradicts no relation of the form

bj < ai (see Figure 1).



\

a5 “6 b4 b5

Figure 1. A partial order P generated by

AUBu {a, < bly a3 < b4) ;-

P contains no relation of the form bj < ai .



Conjecture. If P' is a partial order obtained from P by adding

relations of the form yy- YR
then Pr(E \ P') > Pr(E \ P) , where-

E is any event of the form (a. <b. )A@.
5 Jl

<b. )/\.../\(a.
l2 J2

<b. ) ,
“t Jt

In this paper we shall prove several results related to this conjecture,

which in particular implies the conjecture for the case when both A and B

are linear ordered under P (see Corollary 2 to Theorem 1). The general

conjecture, however, remains unresolved.
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2 . A Monotonicitv Theorem.

In this section we shall prove a theorem which implies an important

special case of the Conjecture,  namely, the case when A and B are each

linearly ordered under P . In fact in this case the Conjecture is true

even if P includes relations of both of the types ai<b.
J

and bk<a
R

.

Let A = {al< a2 < . . . < am] and B = {bl< b2 < .., < b ) be
n

linear orders. Let A denote the set of all linear extensions of P = AuB .

A cross-relation between A and B is a set ZE (AxB)u(BxA) ,

interpreted  as a set of comparisons ai < b.
J

and bk < a .
1

For a cross-

relation Z , we define i = {LEA: h(x) < h(y) for all (x,y) E Z} .

It will be convenient to represent each he"Z as a lattice path h

in z2 starting from the origin and terminating at the point (n,m)

(see Figure 2). The interpretation  is as follows: As we step along h

starting from wJ~ Y if the k-th step increases the A (or B)

coordinate from i-l to i then h maps ai (or bi ,  r e s p e c t i v e l y )

to k. Thus, in Figure 2, h(al) = 1 , h(bl) c 2 , h(b2) = 3 ,

h(a2) = 4 , etc.

Let us consider the geometrical implications of a constraint of

the form h(ai) < h(bj) . By definition,  as we go along i from (0,O)

to (n,m) , c must achieve an A-value of i before it achieves a

B-value of j , But this means exactly that h must not pass through

the (closed) vertical line segment joining (j,i) to (j,O) , In

general, a set X c AxB represents a set of vertical "barriers" of-

this type which for any LeX , the corresponding  lattice path h is

prohibited  from crossing (Figure 3). Of course, a set Y c BxA corresponds-

to a set of horizontal  barriers in a similar way, with (b.,ai) EY being
J
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A

l bbm>

,
.

Figure 2.
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0 LW> B

Figure 3. A vertical barrier corresponding to the

condition h(ai) < h(bj) .
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represented  by the line segment joining (0,i) to (j,i) . We will

also refer to such vertical and horizontal barriers as x-barriers

and y-barriers. For a cross-relation  Z E (AxB)u (B)(A) , we define

zx
= Zn(AxB) a n d  Zy = Zn(BXA) . Thus zx and

-3
are the

vertical and the horizontal barriers determined by Z , respectively.

Let Z and W be two cross-relations between A and B . We

say Z is more A-selective than W if both Wx c ~ and Zy c FIy .-

(For example, a set of x-barriers is always more A-selective  than a

set of y-barriers.) Intuitively, one would think that in this case

linear extensions of Z should have a greater probability  for ranking

A's elements below B 5s. Let Zf and Wf be another pair of cross-

relations with Z' being more A-selective  than Wf . The basic result

we prove is the following:

Corollary 1. when the denominators are not zero.

Corollary 1 follows immediately from Theorem 1, It asserts that the

ratio Pr(Z')/Pr(W') is larger when conditioned on Z than when conditioned

on W .

Corollary 2. Pr(V 1 Z) > Pr(V 1 W) for any V with Vy c Zy . In-

particular, Pr(X \ Z) 1 Pr(X \ W) for any X s AxB .

This follows from Corollary 1 by letting Zf = V , and choosing WI

so that WX = @ and Wf = V
Y Y'
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Proof of Theorem 1. We will construct a l-l mapping of

(^z'n$ x&G') into (^zn^z')&nW') . Suppose h& nW

iv&if . Let X , hf be the corresponding lattice paths,

and

and let

c y52’..*‘Sr ] be the set of lattice points common to A and h' .

We assume that the si are labelled so that s1 = (W) y sr = hm)

and as we move along x from s1 to sr , we reach si before s
i+l l

Consider the pair of path seeents K(s~,s~+~) (defined to be the

portion of K between (and including) si and s~+~ ) and ~'(s~,s~+~) .

We will call the closed region bounded by these two segments an olive,

provided that the region is non-degenerate  (i.e., ~(s~,s~+~) and

" ('iY 'i+l ) do not coincide), Let 01,02y...,0t be the set of olives

formed by x and x1 . The upper path segment bounding Ok we denote

by 0;; the lower we denote by 0; . Note that, given hUKf , the

path h can be determined  by specifying which Oi contribute 0;

to h and consequently,  which 0
2

contribute 05 to h.

We want to show that for each he ^zl nW with i;' &ii' , we can
h

associate a unique L E ^zn Zf with if eWnWf . In fact, L and if

will be constructed from the path segments of h and hf so that

pU/4’  = XUX� l The rule for obtaining 5 (and consequently  if ) is

as follows:

Let i be the same as K except that whenever an olive Ok

is intersected by a barrier of Z or W, we let O',E; .
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In the example illustrated in Figure 4, O2 is penetrated  (from below)

by an x-barrier in Z-W, and O4 is penetrated  (from the left) by a

y-barrier in W-Z , Note that h always contains the lower boundaries

Ok of the penetrated olives

for 0; , 04 in the path K

To show that &&$'

we need only verify that i

Ok l

To obtain P , we substitute O+2'

and that the complementary  path CL' &Wf

and if clear their respective sets of

barriers in ZU Z' and WuW' respectively in that section.

Suppose Ok is penetrated  (from below) by an x-barrier in Z-W,

such as the 0 in Figure 4. Then h contains 0; and K' contains
+

2 Ok '

We want to argue that Ok must clear Z and Z' , while 0; must clear

W and W' . First of all, if Ok clears Wf then it clears
w;

and

hence f .
+

%
Secondly, Ok clears Z$ since 0; clears Zf . It

follows that Ok clears both Z and Zf as desired. The fact that

?k clears W and Wf can be shown in the same way.

Similarly, if 0, is penetrated by a y-barrier in W-Z , such as

the O4
+

in Figure 4, then assigning Ok to G and O-k to ;I1 will

enable i , if to clear their respective barriers,
- -

The mapping (&A') + (by,') is l-l , since the path K can be

reconstructed from i by substituting 0; for Ok in those olives Ok

penetrated  by a barrier of Z or W . This completes the proof of

Theorem 1. c]
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Figure 4, Olives which are penetrated  by an x-barrier in

Z-W and a y-barrier in W-Z l
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3. Extension  to Disjunctions of Partial Orders.

In this section we will consider pairs of cross relations c&w>

on A= (y < a2 < . . . < am} and B = {bl < b2 < . . . < bn] , when Z

consists of just x-barriers and W consists of just y-barriers. However,

we now incorporate the concept of a disjunction of a set of cross-

relations. For a disjunction z = U Zi
i

where Zi 5 (AXB)U(BXA) 9

we let ^z denote u ^zi .
i

Suppose x = U Xi and \B = U Y. where
i j '

Xic Ay,B and Yj c BxA, with xf = u Xi and bf = u Y'. defined- -
i j J

similarly. The analogue of Theorem 1 is the following:

As in the case of Theorem 1, here we can also derive as corollaries

larger when conditioned  on if

the special case that Q = b' =

Pr(i I ;I) ) Pr&) .

, that is, the ratio Pr(i /Pr G) is

than when conditioned on ;d' . For

P , we obtain

(1)

Proof of Theorem 2. As in the proof of Theorem 1, we will show that

for each hein with hf e;(' n$ , we can associate a unique

i&i' with i e Gnb' . Furthermore,  i and if will be constructed

from K and Kf by interchanging certain path segments. We may assume

without loss of generality that no Xi , X;,Y., or Y! have a barrier
J 3

which penetrates both K and hf .

*/

d

We could of course write this as

to make it resemble Theorem 1 more.
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Let Oly02y...y Ot be the set of olives formed by K and h' .

Thus x corresponds to a subset P c {1,2,..,,t~ = T such that h

+
contains Ok iff keP, and with this association h' corresponds to

the subset Q = T-P s PC . For a given olive Ok, there may be various

barriers which intersect it. For each Xi , let Gi denote the set

{keT: a barrier from Xi intersects Ok] . Similarly, define Gf for Xi ,

Hi
for Yi and Hi for Y; l Observe that

- A

hEX iff "Ai for sore i

iff P I> Gi for some i-

iff PE [&I, E upper ideal in 2T generated by

& = {Gl, G21.. .] .

where the meaning of the last statement is as follows.

Definition. For a finite set T , let 2T denote the collection

of all subsets of T partially  ordered by set inclusion (i.e., CID

iff C 2 D ). An upper ideal in 2T is a subset u c 2
T such that if

S EU then any element S' higher in the partial order (i.e., SCS' )

must also be in U . Similarly, a lower ideal. d: c eT has the property-

that if S E e and S' C, S , then S' E e 4

AS above, we have

Lij iff he?
3

for some j

iff PcH: for some j
-J

iff PE [$3, z lower ideal in 2
T generated by

FfC = {H~,H&.] .

15



Now, what we are trying to show is that for each Leini with

hf ~if n$ we can associate a unique G&gf with if ein$ .

Translating this into the language of ideals, we want:

For each PE [,&],n[&?], with Pee [l'l,~[~'c]L there can

be associated a unique QE [ ,&]un[&]U with Qc E [~c]Ln[~'C]L .

We claim that, in fact, we will be able to find such a mapping for

arbitrary upper ideals U , U' and lower ideals XI xc' in 2T .

In other words, there is a l-l mapping (P,P') 3 (Q,Q') such that

if Prune and PC~U'n~' then Qeunu' and Qc E $nxc' . Further,

we will restrict the mapping so that

PsQ .

If (2) holds then

(2)

PEU 3 QEU since u is an upper ideal,

PCee' a Q'E~' since x1 is a lower ideal.

Thus, we want

pan2 QE: u'
=a

P' eu' nx' Qc E x with P c, Q .

We claim even further that we can find the required mapping for the more

general domain

PCC QE U'
3

PC E: U' Q." E I: with P c Q .-

But notice that if U' is an upper ideal then u
'C is a lower ideal. Thus,

the condition

16



PUT QE u’
*

PC E u' Qc E s, with P c Q

becomes

panu
rc rb 3 Q'E~ with P c Q-

where b , being the intersection of two lower ideals, is also a lower

ideal. Of course,

PC& iff PnQC=$ .

Thus, the theorem will be proved if we show the following result, which

is actually of independent interest:

For an arbitrary lower ideal b in 2T , there is always a

permutation  nr: b -,'d such that for aU. web , wh(w> = $ l

For each ~~113, let d(x) denote the set (wE1)3:  xnw= p] . By

Hall's Theorem [2], it is enough to show that

I u d(x) \ > \J\-XC2

forall dcb.- In fact, for $ c b , let $(x) denote d(x) n[$lL .-

What we will actually show is the stronger assertion

(2)

for any Bpc 2T . Soy suppose gP'- {Sly . . ., Sk) with Sic T . Thus,

Y E u d&l(x) iff YE ML and ynx = p for some XE&
XEgP

iff Y c 'i for some- i and ynS. = p for some j ,
3

iff y c, Si-Sj for sOme i, j .

Therefore, if we can in fact show that there are always at least k
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different sets of the form Si-Sj then (6) will follow. However, this

is exactly the result of Marica and SchtSnheim [4]. Hence (3) holds and

the theorem follows. 0

Theorem 2 can be generalized slightly by allowing the partial order

(P, <) underlying  i , b , if , if to be more than just AUB , i.e.,

P may itself include relations of the form ai < b.
J

and bk<a a
.

In this case, all such relations can also be interpreted as barriers

which cannot be crossed by a linear extension of P . Since both

paths h and K' avoid all these barriers then so will any path

; Y 14' constructed fram their path segments.

We should point out that if we weaken the hypotheses on the structure

of (P, <) even slightly then formula (2) (and even (1)) can fail.

To see this, consider the following partial order (PY -4 on the set

c aL, a2, 5~ b2, c} as shown in Figure 5.

Choose X = XI = {(l,l)] , X1 = X; = {(2,2)] , and all other

Xi, Xi, Y., Y! tobe &
J J

An easy enumeration yields

I In =8 Y Iit\ = 3 = 1% 1 , ISin? \ = 1 .

Thus,

Pr(i Ic;t) = $ < 38 = Pr(C;)

which violates (1). Therefore, the assumption that P can be covered by

two linear orders seems to be essential for the general validity of

formula (2).

18



Figure 5. An example violating fomias (1) and (2).



4. Conclusions.

We end with scme remarks on the Conjecture Pr(E \ P') > Pr(E 1 P)

which is left open in this paper. By Corollary 2 to Theorem 1, we know

that Pr(E \ P' $3) 2 Pr(E \ PUS) for any

S=(a. <a. <...<ai ;b. <b. <.,.<b. 3.
il i2

It is tempting to
m Jl J2 Jn

try to prove the Conjecture by making use of the facts

WE \ p> = c Pr(S I P) l Pr(E 1 PUS) and Pr(E 1 P') = c Pr(S 1 Pf) . Pr(E 1 Pf US) .
S S

However, as warned by Simpson's paradox [6], such a direct inference is not

possible, and the validity of the Conjecture must depend on deeper properties

of partial orders. A different type of monotonicity property for distributive

lattices, usually called the FKG inequalities,  has beentreated in the

literature [1],[5]. These may well be relevant to the eventual resolution

of our problem.
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