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ABSTRACT

Very large scale matrix problens currently arise in the context
of accurately conmputing the coordinates of points on the surface of
the earth. Here geodesists adjust the approxinate values of these
coordinates by conputing |east squares solutions to |arge sparse systens
of equations which result fromrelating the coordinates to certain ob-
servations such as distances or angles between points. The purpose of
this paper is to suggest an alternative to the formation and solution of
the normal equations for these |east squares adjustnent problens. In
particular, it is shown how a bl ock-orthogonal deconposition method can
be used in conjunction with a nested dissection scheme to produce an
al gorithm for solving such problems Which conbines efficient data
managenent with nunerical stability. As an indication of the magnitude
that these least squares adjustment problens can sonetimes attain, the
forthcom ng readjustnent of the North Anerican Datumin 1983 by the
National CGeodetic Survey is discussed. Here it becomes necessary to
linearize and solve an overdeterm ned system of approxi mately 6,000,000

equations in 400,000 unknowns - a truly large-scale natrix problem






1. [ ntroduction

Recent technol ogi cal advances have made possible the collection of
vast amounts of raw data describing--certain physical phenonena. As a
result, the sheer volume of the data has necessitated the devel opnent
of new el aborate schenes for processing and interpreting it in detail.
An exanple is in the adjustnment of geodetic data

Geodesy is the branch of applied mathematics which is concerned
with the determnation of the size and shape of the earth, the directions
of lines and the coordinates of stations or points on the earth's surface
Applications of this science include mapping and charting, mssile and
space operations, earthquake prediction,and navigation. The current use
of electronic distance neasuring equi pment and one-second theodolites
for angle neasurenents by alnost all surveyors necessitates nodern ad-
justment procedures to guard against the possibility of blundersas well as
to obtain a better estimate of the unknown quantities being neasured. The
nunber of observations is always larger than the mninum required to
determ ne the unknowns. The relationships anong the unknown quantities
and the observations lead to an overdetermned system of nonlinear equations.
The measurements are then usually adjusted in the sense of |east squares
by conmputing the |east squares solution to a linearized formof the system
that is not rank deficient.

In general, a geodetical position network is a mathematical nodel

consi sting of several mesh-points or geodetic stations, wth unknown posi-
tions over a reference surface or in three-dinmensional space. These stations

are normally connected by lines, each representing one or nore observations



involving the two stations termnating the line. The observations may be
angles or distances,and thus they lead to nonlinear equations involving
for exanple, trigononetric identities and distance fornulas relating
the unknown coordinates. Each equation typically involves only a snall
nunber of unknowns.

As an illustration of the sheer magnitude that some of these problens
can attain, we nention the readjustment of the North Anerican Datum -
a network of reference points on the North Anmerican continent whose
| ongi tudes, latitudes and, in some cases, altitudes must be known to an
accuracy of a few centimeters. This ten-year project by the U S. Nationa
Geodetic Survey is expected to be conpleted by 1983. The readjusted net-
work with very accurate coordinates is necessary to regional planners,
engi neers and surveyors, who need accurate reference points to make naps
and specify boundary lines; to navigators; to road builders; and to energy
resource developers and distributors. Very briefly, the problemis to use
sonme 6,000,000 observations relating the positions of approximately
200,000 stations (400,000 unknowns) in order to readjust the tabulated val ues
for their latitudes and longitudes. This leads to one of the largest single
computational efforts ever attenpted - that of conputing a |east squares
solution of a very sparse system of 6,000,000 nonlinear equations in
400,000 unknowns.  This problemis described in detail by Meissl [1979],
by Avila and Tomin [1979], and froma layman's point of view by Koiata
[1978] in Science.

In general then, geodetical network adjustnent problenms can |ead
(after linearization) to a very |large sparse overdeterm ned systemof m

linear equations in n unknowns



AX b (1.1)

where the matrix A , called the observation matrix, has full col um

rank. The least squares solution to (1.1) is then the unique solution

to the problem:

m}i(n”b- Ax”2 :

An equivalent formulation of the problemis the followi ng: one seeks to
determ ne vectors y and r such that r + Ay = b and At =0 .
The | east squares solution to (1.1) is then the unique solution y to

the nonsingul ar system of normal equations

Aty = % . (1.2)

The linear system of equations (1.2) is usually solved by conputing

the Choleskv factorization

£, _ .t _
A'A = R'R, R—lb%]

and then sol ving Ri = 2% by forward substitution and Ry = w by

back substitution. The upper triangular matrix Ris called the

Cholesky factor of A .

Most algorithms for solving geodetic |east squares adjustment problens
(see Ashkenazi [1971], Bonford [1971], Meissl [1979] or Avila and Tonlin
[1979])typically involve the formation and sol ution of sone (weighted)
form of the normal equations (1.2). But because of the size of these

probl ens and the high degree of accuracy desired in the coordinates, it



Is inportant that particular attention be paid to sparsity considerations
when form ng A% as well as to the numerical stability of the algorithm
being used. It is generally agreed in nodern nunerical analysis theory
(see Golub [1965], Lawson and Hanson [1974] or Stewart [1978])that ort ho-
gonal deconposition methods applied directly to the matrix Ain (1.1) are
preferable to the calculation of the normal equations whenever numeri cal
stability is inportant. Since A has full column rank, the Chol esky

factor, R , of A can be conputed by

% R £
QA = , QQ=1I, R= (1.3)
B AL

where the orthogonal matrix Q results froma finite sequence of
orthogonal transformations, such as Househol der reflections or G vens

rotations, chosen to reduce A to upper triangular form

0

Since A has the orthogonal deconposition A=q [RJ s

t hen defining th = {;] , Where ¢ 1is an n - vector,

the least squares solution y to (1.1) is obtained by solving Ry = ¢
by back substitution. The greater nunerical stability of the orthogonal
deconposition nethod results from the fact that the spectral condition
number of A%A in the nornal equations (1.2) is the square of the spectral
condi tion nunber of A . The-orthogonal deconposition method (1.3) has
other advantages, including the ease with which updating and downdating of

the system (1.1) can be acconplished, and the fact that possible fill-in

in forning the normal equations is avoided (see, for exanple, Bjbrck [1976]).



However, orthogonal deconposition techniques for solving large sparse
| east squares problenms such as those in geodesy have generally been
avoided, in part because of tradition and in part because of the |ack
of effective nmeans for preserving sparsity and for managing the

dat a.

Modern techniques for solving large scale geodetic adjustment
probl ens have involved the use of a natural form of nested dissection
cal | ed Helmert bl ocking by geodesists, to partition and solve the nornal
equations (1.2). Such techniques are described in detail in Avila and
Tonlin [ 1979], in Hanson [1978], and inMeissl [1979] where error anal yses
are given.

The purpose of this paper is to develop an alternative to the formation
and solution of the normal equations in geodetic adjustnents. W show how
the orthogonal deconposition nmethod can be combined with a nested dissection
schene to produce an algorithm for solving such problems that combines
efficient data management with nunerical stability.

In subsequent sections the adjustnent problemis fornulated, and it
is shown how nested dissection leads to an observation matrix A in (1.1)

of the special partitioned form

7

(1.4)
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where the diagonal blocks are normally rectangular and dense and where
the large block on the right-hand side is normally sparse with a very
special structure. The form(1.4) is analyzed and a bl ock-orthogona
deconposition schene is described. The final section contains sone
remarks on the advantages of the approach given in this paper and
relates the concepts nentioned here to further applications. Nunerica
experinents and conparisons are given el sewhere in Golub and Plemmons

[ 1980].

2. Geodetic Adjustnents.

In this 'paper we consider geodetical position networks consisting
of mesh-points, caf[ed stations, on a two-dinensional reference surface.
Associated with each station there are two coordinates. A |ine connecting
two stations is roughly used to indicate that the coordinates are coupl ed
by one or nore physical observations. Thus the coordinates are related
in some equation that may involve, for exanple, distance formulas or
trigononetric identities relating angle observations. An exanple of such

a network appears in Figure 1.

FIGURE 1

A 15 station network.



More precisely, one considers a coordinate system for the earth
and seeks to locate the stations exactly, relative to that system
Usual |y coordinates are chosen from a rectangul ar geocentric system (see
Bonford [1971]). Furthernore, a reference ellipsoid of revolution is
chosen in this set of coordinates and the projection of each station onto
this ellipsoid determnes the latitude and |ongitude of that station.

As indicated initially in Section 1, the relationships anmong the
coordinates of the stations in the geodetic network lead to an over-

determ ned system of nonlinear equations
F(p) = q (2.1)

wher e
p = vector of unknown coordi nates, and

q = vector of observations.

The components of F(p) represent the equations that express the relation-
ships among the unknown paraneters and the observations or measurements
made, for exanple, by surveyors.

A comon procedure for solving the overdeterm ned system (2.1) is the

nethod of variation of parameters. (This is generally called the Gauss-

Newt on nonlinear |east squares algorithmin the mathematical literature).

Approxi mate coordinates are known a priori. Let

pO = current vector of approximte coordinates.

Then if F has a Taylor's series expansion about 'pO , there follows the

relationship



F(p) = 7% + 7' (e”) (p - p°) + ...
wher e F'(po) denotes the Jacobian of F at pO . Then taking
A= F(p)
X=p- pO
b=gq-7r()

and truncating the series after 2 ternms, one seeks the solution to:
min|[b - Ax”e . (2.2)
X

The | east squares solution Yy then represents the correction to
0

p~ . That is, one takes

pl _ po+ y
as the next approximation to p . The process is, of course, iterative
and one can use p1 to compute a further approximation to p . Normally,

the initial coordinates have sufficient accuracy for convergence of the
met hod, but the nunber of iterations is often linited by the sheer magnitude
-of the conputations. Thus a very accurate approximation to y is desired
Actual Iy, the equations are usually weighted by use of some positive
di agonal matrix W, where the weights are chosen to reflect the confidence

in the observations: thus (2.2) beconmes
1 1
min|[WFb - WoAx|. .
X 2

For sinplicity, we will use (2.2) in the analysis to follow. The procedure



we discuss, however, will not be conplicated by the weights.

Due to the sheer volune of the data to be processed in nany
adj ustment problens, it is inperative to organize the data in such a
way that the problem can be broken down into neaningful nathematical
subproblems Whi ch are connected in a well-defined way. The total
problemis then attacked by "solving" the subproblems in a topol ogical
sequence. This "substructuring" or "dissection" 'process has been
used by geodesists for alnost a century. The nethod they have enployed
dates back to Hel mert [1880] and is known as Hel nert blocking (see
Wl f [1978] for a historical discussion).

In Helmert bl ocking, geographical boundaries for the region in
question are chosen to *partition it into regional blocks. This technique
orders the stations appropriately in order to establish barriers which
divide the network into blocks. The barriers are chosen so that the
interior stations in one block are not coupled by observations to interior
stations in any other block. These interior blocks are separated by sets
of junction stations which are coupled by observations to stations in nore
than one block. An exanple of such a partitioning of the geodetic network
in Figure 1 to one level of Helmert blocking is provided in Figure 2.

Here the circled nodes represent the junction stations chosen for this

exanpl e.



ﬁ y ]

FI GURE 2
One level of Helmert blocking.

The particular form of Helnmert blocking we will use here is the sanme
as that used by Avila and Tomin [1979] for partitioning the nornal
equations. That procedure, in certain respects, is a variation of the
nested di ssection nethod devel oped by George [1973], [1977];
George and Lui [1978];and George, Poole and Voi ght [1978]. The primary
-enphasis of the nested dissection strategy has been on solving symretric
positive-definite systems of linear equations associated with finite el enent
schemes for partial differential equations, There, the finite elenment nodes
are ordered in such a way that the element matrix B is permuted into

the block partitioned form

10



where the diagonal blocks are square.

In our case we use the follow ng dissection strategy in order to
pernute the' observation matrix A into the partitioned form (1.4)

Qur procedure will be called nested bisection.

G ven a geodetical position network on a geographical region R
first pick a latitude so that approximately one-half of all the stations
lie south of this latitude. This forms two blocks of interior stations

and one block of separator or junction stations and contributes one |evel

of nested bisection (see Figure 3).

) interior stations

junction stations

~é/ interior stations

FI GURE 3
One level of nested bisection.

11



Now order the stations in TR so that those in the interior regions
"(1 appear first, those in the interior regi orf(-2 appear second, and

those in the junction regi onB appear last; order the observations

(i.e., order the equations), so that those'involving stations in ﬂl

cone first, followed by those involving stations inA ; then the

2
observation matrix A can be assenbled into the block-partitioned form

éﬁ

Thus A can be expressed in the block-partitioned form

%

where the Ai contai ns nonzero components of equations corresponding

to coordinates of the interior stations in‘/li and where the B; contain
t he nonzero conponents of equations corresponding to the coordinates of
t‘he stations in the junction region.B ‘

Next, in each of these halves we pick a longitude so that approximately
one-half of the stations in that region lie to the east of that |ongitude.
This constitutes level 2 of nested bisection. The process can then be
continued by successively subdividing the smaller regions, alternating between

latitudinal and longitudinal dividing lines. Figure killustrates three levels

12



of nested bisection.
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FI GURE 4

Three levels of nested hisection.

The observation matrix associated with the nested bisection of the

geodetical position network in Figure 4 can then be assenbled into the

partitioned form:

4%

~L

SN

7%
17

/

15

MRNNN

%
y7° /]
4

. (2.3)



It follows that if nested bisection is carried out to k |evels,
then the partitioned form of the assenbl ed observation matrix has:

i) ok di agonal bl ocks associated with
interior regions, and

ii) 2k-1 bl ocks associated with junction regions

In particular, there are

i) 2k'I junction blocks which are each coupled to

2 interior regions, and
V) Zk'l-l junction blocks which are each coupled to
4 interior regions.

Fburistically,ione normal |y would like to perform the bisection
process so that the sets of junction stations are mnimal at each |evel
“thus maxi m zing the nunbers of colums in the diagonal blocks. The process -

is stopped at the level k at which the o di agonal bl ocks are suffi-
ciently dense or at the level at which further subdivisions are not
feasible or are not necessary for the particular adjustment problem

Qur proposed bl ock orthogonal deconposition algorithmfor an obser-
vation matrix A already in the partitioned form detern ned by nested

bi section is deferred to the next section

3.  The Block Othogonal Deconposition

In this section we describe a block orthogonal deconposition algorithm
for solving the least squares adjustment problem m%n”b—AxHQ ,  Where
the observation matrix A has been assenbled into the general block
diagonal form (1.4). Here we assune that the structure of A is specified

by the nested hisection scheme described in Section 2. Qher dissection

1k



schenes may be preferable in certain applications (see Golub and

Plemmons [19801]).

W first illustrate the method with k = 2 levels of nested

bi section, as given in Figure 5.

FI QURE 5
Two |evels of nested hisection.

Suppose that the associated observation matrix A is assenbled into the

correspondi ng bl ock-partitioned form giving

o=
I—-l
I\)U }—’U

>
I

e
Wi

Q
W

@]
W

_;:_CD
(@]

=

-F‘U

Then by the use of orthogonalization techniques based upon, for exanple,

Househol der reflections, Givens rotations or nodified Gam Schm dt ortho-
gonalization, the reduction of A to upper triangular form proceeds as

foll ows:

15



At the first stage, each diagonal block A; is reduced by

orthogonal transformations.

ay - i & By Dy
% - A By Dy
Q% ? A5 % s
Q - ! Ay, c) Du-

Here the Q.1 are orthogonal matrices (which of course need not

R,
[olJ’ where R, = {%} , yielding

be forned explicitly) and QJiG A =

B} 1
B0
5
B5

83 6 o
0 c; D%’
By, ¢, T,

o d

The row bl ocks corresponding to the upper triangular matrices Ri

are then merged through a permutation of the rows, yielding

16
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This conpletes the first stage of the reduction. For the internediate

stages, pairs of nerged blocks corresponding to junction stations are
1 1

reduced. First, B and C5 are reduced to upper triangular
1 1

form by orthogonal transformations, vyielding

w)

J
NO H O
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0
(o)}
=)

()
o oV Ut
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Then nmerging the triangular factors R. and R, through a pernutation
S w

of the rows, yields

=

To conplete the internediate stages

form by orthogona

~
"
®, By
"5
Ry
85
transf ormati ons,
Y 8
R, Bg
s
Ry
R

18
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I's reduced to upper triangular

yi el di ng

lw) |w) g =)
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=)
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Here Ris the Cholesky factor for A. Let n, denote the
order of R, for i =1,...,7 and |et ¢t = (cl,. _.,c7)t denote the
result of applying the sane sequence of orthogonal transformations and
pernutations to b , where each Cy is an n, -vector. For the final
step of the solution process, the least squares solutiony to AXx ~b
is computed as follows.

)t

Partition y as yt = (yl,...,y7 wher e s is an n, -vector,

i =1,...,7. Then the follow ng upper triangular systens are solved

successively by back-substitution for the vectors yq; , i = T,6,...,1 .
R¥q = o7
R = c. - Doy i = 6,5
i3 i 7 ¥ 229
- 0 0 —
Riyi - ci = Ciy6 - Diy7 s | - 1"")3}
— 0 0 i =
Riyi =cy - Biy5 - Diy7 P 2,1.

The general reduction process 1S described next in terms of three
basic steps. Let A and b denote the observation matrix and vector
resulting from k levels of nested bisection of a geodetic position
network on some geographical region. Assume that A has been assenbl ed
into the general block-partitioned form(1.4), with 2K di agonal bl ocks

. k .
and 25-1 remi ni ng colum blocks. Lettingt =2, we wite A as

19



A A .
1 1,t+1 A1,06-1
A
2 Ag,t+1 . A2,2t-l
A = )
A .
_ t At,t+1 At,2t—l_‘
For a certain flexibility of the algorithm and also for sinplicity in the
notation, we do not altogether distinguish here between zero and nonzero
bl ocks A.lj . The zero pattern of these bl ocks depends on the nunber of
levels, k , to which the nested bisection process is carried. Particular

attention was paid to this pattern for the case of k = 2 |evels in the

iIlustrative exanple just conpleted.

Algorithm1l.  This al gorithm computes the Chol esky factor R and the |east

squares solution y to Ax ~b where A results fromk |evels of

nested bisection and A has the block form(3.1), with t = of

Step 1. Reduce each diagonal bl ock A, of A to upper triangular form

by-orthogonal transformations and nerge the reduced bl ocks.

1) Do for i = 1,2,...,t.

1) Deternine @@ so that Q%A = [Ri R, =
1 i1 T o0 i T %
(Note that Q;.G need not be formed explicitly).

20



2) Conpute

£
Q! Ai’Ai,t+l""’Ai,2t—l]

- SN T R 724
1 1

OB e By

2) Merge the reduced row bl ocks by row permutations so that the

resulting matrix has the form

Ry A(1),t+1 Ag,t+2 o Ag,Bt/g Ai,(3t/2)+1 Lo Ai,Qt—l
R ;Ag,t+l Ag,t+2 T Ag,zt/e Ag,(zt/2)+1 Lo Ag,zt—l
Ry Ag,t+l Ag,t+2 o A§,5t/2 AS,(5t/2)+1 ’ Ag,et-l

Ai,t+l Ai,(5t/2)+1 . Ai,Et—l

A;,t+l A;,(Bt/2)+l ’ Aé,et-l

A%,t+2 A%,(Bt/2)+l ’ A%,Zt-l

Ai,t+2 Ai,(ﬁt/2)+l : Ai,&t-l

1 1 1
A
AL 1,3t/0 A 1, (3t/2)+1 £-1,2%-
1 1 1
At,Bt/Q A't,(5t/2)+1 ’ At,Et-l

21




step 2. Reduce and nerge the internediate-stage blocks.

1) Do for u=+t%,t/2, ..., t/2%t = o
1) Do for v = 1,3,...,u-1

1) Reduce each pair of row diagonal blocks

1
v,t+v

v+1l,t+v

to upper triangular form by orthogonal transformation,

as in Step 1.

2) Merge the resulting reduced row bl ocks by row pernutations

so that the upper triangular blocks R~ appear first, as

in Step 1.

At the end of Step 2, A has been reduced by orthogonal transformations
“to the foll ow ng form where each R, is upper triangular and where certain

of the bl ocks A?j are zero.

22



0 0
R By . 0 0 Mot
A a9
R, o4+l . T2,et-1
_ Ke
R = Re Bp e - 0 0 Puotal . (3.2)
R
0
Aot o, 0t-1
Rog1

Step 3. Back Substitution. Let ng denote the order of R, for

i =1,...,28-1 . Let ct = (c ﬂ denote the result of

l,o . . ’Cgt_l
applying the sane sequence Of orthogonal transformations to b and | et

t:(

v Yy ¥py l)t denote the | east squares solution to AXx ~b ,

where ¢, and y; are n,-vectors, i =1,...,2t-1. Sol ve each of the

foll owing upper-triangular systens by back-substitution

1) Ryp g Yol = Sop

Q’Zl
_ 0 .
o) Ry = ¢, - Ai'j yj 7 i=2t-2,2t-1,...,t

j=1+1
pt-1

3) Ry, <o -E: Agj o, i= b, b1yl
j=t+l

23



The reduction algorithm just described for the observation matrix A
can be interpreted from a network-reduction viewpoint as follows. Suppose
that A results froma nested bisection of the geographical region to k
levels. Then at the first stage of the reduction process, orthogonal
transformations are applied to each of the 2 bl ocks corresponding to
the interior regions, to reduce the coordinates of stations not coupled
to stations outside that block by an observation. Mdified junction stations
in the separator blocks are kept until nearby interior blocks are reduced.
Then clusters of blocks of junction stations are grouped together (nerged)
to form higher level blocks. At the internediate stages of the reduction
"process, some station coordinates are now interior and can be reduced by
orthogonal transformations. The process continues until at the last stage
the remaining stations are all interior and their coordinates can be reduced.
At this point A is conpletely reduced by orthogonal transformations to its
Chol esky factor R, and correspondingly, the vector b is reduced to c
as indicated in Step 3. To determne the |east squares solutiony to
Ax ~b , the process is, in a sense, reversed to back substitute the co-
ordinates to successively lower levels until all of the corrections have
been found.

Notice that at each stage of the reduction process it is possible to
obtain a "diagnostic solution" (see Meissl [1979]). Here we hold the co-
ordinates of the junction stations fixed and solve for the coordinates of
the reduced interior stations at that stage

V¢ enphasize again that, fora certain flexibility, full advantage has

2L



not been taken in Algorithm1 of the zero pattern of the bl ocks A.l.J
of A as given by (3.1). This pattern of course deternmines the block
structure of the Cholesky factor R of A as given by (3.2). Basically,

R has the same type of block structure as A, but with 2k+1-1

upper -
triangul ar diagonal blocks. For nested bisection to k = L |evels,
where A is assenbled into the form(2.3), the Cholesky factor R has

the follow ng structure.

AN

X

NN
NN

N

7 7
< / 7%

O\
NN

Tmmmyy Ny

8
DN
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In order to facilitate an analysis of the results of a |east
squares adjustnent, it is often desirable to conpute some or all of
)-1

the elements of the variance-covariance matrix (AtA Since

@)t = @)

the special block structure of R just discussed can be used advanta-
geously in conputing the variances and covariances. Such a procedure

is given in the next section for a nore generally sparse Chol esky factor R .

4.  Conputation of the Variances.

In many adj ustment problens (see, for exanple, Hanson [1978]) it is
necessary to compute the variances and covariances associated with the
regression coefficients in order to estimate the accuracy of the results.
Under the usual assunptions, the variance of the i-th coefficient is pro-

portional to the (i,i) el enent of TN

1

If Ris sparse, then the
di agonal el enents of (a®a)"1 can be cal cul ated quite efficiently. Indeed
it is easy to conpute all the elenents of (a®a)™' which are associ at ed
with the non-zero elenents of R, the Cholesky factor. W describe the

’ procedure next.

Using the orthogonalization algorithmwe determne the Chol esky

factor R so that

A°A = R'R,
Suppose

r.. £ 0 when (i,jle K
= 0 when (i,5)¢ K .

26



Qur objective is to determne

{(AtA)'l}ij When (i,3) € K |,

Let us wite
atn)t = z = [2y,--52,]

is the i-th colum of the matrix Z .

wher e z
Since

Ataz = |

Rz = (g%)~1
Not e that

(R =1 /7y,

From (4.1) and (4.2), we see that

-1 t
Rz =e X (rnn) (en = (0,...,0,1)

so that we can solve for Z, by back substitution.

z = (r )2
nn nn
and for i = n-1,n-2,...,1
n n
r r
;= _Z o, - Z i,
in .. jn T
j=ir1 j=ir1
(i,j)eK
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(4.1)

(k.2)



0 mn
1<i <n-l

n—l,n-2,...,Iv1

fipr in e

1

It is possible to calculate

Once these conponents have been conputed

it is only necessary to save those elements for which (i,n) ¢ K .

Not e

Now assune we have cal cul ated those elements of 252, 0 0%

for which

r

0 when p=1,...,n; q = {+1,..,n .

bPa

Thus, by symretry we have conputed

z for g > 2

and (£,q)e K .

af
Now for i = 1,2,., £-1
n
z: i %ae T
Jj=1
and n
1
i i
51 14
Hence n
1 El_ (£ 'EE Ty %)
Iy J Ju
j=1+1
n
= TN
r r
14 iR Py it
(Z,j)e K



i n {i lrU#Qg. Then for i = £-1,...,1,
< 4-1

(i,5)e K . (i,3)e K

Again, after this 'calculation is performed, We save only those elements
for which (i,2) ¢ K . The above algorithm thus describes a nethod for

conputing the elements of the inverse of (a°A) which are associ at ed

with the non-zero elenents of R. Such a procedure can be quite

efficient when conpared to conputing
(ata)t = rl@H?t
For exanple, suppose we need the diagonal elenents of (AtA)'l when
r. # 0 fori =j andj =i+l , and

]

rij = 0 otherw se,

i.e. R is bi-diagonal. The matrix R'1 will be conpletely filled in
above the diagonal and hence 0(n®) nuneri cal operations are required to
conpute the diagonal elenents of (AJGA)'1 . The algorithm we have outlined
above would require o(n) operations. Even greater savings can be expected
for the Cholesky factor R of the form(3.2), resulting from nested bi-

section.

5. Fi nal RenarKks.

To sunmarize, an alternative has been provided here to the formation
and solution of the normal equations in |east squares adjustment problems.

In particular, it has been shown how a bl ock-orthogonal deconposition nethod
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can be used in conjunction with a nested dissection schenme to provide

a least squares algorithm for certain geodetic adjustnent problens,

Sone wel | -known advant ages of di ssectionschenes for sparse |inear systems
are that they facilitate efficient data managenent techniques, they allow
for the use of packaged matrix deconposition routines for the dense
conponent parts of the problem,and they can allow for the use of parallel
processing. In the past the conbination of the normal equations approach
with these dissection techniques (in particular Helmert bl ocking) has been
preferred, partly because of tradition and partly because of the sinplicity
and numerical efficiency of the Cholesky deconposition nethod. However,
the use of an orthogonal deconposition scheme applied directly toan
observation matrix A which has also been partitioned by a dissection
schene has several advantages over the normal equations approach. First,
the Qr orthogonal deconposition of A allows for an efficient and
stable method of adding observations to the data (See GII, Golub, Mirray
and Saunders [1974]). Such nethods are crucial in certain |arge-scale

adj ustment probl ens (see Hanson [1978]). Secondly, possible fill-in that
can occur in formng the normal equation matrix A% is avoided. A
statistical study of such fill-in is provided by Bjorck [1976]. Meissl
[1979] reports that some fill-in can be expected in formng A% in the
readj ustnment of the North American Datum  This problem cannot be over-
enphasi zed in such |arge scal e-systens (6,000,000 equations and 400,000
unknowns).  But perhaps the most crucial advantage of the use of ortho-
gonal - deconposition schenes here is that they may reduce the effects of

ill-conditioning in adjustment calculations.
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In this 'paper we have treated only one aspect of nested dissection
in |east squares problens, that of deconposing a geodetical position
network by the 'process of nested bisection. However, the block diagonal
formof the matrix in (1.4) can arise in other dissection schemes such
as one-way dissection (see George, Poole and Voight [1978] for a description
of this scheme for solving the normal equations associated with finite
el ement problens). The formalso arises in other contexts, such as photo-
granmetry (See Golub, Luk and Pagano [1979]). Least squares schenes based
in part upon block iterative nethods (see Plemmons [1979])or a conbination
of direct and iterative nmethods may be preferable in sonme applications.
Moreover, the general problemof pernuting Ainto the form(1.4) by
sone graph-theoretic algorithmfor ordering the rows and colums of A
(see Wil and Kettler [1971]) has not been considered in this paper.

Sone of these topics will be addressed further in Golub and Pl emmons [1980].
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