
Stanford Department of Computer Science
Report Ah STAWCS-80-768

.O&ober 1080

CASUAL NETS
OR

WHAT IS A DETERMINISTIC COMPUTATION

bY

Peter Gacs
University of Rochester

Lemid A. twin
Massachusetts Institute of Technology

Research sponsored by

National Science Foundation
and

Office of Naval Research

DEPARTMENT OF COMPUTER SCIENCE
Stanford University

,.CAUSAL NETS
Or

What Is a~Oeterniinistic Computation?

tl IlL~rR.AcT. We inl rodrIce the concept of causal nets - it can be considered as the most general and
clcmcntary concept of the history of a deterministic computation (sequential or parallel). Causality
and locality are distinguished as the only important propertics of nets representing such records.

-I>in’crent types of coruplexitics of cornpu tations correspond to different gcomctrical charactcrietics of
the corresponding causal nets- which have the advantage of being finite objects. Synchrony becomes
a relntivc notion. Nets can have symrnetrics; therefore it will make sense to ask what can be computed
from arbitrary syrnrnctric inputs. IIcrc, we obtain a complete group-theoretical characterization of
the kind of syrnmctrics that can bc allowed in parallel computations.

0. Jntrodriction

111 this work, we propose a framework unifying various aspects of the theory of complexities of
information processing---also providing a language for some new problems. Presently, many results
below the level of abstraction provided by Dlurn’s computational complexity theory are seemingly
dependent on specific machine inodels (Turing machine, IlAM, iterative network, etc.) or formulated
in such models with some comment on the measure of independence of the model. This leads to
unncccssary specification and to awkward formal constructions unusual in traditional mathematics.

W C take the notion of computation itself as a primitive (causal net1) instead of considering
the work of a device performing this computation. Such an approach is less detailed since the sarne
computation can be implemented in various ways: on different devices, sequentially or parallelly,
varying the orcler of the operations and their distriL)ution over parts of the device. Due t/o its potcntiat
for the avoidance of details, we hope to set up a rnorc unified framework providing simpler dcfinit,ions
and still preserving concreteness and elementarity. A causal net can be interpreted as the time-
space history of all clcmentary operations accomplished in the computing process, with their mutual
dcpcndcncies indicated. As an additional advantage of this approach, a comput,ation on each input
is regarded as a separate finite object independently of the context of a function over an infinite
clomain. In this way, we hope to facilitate the application of geometric and algebraic rncthods in
coniplexity theory, and to preserve the advantages of the theory of Doolean networks.

Unlike other types of nets (e.g. J3oolean networks) the causal net c,onstructs its logical structure
in the process of computation and thus it can be reconstructed from its irlput and the slructure
of the possible neighborhoods in it (causal structure). All operations iiecdcd for this are taken into
account. At a fixed causal structure (playing the role of the program of the algorithm) the input
nets can bc arbitrarily large. At a given size of the input, the size of tlic causal nets is a cornplcxity
of computation in the usual wnse (most similar to the product of time and space) in contrast to the
size of the 13oolean networks which is bounded (by 2”/n). Ttle closc~~css of tlie definition of causal
nets to some physical ideas gives hope to find a connection between the geometrical characteristics
of these nets and the physical characteristics of computations, as e.g. the size of the net and the
entrqm~ increase caused by the computation in question.

The last years witnessed a large number of &hoc models for parallel computation addressing spe-
cial problems like synchrony. Sorne of them, as also the classical I3oolcan networks, are very different
in nature from Turing machine-style sequential models. For sequential machines, Kolmogorov and
Uspenskii [l] rnadc the first significant steps toward a rnodel general enough so that most other
models could be considered as its restricted forms. Their machine has a graph-like storage structure
undergoing gradual local changes in time, by the work of a constant number of active units.

In the next sections, WC introduce the concept of causal nets and compare it with a more tradi-
tional model of computations: Kolmogorov rnachincs in parallel mode. We also consider the problem
of computability when input nets with arbitrary symmetries are allowed. This problem seems to be
new because it does not arise but for sufficiently general concepts of parallel computations like the
ones presented here. We give a complete characterization of the functions computable in these models

if) terms of ttie il~ltoii~o~~l~is~r~ group of tile input. ‘I‘lie result can be corisidered as some “Church
Tliesis” for symnretry-preserving computations and is related to some combinatorial theorems of
13abai and I,ovasz [fi]. I,. A. Ievin originated the concept of causal nets, P.G&s proved the result
on the symnietric inputs.

rN 1’ IVlri irl [2] ** . IS dilT(~wnI TIWIII tk inventor oT IW.ri nets- - which how no csscnl ial rcl;rl ion to our causal nets.

2

Causal nets

1. Basic dcfini tions

A net X is a directed labelled graph, i.e. a matrix 0 : 1x1’ I-+ 0 defining the label 0(x, y) of the
edge (or the symbol 00 of its absence) between any two nodes. A subnet is the restriction of 0 to a
subset of the nodes. The input subnet is the union of all oriented cycles. The cause 1x1 of a node x
is the subncl, of nodes y for which (v, z) is an edge. The im~~diute cxmsequence A--t- of a subnet A i s
the subnet containing A and all nodes the entire cause of which is contained in A.

A net represents the whole space-time history of a computation rather than its state at some tirne
moment. A node of the net corresponds to an “elementary event” in the course of the comprrtation,
the edges to “causal relations” between them. We can (and will) use nlultiple edges - simulated by
adjusting the set 0, and states for the nodes- -simulated by the states of the preceding edges.

Definition 1 A net is called l~:nl if the cause of each node is ulec~Yy connected (i.e. connected as an
undirected graph). A 1 ocal net is called cnz~snl if any isomorpl~ism between its two subncts A and
n.can be uniclucly extended to an isomorphism between A-+- and n-t.

The requirement of uniqueness is not essential and is imposed only for convenience. To check
for causality and locality, only subncts isomorphic to causes of nodes should be considered. This is
easy since all such subnets arc small and connected.

The requirement of causality is the way we represent physical dcterrninisrn: the past uniqllely
determines the future. An other important physical prirlciple, that of the localit,y of interaction
requires that the imniediate cause of an elementary event should consist of cvcnts closely related
to each other. The evidence of this close relation is llsually present in a chain connecting these
events and should bc considered as part of the cause. Thns, nodes of the cause of a node have causal
interconnection themselves and tllcrefore correspond to close but difI’erent moments of time (in Borne
analogy to the formalism in mechanics where the future positions of a system are determined by its
present position and a position in the near past--giving a speed).

The noninput nodes and the strongly connected components (packets) of the input form an
acyclic graph with a natural partial order (on it. The buse subnet consists of the input and all
preceding nodes. The output subnet consists of the noninput nodes adjacent to edges labelled by a
distinguished output subalphabet 00. Any graph can be converted to an input net by adding a loop
to each node. These are the usual bases for nets. Other types of base may be used to sirnulate fancy
things, e.g. the use of “oracles” (input nodes whose cause contains noninput nodes).

The nodes of a net can be objects of any kind. But a noninput node x can be naturally identified
with the function mapping y E 1x1 to 0(x, y). In the case of a single-label alphabet, x can be identified
with 1x1. Then the causality rcquircment for a net X can be written as 1x1 r> s-~-y E 1x1 = x E 1x1.

Programming
A causal net can in general be dcsc*rihc~d much shorl er than by listing the entire matrix 0. It is

alrc,itly uniquely de{ crmined by its b;rse and tire types of ~~c:ighl~orl~oods that can occur in it (unlike
tile 13oolean networks). The &$6&mi V(Z) fo a node x (its celLlel*) is the subnct consisting of z and
all nodes conncctcd to 2. The cazrstrl ru:i&lwrfuxxl C=(x) contains x and Lx]. VM: loccll [C(LU&] s$~~cturt:
(IyToyrurr~) of a net is the set of its [causal] ncigllborhoods or “commands” (up to isomorphism). A net
X is snid to be c~si.sle& with any local [causal] structure containing the one of X.

A (local or causal) program 9 is said to pxemte a net X if “9 is consistent with X but with no

3

cxtcnsion of X having the same irlput. The minimal program gCllCriltiIlg X is the prograIn of X.
Every causal program generates a uniquely determined (possibly infinite) net from any base and any
net is generated from its base by its program. lf the net is finite and the output exists in all connected
components, we say that the output is computed from the base by the program. Thus to implement
computations by these concepts, take a finite causal program !Y and input A, let the program start
generating a causal net from it by subsequent extensions and take the output as the result.

The requirement of consistency with some fixed local structure is a useful way to impose variou8
local restrictions on the net, e.g. houndcdness of the degree of the nodes. The computation by a
causal net is monotone: from a part of the input, always a part of the output will be computed. To
eliminate this effect, one can always confine oneself to functions in whose domain no input net is
a proper part of an other one. Such a domain is, for example, the set of all nets consistent with a
clusect local structure as defined below. Also, in a closed net, we can easily recognize the last moment
when a node was used in generating other nodes.

Definition 2 A net is badly usymmetric (clased] if none of its neighborhoods has a nontrivial isomor-
phisrn to itself [to a proper part of another one]. A closed locally asymmetric net with one
distinguished central node in each (weakly) connected component is called marked.

The nodes of a connected marked net can easily bc numbered in a canonical way: we construct
a spanning tree with the central node as the root, proceeding on the edges of X from the root e.g.
in a breadth-first manner. In the theory of information processing, we practically never encounter
nonrnarkcd nets, and the permission of symmetric nets gives rise to serious special problems (like
the problem to find an algorithm deciding whether two given graphs are isomorphic).

Example: representation of a Turing machine

A Turing machine has a tape-a finite succession of cells numbered by subsequent integers, and
a head observing the cell with number c(t) at time t. A finite set of states is fixed and each cell Ic
as well as the head is at each moment t in one of these states p(t, Ic) and Q. The terminal cells have
the distinguish4 states R and L. The program of the machine is a finite function h ordering certain
actions to pairs of states. Thus, X(qt,p(t, c(t))) d tc ermines Q[+1, p(t -+ 1, c(t)), c(t + 1) - c(t) = -&l
a n d p(t + 1,k) = p(t,k) for all E; # c(t). If the cell c(t + 1) d oes not exist yet, it will be created.
if the head was at one of the ends it also determines whether the cell c(t) has to be removed. The
sequence p(O,lc) is the input and c(0) = 0. Thus always c(t) z t (mod 2), and since the state of a
cell cannot change in steps of different parity, WC ca11 exclude these from consideration. Let us agree
that at the end of the computation, the head assumes a special sl,ate I-, and going from one end of
the tape to the other one, erases it. (This prevents the representing causal net frorn being infinite.)

To represent the comput,ations of this machine by causal nets, let s(t) Ic) denote (p(t, Ic), 2) where
z is (11 if c(t) = k, special symbol otherwise. Let the set V of nodes of the callsal net bc the set of
tinlc\-cell pairs (1, k) of equal parity whore the cell k exists at time t. ‘l’hc ctlgcs r u n bctwccn nodes
(t, k & 1) and (t + 1, k) . ‘l‘tlcir label reflects the states s(t, k) of their adjacent nodes. OI,her edges,
with some constant label, run between (t - 1, k) and (t + I, k). If the ccl1 k dots not exist a1 nloment
t - 1, this edge connects (t -+ 1, k) to the terminal cell or forms a loop when t -/- 1 is 0 or L. The
output subalphabet contains the labels with states s(t, k) having zzz = r.

It can be easily checked that the above defined net is causal and local.

4

2. Complexity of computations

Time and space
One of the differences between the more traditional models and the computations as modellcd

by the causal nets is that on the latter the elementary operations are not necessarily synchmnizd.
Only the relative order of those events is determined which are in a causal relation to each other.
What results is a certain vagueness in the definition of the storage requirement of a causal net.

Let us define the hei@ d(z) of a 72od e x of a causal net as the maximurn length of a decreasing
sequence of nodes starting with x. The height of a whole connected net X is D(X) = max,El,d(z).
The height can be considered as the time required for the computation. Let Q(x) be a condone
mapping of 1x1 to the axis of time. (An example is d(X).)

Definition 3 T h e storage size R,(t, X) ta moment t is the nurnber of edges (z, y) with Q(x) < t and
Q(y) 2 t. Denote s+(X) = maxi s+(t, X). F or an unconnected net, height and storage are defined
cornponcntwise, as a family of numbers indexed by the connected components of X.

It secrns to be unnatural to clcfine the storage used at one moment in a way indepcndcnt from
the time function (D(Z); apparently by the same considerations that in the theory of relativity show
that there is 110 invariant way to define the notion of two events occurring at the same time. (Note
lhat any imaginable relativistic computer is representable by a causal net.)

Minimizing the storage size over all possible monotone mappings we obtain the value ~0 =
min,l,s+(X) that is similar to the number of stones needed to “pebble” the net (see [Cl). IIowcver, N
is not a realistic measure of storage requirement. It seems to be reasonable to require that a tirning
be realized by the height function of some net “irnplementing” X in some formal sense. And the
minimizing timing rnay be hard to compute and not implementable.

Time-space trade-off
Machines that actually build up a causal net of size n from its program and input cannot require

less storage than n. The situation changes if we are content with a machine that does not necessarily
store a representation of the net, only gives O(i, j) for any two nodes (their numbers) i, j on request.
(The machine wlulcly represents the net.) This rnay require only storage O(log n) instead of n (that
never requires rnorc is another formulation of the hypothesis of logarithmic time-space tradeoR). The
next theorem was originally proved by N. V. Petri [Z] in terms of some concrete types of machines,
but causal nets are the rnost natural setting for formulating it. It says that the storage size for weak
representation can be minimized (no speedups).

Theorem 1 For any causal structure 9, there is a Turing machine T with the following property.
For each input net X, using a weak rcf-‘rescntation of X (by an oracle), it weakly represents a
causal net Y generated by “9 from X. Any other Turing machine M doing this (even only) for X
will use storage no less than by a constant C,~I times the storage used by 7’.

Skcl.c/l of proof. 1‘110 optilnal Turing rr~acl~ine 1’ works as follows. It SC~S forth i\ certain amount
of storage Y, then considers all possible other Turing machines A4 with a description shorter than
H. fl.llnning over i1II I\.-tIIptCH of rrrrrnbcr,r ~CSH tll;lfl 2”, whcrc k is the III;~xinlunl Hizc of the clcrncnt~
o f the c;~~il structure !P, 7’ is ill>Ie to dccidc whc8Chcr h! while work ing wi th in HtOrilgC H wcnkly
rcprcscnts a rlct gCIlC~iltC~l from X by 9. If it docN not find any M doing that, it incrc;lNcs N. When
it finally finds a fitting M, it uses M for nnswcring the qucstiorrs it W~H asked.

tcrizntion of I’ointcr Machine conlplexity

Variolls models of computation wit11 only one finitary operation at each st,ep can bc considcrcd
as essentially a special case of Kolmogorov’s graph machine 111. This differs from the “storage
modification machine” proposed later by Schiinhage [3] and called “Pointer Machine” by Knuth only
in that, Schiinhage works with directed, Kolmogorov and Uspenskii with undirected graphs (forcing
thereby both bounded in- and outdegree). The storage structure, called pointer graph of the Pointer
Machine is a directed labelled graph with constant outdegree.

The program prescribes how the central node transforms its ‘L-neighborhood step-by-step, modify-
ing thereby gradually the whole graph. The initial graph is the input, the graph at halting is the
output. They are labclled by the disjoint alphabets 01, 00.

I3arzdin’ and Kalnin’s generalized the model of Kolmogorov and Schijnhagc by introducing
parallelism. A program for the Parallel Pointer Machine (Pl’hl) will be similar to the program of a
PM l)ut its meaning is different: the local transformations must be simultaneously carried out by all
nodes. A node z changes only its outgoing edges, or disappears if t,hey all loop. A common new node
may be created by a maximal cliclue formed by edges with a distinguished label 6. Tn dct*ermining
the next .action, edges with output labels do not count. The computation is finished when all edges
have output labels. A PPM is a yxrrnUc1 KoCmp(w machine (PKM) if its pointer graphs are l,&irected
at each step (i.e. their matrix is symmetric) and cacll node Ilas a loop with a special constant label.

The set of nonempty undirected pointer graphs is denoted by T(O).

The functions defined on undirected connected marked input graphs computable by the PM and
PPM are exactly the recursive functions. With rcspcct to computing time, the PPM is a powerful
generalization of the PM and is able to solve e.g. any NP problem in polynomial time (but possibly
with exponential space). This model can claim to be able to cIIicicnt1y simulate any other model of
parallel computation.

A function f computable by a PPM-just as the complexities in Definition 3--is cmnpvnentwke,
i.e. it commutes with d&c~nected union: f(X U Y) = f(X) U f(Y) if 1x1 n IYI = 8. We associate a
pointer graph Z’ with a (possibly acyclic) net 2 by identifying all nodes connect,cd by edges with a

special label r,?.

Note that the above version of the PPM is more gcncral than usual in order to extend Theorem
2 to symmetric inputs. For usual computations, the inputs should bc assumed marked.

Theorem 2 For componcntwisc functions f, u, v over T(O,) t/lcsc properties arc equivalent.

(a) A I’KM exists computing f(X) for each X in time O(zl(X)) and storage O(v(X)).

(b) For each X a closed causal net Y exists with bounded dcgrces of nodes, with input X, output
2 with 2’ = f(X) , D(Y) = O(u(X)), Q(Y) == O(v(X)).

The proof will bc given in the Appendix.

Op(hn problem Find out which traditional complexity corresponds to the size of causal nets. It is
k n o w n that the size o f thch srrlnllest causal net COIllJJll~~ir~g a furlctiort i s htwcerl the lirnc rccpired

on a I’RI and the time required on an “address-maclGnc” (a PM with a tree-like storage structure).
The second complexity may exceed the first one only by a logarithmic factor.

3. Symmetric inputs

In this section,we will characterize the functions computable by causal nets. Of course, every
such function is partial recursive. Ejut it turns out that partial recursive functions that are defined
on certain very symmetric inputs are not computable in models preserving this syrnrnctry.

Let us try, e.g., to compute n (mod 2) from a “circle X of length n”: some net with the
automorphism group ZTI (the cyclic group of order n). We ask for a program generating a one-edge
output z from X with state equal to n (mod 2). Thinking in terms of parallel pointer machines, we can
imagine the input as a circular array of identical autornata--capable of unlirnited local organization
and creation-trying to rnergc into a single node. There is no leader among them to organize the
process. Since all have similar initial neighborhood, the first merge can divide them only into small
groups of identical size--which is irnpossible if their number is prime. Indeed, it turns out that the
existence of such a program implies that TZ cannot Iwe any lurk Finle c~iwisms. (Such numbers are
sornctimcs called “smooth”, in reference to smooth sand containing only fine grains.)

The functions compulnble on the Pointer Machine arc exactly the partial recursive functions.
IIowtiver, the input to a PM must always be a ~ulrh& pointer graph. Tl1corcrn 2 sets up a correspon-
dence between functions computable by causal nets and those comput;lblc by the I’ilrallel Pointer
hlachine. IIence if wc restrict our input nets to be ~~~lccd, the functions computable l1.y causal nets
are just the partial recursive functions. On the otlrcr hand, l’~nctions that are not comp~~tablc by
causal nets will therefore be not computable by the Parallel Pointer Maclrinc (a version of Thcorern
2 holds also without the restriction that the PPM be a Kolmogorov machine). We now proceed to
forrnulatc the ncccssary and sufficient conditions for a recursive function without the markcdness
requirelnent to be computable by a causal net.

A partial componcntwise function f frorn nets with a loop-edge at each node to output nets
with uniformly bounded indegrce will be called stanclartt.

Let 9 be a causal structure generating causal nets X0, Xl with outputs &,E31 frorn input nets
At), Al. Suppose further that there exists an ernbcdding L of AtI into Al. By causality, this embedding
will generate an embedding of the whole causal net X0 into X1 and thereby an embedding iP of I$) into
Rl. Notice that the image of 00 will be an iif& C of I31 (y < 5 E ICI irnplies y E ICI). For different
causal structures 9 computing f this correspondence of ernbeddings on the outputs to cmbcddings
on the inputs can be different, but its existence is a serious restriction irnplying arnong others the
wun~&~GYty of f. IIcnce the first condition on the standard partial function f is the following. Let
id,.\,/) be the identical embedding of A C 13 into B.

(i) There exists a recursive correspondence F’ which orders an isomorphism L”‘ of f(Ao) onto an ’
ideal of f(A,) t o each crnbedding L : A,, I-+ Al. F is a finch, i.e. (4) o ~1)“’ = J~;‘o L;‘. Let A,,, Al
bc subnets of net C, AZ = A” n A,, I3j = id:;],,:(f(Aj)). Then DJ = 41 n&.

This intersection property of the functor F reflects the fact that the net E$ computed by a
program 9 from the intersection A, of two nets A,,, Al is the intersection of the nets &,I?, computed
from AtI and Al respectively. Indeed, EJJ C &nR, is cvidcnt from monotonicity. But the ancestors in
the input of each node of QJnZ?, are all hot h in A,, and AI, hence also in A;. This proves 11~ = &nEIl.

The above property implies th;it for a sribnet 11 of an output net f(A) we can find the smallest
part of A still producing /I. For ;III~ subnet A,, of A define /(/IO; A) = id’i”,,,(j(Ao)); this is the subnet

of f(A) computed from the subnet A,, of A. The set of uncestms f--‘(J?;A) of 1’3 is the intersection of
all subsets Au of A wit11 f(&;A) z> II. (Notice tllat this notion is dcfincd only by the functor F,
without causal nets.) It fo’llows from (i) tlhat f(f - ‘(H; A);A) 2 I?. In n ciillsal net X, of course, a
node a of the input A is the ancestor of a subset C G 1x1 if 0 (y for some y E C. Notice that
since the image of L”’ is always an idcal, u < b implies J --‘({u};A) C f’-m’({b};A).

7

‘(ii) For each input A, the set of ancestors of each node of f(R) is connected.

The most interesting property F must have is connected with possible symmetries of the inputs.
The functor h H h” is a homomorphism from the group of automorphisms of A to that of f(A). For
any node x of f(A), 1 e us denote by G(x, A, F) the factorgroup of the group of all automorphismst
h that leave x invariant (i.e. for which X”‘(x) = x) by the norrnal subgroup of the automorphisms
that fix all elcmcnts of f-‘({x};A). (Th’IS c ivisor is the unity if x depends on the whole input.)1

For any finite group G, let n(G) be th e minirnum of the indices of proper subgroups in G, b(G)
the rnaximum of n(N) over all subgroups of G. b(G) is sometimes called the smrrotizr2ess of G in analogy
to the abovementioned notion of smoothness of natural numbers.

(iii) b(G(x,A, F)) is bounded for all inputs A.

Theorem 3 For a stancfard partial function f, the following two conditions are equivalent.

[a) For ,111 nets A in the domain olJ,there arc finite causal nets wit11 input A, output f(A), and
with bounded indegrees of noninput nodes.

(b) j satisfies (i-iii).

The proof will be given in the Appendix.

Remarks 1. The recursiveness of the functor in (i) cannot be replaced by the weaker requirement
of the recursiveness of the function f. In the Appendix, we give an example of a function f with
a nonrecursive functor satisfying the rest of (i-iii) which has no recursive functor (even without
the rest of (i-iii)).

2. Of most interest are functions in whose domain no net is a proper part of an other one, and
which are invariant, i.e. their functor F maps any automorphism of the input into the identity
on the output. In this case, (iii) requires the automorphism groups of inputs to be uniformly
smooth.

3. The smooth groups play an important role in the newly discovered isomorphism-testing
algorithms of graphs of bounded valence [7]. We plan to follow up the consequences of [7] in
a following work. Notice also that the automorphism group of a connected graph of bounded
valence is srnooth if one of its orbits is small.

4. Conclusion

Causal nets might become a simple and universal concept in the theory of computation: they
provide an easy and natural way to describe the work of different real and imaginary computing
devices since nothing occurs in their definition but the most general physical ideas concerning the
processes going on in the machines. The causal net can bc constructed already on the basis of the
computation to be accoinplishcd without specifying the type of machine used. Different characteris-
tics of tlic computing resources correspond to simple geometric characteristics of the causal nets.
Bcsidcs their universality, the causal nets have the advantage of a siniple definition aiid give the
possibility to consider each computation as a single finite object independently from the context of
all possible computations of the same algorithm on different inputs. This makes common gcomctrical
and algebraic methods available for the study of computations. At the same time, the theory of
causal (in contrast to the Boolean) nets is equivalent to the theory of algorithms via the fact that a
net is uniquely rcconstructablc from its input net if its causal structure is known.

8

5. Appendix

Proof of Theorem 2
‘l’hc computation of the I’PM is a series of pointer graphs X = X1, . . . , Xii = f(X). Let p/(x, 1~) be

I.he Iabcl of the edge (2, y> in X, (00 if this edge does not exist). We construct a causal net A over tile
nodes (t, x) for all x E Xl having at time t-- I nonoutput outgoing edges. Put U((t, x)) (t’, y)) = pl[y, x)
for all x, ?I in X, whet-c t’ = t + 1 or t’ = t = 0. Connect also, by edges having sornc new constant
label, all pairs (s, y), (t, *)5 w Ieret y is at time t - 2 in the 2-neighborhood of x--or of a node that
created x if x is new and s = t - 1, t - 2. If x has an outgoing output edge, connect (x, t) and
(x, t + 1) with an q-edge. A can be seen to be causal and closed. Its input graph is X. Its output
graph 2 contains a path of ?I-edges for each node of f(X). After the contraction of these paths, we
get 2’ = f(X).

It remains to prove (b)=(u). F or a closed local structure Q, let us call its c-domain tile set of all
input graphs X frorn which Q computes a nel I’ wit,h output 2 satisfying Z’ = /(A’), D(Y) (cu(Y),
s,l(Y) (cu(Y). By the assumption of the thcororn, any X is in the domain of some Q with maxirnal
ticgre’es of nodes bounded by some natllral number k. Notice also that if X1 U X;L is in the domain
of Q then so is ?(I. IC follows Ihat a local slructurc (2 exists wtlosc doinaill is the set of all ~lets.

\Vc can therefore suppose 11~1, Y(X) *- gIS encrated from X by c’) applying sribscc~r~e~~t ctxtcnsions.
W C have to show that Y can bc built up I)y a 1’l’M (within tt,c: rccluircd tirnc and storngc bounds)
Icvel-by-level. 111 this constrliction, we will first use some I,onlporary output labels 0 when some edge
of the net should occur with or~l.p~rl label (1. ?I-cdg:(hs will be contracted as soon as possible.

Let A, bc the s~bnet of nodes of hctight < 1 i n Y . llct IIS omit, frolrr A, all nonoutput nodes_.-
which are &scd: whose ncigtll)orhood is isomorphic to an clcnI(lnC of 0. (‘l’l~csc rlodcts cannot occur
in the cause of any new node, so they arc ~10 more rlecded). The resulting subnet is 111. The program
for the I’I’M computes B1 tl from 13l in a constant number of steps in I,he following stages.

star 1. For all nodes x, the machine looks up all copies U of the cause of some command 2 of
& containing x. This needs only constantly many steps since the the degree of the nodes of
Bl is bounded by k. For each such U and 2, a new auxiliary node 2)(x,2, U) is added, with
pointers having the same values as the pointers at x.

star 2. Each 2/(x, Z, U) and v(y,Z, U) is connected by a pointer with label c in both directions
forming thereby c-cliques M(Z, U) for the third stage.

S’hge 3. The t-cliques are replaced by single nodes with the corresponding pointers.
,S’tu~ 4. If a node x is closed do the following. If x is not an output node and has no adjacent

q-edge then dcletc it. If x is connected to an other closed node by an q-edge then merge
them. Thereafter, if x is an output nodc, convert all ternporary output edges leaving x to the
corresponding final ones (which arc also orllput edges of the I’KM we arc just defining). II

Proof of Thcorcm 3
1. To prove that (a) irnl)licts (I)) it is c~~ough to show tJhat (a) implies (iii): the rest has been

shown already. Let Y be any command of a causal structure 4P. It can have automorphisms of its
OWJ~, which divide the cause of Y into orbits (transitivity classes). Denote by k(4) the lnaxirnurn
size of orbits in all commands in the program 9.

Suppose that (a) holds, i.e. that some causal structure 9 generates from every input net A a
causal net X with output B = f(A). Let x be a node of B. Let F be the functor naturally provided

9

by ihe wt. We will show that G(z, A,F) has a Ic(kP)-bounded smoothness. .

Let C be arly subset of X. Lel G(C) be the group of automorphisms of A leaving each node of
C fixed. Let Co be the set of ancestors of C in A. We will show that 6(G(C)/G(C”)) < k. We will
use incluction over the following partial ordering 4 of sets of nodes of X. Cl -< Cl if Cl 2 Cs and
every clement z of Cl is rnajorized by a11 clement y > x of Cl. A set C is minimal in this order only-
if it contains C”. ln this case, G(C) is the one-element group. Suppose that the assertion is true for
all C’ 4 C. If the cause of every node of C is in C then C contains C”. Slippose that C contains
a rrodc x for which \xJ g C. Let y E 1.~1 -- C. Put C’ = C U {v}. 13-y our inductive assumption,
i,(G(C’)) < k, since C’ + C. W C show that IG(C):G(C’)l < Ic. G(C) consists of all elements of
G(C) tha t lcave y fixed. To eacll coset of G(i7’) in G(C), a difrerent r~ode of [:c 1 will correspond
which is, rnoreover, in the orbit of 2~. Therefore tllc number (G(C):G(C’)I of cosets is bounded by the
rnaxirnurn of the sizes of orbits in LxJ - which is bounded by lc(4). Tllis completes the proof that
(a) of 1 he 1 heorcm implies (b).

2. To prove lhe positive part, we will describe the way a causal structure generates the causal
net X from any input net d to get output net I3 = f(A). Tl lis description will make it clear how
to formally define the actual causal structure. Bcsidcs properties (i)-(iii), the only property of our
funct,or’E’ we car1 use is that it, is (partial) recursive. IIowever, the way a recursive function is computed
dots not help us immediately to construct the causal net, because it also uses some knowledge about
the individuality of the nodes of the input (we rnay assume that each r~otle is a natural number), i.e.
some nunlbcring of the r~odcs. The causal Ilets, or1 the other harltl, work in an invariant way from
the beginning, without knowirlg about anything but the structural properties of the inpul. Our way
to solve 1his clifTic:ulty (Wrli~itlly not the most f>ffccbive way) is to generate clu tx&%Uc numberings of
;t ccrtairl sorl, for the inplit, use them to corrrp~~l~c the function value antI then g(lt rid of Illem. WC

rlecd l’ropcrl,y (5;) for 1.11~ 1 liirtl stop. Also, it will be scer~ that k(‘:P) I‘or I,l~c c;i~is;il structure can be
rnatle as sr~~;lll as the max illrrlnl of b(l;(:c, A, It’)) over all inptlts A arid output nodes x.

- Put A$. =: (1,. . . , k}. I,et A be a connected net with n elcrncr~ts. Any one-to-one function
u : N,, +--t A will bc cnllcd a rmmfwri~~g. lJct our label all)llabet 0 be ordered in some fixed way: 0 =

(0 ’ . * ’ O,., oo}. We also fix some I)airing function (i, j) with invcrsc (Ic),, (k).
fo:‘each ic’

1, with the property that
Nk‘I = { (i,j) : 1 < i, j < k}. W c order the matrices with clcrnents from (01, . . . , O,., co}

Icxicograpl~ically: X = (xiJ) < Y z(y;;) if lhc sequence {x(k),(k), : 1 < k (n* } is lcxicograpl~ically
smaller than { qk),(l~)~ : 1 < k < n* }. Each numbering u of an n-node net A orders to A a matrix
O(u(i), u(j)). Tl lis is the matrix of the net A,, over Njl in which the connection of i and j is the same
as of u(i) and u(j) in A. The nurnberings for which the corresponding matrix is lexicographically
smallest will be called jkz7n.a. The net A* = A,, will bc the same for each frame U. By restricting
ourselves to frames we can reduce the set of numberings that we have to consider. Frames can be
considered as coordinate systems: a transition to a different frame is always accompanied by an
automorphism of A. Let namely u be a permutation of NI1, u a frame. u.u is a frame again if and
only if the transformation IL(~) t--f IL(&) of A is an automorphisrn. Thercforc fixing any frame u will
c&Alish ark isomorphisrn q5 = ?~oao IL- ’ bclwect~ tllc autornorpl~istrl grollp e of A ar~l 1,110 group C*

of permutations carrying frames into frames (the tlu;ll group). We c;ir~ sr~pposc w.1.o.g. that, A y-= A’
(rcrncrnber that or1 Or10 h a n d , o u r rrodes arc n1lr11l)(\rs, o n tllc 01 her Ii;lrlfl, it (:i!llS;ll sl,rricl Iirc tlocs not
iisc tliesc: riuml~rs ;irlyw;ly). III f.llis c;m, I.llP itl(*rltic;11 Illil[)t)illg i s il 1’1;11111: ;Ilttl t: -.. (;“.

I,et IIOW A be SONIC net with possibly more tharl n nodes. An rL-fran1e of A is a fr;llrlc for SOIIIC

cor~nccl~ed sUt>Jlet C of A wit,11 n riotlcs. Let u bc ii11 n-frame. For any k < n, we denote by uIIC the
restriction of tile function u : N,, I--+ A to N,.. It is easy to see that if u is an ?t-frame then ilk is a k-
frame for each /? < n. This is due to our special lexicogrnphical ordering of the nlatrices: if a matrix
is minimal then so arc all its upper left corner submatriccs. We define now a sequence of nets

10

A = c; C Cl C . . .- -

representing the k-frames for each k < n. Suppose that C’+-I is defined. To get, C,L we add a new
node 2~ for each n-frame u, together with two new edges: an u-edge from u(n) to u and a P-edge---. _
from u(n - 1 to u where CL, /3 are labels not used for other purposes.

ltcmark 1 Suppose that some encoding E(a) of permutations u of N,l by nets is given. An ap-
propriale program will be able Co do the following. Whenever a code E(a) of some permutation
is brought, into a certain corlncction wilh a node ii of C,, representing an n-frame, a new node v
will be gcrlcraCed and cor~necled by some new edges (labclled by two new symbols used only for

_.-- - -ohis purpose) Co u and uu. In other words, iC is possible to go from 2~ Co uu effectively. Moreover,
it is possible to do this simultaneously for all n-frames u.

The subnet of nodes of B with n or less ancestors will be called the n-/h $mr El,, of B. T h e
construction of the output proceeds in many stages. In stage n, the n-th floor will be constructed.

Let lY,,l be the part of the causal net built up througtl the n-th stage. IC will conCain the following
parts (besides, possibly, many auxiliary nodes, from which these are distinguishable).

The input A .
The first n floors of the output B.
The net Cn.

Our objective is to find a causal structure consCructing X,1 from X,L.--~. The first sLcp is to construct
C?, from C,+ 1 whic,h does not present any diflicullics. 13,) - fit,- 1 corrsists of all nodes wlIich have
exactly n ancestors. For an n-elcrnent subset, L of A, IeC II(L) bc the SCC of alI ~otlcs of II whose
scl of ancmlors is L. ‘I’hcn R,, - II,,..- 1 =: U/,11(I,) a n d this union is clisjoinl. If 1,1 # 1,~ lhcn n o
edge goes bcCwcen II and U(I,), otherwise I,he upper node on I,hc edge would have Inore tlran n
illlCCS(,OrS. ‘I‘Ilcrcfore for a given n, all IZ(I,)- s can bc gcncrat,ctd irlclepctl~lcrltly frorrh CW~II oChcr. Irl
Chis way we reduced the problem Co the case whcrc

This case is considered further. We also have already the structure C,& of frames of A.
The group G”‘ = { uE’ : u E G} is some group of automorphisms of B. Two nodes x and 2~ of

L3 will be called equivalent if for sorne u E Grs7 we have ux = y. The equivalence classes are called
o&&s in B. Let U and V be two orbits. We will write U < V if for some x E U, y E V we h a v e
x < y.

Lemma (is a strict partial ordering of the orbits and (hence) the orbits are indcyerldent sets of
nodes.

Proof. First we show that U < V and V < W implies U < W. Let x, ‘yo, ~1, z be elements of
U, V, V, W respectively with x < gyp, y1 < z and uyo = ~1. Then ux < uyo = yl < z which proves
U < V. Now we show that U < U does not hold for any orbit U. Indeed: if x < ux would hold
then for some i we would have in our acyclic grilptl a cycle x < ux < 8’2 < . . . < uix = x. q

Itcrnark 2 El,, - .&--I comist, of course, of whole orbits.
Now we introduce ali irlv;lriarll, nurnl)c~rir~g for Lhe orbiks of I{. 11emember I,tlitt W C slll>i>o!jed

ChaC A -_- A*. ‘l’he nodes of II ill‘C n~tlli*ill 111Ir11bcrs Clicrcfore Clle orbiCs of U (‘a11 be Iexicc,grill)~lic:~tl~y
ordered as sets of natural numbers. Let us use this order togelhcr with Che partial order U < V
defined above to generate a conlplele order B,,l, . . . , &, of orbits of D(A) for which if UTLi < l3,bj then
i < j. In construcling B(A), tt 1e orbits B,lk will be constructed one-by-one: WC construct a sequence
of nets

X,& = X,&() c * * * c xy = xn- -

11

where R,,k C X))I;.- Suppose that XTlk-i has already been constructed. Our goal is to construct the
nodes of D = B,,k and to connect them to the previously constructed nodes of B as required in B,L.

Let 6 be the node of D that is the smallest as a number. Let H be the group of permutations 1~ of
A with h”‘b = b. WC call two frames u and 2, equivalent if 2, = uh with some h E 11. The equivalence
classes u,lriT thus defined are our candidates for the elements of D: we will construct single nodes ull
to represent them. The node UH will represent the node ur”b: for any previously constructed element
g of B,the connection of y and uH will be the same as that of y and u”‘b in B .

Now we show how to connect all nodes U/L to all previously constructed nodes y of B with an
cdgc cxpccted between y and u”‘b. An agent sitting at node u has an OWJ~ view of the net constructed
until now. From his point of view, the node y is rcprcscntcd by the riumber (u-‘)“‘y. Ile connects
it tliercforc to a new version of 1~ in the way it should be corinoctcd to b in 13. This is the same
connection as bctwccn y and u”‘b. Thus we created a JICW net Y,,k -1 that essentially looks like X,,k -1
except that a riew copy of every node ii has been created (we denote Chc new copy by the same
symbol) with the conncctiorrs to the previous parts of the net that ulf should have It remains to--- -.__
“merge” the nodes in { & : h E If } into a single node ~13 for each class uH.

Now we must use condition fi;). It says that for sornc number k that is constant for our function
J that we want to compute, the group r1 has a k-bounded chain

e = G, C . + - C G,. = H

where (Gi+,:Gil < k. Let Gi,. . . , G, be the first (in some lexicographical order) among those chains
of ll with the sn~allcst possible bound. We will construct a sequence of nets

YpLk-J = D, C ’ . - C D, = Xnk.- -

- 7Vi will contain, besides Di-- i and some auxiliary nodes, a node UGi for each equivalence class UGi
which has the same connections to nodes in D,,k --I as u in Y?,,,,+t. WC also have an edge with some-_ - --..- - - -
&cial label from each ~~oclc uGj-.i Co ‘ILC;~. Suppose Chat 11; i has already been constructed..- - -- - ^___ _

‘I’wo no(les TL(;Ij -1 irrid UC, i arc corisitlcred e(luiValent if v =: I& for some h E Gi. AI) equiv-
alcric:e class will be of tlic form { &.AG1l - i : 11 E (:, }. ‘1’1 IUS tlif.! elements in ill1 C(luiVi~lCllCe f:liiSS wil l
corresl~ond t0 tllC COS(!tS Of (:, _ i in Gi. I,Ct C -- 1ti, . . . , Ilk, IN! sonic cilllOrli<:al representatives of these
coscts (e.g. let CilC1l bc tho least in its covet in il Icxicographicnl order of the permutations).

To construct I>,, WC build up a sequence

Di-1 = D,(l) C * * * G Di(ki)

of nets. Di(j) contains, in addition to Dim1, for each permutation h/, (p (j) and each class uG;-i a-. - --____
new node z which is connected by edges to uG1--i and ZlILr>Gi--i. These edges are labelled by a symbol
h used orily for this purpose. The node z together with the two X-edges will be called a h-connection.
If we have D,(k,) the construction of DL takes only one step: each set of nodes {xi-: : tb E G:i },
together with their causes and the nodes added to get D,(ki) will form the cause of OJIC JICW node,-. -..--
uG,. In this same step, this new node can hc n~atfc to have the same connections to B,,A. .-.I as uG- 1.

Our only rorri;iiiiing task is therefore to constrrrct /J,(j) frorri I,,(j I). ‘l’liis w i l l liai)1)eti tl~rorrgh
a scc~~rcr~ce of nets

ET,& will have, in addition to D,(j - I), a h - c o r r n c c t i o n bctwcen CilCIl HOdC td;1, - 1 i\Ilti ?All,C:,,, TO

construct Ei from Z>,(j - 1) wc ~riust first construct for eacli frame u a new node representing 21 (we- - - -
dciiote it also by U) together with a X-connection from node uGi_ ..I to this JICW node. Then WC make

12

a- h- connection from the node u to &j using Rernark 1. This connection can bc used to generate a___--
X-connection between UC,-* and lhj. It is easy to see that the construction of E,,, from E,+-l will
take only one step for each m. E

A recursive function with no recursive functor
The domain of our function f will be the set of certain O-l sequences. There is an obvious encoding

of these sccluences into nets. We will suppose that e.g. the sequence 01 and 10 are isomorphic (reversal
is an isornorphism). f is defined over all { CX,~~ = 1OJ”O’” : n, Ic > 0 } and (b,Lh: = L lOl”O’ : n, k > 0 }.
We will use the /i-operator from recursion theory. Jf for some function 9, g(k) = 0 for ail k < n
t h e n WC: put pk.+,g(k) = n. Let g(n, k) ho a nurnbcr-thcorctical function for which the prctlicate

W+=dn, m7(74 k) # 0) = I is undccidablc. Put G(n, k) = g(n,pjckg(n, k) # 0). P u t

if C(74 k) = 0
otherwise.

c -00101100 if G[n, k) = 0
f(h) = oc if Gtn, k) = 1

co otherwise.

Obviously, the only embeddings in this domain are the unique embeddings of ajLk to ullk+l, btLk to
bIlk+l, u,~~ to b,lk and the combinations of these. The functor F must correspond an embedding from
f(a,,k) to f(b,J to the last type mentioned. If G(n, k) = 0, the Tunctor has two possible values: we
can cmbcd 001 to the front or the end or c. J3ut if G(n, k) -# 0, there is only one embedding: either

.to the front or to the back. Notice that a,‘~ can also bc embedded to a7,h. Thcrcforc, the functor
property implies tllat. the embedding of f(~.) to f(b,,k) must be a continuation of the cmbcclding of

f (a,, 1) to fvh I), and /(a,,,) will bc ernbcddcd to the front or back of /(b,,l) clcpcnding on F’(n), ix.
in a nonrccursive way.

13

111 A. N. Kolrnogorov, V. A. Uspenskii: On the Definition of an Algorithm, Uspehi Mat. Nauk
13(1958) 3 28; AMS Traml. 2nd ser. 29 (1963) 217-245.

(21 N. V. Petri: Personal communication.
[3] A. Schijnhagc: Storage Modification Machines, SIAM J. on Computing 9/3 (Aug. 1980) 490-

508.
[4] Ja. M. 13arzdin’, ,Ja. Ja. Kalnin’s: A Universal Automaton with Variable Structure, Automatic

(:ontrol anti Computing Sciences G (1974/2)
15) I,. 13abai, 1,. Lovrisz: Permutation Groups and Almost Regular Graphs, Studia Sci. Math.

Ilrmg. 8 (1973) 14L150.
[6] S. A. Cook: An Observation on Time-Storage Trade-Off, Proc. Fifth Ann. AC&f Symp. on

111~ Theory of CornpIrlirq, (1973) 29-33.
171 I:. M. 1, k 7. 1u s. sonrorphisrn of Graphs of 13ounded Valence Can Bc Tested in Polynomial Time,

I’roc. of t/1c 21 “’ Syrnp. on FOG’S, Syracuse 1980.

14

