Stanford Artificial Intelligence Labortory September 197 8

Memo AIM-332

Department of Computer Science
Report No. STAN-CS-79-762

METAFONT
A SYSTEM FOR ALPHABET DESIGN

by

Donald E. Knuth

DEPARTMENT OF COMPUTER SCIENCE
School of Humanities and Sciences
STANFORD UNIVERSITY

Stanford Artificial Intelligence Laboratory September 1979
Memo AIM-332 (first printing)

Computer Science Department
Report No. STAN-CS-79-762

METAFONT, a system for alphabet design

© 1979 by the American Mathematical Society
All rights reserved

Like most computer manuals nowadays, this is a preliminary version. The real manual will bs
properly typeset, and its figures will be much better, but it seems wise to circulate this draft now
so that more people can enjoy playing with the system. The author wishes to thank the muny
individuals who made detailed commenis on pre-preliminary drafts. This work was supported in
part by National Science Foundation grant MCS 72-03752, by Office of Naval Rescarch grant
N0014-78-C-0330, and by the IBM Corporation. Reproduction in whole or in part is permitted
for any purpose of the United States Government.

METAFONT

A SYSTEM FOR ALPHABET DESIGN

ENERATION OF TYPEFACES by mathematical means was first tried in the
fifteenth century; it became popular in the sixteenth and seventcenth cen-
turies; and it was abandoned (for good reason) during the eightcenth ceitu.y.
Perhaps the twentieth century will turn out to be the right time for this idea {0
make a comeback, now that mathematics has advanced and computers are able
to do the calculations.

Modern printing equipment based on rasterlines—in which metal “type" has
b e e n replaced by purely combinatorial patterns of zeros and ones that specify
the desired position of ink in a discrete way—makes mathematics and computer

science increasingly relevant to printing. We now havetheability togive O com-
pletely precise definition o c letter shapes that will produce essentially equivalent.
results on all raster-based machines. Furthermore it is possible to deAne infinitely
many styles O r type at once; computers can “draw” new fonts o r charactersin
seconds, so that a designer is able to perform valuable experiments that wcre
previously unthinkable .

METAFONT is g system for the design o c alphabets suited to raster-based
devices that print or display text. The characters you are reading were all designed
with METAF ONT, in a completely precise way; snd they were developed rather
hastily by the author of the system, who is a rank amateur at such things. It
seems clear that further work with METAFONT has the potential o [producing
typefaces oc real beauty, so this manual has been written for people who would
like to help advance the art ol mathematical type design.

._” 2 Preface

A METAF ONT user writes a “program” for each letter or other symbol that
is desired. Ideally the programs will be expressed in terms or variable parameters,
so that a wide variety o c typefaces can b e obtained, simply by changing the
parameters; but METAF ONT can also be used to define a single solitary font, or
even g single character, if anybody really wants to.

It is harder to write a METAF ONT program than to draw a character with pen
and ink, but once the program has been written you can easily “parameterize”
it so that the letter shapes will adapt themselves to different specifications. And
it is easier to write a METAFONT program than (0 draw a character ten times.
Therefore METRAF ONT is usually used to provide an entire family or related fonts.
By varying the programs and the parameters, you will b e able to determine the
most pleasing settings .

METAF ONT programs are expJessed in a declarative algebraic language that
is rather different from ordinary computer languages, since it has been developed
especially for the problems oc type desiun @ Inthislanguage you explain where the
major components orc a desired shape are located, and you specify how the shape
is to be drawn using “pens” and “erasers.” One of the advantages of METAFONT
is that it provides a discipline according to which the principles o c a particular

alphabet design are stated explicitly—the underlying intelligence does not remain
hidden in the mind o c the designer, it is spelled out in the programs. Thus it is
comparatively easy to obtain consistency where consistency is desirable, and to
extend a font to ne N symbols that are compatible with the existing ones.

This manual is not © textbook about mathematics or about computers. But if
you know the rudiments of those subjects (contemporary high school mathematics,
together with the knowledge of how to use the text editor on your computer),
you should b = able to use METAFONT with little difficulty after reading what
follows. Some parts o ¢ the manual are more obscure than others, however, since
the author Aes tried to satisly experienced METAFONTers as well s beginuers
and casual users with a single xndonud] @ Therefore a special symbol has been used

to warn about esoterica: When you see the sign

at the beginning of a paragraph, watch o u d for a “dangerous bend” in the train
o r thought—don't read such a paragraph unless you need to. You will be able to

Table of Contents _ 3

us e METAFONT reasonably well, even to design characters like the dangerous-
bend symbol itself, without reading the Ane print in such advanced sections.

Computer system manuals usually make dull reading, but take heart: This
one contains Jokesevery once in 8 while, so you might actually enjoy reading it.
(Most o the jokes can only be appreciated properly if you understand g technical
point that is being made, however—so read carefully.)

In order to help you internalize what you're reading, occasional exercises
are sprinkled through this manual. It is generally intended that every reader
should try every exercise, except for the exercises that appear in the “dangerous
bend"” areas. If you can't solve the problem, you can always look at the answer
pages atthe e nd oc the manual. But please, try first to solve it by yourself; then
you'll learn more and you'll learn faster. Furthermore, if you think you d o know
the answer to an exercise, you should turn to the official answer (in Appendix A)
and check it out just to make sure.

CONTENTS
1. The basics 4
2. Curves 8
3. Pens and erasers 22
4. Running METAFONT Ay
5. Variables, expressions, and equations 39
6 ¢ Fillinginbetweencurves 48
7 e Discretenessanddiscretion 51
8. Subroutines 55
9. Summary or the language 61
10. Recovery from errors 69
A. Answers to all the exercises &l
E. Example of g font definition 82
F. Font information for TgX 95

I. Index 102

i

Chapte

<1> The basics

To define a shape using METAFONT, you don't draw it; you explain how to
draw it. Explanation is generally harder than doing—for example, it's much
easier to walk than to teach a robot how to walk—but the METAFONT language
is intended to make the job of explanation relatively painless. Once you have
explained how to draw some shape in a sufficiently general manner, the same
explanation will work for related shapes, in different circumstances; so the time
spent in formulating a precise explanation turns out to be worth it. The "META-
" of “METAFONT” is meant to indicate the fact that a general explanation of
how to draw a font of characters will transcend any particular set of drawings
for those characters.

To explain how to draw a shape, we need a precise way to specify various key
points of that shape. METAFONT uses standard Cartesian coordinates for this
purpose [following René Descartes, whose revolutionary work La géométrie in
1637 marked the beginning of the application of algebraic methods to geometric
problems]: The location of a point is defined by specifying its z coordinate, whick
is the number of units to the right of some reference point, and its y coordinate,
which is the number of units upwards from the reference point.

For example, the six points shown in Fig. 1-1 have the following z and y
coordinates:

(z1,51) = (0,100); (z,1) = (100,100); (z3, y3) = (200, 100);
ﬁﬂp‘wsv = Ao. 8“ mhu. %)= A—oo. ew AHQ w) = (200, 0).

These six points will be used in several examples that follow.

All points in METAFONT programs are given an identifying number, which
should be a positive integer (or zero). The z and y coordinates of each point are
specified by so-called z-variables and y-variables; for example, “zy" and “y" are
the coordinates of point 2.

In a typical application of METAFONT, you prepare a rough sketch of the
shape you plan to define, on a piece of graph paper, and you label the key points
on that sketch with any convenient numbers. Then you write a METRFONT
program that explains (i) how to figure out the coordinates of those key points,
and (ii) how to draw the desired lines and curves between those points.

METAFONT programs for individual characters consist of a bunch of “state-
ments" separated by semicolons and ending with a period. The most common

asics

Fig. 1-1. Six points that will be used
in several examples of this chapter and
the next.

form of statement is an equation that expresses one or more algebraic relationships
between variables. For example, consider the equations

n=n=y=y=wp=0
Zg = 5 = Yy = Y = y3 = 100;
z3 = 2 = 200;

these suffice to define the six points of Fiig. 1-1.

Points are rarely specified in terms of fixed numbers like 100, however, since
we will see later that this means a distance of 100 units on the square grid or
“raster” that METAFONT works with. An alphabet defined in such absolute
terms would come out looking very tiny on high-resolution machines but very
large on machines with only a few raster units per inch. It is clearly better to
write something like this:

zy=a4==0; zg=25=d; z3=21=2d;
u=wn=p=hk u=p=w=0
the auxiliary variables h and d, which we can assume have been defined at the
very beginning of our METAFONT specifications, can readily be adjusted to give
any desired scaling, without changing the rest of the program.
There are lots of other ways to specify the coordinates of those six points.

For example, the equation “z3 = g = 2d" could have been replaced by “z3 =
2 = 2 -+ d”, or even by an implicit formula such as

i3 — Ty == Tg — I5 = Tp— I}.

The latter formula states that the horizontal distance from point 3 to point 2 is
the same as from point 8 to point' 5 and from point 2 to point 1. METRFONT

6 | Chapter 1

The basics | 7 _

o
N
W

Fig. 1-2. A straight line drawn by
METAFONT with a circular pen.

N
o

will solve such implicit equations as long as they remain linear; further details
about equations are discussed in Chapter 5.

Of course there's no point in being able to define points unless there is some-
thing you can do with them. In particular, we want to be able to draw a straight
line from one point to another. METAFONT uses “pens” to draw lines, and in
our first examples we shall be using a circular pen that is nine raster units in
diameter. We can write, for example,

cpen; 9drawl..6;

these statements instruct METRFONT to take a circular pen (“epen”) of width 9
and to draw a straight line from point 1 to point 8, producing Fig. 1-2. We get
to Fig. 1-3 after the subsequent statements

draw 2..5; draw3..4;

note that it is not necessary to respecify the “cpen” or the “9” when the pen does
not change.

If Fig. 1-3 were to be scaled in such a way that 100 raster units came out
exactly equal to the height of the letters in this paragraph, the character we have

Fig. 1-3. After two more lines we ob-
tain a design something like the Union
Jack.

drawn would be “>K". Just for fun, let's try to t;ypeset ten of them in a row:
“ SKKKORKKKKOKKK " . How easy it is to do this!*

The most important thing to notice about Fig. 1-3 is that the center of the
pen goes from point to point when drawing a line. For example, points 1 and 8
do not appear at the edge of the line we have drawn from 1 to 8; they appear
in the middle of the starting and stopping positions. In other words, we did not
describe the boundary of the character, we described! the pen motion. This makes
it easy to do things like switch to a “boldface” 2K, namely to a JI<, merely by
using a cpen of width 15 instead of width 8.

Pen widths are usually specified by so-called w-v.ariables, which are somewhat
analogous to z-variables and y-variables. For example, the normal procedure
would be to define wy =9 at the beginning of our jprogram, then to write

cpen; w draw1..6; draw2..5; draw3..4;

by changing w; to 15 we would then get the boldface symbol without changing
the rest of the program.

Since METAFONT draws things by describing {:he motion of a pen’s center,
it is desirable to have a way to specify the points so that the edge of the pen will
be at a known place. For example, our character “>K" actually extends slightly
below the baseline (y = 0) of normal lines of type, because the pen of width 8
extends 4 units below the baseline when the center of the pen is on the baseline.
And the boldface i< goes down even further. The remedy for this is to define
¥4 by using a special “bot” notation, e.g.,

bot;y; == 0,

which means that the bottom of the pen will be at 0 when the pen of width
w; is at point 4. (The “1” in “bot)" refers to the: “1” in “wy"; thus, the bot
notation is meaningful only when the corresponding w-variable has a definite

*Now that authors have for the first time the power to invent new symbols with great ease, and
to have those characters printed in their manuscripts on a wide variety of typesetting devices,
we have to face the question of how much experimentation is desirable. Will font freaks abuse
this toy by overdoing it? Is it wise to introduce new symbols by the thousands? Such questions
are beyond the scope of this manual; but it is easy to imagine an epidemic of fontomania
occurring, once people realize how much fun it is to design their own characters, and it may
be necessary to perform fontal lobotomies.

value.) ‘Similarly,
topiy = 100

would say that the top of the pen will be at 100 when the pen of width w, is at
point 1.

Using these ideas, we can revise our example program to obtain the following
statements (assuming that h, d, and w; have already been defined and that the
character's height and width have been set to b and 2d, respectively):

fy=z4=0; pe=zy=d; z3=18=2d;
N=n=y U=B=Ww

topipn = h; botyy =0;

cpen; wjdrawl..6; draw2..5; draw3..4.

This program gives the characters 5K and JIK when w == 9 and w; = 15,
respectively; close inspection reveals that these characters just touch the baseline,
and they are exactly as tall as an “h".

»Exercise 1.1: Ten of the above characters will result in
SEKSKISISIOISIOICOKOKS

note that adjacent characters join together, since the character width is 2d, so
that points 3 and 8 of one character coincide with points 1 and 4 of the next.
Suppose that we actually wanted the characters to be completely confined to a
rectangular box of width 2d, so that adjacent characters would come just shy
of touching (SKIKIKKIKKIKIKKK). Explain how to modify the ex-
amiple program above o that this would happen, assuming that METAFONT has
operations “Ift” and “rt” analogous to “top” and “bot".

<<2> Curves

The sixteenth-century methods of mathematical type design failed because ruler
and compass constructions were inadequate to express the nuances of good callig-
raphy. METAFONT attempts to get around this problem by using more powerful
mathematical techniques: it provides automatic facilities for drawing “pleasing”
curves, and this chapter explains how to use them.

Curves _m_

The draw command introduced in Chapter 1 will produce curved lines, in-
stead of straight lines, when it is given a list of more than two points. For example,
let's go back to the six points of Fig. 1-1 and consider the effect of

cpen; 9draw5..4..1 Z..8..5;

this produces a closed curve from point 5 to point 4 to point 1 to point 3 to point
6 to point 5, as shown in Fig. 2-1.

Fig. 2-1. A curve that passes through
five of the six example points.

The bean-shaped path of Fig. 2-1 isn't bad looking, but it might not be the
curve we had in mind. Indeed, if the draw command had been “draw 4..1..3"
instead of the more complicated example above, we would have gotten the curve
of Fig. 2-2, which is almost surely not what anybody wants. Something went
wrong here, so it is important to get a clear idea of how METARFONT actually
decides what curves to draw.

,\\ln'!l{lf

ﬂ\ - HNI:“.IN“.{{I -3
Fig. 2-2. If you don't understand how , __
METRFONT draws curves, you might Ny
get ungraceful shapes.

o 5

| 10 | Chapter 2

METAFONT s rules are (fortunately) quite simple. The curve between two
points z; and 2 depends only on four things:

thelocation or z = (z1, y1);
the location or 2= (3, 1);
the angle or the curve at z;;
the angle or the curve at 2;

Once these four things are given, METRFONT knows what curve it will draw.
But how are the angles at z; and 2 chosen? Again there is a simple rule: If
the curve goes from 2 to z) to 2, the direction it takes as it p s sses through 2,
is the same as the direction o c the arc o r a circle from 2 to z to 2. Thus, for
example, since both Figs. 2-1 and 2-2 have curves that 4 u n from 4 to 1 to 3,
both curves have the same direction as they pass point 1, namely the direction
or the circle determined by points 4,1,and1 @ (Itis well known snd not difficult
to prove that there isa unique circle passing through any three distinct points
29, 21, and 2, unless these points lie on a straight line. We will not worry just
n o w about the exceptional cases when the points are collinear or not distinct.)

An important locality property follows from the two rules just stated: Each
segment of a METAF ONT curve depends only on the locations of the two endpoints
of that segment and the locations of its two neighboring points. For if the segment
runs from 2 to z, and if the previous point is z and the next point 1s 23, the
angle at 2; is determined by 2, z;, and 2, while the angle at 2 is determined by
21, 2, and z3. Other parts o c the curve will have n o effect; thus you can fix u p
any segments you don’t like without harming the segments you d o like.

So far we have discussed what the curve depends on, but not what the curve
really is. METAFONT s curves satisfy On invariance property in addition to their
locality property, in the following sense: Shifting a curve to the left or right, or up
or down, does not change its shape, and rotation doesn't change the shape either.
Furthermore if all coordinates are multiplied by some factor, the curve simply
grows or shrinks by that factor. (In mathematical terms, using complex variable
notation, the curve through points az; + B, ..., a2, + 8 is equal to A times
the curve through points z, ..., 2, plus 8.) Thereforewe n e e d only describe
the curve from z; to when z; = (z1,41) = (0,0) and % = (z2, o) = (150, 0),
say, and when the curve leaves z; at a given angle § © n d enters 2, at a given
angle ¢ with respect to the horizontal. These special curves will produce all other

METARF ONT curvesif weshiftthem,rotatethem, and expand or contract bbem ¢

Curves _ 11 ~

Fig. Z-3, Examplesof METAFONT’s
standard curves, leaving point 1 at an
angle ol 6(° from the horizontal and
entering point 2 at various multiples
of 30°.

Fig. 2-3 shows typical curves that leave z; at O n angle of 60°, coming in to
point z atanglesof 120°,90°,60°,30°,and 0 @ When both angles are 60°, the
curve is essentially the arc of a circle; when one angle is 60° and the other is 30°,
the curve is essentially a quarter-ellipse. (METAF ONT's circles and ellipses aren't
absolutely perfect, since they are approximated by cubic curves, but the error is
much too small to b e perceived.) At other angles the curves in Fig. 2-3 are less
familiar mathematical objects, but at least they have g reasonable shape.

pi% @ 2-4showsseveral more curvesthat leave z at 80°; but thistimethe
curves have been forced to come into 2, from below the horizontal, at angles of
—30°, —B0°, —90°, and —120°. Most of these curves (with the possible exception
o ¢ the —B80° one) are rather arbitrary, s o you are taking a chance if you expect
METAFONT to change directions so drastically.

Now let's return to the problem o ¢ Fig. 2-2; why did METAFONT choose
such an ugly curve when commanded to “draw 4..1..3"? The answer is that n o
angle was specified for the curve at its beginning point 4 or at its ending point
3; s 0 METAFONT used the directions from 4 to 1 and from 1 to 3, in order to
b e consistent with the two-point (straight line) case. In other words, the failure
occurred because we didn't give METRFONT 8 clue about how the curve should

Fig. 2-4. Examples of METRFONT’s
standard curves, when the outgoing
and incoming angles have opposite

signs.

_ 12 _ Chapter 2

be started and stopped. When drawing curved lines, it is almost always desirable
to specify the beginning and ending angles somehow, otherwise METRFONT will
be forced to choose directions that have little probability of success.

There are two main ways to specify directions at the endpoints. One way is
to supply “hidden points” to the draw command, as in the following example:

draw (5..)4..1..3(..8).

The “(5..)" means that METAFONT is to imagine a curve that emanates from
point 5, but the drawing doesn't actually begin until point 4; similarly, the “(..6)"
means that the curve will stop at point 3 but act like it was going on to point 6.
In this way METAFONT will select the same directions at points 4 and 3 that
were chosen for the curve of Fig. 2-1 (“draw 5..4..1..3..8..5"), so the result
will be to reproduce the segment of Fig. 2-1 that runs from 4 to 1 to 3.

The second way to specify a curve's directions is considerably more flexible:
You simply state what direction is desired. Let's consider another problem, in
order to illustrate this technique. Suppose we wish to draw a beautiful heart
shape. One approach is to start with a definite idea of what the heart should look
like, then try to get METAFONT to agree; i.e., we want METAFONT to produce
a drawing that matches the given idea. Since candy shops probably represent
the ultimate authority about the proper shape a heart should take, the author
purchased a box of chocolates on Feb. 14, 1979, and traced the outline of the
box's shape onto a piece of graph paper (after appropriately disposing of the
box's contents). In this way the following points were found to lie on an authentic
heart:

z; == 100;) == 162;
g == 200 — 25 == 140; 3y = yg = 178;
3 == 200 — 77 = 185; y3 = yy == 125;
4 == 200 — 25 == 181; yq == yp == 57;
o5 = 100; yg5=0;

see Fig. 2-5.
The naive way to ask METAFONT for the required drawing would be

cpen; 9drawl1..2..3..4..5; draw5..8..7..8..1;

L]
N

o

w

Fig. 2-5. Eight points to be used in
9 the design of a “heart.”

"

-0

but we don't expect this to be very successful, since it fails to specify proper
directions at the endpoints. In fact, it produces the lumpy shape of Fig. 2-6,
something one would hardly wish to leave in San Francisco. METRFONT will
certainly have to do better than that.

Fig. 2-8. The heart will look diseased
if you repeat the mistake of Fig. 2-2.

So now we come to the second way of providing the desired angles. By taking
a ruler, and drawing a straight line on the graph paper in the direction that the
correct heart shape takes at point 1, it is possible to specify the desired direction
by counting squares. The author found that the correct line goes 40 units upwards

4 Chapter £

when it goes 50 units to the right, so the direction at point 1 is specified by the
numbers 50 and 40. At point 5 the corresponding line is not so steep, it goes
down only 38 units per 50 units to the left; the direction in this case is specified
by the numbers —50 and —36. METRFONT will adopt these directions if they
are placed in braces following the names of the points:

draw 1{50,40} .2..3. 4..5{—50,—38};
this does the right half— the heart, and the left-hand ‘vo_.aou is similar, namely
draw 5{—50,36}..6..7..8. 1{50,—40}.

When you give explicit directions in this way, any positive multiple of the
direction is satisfactory; “{5,4}" means the same thing as “{50,40}", and you
could even say “{1,0.8}". However, the signs of these numbers must not be
changed; “{—50,—38)" is emphatically not the same as “{50,38}", since the
former means that the curve is corning to the point from the upper right while the
latter means that it is coming from the lower left. If the direction at point 5 had
been specified as {50,36}, METRFONT would dutifully have drawn some:’ ing
that comes from point 4, hooks around, and enters point 5 from the lower left;
the result is best not shown here. On the other hand the right-hand portion on
the curve could equally well have been drawn in reverse order,

draw 5{50,36} .4..3..2..1{—50,—40};

the signs are now reversed. A minus sign in the & part of a direction (the first
part) means in general that the curve is going left, a plus sign means that it is
going right, and zero means that it is going vertically. A minus sign in the y part
(the second part) means that the curve is going down, a plus sign means that it
is going up, and zero means that it is going horizontally.

The two draw commands above give explicit directions at the endpoints,
while taking METAFONT's standard directions at the interior points 2, 3, 4 and
8, 7, 8. Unfortunately the result (Fig. 2-7) is still not quite right, the transition
from 2 to 3 to 4 being somewhat disheartening. What we would like is to bring
the curve a little to the right, between 2 and 3, and a little to the left between
3 and 4.

1

Fig. 2-7. Correction of the error leads
to a better shape, but still further im-
provement is desirable.

One remedy that immediately springs to mind is to add more points. After
all, there's no obvious reason why exactly eight points should be the right number
to define this shape. It is a simple matter to look at the correct curve on the
graph paper and to add two more points where Fig. 2-7 is in error, say

29 == 200 — 710 = 181; o = y10 = 9T;
we can incorporate the new points by saying
draw 1{50,40}..2..3..9..4..5{—50,—36};
draw 1{—50, 40}..8..7..10..8..5{50,—36}.
The result in Fig. 2-8 is now satisfactory.

Pig. 2-8. A satisfactory design can
be obtained by inserting two extra
points.

16 Chapter 2

Curves _:_

But there is g better way, and g user of METAF ONT should be encouraged to
avoid introducing new points whenever posfbje @ The improvement comes when
we realize © o w points 2 and 3 were actually selected in the first place: point 2
is the topmost point, where the heart shape reaches its maximum y coordinate,
while point 3 is the rightmost point, where the maximum g coordinate is achieved.
Thus we know the correct directions at these points: the curve is horizontal at z

Bd vertical at ® @ METAFONT allows curve directions to be specified at all points,
not only g, the endpoints, hence the improved solution is to say

draw 1{50,40}..2{1,0} 3{0,—1}." 4 * * 5{—50, —36};
draw 1 {50, 40}..8{—1,0}..7{0,—1}..6..5{50,—386}.

This leads to Fig. 2-9, which is quite suitable for one's true valentine.

Fig. 2-9. Instead of specifying addi-
tional points, it is better to specify
where the curve is travelling horizon-
tally and vertically.

The success of this direction-specification approach suggests in fact that we
might be better off with even fewer points. What would happen if we tried to get
by with only four points instead of eight? Fig. 2-10 is the result of the commands

draw 1{50,40} * .3{0,—1} * * 5{—50, —36};
draw L{SO. 40}..7{0,—1} * . 5{50, —38}.

It turns out that this curve doesn't come up high enough for point 2, but point 4 is
very close. Thus points 2 and 8 should stay, bu: pobb 4 and 6 can be eliminated;

the candy makers probably wanted point 4 to be slightly to the left.*

Fig. 2-10. This heart was drawn
using only four of the eight given data
points, specifying the desired direc-
tions at points 1 and 5 and specifying
that the curve be vertical at points 7
and 3.

It isn't clear what will turn out to be the best strategy for cajoling META-
FONT into drawing the shapes that its users have in mind; only time will tell.
However, one further example will help to reveal 0 0 W points should be chosen
when attempting to draw curves: Let us consider the shoemaker’s probein @ The
author made g tracing on graph paper Oc the sole Or one og his left shoes, and
this led to the following data:

Zy= TT; y1 =322; 23 =132; 15 =1220; z3=11T; y3 = 150;
Zqmm 120; yqom=100; 25 mm 131; ysm= 55; zg= 95 yp== 2;
Tym= 48; yy== 60; = 38; yg=140; = 20; 1y = 200;

see Fig. 2-11..

*Another hypothesis is that the direction at point 5 isn't quite right in the author's data (since
the box was in fact crumpled at point 5).

| 18 | Chapter 2

-

.0
N

«®
W

Fig. 2-11. Another example, based

o

on the shape of a shoe.

o~
o

(=]

Since the sole’s boundary is g closed curve without sharp corners, it is natural
to try to get METAFONT to draw it with Q single draw command, using hidden
points:

draw (9..)1..2..3..4..5..8..7..8..9..1(..2).

But the result is g disaster (c+) 2-12a); the author's feet are somewhat ungainly,
but not so gnarled M that. The reason for this failure is what we alluded to in
connection with Fig. 2-4. METAFONT needs help when you want the curve to
change directions.

Imagine that you are driving along g curved highway; sometimes you are
turning left, sometimes you are turning right, and you are at g so-called inflection
point when you are momentarily going straight. The biggest probleminejy, @ 2-12a
occurs between 2 and 3, when the shoe sole has an inflection point but there is
no corresponding data ®nb @ Let'sadd one:

Ti0 = _.wmm Yio = _.wAm

Curves _um_

in general it is a good idea to include inflection points and to specify the desired
direction or the curve at such points ,

It turns out that all ten data points in this example are either inflection
points or places where the curve travels horizontallyor ve |l ¢@ So the best
way to draw the shoe sole is probably to specify directions at each point:

draw 1{1,0} " * 2{0,—1} " .10{—25,—80}.* 3{0,—1}." 4{18,—60}
..5{0,—1}..8{—1,0}..7{0,1}..8{—30,80}..9{0, L} @ 1{1,0}.

The result in Fig. 2-12b does indeed capture the author's sole.

Fig. 2-12. METAFONT has difficulty changing from left turns to right turns; the remedy
is to specify the proper direction at points of inflection.

20 Chapter 2

Note that when all of the directions are specified explicitly as in this example,
the draw command could have been split up into individual segments:

draw 1{1,0}..2{0,—1};
draw 2{0,—1}.. 10{—25,—60};

draw 9{0,1}..1{1,0};

the result would have been just the same.

Here is how ME TRFONT chooses the angle at point 2; when the direction has not been
explicitly given, for a curve from 2 to z to 2: Let 2 = (i, W), A%k = Zu41— &,
AYk = Yet1— Uk, and |Azf? = (Aze)?+(Ap)? Then if [Az|? = 0 (i.e., if 0 = 21), the
direction is {Az;, Ay} (i.e., the direction from 2 to 7). If |Az|* = 0 (i.e., if 21 = 2),
the direction is {Azo, Ago} (i-¢., the direction from 2 to z;). Otherwise the direction is

{Azo/ 8% + Oz /|82, Aw/|Azf® + Ay /1aaf,

which corresponds to the direction of the circle through 2, 2, 2; if these points aren't
collinear. The direction computed by these rules turns out to be {0,0} when 20 = z; in
this degenerate case it is arbitrarily changed to {1,0}. When drawing a curve from 2z to
2 to -+ to z,, METAFONT will set 20 = 2 if no hidden point is given at the beginning,
and 2,1 = 2y if no hidden point is given at the end; thus, each point of the curve has
a predecessor and a successor.

@ vwxnnmnan.r>nno..&=n»os.n_,:_omm:ouov_.ono&nnuunwn_ﬁv?iinn:_.(.nno
you get from the command “draw 1..2..2..3"?

The actual curve drawn between 2 = (21, 1) and 22 = (3, 12), when the starting

direction makes an angle § and the ending direction makes an angle ¢ with respect
to the straight line from 2 to 2, can be defined in the language of complex variables
by the formula

dt)=2a+ (2 —28)m—az)+ 1 (1= 6—s- (1 —1)8, for 0Kt <L

Here r and s are special quantities explained below, while §; and & are the specified
directions of the curve at z and z, normalized so that [6;] = |82] = |22 — z|, namely

ﬂ h=cn—=n) &G=cn—2)

Curves 2

Whenever r and s are positive real numbers, the stated formula for 2(t) defines a curve
having the specified directions at 2; and z; conversely, all curves from z; to 2; that have
the specified directions, and that have degree 3 or less as a polynomial in ¢, can be
put into this form for some r and s. We shall call r and s the “velocities” at z and 23,
since a large value of r means that the direction remains approximately equal to 6, for
a long time after the curve leaves z; and a large value of s means that the direction is
approximately 82 for a long time before the curve reaches z;. A small velocity means that
the curve may be taking a sharp turn at 2 or 2, since the directions & or 67 will have
comparatively little influence. METRFONT chooses velocities by the following formulas:

2sin ¢ | 2sims |

i+¢
== P ——m ﬁ == —
(1 + lcos |} sin _ﬁ + |cos9|) sin _

@" ” ’

r

provided that ¥ is not too near zero; otherwise the velocities are taken tobe r = s = 2.
These velocity formulas are rather arbitrary, but they have been chosen so that excellent
approximations to circles and ellipses are obtained in the cases 8 = ¢ and § -+ ¢ = 90°.
Furthermore the formulas have at least one nice mathematical property, namely the
fact that they keep the curve “in bounds”: If 8 and ¢ are nonnegative, the curve from
2 to z will lie entirely between or on the lines 2z + ¢§; and z < ¢(22 — 1) and entirely
between or on the lines z; — t6; and 2 — (23 — 1) (for ¢ 2> 0).

Actually the velocities r and s are adjusted so that they aren't too large or too

small; METRFONT’s standard mode of operation will ensure that 0.5 < r,5s < 4.
(Small values of r and s usually make the curve turn too sharply at 2 or z, while large
values usually make it wander erratically.) In the cases corresponding to Figs. 2-3 and
2-4, for example, we have § = 60° and the following values of ¢, r, and s according to
the formulas above:

¢ r 5 ¢ T & ¢ T s
120° 1.7321 1.7321 30° 0.8284 1.4349 —60° 2.0000 2.0000
90° 1.6448 1.4245 0° 0.0000 1.8564 —90° 3.9307 3.4041

60° 1.3333 1.3333 —30° 1.9653 3.4041 —120° 1.8564 1.8564

When ¢ = (P the value of r was raised by METARFONT to 0.5, otherwise the curve
would have been a straight line from 2z to 2 (not having the correct direction at z).
METRFONT also gave the message “Sharp turn suppressed between points 1
and 2 (r = .0000)" when it drew the curve for ¢ = (P.

| 22 | Chapter 2

There is a way to change METRFONT s velocity thresholds by altering maxve,

minvre, maxvs, and/or minvs, as explained in Chapter 9. For example, the com-
mands “minve 0.0; minvs 0.0" will allow arbitrarily sharp turns. This can be useful in
certain circumstances, when it is desirable to ensure that the curves stay in bounds as
explained above. Furthermore you can set r and ¢ to any desired value (in case you
don't like METAFONT's choice) by making maxvr and minvr be the desired r and by
making maxvs and minvs the desired .

@ van:mnon.nu>n8_.&bnnogomo::an.i?uan::omo%ocan»?oaS-nmon:nann
of commands “minvr 0.0; minvs0.0; draw 1..2..3"?

<<3>Pens ond erasers

Our examples SO far have drawnstraight lines and curved lines using pens shaped
like circles. As you might suspect, METAFONT also has access to several other
kinds or scriveners' tools. A METAFONT user's program is supposed to select
the particular type oc pen needed, and this will be theso-called current pen type
until another one is spedfed @ The current pen type might be

cpen, “circular pen,” asin our previous examples;

hpen, “horizontal pen,” having 8 fixed height and varying width;
vpen, “vertical pen,” having g fixed width and varying height;
Ipen, “left pen,” g rectangle at the left of the current position;
rpen, “right pen,” g rectangle at the right of the current position;
spen, “special pen,” g specially defined elliptical shape;

epen, “explicit pen,” g fairly arbitrary shape.

Chapter 1 discussed briefly the fact that pen sizes are generally expressed
interms Or METAFONT's w-variables, namely the variables named wy, w;, wy,
etc. The command “wydraw 1..2..3" will, g0 example,draw g curve using the
size-wy pen or eraser of the current type.

Pens of types epen, hpen, and vpen are ellipses whose axes run horizontally
and vertically. The rules by which METAFONT creates g size-w pen of these
types are simple:

A cpen of size wOm height w and width w;
an hpen of size w has height by and width w;
8 vpen (OF size w Om height w and width w,.

Pens and erasers _ 23

T TP 3| Pig.3-L Circularpen, horizontal pen,
) x . M vertical pen.
N o/

Here hp and w are the current values o METAFONT parameters called hpenht
and vpoeN\d @ Forexample,consider ()59 @ 3-1, whichwas drawn with the following
METAFONT program:

71 =0; =100; z3=200; yy=1n=13=0;
hpenht 25; vpenwd 25;
cpen; 75 draw 1; hpen; 75 draw 2; vpen; 75 draw 3.

(Note that draw can be used for single points as well m forlines.) The effect or
such oval-shaped pens is illustrated in () VAN) 3-2a, which shows the shoe sole Op
Chapter 2drawn with an hpen, and in Fig. 3-2b, which shows Chapter 2's heart
shape drawn with g vpen. In both cases the variable pen size was 9 and the fixed
sizes (ho and w) were 3.

Fig. 3-2. The example
shapes of Chapter 2,
drawn with a horizon-
tal pen (a) and with a
vertical pen (b).

| 24 | Chapter $

Pens and erasers _ 25 _

Erasers can be used to “clean off the ink” in unwanted sections g previously
drawn lines. Any pen can be converted to an eraser by simply putting the symbol
“$" after its name; for example, “cpen#” specifies g circular eraser .

The rectangular-shaped pens Ipen ond rpen are most often used W erasers,
since their shapes are convenient for $ypical degnuporoszgfons @ Anlpenorsize
w is g rectangle w units wide snd ho units high, lying to the left o the point
being drawn and centered vertically with respect to this point, An rpen or size
w is similar, but it lies just to the right of the point being drawn. For example,
Fig. 3-3 shows the result of the METRFONT program

71 =0; 73=100; 33=200; yy =g =y3=0;
hpenht 25;

cpen; 150 draw 2;

Ipent#; 35 draw 3;

rpen#; 35 draw 1.

\.
En.ulu.woanvun:_n_.a.g.:-&s w. L vw .Nw
the middle of a large circular pen. v o

e

The ellipses you get with hpen and vpen have both horizontal and vertical sym-
metry. In order to get ellipses that are tilted obliquely, you can construct special
pens (type spen). The general form of an spen definition is slightly complicated but not
hopelessly so: you say
spen(a, b, ¢, 2o, Yo, o, Vo)

(optionally followed by “#" if you want an eraser instead of a vﬂv. and the result is a
pen or eraser consisting of all points (¢,) such that

¥

al€ — 20)? + b(¢ — za)(n — o) + c(n — w)* S 1.

Fig. 3-4. An oblique pen gives this
splendid valentine.

When later drawing with this pen at point (z, y), it is offset so that it actually is placed
at (z — z, y — y5). The main parameters a, b, ¢ of spen must satisfy the condition

b? < dac.

Furthermore, they had better be pretty small numbers, or the pen will be too small to
be seen. When drawing with an spen (e.g., wa draw 1..2), its “size” (i.e., w3) is ignored.

For simplicity let us consider first the case zo = g = z{ = y} = 0; these

parameters are generally used only for fine tuning when the discreteness of the raster
is considered. Here is a plug-in formula for generating a pen of height 4 and width w that
has been rotated counterclockwise by an angle of # degrees: Use spen(a, b, ¢,0,0,0,0)
where

anAsw: + .E:v. en:.sscﬁll\wv. nuAau: + JMJ

w? h3 w?

(When h or w are small, however, you may have to play with this formula a bit in order
to avoid the effects of roundoff errors.) Fig. 3-4 shows what happens when such a pen
is applied to the heart shape, using w = 9, h == 3, and an angle of 3(°.

The quantities a, b, ¢, Zo, Yo, zb ¥} are real numbers, but the discreteness of the
raster implies that METAFONT's pen is actually the set of all integer points (€,)
satisfying a(¢ — zo)® + b(€ — zo)(m — wo) + ¢(n — 1) < 1. Therefore it is important
for METAFONT to define its cpens, hpens, and vpens carefully in such a way that they

| 28 | Chapter 8

Pens and evaser 2

have the correct relation to the curve being drawn. Consider, for example, a epen of
size 7, which looks like this when enlarged:

To “plot a point” with this pen at (z,y), when z and y are real numbers, METAFONT
first rounds to the nearest integer point (z',) and then blackens the pixels in locations
(z' + & v’ + n) where ¢ and » run through the 37 square dots of the pen image:

AIH. wv. Ao. wv. :; wv. Aln. s‘ T!—.. nv. ey AH. :INV. G. lwv. A|._.. Iuv. AP 'wv. :. lwv.

This works fine because it gives three dots above and below and to the left and right of
(z', ¥); the pen has width 7 as desired. But now consider the problem of a cpen whose
width is an even number, say 4. The desired pattern of dots is

and this shape can't be centered at an integer point (2/,¢’) since none of its dots is the
center. METAFONT's remedy is to consider that the pen shape is actually centered at
(4, 4); to plot a point with this pen at (z,y), when z and y are real nuinbers, the idea
is to round the shifted point (z — 4,y — }) to the nearest integer coordinates (', y),
and then to blacken pixels (z’ 4 £, ¥’ <+ n) for the appropriate values of (£, 17):

8. wv. C. Nv. AII—.. C. Ao. —v. Q. C. A». C. AIL.. 8. Aﬁo. 3. c. S. nw. e. Ao. I.C. C.. Icu

The net effect when drawing a curve is to have a pen of width 4 that is centered on
that curve.

A further complication arises from the need to make sure that exactly the right

number of integer points will satisfy the elliptical relation, since the discretized pen
should occupy precisely w columns and A rows, for any given positive integers w and A.
Let 6(n) be 0 when n is odd and §(n) == § when i is even; then METRFONT's discrete
pen of width w and height A is defined by spen(a, 0, ¢, 5(w), 5(h), 6(w), &(h)) where

4 4 25(w) 26(h)
e R ey

The most general pen or eraser shape you can get with METRFONT comes from
an epen specification, which has the form

epen (Ui, ri)(l—1, e—1) . . . (lo, r0).(—1, 7—1) - . . (I—wmy T—mm)

(followed by “s”-if you want it to be an eraser). This denotes a pen positioned at
(0,0) containing all integer points (§,n) for i S € K rpand k > n > —m; each |
and r, should be an integer, with [y < rq. If there are no points with # < 0, the
“(=1,7—1)...(I—m) 7—m)" part of this specification is omitted; on the other hand if
m > 0 there should no space between the period and “(l_y, r—,;)".

Fig. 3-5 shows an example in which epen has been used to define an eraser in the
shape of an isosceles triangle, 5 units high and 9 units wide. The illustration was
generated by a rather simple METAFONT program:

z e 0; y == —20; 5= 50; ypm0; z;=100; y; = 20;
cpen; 150 draw 2;
epen (0, 0)(—1, 1)(—2, 2)(—3, 3)(—4,)#;

drawl..3.
} \) \\.\\ w y
Fig. 3-8. A straight line “drawn” with \\\\m |
a triangular eraser. .,,.. 1 : \
" . P
—

When METAFONT draws with an epen, it ignores the pen size, just as when it

is using an spen. However, you can set spenxfactor and epenyfactor to a value
greater than 1.0 if you wish to enlarge all of your epens (or to a value less than 1.0
if you wish to shrink them). The expansion or shrinkage occurs by epenxfactor in
the horizontal dimension and by epenyfactor in the vertical dimension. Two other
parameters epenxcorr and epenycorr can be set to nonzero values z, and yj if you wish
to replace (z, y) by (z —z§, y — y}) before rounding and plotting with an epen. It should
prove interesting to create alphabets whose letters have been drawn with normal pen
motions but with abnormal epen shapes (triangles, diamonds, teardrops, and so on).

28 Chapter 8

»Exercise 3.1: Explain how to specify an Ipen of width 7 and height 5 using an epen.
(When such a pen is “plotted” at point (z/, ¢), it whitens pixels (z' - ¢, ¥’ -+ 7) for
—T1<¢<—land —2< < +2)

Chapter 1 mentioned notations such as “bot;ys”, meaning the y-coordinate
or the bottom or g8 pen or size w; when the pen itself is positioned at y4. These
notations top;, bot,, Ift;, and rt, always refer to the current p e n type, and to
size w; (8 w-variable that must have g known vsiue) ® Forexample, youcan't
say “bot;ys" unless the value or w; has been deAned oE.:n_.. If wy= 9 and the
current type is cpen or vpen, “bot;ys" is equivalent to “y; —4”.

»Exercise 3.2: Describe in words the difference between the shapes that would
be drawn by the following two METAFONT programs (without typing them into
the computer):

Program 1. z; = y; == 0; hpenht 25; w, = 75; hpen; w; draw 1.
Program 2. zy =y =y =y =0; w =25, w =175; cpen;
Wt 2 = Htozy; rtyz) = rtpz3; wp draw 2..3.

The following table gives the amount of offset produced by top, bot, Ift, o nd rt
with respect to a pen of size w, when w is a positive integer:

cpen hpen vpen Ipen Ipon spen, epen

top (w— 1)/2 (lo— /2 (w — 1)/2 (ho— 1)/2 (o— 1)/2 ymax— v}
bot (I — w)/2 (1 —ho)/2 (1 —w)/2 (1 —ho)/2 (1 IE\N Ymin — Yb
(1 —w)/2 (1 —w)/2 (I —w)/2 —w Zmin — Zp

t (w— 1/2 (w— 1)/2 (w— 1)/2 -1 w Zmax — Zg

For spen and epen, the quantities Zmin, Zmax, Ymin, Ymax denote theextremes of § and v
in the discrete pen, while z{, and y; denote the offsets subtracted from the coordinates
before rounding and plotting. Note that p ® n s of type cpen, hpen, vpen, lpen, rpen
always have the property that

topibotiy =y,

in other words 31 = topiys if and only if y; = botiy:. Similarly, the operations lft and
rt are inverses of each other, for types cpen, hpen, vpen.

Running METRAFONT _ 29

<<4> Running METAFONT

It is high time now for you (0 stop reading and start playing with the computer,
since METAFONT is an interactive system that is best learned by trial and error.
(In fact, one of the nicest things about computer graphics is that your errors are
often more interesting than your “successes.”)

The instructions in this chapter refer to the initial implementation ot META-
FONT with Datadisc terminals at Stanford's Artificial Intelligence Laboratory;
similar rules will presumably hold if METAFONT has been transported to other
environments. The first thing to d o (assuming that you are logged in) is to tell
the monitor

r mf(carriage-return)

{(meaning Run METAFONT). After METRFONT has been loaded into the machine,
it will type “»"; this means it wants you to instruct it about what to do.
The moeonn thing to do is type

proofmode; drawdisplay;

and hit (carriage-return) scsin @ The proofmode command instructs METAFONT
that you want to print hard-copy proofs of the characters you are generating ,
(Such proofsheets will contain enlarged versions Or the characters together with
labeled points, as in the illustrations or this manual.) The drawdisplay command
instructs METAFONT to display the current state of what has been drawn, after
every draw command .

Before doing anything else, you might as well make an intentional error, s O
that you won't be quite s O frightened later on when METAFONT detects unin-
tentional ones e Type

error; another error;

from NOW on-the (carriage-return)s at the end or lines will usually not be men-
foned @ METAFONT will try to figure out what you had in mind by typing this
funny line, but pretty soon it will discover that the statements make no sense o
The word “e rror” has no special meaning in the language, so METAFONT o s -
sumes thatitisthe name or one or your usrisbjes @ Underthis assumption, you

might be typing g statement like “error = 5". But in fact youtyped "i" after
“error”,and that doesn't obey the rules o¢ METAF ONT’s language, so you get
the following response:

1+1.0000 error+.0000
! Missing = sign, command flushed.
(x) error;
another error;
T

The"! Missing = sign”tells you what METAF ONT thought was wrong about
your statement; “command flushed” means that the statement has b e e n ig-
nored (the error didn't hurt anything); and “1 .0000 error + .0000" is the
algebraic value or the incomplete equation (in ggse you're interested). The *(x)”
means that METRAFONT was reading 8 line that you typed directly at your ter-
minal,not 8 line fromsome Ale @ The position where the error was detectedis
indicated by the fact that “another error;" appears on g separate line—this
SeWnd line contains text that METAFONT hasn't looked at yet.

The “1” means that METAFONT wants you to respond to the error message,
but since you haven't used METRFONT before you don't know how to respond.
Type “?" (nO (carriage-return)is needed) snd it will say

Type <cr> to continue, <1f> to flash error messages,
1 or ... or 9 to ignore the next i to 9 tokens of input,
i or I to insert something, x or X to quit.

OK,theseare your opfons @ If youtype s digit (1toS)ortheletter “i", you
get the ability to change what METARFONT will 1ead next; but these features are
primarily or interest when METAF ONT is processing input from g file, so we shall
discuss them later. The best thing to d o at this point is type (carriage-return)
(“<er>"), since (line-feed) (“<1 £>") would not give you 8 chance to stop and
correct any future error messages.
As you might have guessed, another error will now be detected. But you prob-
ably didn't guess what kind o ¢ error you were making, unless you've read Chap-
ters @ METAFONT believesthat“anothererror”iswrongbecause“another”
and“error”arethenames Or variables,and you are trying to multiply these vari-
ables together (as if you had written “anotherxerror” or “another.error”—

\

multiplication signs need not be used in METAFONT formulas), Butitisillegalto
multiply two variables together unless at least one or them has previously been
given an explicit value, as we shall see in Chapter 5, hence the error message is

! +1.0000 another + . 0000
! Undefined factor, replacedby1 .0000,
(%) error; another error;

(The undeAned value 0g¢ “another” has been replaced by 1.0000 and the machine
plans to continue evaluating the algebraic expression when you restart.) Hit
{carriage-return) again. And again.

Now you are once more prompted with “«” and we can proceed to do some
real METAFONTIng. For our first trick, let's try to produce the heart shape 0 ¢
Fig.2-9,but without using points 4and 6 @ Type the following fourlinesone at
8 time (without error, please):

x1=100; y1=162;
x2=200-x8=140; y2=y8=178;
x3=200-x7=185; y3=y7=125;
x5=100; y5=0;

don't forget the semicolons after each equation. Note that subscripted variables
like 2, are typed simply as “x2" i this works with w-variables, z-variables, y-
variables, and with constructions like bot;y (which wous be typed ‘botiy4’ Zo

At this point you might want to see if METAF ONT was really smart enough
to figure outthe value of zg from the equation 200~x8=140. So type “x8 ;" and
hit {carriage-return) , This producesanerror message we've seen before, namely

! +60.0000
! Missing = sign, command flushed.
(*) x8;

but it also reports the value o ¢ the incomplete equation zg, namely 60 (as it
should be). In this way you can u s e METAFONT as 8 handy on-line computer
in €8s® you've misplaced your pocket calculator; try typing ‘'sa rt 2, " and see
what happens. (Whoops, type (carriage-return) first, to get out oc error-recovery
mode.)

32 Chapter 4

Running METAFONT _ 33 _

In -the midst or all these digressions about errors, we have been trying to
draw 8 heart shape; and in fact, we have made progress, since the shape is almost
ready to be drawn. Type

vpenwd 3; vpen; S draw 1{50,40}..2{1,0};

you should nan see 8 blip on yourscreen. Believe it or not, that's the arc from
point 1 to point 2. The whole heart will appear after you type twomore lines,

draw 2{1,0}..3{0,-1}..5{-50,-36}.;
draw 1{-50,40}..8{-1,0}..7{0,-1}..5{50,-36};

right?

Notice that the key points (z;,y;) in the heart figure don't appear on your
screen (although they will appear in your proof gopx) o The following statements
willdraw some thin auxiliary lines so that you can identify points 2, 3, 7, and 8:

wO=1; cpen; wO draw 2..5; draw 8..5; draw 3..7;

in general, some guidelines like this can be incorporated into your drawings while
you gre designing characters, thereby providing convenient reference points as
youwork on line. The example alphabet routines described in Appendix E include
background grids to facilitate the design process.

Now the heart shape is complete; typea period (“.”) and hit (carriage-return).
(The period could also have been substituted for the semicolon at the end of your
previous statement.) At this point—or perhaps we should say “at this period”—
METAFONT prepares the proofl copy oc what has been drawn, since proofmode
was requested; then it gets ready for another drawing. All of the z-variables and
y-variables that have been defned so far now become undefned again; but the
w-variables (and any other variables, if there had been any) retain their values.
The picture of g heart remains on your screen, but it will vanish when theresult
or the next draw command is displayed.

You can test the factthat wy is still equal to 1 by typing

METRFONT will respond “Redundant equation.” You can also try typing

5w0=6;

METAFONT will respond “Inconsistent equation.” (If you really want (0
change wp you can say, for example,

new wO; 5w0=8;

then wy will become 1.2, which will be rounded to 1 if it is used as g pen size ¢
Things like this will be explained later in more detail.)

At this point you know enough about METAFONT to try a few experiments
on your own. Perhaps you would like to play with it before finishing this run. Just
remember to type semicolons after each statement, except that the last statement

or any particular drawing should be followed by g period. The statements you
know about so far are (i) equations, (i) pen type specifications, (iii) draw .
When you're all done, type “end” and METAF ONT should stop. Afterwards
something like “.rxgpsyn;mfput.xgp/L" will show upon your terminal . Hit
(carriage-return) and your proof sheets will be printed on the XGP printer.

After each run 8 record or what you typed and what error messages were
issued will appear on your fileerrors.tmp; you can read this file to remind

yourself about any errors that you wouldlike to avoid next time.

That finishes Experiment Number One. Are you ready for Number Two? If

not, now's g good time to take g break and put this manual down for g while.

Experiment Number Two should be fun, since you will learn (a) how to create
g nay “font of type” that can be used in printing future documents, and (b) how
to get METAFONT (0 read from s file instead or from the terminal. The font to
be created consists or seven characters,

a=~b="c= ' d= e=~ =7 z = (blank),

each or which is 10 points square (in printers’ units) . We shall name the font
DRAGON, since it can be used to typeset so-called “dragon curves” [cf. C. Davis and
D.E.Knuth,J. Recreational Math @ 3 (1970), 66-81, 133-149; see alo D. E o Knuth
and ! @ C.Knuth, J. Recreational Math. 6 (1973), 185-167]. For example, the
textin Fiig. 4-1 can be used with your font to produce Fig. 4-2, which is g dragon
curve oc order 9. Another thing you can do with DRAGON is (i) make a border
of “dada...da\par"at the top or g page; then (ii) type any number oc pairs
o lines having the form “cxx.. @ xb\par”followed by “dxx---xa\par”, where
the x's represent any random mixture of e's and f’s, all of these lines having the
same length as the first line; then (iii) finish up withtheline“cbeb...cb\par”"
(Try it!)

Running METAFONT _ 35 _

| 34 | Chapter 4
\:b+dragon [(your fils area)l . dfbzdfeffbcbzdadfbcbzdadfbeb\par
\baselineskip Opt \lineskip Opt ceadeeefeazzzcefeazzzcefea\par
zzzzzdazzda\par dfefefefffadadefffadadefffadadal\par
zzzzdfbzdfb\par cbcesbceobcoafecafeoabcoebcealfoa\par
zzzzceadeeada\par zzdfbzdfbzdfffeffIffbzdfbzdf fbcb\par
zzzzdfebcbcTb\par zzcbzzcbzzcbceafeoefazcbzzcbeal\par
zdazcfeazzzca\par z2722222222zdfefefefbzzzzzzzdfa\par
dfbzdbcbzzzdb\par 2z2zz2zzzdazcfeocebceazzzzzzzcfea\par
ceadeazzzzcb\par z2zzz2zzdTbzdfefbzdfbzzzzdzzdbcb\par
dfefefa\par zZzzzzz2zCc0adeeefazcbzzzzzcadeal\par
cbceefea\par z22zz222zdfefefefbzzzzzzzzZCcbeb\par
zzdffbcb\par zzzzzZzzcbceobcea\par
zzcbca\par 22z22222z2dfbzdfb\par

zzzzdfadadazzzzdadazzzzdada\par 222222222ZCbzzcb\par
zdazcToeefeazzzcofeazzzcefea\par \vfilllend

Fig. 4-1. The TEX typesetting system will produce the famous “dragon curve” from
this input, if you create the Dragon Font described in this chapter.

In order to get ready for Experiment Number Two, prepare a file calied
DRAGON . MF that contains the following data:

“The Dragon Font, created by (your name)";

fntmode; % this causes a font for the XGP to be produced
tfxmode; % this causes a TEX information file to be produced
titletrace; X this prints out quoted strings when they occur
peints=10; % change this if you want a different size font
pixels=3.6; %X raster units per point for TEX on the XGP
wO=pixels+i; % pen size is one point plus one raster unit
cpen; maxht topQO points.pixels. % tallest output in raster units
(begin new file page)

"a: From W to 8";

input drag; charcode “a;

wO draw 4{1,0)..3{0,-1).

(begin new file page)

"b: From W to N";

input drag; charcode °b;

wO draw 4{1,0}..1{0,1}.

(begin new file page)

“c: From N to E-;

input drag; charcode °c;

wO draw 1{0,-1}..2{1,0}.

(begin new file page)

"d: From 8 to E";

input drag; charcode °d;

wO draw 3{0,1)..2{1,0}.

\

w Fig. 4-2. Dragon curve of
Nﬂv/\v order 9, typeset by Fig. 4-1
(and reduced in size).

(begin new file page)
"e: From W to 8 and from N to E”;

input drag; charcode “e;

w0 draw 4{1,0}..3{0,-1}; draw 1{0,~1} 2{1,0}
({begin new file page)

“f: From W to N and from 8 to E*;

input drag; charcode °f;

»Exercise 4.1: Figure out what belongs here ...

(begin new file page)

“z: Blank";

input drag; charcode

-~

(Material beginning with the symbol “%” is ignored by METAFONT, up to the
end of a line; such comments often provide useful documentation.) Let us hope
that you don't think preparing this longish file was a drag, because there is yet
one other file that needs to be created, a shortish one called DRAG . MF containing
the following:

% Common routine for thae DRAGON characters
yi=x2=points.pixels;
xi=x3=y2=y4=1/2 yi;

y3=x4=0;
error; 2.0 intentional errors to be removed later;
cpen;

charht points; charwd points; chardp O; chardw round x2;

h 36 _ Chapter 4

Running METARFONT 37

METAFONT is asked to read this file seven times by the commands “input
d rag"” in DRAGON . MF, since DRAG . MF contains information that is useful for all
seven characters. The charht, charwd, and chardp commands on the bottom
line are for TEX's benefit, telling the character's height, width, and depth in units
or poings @ The chardw command gives the character's approximate width in
raster units. It is more interesting to draw the characters than to supply such
information, but the information is necessary when g font is being made.

OK, now you're ready for the real action (0 take ploee ° Type “r mf" to

the operating system; and when you get the “x”, type “input dragon”. The
following data should soon appear on your screen:

(dragon.mf 1 2 3
a: From W to 8... (drag.mf 1 2
! + 1.0000 error + .0000
! Missing = sign, command flushed.
p.2,1.5 error;
2.0 intentional errors to be removed later;
T

(If something else shows up, you might have forgotten a semicolon or made some
other typing mistake . Chapter 10 contains 8 complete list or error messages in
case you find METAF ONT’s remarks inscrutable.) The screen data shown above
means that METAFONT has begun to read file DRAGON.MF;infact it has gotten
up to page 3 and psssed the quoted statement "a: From W to S”. Then it
began to read DRAG.MF, where an eccor wasencountered on page 2, line 5.*

We inserted an intentional ercor into file DRAG.MF in order to get used to
error correction when METAFONT is reading from g file. Type “3” non, just to
see what Asppens @ When you type g digit from 1 (0 9 in response to an error,
METAFONT will delete this many so-called tokens from the input. In this case
the result after deleting three tokens is

p-2,1.5 error; 2.0 intentional errors
to be removed later;

‘wwsu numbers are one higher on Stanford's system than they might be at other places, since
the system text editor supplies a directory page called page 1.

so you can see that the constant “2.0" is considered to be a single token (not three),
and that “intentional” and “errors” were the other two tokens deleted.
Generally speaking, a token is a variable name or a constant or a special character
like g semicolon. (Furthermore the two dots in g command like “draw 1..2"
count os g single token.)

At this point it would be a good idea for youtotype “e"" This tells META-
FONT that you wish to terminate the present run and that youwish to make 8
correction at the current place in the current 61¢ @ Soon after typing “e” you will
find that the system text editor has started, and the cursor shows that you are
positioned at page 2, line 5 oc DRAG.MF, the place where the eccor wasdetected.
Delete this offending line from the file and exit from the editor.

Are you continuing to follow these instructions faithfully? Please stick to the
job just g little longer, then you'll be on your ann e The next thing youshould

do is type “r mf"” again; then type

input mumble

(and {(carriage-return)) . This will produce yet another error message, but it is
useful :or youto learn how to recover from the wrong-file-name eccor since some
people don't feel that METAFONT's recovery procedure is completely obyious ¢
What you should do in response to

! Lookup failed on file mumble.mf.
(») input mumble
T

is (a) type “i" (meaning that you want to insert something into what METAFONT
is reading), then (b) type “dragon”{the correct file noxne) ° This ought to work .

Now you might think everything will go smoothly, but the author has planned
one more instructive error for you. The message that you get is

! Input page ended while scanning “a: From W to S" .
p-3,1.2 ‘input drag
; charcode

a;

Actually this isn't an ecror, it's just a warning that an error may have occurred,
since normal usage of METAF ONT will not end g file in the middle of processing

38 Chapter 4

8 character. We have used the short DRAG file in this example to avoid repeating

four lines or code in seven places, but in practice it is better to accomplish this
by using subroutines (which we haven't learned yet) or by copying the fourlines
into the DRAGON file seven times using the system text editor. Since the file ended
before "a: From W to S* was finished, METAFONT has issued a warning that
an error might have ozsursed @ To recover, you can either (g) hit the line-feed
key now (so that METRFONT won't stop on future errors the next six times this

e Dappens), or (b) type “i" and then type ‘‘no pagewarning;" this suppresses

the warning messagégas the end of filepages. (If a no pagewarning command
had been included nea#¥Ke beginning of your DRAGON . MF file, METRFONT would
not have stopped to give you this message in the first place.)

Finally METAFONT will finish reading the last page of DRAGON . MF; it puts a
“)" on your screen when this happens . You can now type “end”and the program
will siop @ If you have carefully followed the above instructions, METAFONT's
closing words (0 you will be

Images written on DRAGON.FNT
TEX information written on DRAGON.TFX

so you will be able to use DRAGON as g font with your next TEX manuscript.

Note that the process of preparing a complete font is very much like the task
of writing 8 medium-size computer program or technical paper. It takes g little
whileto get g correct computer file set up, and you have to dot the i's and cross
the t's (perhaps literally); but once you have reached this point it is fairly easy
to make changes and to develop bigger and better things.

»Exercise 4.2: Since this was a long chapter, you should %0 outside non ond get
some real exerdse ¢

\

Variables, expressions, and equations | 39 |

<<5> Variables, expressions, and equations

The examples we have seen g0 far give some idea or what METAFONT can do
in simple cases, but in fact METRFONT knows a lot more mathematics than the
above examples ixipp! @ In this chapter we shall discuss exactly what types or
thingsare allowedin METAFONT equa | jons °

The basic components Or an equation are variables and constants, both or
which take real numbers as values—they need not beinbesers @ Since the rules for
constants are simplest, weshall discuss them first. A constant usually has one of
the forms

{(digit string) o «r (digit string).(digit string) or . {digit string)

denoting 8 number in decimal notation . (A (digit string) is 8 sequence oc one or
more Or the ten characters 0, 1, ..., 9.) Or the constant may haveone of the
above forms preceded by an apostrophe, in whichcase it represents g number in
octal notation. For example, “-100"is thesame as “64"; ““10.4" is thesame
as “8.5"; etc. One further form o[constant is possible: A reverse apostrophe
(i.e., s single open-quote mark) followed by any character denotes the 7-bit code
or that agcecer @ For example, “~a”" is the same as “~141”. This notation was
used to identify the charcodes, i e, the font positions or the characters,inthe
DRAGON example of Chapter4.

A variable is specified in METAFONT programs by typing its so-called
{identifier), whichis 8 sequence oc one or more oc the 26 letters a, b,..., z,
with upper-case and lower-case letters considered equivalent. However, the first
letter must not be “w”, “x", or “y", since these are reserved 'or the subscripted
variables of METAFONT. Furthermore some letter strings like top and draw have
a special meaning that precludes their being used as variables; all such “reserved
words" are listed in boldface type in the index to this manua| (Appendix I).

A variable may also have the form w{digit string), x(digit string), or y(digit
string), in which case it is said to be g w-variable (intended for pen widths),
an z-variable (intended for x coordinates or points), or 8 y-variable(intended
for y coordinates o poinbs) @ We sometimes use the term wzy-variable to stand
oc any variable or one of these three bxpes @ Note that variables x3 and y3 are
related to each other because they are the coordinates of point 3; but they have
Mo connection (0 variable w3. In the examples or this manual we often use the
notation z3 and w3 Or what would actually be typed “x3” and “w3”.

40 Chapter 5

Actually a wzy-variable can have the slightly more general form w{index), x(index),

or y{index), where (index) is either o digit string or the name of an index parameter

(0 @ subroutine, os we shall see in Chapter 8. Thus “xj " and “yj " stand for the g0071-

dinates of point j, inside of a subroutine having j os an index parameter; typographic

conventions like z; and top;y; are used for what would actually be typed as “xj " ond
“top 1 yj".

It is important to Aeep in mind that variable names are composed or letters
only, unless they are wzy-variables. You can't have variables called “s1” and
“s2", METAFONT will think you are talking about s times 1 and s times 2. One
way out is to use roman numerals like “s i” and “s i i"

Stanford’s current implementation or METAFONT will not distinguish two
different identifiers that begin with the same seven letters, unless they have
different lengths; other implementations may be even more fussy, requiring for
example that the first six letters be distinct . Therefore, although you areallowed
to invent long descriptive names ©or variables, don't try to use distinct names
like “heightofa” and “heightofb” in the same program.

No spaces should appear within the name or g variable or s constant; other-
wise METAFONT may get confused. For example, “al pha" would look like
two variables, and the period in “3 . 14” would look like 8 period instead or g
decimal point following the » ¢

At the beginning or 8 METAFONT program, variables have no values; they
get values by appearing in equations. It takes (en equations to defne the values
or ten variables, and if you have given only nine equations it might turn out that
none of the ten variables has g known vojue @ For example, if the equations are

=) === =L,=LP==18= Y

(which counts asnine equations, since there are nine = signs), wedon’t know
whatany or the x ‘6 is. However, g further equation like
zotz =1

will cause METAFONT to deduce that all ten or these variablesareequal (o 4.
METAFONT always determines the values Or as many variables as possible,
bosed on the equations it has seen so e3¢ @ For example, consider the twoequations

ntwnty=3
nw—wpm—w=1

Variables, expreasions, and equations 41

METAFONT will deduce (correctly) that 3 = 2, but all it will know about 1
and y3 is that yp + y3 = 1. At any point in 8 program g variable is said to be
“known" or “unknown,” depending on whether or not its value can be deduced
uniquely from the equations that have been stated so far.* Sometimes you will
have (0 be sure that g certain variable is known; Or example, when drawing 8
curve, the x- and y-variables for all points on that curve must be known.

You might wonder how METAFONT keeps its knowledge up-to-date based on the

partial information it receives from miscellaneous equations. The details aren’t
really very important when you use the language, but they may help in understanding
some error messages. If there are n variables and if m equations have appeared so
far, METAFONT will classify n — m of the unknown variables as “independent.” The
other m variables are expressed os linear combinations of the independent ones; if this
linear combination has a constant value, the variable is “known”, otherwise it is called
“dependent.” Every new equation, say the (m- 1)st, can be rewritten in the form

no+n~e~ + ot CremVp—m =10

where the ¢'s are constants ond v, . .., va—sm are the independent variables. If ¢, = 0 for
all £ > 0, the new equation is rejected; it is either redundant (if co = 0) or inconsistent
(if co 7 0). Otherwise one of the variables v; having maximum |c} is selected. This
variable ceases to be independent ond the equation is used to express it in terms o[the
remaming independent variables vy, . . ., %—~1, Y41, « - - , Yn—m; Several oc the dependent
variables might now become known.

You can experiment with METRFONT’s equation-solving mechanism by typing

“eqtrace ; " near the beginning o[your program. This causes the interpreter to tell
you the values of all variables when they become known. Another way to experiment
is to use the fact that METRFONT types oub thevalue o[an expression when there
is no equals sign in o statement. For example, after “yi+y2+y3=3 | yi-y2-y3=1;"
you can type “y1 | y2 i y3; "—the result will be three harmless error messages in
which you learn that y = 2 and that y3 and ys respectively have the current values
‘*-e+ 1.000” and “y3”. (In other words, METAFONT has chosen to make y: dependent
and y3 independent.)

*This feature makes METAFONT different from most other computer languages; it tends to
make your programs “declarative” more than “imperative” in that you say what relationships
You want to achieve instead of how you want to compute the values that achieve them.

42 Chapter 5

From variables and constants you can build up more complicated formulas
called expressions.In order to state the rules for expressions clearly and com-
pletely, we shall duuss them in o rather formal manner. In order to state them
in an understandable way, we shall also discuss informal examples.

Expressions come in several flavors, depending on how complicated they are
snd how they interact with their environment. A primary expression is, in a
sense, 8 basic building block; it is one or the following things:

00 variable (whether known or unknown).

e a constant.

o nrand, denoting a random real number withthe normal distribution, having
mean 0 and standard deviation 1.

* sqrt (term), denoting the square root or the value or the term (e.g., sqrt .09
== .3). The term must havea known vgiue ¢

0 cosd (term), denoting the cosine oc the value oc the term in degrees (e.g.,
c0sd 60 = -'s) @ The term must have a known value.

o sind (term), denoting the sine o[the value o the term in degrees (e.g., sind 30
=2) @ The term must have a known vgjue ¢

0 round (term), denoting the value o[the term rounded to the nearest integer;

an integer plus .5 is rounded upwards (e.g., round 3.14 = 3.0; round 1.5
= 2.0; round (—1.5) = -1.0) @ The term must have a known value.

0 good(index)(term), denoting the value or the term rounded to the nearest
“good" value, depending on the value or w; (see Chapter 7), where ¢ is
the value o[the (index). The term must have g known value.

o Ift{index){term), rt{index)(term), top(index)(term), or bot(index)(term),
denoting the value or the term plus or minus g correction based on the
current pen and the value or w; (see Chapter 3), where i is the value o
the (index). The term need not have g known value.

* an expression enclosed in parentheses, denoting the value or the expression
as O unit in a larger expression. For example, we will see that “2 Cu+v)"
means something different from “2u+v"”, but the latter denotes exactly
the same thingas"“(2u) +v".

In these rules “(index)" means either o (digit string), representing an integer
subscript, or the name o[an index parameter to ® subroutine (see Chapter 8);
“(term)” means an expression o[the second flavor, which we shall describe nex; o

Variables, ezpressions, and equations _ 43 _

A term expression is, in © sense, a building block for sums;it is somewhat
like a primary but it also includes products snd quobien|s g Formally speaking, 0
term is a primary followed by zero or more occurrences or the following things
as many times as possible in O given context:

o x{primary) or . (primary) or simply (primary), denoting the product or the
value or the term © far and the value of the primary @ (At least one of
these factors must have a known value; i.e., you can't say “alpha*beta”
when alpha’s value is unknown unless beta’s value is known. When
multiplication is indicated by “.", no space should appear after the dot,
and the primary should not be a decimal constant.

¢ /(primary), denoting the value or the term = far divided by the value oc
the poy @ (The primary must have a2 known value and it must not
be zero.)

o [{expression;),(expressionz)] , denoting v; +a{2 — v;), where a is the value
or the term < far, v; is the value oc the first expression, and vy is the
value o[the second. (Either the value or a or the value or v — v; must
be known.)

For example, “axb/c”is a term meaning a times b divided by ¢. One can also

write it as “a . b/c” or “a b/c”"; the space between “a” and “b"is essential in
the last example, since “ab/c" means the quotient or variable ab by variable c.
Note also that “a/bxc” has the same meaning as ‘<o/b) *c", not “a/ (b*c)".
Some computer languages treat this expression one way and some treat it the
other way, but METAFONT prefers the former for two reasons: (i) Division
in METAFONT is most often used when dividing an integer by an integer,and
cases like “2/3 c" are very common. It is desirable to avoid parentheses in such
common cases. (ii) This rule is easily remembered, since terms are consistently
evaluated from left to right in all cases.

The construction (term) [{expression;) , (expressiong)] deserves special dis-
cussion since it is anoperation that occurs frequently in font design but there is
no existing notation for it in traditional mathematics , In general, “afu, v|" means
“a or the way from u to v"; thus “2/3 [x1, x2] " means the value obtained by
starting at z; Snd going two-thirds or the distance between z) and 23. If z; = 100
and z; = 160, this is 140; if z; = 160 and x = 100 it is 120.

»Exercise 5.1: What is the value or 0[z),2])? Of 3/2[z;,22]? How would you
express the value or the point midway between z; and 2, using this notation?

44 | Chanter 5

g’ \ Fig. 5-1. The coordinates of point 5
5 N can be readily calculated from those

\\ TT—% of points 1, 2, 3, and 4, using META-
o FONT equations.

One of the interesting applications of the bracket notation is to find the point
(25, y5) where the line from (z1,41) to (22, 1) intersects the line from (z3,y3) to
(24, vu), assuming that points 1, 2, 3, and 4 are already known (see Fig. 5-1). The
following equations can be written, involving two variables alpha and beta that
are not used elsewhere:

5 = alpha[zy, 73] = beta|z3, z4);
vs = alpha[yn, yo] = beta[ys, y);

METAFONT will solve for alpha, beta, 75, and ys. The reasoning behind these
equations is that there is some fraction a such that 23 is a of the way from z; to
27 and 15 is @ of the way from) to y; similarly there is some fraction relating
z5 to z3 and z4 as ys is related to y; and y. We don't care what a and S are;
but it doesn't hurt to ask METAFONT to compute more values than we really
need, as long as it also computes the desired values 23 and 5. (Note: If you are
applying this trick more than once, it is necessary to say “new alpha, beta”;
this allows you to reuse the same suxiliary variables alpha and beta in each
place. See Chapter 9 for the rules ofl new.)

Finally we come to expressions of the third flavor: general expressions. These
consist of a term followed by zero or more occurrences of “+ (term)” or “~ (term)”,
meaning to add or subtract the value of the term following the plus or minus
sign to or from the value of the expression so far. A general expression can also
begin with a plus sign or a minus sign, in which case we interpret it as if it had
been preceded by the constant zero. (For example, the expression “—2y; -} 3"
means the same thing as “0—2y1+ 31", which means, “Take zero, then subtract

twice the value of y, then add three times the value of 3.") Like terms, general

expressions are evaluated from left to right.

Variables, expreseions, and equations _ 45 _

Readers familiar with BNF notation may appreciate the following summary of the
-syntactic rules for METRFONT variables, expressions, and equations:

{digit) —0)1]2]3]4]5]6]718]9
(digit string) « (digit) | (digit string)(digit)
(non wxy) —alblc|d|e|flglhisijlkli|mInlolplglr|sit|u]v|z
(wxy)—wlz|y
(letter) «— (non wxy) | (wxy)
(identifier) +— (non wxy) | (identifier){letter)
{index) + (digit string) | (identifier)
{variable) + (identifier) | (wxy){index)
(radix) «— ° | {empty)
{constant) «— (radix){digit string) | {radix)(digit string).(digit string) |
{radix) . (digit string) | *(any character you can type)
{unary operator) « sqrt | cosd | sind | round | good({index) | {direction)(index)
{direction) + Ift | rt | top | bot
{primary) + (variable} | {constant) | nrand | (unary operator){term) | ({expression))
{multiplication or division sign) « | . | {empty) | /
{term) + {primary) | {term){multiplication or division sign){primary) |
(term){{expression), (expression)]
{addition or subtraction sign) «~ <+ | —
{expression) « (term) | (addition or subtraction sign){term) |
{expression){addition or subtraction sign){term)
{equation statement) + (expression) = {expression) |
{equation statement) == (expression)

Before we close this discussion of expressions, a few things deserve special

emphasis:

1) Blank spaces, (tab)s, and {carriage-return)s usually have no effect on a META-
FONT program except for the fact that they may not appear within identifiers,
constants, or file names, and the fact that they give a special meaning to
each “." that they follow. A character that has no special meaning in the
METAFONT language (e.g., “?" or “$” or “4") is treated as if it were a blank
space. (Of course, blank spaces and other characters do represent themselves
when they immediately follow a * mark or when they appear between quotes
in titles.)

2) The symbol “." must be used carefully when not quoted, since METAFONT
interprets it in four different ways depending on the immediate context:

_ 46 _ Chapter 5

Filling in between curves 47 |

i) If “." is followed by a blank space (r (tab) or {carriage-return}), it
denotes a period or “full stop” (the end or a METAFONT routine or
subroutine).

i) If “."is followed by O digit (0 to 9). it denotes O decimal point.

iii) If “." is followed by another “.", it denobes the “.."
(or ddraw) command.

symbol in a draw

iv) Otherwise"."denotes multiplication.

" “

wv<o=ao=@:mgvwnougomam?oxv_.ommmoum:ro:wogmwu9.mnlur:::
Azog computer languages require you to write “round(2z)" and _.mﬁ&?\c%.
and even “sqrt(2)".)

rExercise 5.2: Does ‘‘sq rt x1+x2” mean the same as (a) “(sqrt x1)+x2"?

(b) “sqrt(x1+x2)"? (c) “sqrt x1 (+x2)"?

<<6> Filling in between curves

Letter forms in modern alphabets are based primarily on the calligraphy oc 4Ane
penmen in bygone ages; bub they have gone through a long evolution = that 0
great many letters are quite different from what you would get using O Axed pen.
Furthermore, real pens and biusbes change their shape depending on how hard
you press and on what direction you are moving, as you write or paint. Therefore
METAFONT f£es provisions for producing shapes in whichthe pen seems to vary
its proportions 0s it moves.

The basic way to accomplish such special effects is to use the ddraw (double
draw)command, whichis like draw but you specify two curves instead or one.
When you say

ws ddraw 1..2..3..4,5..6..7..8

(for example), the effect is essentially to take the current pen oc size ws and
to draw the two curves 1..2..3..4 and 5..6..7..8, then to fill in the space
between them. This filling-in process is achieved by drawing interpolating curves
that are equally spaced between the corresponding pairs of points 1 and 5, 2 and
6.,3and 7 4 and 8.

Both curves in a ddraw command are specified exactly as in draw commands,
with optional directionsincluded in braces at each point, and with optional hidden
points in parentheses at the beginning or end; the only proviso is that both curves

must have exactly the same number o[points (not counting hidden ones) ° You
can say “ddraw 1,2" (which turns out to be equivalent to “draw 1..2" since there
is only one point in each “curve”), but you can't say “ddraw 1..2(..3),4..5..86"
(since that's a two-point curve with a three-point one).

Suppose, for example, that you wish to fill in the heart sfope discussed in
Chapter 2. Assuming that the points have been defined ds in that chapter, and
assuming that cpen has been selected, the following commands can be issued to
METAFONT:

25 = Yz, 23] w= 3lm,uh
9 ddraw 1{50,40}..2{1,0}..3{0,—1}..4..5{—50,—36}, 9..9..9..
ddraw 1{—50, 40} ..8{—1,0}..7{0,—1}..8..5{50,—36}, 9..9..9

The outside boundary or the resulting shape will be precisely that or Fig. 2-9,
while the interior will be solid black. Fig. 6-L indicates how METRFONT actually
does this, by showing the set of paths that a cpen of diameter 9 would take to
fill in the middle; these paths are illustrated with a cpen or diameter 1 0 that
gaps are opperen(@

Fig. 6-1. The heart shape (or any
other shape) can befilled in by “double

drawing.”

There wos. or course, no need for the example program above to defne
point 9 as it did; the two ddraw commands would have worked equally well if
“9..9..9..9..9" had been replaced by “1..1..1..1..1" or “1..1..5..5..5"
or a host of other possibilities, The off-center point9 was merely chosen to give a
nice-booking illustration that shows a bit more of how METAFONT draws curves.

| 48 | Chapter 6

»Exercise 6.1: On the other hand, the command

9 ddraw 1{50,40}..2{1,0}..3{0,—1}..4..5{—50,—386},
1{—50,40}..8{—1,0}..7{0,—1}..8..5{50, —36

does not draw a filled-in heart shape, although it might seem at first that it
should. Why doesn't it?

More precisely, suppose ddraw is given two curves that run through the points

(31,9,...,3) and (31,3, ...,3,). Thetwo curves z(t) and 5(¢) are computed as usual,
then the curves (k/m)[z(¢), $(t)] are drawn for 0 < k < m, where m is computed in such
a way that the interior is probably (but not always) filled in by this means. Finally,
straight lines are drawn from #; to0 %; and from 2. to 3a. The value of m is determined as
follows: For each j between 1 and n we compute Az; == z; —2; and Ay; = y;— §; and
mj, where m; depends on the current pen type and size w according to the formulas

cpen, spen, epen hpen vpen Ipen, rpen

VASHASR Jras (auY (A (awY o (1as) 1Ay

w w ho % w ho |}’
It follows that [mj < 1] equally-spaced pen images between 2; and 3; would touch each
other, making a connected set, if we weren't rounding to a discrete raster. (This is
the only case where the “current size” is relevant for pens of type spen and epen; you
should specify a size small enough that fill-in would occur properly if the pen were a
cpen instead, but not so small that the filling-in takes extremely long.) The actual
value of m is defined to be

Az

w

»

—.u max ﬂr....:‘fv._l—nw

where ¢ is a “safety factor” that is normally equal to 2. You can change the safety factor
by saying “safetyfactor 2.5", for example, if it turns out that 2.0 isn't safe enough, but
actually you won't ever need to do this unless the curves are quite unusual.

@ »Exercise 8.2: How do you think the author produced Fig. 6-1, using a single ddraw
.command? (It was necessary to fool METAFONT into drawing curves that didn't
really fill in the interior.)

Filling in between curves | 45 |

Fig. 6-2 is another example of ddraw, a sort of calligraphic effect produced
with the following program:

o =5 y=10 z=300; yp=-75;

3==0; y3=0; z,=298 y;=10;

cpen; 9 ddraw 1{z; —2;,2(3n — 1)} .. 2{1,0},
3{1,0}..4{z — 23, 2(ws — w3}

In this case the two ddrawn lines actually cross each other.

Fig. 6-2. Typical effect
obtainable with ddraw.

METRFONT also provides a mechanism for dynamically varying the pen
width while drawing lines or curves, using a generalized draw command. For

‘example, you can say

hpen; draw Jup|l.. |w|2..|w|3

and METAFONT will draw a curve from point 1 to point 2 to point 3, starting
with an hpen of size up but changing the size gradually to wy and than back to wy
again. You can also specify directions for the curve after the point specifications
in the usual way, for example by saying

draw |ug|1{1,0}..|un|2{0,1}..|un|3{1,0};

but we shall ignore this fact in order to simplify the following discussion. The
general rule for draw is that you can specify a pen size enclosed in “|" signs just
before giving a point number, and you can specify a curve direction enclosed in
“{" and “}" just after giving a point number. (See Figs. 8-1 and 8-2 in Chapter 8
for examples of this feature.)

If you don't specify a new pen size at a point, the pen size from the previous
point is used; if you don't specify a new pen size at the first point, the so-called
“current pen size” is used. The current pen size is set to zero whenever a new pen

0 Chapter 8

type is specified, and it is changed to the value of any expression that appears
immediately before draw or ddraw; it is not changed by valuesin “|" signs within
a draw command. Thus, for example, consider the commands

Sdraw 1 .[5]2..3; draw4..[8|5;

the pen size at point 1 is 9, at points 2 and 3 it is 5, at point 4 it is 9 again, at
point 5 it is 8, and after these two statements the current pen size is still S.

Important note: This generalized version of draw is allowed only when the pen is
of type hpen, vpen, Ipen, or rpen; you can't vary the size of a cpen, and it doesn't
make sense to vary the size of an spen or epen. Furthermore the changing of pen
widths is illegal in ddraw commands; in fact, as explained below, METRFONT
actually implements variable-width draw commands by reducing them to ddraw.

The pen width varies smoothly according to a cubic spline function w(t) analogous

to the functions z(t) and y(t) used to control pen motion. Suppose we are drawing a
curve from 2, to 2 to - - - to 2y, and let and 2,41 be the hidden points at the beginning
and end of the path, where % = 21 and/or 2,1 = 2, if hidden points were not specified.
Similarly we will have pen sizes 6o, 81, ..., §a, sn41; if all the pen sizes are equal, the
draw command proceeds as described in Chapter 2, otherwise we have to define the
variation in pen size. First the derivatives (s, . ..,s%), which express the rates of change
in pen width as the curve passes points (z,...,2s), are determined as follows: If no
explicit pen size was given at z;, or if a “¢" appears just before the second “|” of a size
specification at that point, we let; s = 0. (The # mark signifies stable pen size in the
vicinity of that point. For example,

draw Js#]1..2..]2/3[s, t]13. . |t#]4..5

will draw a curve with pen size s between points 1 and 2, and pen size ¢ between points
4 and 5; the pen size will be stable at points 1, 2, 4, and 5, and it will vary between
points 2 and 4 in such a way that 2/3 of the change occurs between points 2 and 3.)
Otherwise let As; = ;41 — sj; then s; = As; if Az;—; = 0, otherwise s = As;—, if
Az; = 0, otherwise

& = (Asj—1/|Az—a|" + As/|Az)") [(/1671 + 1/|Az).

The pen size §;(t), as the curve 2(t) of Chapter 2 is drawn from z; tozj+1 for 0 < ¢t < 1,
is defined by the formula

55(t) = 55+ (38 — 289 As; + 11 — 1), — 3 (1 — 1) 6},

Discreteness and discretion 51

When the pen size varies, a draw command is essentially reduced to ddraw in the

following way: First the functions s(t), z(t), y(t) describing pen size and pen motion
are determined as described above. The minimum pen size, i.e., § = min(sy, ..., s,), is
also determined. A pen of size § will now be used to fill in the curve with the method
of ddraw; the two curves (z(t), y(t)) and (2(t), §(£)) between which ddrawing will take
place are defined as follows, depending on the pen type:

hpen vpen lpen rpen
2(t) — 2(t) — $(s(t)—3) 2(t)) 2(t)
TOR v(t) (&) — (s()—3) 0 0]
2(t) — z(t) + 4(s(t)—) z(t) o) — (s())—3) =(t)+o(t)—5
HORS v(®) () + §(s(8)—5) y(t) ¥(t)

If the pen motion is being transformed by means of texx, trxy, inex, tryx, tryy,

or incy (see Chapter 9), the transformation applies to the original computation
of z(t) and y(t) but not to the corrections by s(t)—3 being applied here. In other words,
transformations apply to the paths taken by pens, not to the pen shapes; you can use
ddraw but not draw to get the effect of a rotated hpen.

<<7> Discreteness and discretion

METARFONT does all of its drawing on a finite grid whose square pixels are either
black or white; it does not actually draw continuous curves, it deals only with
approximations to such curves. Such discreteness is not a severe limitation if the
resolution is fine enough, i.e., if there are sufficiently many pixels per square unit,
since physical properties of ink will smooth out the rough edges when material is
printed. In fact, the human eye is itself composed of discrete receptors. However,
the results of METAFONT might not look very good when the resolution is coarse,
unless you are careful about how things are rounded to the raster. The purpose
of this chapter is to explain the principles of “discreet rounding,” i.e., tasteful
application of mathematics so that the METAFONT output will look satisfactory
even when the resolution is coarse.

The rest of this chapter is marked with dangerous bend signs, since a novice
user of METAFONT will not wish to worry about such things. However, an expert
METAFONTer will take care to round things properly even when preparing high-
resolution fonts, since the subtle refinements we are about to discuss will improve
the quality of the output when it is viewed with discerning eyes.

52 Chapter 7

Chapter 3 mentioned the fact that pens are digitized before curves are drawn. This

is important when low resolution is considered, otherwise vertical lines that would
be 3.4 raster units wide (say) if drawn to infinite precision would be rounded sometimes
to 3 units wide, sometimes to 4 units wide, depending o n where they happen to fall.
This looks bad, so METAFONT resolves the problem by drawing with a pen that is
always 3 units wide oc always 4 units wide.

Chapter 3 also hinted at METARFONT’s method of drawing a curve (z(t), y(¢)) as
¢ varies, namely (8) to subtract offsets z;, and yj from the 2 and y coordinates,
depending on the pen being used, thereby compensating for the fact that the pen shape
might be shifted by a non-integer amount with respect to the raster; then (b) to round
{(z(¢) — zb, y(t) — yb) to a sequence oc integer points (z, y); and finally (c) for each integer
point (z, y) at which the curve is to b e “plotted,” the pixels (z + ¢, y + #) are made
either black or white, depending on whether a pen or eraser is involved, for all integer
points (¢,) in the pen shape.

Actually METAF ONT does operation (c) at higher speeds than this description would

imply, since it knows if it has reached (z, y) from an adjacent point, in which case
most Or the pixels (z 4 &, y + n) are already known to be black or white. For example,
when moving a pen one sbep upwards, only its top edge needs to be painted. METRFONT
also gains speed by combining several horizontal and vertical steps into a single step.

What Chapter 3 failed to describe was how METAFONT chooses the sequence o ¢

points (z, y) that are to represent the curve(z(#), y(2)). The rule is essentially this:
The integer point (z, y) is plotted if o nd only if the curve(z(t) — zb, y(t) — yb) posses
through the diamond-shaped region whose four corner points are

(z,y+3)
(z—4,9) +4%9)
Aﬁ V- Wv

This rule implies that if the curve is travelling in a basically horizontal direction (with z
changing more rapidly than y), there is exactly one point plotted in each column, while
if it is going in a basically vertical direction (with y changing more rapidly than z),
there is one point plotted in each row. Furthermore the rule leads to proper behavior
at the endpoints: If a curve is broken u p into two segments, for example by inserting
intermediate points in a draw command, you won’t be plotting spurious points where
the two curves join. (Exception: If an entire draw command bas been processed but
n o point was plotted, because for example the command was trying to draw a tiny

Discreleness and discretion 53

circle whose coordinates were]] very close to (0 + §,b + }) for some integersa and b,
METARFONT will plot one point, obtained by rounding the first specified point z to
integer coordinates. Each draw therefore plots at least once.)

The diamond rule for plotting curves is ambiguous in one respect: It doesn't sax
what happens on the boundary or the diamond. For example, if © horizontal or
nearly horizontal curve bappens to pass exactly through the point (z,y -4), when z
and y are integers, will METRFONT plot (z, y + 1) or (z,y)? The answer is, sometimes
(z + 1,y) end sometimes (z, y), depending on the curve being drawn. The reason is that
this behavior is what you want, although you may not realize it at first. If the same
decision were made each time, independent or the path, the result would be undesirable
because the curves would turn out to be unsymmetrical: the left half of an ‘o’ might
look slightly different from the right half, @ nd the top half might look different from
the bottom. Therefore METAFONT’s rounding rule is such that reflection symmetries
are preserved :
8) If m is on integer then point (z, y) is plotted for the curve(z(¢), y(t)) if and only iC
(m — z, y) is plotted for the curve (m — z(¢), y(t)).
b) If n is on integer then point (z, y) is plotted for the curve(z(1). y(¢)) if and only if
(z, n — y) is plotted for the curve (z(¢), n — y(t)).
(The only exceptions occur when it is essentially impossible to satisfy the conditions,
namely when the curve (z(¢), y(¢)) in (a) is a vertical line with z(!) = constant =
integer-}- 4, or similarly when the curve (z(t), y(t)) in (b) is a horizontal line with y(t) =
constant = integer+ 4.) In other words, you can almost always ensure symmetry of the
rounding operation if you simply make the curve symmetric with respect to an integer.
The precise rounding rule used by METAF ONT will not be explained here, since only the
symmetry principle above is important in practice. Symmetry is achieved by internally
converting every curve to subintervals such that some subset o c the transformations
z(t) — —z(t), y(t) = —u(t), z(t) ~ y(t) produces a curve satisfying © < y'(f) < z'(¢)
throughout each subinterval. A particular rounding rule is used for curves satisfying
0 < ¢¥'(t) < z/(2), then the rounded points are untransformed again.

There is an analogous kind O (symmetry that METARFONT cannot guarantee:

The result oc “draw 1..2..3" might not be precisely the same as the result orc

“draw 3..2..1", since the rounding might be slightly different wben o curveis being
drawn in the opposite direction.

The fact that METAFONT s rounding rule preserves certain symmetries is helpful
in practice, yet it must b e remembered that some asymmetry is inherent in the
fact that rounding does take place. The curve(z(t), y(t)) will not, in general, look just
like the curve (z(¢) + &, y(¢) + 1), say, after rounding; so the question arises, do some

| 54 | Chapter 7

Subroutines 55

most noticeable at the extreme points

m
,“ i En.qn.—.._.wnom.nn»mo:ocb&unw_.a
WF_ of a curve.

2

N

curves look much better than others? The answer is yes, but the only really critical
places seem to be where the curve reaches a horizontal or vertical extreme (when it is
travelling straight up or down, or when it is perfectly horizontal, if only for an instant).
When a curve turns a corner in such places, its outside edge may look too flat after
rounding (even when the resolution is fairly good), unless the turning point is selected
appropriately. For example, Fig. 7-1 shows three curves plotted with an hpen of width 9,
when the hpenht is 3. Each of the three curves is essentially the same, starting at
(z+10,50) with a slope of {—1, —1}, then coming down and left to points (z, 0) where
the direction is {0, —1}, then going down and right to point (z 4- 10, —50) where the
slope is {1, —1}. The only difference is that z = 0 (an integer) in the lefthand curve;
z == 50.4999 (almost halfway after an integer) in the middle curve; and z = 100.5001
(almost halfway before an integer) in the right-hand curve. The middle curve has an
unfortunate glitch at y = 0, and the righthand curve looks too flat near y = 0.

We can conclude that a curve going from right to left and back again has a good

position with respect to the raster if its extreme point occurs at an integer, when
an hpen with an odd width is being used. The reason is that an integer point is halfway
between the places where rounding makes an abrupt transition, s0 no obvious anomalies
will appear. Similarly we get a good position for hpens of even width when the extreme
point occurs at an integer plus }, since an offset of } is subtracted before rounding.
Both of these cases can be suramed up in one rule, that a good case for rounding occurs
if the left (or right) edge of the pen is an integer at the extreme point. Thus, one can
get good results by computing an approximate value ! for the left edge of the pen and
writing the equation

itiz; = round|;

here w; is the pen width and z; is the z coordinate of the extreme point. Another way
to achieve the same objective is to compute an approximate value ¢ for the center of
the pen at its extreme point and then to write

z; = goodic;

the good function produces the nearest integer to ¢ if the pen width (round w;) is odd,
otherwise it yields the nearest point to ¢ having the form integer -- . Appendix E
contains examples that show how round and good can be used to enhance the appearance
of letter shapes.

<8> Subroutines

When you sit down and try to design the lower case letters a to z, you will probably
discover that most letters have features in common with other ones; for example,
consider the relations between 1 and h, h and n, n and m, n and u. You will
therefore wish that different characters could share common portions of METR-
FONT programs, with only minor variations made when these common portions
are used in different places, so that you can avoid inconsistencies and tedious
repetitions. Well, you are in luck: Common operations need to be programmed
only once, and the way to do this is much better than the “input drag” solution
used in Chapter 4. Subroutines are the answer to your problem.

Subroutines are one level of complexity up from the simplest uses of META-
FONT, however, so the rest of this chapter is marked off with dangerous bend
signs. You should try to play around with the rest of METAFONT for at least
a little while before you dive into the subroutine world. (Remember when you
were learning other programming languages? Your first few programs probably
did not involve subroutines or macros.) On the other hand, subroutines aren’t
completely mysterious, and you will be quite ready to read on as soon as you
have gotten some METAFONT experience under your belt.

A subroutine begins with the reserved word subroutine and ends with a period.
More precisely, a subroutine has the form

subroutine (identifier){(arguments): (statement list).

Here the (identifier) is the name of the subroutine; if that identifier has previously
been used to stand for a variable or another subroutine, its old meaning is forgotten.
The {arguments) represent special kinds of variables that correspond to any changeable
parameters that this subroutine will have when it is called into action by a main routine
or by another subroutine.

_ 58 | Chapter 8

Subroutines 57

Arguments to a subroutine can be of two kinds, “var” and “index”; the var kind

represent real values, while the index kind represent subscripts. An owaEa should
make this clear, so let's take a look at the “darc” subroutine of Appendix E, used to
draw an elliptical double-arc such as the left half or the right half of the letter “o

subroutine darc(index ¢, index 5, var maxwidih):

Ty =z5=1;; Ip=1z4=1/sqritwo[z;,z}}; z3=12z;

n=y; w=y; w=4iul

v2 == 1/sqritwo [ys, yil; ya= 1/sqritwo [ys, y5];

hpen; draw |ug|l{z3 — z;, 0} .. |3[wo, maxwidth]{2{zs — 21, 33 — 11} . .
|maxwidth#]|3{0,ys —wn}..
|3 [wo, maxwidth]|4{zs — 23, ys — 1} . . |wo}5{zs — z3, 0}.

(Constructions like “}[y;, ;)" would really be typed “1/2[y1,yj1"; it seems best to
use special conventions when typesetting METAFONT programs in order to make them
as readable as possible.) This particular subroutine deserves careful study, because it is
a “real” example that illustrates most of METARFONT’s conventions about subroutines
in general. Therefore it will be explained rather slowly and carefully in the following
paragraphs.

In other parts of a METRFONT program containing the above subroutine, a state-

ment like
call darc(8, 7, un)

will invoke darc with parameters i = 6, j = 7, maxwidth = wy. The effect of darc
in general is that a half-ellipse will be drawn starting at point (z;, ;) with an hpen of
size wy; this arc will proceed to point (z;, §[y:, y;]) with the pen’s width having grown
to size maxwidth, then it will finish at point (z;, y;) where the pen once again will come
back to size uo. The subroutine will work when z; < z; as well as when z; > z;, wum
when y; < y; as well as when y; > y;.

The most important thing to remember about METRFONT subroutines is that each

routine and each subroutine has its own z- or y-variables. When darc refers to
z; it is NOT the same as the z; in the routine or subroutine that is calling darc; all
z-variables and y-variables have a strictly local significance. (This is similar to the
fact that z-variables and y-variables disappear at the end of each routine that defines a
single character, i.e., they disappear when a period is reached; cf. the DRAGON example
of Chapter 4.) The values of arguments (like ¢ and j and maxwidth) are also local
to a particular subroutine. On the other hand, u~variables and variables named by
identifiers are global; they can be defined in one routine or subroutine and used in
another. Thus, when darc refers to wp and to sqritwo, these variables should have
values that were defined before darc was called.

Fig. 8-1. This shape was drawn
by calling the darc subroutine twice.
Points labeled 1, 2, 3 were defined in
the main routine; points whose labels
begin with “a” were defined in the first
call of darc; and points whose labels
begin with “b” were defined in the
second call.

A subroutine is able to refer to z-variables and y-variables of its caller by means

of index arguments. For example, suppose that darc has been called with § = §;
when it refers to z;, this means zo in the calling routine, it doesn’t mean zg local to
darc. On the other hand a reference to w; denotes the unique variable ws.

Since subroutines and their calling routines often have their own points z; and y;, it

is desirable to have some method of naming points meaningfully on the illustrations
produced by proofmode and in METRFONT’s error messages. Lower case letters may
be specified for this purpose in call statements. For example, consider the following
routine that uses darc twice:

71=0, p=1=150;, =50, w=0; z3==100;
sqritwo =sqrt2;, wo=3;, w =39,

call ~a darc(2, 1, w1);

call * b darc(2, 3, wy).

Fig. 8-1 shows the result together with the point labels. Here “1” denotes point (z;, 11)
of the main routine, namely point (0, 150); it doesn’t happen to have been used directly
for any of the curves drawn, but its coordinates z; and y; were used separately in darc’s
calculations. The point labeled “a5” is point 5 inside the first call of darc, since the
code ~a was included in this call statement. Similarly, points whose name begins with
“b" are the points defined in the second eall. Points al, bl, and b5 do not appear with
these labels in Fig. 8-1, since they coincide with points that were already labeled.

All the clues needed to understand darc have now been given; please study that
subroutine again now until you fully understand it. Incidentally, if the value of
<w=.wv_n sqrttwo is made smaller than +/2 = 1.4142, the darc subroutine will draw a
“superellipse” that opens wider than a normal ellipse does; this effect is occasionally
desirable in font design. (Cf. Fig. muwv

58 Chapter 8

Subroutines _ 59 _

Fig. 8-2. This shape was drawn by
the same routine as Fig. 8-1, except
that sqrttwo has been set equal to
1.319507911 (the value 2%/% recom-
mended by Piet Hein).

Theargument list in a subroutine definition is either empty or it is a list or ore or
more “var (identifier)” or “index (identifier)” entries enclosed in parentheses and
separated either by commas or by “) (" pairs. (Subroutine darc 's definition might have
begun
subroutine darc(index §)(index j)(var maxwidth):

some people prefer this syntax.) Formally speaking, we have the following BNF
definition:

{arguments) +~ (empty) | ((argument list}))

(argument list) + (argument) | {argument list), (argument)
| {argument list))({argument}

(argument) «~ var (identifier) | index {identifier)

A call command has a similar format. The parameters in a call must agree in number
and kind with the arguments in the corresponding subroutine definition.
»Exercise 8.1: Write a subroutine that will draw Fig. 2-3 when it is called by the
following driver program:
ne=p=p=0; =150
call curve(60, 120, 1, 2);
call curve(60, 80, 1, 2);
eall curve(60, 80, 1, 2);
call curve(60, 30, 1, 2);
call curve(80,0,1,2).

Another example—this one contrived—should further clarify the general idea of
index arguments. Consider the program

subroutine sub(index):

...; call~a subsub(s,1); .
subroutine subsub(index 1, index 7):
ce.; drawi.g..2; ...

call * b sub(3).

Can you figure out what points the “draw i . .5 .. 2" command refers to in subsub,
before the answer is revealed in the next sentence Or this paragraph? Answer (don’t
peek): inside sub, “i" refers to point 3 or the main routine and “1” refers to local
point bl; therefore inside subsub, “5” and “;” refer to 3 and bl, while “2” refers to
local point ba2. (Note the concatenation of labels since subsub is being used as a sub
subroutine.) If for some reason subsub forgot to define its local variable z;, you would
get the error message “variable xba2 i undefinad” at the time “draw ¢..5..2"
was being interpreted.

This example reveals two other things about subroutines: (1) It is permissible for

different subroutines to have arguments with the same name. In fact, the name
o[an argument may also be identical to the name of a global variable or even to the
nawe or another subroutine; that identifier refers to the appropriate argument, within
the subroutine being defined, but it reverts to its global meaning when the subroutine
definition ends. (2) It is permissible to call subroutines that have not yet been defined.
(Note that “call ~a subsub” appeared in the program before subsub was known to
be the name or a subroutine.) In fact, it is even permissible for a subroutine to call
itself, if you are careful to avoid infinite recursion, provided that the subroutine has no
arguments (see below). However, when a call is actually being interpreted, the called
subroutine definition must already have appeared. It is easy to understand this rule if
you understand how subroutines are actually implemented: When METAF ONT sees a
subroutine definition, it stores away the text for future usej then when a call statement
appears, the text or the subroutine is od through METAF ONT's reading mechanism in
place of the text of the call. ’

Since the previous paragraph mentions the possibility or recursion, an alert reader
will have guessed that METAFONT has the capability of interpreting statements
conditionally, i.e., performing certain computations only if certain relations hold. Yes,
alert reader, there is an if statement. It has two general forms,
" if (relation): {statement list); fi

or i (relation): (statement list;); else: (statement lists); fi

| 60 ‘ Chapter 8

Summary of the language 61

where the first is treated like the sewnd but with (statement list;) empty. A (relation)
has the form
{expression;) (relop) (expressionz)

where (relop) is 0 n e o r the six relational operator symbols =, <, >, £, <, . .
The meaning o r an if statement is that (statement list;} is interpreted if the relation
is true, (statement listy) is interpreted if the relation is false, © n d the error message
“Indeterminate relation”resultsif the relation cannot be decided due to unknown
variables. The relation “z = 2" is known to be b uwe whether z is known or not, but
the relation “z > 0” is indeterminate unless z is known. N.B.: Don’t forget the fi that

closes the if.

When a subroutine is called, the current pen type snd current pen size are remem-

bered so that they can be restored when the subroutine is finished. The “control
bits” described in Chapter 9, governing tracing and output modes, are also saved and
restored across calls. The subroutine must specify a new current pen type and current
pen size before it draws any curves or uses some other operation that depends on the
current pen type, since METRFONT considers the pen type to be undeAned upon entry
to o subroutine. This restriction tends to catch careless errors; you can override it, if
necessary, by saying ‘‘no penreset”.

Let us close this chapter with an example oc a recursive subroutine. Devotecs

o r structured programming who have the conventional misunderstanding of
that term will rejoice in the fact that METAFONT has no go to statement; but such
people might not be so happy about the fact that there is no whilestatement either.
In the comparatively few cases where iterations are desirable in font design, thereis no
aeason todespair, since iteration is easy to achieve via recursion (even when we must
live with METAFONT’s restriction that recursive procedures cannot have arguments).
The following subroutine draws an indeterminate number or straight vertical lines, from
point (a + kd, b) to point (@ + kd,c)fork= 0.1, ...,8slong 9s a+kd < ¢.

subroutine for (vara, varb,varc,vard,vart):

new aa, bb, ¢¢, dd, tt;

% =a; b =b e =¢ dd =d;tt= ¢

call * a loop.

subroutine loop:

if aa < tt: z; = z, = aa; y, = bb; p» = cc;
epen; wo draw 1. . 2;
Z3==1030 + dd;new aa; 8 8 = z3;
call ~ b loop;

Note the use or new (0 emulate an operation that would be written “aa := aa + dd”
in more conventional programming languages.

@@ »Exercise 8.2: Continuing this example, sup p ose that the main routine is
“proofmode; wp = 3; call “ ¢ for(0, 0, 100, 50, 150).” What labels would appear
on the eight points between which the fow vertical lines are drawn?

<9> Summary o c the language

A METAFONT program consists O r sections, each o ¢ which is terminated by 8
perod g (This period is followed immediately by a (carriage-return) or by g blank
space, as explained in Chapter 5,s o that it is readily distinguishable from a
decimal points or g multiplication signs or the *-." oc s draw oc ddraw command.)
The period that terminates the final section is followed by the word “end”; this
terminatesthe prosesxn ¢

The z-variables and y-variables o ¢ each section are “Jocal” (o that section,
in the s e n s e that z; (say) in one section has no relation to z; in another; but
the other variables are shared by all sections. Within g section, you write one or
more “statements” separated by seddons ¢

Atypical METAFONT program starts out with a sectioninwhich you de/ne
important variables that will be used for all the characters you intend to generate,
followed by sections for any subroutines you wish to define, followed by sections
that draw each character. This order of sections is not absolutely necessary, but
itissuitable for most pwposes ¢

Appendix E contains examples oc complete METAFONT programs used to
d e A n e characters in the “Computer Modern” family of fonts designed by the
author for use in his books The Art or Computer Programming. Basic META-
FONT setups for designing new characters or modifying the designs of existing
ones, as well as for producing new fonts with particular settings o ¢ the variable
parameters, aredescribedinthat eppendix g

The present chapteris intended to serve as g concise and precise summary
or all oc METAFONT's features. We have discussed most oc these things already,
but there are also a few morebells and whistles that you may wantto use e The
idea is now to get it all together.

62 Chapter 9

As stated above, a METRFONT program has the general form

(section;}{scctions}. . . (section,s) end
where each (section) is either a subroutine definition or has the form or a (statement
list) followed by a period, namely

(statement;); (statementy); ...; (statement,).

The main question remaining is therefore, “What is a (statement)?” The various kinds
o[statements are enumerated below, witha bullet symbol () in front oc each kind.

o (empty) A null statement.

One Of the things you can do with METARFONT is nothing. The null statement does
this.

o {equation) An equation between variables.

“w__m»

Equations, which consist or twoor more (expression)s separated by “=" signs, arc
discussed thoroughly in Chapter 5. Each equals sign leads to the elimination or one
independent variable, since an expression can be reduced to a linear combination of
independent variables, unless the equation is redundant or inconsistent withrespect to
previous equations. The purpose of equations is to state the relationships you wish the
variables or your program to satisfy; you must give enough equations 60 that METR-
FONT can solve them uniquely, obtaining known values for all variables that it nceds

to know.

e new (variable list) Undefines variables.

A (variable list) consists of one or more variable names separated by commas; for ex-
ample, you can say “new alpha, beta, z3, 1". Sometimes gou will have used equations
to deAne the value o[some variable that you nov wish to redefine. By listing this
variable in a new statement, its old value becomes forgotten. (You should do this only
when the variable has a known value, or when it is already new and you are just trying
to be safe—e.g., in a subroutine when the variable is to be used for temporary storage.)

o {pen name){optional) Specifies the current pen or eraser type.

At the beginning o [each routine or subroutine, the current pen type is undefned, and
you must dedne it before drawing anything or using an expression like top that requires
knowledge oc the pen type. The (pen name) statement defines the current pen type, and
changes the pen to an eraser if a “$" appears. It also resets the current pen size to zero;
this is a useless pen size, so you should probably specify a useful value on the next draw
or ddraw command. Allowable pen names are cpen, hpen, vpen, Ipen, rpen, spen, and

Summary of the language _ 63 _

epen, 9s described in Chapter 3. An spen or epen should be further specified, according
to the rules in that chapter. However, if you wish the ipon orepento have the same
specs as the most recent one that METAF ONT has generated as it was interpreting your
program, you can omit the specification and simply say “spen” oc “epen” .

e (drawing command) Draws a line or curve.
The general format of a {drawing command) is either

{expression) draw (path)
or (expression) ddraw (path,), {paths)

where the {expression) represents the new pen size; this can be omitted if the current
pen size is to be used. The rules for draw and ddraw are explained in Chapters 2 and
6, s0 we shall merely summarize here the precise rules for a (path). In general a (path)
has the form

(hidden beginning)({pointy). . (points).. - ..(point.)(hidden ending)

for so nen > 1, wherethe two paths in ddraw must have the same length n. The
(hidden beginning) is either empty, representing a copy of (point;), or it hastheform
“({pointo) . .)" ; the (hidden ending) is either empty, representing a copy or (points), or
it has the form “(. . (pointe41))”. The form of a (point) is

{optional pen size){index){optional direction)

where {(optional pen size) is either empty (meaning to use the pen size at the previous
point, or to use the current pen size if this is the first point) or it has oneorthetwo
forms
|{(expression)] or |(expression)#|.

The {(expression) denotes the desired pen size at the point; the # denotes stable pen size
in the point's neighborhood, otherwise the pen size will change at a rate determined
as explained in Chapter 6. A # is implied when the {optional pen size) is empty. The
{optional pen size} mustbe empty for all points in the paths of a ddraw command. The
(optional direction) is either empty (meaning to let METAFONT choose the direction in
its standard way, os explained in Chapter 2), or it has the form

{{expression,}), {expressions)}.

In this case, if z is the value oc {expression;) sed y the value or {expressions), the curve
will move toward a position that is z units to the right sed y units upwards, when it
passes the current point.

; 64 _ Chapter 9

Summary of the language 65

o “(any desired title)" Names the font or the character being drawn.

(Not allowed in subroutines. The title can be any string of characters other than quote
marks or (carriage-return)s.) This statement has several effects: (i) The first time
METARFONT interprets a title statement, it saves the string you have specified as the
so-called main title that will appear in the computer file if you generate a font. (ii) If
you are in titletrace mode, the title will be printed on your screen, as a sort o[progress
report. (iii) The title will appear on the proofsheet output if the current routine is used
to draw a character in proof mode. (iv) A warning message will be printed (mentioning
this title) if METAFONT scans the end o[o filepage before the current section ends,
unless you are in no pagewarning mode.

e {conditional statement) Chooses between alternative programs.

A construction like
if (relation): {statement,); (statementy); else: (statements); (statementy); fi

will interpret (statement,) and (statements) if the relation is true, (statements) and
{(statementy) if the relation is false. Chapter 8 givesthe general rules.

o call {optional letter)(subroutine name){parameters) Invokes o subroutine.

The {(optional letter) is either empty or an expression of the form “* (lower case letter)” ;
the (subroutine name) is the identifier of a subroutine that has already been defined; and
the (parameters) part is either empty, or it is a parenthesized list or {expression)s to ix
substituted for var arguments, and/or {index)es to be substituted for index arguments,
separated by commas or “)(" pairs. The parameters must be in the gave order 8s the
corresponding arguments, and there must be exactly as many parameters as arguments.

e (parameter namej)({expression) Defines a METAFONT parameter.

A parameter statement like this is used to communicate values that METAFONT occa-
sionally needs for its work. The parameters have “default” values when METAFONT
begins; but once you change o parameter with an explicit parameter statement, its
former value is forgotten. The value or the {expression) must be known at the time
this statement is interpreted. Here is o list oc the parameter naues understood by the
present implementation or METRFONT:
texx, trxy, inex, tryx, tryy, incy are used to rotate, translate, and/or expand
or shrink the curves that METRFONT draws. After computing the functions
z(t) and y(t) according to the rules described in Chapters 2 and 6, the actual
curve that will be plotted—before subtracting the offsets zf, and y}, and before
rounding, end before reducing variable-size draw to ddraw—is

?u.a.as + azyy(t) + as, aysz(t) + ayy¥(t) + bev_

where Qzz, Qsy, 0z, Qyz, ayy, ay arethe respective current values or the six
parameters stated. (The default values are, of course, trxx 1; trxy 0; inex 0;
tryx 0; tryy 1; incy 0.) By setting texy to 0.15, your drawings will be slanied
to the right os in the letters you are now reading; those letters were made
with the same ME TAFONT programs that generated the unslanted letters you
are now reading, changing only the setting oc trxy. The six transformation
parameters do not affect the size or shape of pens, only the locations or their
motions.

charwd,charht, chardp, charic are used (0 specify the width, height, depth, and
italic correction for a character, in units of printers’ points. These parameters
are zero by default, and they are reset to zero at the end or every routine
when o character is output. The parameters are used wben preparing o font
information file to be used by TEX; they do not affect the actual appearance

of a character in a font.

epenxfactor oand epenyfactor (normally 1.0) are used to enlarge or smallify the
dimensions o an epen when an explicit pen is specified. These parameters
should change in proportion to the number or pixels per inch whenyou are
designing fonts for o variety or machines.

epenxcorr oand epenyeorr (normally 0.0) ue used as the offsets z§, and y; when an
explicit pen (epen) is specified.

safetyfactor (normally 2.0) is used to govern the number of curves plotted by ddraw
when it is filling in between two curves (see Chapter 6).

minvr, maxvr, minvs, maxvs (normally 0.5, 4.0, 0.5, 4.0) are used as velocity
thresholds when computing the spline curves corresponding to o path, os ex-
plained in Chapter 2.

The following parameters are rounded to the nearest integer before METRFONT uses
them:

hpenht and vpenwd (normally 1) are used to specify the height of each hpen and the
width o each vpen. It is best (0 adjust these infrequently, since METRFONT

has to recompute its accumulated pen information when they are reset.

nseed (normally set to @ value based on the time of day, so that it will be different
every time you run METAFONT) is used to start the pseudo-random number
generator that produces the values oc nrand. By setting nseed to o par-
ticular integer at thebeginning or your program —any integer will do—you
can guarantee that the same sequence of niond values will occur each time
the program is run.

| 86 | Chapter 9

maxht specifies the height (in pixels) of the tallest character in a font being gener-
ated for the XGP. This parameter, which is initially zero, must be set before
the first character of the font has been output.

charcode is used to specify the 7-bit number of a character being output to a font.
This parameter has the invalid value —1 when METAFONT begins, and it is
reset to —1 after each character is output. No character will be output unless
the charcode parameter has been set to a number between 0 and 127, inclusive,
and it should be distinct from the numbers of other characters output.

chardw specifies the current character’s width (in pixels), when a font is being
produced for the XGP printer; this information is also used when preparing
font information for TEX to use with the XGP. Like charwd, this parameter
is zero for each character until you set it explicitly. There is no automatic
connection between charwd and chardw.

crsbreak specifies the y coordinate at which a tall character will be broken into
two pieces when preparing it for an Alphatype CRS font; the upper piece
will contain raster positions for rows 2> y, the lower piece will contain rows
< y. This parameter is normally set to an essentially infinite value, which
is restored when a character is output, so that no characters will be broken
unless a crsbreak has been explicitly specified.

dumplength (normally 1000) is the number of characters before “ETC” that will be
displayed in error messages when METAFONT stops in the middle of a sub-
routine. If you make an error in a long subroutine, you may need to increase
this parameter in order to see where the error occurred.

dumpwindow (normally 32) is the maximum number of characters displayed on
each line of an error message when identifying the current program location.

e (control code) Sets a “control bit."

® no {control code) Unsets a “control bit.”

These statements are used to turn on or turn off certain actions that METRFONT

is capable of doing. METAFONT maintains a so-called control word, a set of bits that
govern whether or not certain optional actions are taken; after a subroutine call, this
control word is restored to the state it had before entering the subroutine. Initially the
bits for modtrace, pagewarning, and penreset are turned on, all the others are off. Here
is a list of the control codes understood by the present implementation of METRFONT:

eqtrace causes METAFONT to tell you what values are defined by your equations.

titletrace causes METRFONT to print title statements when they are encountered.

Summary of the language 6 w

calltrace causes METAFONT to print the name of a subroutine and its parameter
values, whenever a subroutine is called, and also to print the name of a sub-
routine whenever the call is completed.

drawtrace causes METRFONT to print out numeric specifications of the paths in
draw or ddraw commands.

plottrace causes METAFONT to print lots of detailed information: “lw|" when
generating a new pen of size w; “(z,y)” when plotting raster point (z, y);
“(zy:z3,y)" when plotting a horizontal sequence of raster points from (z1,)
to (22, ¥); “(z,y1:32)” when plotting a vertical sequence of raster points from
AH~ u\»v to ﬁy qu.

modtrace causes METRFONT to tell you whenever it changes the “velocities” r or
& when computing cubic curves.

pause causes METAFONT to show each line of a text file that is being input, just
before that line is scanned. This gives you a chance to edit the line before
hitting {carriage-return), after which METRFONT will scan the edited line. If
you want to get out of this mode, insert “no pause;” on the line as you are
editing it.

drawdisplay causes METAFONT to display the raster after completing each draw
or ddraw command. (The present implementation allows this only when you
are running METAFONT from a Datadisc terminal.)

chardisplay causes METAFONT to display the raster after completing each sec-
tion. (The present implementation allows this only when you are running
METARFONT from a Datadisc terminal.)

pagewarning causes METAFONT to give a warning message whenever a file page
ends inside a subroutine definition or a section containing a title statement.

penreset causes METRFONT to undefine the current pen whenever a subroutine
call begins.

proofmode causes METARFONT to output a file of proofsheets containing the raster
images of each character for which proofmode was in effect at the end of the
section. These proof figures contain point labels for all points that lie in the
“active” rectangle, i.e., in the smallest rectangle containing all pixels affected
by the draw and ddraw commands for the current character, provided that
the points became known when proofmode was on. Thus you can suppress
all the points and labels if you turn off proofmode until just before finishing
the section. (A point becomes known when both its z- and y-coordinates
are known; if proofmode is on at that moment, the point’s location (z,y)is
recorded for proofing, after modifying (z, y) by the transformation parameters
trxx ... incy currently in force and rounding to the nearest integer.)

| 68 | Chapter 9

fntmode causes METRFONT to output a file of font images in the format required
by the XGP hardware and software.

crsmode causes ME TAFONT to output a file of font images in the format required
by the Alphatype CRS hardware and software. It is illegal to use both fntmode
and ersmode in the same program; and it is also ridiculous to do so, since the
CRS has more than 26 times the resolution of the XGP.

chrmode causes METAFONT to output a text file of font images in the form of
asterisks, dots, and spaces. (Such files can be edited with the system text
editor, and there are auxiliary programs to convert font files into and out of
this text format.)

tfxmode causes METAFONT to output a file of information that TEX needs for
typesetting whenever it uses a font.

e varchar {expression list) Specifies a built-up character.
e charlist {expression list) Specifies a series of characters.
e texinfo (expression list) Specifies TEX font parameters.
o lig (lig instruction list) Specifies ligature/kerning information.

These four kinds of statements are relevant for tfxmode only, since they provide detailed
information to TiX. See Appendix F for a detailed explanation.

o invisible {expression;), (expressiony) Preempts a label position.

(Ignored except in proofmode.) The command “invisible z, " makes METAFONT think
that a point with coordinates (z,y) is going to be labeled, while in fact it may not
be. The purpose is to cause METAFONT to chocse a nicer place for other point labels,
since they will now avoid the vicinity of (z, y), thereby sprucing up proof mode output
in certain cases. For example, Fig. 2-3 of this manual was produced using “invisible
z;,y1 + 1; invisible z3, y2 4+ 1;" this kept the labels 1 and 2 from appearing above points
1 and 2, where they would have interfered with the illustration. In general, METRFONT
places labels on points by using a fairly simple-minded scheme: From top to bottom
and right to left, the label is put either above the point, or to the left, or to the right,
or below, or off in the right margin, whichever of these possibilities is first found to be
feasible (with respect to the set of all points to be labeled, all invisible points, and all
labels placed so far). Note that the label positions do not depend on the raster image,
only on the locations of the visible and invisible points.

That completes the list of METAFONT statements. You might wonder why
input was not in this list, since input was used several times in the example of
Chapter 4. The reason ic that input is not officially part of a (statement); it has

Recovery from errors _ 69

the effect of redirecting METAFONT's eyes to a different file, even in the middle
of some other statement. Chapter 4 used the construction

input (file name);

but this semicolon was unnecessary—METAFONT just executed a null statement
after the input was complete. A (file name) in the current implement of METR-
FONT is any sequence of letters, digits, periods, and/or brackets, so a semicolon
is one way to terminate a file name specification. Another way is to type a space
or a (carriage-return).

So that's how METAFONT gets input; how does it decide where to put the
output? Answer: It chooses an output file name as explained below, and uses
the respective extensions .FNT, .ANT, .XGP, .CHR, .TFX for output produced
by fntmode, crsmode, proofmode, chrmode, tfxmode. The output file name is
the name of the first file you input, unless METAFONT has to output something
before there has been any input from a file. In the latter case, the output file
name is “mfput”.

<<10> Recovery from errors
OK, everything you need to know about METAFONT has been explained—unless
you happen to be fallible.

If you don't plan to make any errors, don't bother to read this chapter.
Otherwise you might find it helpful to make use of some of the ways METARFONT
tries to pinpoint bugs in your routines.

In the trial runs you did when reading Chapter 4, you learned the general
form of error messages, and you also learned the various ways you can respond to
METARFONT's complaints. With practice, you will be able to correct most errors
“on line,” as soon as METAFONT has detected them, by inserting and deleting
a few things. On the other hand, some errors are more devastating than others;
one error might cause some other perfectly valid construction to be loused up.
Furthermore, METAFONT doesn't always diagnose your errors correctly, since
the number of ways to misunderstand the rules is vast, and since METAFONT
is a rather simple-minded computer program that doesn't readily comprehend
what you have in mind. In fact, there will be times when you and METAFONT
disagree about something that you feel makes perfectly good sense. This chapter

Chapte

tries to help avoid a breakdown in communication by presenting METAFONT’s
viewpoint. Though it may seem like madness, there’s method in 't.

By looking at the input context that follows an error message, you can often
tell what METAFONT would read next if you were to proceed by hitting {carriage-
return). For example, here is a slightly more complex error message than we
encountered in Chapter 4, since it involves a subroutine call:

| Extra code at end of command will be flushed.
<subroutine> dot: x1 = yl1 = a; cpen w3
draw 1.
p-3,1.9 call dot;
new a;
T

In this case the error has occurred in the middle of subroutine dot, where a scmi-
colon was forgotten after the pen name cpen. The next tokens that METRFONT
will read are “draw” and “1" and then the period ending the subroutine call,
after which METAFONT will read “new a;" and proceed to line 10 of page 3 of
the current input file. Each pair of lines between the “!" line and the “1" linc of
an error message shows where METAFONT is currently reading at some level of
input; in this example there are two levels, one in the subroutine and one outside
in page 3 of the file.

The best way to proceed after this particular error is to type “i” (for inser-
tion), then (after getting prompted by “x") to type “; w3”. This inserts the
missing semicolon and reinserts the w3 specification that METAFONT is flushing
away, so that the program will proceed as if no error had occurred. In general, it
is usually wise to recover from errors that say “command flushed” by inserting
a semicolon and as many tokens as needed to provide the desired next statement,
after deleting any tokens you don’t wish METAFONT to read.

You can get more information about what METAFONT thinks it is doing by
enabling the various kinds of tracing mentioned in Chapter 9 (calltrace, drawtrace,
eqtrace, etc.).

. Here is a complete list of the messages you might get from METAFONT, presented in
alphabetic order for reference purposes. Each message is followed by a brief explanation
of the problem, from METAFONT’s viewpoint, and of what will happen if you proceed
by hitting (carriage-return). This should help you to decide whether or not to take any

v

.

Recovery from ervors _ 71 _

remedial action. (See also Appendix I for references to these error messages in other
parts of the manual.)

! Bad path, command flushed.

The (path) in the current draw or ddraw command does not follow the syntactic rules
stated in Chapter 9. Proceed, and METRFONT will ignore all tokens up to the next
semicolon or period.

! Boundary too long.

The current character was too complex to be drawn by the Alphatype CRS hardware.
Perhaps it would have been okay if you had chopped it into two parts using crsbreak.
Proceed; the character will not appear in the font output.

! Character ‘{octal code) goes over the top ({constant) > {constant)) .

You didn't specify a large enough maxht. Proceed, and the top rows of the current
character will be erased.

! Character too tall.

The current character covers more than 1023 consecutive rows of the raster, so it exceeds
the hardware capacity of the Alphatype CRS. You need to break it into two pieces
using crsbreak. Proceed, and a partly erased character will be output.

! Comma substituted here.

A missing “," has been substituted for the most recently scanned token. Proceed, after
possibly deleting and/or inserting some tokens to make the remaining expression read
as you intended it to.

! Curve out of ranga.

The current draw or ddraw command has requested METRFONT to plot a point whose z-
coordinate or y-coordinate is too large or too small. Proceed; the remainder of the cur-
rent drawing will be omitted. (It is possible to increase METRFONT's drawing range by
recompiling the system with different values of its internal parameters called xrastmin,
xrastmax, yrastmin, yrastmax.)

! Curve too wild.

The current curve (z(t), y(t)) being drawn undergoes extremely fast changes for small
increments in t; are you trying to break METAFONT's plotting routine? Proceed, and
the remainder of the current drawing will be omitted.

! Division by O.

The expression METRFONT is currently evaluating specifies a division by zero. Proceed,
and the division will be bypassed.

! Duplicate charcode: °(octal code).

Tworoutines havespecified the same character code. Proceed, and the previous character
will be overlaid by the present one.

72 Chapter 10

! Duplicate ligature/charlist entry, command flushed.

1t is illegal to specify two ligature labels for the same character code, or to include a
character in a charlist when there is a ligature label for it. Proceed, and METARFONT
will ignore all tokens up to the next semicolon or period.

! Empty pen specification.
The spen or epen you have specified contains no points. Proceed, and METARFONT will
substitute a one-point pen.

! epenxfactor must be positive (1.0 assumed) .
The value of epenxfactor cannot be zero or negative. Proceed, and METAFONT will
reset it to 1.0 while making the current epen.

i epenyfactor must be positive (1.0 assumed).

The value of epenyfactor cannot be zero or negative. Proceed, and METAFONT will
reset it to 1.0 while making the current epen.

| Extra code at end of command will be flushed.

METAFONT has read and interpreted a (statement), so it expected tofind a semicolon or
period as the next token. This expectation was not realized. Proceed, and METAFONT
will ignore all tokens up to the next semicolon or period.

! hpen height too small, set to i.

You shouldn’t specify a setting of hpenht that is less than 0.5. Proceed, and its value
will be set to 1.

! Illegal pen size ({constant)).

The pen size you have specified is either too large or too small. Proceed, and METRFONT
will use size 1 instead.

! Image lost since charcode not specified.

Your program drew something, but no information was output for that character since
you failed to specify any charcode for it. Proceed.

! Improper call, command flushed.

There are extraneous tokens following the current call statement (e.g., you may be
supplying too many parameters). Proceed; the call statement and all tokens up to the
next semicolon or period will be ignored.

! Improper charlist entry, command flushed.

Your charlist doesn’t follow the rules stated in Appendix F. Proceed, and METRFONT
will ignore all tokens up to the next semicolon or period.

! Improper index argument, command flushed.

You have just tried to call a subroutine having an index argument; but the parameter
you are supplying isn't an (index). Proceed; the call statement and all tokens up to the
néxt semicolon or period will be ignored.

Recovery from errors | 73

! Improper index specification.

An {index) was supposed to have been here (either a digit string or the name of an index
argument in a subroutine), for example after the word top. Proceed, and METAFONT
will act as if the index were “0”.

! Improper ligature/kern entry, command fiushed.
The current {lig instruction) doesn't follow the rules stated in Appendix F. Proceed,
and METAFONT will ignore all tokens up to the next semicolon or period.

! Improper name.
This token can't be made new (e.g., “new 5”). Proceed, and it will be ignored.

! Improper pen specs, command flushed.
You have not followed the rules of an spen or epen specification. Proceed, and META-
FONT will ignore all tokens up to the next semicolon or period.

! Incompatible resolution.
You can’t simultaneously select output in fntmode and crsmede.

! Inconsistent equation.

The equation just given does not jibe with information METAFONT already knows from
previous equations. (If you can’t understand why, try running your program again
with eqtrace on.) Proceed, and the inconsistent equation will be ignored.

! Indeterminate relation.

METAFONT has just scanned “if {relation):” but it was impossible to decide whether the
relation is true or false based on the equations given so far. To recover, insert and/or
delete tokens so that the next thing ME TRFONT reads is a correct conditional statement
(you must reinsert the “it” as well as a relation).

! Input page ended while scanning def of (subroutine name).

The end of a file page occurred between the beginning of a subroutine definition and
the period ending that subroutine. (It is possible to suppress this message by putting
METAFONT in no pagewarning mode.)

! Input page ended while scanning - (title)" .

The end of a file page occurred between a quoted title statement and the period ending
that routine; this may indicate an if not closed by fi, or some other anomaly, or it might
not be an error at all. (It is possible to suppress this message by putting METRFONT
in no pagewarning mode.)

! Ligature/kern table didn’t end.

The final entry of your final {lig instruction list) was a continuation entry. Proceed, but
don't be surprised if TEX blows up trying to use the font information produced on this
run. ‘

74 _ Chapter 10

|Lookup failed on file (filename).

METAFONT can't And the file you indicated. Type “i" oed insert the correct file name
(followed by a {carriage-return)). But be carcful: You get only one more chance to get
the file name right, otherwise METRFONT willdecide not to input any file just now.

! METAFONT capacity exceeded, sorry [(size)}=(number)] .

This is a bad one. Some o you have stretched METRFONT beyond its finite limits.
The thing that overflowed is indicated in brackets, together with its numerical valuein
the METAFONT implementation you are using. The following table shows the internal
sizes that might have beee exceeded:

Recovery from errors 75 M

epensize number of (/, 7) pairs in an epen specification;

maxpoints number of points in a curve to be drawn;

memsize memory above vmemsize used to store tokens;

names number of bits used to represent subscripts;

namesize memory used to store identifiers;

pmemsize memory used to store information aboud pens and erasers;

proofmemsi za
stacksi ze

number of visible and invisible points for proof sheets;
number of simultaneous input sources;

vmemsize memory used to store variable values sed many other things;
Xpanmax largest z-coordinate of a pen or eraser;

xpenmin smallest z-coordinate or a pen or eraser;

xrastmax maximum z-coordinate allowed when plotting;

ypanmax largest y-coordinate or a pen or eraser,

ypenmin smallest y-coordinate of a pen or eraser;

yrastmax maximum y-coordinate allowed when plotting.

If your job is error-free, the remedy is to recompile the METAFONT system, increasing
what overflowed. However, you may be able to think of a way to change your program
so that it does not push METRFONT to extremes.

! Missing " (", command flushed.
You have just tried to eall a subroutine without supplying enough parameters. Proceed;
the call statement and all tokens up to the next semicolon or period will be ignored.

! Nigsing *,*, command flushed.

The first {path) in the current ddraw command, oc the first coordinate in the current
invisible command, was not followed by a comma. Proceed, and METAFONT will ignore
all tokens up to the next semicolon or period.

! Missing ":*

METAFONT has just scanned “it {relation)” ond the next token should have been a
colon. To recover, insert and/or delete tokens so that the next thing METRFONT reads

wign
1

is a correct conditional statement (you must reinsert the as well as a relation and

a colon).

! Missing = sign, command flushed.

A METAFONT statement began with oe expression, but the next token was neither
“=" nor “draw” nor “ddraw”. The value or this expression, in terms or independent
variables, has been printed out on the line just preceding this error message. (See
Chapter 4 for several examples.) Proceed, and METAFONT will ignore the expression
and all tokens up to the next semicolon or period.

! Missing colon inserted.
There should have been a *“" after the word else; METAFONT has inserted one.

! Missing punctuation, command flushed.

You are trying to call a subroutine, but you didn't supply a comma or a right parenthesis
after the current parameter. Proceed; the call statement and all tokens up to the next
semicolon or period will be ignored.

! Missing relation.

METAFONT has just scanned “if {expression)” sed the next token should have beee
one or the six relation symbols (<, >, =, <, 2,). To recover, insert and/or delete
tokens so that the next thing METARFONT reads is a correct conditional statement (you
must reinsert the “if” and Ax the relation).

! Negative chardw, replaced by 0.
The value or chardw must not be negative. Proceed; it has become 0.

! N0 parameter name.

The word “var” or “index” should be followed by an identifier that will be the name of
the argument being specified. Proceed, and METARFONT will bypass the most recently
scanned token and argument; you may want to insert another argument with the correct
name.

! N0 pendefined.
You are trying to draw or ddraw, but the current pentypehas not been defined. Proceed,
and METAFONT will use ecpen.

| No subroutine name, command flushed.

The word “subroutine” should be followed by an identifer that will be the name of the
subroutine being defined. Proceed, and METAF ONT will ignore all tokens up to the next
semicolon or period.

! Paths don’t matchup, command flushed.

The two paths in the current ddraw command have unequal numbers of points. Proceed,
and METARFONT will ignore all tokens up to the next semicolon or period.

76 Chapter LO

! Pen 8ize too small ({conmstant)), replaced by 1.0.
The pen size enclosed in “|" signs (within a variable-size draw command) should not
be less than 1.0. Proceed, and METAFONT will act as if it were 1.0.

! Program ended whi le defining (subroutine name).
Premature occurrence or the word endleads to a premature end.

! Rectangle too wida.
You have specified an Ipen or rpen with too much width for METRFONT’s capacity.
Proceed, and METAFONT will cut the width to the maximum it can handle.

! Recursive call not allowad, command flushed.

You have just tried to call a subroutine having a parameter whose value is already
defned from another call not yet complete. (Recursion is allowed only with parameter-
less subroutines.) Proceed; the call statement and all tokens up to the next semicolon
or period will be ignored.

! Redundant equation.

The equation just given does not present any information that METAFONT didn't al-
ready know from previous equations. (If youcan't understand why,try running your
program again with eqtraceon.) Proceed; no harm has been done.

! Right bracket substituted here.

A missing “]" Aos been substituted log the most recently scanned token. Proceed, after
possibly deleting and/or inserting some tokens to make the remaining expression gead
as you intended it to.

! Right parenthesis substituted here.

A missing “)” has been substituted for the most recently scanned token. Proceed, after
possibly deleting and/or inserting some tokens to make the remaining expression cead
as you intended it to.

! Rounding of (char dimension) necessary, (constant) 1 {(constant) .

The characters in the present font have too many distinct dimensions o [the specified
type for TEX to handle. (For example, some versions o [TEX will allow at most 16
different values o [charht pes font.) The specified approximation has been used; if
you want uniformity between different machines, you should redefine the dimensions
in accordance with TEX's limits.

! Routine ended in skipped conditional text.

Something is awry, since a period 0¢ ond has occurred in the midst o[part of your
program that is being skipped over (because it's in the unselected part of a conditional).
Proceed if you dare.

Recovery jrom errors 77

Sharp turn suppressed betwean points (point names) ({velocity))

(This is not really an error message, it's a warning that you get when modtraceisin
effect.) The curve METAFONT is about to draw would have had a sharp turn at one
of the stated points (the first point if the “r" velocity is given, the second if the “s”
velocity is given), because of the angles the curve is supposed to take between those two
points. The velocity derived by METARFONT's normal rules is below minvr or minvs, S0
METAFONT is suppressing the sharp turn by raising the velocity to the corresponding
minimum value. (Cf. the latter part of Chapter 2 for further discussion.) This usually

is a symptom of some problem in your program, although it may be perfectly all right.

! Bhould be "(" or "," or ":" here.

One of these three tokens is needed, since an argument list is being scanned; you should
insert and/or delete tokens so that METRFONT sees the correct one, to get it back into
synch.

! Bhould say var or index here.
The word “var” or “index” should have appeared at this point, to defne the next
subroutine argument. Proceed, and the most recently scanned token will be ignored.

! 8tring must end on the line where it bagins.

A quoted title cannot contain a {carriage-return); the title you supplied therefore seems
to have ended without its closing “*" mark. Proceed, and METRFONT will act as though
the “*" had been present here.

! Bubroutine definition should follow " .

A subroutine definition should not begin between a title statement and the period ending
the corresponding routine. Proceed; METAFONT will define the subroutine and resume
the routine, forgetting its title.

! Subroutines can‘t be defined inside subroutines.

Each subroutine should be a section unto itself. Proceed, and the word “subroutine”
will be ignored; however, some other errors will probably show up unless you insert the
text “.subroutine” now to recover from this error.

! This can’t happen.

An internal consistency check has failed, causing METRFONT to be totally confused.
Either you did something the author wasunable to foresee, o sauebodyx bas beeo
tampering with the METAFONT system programs.

! Titles are ignored inside subroutines.

You aren’t supposed to have title statements in subroutines. Proceed, and this here one
will be ignored.

| 18 | Chapter 10

! Too many different chardw values.

! Too many different charic/varchar values.

The TEX character information for the current font is too complex; TEX puts limits on
the maximum number of distinct values of chardw and charic/varchar in any one font.
(See Appendix F.)

! Too many ligatures, command flushed.

Your program is supplying more ligature/kern entries than TEX can tolerate in one
font. (Some implementations of TEX have restricted capacity, but the present Stanford
version allows 512, which should be plenty.) Proceed, and METAFONT will ignore all
tokens up to the next semicolon or period.

! Too much texinfo, command flushed.
Your program is supplying more information parameters than TEX can understand.
Proceed, and METAFONT will ignore all tokens up to the next semicolon or period.

! Undefined pen.

You are using a {direction) operation like top, but the current pen type has not been
defined. Proceed, and METRFONT will ignore the {(direction) operation.

! Undefined pen size.

The current pen size being supplied before the word draw or ddraw does not have a
known value; its value in terms of independent variables has been printed out on the
line just preceding this error message. Proceed, and the current pen size will retain its
former value.

! Undefined (something), replaced by (constant).

The line before this error message shows the current value of the (something) that should
have a definite value at this point, expressed as a linear combination of independent
variables. The (something) might be any of the following:

character code first {expression) in a ligature/kern instruction;
cosine operand of cosd;

divisor B in a term of the form a/g8;

expression entire (expression) whose value is needed;
factor one factor of a product, when neither are defined;
goodea operand of good;;

interval fraction ain aterm of the form al8,7];

root operand of sqrt;

roundee operand of round;

sine operand of sind.

Proceed, and the computation will continue as though the (something) had the stated
(constant) value. ’

Recovery from errors ~ 79 _

! Undefined subroutine, command flushed.
You have just tried to call a subroutine that isn't currently defined. Proceed; the call
statement and all tokens up to the next semicolon or period will be ignored.

! Undefined size w{digit string).
Your program is using an operation like “tops” when the corresponding w-variable (e.g.,
wg) does not have a known value. Proceed, and the value will be assumed zero.

! Unknown control code, command flushed.
The word “no” must be followed by one of METAFONT’s control codes. Proceed, and
the tokens up to the next semicolon or period will be ignored.

! Variable (variable name) never defined.

The stated variable is about to become undefined (e.g., it is being made new, or it is an
z-variable and a routine or subroutine is ending), but it has never gotten a fully known
value. Thus, other variables might be depending on this one, because of equations that
gave incomplete information. Proceed, and METAFONT will try to keep going. (If this
variable is independent, it will essentially be replaced by 1.0 in the equations for all
variables that depend on it.)

! variable x{point number) is undefined, 0.0 assumed.

METAFONT is about to carry out a draw or ddraw command, but the z-coordinate
of this particular point does not have a known value. (The point number may be
preceded by lower case letters if the point is defined within a subroutine, as explained
in Chapter 8.) Proceed, and the drawing will take place using zero as the z coordinate.

! Variable y(point number) is undefined, 0.0 assumed.

METAFONT is about to carry out a draw or ddraw command, but the y-coordinate
of this particular point does not have a known value. (The point number may be
preceded by lower case letters if the point is defined within a subroutine, as explained
in Chapter 8.) Proceed, and the drawing will take place using zero as the y coordinate.

Velocity reduced between points {point name) and (point name) ({velocity))
(This is not really an error message, it's a2 warning that you get when modtrace is in
effect.) The curve METRFONT is about to draw would have had unusual behavior
near one of the stated points (the first point if the “r" velocity is given, the second if
the “s” velocity is given), because of the angles the curve is supposed to take between
those two points. The velocity derived by METAFONT s normal rules is above maxvr or
maxvs, 50 METAFONT is suppressing the wildness of the curve by lowering the velocity
to the corresponding maximum value. (Cf. the latter part of Chapter 2 for further
discussion.) This usually is a symptom of some problem in your program, although it
may be perfectly all right.

80 Chapter 10

! vpen ‘width too small, saet to 1.
You shouldn't specify a setting o[vpenwd that is less than 0.5. Proceed, and its value

will be set to 1.

! w—variable not followed by proper subscript.

An identifier can't start with the letter w; thus you can’t use a variable naxned wi dth
except in a subroutine having an index parameter nexned idth.Proceed, and METR-
F ONT will act os though the offending w-variable were zero.

! Whoops, you need a Datadisc for display modes.
The drawdisplay end chardisplay control bits o [METAFONT can be turned on only if
you are using it from o Datadisc terminal. Proceed, ond these bits will be turned off.

! x—variable not followed by proper subscript.

An identifier can't start with the letter x; thus you can't use a variable named xheight
except in a subroutine having an index parameter named height. Proceed, and META-
FONT will act as though the offending z-variable were zero.

! y-variable not followaed by proper subscript.

An identifier can't start with the letter y; thus you can't use o variable named year
except in a subroutine having an index parameter named ear. Proceed, and METRFONT
will act as though the offending y-variable werezero.

!Youcan't begin a “primary” like that.

At this point in your program, METAFONT is expecting to see a {primary), but the
token it has just scanned cannot be used at the beginning or a (primary) expression.
(Perhaps it is a reserved word that you intended to use as the name of a variable.)
Proceed, and METAF ONT will pretend that the token it has just scanned was “0”.

!Youcan'tbegina statemant 1 ike that, command flushed.

The token METAF ONT has just read was supposed to be the first one of a (statement), but
no {statement) can possibly start with this particular token. Proceed, ond METRFONT
will ignore all tokens up to the nextsemicolon or period.

! You can’t start an expression like that.

At this point in your program, METRFONT is expecting to see an (expression), but the
token it has just scanned cannot be used at the beginning or an (expression). (Perhaps
it is a reserved word that you intended to use as the name of a variable.) Proceed, and
METRFONT will pretend that the token it has just scanned was a (term} o[value zero.

! You can’t vary the pen size with (pen type).
A draw command with varying sizes cannot be performed with a %2— spen, 0S epen.

Proceed; the current drawing will be omitted.

Answers to all the ezercises 81

»

< A>> Answers to all the exercises

1.1: Replace the first line by “z1 = 2y ;m = 25, 23 = 26, 7 — 21 = 73 — oy; 12y = O;
rtizz3 = 2d — 2;". (Adjacent characters will be separated by exactly one white pixel,
not two, if the width or the character is 2d pixels, because a character or width 2d
exbends from column 0 to column 2d — 1, inclusive.)

2.1: A straight line from point | to point 2, and another from point 2 to point 3.

2.2: The same “curve” os in exercise 2.1(!).

3.1z epen (=7, —1)(=7, —1)(~7, —1).(—7, —1)(—7, —1); if the height were 4 instead
of 5, the final “(—7, —1)” would be omitted and “epenycorr 0.5” would be used to

center the pen vertically.

3.2: Program 1 yields an ellipse o width 75 ond height 25, centered at the origin (i.e., at
point (0,0)). Program 2 draws a sbope of the same width and height—but it is composed
o[two semicircles o[diameter 25 at the left and right, connected in the middle by a

25 X 50 rectangle.

41: wO draw 4{1,0}..1{0,1}; draw 3{0,1}..2{4,0}.

4.2: Yes.

5.1: (8) z;. (b) If z, is on one side of 1, this point is ou the opposite side, at a distance
from z; that is half the distance from zzto z;. (Imagine walking from z, toward z; at a
constant speed that gets v -ou there after one day; feep walking for a total or 3/2 days.)
(c) 1/2[z1, 23). The formula (z; + z3)/2 is one symbol shorter, but it is less descriptive
once the bracket notation is understood.

5.2: () Yes. (b) No. (c) No (that one means \/7:2z).

8.1: The curve would be filled in between points 2 and 8, obliterating point 1, since 2
and 8 se corresponding points.

8.2: At least two ways will work. () By setting “safetyfactor 0.22222" ond using “l
ddraw . . ." , the value o[m is computed as if the pen size were 9 instead o[1. The safety
factor must be reset (0 2. (b) By using “epen (0, 0); 9 ddraw . ..” you get the effect of
a width-9 cpen but with an explicitly defined pen that blackens only one pixel at each
point. Similarly an spen could be used.

8.1: subroutine curve(vartheta, var phi,index i, index j):
cpen; 1 draw i{cosd theta,sind theta} . .j{cosd phi, —sind phi }.

8.2: cal, ca, cabl, cab2, cabbl, cabb2, cabbbl, cabbb2. (The value or xca3 is the
same 9s that o[xcabl, but no point is labeled ca3 since yca3 is never defined.)

8¢ Appendiz €

<E>Exampleof o font definition

The alphabets used to typeset this manual belong to the “Computer Modern”
family Or fonts developed by the author at the same time as METRFONT itsclf
was taking shape. Further experience will doubtless suggest many improvements,
snd in fact the design of Computer Modern is still farfrom finished. The purpose
of this appendix is to illustrate what the author has learned < far about the task
or designingsfairly complete alphabet, g0 that you can get an idea or why he
finds it such g pleasant undertaking.

A complete font design is, or course, a complex system, 0 there gge several
levels at which one might understand it and use it—depending on how much of the
“black box" is being opened. At the outermost level, all oc the details can be left
alone and we simply generate a particular font. For example, there is a file called
“cmri0.mf"”, and when METAFONT is applied to that fileit will produce the
“Computer Modern Roman 10 point” font. Another file “cmsss8.mf" produces
“Computer Modern Slanted Sans Serif 8 point,” and so on. But if we actually look
into files like cmr10.mf and cmsss8.mf,we Ond that they arequite short; they
merely set up the values o certain parameters and input the file “roman.mf”,
which contains the actual METRFONT programs for individual leters. Therefore
it is easy (0 make up g customized font for g particular application, simply by
setting up new values or those parameters and inputting roman.mf ourselves.

At g still deeper level, we can also look at the file roman.mf, whichconsists
or 128 short programs for the individual character shapes (followed by ligature
and kerning definitions). These short programs are fairly independent, and they
aren't completely inscrutable; it isn't difficult to substitute g new routine og two
for characters that we wish to modify, since the programs make use of some fairly
flexible subroutines that appear in file cmbase .inc o

At the deepest level, we could also fiddle with the subroutine definitions in
cmbase .mf—and o[course that would essentially amount to the creation o[g
new family or fonts.

In this appendix we shall study the Computer Modern fonts by working oug
way in from the outermost |eyve| @ File cmri0.nf lookslike this:

"Computer Modern Roman 10 point”;
ph= % px="148 pe= §; pd={
pb =% po=4g; ps=4%; pa=.5(ph— pd);

Ezample of a jont definition _ 83

pw = $%; pwi = &; pwii = 3; pwiii =
pwiv = Ww i pwv = w.mm aspect = 1.0;

pu = 28 les = 1.075 ues = L.T; sc = 0
slant = 0; sqritwo = sqrt2; fixwidth = 0;
halfd = 0; varg = 0.

input cmbase; call fontbegin;

input roman;

end.

In other words, the file sets up a lot of parameters and then it does “input roman”
to create the font. E

We can obtain g great variety Or related fonts by setting these parameters
in different ways,once we know what they mean; and here's whatthey mean:

By convention, 81| Or the parameters whose name begins with“p" are in units of
printers’ points. First come eight parameters covering important vertical dimen-
sions:
phis the h-height, the distance from the baseline to the toporan ‘9 '‘ ¢
px is the x-height, the distance from the baseline to the toporan ‘‘'x'‘ ¢
peis the e-height, the distance from the baseline to the bar or an ‘‘e‘‘.
pd is the descender depth, the distance from the baseline to the bottom or
aV,.
pb is the border height; characters extend g6 much as ph +pb above the
baseline and pd + pb below it.
po is the amount of overshoot for optical adjustments at sharp corners; e.g.,
“A" is this much taller than ®" '«
ps is the vertical distance at which serif bracketing is tangent to the s(ews ¢
pa is the axisheight, the distance from the baseline to the point where
mathematical symbols like “4" and “=" have vertical symmetry.
Then there gce seven parameters affecting the pen sizes:
pwis the hairline width, used in the thinnest parts or letters.
pwi is the stem width, used :og¢ the vertical strokes in an “h".

84 | Appendiz E

“ =

pwii is the curve width, used in an at its widest point.

pwiii is the dot width, the diameter of the dot on an “i".
pwiv is the upper-case siem width, used for the vertical strokes in an “H".
pwv is the upper-case curve width, used in an “O” at its widest point.

aspect is the ratio of a hairline pen's width to its height.

Next come four parameters concerning horizontal dimensions:
pu is the unit width, 1/18 of an em.
Ics is the amount by which serifs of lower-case letters project from the stems,
in units of pu.
ucs is the amount by which serifs of upper-case letters project from the stems,
in units of pu.

sc is the serif correction in units of pu; each letter specifies multiples of sc
by which its width is to be decreased at the left and the right.

Finally we have miscellaneous parameters that control special effects:

slant is the amount of additional increase in z per unit increase in y, used
to slant letters either forwards or baokwards.

sqrttwo is used to control the ellipticity of the bowls of letters, as explained
in Chapter 8.

halfd is nonzero if certain characters like “," are to descend only half as far
as lower-case letters do.

varg is nonzero if the simple “g" shape is to replace the classical “g"

File cms10.mf ("Computer Modern Slanted 10 point”) is exactly the same
as file cmr10.mf, except for its title and the fact that slant = 0.15. Similarly,
the settings of parameters in file cnb10.mf (“Computer Modern Bold 10 point”)
are nearly identical to those of cmr10.nf, except that the pens are bigger:

pw=13; pwi=143; pwii=4; pwii=3};
pwiv=13; pwv=13;
furthermore serifs are shorter (lcs = .85, ucs = 1.5).

File cnr5.mf generates 5-point type, but it is not simply ovom_snm by halv-
ing the parameters of cmrl0. The eight vertical dimensions ph, px, ..., pa are

Ezample of a font definition | 85

exactly half as large as before, but the pen sizes and the horizontal dimensions
get smaller at different rates w as to cahunce the readability of such tiny ietters. The following
settings are used:

w=1i, pwi= 15, pwii= &
wiii = 2, pwiv=1§, pwv =14}
pu = Nm les ==0.92, ucs =1.32.

=R~

Two more examples should suffice to illustrate the variation of these pa-
rameters. The bold sans-serif font used in this sentence and in the chapter
headings of this manual is called “Computer Modern Sans Serif 10 point
Bold Extended” (cmssb). It uses the same vertical dimensions and miscellaneous
settings as cmrl0, and gets its other characteristics from the following parameter

values: .
pw == pwi = pwii = pwiii = 3I;
pwiv = pwv = 42; aspect = 3I;
pu=1%; lcs=ucs=0; sc = 5.

To get the typewriter font "cmtt" used in this sentence, set

ph=2% px=4 pe=1; pd=§;
pb=133; po=0; ps=0; pa=75;

pw == pwi = pwii = pwiv = pwv = §;
pwiii = §; aspect = 1.0;

pu=2%; ls=4¢; ucs=14} sc=0;
slant = 0; sqritwo =sqrt2; fixwidth = 1;
halfd =1; varg =0.

BY MAKINg SLrANgOr SoLLings Of Lho PATAMOLers You 0an aico oL sirango fonts iiko this.
The programs for Computer Modern can be used in several ways. The general
procedure is to run METAFONT and type

mode = (mode number); input (font name);

the routines will act differently depending on the specified mode. At present
mode 0 generates proof sheets and shows the letters as they are being drawn,

| 88 | Appendic E

A =t
‘., a2 b2 T o2,
‘ ..,,, : ,., hY
L i . !
Iy e3
; [i
YA il
. L : Sea
) \ 3 S
5 ! i ~ 1
B R w O
i)
4 ¥
/ I ~ P
| ;. B
a3 2 4 o2 43 “
alg ' by 1 4 dy et~ 2 ‘4 w1

Fig. E-1. Two characters of font cmrl0, as they appear when drawn with “mode 0”.
The horizontal guidelines indicate the h-height, x-height, e-height, and the depth of
descenders in this font. The vertical guidelines are one “unit” apart, where there
are 18 such units to an em. ’

with g resolution or 36 pixels per point; mode 1 generates s font for the XGP
with a resolution of 3.8 pixels per point, displaying the letters on a Datadisc just
after they are drawn; and mode 2 generates a font for the CRS with a resolution
or 73.7973 pixels per point, displaying the titles oc the letters as they are being
dee 0 @ In mode 0 the letters appear on a background grid as shown in0d ¢ E-1,
so that you cansee the settings of the parametersin a convenient way.

L

Ezample of o jont definition _ 87 _

Actually mode 0 is rarely used with an entire font like cmrl0, it is generally
used to test out new characters. In that case you can make up a file called
“test.mf"” containing the characters you wish to try, and simply input the
system file “proof . mf" , which has the following form:

mode = 0; input cmbase;

ph =380, .. (set up for cmrl0)...; call fontbegin.
input test;

new pw, ... (set up for cmbl0)...; ecall fontbegin.
input test;

new pw, ... (set up for cmssb)...; call fontbegin.
input .ﬂou....“

new ph, ...(set up for cmtt)...; call fontbegin.
input test;

new ph, ...(set up for cmsss8)...; call fontbegin.
input test;

end.

Thus, it runs your test file against five different settings of the parameters.

Let’s go one level deeper and take a look at the programs for individual letters;
examples appear in Figs. E-2 and E-3 later in this appendix. Such programs are ex-
pressed in terms of variables something like the parameters we have been discussing, but
the variables are slightly different since the letters are to be drawn on a raster and we
need to work in raster units instead of printers’ points. The point-oriented variables ph,
px, pe, etc., have corresponding raster-oriented variables, satisfying the approximate
relation

{raster-oriented variable) ~s pixels-(point-oriented variable},

where pixels is the number of pixels per point. This relation is only approximate, not
exact, because the raster-oriented variables have been rounded to values that help to
provide satisfactory discretization of the characters. As explained in Chapter 7, good
designs are written with discreteness in mind, although METAFONT tries to do the right
thing automatically when it can.

There are seven raster-oriented variables corresponding to seven of the eight pixel-
oriented vertical dimensions, namely

h « ph, ¢+ px, ¢ =+ pe, d « pd, b~ pb, 0 «~ po, a « pa;

| 88 | Appendia E

R

in other words, we just drop the “p”, except in the case of “px” (since a variable can’t
be named “z”). Fortunately the height of a “c” is the same as the height of an “x”,
s0 we can use the term c-height in place of the traditional term x-height. The baseline
of each character is row 0, so the bottom pixel of a letter like “h” has y-coordinate 0.
The top pixel of an “h” is in row h, which is always an integer. (Note that there are
actually h 4 1 occupied rows, not h, although k is called the h-height.) The top pixel
of a “c” is in row ¢, and the bottom pixel of the descender letters (g,j,p,q,y) appears
in row —d. All three of these variables (h,¢,d) are integers, and so is the overshoot
variable o (which is used as a correction to h, ¢, or d in certain cases). Variable ¢ is
either an integer or an integer plus 4, whichever is better for a pen of the hpen height,
since the bar of an “e" is drawn with an hpen and its y-coordinate is e. Variable b is
an integer calculated in such a way that tall characters can run up to row A +- b and
deep characters can descend to row —d — b; more precisely, it is the smallest integer
such that A+ d + 2b 4 1 rows of the raster occupy a vertical distance that exceeds or
equals the true point size ph + pd + 2pb.

The pen sizes in Computer Modern programs for individual letters are generally
expressed in terms of the following variables, each of which has a positive integer value
intended to approximate the “true” infinite-resolution value (and slightly increased in
order to look right on the output device):

wp, the hairline width;

w;, the stem width;

wy, the curve width;

w3, the dot diameter; -
wy, the upper-case stem width;

ws, the upper-case curve width;

ws, the hairline height;

wy, the stem height;

ws, the upper-case stem height.

Note that the last three of these variables have no “p-variable” equivalent; they satisfy
the approximate relation

wo/ws A Wi/ wr = we/ws = aspect.

The hpenht is ws and the vpenwd is wp. Thus, an hpen of size up is equivalent to a
vpen of size ws; we may call it the ‘hairline pen” for the font.

In the horizontal dimension, the Computer Modern programs make frequent use
of variable u, the approximate unit width when there are 18 units to an em. The width
of a character is expressed in terms of units (e.g., an “h” is 10u wide, unless there is a

Example of a jont definition _ 89

serif correction sc 5 0), and key positions can be specified as a certain number of units
from the left {e.g., the stems of an “h" are centered at 2.5u and 7.5u). The vertical
guidelines in Fig. E-1 indicate the unit spacing for a 13-unit-wide “A” and a 12-unit-
wide “B".

If the character is ¢ units wide, variable u has been calculated so that ¢ times u is
an integer r, the rightmost column of the character. (The value of u itself is usually
not an integer, nor need ¢ be an integer.) Just as a character typically occupies rows
0 through k, inclusive, in the vertical direction, we use columns 0 through r inclusive
in the horizontal direction, although most characters leave white space at the left and
right boundaries. The integer r is calculated so that r 4 2 is the nearest integer to
the character's true width (t-pu-pixels); the reason for this extra “--2" is that low-
resolution devices should keep a blank column (column r 4 1) between adjacent charac-
ters. However, it is best for conceptual purposes to think of r as the character’s actual
width, and to think of “r — 2.5u" as a point 2} units from the right edge, etc.

We're ready now to look more closely at a program for the upper-case letter “A”
(Fig. E-2). The first line of that program simply gives the title that will appear on
proof sheets, or possibly on the terminal when the character is being drawn. Then
comes a call to the charbegin subroutine, with seven parameters: the character code,
the width of the character in units, the multiples of sc that are to be trimmed from the
left and right, and the character’s height, depth, and italic correction. These last three
parameters must be in absolute units of printers’ points, hence ph (not k) is used here
for the height.

The next few lines give eight equations to define the locations of points 1, 2, 3,
and 4. First point 1 is positioned so that, using an hpen of size wo (the hairline pen),
the pen’s left edge will be 1.5 units from the left edge of the character, and the bottom
will be on the baseline. Similarly point 4 is placed so that the pen's right edge will be
1.5 units from the right edge of the character and the bottom will be on the baseline,
where this time the pen is an hpen of size ws. (The upper-case curve width ws is used
here in preference to the stem width wy, since a diagonal stroke tends to decrease the
effective pen width.) The positioning of points 2 and 3 is more interesting: the idea is
that we want to draw a line from 2 to 4 with an hpen of width ws, and another from 3
to 1 with an hpen of width wy. First we define y; and 15 so that the top occurs at the
h-height &, plus the “overshoot” o that gives this letter a touch of class. Then we state
that z3 — z; = T4 — Z3, so that the two diagonal strokes will have the same slopes (the
same amount of change in the z direction). Finally we stipulate that rtsz; = rtozs, so
that the line from 2 to 4 will have the same top right boundary as the line from 1 to
3. These equations give METAFONT enough information to determine points 2 and 3
uniquely. .

After drawing the right diagonal stroke, we need to erase part of the stem line at

90 Appendiz E

Ezample of o fond definition | o1 |

“The letter A";

call charbegin(" A, 13,2,2, ph,0,0);
hpen;

Ittoz; = round 1.5u; botoyr = 0;
rtsz4 = round(r — 1.5u); botsys = 0;
topgys = topsp = h +0;

I3 — T = Ty — Ty; rhsTp = rtody;

ws draw 2. .4; % right diagonal stroke
Ys=1Ys = ¢

z5 — 1 = (g5 — y1)/ (s — 1)z, z3;

28 + 1 == (8 — y4)/(y2 — y4){z4, 23);

wy draw 5..6; % bar line
lpeng; wsdraw 3..5; % erase excess at upper left
hpen; wodraw 3..1; % left diagonal stroke
if ucs £ 0:

call “a serif (1,0, 3, —.5ucs);

call “b serif(1,0,3, +ucs); % left serifs
call ~c serif (4,5, 2, —ucs);

call ~d serif (4, 5,2, +.5ucs); % right serifs
fi.

Fig. E-2. A METAFONT program for upper-case “A”.

the top, where it protrudes to the left of the left stroke (which is thinner). Before erasing
anything, however, we may as well draw the bar line. Computer Modern fonts place
this line at the e-height, the same level as the bar line in an “e”, hence ys = ys = ¢.
The calculation of zs and zs is slightly trickier; zs lies between z; and z3, and the ratio
of its distance is the same as the same as the ratio of ys — y1 to ya — 1. The equation
“rs = (ys — 11)/(y3 — w1)[Z1, Z3)" would almost surely work to define a suitable point;
but the program actually uses zs — 1 instead of zs, just to be absolutely safe against
weird possibilities of rounding that might cause the bar line to stick out at the left. (It
doesn’t hurt to start a line one pixel to the right of a point that lies on another line.)

Now the lpeng is used to erase unwanted black pixels, changing them back to
white. Actually this erases more than we wanted to get rid of, since it has'a rectangular
shape and we are erasing at an angle; but that doesn't matter, because the left diagonal
stroke blackens all the necessary pixels. (Note that the eraser has also done away with
part of the guidelines in Fig. E-1.) ’

Finally the serif subroutine is used to attach fancy serifs at points 1 and 4; these

“The letter B*;
call charbegin(*B, 12,2,0, ph, 0, ph-slant — 2pu);

hpen;

Ift4z, = ft4zz = round 2u; top,y1 =h; botyyz = 0;

wy draw 1..2; % stem

it ucs £ 0: call ~a serif (1,4,2, —ucs); call *b serif (1,4,2, Sucs); % upper serif
call ¢ serif (2,4, 1, —ucs); call “d serif (2,4, 1, .Sucs); % lower serif

fi;

3= §Ru,1, w=uw;

rtszy = round(r — u); ya = goody ih;

wo draw 1..3; % upper bar line
call “e darc(3, 4, ws); % upper counter
Zs=1z1; T =723+ Iy, Yu=1Us =1

rtsz7 = round(r — ju); botsyr =0;

wp draw 5..6; % middle bar line
call ~ £ darc(6, 7, ws); % lower counter
Tg=7Ts; VYs=1pr; wodraw2 8. % lower bar lin:c

Fig. E-3. A METAFONT program for upper-case “B”.

scrifs extend .5ucs units outwards and ucs units inwards. Details of this subroutine
appear below.

Once you understand this program for “A”, you will have no trouble writing
programs for “V” and “v", as well as for the Greek letter “A”; and you will be well
on your way to having a “W” too. Similarly, the code for “B" in Fig. E-3, which is
presented here without further comment, leads to “D” and “P" with little further ado.

We shall now plunge into the deepest level, the subroutines in cmbase . mf that take

care of nasty details. Four of the most important subroutines are given here, as
examples of how this level operates; the four subroutines (fontbegin, charbegin, serif,
and darc) suffice to do everything required by the programs for “A” and *B".

eps = .000314159,; % a very small random positive number
it mode = 0: proofmode; drawdisplay; pixels = 36; blacker = 0;
else: it mode == 1: tntmode; tixmode; chardisplay; pixels = 3.6; blacker = 1.2;
else: crsmode; tfxmode; titletrace; pixels = 73.7973; blacker = 1;
fi;
fi;

_ 92 _ Appendiz E

subroutine fontbegin: % Initialize before making a font:
no eqtrace; % Turn off tracing within this subroutine.
new typesize; % the vertical size of the font
new cf; % conversion factor, approximately equal to pixels
new h,d,c,¢,0,b,5,a; % raster-oriented vertical dimensions

wp == round(pixels-pw - blacker);
w; = round(pixels-pwi + blacker);
wy = round(pixels-pwii - blacker);
w; == round(pixels-pwiii 4+ blacker);
round(pixels-pwiv -+ blacker);
round(pixels-pwv -} blacker);
ws — round(pixels-pw/aspect -+ blacker);
wy; = round(pixels-pwi/aspect -+ blacker);
wg = round(pixels-pwiv [aspect -+ blacker);
hpenht ws; vpenwd ux;
typesize = ph + pd + 2pb; cf -typesize = pixels-typesize — |,
h = round cf-ph; d =round cf-pd; c¢=round cf px;
o=round cf-po; s==cfps; o= .5round 2cf-pa;
= —round(.5(h 4+ d — typesize-pixels));
hpen; e = good, cf-pe;

maxht h -+ b;

trxy slant;

if mode £ 0: texinfo slant, 6pu, 3pu, 3pu, px, 18pu, 2pu;

fi.

subroutine charbegin(var charno) % seven-bit character code

(var charuw) % character width in units

(var Iftcorr, var rtcorr) % serif-oriented corrections in units

(var charh, var chard, var chari): % charht, chardp, charic values in points

no eqirace; no calltrace; % Shut off tracing in this subroutine.

new uw; % the correct character width in units

new r; % raster-oriented character width

new u; % raster-oriented design unit

new tu; % unmodified raster-oriented unit

new italcorr; % italic correction

it chari > 0: italcorr = chari; else: italcorr = 0;

fi;

charcode charno; charht charh; chardp chard; charic italcorr;

tu = pu-pixels;

Ezample of a font definition 93

it ixwidth = 0: r + 2 = round charuw-tu;
uw = charuw — sc-(Iftcorr + rtcorr);

else: 7 - 2 = round((9 - sc-(Iftcorr + rtcorr))tu);
uw = 9;

fi;

wu-charuw == r; charwd uw-pu; chardw uw-tu;

inex round(—sc-lftcorr-tu);

it mode = 0: call box(round sc-Iftcorr-tu);

fi.

subroutine box(var offset): % Draw guildelines and box around a character:
no drawtrace; no proofmode;

new topp, bott, left, right, pos;

topp = h +b; bott = —d —b;

left = offset; right = offset 4 u-uw;

Ty = T3 = zs = I7 = I = Z1) = T3 = L5 = T7 = left;

Ty = T4 = Tg = Tg == Tj0 = T3 = Z14 = Z1e = T3 = Fight;

1 =1 =0; cpen; ldrawl..2; % baseline
B=ys=c¢ draw3.. 4 % e-height
ys = ye =¢; draw 5..6; % x-height
w=ys=nh; draw7..8; % h-height
1% = Y10 = topp; draw 9..10; % top of character
Y11 = 13 = —d; draw11..12; % descender line
Y13 = Y14 = bott; draw 13..14; % bottom of character
trxy 0; % Temporarily turn off the slant.
s == yie = topp; Y11 = Yis = bott;

draw 15..17;, draw 16..18; % left and right edges
it italcorr > 0: z19 == 220 = right -+ italcorr-pixels;

. Y19 = topp; o =0; draw 19..20; % show italic correction
fi;

trxy slant; % Restore slanted transformation
pos = 0; call unitlines. % Draw the unit guidelines.
subroutine unitlines: % Recursive subroutine to draw guidelines:

z) = z3 = pos; Y1 = topp; y2 = bott; epen;
it pos > left: 1 draw 1..2;

fi;

new pos; pos = z; -+ y;

if pos < right: call unitlines;

fi.

Font, information for TEX | 95

9 ndiz E

subroutine serif (index 7) % point where serif appears
(index k) % w-variable for stem line
(index 7) 9% another point on the stem line

(var sl): % serif length

n =¥

ity <y pp=vwi+s celseya=y—s

fi;

hpen;

it 5] << 0: lttoz; = Mtez; + sl-u — eps;
Htozs = Wte(ya — i)/ (vi — willzi 24l
else: rtoz; = rtez; 4 sl-u 4 eps;
rtozs = rte(yr — i)/ (y5 -~ w)lzi, 25);
fi;
no proofmode;
23 = §[z1 —slu, §[z1, 2] v = §{us, $l, 10l
minve 0; minvs 0;
wo ddraw 1{z; — 2;,0}..3..2{z; — i, i — ¥}, 1..1..4;
minvr 0.5; minvs 0.5.

subroutine darc(index 1) % starting point
(index j) % opposite corner point
(var maxwidth): % the pen grows from up to this size

Zs = zi; Ty = z4=l/sqritwo [z;,z;};, 23 =2 ;

ys = yi; v = Ly, v}

v2 = 1/sqrttwo [ys, 4], ya = 1/sqrttwo [, y5);

hpen; draw |up|i{zs — z;,0} .. |3[wo, maxwidth})|2{z3 — z;, 15 — ¥} ..
Imaxwidth#|3{0,ys — w}..

12 fwo, maxwidth)|4{zs — z3, ys — 13} .. |wol5{zs — 25, 0}.

<F> Font information for TEX

The TEX typesetting system assumes that some “intelligence” has been built into
the fonts it uses. In other words, information stored with TEX's fonts has an
important effect on TEX's behavior. This has two consequences for people who
use TEX: (a) Typesetting is more flexible, since fewer conventions are frozen into
the computer program. (b) Font designers have to work a little harder, since
they have to tell TEX whet to do. The purpose of this appendix is to explain how
you, as a font designer, can cope with (b) in order to achieve spectacular success
with (a). (You should of course be somewhat familiar with TEX if you expect to
provide it with the best information.)

In the first place, TEX needs to know how big a box each character is supposed to
occupy, since TEX is based on the primitive concepts of boxes and glue. When it typesets
a word like “box”, it places the first letter “b” in such a way that the METARFONT pixel
whose z and y coordinates are (0, 0) will appear on the baseline of the current horizontal
line being typeset, at the left edge of the “b” box. The second letter “o” is placed in a
second box adjacent to the first one, so it is obvious that we must tell TEX how wide
to make the “b". In fact, TEX also learns how tall the “b” box should be; this affects
the placement of accents, if you wish to write “b3%", and it also avoids overlap with
unusual constructions in an adjacent line.

A total of four dimensions is given for each character of a font to be used by TgX,
in units of printers' points:

charwd, the width of the box containing the character.
charht, the height (above the baseline) of the box containing the character.
chardp, the depth (below the baseline) of the box containing the character.

charic, the “italic correction”. This amount is added to the width of the box (at
the righthand side) in two cases: (a) When a TEX user specifies an italic
correction (“\/") immediately following this character, in horizontal mode.
(b) Whenever this character is used in math mode, unless it has a subscript
but no superscript. (For example, the italic correction is applied to P in the
formulas P(z) and P? but not in the formula P,.)

If you don't specify one or more of these four dimensions, METAFONT assumes that
you intended any missing dimensions to be zero. For example, the italic correction for
most letters in non-slanted fonts is zero, so you needn’t say anything about it.

It is important to note the difference between charwd (the width of the character
box) and chardw (the character’s device width, discussed in Chapter 9). The former is
given in units of points, and it affects TEX's positioning of text, while the latter is an

| 98 | Appendiz F

Font information for TeX 9

integer number of pixels that has no influence on the appearance of TEX output. The
purpose of chardw is merely to compress the dafa that TEX transmits to a typesetting
machine; for example, TEX needn't specify where to put the “o” following a “b", in the
common case that the typesetting device will figure the correct position by its knowledge
of the approximate size chardw. Furthermore chardw is the width of the character if
for some reason you are (shudder) typesetting something without using TEX.

The next kind of information that TEX wants is concerned with pairs of adjacent
characters within a font, namely the data about ligatures and kerning. For example,
TEX moves the “x” slightly closer to the “o” in the word “box”, because of information
stored in the font you are now reading. Otherwise (if the three boxes hadl simply been
placed next to each other according to their charwd) the word would have been “box”,
which looks slightly less attractive. Similarly there is a difference between “difference”
and “difference”, because the font tells TEX to substitute the ligature “H” when there
are two {'s in a row.

Ligature and kerning information is specified by giving TgX short programs to
follow. For example, the font you are now reading includes the following programs
(among others):

lig *f: ~i = 174, " = -173, "1 = "175;
lig “173: i = 176, "1 = 177,
lig *V: *F: “A kern —2.5ru,
*X: *K: ~O kern —.5ru, ~C keen —.5ru,
~G kern —.5ru, ~Q kern —.5ru;

information like this can appear anywhere in 2 METRFONT program after tfxmode has
been specified. Both ligatures and kerns are introduced by the keyword lig, and this
example can be paraphrased as follows:

Dear TEX, when you are typesetting an “f” with this font, and when the fol-
lowing character also belongs to this font, do this: If the following character
is an “i", change the “" to character code octal 174 {namely “fi"] and delete
the “4”; if it is an “f” or “1”, similarly change the pair of characters to octal
178 [“f"] or 175 [“A"]. When you are typesetting character code 179 [‘f”]
and the next character is an “i" or “I”, change to codes 176 [“ffi"] or 177
{“f"]. When you are typesetting a “V" or an “F” and the next character
is an “A” in this font, delete 2.5ru of space before the “A”. [Variable ru
has been defined elsewhere in the program to be i of a quad, i.e., {3 of a
point in 10-point type.] If the next character is “O" or “C” or “G" or “Q",
delete 4ru of space between the letters. These last four instructions apply
' after “X” and “K" as well as after “V” and ‘F".

The general form of ligature/kerning statements is
lig (lig instruction list)

where (lig instruction list) is a list of one or more {lig instruction)s. There are three
kinds of {lig instruction)s, which may appear intermixed in any order:

1) Labels, having the form “(expression):". The (expression) is usually a constant, as
in our examples above; it denotes a character code, which is rounded to an
integer that should be between 0 and 127 (octal 177). At most one label should
appear for each character code. The label means that the ligature/kerning
program for the specified character starts here. Note that the program for
characters “X and “K in our example starts in the middle of the program for
characters *V and “F, while the latter two letters have identical programs;
this device saves space inside TEX, and it also saves time since TEX has fewer
instructions to load with the fonts.

2) Ligature replacements, having the form “(expression;) == (expressionz)”. Both
(expression)s are rounded to integers that should be between 0 and 127; they
are usually constants. The meaning is that if the current character is followed
by the character whose code is {expression;), this pair is replaced by the
character whose code is {expressions).

3) Kern specifications, having the form “(expression;) kern {expressions)”. The first
expression is usually constant; it is rounded to an integer that should lie be-
tween 0 and 127. The second expression is usually negative, but it need not be.
The meaning is that if the current character is followed by the character whose
code is {expression;), in the same font, additional spacing of {expressionz)
points is inserted between the two.

Instructions of types (2) and (3) must be followed by commas, unless they are the final
instruction of the {lig instruction list); labels, on the other hand, are never followed by
commas.

We have said that the ligature/kerning program for each character starts at the
corresponding label, but where does that program stop? Answer: It stops at the end
of the (lig instruction list) containing the label, unless the last (lig ipstruction) of that
list is a label, or unless that last (lig instruction) is followed by a comma. In the latter
cases, the ligature/kerntng program continues into the next (lig instruction list) that
METAFONT interprets. Thus you can use METRFONT’s subroutines and/or conditional
statements to generate intricate patterns of ligature/kerning instructions, if you really
want to.

Caution: Novices often go overboard on kerning; restraint is desirable. It usually
works out best to kern by at most half of what looks right to you at first, since kerning

98 endiz F°

should not be noticeable by its presence (only by its absence). Kerning that looks right in
a logo often interrupts the rhythm of reading when it appears in other textual material.

The remaining information that TEX needs in a text font can be provided by the
command

texinfo (expression list)

where the {expression list) is a list of seven (expression)s separated by commas. The
seven {expression)s should contain the following data, in order:

1) “slant”. The change in z coordinate per unit change in y coordinate when TEX is
raising or lowering an accent character.

2) “space”. The amount of space (in points) between words when using this font.

3) “stretch”. The amount of stretchability (in points) between words when using this
font, according to TEX's notion of glue. (This is the maximum amount of
additional space that would look tolerable.)

4

~

“shrink”. The maximum amount of shrinkage (in points) between words when
using this font, according to TEX's notion of glue.

5

~

“xheight”. The height of characters (in points) for which accents are correctly
situated. An accented character has the accent raised by the difference between
its charht and this value.

6) “quad”. The width of one em unit (in points) when using this font.

7) “extraspace”. The amount of additional space inserted after periods when using
this font. (Strictly speaking, it is the amount added to “space” when TEX's
“space factor” exceeds 2.)

The DRAGON example of Chapter 4 gave no texinfo, so all seven of these parameters
were set to zero in that font.

If your font is for use in TEX math mode, as a mathsy or a mathex font, you need
to specify still more information. Otherwise, you can stop reading this appendix, right
now.

Math symbols fonts (mathsy) require more texinfo. In fact, you can give several
texinfo commands in a single METAFONT program, and their (expression list)s can
contain more then or fewer than seven (expression)s; each texinfo appends one or more
values to the TEX information. The total number of parameters TEX uses in a mathsy

font is 22, and they must consist of the first six above and the following additional ones
in order: ’

Font, information for TEX | 99

[

7) “math space”. If this is not zero, it denotes the amount of space in points that will be
used for all nonzero space (except \quad) in math formulas: thin spaces, thick
spaces, control spaces, and op spaces, whenever these are nonzero according
to TiX's rules. The parameter is generally zero unless TEX is outputting to a
fixed-width device like a typewriter or line printer.

8) “numl”, Amount to raise baseline of numerators in display styles.

9) “num2”. Amount to raise baseline of numerators in non-display styles, except for
nnlyﬁov: .

10) “num3”. Amount to raise baseline of numerators in non-display \atop styles.

11) “denom1”. Amount to lower baseline of denominators in display styles

12) “denom2”. Amount to lower baseline of denominators in non-display sty.c-

13) “supl”. Amount to raise baseline of superscripts in unmodified display style.

14) “sup2”. Amount to raise baseline of superscripts in unmodified non-display styles.

15) “sup3”. Amount to raise baseline of superscripts in modified styles.

16) “subl”. Amount to lower baseline of subscripts if superscript is absent.

17) “sub2”. Amount to lower baseline of subscripts if superscript is present.

18) “supdrop”. Amount below top of large box to place baseline if the box has a
superscript in this size.

“subdrop”. Amount below bottom of large box to place baseline if the box has a
subscript in this size.

19

~

20) “delim1”. Size of \comb delimiters in display styles.
21) “delim?2”. Size of \comb delimiters in non-display styles.

22) “axisheight”. Height of fraction lines above the baseline. (This is usually midway
between the two bars of an = sign.)

Similarly, a mathex font requires 13 items of texinfo, namely the standard first seven
and the following additional things in order:

8) “defaultrulethickness”. The thickness of \over and \overlinae bars.
9) “bigopspacingl”. The minimum glue space above a large displayed operator.
10) “bigopspacing2”. The minimum glue space below a large displayed operator.

11) “bigopspacing3”. The minimum distance between a limit’s baseline and a large
displayed operator, when the limit is above the operator.

12) “bigopspacing4”. The minimum distance between a limit’s baseline and a large
displayed operator, when the limit is below the operator.

0 Appendix

13) “bigopspacing5”. The extra glue placed aboveand below displayed limits, effectively
enlarging the corresponding boxes.
If you supply fewer than 22 items of texinfo for a mathsy font, or fewer than 13 for a
mathex font, TEX will probably do very strange and undesirable things. So don’t.
Still more information is needed in mathex fonts. In the first place, the italic
correction for symbols used as \mathops {e.g., summation and integral signs) has a
special significance: If it is zero, the limits for this operator will be centered above and
below the operator. If it is nonzero, the limits will be set immediately to the right, with
the lower limit shifted left by the amount of charie. (A TEX user writes \1imitswitch
to reverse these conventions; when limits are set above and below the operator, the
upper limit is charic points to the right of the lower limit.)

(Another difference for mathex fonts is the provision of “built up” symbols
that can get arbitrarily large. Such symbols are manufactured from up to
four pieces, including a mandatory extension part and optional top, middie
and bottom parts. For example, the left brace at the left of this paragraph
has all four pieces, while the norm symbol at the right is made up solely
d of extension pieces. Similarly, floor and ceiling brackets (| | and []) are
built up from the same components as regular brackets, but without top or
bottom, respectively. TEX makes the smallest symbol meeting a given size
constraint, using zero or more copies of the extension component. If there
is a middle, the same number of extension components will appear above
\ and below.

Suppose ¢ is the 7-bit code representing a built-up character. TEX requires the
following conventions: (1) The charht field for code ¢ must be zero, and there must be
no ligature program for ¢. (2) The command

varchar {expression;}, {¢xpressions), {expressions), {expression)

is given for ¢ in licu of a charic command, where the four (expression)s stand respectively
for the character codes of the top, middle, bottom, and extension components. These
codes should be zero if the component doesn't exist, otherwise they should round to
numbers between 1 and 127. For example, the left brace symbol in font cmathx has
been defined by “varchar “070, 074, “072, <076". (Code c itself need not be any of
these four.) (3) The charwd of the extension component is taken to be the charwd of
the entire built-up symbol.

One final kind of information appears in mathex fonts, namely the lists that tic
related characters together in increasing order of their size. For example, all of the left
parentheses in cmathx have been specified by the command .

A charlist ~000, -020, ~022, 040, -060, 0.

Font information for TEX 0

(Cf. Table 7 of Appendix F in the TeX manual.) When TEX needs a variable-size left
parenthesis, it looks first at character ~000, then (if this is too small) at 020, and so on,
until either finding one that is large enough or reaching “060 (the end of the list). The
zero following “060 indicates that -060 is a built-up symbol that can grow arbitrarily
large. If the last entry of a charlist is not zero, this symbol is not of the built-up variety,
and it is used by TEX whether or not it is large enough. For example, the slash symbols
in cmathx are specified by “charlist ~016, 036, “054”, the latter being the largest slash
present. A charlist in general consists of {expression)s (usually constants) that are in
increasing order except that the last one may be zero. The nonzero {expression)s should
round to integer character codes between 1 and 127. None of these characters should
have a ligature/kern program, since TEX stores the charlist information in the same
place that is usually used for ligatures and kerns.

The charlist for square root symbols should start at character position “160 in a
mathex font. These symbols should be designed so that they look right when a horizortal
rule of the default rule thickness is placed with its upper left corner coinciding with the
upper right corner of the character box.

102

Appendic !

<I> Index

This index shows all of METAFONT's “reserved words” in boldface type, and it
also lists error messages that are mentioned outside of Chapter 10.

. Addition, 44.
Alphatype, see CRS.
Angle Or acurve,see Direction.
Apostrophe, 39.
Arguments, 55-56, 84.
Assignment operation, 80-61.

Bean shape, 9.

Blank spaces, 40, 45.

BNF notation, 45, 58.

bot, 1. 28, 42.

Bracket notation, 43-44,586,94.
Built-up symbols, 100.

call, 56-59, 64.

calltrace, 67.

{carriage-return), 29-30, 45.
Cartesian coordinates, 4.
Character width, 8.

charcode, ®d-%S, 39, 66.
chardisplay, 67.

chardp, 35-39, 65, 95.

chardw, 35-36, 66, 95-96.

charht, 35-36, 85, 95, 98, 100.
charie, 65, 95.

charlist, 68, 72, 100-101,

charwd, 35-34, 65,95, LOO,
chrmode, 68-69.

Circles, 11, 21.

Circular pen, 6.

Comments, 35.

Computer Modern fonts, 82-94.
Conditional statements, 59-60, 64.
Constants, 39, 45.

Contents 0 ¢ this manual, table, 3.
Control bits, 80, \-88,
Coordinates, 4, 39, 71.

cosd, 42, 81.

cpen, 8, ZZ-73, 28, 48-50, 62.
<cr>, 30.

CRS (Cathode Ray Setter), 68, 88, 71, 86.

crsbreak, 87, 71.

crsmode, 88-69.

Cubic spline functions, 70-77, 50.
Current pen size, 8, 48-50, 60.
Current pon type, 22, 60, 62.
Curved lines, 8-22.

Dangerous bend, 2.

Datadisc (video terminal), 29, 67, §0.
Davis, Chandler, 33.

ddraw, 46-49,S1, 83, 85.
Declarative language, 41.
Deletion (on line), 36-37.
Dependent variables, 41, 79.
Descartes, René, 4.

Diamond rule, 52-53.

(digit), 45.

Direction O acurve,10-20,63.

Explicit, [3-70,

Implicit, 10-13, 18, 2.
Discreteness, 25-27, 51-55.
Division, 43.

Double drawing, 46-49, 51.
DRAGON, 33-38.

Dragon curve, 33, 35.
draw, 6, 8-22, 49-53, 63.
drawdisplay, 28, 67.
drawtrace, 67.
dumplength, 68.
dumpwindow, 66.

Ellipses, 17, 21.

Elliptical pens, 22-25.

else, 59, 64.

end, 33, 38.

epen, 27-28, 48-49, 63, 65, 81.
epenxcorr, 27, 85.
epenxfactor, 27, 65, 72.
epenycorr, 27, 85.
epenyfactor, 27, 65, 72.
eqtrace, 41, 686.

Indez

103

Equations, S-6, 31-33, 39-486, 62.
Erasers, 24, 27-28, 62, 90,

Errors, 29-33, 36-38, 69-80.

errors . tmp, 33.

ETC, 66.

Exercises, answers, 3, 81.

Explicit directions for a curve, 13-20.
Explicit pens, 27-28.

Expressions, 42-45.

Extreme points, 16, 19, 54.

fi, 59, 84.

File names, 37, 69, 74.

Filling in between curves, 46-51.
fntmode, 34, 68-69.
Fontomania, 7.

Full stop, 46

Global variables, 56, 81.
good, 42, \"S3,

ho, ZZ-73, 28, 48.

Heart, 12-17, 23, 47.

Heart and sole, 23.

Hein, Piet, 58

Hidden points, 12; see also invisible.
Horizontal extrema, 16,19, 54.
hpen, ZZ-73, 28, d8-SO, 82, 85.
hpenht, 23, 65, 88.

{identifier), 39, 45, 55.

if, 59-80, 84.

Implicit directions for a curve, 10-13, 18, 20.
“! Inconsistent equation”, 33, 73.
incx, S1, 84-85,87.

incy, S1, 84-65,67.

Independent variables, 41, 62, 79.

“} Indeterminate relation” k80, 14,
index, 56, 58, 84.

(index), 40, 42, 45.

Index arguments, 57, 59.

Infiection points, 18-19.

input, 68-69.

“ 1 Input page ended”, 37-38, 73.
Insertion (on line), 37-38, 70.
Intersection Or straightlines,44.

Invariance property of METRFONT curves,
10,

invisible, 88.

Italic correction, 85, 92, 95, 100.

Iterations, 60.

kern, 967971,

Kerning, 96-98.

Known variables, 41, 79.

Knuth, Donald Ervin, 1, 17, 17, 33, 61.
Knuth, Jill Carter, 33.

Labels O points, 57-59, 61, 67-68.

<11>, 30.

1ft, 8. 28, dZ, 54.

1&. 88, 96-97.

Ligatures, 96-97.

Local variables, 56, 61.

Locality property 0¢ METAFONT curves, 10.
“! Lookup failed”, 37, 74.

Ipen, 24, 28, d8-SO. 62.

mathex font for TEX, 99-101.
mathay font for TEX, 98-99.
maxht, 34, 66, 71.

maxvr, 22, 65.

maxvs, 22, 65.

METAFONT, meaning of, 4.
mnfput, 33, 69.

minvr, 22, 65.

minvs, 22, 65.

“) Missing = sign”, 30-31, 75.
modtrace, 68-87, 77, 79.
Multiplication, 30-31, 43, 46.

Names of points, 57-59, 61.
new, 33, 44, 60, 62, T3,

no, 38, 60, 66.

nrand, 42, 65.

nseed, 65.

Null statement, 62.

Oblique pen, 25.
On-line error correction, 36-38, 70.

104

Appendiz I

pagewarning, 38, 64, 66-87, 74.
Parameters, 55-56, 64.
Parentheses, 48, 58.
{path), 63.
pause, 87.
Pen size, 6-7, 22, 56.
penreset, 60, 66-67.
Pens, 22-28, 62-63.
Period, 40, 45-46, 81-62.
Pixels (picture elements), 51.
Plotting points, 26-28, 52-53.
plottrace, 67.
Points, 4-5, 39.

names of, 57-59, 61.
Primary expressions, 42.
Product, 30-31, 43.
proofmode, 29, 32, 57, 61, 64, 87-69.

Quoted strings, 34-35, 45, 64, 77.

Raster, 1, 5, 51-54.
Recursion, 59-60, 93.

“! Redundant equation”, 32, 76.
Reflection symmetry, 53.
{relation), 59-80.

Reserved words, 39.
Reverse apostrophe, 39.
round, 42, 46, 54.
Rounding, 51-55, 92-93.
rpen, 24, 28, 48-50, 62.

rt, 8, 28, 42.

Running METAFONT, 29-38.

safetyfactor, 48, 65, 81.
Scaling, 5, 10, 51, 64-65.
Sections of a program, 61-62.
“Sharp turn suppressed
Shoemaker’s problem, 17-19.

sind, 42, 81.

Slanting, 85, 84.

Sole, 17-19, 23.

Solution of equations, 5-8, 31-33, 40-41.
Spaces, 40.

spen, 24-25, 28, 48-49, 62.

Spline functions, 20-22, 50.

sqrt, 42, 46.

Square root symbols, 101.

., 21, 77.

Stable pen size, 50, 63.
Statements, 4, 62-68.

Straight line, 6.

Subroutines, 55-61, 91-94.
Subscripts, 31.

Subtraction, 44.

Summary of the language, 81-69.
Superellipse, 57-58.

Symmetry, 53.

Term expressions, 43.

TEX, 34, 38, 65, 68, 73, 78, 95-101.

texinfo, 68, 98-100.

Text editor, 36-37.

tfxmode, 34, 68-89, 96.

Titles, 34-35, 45, 64, 77.

titletrace, 34, 64, 66.

Tokens, 36-37, 70.

top, 8, 28, 42.

Tracing, 66-67, 70.

Transformation, 51, 84-685, 67.

Triangular pen, 27.

trxx, 51, 64-65, 67.

trxy, 51, 84-85, 67.

tryx, 51, 64-65, 67.

tryy, 51, 84-85, 67.

Turning points, sece Extreme points,
Inflection points.

“i Undefined factor”, 31, 78.
Union Jack (partial), 6.
Unknown variables, 41.

vo, 22-23, 28, 48.

var, 56, 58, 64.

varchar, 68, 100.

Variable-size delimiters, 100-101.
Variables, 39-40, 45, 56-57, 61.
Velocities, 21-22, 85, 77, 79.
Vertical extrema, 16, 19, 54.
vpen, 22-23, 28, 48-50, 62, 65.
vpenwd, 23, 85, 88.

w-variables, 7, 32, 39, 56-57.
wzy-variables, 39.

z-variables, 4, 32, 39, 56-57, 61.

XGP (Xerox Graphics Printer), 33, 68, 8.

Index

y-variables, 4, 32, 39, 56-57, 61.

=, 34-35, 45, 64, 77.
#, 24, 27, 45, 50, 62-83.
%, 35.

-, 39.

=, 39.

(, 45-48, 58.

), 45-46, 58.

, 43.

+, 44.

., 14, 24, 27, 48, 58, 63, 68.
-, 44.

/, 43.

:, 55, 59.

<, 60.

<, 60.

=, 5, 30, 40, 45, 80.
>, 80.

>, 60.

[, 43-44, 58, 94.

1, 43-44, 58, 94.

{, 14, 83.

>, 14, 63.

1, 49-50, 63.

., 40, 45-48, 81-82.
.., 8, 48, 83.

A

o é‘.@»%@ff & @»

O
o) (p ;
oD k@@’
S @/fi?
) O :
@OOO %P S CPO

% O O O o
OO%O O% %OO (fb

A
.
) &O§O OOO

ubresp wopuni-opnasd

