Stanford Department of Computer Science .October 1980
Report No. STAN-CS-80-768

CASUAL NETS
OR
WHAT IS A DETERMINISTIC COMPUTATION

by

Peter Gacs
University of Rochester

and

Leonid A. Levin
Massachusetts Institute of Technology

Research sponsored by

National Science Foundation
and
Office of Naval Research

DEPARTMENT OF COMPUTER SCIENCE
Stanford University

STAN-CS-79-T76%

« CAUSAL. NETS

or
What Is a,Deterministic Computation?

Péter Gics' Leonid A. Levin?
Computer Science Department Laboratory for Computer Science
Universily of Rochester Massachuselts Institute of Technology
Rochester, NY 14627 Cambridge, MA 02139

ABSTRACT. We inlroduce the concept of causal nets - it can be considered as the most general and
clementary concept of the history of a deterministic computation (sequential or parallel). Causality
and locality are distinguished as the only important propertics of nets representing such records.
-Different types of complexities of cornpu tations correspond to different geometrical characteristics of
the corresponding causal nets- which have the advantage of being finite objects. Synchrony becomes
arelative notion. Nets can have symrnetrics; therefore it will make sense to ask what can be computed
from arbitrary symmetric inputs. Here, we obtain a complete group-theoretical characterization of
the kind of syrnmctrics that can bc alowed in parallel computations.

Uit of this work wias done while this author was visiting Johann Wolfgang Goethe University, Frankfurt am Main
in 1978 and Stanford University in 1979, .

2 Phe vesearch of this author was partially supported by NSE grant MCS 77-19754,

L

0. Jntrodriction

In this work, we propose a framework unifying various aspects of the theory of complexities of
information processing---also providing a language for some new problems. Presently, many results
below the level of abstraction provided by Blum’s computational complexity theory are seemingly
dependent on specific machine models (Turing machine, RAM, iterative network, etc.) or formulated
in such models with some comment on the measure of independence of the model. This lcads to
unnccessary specification and to awkward formal constructions unusual in traditional mathematics.

W c take the notion of computation itself as a primitive (causal net') instead of considering
the work of a device performing this computation. Such an approach is less detailed since the sarne
computation can be implemented in various ways: on different devices, sequentially or parallelly,
varying the order of the operations and their distribution over parts of the device. Dueto its potcntiat
for the avoidance of details, we hope to set up a more unified framework providing simpler definitions
and still preserving concreteness and elementarity. A causal net can be interpreted as the time-
gpace history of al elementary operations accomplished in the computing process, with their mutual
dependencies indicated. As an additional advantage of this approach, a computation on each input
is regarded as a separate finite object independently of the context of a function over an infinite
domain.In this way, we hope to facilitate the application of geometric and algebraic methods in
complexity theory, and to preserve the advantages of the theory of Boolean networks.

Unlike other types of nets (e.g. Boolean networks) the causal net constructs its logical structure
in the process of computation and thus it can be reconstructed from its input and the structure
of the possible neighborhoods in it (causal structure). All operations nceded for this are taken into
account. At a fixed causal structure (playing the role of the program of the algorithm) the input
nets can be arbitrarily large. At a given size of the input, the size of the causal nets is a complexity
of computation in the usua sense (most similar to the product of time and space) in contrast to the
size of the Boolean networks which is bounded (by 2"/n). The closeness of the definition of causal
nets to some physical ideas gives hope to find a connection between the geometrica characteristics
of these nets and the physical characteristics of computations, as eg. the size of the net and the
entropy increase caused by the computation in question.

The last years witnessed a large number of ad hoc models for parallel computation addressing spe-
cia problems like synchrony. Sorne of them, as also the classical Boolean networks, are very different
in nature from Turing machine-style sequential models. For sequential machines, Kolmogorov and
Uspenskii [1] made the first significant steps toward a rnodel general enough so that most other
models could be considered as its restricted forms. Their machine has a graph-like storage structure
undergoing gradual local changes in time, by the work of a constant number of active units.

In the next sections, wc introduce the concept of causal nets and compare it with a more tradi-
tional model of computations. Kolmogorov machines in paralledl mode. We aso consider the problem
of computability when input nets with arbitrary symmetries are allowed. This problem seems to be
new because it does not arise but for sufficiently general concepts of parallel computations like the
ones presented here. We give a complete characterization of the functions computable in these models

interms Of theautomorphism group of the input. The result canbe considered as some “Church
Thesis” for symnretry-preserving computations and is related to some combinatorial theorems of
Babai and Lovasz [5]. I,. A. Levin originated the concept of causal nets, P.Gacs proved the result
on the symmetric inputs.

PN V. Petri in [2] is different from the inventor of Petri nets- - which have no essent ial relat ion to our causal nets.

2

SAVE -3

P a8

1. Basic defini tions

Causal nets

A net X is a directed labelled graph, i.e. a matrix 0:|X|* — © defining the label 0(z, y) of the
edge (or the symbol oo of its absence) between any two nodes. A subnet is the restriction of ¢ to a
subset of the nodes. The input subnet is the union of al oriented cycles. The cause |z | of a node z
is the subnet of nodes y for which (y, z) is an edge. The immediate consequence A of asubnet Ais
thesubnet containing A and all nodes the entire cause of which is contained in A.

A net represents the whole space-time history of a computation rather than its state at some tirne
moment. A node of the net corresponds to an “elementary event” in the course of the computation,
the edges to “causal relations’ between them. We can (and will) use multiple edges - simulated by
adjusting the set ©, and states for the nodes- -simulated by the states of the preceding edges.

Definition 1 A net is caled local if the cause of each node is weakly connected (i.e. connected as an
undirected graph). A local net is caled causal if any isomorphismbetween its two subncts A and
B.can be uniquely extended to an isomorphism between A1 and Bt.

The requirement of uniqueness isnot essential and is imposed only for convenience. To check
for causality and locality, only subncts isomorphic to causes of nodes should be considered. This is
easy since al such subnets arc small and connected.

The requirement of causality is the way we represent physica determinism: the past uniquely
determines the future.An other important physical principle, that of the locality of interaction
requires that the immediate cause of an elementary event should consist of events closely related
to each other. The evidence of this close relation is usually present in a chain connecting these
events and should bc considered as part of the cause. Thus, nodes of the cause of a node have causa
interconnection themselves and therefore correspond to close but different moments of time (in some
analogy to the formalism in mechanics where the future positions of a system are determined by its
present position and a position in the near past--giving a speed).

The noninput nodes and the strongly connected components (packets) of the input form an
acyclic graph with a natural partial order << on it. The base subnet consists of the input and all
preceding nodes. The output subnet consists of the noninput nodes adjacent to edges labelled by a
distinguished output subalphabet ©. Any graph can be converted to an input net by adding a loop
to each node. These are the usual bases for nets. Other types of base may be used to sirnulate fancy
things, e.g. the use of “oracles’ (input nodes whose cause contains noninput nodes).

The nodes of a net can be objects of any kind. But anoninput node x can be naturaly identified
with the function mapping y €|z]to 0(z, y). In the case of a single-label aphabet, x can be identified
with |z]. Then the causality requirement for a net X can be written as | X| D zxy €|X|=x €|X]|.

Programming

A causal net can in general be described much short er than by listing the entire matrix 0.1t is
already uniquely determined by its base and the types of neighborhoods that can occur in it (unlike
the Boolean networks). The neighborhood V(z)f @ node X (its center) is the subnct consisting of z and
all nodes connected to z. The causal neighborhood C=(x) contains x and |z]. The local fcausal] structure
(prrogram) of a net is the set of its [causad] neighborhoods or “commands’ (up to isomorphism). A net
X is said to be constistent with any local [causal] structure containing the one of X.

A (local or causal) program < is said to gnerale a net X if % is consistent with X but with no

3

extension of X having the sameinput. The minimal program generating X isthe program of X.
Every causad program generates a uniquely determined (possibly infinite) net from any base and any
net is generated from its base by its program. If the net is finite and the output exists in al connected
components, we say that the output is computed from the base by the program. Thus to implement
computations by these concepts, take a finite causa program % and input A, let the program start
generating a causal net from it by subsequent extensions and take the output as the result.

The requirement of consistency with some fixed loca structure is a useful way to impose various
local restrictions on the net, e.g. houndcdness of the degree of the nodes. The computation by a
causal net is monotone: from a part of the input, always a part of the output will be computed. To
eliminate this effect, one can aways confine oneself to functions in whose domain no input net is
aproper pat of an other one. Such a domain is, for example, theset of al nets consistent with a
closed local structure as defined below. Also, in a closed net, we can easily recognize the last moment
when a node was used in generating other nodes.

Definition 2 A net is locally asymmetric [closed] if none of its neighborhoods has a nontrivial isomor-
phismm to itself [to a proper part of another one]. A closed locally asymmetric net with one
distinguished centra node in each (weakly) connected component is called marked.

The nodes of a connected marked net can easily bc numbered in a canonical way: we construct
a spanning tree with the centra node as the root, proceeding on the edges of X from the root eg.
in a breadth-first manner. In the theory of information processing, we practically never encounter
nonrnarkcd nets, and the permission of symmetric nets gives rise to serious specia problems (like
the problem to find an algorithm deciding whether two given graphs are isomorphic).

Example: representation of a Turing machine

A Turing machine has a tape-a finite succession of cells numbered by subsequent integers, and
a head observing the cell with number c(t) a time t. A finite sat of states is fixed and each cdl k
as well as the head is a each moment ¢ in one of these states p(t, k) and ¢,. The terminal cells have
the distinguish4 states R and L. The program of the machine is a finite function N ordering certain
actions to pairs of states. Thus, A(q, p(¢, c(t))) det ermines g 4.4, p(t -+ 1, c(¥), ct + 1) — c(t) =41
and p(t + 1,k) = p(t, k) for dl k5% c(t). If the cell ¢t + 1) does not exist yet, it will be created.
if the head was at one of the ends it also determines whether the cel c(t) has to be removed. The
sequence p(0, k) is the input and ¢(0) = 0. Thus always c(t) =t (mod 2), and since the state of a
cell cannot change in steps of different parity, wc can exclude these from consideration. Let us agree
that a the end of the computation, the head assumes a special statei-, and going from one end of
the tape to the other one, erases it. (This prevents the representing causal net frorn being infinite)

To represent the computations of this machine by causal nets, let s(t, k) denote (p(¢, k), z) where
xrisq if c(t) =k, special symbol otherwise. I.et the set V of nodes of the causal net bc the set of
time-cell pairs (¢, k) of equal parity whore the cell k exists at time ¢{. The edges run between nodes
(t, k41 and(t4 1, k). Their label reflects the states s(¢, k) of their adjacent nodes. Other edges,
with some constant label, run between(t — 1, k) and (¢ + 1, k). If the cell k does not exist al moment
t — 1, this edge connects (t-} 1, k) to the terminal cell or forms a loop whent--1is 0 or 1. The
output subalphabet contains the labels with states s(¢, k) having z = 7.

It can be easily checked that the above defined net is causal and local.

4

2. Complexity of computations

Time and space

One of the differences between the more traditional models and the comnputations as modelled
by the causal nets is that on the latter the elementary operations are not necessarily syrnchronized.
Only the relative order of those events is determined which are in a causal relation to each other.
What results is a certain vagueness in the definition of the storage requirement of a causal net.

Let us define the height d(z) of a node x of a causal net as the maximum length of a decreasing
sequence of nodes starting with x. The height of a whole connected net X is D(X) = max ey d(z).
The height can be considered as the time required for the computation. Let &(z) be a monotone
mapping of | X| to the axis of time. (An example is d(X).)

Definition 3~ The storage size sq(t, X)at moment ¢ is the nurnber of edges (z,y) with ®(z) <t and
¢(y) >t. Denote sy(X)=max,se(¢, X). For an unconnected net, height and storage are defined
cornponcntwise, as a fumdy of numbers indexed by the connected components of X.

It seems to be unnatural to define the storage used at one moment in a way independent from
the time function &(z); apparently by the same considerations that in the theory of relativity show
that there is no invariant way to define the notion of two events occurring a the same time. (Note
that any imaginable relativistic computer is representable by a causal net.)

Minimizing the storage size over all possible monotone mappings we obtain the value g =
ming s¢(X) that is similar to the number of stones needed to “pebble’ the net (see [6]). [Towever, s
is not a redlistic measure of storage requirement. It seems to be reasonable to require that a tirning
be redized by the height function of some net “irnplementing” X in some formal sense. And the
minimizing timing rnay be hard to compute and not implementable.

Time-space trade-off

Machines that actually build up a causal net of size n from its program and input cannot require
less storage than n. The situation changes if we are content with a machine that does not necessarily
store a representation of the net, only gives 0(z, j) for any two nodes (their numbers) ¢, j on request.
(The machine weakly represents the net.) This rnay require only storage O(logn) instead of n (that
never requires more is another formulation of the hypothesis of logarithmic time-space tradeoff). The
next theorem was originaly proved by N. V. Petri [2] interms of some concrete types of machines,
but causal nets are the rnost natural seiting for formulating it. It says that the storage size for weak
representation can be minimized (no speedups).

Theorem 1 For any causa structure P, there is a Turing machine T with the following property.
For each input net X, using a weak representation of X (by an oracle), it weakly represents a
causal net Y generated by % from X. Any other Turing machine M doing this (even only) for X
will use storage no less than by a constant C,; times the storage used by T.

Sketch of proof. Theoptimal Turing machine 7 works as follows. It sets forth a certain amount
of storage s, then considers all possible other Turing machines A4 with a descriplion shorter than
5. Running over all k-tuples of numbers less than 2%, where k is the maximum size of the elements
o f the causal structure P, 7" is able to decide whether M while working within storage s weakly
represents a net generated from X by . If it does not find any M doing that, it increases 8. When
it finally finds a fitting M, it uses M for answering the questions it was asked.

5

[Example: Characterization of Pointer Machine complexity

Various models of computation with only one finitary operation at each step can bc considered
as esscntially a special case of Kolmogorov's graph machine [1]. This differs from the “storage
modification machine” proposed later by Schiinhage [3] and called “Pointer Maching” by Knuth only
in that, Schiinhage works with directed, Kolmogorov and Uspenskii with undirected graphs (forcing
thereby both bounded in- and outdegree). The storage structure, called pointer graph of the Pointer
Machine is a directedlabelled graph with constant outdegree.

The program prescribes how the central node transforms its ‘L-neighborhood step-by-step, modify-
ing thereby gradually the whole graph. The initial graph is the input, the graph at halting is the
output. They are labelled by the disjoint alphabets ©,,0¢.

Barzdin’ and Kalnin's generalized the model of Kolmogorov and Schénhage by introducing
parallelism. A program for theParallel Pointer Machine (PPPM) will be similar to the program of a
PM but its meaning is different: the loca transformations must be simultaneously carried out by al
nodes. A node z changes only its outgoing edges, or disappears if they al loop. A common new node
may be created by a maximal clique formed by edges with a distinguished label €. In determining
the next action, edges with output labels do not count. The computation is finished when al edges
have output labels. A PPM is a parallel Kdmogorov machine (PKM) if its pointer graphs are undirected
at each step (i.c. their matrix is symmetric) and cachnodehas a loop with a specia constant label.
The set of nonempty undirected pointer graphs is denoted by T(O).

The functions defined on undirected connected marked input graphs computable by the PM and
PPM are exactly the recursive functions. With respect to computing time, the PPM is a powerful
generdization of the PM and is able to solve eg. any NP problem in polynomial time (but possibly
with exponential space). This model can claim to be able to efficiently simulate any other model of
parallel computation.

. A function f computable by a PPM-just as the complexities in Definition 3--is componentwise,
i.e. it commutes with disconnected union: f(X U Y) = f(X) U f(Y) if |X|N|Y|=8. We associate a
pointer graph Z’ with a (possibly acyclic) net Z by identifying al nodes connected by edges with a
special label 7.

Note that the above version of the PPM is more general than usual in order to extend Theorem
2 to symmetric inputs. For usua computations, the inputs should bc assumed marked.

Theorem 2 For componentwise functions f,u, v over T(©,) these properties arc equivalent.
(@) A PKM exists computing f(X) for each X in time O(u(X)) and storage O(v(X)).
(b) For each X a closed causal net Y exists with bounded degrees of nodes, with input X, output
Z with Z' = f(X) , D(Y) = O(u(X)), sa(Y) == O(v(X)).
The proof will bc given in the Appendix.

Open problem Find out which traditiona complexity corresponds to the size of causal nets. It is
k now n thatthesize of the smallest causalnet computing a function is between the time required
on aPPM and the time required on an ”address-machine” (a PM with a tree-like storage structure).
The seccond complexity may exceed the first one only by a logarithmic factor.

3. Symmetric inputs

In this section,we will characterize the functions computable by causal nets. Of course, every
such function is partial recursive. Butl it turns out that partia recursive functions that are defined
on certain very symmetric inputs are not computable in models preserving this syrnrnctry.

Let us try, eg., to compute N (mod 2) from a “circle X of length N”. some net with the
automorphism group Z,, (the cyclic group of order N). We ask for a program generating a one-edge
output z from X with state equal to N (mod 2). Thinking in terms of parallel pointer machines, we can
imagine the input as a circular array of identica autornata--capable of unlirnited local organization
and creation-trying to merge into a single node. There is no leader among them to organize the
process. Since al have similar initial neighborhood, the first merge can divide them only into small
groups of identical size--which is irnpossible if their number is prime. Indeed, it turns out that the
existence of such a program implies that n cCaNNOt have any large prime divisors. (Such numbers are
sometimes caled “smooth”, in reference to smooth sand containing only fine grains.)

The functions computable on the Pointer Machine arc exactly the partial recursive functions.
However, the input Lo a PM must aways be a marked pointer graph. Theorem 2 sets up a correspon-
dence between functions computable by causal nets and those computable by the Parallel Pointer
Machine. Hence if wc restrict our input nets to be marked, the functions computable by causal nets
are just the partial recursive functions. On theother hand, ‘unctions that are not computable by
causal nets will therefore be not computable by the Parallel Pointer Machine (a version of Thcorern
2 holds also without the restriction that the PPM be a Kolmogorov machine). We now proceed to
formulate the necessary and sufficient conditions for a recursive function without the markcdness
requirement to be computable by a causal net.

A partial componcntwise function f frorn nets with a loop-edge at each node to output nets
with uniformly bounded indegrce will be caled standard.

Let® be a causal structure generating causal nets X, X; with outputs By, By frorn input nets
Ap, A. Suppose further that there exists an embedding e of Ay into A;. By causality, this embedding
will generate an embedding of the whole causal net X into X; and thereby an embedding ¥ of B, into
B,. Notice that the image of B, will be an weal C of B; (y <z €|C| implies y &|C|). For different
causal structures % computing f this correspondence of ernbeddings on the outputs to cmbcddings
on the inputs can be different, but its existence is a serious restriction irnplying arnong others the
monotonicity of f. Hence the first condition on the standard partial function f is the following. Let
id . ;3 be the identica embedding of A C 3 into B.

(i) There exists a recursive correspondence F' which orders an isomorphism ¢ of f(Ay) onto an’
ideal of f(A)) to each embeddingt : Ay A, F is a functor, i.e. (y 0 ¢)" = ol Let Ay, Ay
bc subnets of net C, Ay = AgN Ay, By =id)y (f(A;)). Then B,= By N B.

This intersection property of the functor F reflects the fact that the net B, computed by a
program ¢ from the intersection A, of two nets Ag, A is the intersection of the nets Iy, By computed
from Ay and A, respectively. Indeed, B, C ByNB,isevident from monotonicity. But the ancestors in
the input of each node of B3, B, are dl bothin Ay and A, hence aso in A,. This proves I3, = ByNBy.

The above property implies that for asubnet I3 of an output net f(A) we can find the smallest
part of A dill producing B.Forany subnet Ay of A define f(Ag; A) :Li(l/“‘uy/\(f(f"())); this is the subnet
of f(A) computed from the subnet Ay of A. The sct OF ancestors 1 —'(B; A) of B is the intersection of
all subsets Ay of A with f(Ay; A) D 1l. (Notice that this notion is defined only by the functor £,
without causal nets.) It follows from (i) that f(f ~'(B; A); A) D B.Ina causal net X, of course, a
node a of the input A is the ancestor of a subset C C_|X|if a<<y for some y € C. Notice that
since the image of ¢ is always anideal,a < b implies f'({a}; A)C f'({b}; A).

7

‘(if) For each input A, theset of ancestors of each node of f(R) is connected.

The most interesting property F must have is connected with possible symmetries of the inputs.
The functor A— A" is a homomorphism from the group of automorphisms of A to that of f(A). For
any node x of f(A), letus denote by G(z, A, F) the factorgroup of the group of al automorphisms
\ that leave x invariant (i.e. for which A (z) = x) by the norrnal subgroup of the automorphisms
that fix al elements of f/—'({z};A). (Thiscivisor is the unity if x depends on the whole input.)

For any finite group G, let n(G) be the minirnum of the indices of proper subgroups in G, b(G)
the rnaximum of a(H) over all subgroups of G. b(G) issometimes called the smoothness of G in analogy
to the abovementioned notion of smoothness of natural numbers.

(iii) b(G(z, A, F)) is bounded for al inputs A.

Theorem 3 For astandard partial function f,the following two conditions are equivalent.
[@) For all nets A in the domain of f,there arc finite causal nets with input A, output f(A), and
with bounded indegrees of noninput nodes.

(b) j satisfies (i-iii).
The proof will be given in the Appendix.

Remarks 1. The recursiveness of the functor in (i) cannot be replaced by the weaker requirement
of the recursiveness of the function f. In the Appendix, we give an example of a function f with
a nonrecursive functor satisfying the rest of (i-iii) which has no recursive functor (even without
the rest of (i-iii)).

2. Of most interest are functions in whose domain no net is a proper part of an other one, and
which are invariant, i.e. their functor F maps any automorphism of the input into the identity
on the output. In this case, (iii) requires the automorphism groups of inputs to be uniformly
smooth.

3. The smooth groups play an important role in the newly discovered isomorphism-testing
algorithms of graphs of bounded valence [7]. We plan to follow up the consequences of [7]in
a following work. Notice also that the automorphism group of a connected graph of bounded
valence is srnooth if one of its orbits is small.

4. Conclusion

Causal nets might become a simple and universal concept in the theory of computation: they
provide an easy and natural way to describe the work of different real and imaginary computing
devices since nothing occurs in their definition but the most general physical ideas concerning the
processes going on in the machines. The causal net can bc constructed already on the basis of the
computation to be accotnplished without specifying the type of machine used. Different characteris-
tics of the computing resources correspond to simple geometric characteristics of the causal nets.
Besides their universality, the causal nets have the advantage of a simple definition and give the
possibility to consider each computation as a single finite object independently from the context of
all possible computations of the same agorithm on different inputs. This makes common geometrical
and algebraic methods available for the study of computations. At the same time, the theory of
causal (in contrast to the Boolean) nets is equivalent to the theory of agorithms via the fact that a
ne{ is uniquely rcconstructablc from its input net if its causal structure is known.

8

5. Appendix

Proof of Theorem 2

The computation of the I'PM is aseries of pointer graphs X = X|,..., X, = f(X). Let p/(z,y) be
thelabel of the edge (z,y) in X, (oo if this cdgedoes not exist). We construct a causal net A over the
nodes (t, X) for al x € X, having at timet— | nonoutput outgoing edges. Put 0((¢,z),(t, Y)) = p(y, z)
for all x, y in X; whet-c ¢/ =t +1ort =¢t=0. Connect also, by edges having somenew constant
label, al pairs (s, y), (t,z)w here y is a time { — 2 in the 2-neighborhood of x--or of a node that
created x if X isnew and s =t— 1,¢t— 2. If x has an outgoing output edge, connect (X, t) and
(x, t + 1) with an g-edge. A can be secen to be causa and closed. Its input graph is X. Its output
graph Z contains a path of n-edges for each node of f(X). After the contraction of these paths, we
get Z' = f(X).

It remains to prove (b)=(u). For a closed loca structure @, let us cal its c-domain the set of al
input graphs X frorn which @ computes a nel I’ with output Z satisfying Z’ = /(X), D(Y) <cu(Y),
54(Y)<co(Y). By the assumption of the thcororn, any X is in the domain of some @ with maxirnal
degrees of nodes bounded by some natural number k. Notice also that if X, U X, is in the domain
of @ then so is X,.It follows that a local structure@ exists whose domain isthe set of al nets.

We can therefore suppose that Y(X)is¢nerated from X by @ applying subsequent extensions.
W chave to show that Y can be built up by aPPM (within therequiredtime and storage bounds)
level-by-level. In this construction, we will first use some temporary output labels a when some edge
of the net should occur with output label a.n-edges will be contracted as soon as possible.

Let A; bc the subnet of nodes of height << {in Y . Letusomit from A, all nonoutput nodes
which are dosed: whose ncighborhood is isomorphic to an cletent of Q. (These nodes cannol occur
in the cause of any new node, S0 they arenomoreneeded). The resulting subnet is /3. The program
for the PPM computes By, from B, in a constant number of steps in the following stages.

Stage 1. For al nodes x, the machine looks up all copiesU of the cause of some command Z of
@ containing X. This needs only constantly many steps since the the degree of the nodes of
B, is bounded by k. For each such U and Z, a new auxiliary node v(z,Z,U) is added, with
pointers having the same values as the pointers at x.

Stage 2. Each v(z, Z,U) and v(y,Z,U) is connected by a pointer with label ¢ in both directions
forming thereby c-cliques M(Z,U) for the third stage.

Stage 8. The t-cliques are replaced by single nodes with the corresponding pointers.

Stage 4. I1f a node x is closed do the following. If x is not an output node and has no adjacent
g-edge then delete it. If x is connected to an other closed node by an n-edge then merge
them. Thereafter, if X is an output node, convert al ternporary output edges leaving x to the
corresponding fina ones (which arc also output edges of the PKM we arc just defining). ®

Proof of Thcorcm 3

l. To prove that (a) implies(b) it is enough to show that (a) implies (iii): the rest has been
shown already. Let Y be any command of a causa structure ¢. It can have automorphisms of its
own, which divide the cause of Y into orbits (transitivity classes). Denote by k(4) the inaximum
size of orbits in al commands in the program .

Suppose that (a) holds, i.e. that some causal structure % generates from every input net A a
causal net X with output B = f(A). Let x be a node of B. Let F be the functor naturally provided

9

by thenet. We will show that G(z, A, F') has a k(?)-bounded smoothness.

Let C be any subset of X. Let G(C) be the group of automorphisms of A leaving each node of
C fixed. Let C" bethe set of ancestors of C in A. We will show that b(G(C)/G(C")) < k. We will
use induction over the following partia ordering < of sets of nodes of X. C\< G, if C1 2, and
every clement z of C|ismajorized by an clement y > x of C,. A set C is minimal in this order only
if it contains C". In this case, G(C) is the one-element group. Suppose that the assertion is true for
al C < C.If the cause of every node of Cisin C then C contains C”. Suppose that C contains
anode x for which |z]Z C. Lety &|z] -- C. Put C' = CU{y}.By our inductive assumption,
HG(C)) < k, since C < C. Wcshow that |(/(C):G(C")| <k.G(C") consists of all elements of
G(C) that leave y fixed. To each coset of G(C’) in G(C), adifferent node of |z| will correspond
which is, rnoreover, in the orbit of y. Therefore the number |G(C):G(C”)] of cosets is bounded by the
maximum of the sizes of orbits in |z]- which is bounded by %(%). This completesthe proof that
(&) of t he 1 heorcm implies (b).

2. To prove Lhe positive part, we will describe the way a causal structure generates the causa
net X from any input net A to get output net B = f(A). This description will make it clear how
to formally define the actual causal structure. Besides properties (i)-(iii),the only property of our
functor I we canuse is that it is (partial) recursive. However, the way a recursive function is computed
does not hielp usimmediately to construct the causal net, because it also uses some knowledge about
the individuality of the nodes of the input (we rnay assume that each node is a natura number), i.e.
some numbering of the nodes. The causal nets,on the other hand, work in an invariant way from
the beginning, without knowing about anything but the structural properties of the inpul. Our way
to solve thisdifliculty (certainly not the most effective way) is to generate all possitle numberings of
acertainsort for theinput, use them to compule the function value and thenget rid of Lhem. Wc
need Property (¢ii) for the third step. Also, it will be scenthatk(¢?) l'or thecausal structure can be
made as small as the maximum of b(C/(x, A, 1)) over allinputs A and output nodes x.

Put N = {1,.. ., k}. LetA be a connected net with n clements. Any one-to-one function
1w N, = A will bc called a numbering et our label alphabet © be ordered in some fixed way: © =
{6,...,0,, 00}. We also fix some pairing function (i, j) with inverse {(k}y, (k).,, with the property that
for each k, N2 = {(i,7) : 1< i, i << k}. Weorderthe matrices with clements from {4,, ..., 0,, co}
lexicographically: X = (z;;) <Y = (y;;) if the sequence { zyy,u, : 1 <k <n?}islexicographically
smaller than {yuy,)y, : 1<k <n’}. Each numbering u of an n-node net A orders to A a matrix
0(u(z), u(j)). This is the matrix of the net A,, over N, in which the connection of ¢ and j isthe same
as of u(z) and u(j) in A. The nurnberings for which the corresponding matrix is lexicographically
smallest will be caled frames. The net A* = A,, will bc the same for each frame u. By restricting
ourselves to frames we can reduce the set of numberings that we have to consider. Frames can be
considered as coordinate systems: a transition to a different frame is always accompanied by an
automorphism of A. Let namely o be a permutation of N,, u a frame. uo is a frame again if and
only if the transformation u(z)++u(oi) of A is an automorphisrn. Therefore fixing any frame u will
establishanisomorphism ¢ =wuooo IL- ' betweenthe aulomorphism group (& of A andthe group (;*
of permutations carrying frames into frames (the dual group). Wecansuppose w.Lo.g. that A = A*
(rememberthat on one hand, our nodes are numbers, on theot herhand acausalstruclure does not
use these numbers anyway). In this case, the identical mapping i s a frame and (7 - (7.

Let now A be some net with possibly more thann nodes. An n-frame of Ais a frame for some
connecled subnet C of A withnnodes. Let ube an n-frame. For any k< n, we denote by u|k the
restriction of the function u: N, — A to N,. It is easy to sce that if « is an n-frame then ulk is a k-
frame for each k< n. This isdue to our specia lexicographical ordering of the matrices:if a matrix
is minimal then so arc al its upper left corner submatriccs. We define now a sequence of nets

10

AZG)QCIC__...

representing the k-frames for each k << n. Suppose that C,,__, is defined. To get, C,, we add a new
node u for each n-frame u, together with two new edges: an u-edge from u(n) to @ and a 3-edge
from uln —1to @ where a, 5 are labels not used for other purposes.

Remark 1 Suppose that some encoding (o) of permutations ¢ of N,, by nets is given. An ap-
propriate program will be able Co do the following. Whenever a code F(o) of some permutation
is brought into a certain connection with anode ii of C), representing an n-frame, a new node v
will be generated and connected by somenew edges (labelled by two new symbols used only for
this purpose) Co u and uo.In other words, it is possible to go from @ Co uo effectively. Moreover,
it is possible to do this simultaneoudly for all n-frames u.
The subnet of nodes of B with n or less ancestors will be called the n-th foor B,, of B. The
construction of the output proceeds in many stages. In stage n, the n-th floor will be constructed.
Let X, bethe part of the causal net built up throughthe n-th stage. It will contain the following
parts (besides, possibly, many auxiliary nodes, from which these are distinguishable).
The input A.
The first n floors of the output B.
The net C,,.
Our objective is to find a causal structure constructing X, from X,, ;. The first step is to construct
C,, from C,,_ which does not present any diflicullies. 3, — B,,_ consists of all nodes which have
exactly n ancestors. I"or an n-eclement subset L of A, let B(L)be the set of all nodes of I3 whose
set of ancestors is L. Then B,, — Il,,..- y=U.B(L) and this union is disjoint. If L;5£ 1, then no
edge goes between 3(L) and B(L,), otherwise the upper node on the edge would have inorethan n
ancestors. Therefore for a given n, all B(1L)-s can be generated independently from each other. In
Chis way we reduced the problem Co the case where

4A=n, B=B, DB,— B, =DB(A)

This case is considered further. We adso have dready the structure C,, of frames of A.

The group G' ={o" : 0 € G} issome group of automorphisms of B. Two nodes x and y of
B will be caled equivaent if for sorne o € G!" we have oz = y. The equivalence classes are called
orbits in B. Let U and V be two orbits. We will write U <V if for some x €U,y &€ V we have
T <y

Lemma << is a dtrict partial ordering of the orbits and (hence) the orbits are independent sets of
nodes.

Proof. First we show that U<<V and V < W implies U <W. Let X, w, yi, 2 be clements of
U, Vv, V, W respectively with x < y,y <<z and oy = y;. Then oz <oy =y <z which proves
U <V. Now we show that U <U does not hold for any orbit U. Indeed: if x <oz would hold

then for some ¢ we would have in our acyclic graphacycle x <oz <o?z<...<o'z=x 0

Remark 2 El,, — B,__; consist, of course, of whole orbits.

Now we introduce aninvariant numbering for the orbits of 2. Remember that wc supposed
that A= A*. The nodes of Il are natural numbers therefore the orbils of I3 can be lexicographically
ordered as sets of natural numbers. Let us use this order together with Che partial orderU << V
defined above to generate a complete order B,,y, . . ., B, of orbits of B(A) for which if B,,; < B, jthen
t < J. In constructing B(A), the orbits B,,;. will be constructed one-by-one: wc construct a sequence

of nets
Xn1=XwC: - Qan = Xn

11

where B, C X,,.. Suppose that X, | has already been constructed. Our goal is to construct the
nodes of D =B, and to connect them to the previously constructed nodes of B as required in B,.

Let b be the node of D that is the smallest as a number. Let H be the group of permutations h of
A with h!’b =b. Wccal two frames u and v equivaent if v =uh with some h € 1. The equivalence
classes ul{ thus defined are our candidates for the elements of D: we will construct single nodes uff
to represent them. The node uH will represent the node u/'b: for any previousy constructed element
y of B,the connection of y and uH will be the same as that of y and u/binB.

Now we show how to connect al nodes wh to al previoudy constructed nodes y of B with an
edge expected between y and w!'b. An agent sitting at node 4 has an own view of the net constructed
until now. From his point of view, the node y is rcprescnted by the number (u=")"y.1le connects
it therefore to a new version of 4 in the way it should be connected to b in I3. This is the same
connection as bctween y and u/'b. Thus we created a newnel Y, _; that essentialy looks like X, -1
except that a new copy of every node # has been created (we denote the new copy by the same
“merge” the nodes in {wh:h €} into a single node wH for each class uH.

Now we must use condition (ii). It says that for some number k that is constant for our function
f that we want to compute, the group H has a k-bounded chain

e= GC. CG =H

whcre'Gi,+1:G; < k. Let G),...,G, be the first (in some lexicographical order) among those chains
of I with the smallest possible bound. We will construct a sequence of nets

Ynk—l = Dl g_. - _C_. Dr = Xnk:-

D; will contain, besides D;_| and some auxiliary nodes, a node b(]i for each equivalence class uG;
which has the same connections to nodes in B, -1 as @ inY,,-,. Wc also have an edge with some
special label from each node u@G;_; Co uG;. Suppose thatD); | has aready been constructed.

Two nodes uG; | and vG; | arc considered equivalent if v ==uh for some h € Gj. An equiv-
correspondlothe cosels Of GG, in Gy Let e - hy, . .. Iy besome canonical representatives of these
cosels (eg. let ecachbe tho least in its coset in alexicographical order of the permutations).

To construct D,;, wc build up a scquence

D;_y=D{1) C - C Dyk;)

of nets. D;(j) contains, in addition to D;__;, for each permutation h, (p <j)and each class uG;_;a
new node z which is connected by edges to u(¥;, | and uh,G; ;. These edges are labelled by a symbol
A used only for this purpose. The node = together with the two X-edges will be called a h-connection.
If we have D,(k;) the construction of D, takes only one step: cachsel of nodes {uhG; | :hEG;},

Our only remaining task is therefore to construct 12,(j)fromn),(5 1). This will happen through

a scquence of nets
D(i—) CEC - CEoy = D)

E,, will have, in addition to D;(j — 1), a h-corrncction between cachnodeuG, | and uhj(i,,. To
construct £ from D,(j — 1) wemust first construct for each frame u a new node representing w (we
denote it also by) together with a X-connection from node uG;. . to this new node. Then we make

12

a \- connection from the node @ to uh; using Rernark 1. This connection can be used to generate a
X-connection between uG, | and uh;. It is easy to see that the construction of E,, from E,,, _ will
take only one step for each m. B

A recursive function with no recursive functor

The domain of our function f will be the set of certain O-1 sequences. There is an obvious encoding
of these sequences into nets. We will suppose that e.g. the sequence 01 and 10 are isomorphic (reversal
is an isomorphism). f is defined over al {a,, =10170* :n,k >0} and { b, =1101"0¥ : n, k >0 }.
We will use the /i-operator fromrecursion theory. J for some function g, g(k) = 0 for al k <n
then we put u—,g9(k) = n. Let g(n, k) ho a number-theoretical function for which the predicate
P(n)e=g(n, ueg(n, k) # 0) = Lisundecidable. Put G(n, k) = g(n, j<xg(n, k) 7% 0). Put

__Jool if G(n, k) =0
San) = {0001 otherwise.
c-00101100 if Gln, k) =0
flbar) = oc if G(n, k) =1
co otherwise.

Obviously, the only embeddings in this domain are the unique embeddings of a,x t0 @kt buk tO
bk—+1, @i 10 b,y @nd the combinations of these. The functor I must correspond an embedding from
fla,i) to f(b,) to the last type mentioned. If G(n, k) = O, the Tunctor has two possible values: we
can cibed 001 to the front or the end or c. But if G(n, k) -# O, there is only one embedding: either
to the front or to the back. Notice that a,, can aso bc embedded to a,,;. Thercforc, the functor
property implies that the embedding of f(a,) to f(b,.) must be a continuation of the embedding of
f (a” 1) to f(by1), and f(a,,;) will bc embedded to the front or back of f(b,)depending on P(n),i.c.
in a nonrccursive way.

13

REFERIENCES

[1] A. N. Kolmogorov, V. A. Uspenskii: On the Definition of an Algorithm, Uspehi Mat. Nauk
13(1958) 3 28; AMS Transl. 2nd ser. 29 (1963) 217-245.

(2] N. V. Petri: Personal communication.

[3] A. Schonhage: Storage Modification Machines, SIAM J. on Computing 9/3 (Aug. 1980) 490-
508.

[4] Ja. M. Barzdin’, ,Ja Ja Kalnin’s: A Universal Automaton with Variable Structure, Automatic
Control and Computing Sciences 6(1974/2)

[5) L. Babai, L.Lovasz: Permutation Groups and Almost Regular Graphs, Studia Sci. Math.
Hung. 8 (1973) 141-150.

[6]S. A. Cook: An Observation on Time-Storage Trade-Off, Proc. Fifth Ann. ACM Symp. on
the Theory of Computing, (1973) 29-33.

[7] I:. M. L {ts: somorphism of Graphs of Bounded Valence Can Bc Tested in Polynomial Time,
Proc. of the 21" Symp. on FOG'S, Syracuse 1980.

14

