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ABSTRACT

A problem arising in taste testing, medical, and
parapsychol ogy experiments can be nodeled as follows. A deck of n
cards contains ¢, cards labeled i, 1 <i <r. A subject guesses at
the cards sequentially. After each guess the subject is told the
card just guessed (or at least if the guess was correct or not). W
deternmine the optimal and worst case strategies for subjects and the
distribution of the nunber of correct guesses under these strategies.

We show how to use skill scoring to evaluate such experinents in a

way which (asynptotically) does not depend on the subject's strategy.
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THE ANALYSI S OF SEQUENTI AL EXPERI MENTS
W TH FEEDBACK TO SUBJECTS

Persi Diaconis and R L. G aham

1. | ntroduction

For a variety of testing situations the follow ng experinent
is perfornmed: A subject tries to guess the outcome of a sequence of
draws wi thout replacement froma finite population. After each

guess, the subject is given feedback information. This mght be the

name of the object just guessed at--conplete feedback--or only the

information that the guess just made was correct or not--partial
feedback. W are interested in the subject's optinmal strategy and in
met hods for scoring subjects which do not depend on the strategy used
by the subject.

The following exanple illustrates our main results.

1.1, Taste testing and_partially random zed clinical trials

Consi der Fisher's fanous Lady tasting tea (Fisher (1949) p. 11).
Ei ght cups of tea were prepared-- four of one type and four of a
second type. The cups of tea were presented to the lady in a random
order, and she was to guess the type for each cup. Wth no ability
and no feedback, the lady is expected to have four of her eight
guesses correct. W propose the following variation: to help cali-
brate her guesses, the lady is told after each guess if it was
correct or not. If the lady has no tasting ability but is trying to

maxi m ze the number of correct guesses, her optinmal strategy, knowi ng



that a of type one and b of type two remained, is to guess the type
corresponding to max(a,b). The expected number of correct guesses
under the optimal strategy is 373/70 = 5. 3.

Mat hematically, this problemis the sane as a problem dis-
cussed by Blackwell and Hodges (1956) and Efron (1971) in connection
with clinical trials. In comparing two treatments on 2n patients,
suppose it is decided that n patients are to get each treatment, the
al location being otherwise random Assume that the patients arrive
sequentially and must either be ruled ineligible or assigned one of
the two treat ments. A physician observing the outcome of each trial
woul d know which treatnent was mpst probable on each trial. This
information could be used to bias the experinent if the physician
ruled less healthy patients ineligible on trials when a favored treat-
ment was nore probable. A natural measure of the selection bias is
the nunber of correct guesses the experinenter can nmake by guessing
optimally. Bl ackwel | and Hodges showed that with 2n subjects the
optimal guessing strategy leads to
n + %(ZZH/(ZT?) ~1) = n+ % Yo - —;— + 0(%) correct expected guesses.

The same problem arises in card-guessing experinents. The
usual ESP experinent uses a 25-card deck with the 5 symbols 0, +,
Jrr, [ ], * repeated five times each. The deck is shuffled: a
sender |ooks at the cards in sequence fromthe top down, and a sub-

ject guesses at each card after the sender looks at it. W discuss

three types of feedback:



Case |--No feedback. If no feedback is provided, then any guessing

strategy has five correct guesses as its expected value. The distri-
bution of the nunber of correct guesses depends on the guessing
strategy. Several witers have shown that the variance is |argest
when the guessing strategy is sone pernutation of the 25 synbols.

This is further discussed at the beginning of Section 3.

Case 2--Conplete feedback. If the subject is shown the card guessed

each tinme, then the optimal strategy is to guess the nost probable
remaining type at each stage. The expected nunber under the optima
strategy is'8.65, a result first derived by Read (1962). In Section
2 we give closed form expressions for the expected number of correct
guesses for the optimal and worst case strategies for a deck of

arbitrary conposition.

Case 3--Yes or no feedback. The situation becones conplex wth par-

tial feedback--telling the subject if each guess was correct or not.
nSimpl e description of the optimal strategy is known. An exanple
in Section 3 shows that the "greedy algorithnf which guesses the nost
probabl e synbol at each stage is not optimal. The optimal strategy
and the expected nunber of correct guesses under the optimal strategy
can be determined by solving a recurrence relation nunerically. For
a standard ESP deck the expectation is 6.63 correct guesses. In
Theorenms 5 and 6 we show that the greedy algorithmis optinal

for partial feedback experiments with no repeated values (that is,

for a deck |abeled (1,2,...,n)). For an enpirical attenpt to solve



these probl ens, see Thouless (1977). A thorough discussion of
statistical problems in ESP research may be found in Burdick and
Kell'y (1978), and Diaconis (1978).

How shoul d feedback experinents be evaluated? Consider a
nunerical exanple made explicit in Table 1. A deck of 20 cards, 10
| abel ed "red" and 10 |abeled "black," was well mxed. A sender
| ooked at the cards in sequence fromthe top down, and a subject
guessed at each card after the sender looked at it. After each tria
the guesser was told whether the guess was correct or not. There
were 14 correct guesses. If this experinent was naively evaluated by
neglecting the availability of feedback information (a w dely used
approach, see Tart (1977), Chapters 1,2 for references), each tria
woul d be regarded as an independent binonial variable with success
probability 1/2. Binonmal tables show that P(14 or nore correct out
of 20) = .058. The choice sequence that the guesser actually made is
fairly close to the optimal strategy. There were 7 tines that the
nunber of red cards remaining was equal to the nunber of black cards
remaining. At these trials, red and black have the same probability
of being correct and either choice is optinal. The guesses nade
agree with the optimal strategy on 9 of the 13 remaining trials.
Perhaps the 14 correct guesses should be compared with 12.30, the
expected number of correct guesses under the optimal strategy.

Negl ecting the availability of feedback information can lead to
crediting a subject using an optimal (or near optimal) strategy with

having "talent.” On the other hand, demanding that a subject



TABLE 1

EXAMPLE OF SKILL SCORING IN AN EXPERI MENT W TH
10 RED AND 10 BLACK CARDS AND FEEDBACK
TO THE GUESSI NG SUBJECT

Trial No. CGuess Feedback Opt i nal Py Card
1 B Yes Tie 1/2 B
2 B No R 9/19 R
3 B No Tie 1/2 R
4 B Yes B 9/17 B
5 R No Tie 1/2 B
6 B Yes R 7/15 B
7 R Yes R 8/14 R
8 B Yes R 6/13 B
9 R Yes R 7/12 R

10 R Yes R 6/11 R
11 R No Tie 1/2 B
12 R Yes R 5/9 R
13 B No Tie 1/2 R
14 R Yes B 3/7 R
15 B Yes B 4/6 B
16 B Yes B 3/5 B
17 B No Tie 1/2 R
18 B Yes B 2/3 B
19 R Yes Tie 1/2 R
20 B Yes B 1 B
14 11.049
Correct

Colum 1 is trial number, Colum 2 is subject's guess, Colum
3 is feedback information, Colum 4 is optimal guess (tie neans either
color is optimal), Colum 5 is probability that subject's guess is
correct, and Colum 6 is card actually present.



significantly exceed the expected nunmber under the optimal strategy
can lead to failure to detect a "talented" subject who doesn't use
the feedback information. In Section 4 we describe a nethod of eval-

uation called skill scoring. The skill score conpares the number of

correct guesses to a base line score calculated from the conditional

expectation of the ith

guess given the feedback information. The
statistic is particularly sinple in the present exanple. [f at the
tine of the ith guess there are r, red cards and b, bl ack cards

remaining in the deck, then the probability of the next card being
r,

. i o [
(say) red is noiflc The nunbers P the probability of the
ith guess being correct--are given in the fifth colum of Table 1.
| f Z; is one or zero as the i \" guess is correct or not, then the

skill score statistic Sis defined as S = Zizl {zi -pi}. For this
exanple S = 14-11.049 = 2.95.

In Theorem 7 we show that for any guessing strategy
$/V2n/4 has a limting standard normal distribution. |n the exanpl e
of Table 1, S/¥5 = 1.32.  Further discussion of this exanple is in
Section 4.

Clearly experiments which conbine feedback with sanpling with
repl acement are easier to analyze. Qur notivation for considering
sanpling without replacenment is twofold. First, reanalysis of a
previously performed feedback experiment done without replacement may
be desirable. Second, experinents are often designed without
repl acenent to insure balance between treatnents for noderate
sanples. Efron (1971) gives a nice discussion of these issues and

references to standard literature.
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2. Conplete Feedback Experinents

In this section we consider experiments with a deck of n cards

r

cont ai ni ng ¢, cards labeled i, 1 <i <r, son=2 c.. W wite

i=1 i

”Cr) for the conposition vector. A subject tries to guess
what card is at each position and after each guess is shown the card at
this position. The optimal strategy for a subject trying to nmaximze
the total number of correct guesses is to guess the nost probable synbol
at each stage. (This is easily proved by backward induction.) |et

H= H(c) be the nunber of correct guesses when the optimal strategy is
used. W can deﬁr_ive the distribution of H when r= 2 by using variants
of an argument in Blackwell and Hodges (1957). W give the limting

distribution of H here, the exact distribution is derived in the course
of the proof.
Theorem 1.

| f ¢y and cy tend to infinity in such a way that

cl/(cl+c2) > p, 0<p<1, p+#1/2, then

2.1 2 (H) = L
(2.1) E(H) max(cq+¢y) 4 Z(Tp —q - 1) + o(1)
(2.2) P(H—max(cl,cz)'-‘k)’> Y(l'Y)k
for k =0,1,2,... where y = ‘gﬂr_il—r )
1+ i{p-gq
| f cp=¢, = k (so p=%), then, as k tends to infinity,
2k
— 1
QD)
k




0 if x

(2.4) p(H'kgx) > ,
k/4 2@x) -1 if x >0

where ®(x) is the standard normal cunul ative distribution.

A
o

Results (2.3) and (2.4) are essentially given by Blackwell
and Hodges (1957). The results show that there is a big difference

bet ween bal anced decks where c, = ¢, and unbal anced decks. In the

unbal anced situation the optimal strategy does not do much better
than the strategy which always guesses the type corresponding to

max(cl,cz), An intuitive explanation is that when ¢y >> ¢ t he

optimal guess will alnmost always guess type 1.
Wien r > 2, we have not actively pursued the probl em of
finding the distribution of H but we have deternmined the mean of H.

If h(c) = E(H(c)), then el ementary considerations show that when

r

Zi=1 ¢ >0, h satisfies the recursion

max(c)

e ...t Me-d) =
1 r 1 r

(2.5) h(c) = 2 h(0) = 0 ,
i

wher e Si has a one in the ith position and zeros el sewhere, and 0 is
the vector of all zeros.
W will show that h(c) has the following closed form

expression:

Theorem 2. The solution of the recursion (2.5) is

c c c,+...+c
c c ! t 1 r max*(hi)
(2.6) h(c) =max(c) + I

6¢I§E 1 r 1 r 1

i i i +...+1 i+...+ir

I



wher e

O if there is a unique j such that %.= max (i)
max* (1) = _
max(i) otherw se
The sumin (2.6) is over the nonnegative orthant of the integer
lattice in r dinensions,

The recursion (2.5) was used by Read (1962) to nunerically
determne certain values of h. W reconmputed the follow ng values of
h(c) confirming Read's calculations: h(3,3,3) = 4.78690",
h(5,5,5,5,5) = §.64675+. A direct probabilistic interpretation of
the right side of (2.6) is given after the proof.

For a deck containing r different types with each type
repeated k tines, ¢ = ki, where 1 is a vector of r ones. For large

k, weak convergence techniques can be used to bound the right side of

(2.6):
Theorem 3. As k tends to infinity,
iy = m
h(ki) = k +5 4 /k+o (Vk),

where M is the expected value of the maxinum of r independent

-standard normal variates, The notation o neans the implied constant

depends on r.
The nunbers M_are tabled in Teichroew (1956) and Harter

(1961).  For exanpl e,

r|2 3 4 5

Mr l .564 .863 1.029 1.163

10



O course, Theorem 3 agrees with (2.3) whenr = 2. When k = r = 5,
the approximation given by Theorem 3 is about 9.08 as conpared with
8.65 from exact eval uation.

In the conplete feedback problemit is possible for a subject
to try to minimze the expected number of correct guesses by guessing
the |east probable synbol on each trial. W call this worst case
guessing. This can lead to strategies with a strange appearance.

For exanple, with n cards labeled {1,2,...,n} the worst strategy
guesses any card, (say 1) on the first trial and thereafter guesses

a card known not to be in the deck. This leads to |/n as the expected
nunber of correct guesses. Analysis of worst case guessing is valua-
ble in determning how widely the distribution of correct guesses can
vary as a function of strategy. The argunents are sinmlar to best

case guessing and will not be given in detail. Here are some results:

Theorem 4. Let d(c) denote the expected nunber of correct
guesses when the worst case strategy is used with conplete feedback.
c c c,+...+c % _
1 T min (i)

i 77 i i +...+1 i+ ... +1
11 T 1 r 1 r

min(c) - 7

_O#_ij_c |

a(c)
where min (1) = min(i) (mul(3) - 1), mul(i) is the number of j such
t hat ij = min(i).

As k tends to infinity,
dk1) = K - 2 M VK + o (V)
2 °r r
wher e .\Ir was defined in Theorem 3.

11



Sonme nunerical values for d are d(3,3,3) = 1.48690+,
d(5,5,5,5,5) = 2.296061. Wien r = 2, i (€ e, - d = h - max(c e,
so (2.1) and (2.3) can be used for simlar conputations involving d.

Theorens 3 and 4 show that with a bounded nunber r of
distinct types the deviation of either best or worst case guessing
from guessing with no feedback is of order vk conpared to a |ead

termof k. This is crucial to results in Section 4 involving the

skill scoring statistic.

Proofs for Section 2

Proof of Theorem1l. To determine the distribution of H we follow

Bl ackwel | and Hodges (1957) in considering an associated random wal k.

Wthout |oss of generality suppose c, > ¢ Fol l owing the notation

1= "2
of Chapter 3 of Feller (1968), consider a random path conposed of

lines of slope + 1. The walk noves up if a card of type 1 is turned
up, and down if a card of type 2 turns up. The walk begins at (0,0)

c c,). The optimal strategy is to guess

and ends at (C1+c2, 17 %

type 1 if the path is belowthe liney = ¢ - ¢,, guess type 2 if the

1
path is above this line, and guess arbitrarily at points where the

path touches the line. This is because when the path touches

Y = ¢y ¢y, the nunber of cards of type 1 remaining equals the num
ber of cards of type 2 remaining. TLet T be the nunmber of tines the

random path touches the liney =c¢, -c¢ It is not hard to show by

1 2°

12



induction that for any path the number of correct guesses that the

optimal strategy nekes at tinme Cq tc, equal s cy +zwhere zis a

bi nom al random variable with parameters 1/2 and T. Thus all ran-

domess in the outcome of a run through the deck using the optinal
strategy can be attributed to the outcone of guesses when the

remai ni ng nunbers of each type were the sane.

T takes values 0,1,2,.. and a straightforward variant

«sC
>T2
of the proof of Theorem 4 in Section 7 of Feller (1968) shows

t hat

- - +
t Cl c2+t c1+c2 t c1 c2
cl+c2—t c2—t C

(2.7) p(:F=t) = 2 t=0,1,...,c

2

Noti ce that when c, = T cannot take on the value 0 and

1%
(2.7) is equivalent to equation (2.3) of Blackwell and Hodges (1957).
They argue that T/v/k tends in distribution to the absolute value of a
standard normal, and this inplies (2.4). Passing to the limt in

1 2
0<p<1, p #%yields that T has a liniting geometric distribution

(2.7) when c, and ¢, tend to infinity with cl/(cl+c2)+p

wWith p(T=t) = v(1-y) t=0,1,2,...,y=|p-q|. The linmiting distri-

bution of His obtained fromthe limting distribution of T by using

the fact that, if H given T=t is binomal with paranmeters 1 and t,

2
then H unconditionally has the distribution specified by (2.2). The

equation for the nmean of H can be derived as a special case of (2.6).

Thus, when r=2, max*(il,iz) = 0 unl ess il=iz. Then (2.6) becones

LN,

(2.8) E(H) = max(cl.c2



When c, =c., =k, we have

1 72
2 2k
1 k\“/ (2K 12
EH) =k+5 I (i)/(Zi):k+2 i 1
i>1 :

k
C
so (2.3) follows. Taking the limt in (2.8) as - > p yields
17 %
_ 1 21 i
E(H) = max(c,,c,) += I , (pq + o(1)
172 2 . |
i>1

1 1
max(c,, c.,) +~(—-1) + 0(1)
1"z 2 T ipq

- rT’B.X(Cl,CZ) + %(ﬁ—l) + o(1).

Proof of Theorem 2. et f(c) = h(c) - max(c). The recursion (2.5)

translates into

= _ ‘i — = — = ax(c) —
£(c) _zi —C1+ T {f(c—éi) +max(c - 5i>} + %_ max(c) .

or

CHE +cr)f<E) =i;ci f(E-'Es'i)

+ [? cimax(E-Ei)+max(E)-(cl+...+cr)max(2) 1.

. . . . * —
The expression in square brackets is easily seen to equal max (c) as

defined in Theorem 2. Now,Witing

_ (cl+...+cr)! _
glc) = g — fle)
¢yt e !

1 r

the recursion becones

14



(e,+. . . +c)! * —
- _ — 1 r max (c¢)
(2.9) g(c) - ;g(c—@i) + c,:'. . .c ! c,+...+c

I 1 r 1 r

It is clear from (2.9) that g(c) can be expressed as a sum over the

nonnegative orthant 0 # i < ¢ of the function

. . Ny x

_ (1l+...+1r). max (1)

A1) i i i+...+1
pheo o B L et

At each lattice point i the function A(i) nust be nultiplied by the

number of paths fromc to i. This nunber is

((Cliil)+...+(cr.—ir))!
(cl-| l!. o (cr—lr)!

Thus,

((cl—il)+...+(cr-ir))!

. . A(L
(e -i ) (e i)t (1)

glc) = =
0#i<i
Transforming g back to f and f back to h conpletes the proof of
Theorem 2.
By considering a multidimensional randomwal k, taking a step

. th

in the direction of the i coordinate when a card of type i is exposed,

we can give a direct probabilistic interpretation to the maxX of
Theorem 2 and mn* of Theorem 4. Just as when r=2, the only random
ness in the nunber of correct guesses under the optimal strategy comes
fromlattice points i where max*(—i—) >0.  The number of correct guesses
from lattice points where max (1) = 0 being max(c). The probability

of a correct guess for a lattice point where max*('{) >0 s

* —
max (i)

il+' +1r and the sumin (2.6) is just a sum of these

15



probabilities nultiplied by the probability that the path passes

through 1.

Proof of Theorem3. W are considering a deck of n=rk cards

containing k cards marked i, 1 <i <r. For j =1,2,...,n, let Vj be
an r-dinmensional random vector which counts how many of each type

have been called before tinme j. Thus, Vl=5 and V],(i) is the number

of cards marked i which have appeared before time j. At the | th trial
the optimal strategy is to choose any val ue £ such that -i/j(sl) =

i n Vj(i). The probability of a correct guess is then

i

k = mn V(i)
i J

(2.10) n-1i+1

J=1,2,...,n .

To work with (2.10) we use weak convergence techniques from Chapter 4
of Billingsley (1968). The first step is to transform the random

vectors Vl,...ﬁn into a random function which will be shown to con-

verge to an appropriate Brownian bridge. Let

— B _____I_-_ﬂ — __j_——
X, = /k(r_l) {Vj =1}

0, Var(ij(i)) = 1. Forma

vector valued continuous function n_it : [0,1]1 > R* by connecting the

The conponents of fj have E(iJ.(i))

conponent s Xj(i) by straight lines as in Billingsley ((1968),pp.8-15).
Thus, nij/n = x.J. It follows from Rosen's (1967) results for depen-
dent vector valued random variables that the r-dinensional analog of
Theorem 24.1 of Billingsley (1968) holds. That is, n")'("t 2 ﬁct’ wher e

w: is an r-dinmensional mean 0 Gaussian process with the follow ng

covari ance:

16



-s(l-1t)

for s<t,  EW(DWH} = ( s-1
s(1-1t) when i = j

when i #j

Thus, each conponent process WZ(i)is a Brownian bridge and, for

fixed t, cov W? = t(1-t) I where

1
1 .
T or-1 1

This inplies that = wt(i)=(3. Returning to (2.10) and sunmng vyields
i

N k-6 n min X, (i)
(2.11) 5o k-1 oy 1 ©
g n-3+1 r . n-j+1
i=1 i=1
The first sumin (2.11) is easily seen to equal k + Or (195_5) (the
o
vk

notation 0. neans that the inplied constant depends on r). W will

argue that we may take expectations in (2.11) and pass to the limt

's k tends to infinity. Then

in X, .
n MN X, 1 E(nin W)
(2.12) E( - -+~ »J R S
1 n-j+1 0 -t

Assuming the validity of (2.12) for the nonment, we have shown that the

expected number of correct guesses is

k-,ﬁ /k + o (Vk)
r r

wher e
o

5 /—— (1 E(min W )

M = r- 1 J t dt

r r 1-t

0
Ve now show that X = - % M where M uas defined in Theorem 3. To
r r

prove this note that one way of constructing ﬁg from r independent

(1) (o)
v WL

: is as foll ows.

| - di mensi onal Brownian bridges

17



. r . Sy A
Let W = 1 b} w(J) and let Wo(4) -J—F——(W'(l)—w)for 1<i <r.
t rj=1 t t r-1 t t — —

It is easy to check that WZ has the correct covariance, t(1-t)f. Now,

for fixed t the symmetry of mean 0 Gaussian variables inplies that

E{m'in Wf:i)} = - E{max Wfi)}; E{min Wf_)(i)} = - E{max ﬁ?(i)} .
[ i - [ - i -

Mor eover ,

E{Range{ﬁ(g(i)}} =/ —X— E Range Wii)}

ZE{mgx W:(i)} ]

= za/::g:: Efmax w1} |

r-1 t

For fixed t the variables \Nt(i) are independent Gaussian variables

with mean 0 and variance t(1-t). It follows that
~ 1

M =-M / L de=-2w as clai med.

r r 1-t 2 'r

W now show that the limt step in (2.12) is valid. W wll

. . . - D
argue in the function space D[0,1]. Note first that nXt - ﬁi

implies mn n_it (i) » mn ﬁt(i) in D[0,1]. Next consider the contin-

| 1 1-€ f(t
uous functional T, :D[0,1] > R defined by Te(f) = J 1( )t dt.
c Z

€
Since mn nit(i) is piecewise constant and equals nmin Xi(i) on the
1, . [ -
interval® 4 <t < % we have that

itl
_ i — 1
T (min X _(i)) = g mn( X,, (i) J n dt
Cpont ensjc(-©n " /m Pt
n
= ) min(X, (i)) (- log (1 - L -))
€n<j<(1-€)n J not
mn X (i) mn Xi(i)
- 5 el v |y — 1
€n<j<(1-€)n n-y+l € (n—j)2

18



To apply Markov's inequality we need to bound E(|min Xj(i)l).

172
(2.13) E|min X, (1) | <rE(|X.(D)]) <r(E(X?(1))1/2=r,/__.£__(iE:i) )
j 3 = h k(r-1) \" n-1
Thus, for any vy > 0,

mn nxi(l)

r/ —— jl/z < C.

P{|Z 1 z
Y k(r—l) j (n—j)3/2 (n_l)l/Z ] 'Y‘/E

j (n-3)

> v} <

where the positive constant ¢ is independent of k and y. Thus, we
have shown that the error converges to O in probability and the

conti nuous mapping theorem yields

W X ALY o (1-€ min W (1)
[remnho

(2.14) z —~—.—~L~i——-> —

en<i<(l-€)n "7+ c

To take expectations in (2.14) we nust show that the left side is

uni .formy integrable. Wite h@ = mn %i(i) and consi der

1
M, )2 EIMiHMjI
(2.15) E (Zn—i+1 f_iZj G-itDm-3+1)
. 2. 2..1/2
When i # j, E([Mil !MJ_,!) < {E(Mi)E(Mj)} and
(2.16) ) <rE(XC() s+ -Lnod
: i’ — i k(r-1) r r’ n-1

Usi ng these bounds in (2.15) shows that

2

Mi ) 1 ¢/ i 3
< >
B (Zn—i+1 ik(n—l) izj n-i+l1n-j+1 ® asn

This implies uniformintegrability and thus shows that
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E(M,) 1-E E(nin W)
1 J b gt

(2.17) 2 noi+tl -t

en<i<(1-€)n "7 ¢

To prove (2.12) note that

dt

Jl E(min ﬁt(i))
0 -t

is a convergent integral so the right side of (2.17) approximates

this arbitrarily well for € sufficiently small. Further
E(M,) E([Mil) . —
' Ioaaerls o amrerce Low /R

n-t i<en "1 i<€n

i<€n. < <

The last sumis a Reinmann sum for
€

X
[ L -x

and so can be made arbitrarily snal

for sone positive c.

for small €. The same argunent

wor ks for
; E(Mi)
(1-©)n<i 77 i+l

This completes the proof of (2.12) and thus of Theorem 3.
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3. Yes-No Feedback

In this section we discuss problems concerning a deck of

n cards with o cards of type i, 1 <i <r. W again wite c for the

conposition vector ¢ = (Cl""’cr)‘ On each trial the subject is

told if the previous guess was correct or not. W refer to this

situation as yes-no feedback. The problem is conplicated when

max(c) > 1, so we first state results for a deck of n cards |abel ed
1,2,...,n. W begin with no feedback and conplete feedback guessing

and conpare these to yes-no feedback.

No feedback. If no feedback is provided, then any guessing

strategy has one correct guess as its expected value. Severa

writers have shown that the variance of the number of correct guesses
is largest when the guessing sequence is a pernutation of {1,2,...,n}

(see J. A Geenwod (1938) and the references cited there).

Conpl ete feedback. |If the subject is shown the card just

guessed each tine, then the optinal strategy is to guess a card known
to remain in the deck. The nunber of correct guesses has the sane
distribution as a sumof n independent randomvariables x.,1<i <n
wher e I%Xi= i) = % =1-p(X;=0). For large n the nunber of correct
guesses is approximately normally distributed with mean log n and
standard deviation vlog n.

If the subject is only given yes-no feedback, then the
optimal and worst case strategies are described by the follow ng

pair of theorens.
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Theorem 5. For a deck containing n cards |abeled {1,2,...,n} a
guessing strategy which maxinm zes the expected nunber of correct
guesses when yes-no feedback is available is the strategy which
guesses type 1 until the guess is correct, then guesses type 2 until
the guess is correct (or the end of the deck is reached) and so on.

If G denotes the nunber of correct guesses under this strategy, then

(3.1) P(G>k) = k=1,2,....n

(3.2) E(G)=1+*2‘17+---+"‘r=e—l+0(n—l,)

n.

Theorem 6. For a deck containing n cards |abeled {1,2,...,n} a
guessing strategy which nininizes the expected number of correct
guesses when yes-no feedback is available is the strategy which

th trial until a guess is correct and then

guesses type i on the i
repeats the correct guess for the remaining trials. |f g denotes the
nunber of correct guesses under this strategy, then g takes val ues

zero and one with probabiltiy:

(3.3) P(g= 0) =

(3.4 Eg) =1-2+ 0

Theorens 5 and 6 deal with the only type of deck where we can pro-
vide a sinple description of the optimal strategy. |n each case the
optimal stratey is the "greedy" strategy which guesses the nost
probable (for Theorem 6 the |east probable) type. W do not know if the

greedy strategy is optimal for decks of 2n cards with conposition
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vector (2,2,...,2). W will show that the greedy strategy is not
opti mal for the 9-card deck with conposition vector (3,3,3). W first
need sone notation.

Let p = (pl,pz,...,pr) be a vector with integer conponents

> 0. i
pi_O Defi ne

(3.5) N(c;p) = the number of pernutations of cl + . . . + ¢ symbol s
whi ch do not have synbol 1 in the first pl positions, nor synbol 2
in positions pl + 1,...,p,, etc.

Thus, N(c30) = (¢l +. . . +c)!. The nunbers N(c;p) allow
computation of the nost probable type at any stage of an experinent
with yes-no feedback. They are closely related to rook polynomnials

described in Chapters 7 and 8 of Riordan (1958) and are discussed

further in Diaconis, Gaham and Mallows (1979).

Algorithm to conpute probabilities with yes-no feedback.  syppose an

experiment started with conposition vector FO and that after the j th
guess there have been Yj(i) yes answers on type i and pj(i) no

answers on type i, 1 <i <r. The deck now has conposition vector

c = °0 —Yj. W will call ¢ the reduced conposition vector.

Witing gi for the vector (0...1...0) with a 1 at position i and 0
el sewhere, the conditional probabilities of a correct (or incorrect)

guess on type i on the j + 1st trial given Y.  and P are
] 3

¢y N(c - 5i;p1. )

(3.6) P(yes on type i I:Y-j P, ) = —
N(c;pj )
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N(c;p. +6i)

(3.7) P(no on type iI_Y:, ;;ﬂ,) —
P N(espy)

For 1 <i <r.

As inplied by (3.6) and (3.7), the function N satisfies the

recursion
(3.8) N(esp+6,) = N(c;p) - ¢ N(c+6k;p), 1<k<r
With N(c;0) = (c.4...4+c )! .
1 r

This recursion can be solved in closed formto allow conputation of N

il + ...+ ir(pl) (pr) ((cl—il) + ...+ (cr—ir))

i \i (cl—il)!...(cr—ir)!

(3.9) N(c3p) = I (-1)
T 1 r

i<e

The proof of (3.9) is given in Diaconis, Gaham and Mllows al ong
with a host of other properties of N(c;p).

Let E(c;p) be the expected nunber of correct guesses under an
optimal strategy starting from the reduced conposition vector c.
E(c;p) is well defined since there are only a finite nunber of stra-
tegies and one (or nore) of them maxim zes the expected number of
correct guesses. It is straightforward to show that E satisfies the
recurrence:

(3.10) E(c3p)N(c;p) = max{E(c;p + gk)N(C_;P_+ gk)
k

+ B3, 5p)e, N(e-8,3p) + ¢ N(-8:p)}
where N(c;p) was defined in (3.5). We have not been able to solve
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this recurrence for E(c;0) in closed formeven though Nis known
through (3.9). The recurrence can be solved numerically. For
exanple, Mary Ann Gatto (Gatto (1978)) generated values for all

conposition vectors snuller than (5,5,5,5,5). Some results are:
£(3,3,3;0) = 4.26, E(4,4,4,4;0)= 5.47, E(5,5,5,5,5;0) = 6.63 .

The details of conmputing a nunber |ike £(5,5,5,5,5;0) are not si npl e.
The conputation required 15 hours of cpu tine on a Honeywel |l 6070
conputer along with clever use of both recursions (3.8) and (3.10).

The optimal strategy at each stage is determned by finding a
k which maximzes the right side of (3.10). Fornula (3.6) implies
that the greedy strategy at each stage is determned by choosing a
k maximzing c N(E—_G—k;g). W now give an exanple which shows that
the greedy strategy is not optimal.

Consi der a 9-card deck with 3 each of 3 different types of
card. A conplete listing of N_(c_;p) and EZc;_p) for all (_C;I_D) t hat
arise with this 9-card deck is given in Diaconis and G aham (1978).

In the situation summarized by (231;003) the optinal strategy is to
choose type 3 on the next guess. However, type 2 is nore probable
than type 3 on the next guess. The situation summarized by (231;003)
could arise under the optimal strategy from starting position
(333;000 as follows: the first guess is type 1, and this is correct.
The next three guesses are type 3, and all three guesses are wong.
The next guess on type 3 is correct. At this point the situation is
summari zed by (232;003) and the optimal guess is type 3. If thisis

correct, then the situation is summarized by (231;003).

25



Even though the greedy strategy is not optiml, conputations
reported in Diaconis, Gatto, and Graham (1979) show that the expected
nunber of correct guesses under the.greedy strategy is extrenely
close to the expected nunber under the optimal strategy for decks
with conposition vector (3,3,3) or (5,5,5,5,5).

| f e(_c;;;) is the expected nunmber of correct guesses for the
wor st possi bl e strategy, then e(_c;io) satisfies a recurrence obtained
fromreplacing max by min in (3.10). W have not pursued the problem
of numerical conputation of e.

Even though the optimal strategy seems to be extrenely

conplex, we believe that the followi ng sinple persistence conjecture

hol ds: In any problem with partial feedback, if symbol 1 is the

optimal guess on trial i and a guess of 1 is answered by "no," then

symbol 1 is optimal on guess i + 1.

Proofs for Section 3.

Proof of Theorem 5. When the given strategy is used, the pernutations

with k or nore correct guesses are those in the set

A = {m: Tt <t <L < tml. Thus, P{G>%k} = P(meA ) = El"

This proves (3.1) and inplies (3.2). .
We now argue that the outlined strategy is optinal. In this

problem a strategy S may be regarded as a sequence of n functions

s = (S

S,s.++55_) where Si:{O,l}"I ~{1,2,...,n}. The interpreta-

1’72
tion is that a point in {0,1}1_l represents a sequence of i-1 yes or
no answers, 0 standing for no and 1 for yes. The expected value of a

. _ «n . S
strategy is E(S) = Zi=l E(éﬂ(i)si) wher e Sij is one or zero as i=j
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or not. W wll say that strategy S dominates strategy S'if
E(S) > E(S'). Strategies Sand S wll be called equivalent if
E(S) = E(S").

We first argue that the given strategy calls the nost
probabl e synbol at each stage. This is inplied by the follow ng

monot oni city property of the function N
(3.11) pi>pj if and only if N(l;p+61)<N(l;p+6j).

This property of Nis proved and further discussed in Diaconis,
Graham and Mallows (1979). Inequality (3.11) inplies, and is
implied by, the follow ng conbinatorial fact which was first

established by Efron (1963).

(3.12) (Efron's Lemma). Let two decks of n cards be prepared. The
first deck |abeled (1,2,...,n), the second deck |abeled (al,az,...,an)
with a, e {1,2,...,n}. Each deck is nmixed and the cards turned over
sinul taneously, one pair at a time. The probability of no matches is
largest if and only if there are no repeated synbols among the a;-
That is, if {a{} ={1,2,...,n}.

We have thus argued that the given strategy calls a nost
probabl e synmbol at each stage. W want to show that any strategy
whi ch achi eves the maxi mum nunber of correct guesses in this problem
has this property. W note that a maxinizing strategy exists since
there are only finitely nany strategies.

To begin with we may restrict attention to strategies which

do not guess symbols known not to be left in the deck since such
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strategies nmay be inproved uniformy over all pernutations by nodi-
fying themto guess only synbols which have not been definitely
el i m nat ed.

We will argue by backward induction that any strategy can be
strictly inproved by being nodified to choose a nost probable synbol
at each stage. This is clear at trial n since nodifying a strategy S
so that it chooses the nobst probable synbol on the final guess can
only increase E(S). Consider a strategy S which chooses the nost
probabl e synbol on trials n-k, n-k+l,...,n, for fixed k > 0.

Consider a history h € {O,l}n_k_2

for which s . I(h) = a where b # a
is the nost probable guess and strictly nore probable than a. By
(3.11) we must have P, > p,» i-e-, Py 2 P, + 1. No nmatter what the

out cone of the guess S (h) = a is, no synbol is nore probable

n-k-1
than b just before trial n-k. Thus, by induction we may assune
S(h,0) = S(h,1) =b (i.e., we can modify S to have this property
Wit hout decreasing E(S)).

Consider the portion of the "strategy tree" of S following h
(see Figure 1). Formthe strategy S from S by defining gn—k—l(h) =b,
§n_k(h,0) = én_k(h,l) = a and interchanging the two parts T01 and T10
of S which follow (h,0,1) and (h,1,0) (see Figure 1).

We claimthat for each pernutation 7 of the deck there is a
uni que permutation m of the deck such that the nunber of hits that S

has for mis the sane as the nunmber of hits that §has for 1AT. Thi s

correspondence is given by switching coordinates n-k-1 and n-k:
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Figure 1

i.e.,
m(n - k) for i=n-Kk-I ,
i) = ( M(n-k-1) for i=n-k
m(i) ot herw se .

=a
It is now a sinple matter of checking the four cases m(n-k-1)
=1 #a
I A A
Tr(n—k)\ to see that S has the desired property or m. For
#b

exanple, if m(n-k-1) = a, m(n-%) # b (and, of course, ™ generates

the history h), then m generates the history (h,1,0), collects one

D)

ak-1(M =a) and exits into T
A 2

However, in S, m gets a no at the question Sn_k_l(h) = b, a yes at

more hit (at the question S 10°

A ?
t he question Sn_k(h,O) = a (collecting one hit) and also exits into

TlO' Thus,
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E(S) > E(9)

However, by induction if we replace §n_k(h,0) = a by §;_k(h,0) = b,
then since b is (still) nore probable than a, this gives a strict

i mprovenent to S. This shows that an optimal strategy must also
guess the most probable symbol on trial n-k-1. This conpletes the

i nduction step and the theoremis proved.

Proof of Theorem 6 Under the given strategy the number g of

correct guesses is either zero or one. The probability of one cor-
rect guess is the probability that two pernutations have one or nore
mat chi ng coordi nates. This probability is well known (Feller 1968

p. 100) to be

- - D T L L S § 1
P(g = 1) =1-P@=0=1-5y + gr+... +(- 1) fr=1-2 0GP

This proves (3.3) and (3.4).

We now show that the strategy given in Theorem 6 achieves
the mni mum nunber of expected correct guesses.

Usi ng the notation established in the proof of Theorem 5,
a strategy S is a sequence of functions S = (§:S or Sn),
S 0,137 5 11,2, ... .nk. To begin with, it is easily shown that
the expected value of any strategy can be decreased by nodifying it

so that

(3.13) si(o,....OI) =8, ,(0,...,00) for i=2,3,...,n

and so that S never achieves nore than 1 correct guess.
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Restricting attention to strategies which satisfy (3.13) we
see that the strategy S is determned by the n nunbers
81,52(5),83(5),...,sn(a). The expected value of S is the probability
of one or nmore matches of a random permutation m to n symbols |abel ed
51,82(5),...,sn(5). Efron's Lemma (3.12) shows that this probability
is smallest when {81,82(6),...,Sn(5)} = {1,2,...,n}. This proves

Theorem 6.
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4.  Evaluation of Feedback Experinents

The eval uation of feedback experiments is problematic because
it is inpossible to know what use a subject will nake of the feedback
i nformation. In this section we introduce an eval uation approach

called skill scoring. The idea is to conpare the number of correct

guesses with a base line rate calculated from the conditional expected
nunber of correct guesses given the available information.

One exanple of skill scoring in the present setting was given
in Table 1. To notivate the abstract definitions we are about to
present, we review this exanple. The problem considered was card
guessing with two types (call themtype 1 and type 2), k of each type
(so n= 2k cards in all) and conpl ete feedback. W can nodel this by
considering the basic probability space to be Sn' the set of permuta-
tions on {1,2,...,n}, with the uniform probability measure. A pernu-
tation m is chosen at random and the ith trial is declared "type 1"
if m(i) is odd and "type 2" if w(i) is even. On the ith trial the

guessing subject is given feedback

1 ith guess is correct,

2 ith guess is incorrect.
This particular feedback function only depends on the current

coordi nat e. Some possible variations are:

(4.1a) Feedback night depend on previous outcones. This is realis-
tic in card guessing experiments with unconscious cuing due to sub-

jects being within sight or earshot of one another. If there were
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few correct guesses in the early stages, nore active feedback night

be made available as the experiment progressed.

(4.1b) In addition to telling if "the previ ous guess was correct or
not, feedback might indicate if incorrect guesses were "close."

Fi sher (1924), (1928), and (1929) gives sone exanples of measures of

cl oseness.

(4.1c) Feedback might only be available on sone outcones. For
instance, the subject might be given feedback after red guesses but
no feedback after black guesses.

W fornul ate the general situation in ternms of Sn, the set of
pernutations of {1,2,...,n} = Qn. To nodel a pack of cards with ¢y

cards labeled i we need the idea of an evaluation function.

For exanple, to nodel red-black card guessing we night consider

'{1 if w(i) is odd
Xi(ﬂ(i)) = <

(2 if m(i) is even

(4.2a) An evaluation function X is a sequence of functions

X = (A,..., A) where X, (m) = A (m(i)) for mes . Let the range of
ki be denoted by Iﬁ = {Ai(w(i)) T TE Sn}. An eval uation function is
of typer if Ai(n) -1 =z=7a(i)(mod r). Let /\i denote the algebra in
S, generated by Al,xz,...,ki.

We will restrict attention to guessing strategies which take

values in R’l’ For each sequence of guesses and each history up to
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time i, we nust define a feedback function f.l. For conplete feedback

guessi ng, fi = Ai(ﬂ). For yes-no feedback fi = GAiGi' wher e G.l is
t he ith guess.

(4.2b) A feedback function f is a sequence of functions

£f=(fl'"..., f) where f. :R,*XR,.,...,XR.XS=>0 . For each fixed
n 1 1 2 1 n n

-,T.), We may regard f. as a function fi(rl,..,,r_.; -)

(rl,rz,..
from Sn into Qn. This function is to be neasurabl e when sn i's
equi pped with the algebra Ai defined in (4.2a) for any r. W also
define the algebra 3(r) = O{fl(rl;')’fz(rl’rz;')""’

(g

TN T

This frightening termnology has the following interpretation:
that f is measurable neans that fi only depends on the first i guesses
and the val ues Al(n),...,ki(ﬂ). A function from%will be measura-
ble with respect to E(rl,...,ri) if it only depends on the first i

components of the pernutation through the feedback information given

when guesses r S.,r, are made on trials 1,2,...,1i.

1’t2
(4.2c) A feedback function is adapted if (Sr A
i

1°Tps--eofys L <1 <N Adaptability means

is E(rl,...,r%)
measurable for each r
-that the feedback includes the information that the |ast guess was

correct or not.

(4.2d) A guessing strategy g is a sequence of functions

g = (gl,g?_,...,gn) where g, Is a constant and

g. R, X

i Ry "’XRi-lXSn* Ri satisfies gi(rl""’ril; ® )is

F(r STy l) neasurable. The value of g, will be denoted Gl.
- 1

10
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(4.2e) The collection of functions A,f will be called an experinent.

We define the skill scoring statistic for an experiment by

n .
(4.3) S = E {s -E{8, la?(cl,...,ci )1}

1 Sih i -1
The main notivation for considering Sis that for a wde
variety of experinents S can be normed to have an approxi mate standard

normal distribution uniformy in guessing strategies. This is made

precise in:

Theorem 7. For an experiment as defined in (4.2e) and any
guessing strategy g, the skill scoring statistic S defined by (4.3)

satisfies

(4.4) E(S) =0 .

If the evaluation function is of type r as defined by
(4.2a) and the feedback function adapted as defined by (4.2c),

then as n tends to infinity,

(4.5) pl—r—<x]| »

1
»/n 14 vam e
r Y
Convergence in (45)is uniformin guessing strategies g.

Ve now di scuss sone notivation and properties of S. In the
absence of "talent," the distribution of 6(, A given the feedback
i
information is the conditional permutation distribution. S wll be

| arge when there are nore successful guesses than chance predicts.
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To conpute S, only the observed guesses Gl’G ,Gn need be known,

g
not the entire guessing strategy.

For definiteness consider the exanple in Table |--card
guessing with conplete feedback from a deck containing k red and
k black cards. As shown in Theorem 1, a subject using the optinal
(or worst case) strategy expects to obtain approximtely k + %/ﬂ
(or k - %/ﬁ) correct guesses. The statistic S conpensates for this
by subtracting a random correction factor with mean value k + %/‘ﬁz
(or k —%/ﬁ). This allows us to see if the subject scored nore
than chance when the strategy has been adjusted for. The conditional
expected value in (4.3) may be conplicated to conmpute if f is
conplex. For yes-no partial feedback the conditional expectations
may be conputed using (3.6) and (3.7).

One penalty that must be paid for the close tracking of GG_ 2
by its expected value is as follows: If the feedback information zlitl
some stage deternmines the conposition of the remainder of the deck,
none of the subjects' guesses fromthat trial on have an effect on S
This can be seen in the last guess in Table 1 when the feedback
information deternmned that the last remaining card was bl ack.
Simlarly, the possible corrections due to feedback are less pro-
nounced at the beginning of the deck and nore pronounced toward the
end of the deck.

Theorem 7 hol ds because the terns in the sumfor S are a
Martingale difference sequence with well-behaved variance. The
Martingale central linmt theoremis in force. |If there was a prac-

tical reason for doing so, the result could be extended to scoring

functions of the form
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~ n
(46) S = 'zl (W (650005043 Apaeeesdy)
| =

- EW, (Gy,...,6;5 A ..,xi)ls(cl,...,c. )11

1’ i-1

where the functions V\{ could be chosen to give desired weights to
correct or incorrect guesses depending on previous results.
We note that the form and motivation for the statistic S are quite
simlar to the form and notivation for the Mntel-Haenszel statistic
as discussed (for exanple) by Tarone and Ware (1977). It should be
possible to show that S is locally nost powerful by arguments
simlar to those used to show that the Mantel-Haenszel statistic is
locally nost powerful against Lehmann alternatives.

We now illustrate the hypothesis of Theorem 7 through sone

exanpl es.

(4.7) Exanple of the need of adaptability assunptions.

The adaptability assunmption (4.2¢) sinply means that the
feedback includes the information that the last guess was correct or
not. To see that there is no hope of a normal linmiting result wth-
out this assunption, consider an experinment with no feedback
i nformation, for exanple, fi = 1. To be specific, suppose there are
n each of two types, and that the guessing strategy always guesses
type 1. Then the nunber of correct guesses wll always be n, and
the conditional probability subtracted off at each stage wll always
equal 1/2 so that S=0. This exanple presents a fundamental problem

for the widely used normal approximation to classical card guessing
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experiments without feedback (this is discussed by Geville (1941),
(1944)). It underscores the need for conmpbn sense even when
Theorem 7 is in force since, if a subject always guesses the sane
type of card, the randomess captured by the limting normality wll
be due to the fluctuation of the conditional expectations in S

The next exanple shows the need for the assumption of a deck
of type r by exhibiting several non-normal linmits (depending on the

guessing strategy) for a deck |abeled {1,2,...,n}.

(4.8) Exanple: Partial Feedback guessing for a deck |abeled
{1,2,3,...,n}.

In this problem as discussed in Section 3, a deck of n cards
is labeled {1,2,...,n}. Aubject guesses the value of each card
sequentially and is told if each guess is correct or not. Here
Ki(ﬂ(i)) = n(i), fi(Gl,---,qi; m(1),...,m(i)) = dw(i)c,’ and S can be

1

represented as

n
S = I (a

i=1 i7T(1) n-i+1

To see that the distribution of S depends on the guessing strategy we

consi der three cases:
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Case |. Worst case guessing. If the guessing strategy is the worst

case strategy established in Theorem 6,we will show that the

limting distribution of S converges to a beta distribution on

1 1 . 1 1
5 (1+—2) tol with an atom at - 5 (1—?).

e

More precisely,

(4.9) P(S <t) > t) as n tends to infinity where the distribution

function Qt) is defined by

Gt) =0 for t <-La-21y,
2 e2
1 1 1 1 1
-E' for -i(l—j)itf_—z-(l-"—‘-z—) s
e e
1/2 1 1
= v2 (t-t, for 5 A+ <<l ,
e
=1 for t>1
Case |1I. GiE 1. W will show that when Gy al ways guesses 1, the

distribution of S converges to an exponential distribution on (-=,1].

More precisely,

X for 0<x<w

(4.10) P{1-S<x}~>1-¢e

Note that while the expected value of S agrees with the limting
expected value of 0, conputation shows that

3
Var(S) = 2 log n + O(l%—(—nl), as n tends to infinity.
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Case Ill. Best case guessing. In Theorenb the rule for

maxi m zi ng the expected nunmber of hits was shown to be the rule which
guesses the nost probable card at each stage. Wien this rule is
used, we will show that, as n+«, the statistic S tends to a countable

m xture of continuous distributions:

o0
(4.11) P(S<t) = I p,F (t)
i=1 t %
wher e
i+l
-1 1 _ t-1
Pyt TGt @ =PI cen
j=1
wher e Ll’L2""’Li+1 are the lengths of the i + 1 intervals the unit

interval is partitioned into by dropping i points at random

Proofs for Section 4.

Proof of Theorem 7. Consider the basic probability space % with the

uniform distribution. Let G +s G be any sequence of guesses.

1’
S
— —_ i = - = n
Let BO = {qb,sn}, B, = 3(@1,...,Gi+1) for i=1,2,...,n-1, Eﬁ 2
Thus, BOCB1C. N Bn‘ Let
{ i
2, = ——{§ - E{S B, ;}} and X = I Z
i G.\, G. A i-1 1 . ]
/n %(1_%) ii 11 j=1

Because f is adapted, X, is a B, Martingale with E(Xi) = 0. To prove
(4.5), we first show that (4.5) holds when fi =>\i and Ei is the result
of best case guessing. Further, and without real |oss, suppose that

n =rk. Let Mi denote the mni num of the nunmber of each type seen
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before tine i, so M, = 0. The probability of a correct guess on the

LTI M tak |
| ra IS pi—n_i+l SO i akes val ues
( 1 . . o
———=—— (1-p,) vith probability p,
/nl(l——l“)
r r

. with probability 1-p,

/1. 1, °©
n "t:(l—;)

\
According to the Martingale Central Limt Theorem (Hall (1977)) the

limting normality will be denonstrated if we can show that

n

; Zp.(l_p‘)g-r—o?——’l
n l(l——]; i=1 * *
r 1y
W show t hat
n
1 Prob 1
(4.12a) oL Py - :
i=1
1 2 Prob « 1
(4.12b) ;Z PP
r
To denpbnstrate (4.12a) write
k'%—ii i
Pi = n-i+1 with Ml =M1_;
Then
n M
1 =1 logny 1, _ 4
n§=1p—r+0(n) n n-i+1
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The inequality (2.13) inplies that there is a positive constant . such that

E(IMil,‘i c./ 1(_%:.1_)__. Using this and Markov's inequality it

follows that for any € > 0,

Mi c
—_— > <
n-i+1 €)=

N -

™3

p(1
n

=y

i=1
S0 that (4.12a) is true. The proof of (4.12b) is simlar. Hence, we
have shown that (4.7) holds when fi = Ai and Ei is best case guessing.
A simlar proof works if £, = Ai and Gy is worst case guessing. |f
now fi is an arbitrary measurabl e feedback sequence and Gi an arbi-
trary guessing strategy, let p, = E{cSG A [Bi}. Recal | i defined in

_ i

(4.2a). Let P =E{66i )‘i [/\i 1}, Bi=E{6Gi>\.}Ai l}' Then P, S P, <p;
and since (4.12a) and (4.12b) hold for Py and E_.l, they nmust hold for

Pi' This conpletes the proof of Theorem 7.

Proofs for exanple (4.8).

Proof of (4.11). For worst case guessing S takes values which depend

on T, the time of the first correct guess. Let N(i,n) denote the
nunber of permnutations mes, whi ch do not have 7m(j)=3,1<j <i.

Equation (3.9) inplies that N(i,n) = 2;0(—1)3'(;) (n-7)! and we

see that P{T=k} = -r-llT N(k-1, n-1) and P{ith guess is correct|past) =

Néi- 1, n-1)
N(T-1, n) . Thus, S takes val ues

_ . o]
(1-i) with probablllty;,
1 n-2 : i n-2
(1-=-—-52) with probability —— ,
n (n-],)z n(n-1)
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k .
i-1, n-l : TS T i
1 z N1, ) with probability o N(i-1, n-1)
i=1
n N(i-1, n-| . 1
1 § N(i-1, ) with prdbability ;!—N(n-l, n-1) ,
i=]1
i-1, n-| : R
- N(i-1, n) with probabiltiy o N(n, n)
i=1
1 1t 1, o
W now show t hat o N(i,n) = (1—;) + 0(;) uniformy in i.

| ndeed,
i 1, N n .,
SNGED - a-D <3 (Jl)((i;lj'_)__ij) <1 (r.!)((n—]'). _L_)
’ j=0 . . :

n
—e +0CD - (1-9) = och .

Thus, for any k, 1 <k <n,

KNG-1, n-1) 1 K
I NG, » ~ n.
i=1 SMPTh R |l“ i=1

so that S takes val ues

k k
1 2 1 . S 1 1 1
= + '5(1—-;1) + O(ﬁ) with probability ;(1 -‘n—_'T) + O(nz)

N

for 1 <k <n and S takes the value - %(1—%) + O(%) with probability
e

1 1

e Y OGD-

Using these estimates shows that P(S<t) > Gt) for

t <

N

+—;—(1-——1§). For larger t we have
e
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T
Ps<t) =2+ P+ 20-5 +od) <e}+ oy

_ % + pi- %5 log (2(t _—%-) + Ot(%)} + O(H—lz)

=1 (1-PE < - 3 log 2(£-5) + ot(%)}) +ocd

j-1
ra-4' sod

n
0<j<nf (t)

1
e

+1-E+od+d
e n n

1/2
_ 1 1
=2 (t -3) ””O<H)

where we have witten f(t) = —%— | og Z(t—%zl:). This conpletes the

proof of (4.9).

Proof of (4.10). Wen the guessing strategy has Gi =1, then S takes

values 1 - (I-rl]—HT), k=0,1,2,...,n-1, where T is unifornmy dis-

tributed on {0,1,2,...,n-1} and Hk = 14+...4+1/k. So,

HT_Hn -t
P{1-s >t} = p{e <e }

Hp-H -t
= ple "cel A< T <n - v} (1 + 0 + oy
n vn

log T-10g n+0(%)
<

e <T<n - Va)+ o)

/n

Ple

T l -t - v/u 0_]--
P{n(l o) < e |[vn < T <n n} + (/r?])

> e 'as ntends to infinity,
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Proof of (4.11). Wth best case guessing it was shown in Theorem 5

that the nunber of correct guesses, G takes value i wth

probability pi = 11—: -2?_?1]-7—!' 1 _<_ i _<_ n-1. Wen G =1, |et TJ be

the waiting time for the jth correct guess, for 1 <j <i. The
random vari abl es l(T yeouoo I,, n=T_ +...+T,) are easily shown to
n 1 i 1 i

have as limting distribution the distribution of the |engths
Ll’Lz""’Liﬂ of the i + 1 intervals that the unit interval is
partitioned into by i random points. de Finetti (Feller 1971, p. 42)

— - 1‘
has shown Phat P{L1 > Xpyeeesly g > xi+1} = (1 x ... +Xi+1)+ wher e

+ denotes positive part. Wen G =i, write T = le(=0 Ti; t hen
i Tj 1 n-T 1
P{Sit'G=i}:P{i— z z e Z —i—k<t}
3=1 k=0 " 7J j=0 "
t-i
—>P{L1 L2 oo Ly Ze }

by an easy argunent. This conpletes the proof of (4.11).
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