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Abstract.
L(m,n) 1is the set of integer mtuples (al,.zz.am) with

o<al <...<a <n, ordered by a <b when a, < b, forall i

R Stanley conjectured that L(mn) is a symmetric chain order for

all (myn) . W verify this by construction for m=14 .
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L(myn) 1is defined as the lattice formed by order ideals in the
direct product of two chains with mand n elenments, respectively.
Equivalently, it is the collection of integer sequences a = (al,,.,wam)

satisfying 0<a, <...<a <n, wthordering a<b when a; < by

1 =2
for al1 i . The correspondence is sinmple. |f the chain elements are
<. <k and yp < < Yy o then the nunmber of elenents paired
with X in the ideal corresponding to ais n-a, . In other words, the
antichain generating the ideal is {(xl,yn_al),...,(xm,yn_am)}

Cearly, the rank of elenent a is 7. a, the rank of the entire
lattice is mm , and the cardinality of the lattice is (rr\'rrrr:) For
any elenment a , we define its conjugate a* = (n-am o .,n-al). Not e
that a = a . The ranks of an elenent and its conjugate sum to mn ,

so the sizes of the ranks are symmetric about the middle. Using conplex
al gebraic methods, R Stanley [3] proved the sizes of the ranks are also
unimodal . These are necessary conditions for a stronger property he
conjectured also holds. He conjectured that L(mn) is a symetric
chain order. A symretric chain order is one whose elenments can be
partitioned into chains which are saturated (skip no ranks) and symetric
about the mddle rank. The conjecture is clear when m=1 or m= 2 .
Lindstrtm [2] provi ded an inductive construction to verify it for m=3 .
Here we give a construction somewhat different from his which verifies
the conjecture when m= 4 .

Let S(mn) , the "shell" of L(mn) , be those elenments which begin
with O or end with n . Wen these are renoved fromL(mn) the
remainder is isomorphic to L(mn-2) . The conjecture holds trivially

when = =1, and L(mO can be defined as having a single elenent.



So, providing a symetric chain deconposition of S(mn) proves the
conjecture by induction. W use this approach here for L(k,n) .
Unfortunately, when m is odd and n is even the rank sizes in g(m,n)
are not unimodal. So, for that case Lindstrtm was forced to strip off
two shells for his induction. For m=1L this difficulty does not
arise. It is possible that Lindstr#m's construction generalizes for

odd mand this does so for even m. Wen mand n both exceed 2 ,
L(mn) is not an LyM-order, SO Griggs' sufficient conditions for a

symetric chain order [1] cannot be applied.

Theorem L(4,n) is a symetric chain order.

It suffices to give a symetric chain deconposition of s(i,n) .
The chains will be of two types, Cij and Ddg for suitable values
of i and j. The chains are clearly saturated, so two steps will

conpl ete the proof.

(1) No elenment appears in nore than one chain

(2) The mmber of elenents in the construction is the size of S(m,n) .

Each chain is conposed of six segnments, with the top element of
one segnent and the bottom elenment of the next identical. Throughout
a given segment only one position in the integer sequence changes.
Table 1 explicitly defines the chains and gives the ranks where the
changes between segments occur.

Segments nust have length at least 0 . That is, top and bottom
el ements may be identical, but the top el ement nust not have rank bel ow

the bottom el ement. Examining the lengths of segnents and ensuring that



T °Ta®.L

¢+02+19 T+HE4T¢ C T+0+12 ‘24T ‘o) (C+tg “C+I2 €2 €0) £2+19
: T m

¢+ C+19 (T+0+T¢ € T+04+12 “ T+0+T € 0) (C-u‘Ct+12 ‘T ¢0) TC+U
: 2 :

c+le+Tg+u (u € T+0+18 “ T+04T ¢ O (f-u ¢ L-7-u ¢ ,ﬁ ‘0) fg-ug
: ¢ :

C+0C+T U (U € T+0+12 CT+0+T CT+0) (C-u ¢ C-1-u “ L-12-U € 0) fe-tg-ug
: o :

+le+ug (U €1-u ¢ 4041 € T+0) (ufC-1-u “L-12-U ‘0 Ce-1¢-ug
: G :

T¢-ug (u €t-u ¢ 7=-0-12-u ¢ T+0) (u ¢ l-1-u ‘C-12~u ¢ (~-T¢-U L¢-t9-uq
: 9 :

¢-C2-19-uy (u ¢ 1-u € T-C-12-U ¢ 2-C-T¢-U) (uft-u “C-12-u ‘ C-1¢-U C2-19-uy
Lt Ct

JueJ a quaudos e usJa




we have legal elements at the bottom of C.l.J and the top of Dij
yi el ds necessary conditions on i and j . W claimthe desired

decomposition i S obtained by taking all chains for which these necessary

conditions are satisfied.
s(k,n) = {cij: 31425 < n, i >0, >0}uU {Dij:5i+2j <n-3,i >0,32>0)

Figure 1 gives s(L4,7) explicitly as an exanple.

1777

6777

5777 6677

4777 6667 5677

3777 5667 5577 4677

2777 4667 5567 3677 4577

1777 3667 5557 4477 2677 3577 4567

0777 2667 4557 4467 1677 2577 3477 3567

o677 1667 3557 4457 1577 2477 3377 2567  3L6T

o577 0667 2557 4447 1477 2377 3367 1567 3457 2467

ok77 0666 1557 3447 1377 2277 3357 0567 2457 2367 1467

0377 0566 0557 2Ly 1277 2267 3347 oWé7 1457 2357 1367

o277 0466 0556 1447 1177 2257 3337 0367 OL5T 2347 1267 1357
orrr 0366 0555 0447 1167 2247 2337 0267 0456 1347 1257 0357
oor7 0266 0455 0446 1157 2237 1337 0167 0356 03Lk7 1247 0257
0067 0166 0355 0445 1147 2227 0337 0157 0256 0346 1237 0247
0057 0066 0255 0444  1.).37 1227 0336 0147 0156 o3ks 0237 0246
0047 0056 0155 0344 1127 0227 03%5 0137 0146 o2k5 0236

0037 0046 0055 o2Lk 1117 0276 0334 0127 0136 0145 0235

0027 0036 0045 0144 0117 0225 0333 0126 0135 0234

0017 0026 0035 0044 0116 0224 0233 0125 0134

0007 0016 0025 0034 0115 0223 0133 0124

0006 0015 oo2k 0033 0114 0222 0123
0005 0014 0023 0113 0122
0004 0013 0022 0112
0003 o012 0111
-0002 0011
0001
0000
o 1 2 3 Poo Po1 Pop Ci0 G Gy Dig G

Figure 1. s(L,7)



Qutline of Proof. To show the elements are all distinct, we express

the D-chains in terns of the G-chains and then restrict our

attention to the C -chains. Let C,I;J. be the el ement of %. of rank r,

simlarly for DY . W claimthat chain D, . is the conjugate of
1 i,j-1
chain (:.l i when the top and bottons elenments of the latter are renoved.
)
That is, (ij 1)*= C?ngr . It suffices to perform the conjugation on
y ] 7 2

the transition el enents between segnents of D.i . They becone the
J

j-1 .
transition elenents of C.:.L 3 Note the top and bottom el enents of C.l ;
J . 2
are unaffected and are conjugates of each other. \Wenever Di j-1 exi sts,
5 3-

Cij exists. The affected C.l.‘_J are those where j>0 and 3i+2j <n .

Di stinctness now reduces to showi ng:

(La) The elements of {cij} are all distinct.

(Ib)  The chains c,, and Cs, (n-31)/2

(1c) There are no conjugate pairs anong the elements of U{Cij} s

are self-conjugate.

where 0 < < (n-3i)/2, other than the tops and bottons of

chai ns.

(I'b) is seen inmmediately by conjugating the transition elenments in those
chains. The other two statenments require elimnating a large nunber of
easy cases.

To show we have the correct nunber of elenments, we proceed by

induction. Sinple counting verifies it for small n . In general, the
size of s(myn) is |L(m,n)\ - ‘L(m,n-Q)\ . So,
+h 2
sCon)| = (5T - (%F) - edlee)Emd)
This is the sumof a famliar sequence. Indeed,
|s(n) | - [8(byn-1) | = (m+1)°



Now we exam ne the changes in the construction between n-I and n ,

For all values of i and j such that Cl.J. or D.l.J exists in the
construction for n-I , a simlarly indexed chain exists in the construction
for n . Subtracting ranks, the nunber of elements in Cl'j is

L(n-3i-3)+1 , and the nunber in D.l.J is 4(n-31-j)-5 . Each of these
chains has 4 nore elements than the simlarly indexed chain in g§(4,n-1) ,
if that chain exists. W will see thereis a Ci;j for every el ement of
the mddl e rank which begins with 0 and a D.iJfor every such el ement
whose first position is not zero.

The chains which arise neWwy when n is reached are those Cij for
whi ch 3i+2j = n and those D.iJ. for which 3i+2j = n-3 .  For each val ue
of i fromO up to | n/3] or (n/3|-1 , depending on parities, there
W || be one new %J. or D. ‘13 but not both.

Verifying that the construction picks up the proper nunber of elements

reduces to:

(2a)  Conputing (and nmultiplying by 4) the nunber of chains in the
construction for s(k,n-1) -- that is, the sumof the number
of solutions to 3i+2j < n-1 and 3i+2j < n-4 .

(2b)  Conmputing the total nunber of elements in new chains.

(2¢)  Verifying the sum of new elenents in (2a) and (2b) is (n+1)2 .

(2b) breaks into cases depending on the parity of n, and (2a) does the

sane with the parity of |n/3] , so (2c) requires six cases, depending

on the congruence class of n nodulo 6 .

Details of Step 1. If (la) does not hold, suppose a = Q We

r
3 = Cy
have a nunber of cases to consider, depending on which segnent contains a
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ij ij
Equating the descriptions of the segments in Table 1 give us a number

of linear relationships between 1, j, k, and ¢ . If a comes

and

from PC..
1

PCka » equating the positions which do not change in
that segment implies i =k and J= f din all six cases, by straight-
forward subtraction of equalities.

By symmetry we may assume a occurs in a lower numbered segment

in Cij than in C . We allow the transition elements between segments

pf“ A q-/‘i .
v cliL

to belong to either segment., So, if a is in . . C s We may
- iJ k1

assune a 1is not the top element of Pcij nor the bottom element of

qcko s €lse we have a case with smaller g¢g-p . In particular, the

rank of the top element in p

Cij must be strictly greater than the
rank of the bottom element in quz .

Suppose g = ptl . This comparison of ranks yields a strict
inequality when a particular linear function is applied to (i,j) and
to (k,£) . Whenever q = p+l two positions in the elements remain
constant from the bottom of segment p to the top of segment g . This
expresses two positions of a as identical linear functions of (1,3)
and (k,f) . In all five cases, we readily get the same linear function
we obtained by considering ranks, but with equality this time.

If the first position of a is nonzero, a can occur only in
segments 5 or 6 . If it is zero, a occurs in segment L4 or below.
This eliminates all but three of the cases which might have cl.l“j = ¢},
with (i,J) # (k,£) . The remainder we handle individually.

2 L

If a is in Cij and Ckz s> positions 2 and 3 require

i=n-2k-¢7 and n-i-j > n-k-f . Adding these gives n-j > 2n-3k-24 >n .



Next suppose a 1is in lC.. and 5C

13 kg Equality of the last three

positions requires k <1, n-k-f=2i+j, and n-f > 3i+j . Substituting

for k and n-f in the equation gives 2i+j < 2i+j . Finally, suppose a

is in lCij and hckz . Comparing the top of lcij with the bottom of
L

Ckf yields nt31i > 3n-3k-3¢ > n+3k+y or i >k . On the other hand,

the middle two positions of a remain constant in both sections, so

i

n-2k-4 and 2i+j = n-k-f . Subtraction gives i+j =k or i<k,
(1c) also breaks into cases depending on the segments. We assume
r

- *
a=C.,. = (Chnr

a i3 " ) 5 with 0<j< (n-31)/2 and 0 < ¢ < (n-3k)/2 .

Here the arguments do not group together as cleanly. One element of such
a conjugate pair occurs at least as high as the middle rank in one chain.
Call this chain Cij . For ease of comparison, we have recorded Cij and

*
Chej in Table 2. Since 3n-3i-3j < 2n , a lies in segment L , 5, or 6

of Cij . Since n+3k+2f < 2n, a lies in segment 3 , % , 5, or 6 of

*
Assume ae (PC. .n%

Ckf : - ij kz) ‘

We first notice p = L 1is impossible, as it would imply £ < O . We
handle the remaining cases individually. Again we equate corresponding
positions in a . The requirements on j and { figure prominently.

For example, it+j <k and 1 >kt+/ give us a contradiction, as do

n-31-j < ¢ and n-3k-f < Jj .

= 3i+j > 3ktyg .

2 1

implies i >k . So (i,j) = (k,£) , and this is the

p=6, q=6. a. = 2i+j = 2k+g . 53:131«:. a
Subtracting a2

- case where the top and bottom of the chain are conjugate.

Pp=5,q9qg=5. a; = it =k . a, = 2i+j > 2k+f . Subtracting

a3 implies 1 > kt¢f .

p=6,qg=5. a; = k>1i. a, = n-3i-j = £ . Substituting for
1 gives n-3k-fy < J . As mentioned exurlier, this is a contradiction since
both 3i+2j and 3k+2¢ must be less than n .

9
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p=5,a=6. a.5=>i+j=k. a, = 2i+j = 2k+f . Subtracting

2
83 implies i =k+t{ , so J= 4= 0.

p=6,q=4.2a = n3i-j=1.a, = n2i-j = k4. gutracting
a gives 1 = k , Substituting in as yields n-3k-¢ = Jj , giving the

same contradiction as in (p,q) =(6,5) .

p =5, q =4. ag = n-3i-j > 1 (equality returns us to the previous

case). g,

5 2 n-2i-j = k+tf . Subtracting aq gives 1 < k ,

33 = n-i-j > 2kt{ . Subtracting a.2 gives 1 >_k .
p=6, qg=3. Lest p-q be smaller, the requirement on ranks is

n-3i-3j < n+t3k+34 , so n-2i-j < k+g . But a, = n-2i-j = k+g .

2

p=5,q=3.a2:n-21-j=k+z. %:n—i-j=2k+1,
Subtracting aq yields i = k ., Substituting this in the two previous

equations gives the familiar contradiction n-3i-j = 4 and n-3k-g = J

This completes the proof of (1).

Details of Step 2. We begin with (2a). The top element of segment L

in Cij has rank 3n-31-2j > 2n , so every Cij has a O in the first

position of its middle rank element. The bottom rank of segment 3 in
Dij is nt3i+2j+2 < 2n-1 , so Dij has a positive first position in

its middle rank element., The non-decreasing sequences of length 4 which
start with O , end in k , and sum to 2n run from (0, 2n-2k, k, k) to
(0, L (en-k)/2] , [(2n-k)/27 , k) when n > k > [2n/37 . So, we want the

number of C.l. 's to be > k - F(En—k)/E"l +1 . Similarly,
J [2n/37 <k<n

the elements covered by Dij 's run from (k, k, n-2k, n) to

11



(k,  (n-k)/2} , T(n-k)/27 , n) for 1 < k < | n/3,, for a total of

z L(n-k)/2] - k+1.
1<k<|n/3]

On the other hand, the number of solutions to 3i+2j < n is

> 1+ | (n-31)/2] and to 3it2j < n-3 is
0<ign/3]
> 1+ | (n-3i-3)/2] . These turn into the desired

0<igLw/5]-1

summations when 1 is set to n-k in the first case and k-1 in
the second.

We wish to combine the summations. Separating the i = 0 tem
from the first and adjusting the index in the second, the total number

f(n) of chains becomes

f(n) = 1+ |n/2j + 2 2 (1 +L(n-31)/2) ) .
1<igin/3)

To compute the summation, we pair terms for consecutive values of 1 .

If |n/3] 1is odd, we separate i = | n/3| . Adding the terms for

i=2k-1 and i = 2k gives 2+ | (n-6k+3)/2 | + | (n-6k)/2] = nt+3-6k .

There are | n/6| pairs altogether, and 2 (n+3-6k) =
1<k< | n/6]

(nt3) | n/6] -3 n/6] |_(n+6)/6] . Wnen | n/3 J is odd, the term
1+ [ (n-3| n/3] )/2 J remains., This is 1 if n = 3, L mod 6, but
2 if n = 5 mod 6 .
Summarizing, if n =z r mod6, O <r <5, then the total number

of chains is

1 ) r = >
f(n) = [n/2)+2(n3) | n/6)-61n/6] (n+6)/6]+( 3 51 = 3,
5 ; T =
1 s = 0,1, 2
= Ln/2+ (n*3)(n-r)/3 - (n-r) (n-r+6)/6+4 3 5 r=3,4
5 3 r=>5

12



Next we consider (2b). If n is even, a new chain Cij ‘occurs
for even values of i with 0 <i < |n/33,and a new D 5 for odd
values of i with 1 <i <|n/33-1 . Simlarly, when n is odd we
have a new Di;j for even i wth 1 <i <|n/33-1 and a new C.l.J
for odd i with L<i < |n/3J.

To sum the nunber of elenments in these chains, we can again pair

consecutive ternms. For the total nunber g(n) of these elenments, we

have
( C 2 D + |c . n even
l o,n/e\+15kS Ln/6 | l 2k-1, (n—6k)/2| l 2k, (n-6k)/2l '
g(n)‘} =
\ 0<k< Lz(jn-3>/6 ] o, (n-68-3)/2 17 1001, (nodie5) /el 3 7 038
Since lCij\ = 4(n-3i-3j)+1 and lDijl = b(n-3i-3)-5 , this quickly becones
((1l+2n+ 2 4(n-6k) + 8 5 N oeven
1<k<Ln/6]
gn) =
2 L (n-6k)-k ; n odd
- 0<k< L (n-3)/6]
1+ 2n+ b(nt2) | n/6] -12|n/6] | (n+6)/6 ;N oeven
b(n-1) L (n-3)/6] - 12| (n-3)/6] | (n+3)/6 | 5 n odd
l+2n+2(n+2)(n-r)/3 - (n-1) (n-r+6)/3 ; r=0,2,14
= 2(n-1) (n-r+6)/3 - (n-r)(n-r+6)/3 ; r =315
2(n-1)5/3 - (n-7) (n-1)/3 r=1

13



For (2c), we need only compute 4f(n-1)+g(n) , which b&cones
sinple algebraic manipulation when we consider a particular congruence
class of n modulo 6 . Beginning with r=1, we easily obtain

expressions |ike

L: kn+ 9+ (nt+2)(n-k)

r= 1. L+ (n-1)(n+3) r=
r=2. 2n+5+ (n-2)(n+2) r=25 2n+10+ (n-5)(n+5)/3+2(n-1)(n+l)/3
r=3 L+ (n-1)(nt+3) r=0 ln+17+2(n-6)(ntk)/3 +n(n-2)/3

all of which reduce to (n+1)2.

This conpletes the proof

14
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