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ABSTRACT .

Certain features of programming languages, such as data structure opera-
tions and procedure call mechanisms, have been found to resist formalization by
classical techniques. An alternate approach is presented, based on a “situational
calculus,” which makes explicit reference to the states of a computation. For each
state, a distinction is, drawn between an expression, its value, and the location of
the value.

Within this conceptual framework, the features of a programming language
can be described axiomatically. Programs in the language can then be synthesized,

executed, verified, or transformed by *performing deductions in this axiomatic
system. Properties of entire classes of programs, and of programming languages,
can also be expressed and proved in this way. The approach is amenable to
machine implementation.

In a situational-calculus formalism it is possible to model precisely many
“problematic” features of programming languages, including operations on such
data structures as arrays, pointers, lists, and records, and such procedure call
mechanisms as call-by-reference, call-by-value, and call-by-name. No particular
obstacle is presented by aliasing between variables, by declarations, or by recursive
procedures.

The paper is divided into three parts, focusing respectively on the assignment
statement, on data structure operations, and on procedure call mechanisms. In
this first part, we introduce the conceptual framework to be applied throughout
and present the axiomatic definition of the assignment statement. If suitable
restrictions on the programming language are imposed, the well-known Hoare
assignment axiom can then be proved as a theorem. However, our definition can
also describe the assignment statement of unrestricted programming languages,
for which the Hoare axiom does not hold.
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1. INTRODUCTION .

The most widely accepted approach to program verification has been the one
described in Floyd’s [1967] paper and formalized by Hoare [1969]. Hoare’s  for-
malization requires that each construct of the programming language be described
by an axiom or rule, specifying how the construct alters the truth of an arbitrary
assertion. Certain features of programming languages have been found to be easier
to describe in this way than others:

l Programs with only simple assignment statements and while statements can
be described adequately.

l Programs with arrays are less tractable, but can be treated if the array opera-
tions are rewritten in terms of of McCarthy’s (19621 assign and contents func-
tions.

l Operations on other data structures, such as pointers, lists, and records, can be
handled only if special restrictions are imposed on the language.

l Different varieties of procedure calls have also required programming-language
restrictions.

l Even the simple assignment statement fails to satisfy the usual Hoare assignment
axiom if included in a programming language with other problematic features.

l Certain combinations of features have been shown (Clarke [1977]) to be impos-
sible to describe at all with a Hoare-style axiomatization.

It has been argued (e.g., in London, R. L. et uf. [1978]) that features of
programming languages whose semantics are difficult to describe with the Floyd-
Hoare technique are also difficult for people to understand and use consistently.
For this reason, a number of programming languages have been designed with
the intention of, eliminating or restricting such “problematic” features. Others
have objected (e.g., Knuth [1974],  Hoare 119751,  deMillo  et al. [1979]) that the
disciplined use of such “unverifiable” programming features can facilitate the clear
and direct representation of a desired algorithm, while their removal may force
the programmer into increasingly obscure circumlocutions.

In this paper, we present a conceptual framework capable of describing all
these problematic programming features. This framework is suitable to serve as
a basis for the implementation of verification systems, as well as synthesis and
transformation systems. We do not argue that the problematic features should

\
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4 INTRODUCTION .

necessarily be included in programming languages without restriction, but we
intend that if a language designer wishes to use some combination of features, no
obstacle should be imposed by verification concerns.

The approach we employ is a “situational calculus,” in which we refer ex-
plicitly to the states of the computation. In a given state 8, the evaluation of an
expression e of the programming language produces a new state s; e. The meaning
of the expression can then be defined by axioms that relate the characteristics of
the new state to those of the original state.

This formalism is quite distinct from that of Hoare,  in which no explicit
reference is made to states. In this respect, our approach is closer to those adopted
by McCarthy [1964] and Burstall 119691 for specifying the semantics of ALGOL-60
subsets, and by Green [1969] for describing robot operations.

To describe the characteristics of the states of a computation, we introduce
“situational operators,” i.e., functions and predicates whose values depend on the
state. In defining these operators, we distinguish between the expressions of the
programming language, the storage locations of the machine, and the abstract
data objects of the program’s domain. The precision of this descriptive apparatus
enables us to model the effects of programming-language constructs in full detail.
We can describe and compare various implementations of the same programming
language or, if we prefer, we can ignore the details of implementation.

Once we have succeeded in describing the constructs of a programming lan-
guage, we can use that description in proving that programs in the language
satisfy a given specification. The situational operators can be used not only to
describe the constructs of the language but also to represent the specifications of a
program. Indeed, they are more expressive for this purpose than the conventional
input/output assertions, because they enable us to refer in a single sentence to
different states of the computation. For example, it is possible to say directly
how the final value of an identifier relates to its initial or intermediate values. To
show that a program satisfies such a specification, we then prove a corresponding
theorem in situational calculus.

The situational-calculus approach can be applied not only to prove that a
single program satisfies given properties, but also to prove that an entire class of
programs, or a programming language, satisfies given properties. For example, we
can state and prove that the “aliasing” phenomenon, in which two identifiers are
different names for the same location, cannot be created in languages that satisfy
certain constraints.
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Although the approach has been devised to treat languages for which the
Hoare formalism breaks down, it can also be used to show that the Hoare for-
malism does actually apply to suitably restricted programming languages. For
example, we can show that the Hoare assignment axiom (which fails to apply to
most languages used in practice) is true and can be proved as a situational-calculus
theorem for languages in which the problematic features have been omitted.

Up to now, we have been discussing the use of a situational-calculus approach
for proving properties of given programs and classes of programs. Historically,
however, we were led to this approach in developing a method for program syn-
thesis, i.e., the systematic construction of a program to meet given specifications.
We have described elsewhere (Manna and Waldinger 119801)  a deductive technique
for the synthesis of applicative programs, i.e., programs that yield an output but
produce no side effects. We can now construct programs that may produce side
effects by applying the same deductive technique within the situational calculus.
More precisely, to construct a program to achieve a desired condition, we prove
the existence of a state in which the condition is true. The proof is constrained
to be “constructive,” so that a program to achieve the desired condition can then
be extracted from the proof.

The same deductive technique can be applied to the task of transforming
a given program, generally to improve its efficiency. Often the performance of a
program can be augmented, at the expense of clarity, by applying transformations
that introduce side effects. This transformation process can be conducted within
a situational-calculus deductive system to ensure that the original purpose of
the given program is preserved. For example, a purely applicative program for
reversing a list can be transformed into one that achieves the same purpose with
side effects, by altering the structure of the list.

The situational calculus is a more appropriate logic of programs than dynamic
logic (Pratt [1976]),  because it is able to describe the results of evaluating nested
expressions as well as the effects of executing sequences of statements: dynamic
logic is not intended to apply to expression-oriented languages. The approach of
this paper is more similar in intent and scope to that of denotational semantics,
but ours relies on a simpler mathematical framework. We do not use functions
of higher type, lambda expressions, or fixed points. Situational calculus can be
embedded comfortably in a first-order logic to which the well-developed battery
of mechanical theorem-proving techniques, such as the unification algorithm, can
be applied. In particular, no special difficulty is presented by the existential
quantifier, which is outside the scope of denotational semantics-based systems
(e.g., Gordon et uf. [1979]), but which is valuable for program verification and
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crucial for program synthesis.

The paper is divided into three parts. The present part (Part I) introduces
the general conceptual framework and discusses its application to the assign-
ment statement. Future parts describe the application of the same conceptual
framework to the description of data structure operations and procedure call
mechanisms.

We begin (in Molivalion) by describing some of the features of programming
languages that have caused problems in the past, and indicate sources of the
difficulty. We then introduce (in Conceptual Framework) the situational operators
that define the characteristics of states. The conceptual framework is then used
(in The Assignment Statement) to express the axioms that describe the behavior
of the simple assignment statement. We show (in Howe’s Assignment Aziom) that
the statement usually taken as the assignment axiom can be expressed and, for
suitably restricted programming languages, proved as a theorem in our formalism.
Finally (in Assignment Ezpressions), we apply the conceptual framework to a
wider class of programs, which violate the Hoare axiom.

In the forthcoming Part II, we apply the technique to describe data structures
and the operations that manipulate them. We introduce a general notion of data
structure, which includes arrays, pointers, trees, and records, and we define an
operation for altering such a data structure. A single set of axioms describes the
behavior of this operation. We allow different data structures to share substruc-
tures, and we do not exclude circular structures.

In the forthcoming Part III, we use our situational-calculus framework to
describe declarations and procedure calls. We consider several different calling
mechanisms, including call-by-reference, call-by-value, and call-by-name, and we
admit both static and dynamic binding of global identifiers. We allow procedures
to be passed as arguments to other procedures. No special problems are presented
by recursive calls.

We will not be concerned in this paper with the problems presented by
computer arithmetic, array bounds, types, coercion, or error recovery, although
these can be described in our formalism with no special difficulty. We will
also ignore the phenomena of parallelism and nondeterminism; these require
substantive extension of the framework.



2. MOTIVATION .

In this section, we discuss some features of programming languages that have
proved difficult to formalize in the classical framework, and we outline some of
the solutions that have been proposed. In the following section we introduce a
general framework that uniformly resolves all these difficulties.

We begin with one of the less problematic features - the simple assignment
statement

A. Assignment to Identifiers

By the simple assignment statement we mean one of the form

x*t)

where x is an identifier and t is an expression in the programming language. The
Hoare axiom for such an assignment may be expressed as

{PQ(X 4- t)} x + t (p},

indicating that if the assertion P e(x 6 t) holds before executing the assignment
x + t, and if the execution terminates, then the assertion P holds afterward.
Here, P Q(X +- t) is the result of replacing all free occurences of x in P by t.
The rationale for this rule is that the value of x after executing the assignment
x + t will be the same as the value of t before; therefore, anything that can be
said about t before the execution can be said about x afterwards.

However, the above reasoning is faulty, and only applies if certain restrict
are applied to the expression t, the assertion P, and the situation in which
assignment takes place. Let us examine some of these restrictions:

ions
the

l The expression t must be stulic, in the sense that its evaluation must not itself
produce side effects. For example, in the assignment

x + ( x + (Y + y+l) ),

c
the evaluation of t, that is, x+(y + y+l), has the side effect of altering the value
of the identifier y. Such assignments are legal in the ALGOL dialects and in

7



8 MOTIVATION .

LISP. If we take the assertion P to be y = 0, then according to the Hoare axiom,
we have

{y = 0) x + ( x+(y + y+l) ) {Y = 01.

(Note that the assertion (y = 0) 4(x +- t) reduces to y = 0 because x does not
occur in y = 0.) However, this sentence is false because, if y is 0 before executing
this assignment, then afterwards y will be 1, not 0.

Similarly, the assignment

x + f(x),

where f is a procedure that has the side effect of increasing the value of the global
identifier y by 1, violates the instance of the Hoare  axiom

{Y = 0) x * f(x) {y = 0).

l In the situation in which the assignment to the identifier x takes place, there
must be no way to refer to x indirectly, in terms of other identifiers. For example,
suppose x and y are “aliases,” i.e., they are different names for the same location.
Then changing the value of x will also change the value of y. If P is the condition
{y = 0}, then the instance of the Hoare axiom

{Y = 0) x+l{y=O}

is false because, after executing the assignment, the value of y will be 1, not 0.

In practice, the aliasing phenomenon can arise in languages that admit pro-
cedure calls. For example, suppose we have a procedure

f(x,yp=x+l

whose parameters are passed by a call-by-reference mechanism. In other words,
in executing a procedure call f(u, v), where u and v are identifiers, the identLfiers
x and u become aliases, and the identifiers y and v become aliases. In executing
the procedure call f(u, u), all three identifiers x, y, and u become aliases, so
altering the value of x will alter the value of y as well. Thus, the assignment
statement x + 1 that occurs in the body of the procedure f(x, y) will violate the
instance of the Hoare axiom

{Y = 0) x + 1 {y = 0).
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Aliasing can occur in other ways besides the action of the procedure call
mechanism. In FORTRAN an alias can be created directly by the action of the
%ommon” or “equivalence” statements.

Other situations, aside from simple aliasing, in which the Hoare axiom is
violated occur when the identifier x is bound to a substructure of some data
structure. Then altering the value of x will indirectly alter the value of the
structure.

.

l The assertion P may not refer to the value of an identifier except by mentioning
the identifier explicitly. For example, suppose P is the assertion

“there exists an identifier whose value is 2.”

Because P contains no occurrences of x at all, the sentence

is an instance of the Hoare axiom. However, if x is the only identifier whose value
is 2 before executing the assignment, then P will become false afterwards. Here,
the axiom broke down because P referred to the value of x without mentioning
x itself.

Many of the problems connected with the assignment statement, and a denota-
tional approach to their solution, are described in Ligler [1975].

B. Array Assignments

The direct translation of the Hoare assignmentaxiom to array assignments
is

{Pe(a[~] +- t)} a[x] + t {P}*

This sentence is false, even for straightforward expressions t and assertions P,
and for the simplest situations. For example, the sentence

{a[y] = 01 @I + 1 bbl = 01

is an instance of the above sentence, because a[x] does not occur at all in the
assertion a[y] = 0; but of course the sentence is false if x and y have the same
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values. The problem is that, while it is exceptional for two identifiers x and y to
be aliases, it is commonplace for two array entries a[x] and a[y] to be alternative
names for the same location.

The difficulty has been approached (McCarthy [1962]) by regarding the entire
array as a single entity, so that assigning to any of the array’s entries produces a
new array. More precisely, we regard the entire array u as an ordinary identifier,
we treat an array assignment a[x] + t as an abbreviation for a simple assignment

a + assign(a, x, t),

and we treat an array access a[y] as an abbreviation for

contents(  a, y).

The assign and contents functions are then assumed to satisfy the properties

contents(assign(a, x, t), y) = t i f x = y

and

contents(assign(a, x, t), y) = contents(a,  y) if x # 1y.

Programs involving arrays can then be treated by the Hoare axiom for simple
identifier assignments.

Thus, the previous false sentence

{aL-yl =, 01 arx1 + t MY1 = 01,

expressed in terms of the contents  and assign functions, is

{contents(a, y) = 0) a + assign(a, x, t) {contents(a, y) = 0).

This sentence is not an instance of the Hoare assignment axiom, because the
assertion contents(a, y) = 0 does contain an occurrence of the identifier a. The
appropriate instance of the Hoare axiom in this case is the true sentence

{(contents(a, y) = 0) Q (a + assign(a, x, t))}
a + assign(a, x, t)
{ contents(a, y) = 0},
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i.e.,

{contents(assign(a,  x, t), y) = 0)
a + assign(a, x, t)
{contents(a,  y) = 0).

Although this solution still suffers from the limitations associated with the
simple assignment axiom, it resolves the special difficulties arising from the intro-
,duction of arrays.

c . Pointer Assignment

To describe the pointer mechanism, let us introduce some terminology. If an
identifier is declared in a program, there is .some  location bound to that identifier;
we can regard the location as a cell in the machine memory. If two identifiers
are aliases, they are bound to the same location. A location may contain data or
it may store (the address of) another location; we thus distinguish between data
focatio~ and storage locations. A pointer is a storage location that stores (the
address of) another storage location. There are many notations for pointers in
different programming languages; ours is typical but is not actually identical to
any of these.

A pointer is created, for example, by the execution of the simple assignment

X + ty,

where x and y are both identifiers. Here the notation ty means the location
bound to the identifier y. The result of this assignment is that the location bound
to y is stored in the location bound to x. The configuration produced may be
represented by the following diagram:
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Figure 2.1

Here, or and /3 are locations bound to x and y, respectively; 71 is the location
stored in p.

If we subsequently execute a simple assignment statement

Y + t,

where t is an expression, we alter the contents of the location p that y is bound
to. The location /? will then store the location 72 yielded by the evaluation of t.
The new configuration can be represented by the following diagram:

Figure 2.2

We have remarked that such a configuration can easily lead to violations of the
Hoare assignment axiom: a simple assignment to y can alter the truth of an
assertion about x.
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Suppose instead we execute the special pointer assignment

lx + t.

13

The notation 1x means that the location altered by the assignment is not the
location o bound to x, but rather the location p stored in a. In other words, the
effect of the above pointer assignment is identical to that of the simple assignment
y + t, and results in the same configuration depicted above.

A naive extension of the Hoare  axiom to pointer assignments is

{Pa(lx + t)} lx + t(P)*

I The sentence

{y = 0) lx + 1 {y = 0)

is an instance of this axiom, because lx does not occur in the assertion y = 0.
However, as we have seen, if x “points to” y the assignment lx + 1 can set the
value of y to 1. In short, the simple ,.adaptation  of the Hoare assignment axiom
fails to describe the action of the pointer assignment; because the assignment can
alter the value of an identifier not mentioned explicitly.

The assign/oontent,s  technique for arrays has been extended (e.g., see Cart
wright and Oppen (19781)  to pointers by regarding all the identifiers in the program
as entries in a single array v, which is indexed not by integers, but by identifiers.
These array operations can then be treated as simple assignments in terms of the
assign and contents functions, and are correctly described by the Hoare simple
assignment axiom and the two McCarthy axioms for assign and contents.

The Hoare formalism itself was extended by Schwartz and Berry [1979] to
handle pointers and other constructs of ALGOL 68. This approach employs two
distinct mechanisms to refer to the states of a computation: the Hoare P{F}Q
operator and explicit situational operators.

D. Tree and Record Structure Manipulation

The problems involved with arrays and pointers are compounded in lan-
guages with facilities for manipulating more complex structures, such as trees
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and records. Up to now we have considered only locations that contain data or
that store (the address of) a single other location. To treat general data struc-
tures, we introduce locations that can store (the address of) arbitrarily many other
locations.

For example, in LISP we admit binary-tree locutione, which can store precisely
two locations. If Q is a binary-tree location, we will call the two locations stored in
Q the left and right descendunts of a. Of course, these locations may themselves be
binary-tree locations. We will refer to the descendants of Q as a set that includes
not only o’s left and right descendants, but also their left and right descendents,
and so on; we will say that Q is one of their ancestora.

We will depict a binary-tree location Q! and its left and right descendents at
and q by the following diagram:

Figure 2.3

We do not exclude the possibility that a binary-tree location is identical to
any of its own descendants; such a configuration is called a circular tree. For
example, the tree below is circular:

Figure 2.4
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LISP provides two functions, which we will call left and right, for accessing
the corresponding descendants of a binary-tree location, Suppose t is an expression
whose evaluation yields a binary-tree location cx; in other words, it represents the
value of t. Then the evaluation of left(t) and right(t) yields the left and right
descendants of CL, respectively.

LISP also provides two operations for altering binary trees: the rpfucu opera-
tion, which we denote by

left(e) + t,

and the rplacd operation, which we denote by

right(e) + t,

where e and t are any expressions. If the evaluation of e yields a binary-tree
location cq and if the evaluation of t then yields a location p, then the rpfucu
operation left(e) + t will cause p to become the new left descendant of at. The
rpk~d operation behaves analogously.

The problem in describing the rpfacu and rpfacd operations is precisely the
same as for the pointer assignment: a rplucu  operation on one binary tree can alter
the value of another without mentioning it explicitly. For example, suppose that
x and y are identifiers associated with binary-tree locations CL and Ip, respectively,
in the following configuration:

Figure 2.5

If we execute the rpfucu operation left(y) + t, we obtain the configuration
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Figure 2.6

71

El

where 6 is the location yielded by the evaluation of t, Note that the subsequent
evaluation of the expression left(left(x))  yields the location 6, not the location
71. In other words, the value of x may have been changed by the rpfucu operation,
even though the operation was applied to y, not to x. Similarly, if ar had any
other ancestors before the execution of the rplucu,  then their values could also
have been affected by the operation. It seems that, to model the effects of such an
assignment completely, we must know all of the ancestors of the altered location.

Many languages admit a more general form of tree structure called a record,
in which a record locution can store several other locations. Binary trees can then

be regarded as a special type of record. The same problems that arise with trees
clearly come up with records as well.

The assign/contents  formalization of arrays has been extended to apply
to tree and record structures by Wegbreit and Poupon [1972], Cartwright and
Oppen [1978],  Levy [1978], and Kowaltowski [1979]. Burstall 119721 represents
the operations that alter tree and record structures by introducing new functions
to access the structures. For example, an rpfucu operation is said to create a new
access function left’, which behaves like the left function after the execution of
the assignment.

E. Expressiveness of Specifications

Many of the difficulties that prevent us from describing the behavior of
individual programming constructs with the Floyd/Hoare approach also impede
our efforts to express the specifications that describe the desired behavior of entire
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programs. The only mechanism for forming specifications in that approach is a
pair of input and output assertions. We have already encountered one weakness
in the expressive power of such assertions: there is no way to refer to an identifier
without mentioning it explicitly. For example, we were unable to deal with an
assertion such as

*there exists an identifier whose value is 2”

in which we refer to an identifier indirectly.

Other such limitations also restrict our ability to specify programs. For
example, suppose we wish to state that a given procedure will behave properly if
initially two of its input parameters x and y are not aliases of each other, i.e.,
they are not bound to the same location.

A natural approach might be to introduce the condition

not(alias(x,  y))

as part of the program’s input assertions and to describe the relation ulius(x, y)
with axioms or rules of inference. However, this relation cannot be expressed in
an assertion, because x and y are meant to refer to locations, not values. Thus,
the relation will violate even the simple assignment axioms; e.g., the instance of
the Hoare axiom

{afias(x,  y)} z + y {alias(x,  z)}

is false: if x and y are aliases, then assigning the value of y to z will not cause
x and z to become aliases.

This shortcoming foils a plausible approach to retaining the Hoare formalism:
forbidding aliasing to occur in situations where it can lead to trouble. We certainly
can forbid such occurrences, but we cannot express the condition we want to
forbid as a Hoare assertion.

Another awkward aspect of in the Floyd/Hoare assertion mechanism as a
specification device is its inability to refer to more than one state in a single
assertion. Thus, it is impossible in an output assertion to refer directly to the
initial or intermediate value of an identifier. For example, suppose we want ‘to
say that a program reverses the values of two identifiers x and y. The traditional
approach is to introduce a “ghost” input assertion

{ X =x0 a n d  y=ye}
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at the beginning of the program, so that at the end we can assert that

{ x = Yo and y = x0).

The purpose of the input assertion is merely to give names to the initial values
of x and y. We must be careful, of course, to ensure that x0 and y. are new
identifiers that do not occur in the program.

The flaw in this solution is apparent if we attempt to use the above program
not in isolation but as a segment of a larger program or as the body of a procedure.
In this case, we would normally have to prove that the initial assertion

{ X =xeandy=yo}

is true when control enters the segment; but this is impossible, because zo and ~0
are new symbols that cannot occur earlier in the program. Special mechanisms
are required for dealing with ghost assertions.

F. Procedures

We have already seen that procedure calls can cause aliasing to occur, which
obstructs attempts to axiomatize the assignment statement; we have also seen how
global side effects of procedure calls foil the assignment statement axiomatization.
Many other problems arise in describing the procedure call mechanism itself.
Let us consider only one of these difficulties: expressing how global identifiers
of procedures are treated in languages with static binding.

A global identifier  of a procedure is one that occurs in the procedure’s body
but is not one of its parameters. For example, consider the procedure f(z) declared
bY

f(x) t= x + x + y.

Here, y is a global identifier of f, but x is not.

In a language with static binding, such as PASCAL or the ALGOL dialects,
the binding of y that would be used in evaluating the procedure is the binding
that y had when the procedure was declared. On the other hand, in a language
with dynamic binding, such as LISP, the binding used would be the one that y
had when the procedure was called.
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Static binding is difficult to treat by a Hoare rule for a procedure call because
it requires that we refer to the binding the global identifier y had in a much earlier
state, when the procedure f was first declared. In the meantime, of course, y may
have been redeclared.

* * jr * $

It is the intention of this paper to present a single conceptual framework
capable of describing all of these problematic programming-language features.
This framework is compatible with contemporary theorem-proving techniques and
can be incorporated into systems for the synthesis, verification, and transforma-
tion of computer programs.



3. CONCEPTUAL FRAMEWORK

In this section we introduce the conceptual framework on which our descrip
tion of programming-language constructs is based.

A. The Objects

We assume that the objects we consider include the following:

l A set S of states, including a special undefined state la.

l A set PL of *ezpressions  in a programming language. We will use boldface
(boldface) symbols to denote expressions in PL.

l A set L of (machine) locations, including a special undefined locution 1~. The
defined locations are divided into three disjoint sets:

0 the data locutions,

o the atoruge  locutions, and

o the structure locutions

l A set D of dutu objects, including the logical objects true and jufde,  and the
undefined object L-J. The defined data objects include

0 the atomic data objects (or utoma).

The intuition that motivates these definitions is as follows:

A data object is an abstract mathematical entity, such as a number, a
function, or a string. The atoms will be those data objects that are not considered
to be composed of other data objects. Typically, integers and the truth values
true and false will be atoms; lists, strings, and functions will be nonatomic data
objects.

The data and structure locations are the machine representations of the data
objects; the data locations represent the atomic data objects; the structure loca-
tions represent the nonatomic data objects. (We will not be discussing nonatomic

20
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data objects and structure locations in Part I of this paper.) A storage location
is one that can store (or point to) another location.

We will not restrict ourself to any particular programming language, although
from time to time we will introduce typical language features for discussion. Our
intention is that the formalism should be expressive enough to describe a wide
class of programming-language constructs.

Let us assume that the programming language PL contains a class  of ident-
ifiers. We mean the identifiers to include those symbols, such as 2, that are used
as names for atomic’ data objects. Furthermore, we assume that a sequencing
operation a;fi is included in PL;  thus if el, es, . . , , en ‘are expressions, then
ei; e2; . . . ; en is an expression that denotes the program that evaluates first 81,
then e2, . . . , and finally e,.

A state is a particular situation in the course of a computation. If 8 is a state
and e is an expression, then s;e denotes the result of evaluating the expression e
in state 5. If el, e2, . . . , and e, are several expressions, then e;el;  02; . . . t en

denotes the state that results if we evaluate el, e2, . . . , en in sequence, beginning
in state 8. We will assume the sequence property

<3.1> s; (ei; e2) = (s; el); e2,

so that we can write s;el;ez  without ambiguity. If the evaluation of e in state 8
leads to an error or does not terminate, then e; e will turn out to be the undefined
state lo.

Furthermore, if s itself is undefined, then s;e is also undefined, i.e.,

<3.2> _L l e=6) 1. 6.

B. Basic Situational Operators

Situational operators are functions or predicates, one of whose arguments is
a state. They are used to denote entities that may change during a computation.
We will use the following situational functions for any state 8:

l for any identifier x,

loc(s, x)
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is a location

l for any location e,

store(8, e)

is also a location

0 for any location e,

duta(s, e)

is a data object.

The intuition behind these definitions is that if x is an identifier bound to a
machine location 4! (e.g., via a symbol table), then foc(s, SC) = C. If 41 is a location
that addresses (or stores) a location C2, then store(e,Cl)  = C2. If C is a location
that represents a data object d, then duta(s, l) = d.

The situational functions may take undefined arguments and yield undefined
values. We assume that the situational functions are drict,  in the sense that if any
of their arguments are undefined, then their value is undefined too. For example,
if s is the undefined state LB, then f&(s,x)  =_Lc. Furthermore, if the identifier
x is not declared in a defined state s, then foc(s,x) =I_c as well. We assume
that if 4! is a data or structure location, then store(Q)  =_Lc in any state s; in
addition, store(s,  e) may be undefined even if L is a storage location in a defined
state 8.

We define three situational predicates. For any state 8 and location 4:

l isdatu(s,t)  is true if ! is a data location in state 8

l isstore(s,  4!) is true if e is a storage location in state 8

l isstructure(8,  e) is true if e is a structure location in state 8

Note that the situational predicates are never undefined; if any of their arguments
are undefined, they are false.

The relationship among the sets of data, storage, and structure locations can
now be expressed in terms of these predicates:

<3.3> iSdUtfZ(S,  e) Or iSStOre(S,  e) Or i88trUCtW!(8,t)
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<3.4> not(isdata(s,  C) and isstore(s, L))

<3-s> not(isdata(s,  l!) and isstructure(s, e))

<3.6> not(isstore(s,  L) and isstructure(s, C))

for all defined states s and defined locations C.

We assume that the store operator “transmits” data; i.e.,

<3.7> data(s, e) = data(s, store(s, l)) if isstote(s,  C).

In other words, if one location stores another, we consider them to represent the
same data object. For example, consider the following configuration:

Figure 3.1

Here, because

store(s,  a) = p and store(sJ) = 7,

we have

data(s, a) = data(s, /3) = data(s, 7) = 2.

Thus, we can conclude that the full diagram for this configuration would be

Figure 3.2
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The definition of data(s, e) for structure locations C will be given in the
forthcoming Part II. Now, let us give some examples to illustrate the use of these
concepts.

Ezample (constant):

Assume that the programming language PL contains the identifier 2; then
normally, this identifier would be bound to a data location that represents the
data object 2.

This configuration is illustrated by the following diagram

Figure 3.3

If terms of our situational operators, we have

foc(s,  2) = a

data(s,a) = 2.

~ where

isdata(s, a) is true.

An assignment statement will be defined (in a later section) to alter the
store link of a storage location. An identifier is bound to a data location rather
than a storage location if we do not intend to alter its value by an assignment
statement. Thus, numbers such as L2.2, -4, etc. and other special identifiers
such as pi or nil might be bound in this way. In common parlance, such identiflers
or their associated locations are called “constants”; however, we will avoid this
terminology because it conflicts with the way the word ‘konstant’  is used in logic.

Ezample (variable):

Assume that the identifier x is bound to a storage location a, that CL stores
(addresses) a data location p, and that p represents the data object 2. (We will
avoid using the word Variable,” commonly applied to x or CL,  because of a conflict
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with logical usage.) The configuration we have described is illustrated by the
following diagram:

Figure 3.4

In terms of our situational operators, we have

loc(s,x)  = a
store(s,  (II)  = p
data(s,p)  = 2

w h e r e

isstore(s, a) is true
isdata(s,  /3) is true.

Informally, we will refer to a situational function in a given state as a “link”;
thus, we will say there is a store link between cx and /9 in state 8.

c . Derived Situational Operators

There are some other situational operators that are defined in terms of the
basic situational operators.

l The situational function yield(s, x) is the location yielded by the evaluation of
an identifier x in state s. We will define it by

<3.8> yiefd(s,  x) = loc(s, x) if isdata(s, Ioc(s, x))
or isstructure(s, loc(8, x))

.
<3.9> yield(s,  x) = store(s,  loc(s, x)) if isstore(s,loc(s,  x))

for all states s and identifiers x. In other words, if x is bound to a data or
structure location, then the evaluation of x yields that location. On the other
hand, if x is bound to a storage location, then the evaluation of x yields the
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location stored in that storage location. Thus, the diagrams that illustrate these
two situations are

Figure 3.5

and

~ Figure 3.6

l The situational function uaf(s,x) is the value of x in state 8. We define it to
be the data object represented by yiefd(s,x);  i.e.,

<3.10> val(s, x) = data(s, yiefd(s, x))

for all states s and identifiers x. Depending on whether loc(8,  x) is a data or
structure location or a storage location, the ual operator is illustrated by one of
the following two diagrams:

~Figure  3.7

and

Figure 3.8
d

In the first diagram, CT is a data or structure location; in the second, Q! is a storage
location.
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Note that from the definitions of yield and ual and the strictness of the basic
situational functions, it follows that

l if s is the undefined state ls or if foc(s,x) is the undefined location JJ, then
yiefd(s,x)  is 1~

and

l if s is 18, or if loc(s, x) is _tl, or if yiefd(s,x)  is ll, then uaf(8,x)  is JJ.

From the definitions of the yield and data operators, we can prove the fol-
lowing value property of identifiers:

i3.11> ual(s, x) = data(s, foc(s,  x)).

Proof:

We distinguish between three cases:

Case: isdata(s,  foc(s, x)) or isstructure(s, foc(s,  x)), Then, yiefd(s, YE) is defined
to be foc(s,.x).  The property reduces to the definition of ual.

Case; isstore(s,  foc(s, x)). Then,

uaf(s, x) = data(s, yield(s, x))
by the definition of uaf <3.10>

= data(s, store(s, foc(8, x)))
by the definition of yield <3.9>

= data(s, foc(s, x))
by the assumed property of data <3.7>

Case :  foc(s,  x)) =_Lr. Then uaf(s, x) =_Ld and data(8,  foc(s,x))  =ld, by
the strictness of the situational functions. m

In the future, we will often ignore the undefined case if it follows directly
from the strictness of the situational functions.
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Ezampfe (pointer):

Consider the configuration illustrated by the following diagram:

Figure 3.9

val

Here, a and p are storage locations and 7 is a data location. The three identifiers
x, y, and z are bound to different locations, the evaluation of x and y yields
different locations, but the values of x, y, and z are the same; i.e.,

ual(8, x) = uaf(s,  y) = uaf(s, z) = 2 fi

In general, we shall say that a state s is numerically faithful if

uaf(s, 1) = 1

vaf(s, 2.2) = 2.2

uaf(s,-4) = - 4

etc, for all numerical identifiers in PL. In some versions of FORTRAN one can
construct defined states that are not numerically faithful. In such a (pathological)
state, the value of the identifier 2 might be the data object 1.

D. Levels of Equality

In a situational-calculus framework, we can define four different relationship8
between two identifiers x and yI each of which causes them to have the same
value.
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0 i d e n t i t y :

Here, x and y are identical: they stand for the same identifier; i.e.,

Hence,

foc(s, x) = ws, Y),
yield(s,  x) = yield(s, y), and
val(s, x) = val(s, Yh

,in any state s.

0 aliasing:

Here, x and y may be syntactically distinct; i.e., possibly x # y. But x and
y are aliases in the given state s: they are bound to the same location; i.e.,

loc(s, x) = loc(s, y)

and hence

yield(s,  x) = yield(s, y), and
ual(s,  x) = uul(s, y).

l e q u i v a l e n c e :

Here, x and y may be syntactically distinct, i.e., possibly x # y; and, in the
given state s, x and y may not be aliases, i.e., possibly IOC(B,X)  # loc(s, y); but
x and y are equivalent: the evaluation of each of them yields the same location;
i.e.,

yield(s,  x) = yield(s, y),

and hence

ual(s,  x) = val(s, y).

(In LISP terminology, one would say that eq(x, y) is true.)
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0 equality:

.

Here, x and y may be syntactically distinct, i.e., possibly x # y; in the
given state s, x and y may not be aliases, i.e., possibly loc(e,x) # loc(s,y); and
x and y may not be equivalent, i.e., possibly yield(e,x) # yield(s, y); but x and
y are equal, in that they have the same value; i.e.,

val(s, x) = val(s, y).

(This is the standard notion of equality in most programming languages.)

The notions of aliasing, equivalence, and equality can be illustrated (for
the case in which loc(s, x) and loc(e,y)  are storage locations) by the following
diagrams:

Figure 3.10

lot

T

lot
X- -Y

store

Here, x and y are aliases.

. Figure 3.11 x5q!Jp

I@

Here, x and y are equivalent (but not aliases).

Figure 3.12



CONCEPTUAL FRAMEWORK 3 1

Here, x and y are equal (but not equivalent and not aliases).

E. Expressions

Up to this point, the only expressions of the programming language for which
the situational operators have been defined are identifiers; we now extend the yield
and ual functions to other programming language expressions. For the time being,
however, the function foe will be defined only for identifiers.

For any expression e in the programming language:

a’ the yield of an ezpreasion:

yiefd(s, e) is the location yielded by the evaluation of e.

l the value of an ezpression:

vu@, e) is the data object represented by yield(a,  e) after the evaluation of
e; thus

<3.12> vaf(s,  e) = data(s;  e, yield(s, e)).

In other words, to determine the value of e in state 8, we first evaluate e, producing
a new state s; e and yielding a location yield(s, e). We then determine the data
object data(s;e,  yiefd(s,e))  represented by this location in the new state.

In general, we assume that, if the evaluation of an expression yields a defined
location, then the evaluation produces a defined state, and conversely; i.e.,

<3.13> yiefd(s,  e) =I_4  if and only if s;e =l,.

for all states s and expressions e in PL. This implies that, for any expressions
e1re2,  l l * ) e, in PL and state 5,

<3.14> if yield(s;  el ;e2; . . . ; ei- 1, ei) =lt for some i, 1 < i < n- w
then s; el; e2; . . . ; en =Le.

For if

yield(s; el; e2; 9 ei-1, ei) =l~. . . , for some i between 1 and n
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then (by <3.13>)

8;el; e2: . . . : ei-1; ei =lo

and (by repeated application of <3.2>)

s; ei; e2; . . . ; en =lo.

Informally, an expression e is said to have no side effects if its evaluation in
a state s produces a state “indistinguishable” from 8 We will define two states 81
and s2 to be indistinguishable, denoted by 81 w $2, if the situational operators
all beh,ave  the same in s1 and ~2; i.e., if

<3.15> 1OC(Sl,  x) = loc(s2, x),

<3.16> store(sl, a) = stote(s2, a),

<3.17> data(sr,  a) = data(s2, a),

<3.18> yield(q) e) = yiefd(s2,  e),

<3.19> isdata(sl, a) if and only if isdatu(s2, a),

<3.20> isstore(sl, a) if and only if isstore(sp,  a),

<3.21> isstructure(sl,  a) if and only if isstructure(s2,  a)

<3.22> 81 =ls if and only if 82 =11,

for all identifiers x, locations ar, and expressions e. Clearly, m is an equivalence
relation.

We will say that an expression e has no side eJect8  if its evaluation is either
undefined or produces a state indistinguishable from the original state; i.e.,

if yield(s,  e) #lt then 4; e N 8.

The evaluation of an identifier will be assumed to produce no side effects;
i.e.,

<3.23> if yiefd(s,  x) #_Ll then s; x w 8,
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for all states s and identifiers x in PL. (For the time being, we ignore the pos-
sibility that an identifier may denote a procedure, whose evaluation can produce
side effects.) The definition of ual for expressions e <3.12>, i.e.,

vul(s,  e) = data(s;  e, yield(s,  e))

can now be seen to be consistent with our earlier definition of ual for identifiers
x, i.e.,

val(s,  x) = data(s, yiefd(s, x)).

For if yieZd(s,  x) #_Ll then, by <3.23>, the evaluation of x produces no side
effects; i.e., s; x M s, and hence, by <3.17>,

data(s; x, yield(s, x)) = data(s, yield(s, x)).

On the other hand, if yieId(s,x)  =ll, then

data(s; x, yield(s, x)) =L-J= data(s, yiefd(s, x)).

In either case, the desired conclusion holds.

The only constructs we have introduced into the programming language PL
so far are the identifiers and the sequencing operator ‘;“.  We will assume that #;‘!’
satisfies the following property .

l the yield of a sequence:

The location yielded by the evaluation of el; e2 is precisely the location
yielded by the evaluation of e2 after the evaluation of el; i.e.,

<3.24> yield( s, el ;ez) = yield(s; el, ez).

This implies the value of a sequence property

<3.25>

For,

ual(s,  ei;e2) = val(s; el, e2).

val(s, el ;e2) = data(s; (el;e2), yieid(s, el;es))
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by the definition of
the value of an expression <3.12>

= data((s; el); es, yield(s, el;ez))
by the sequence property <3.1>

= data((s; el); e2, yiefd(8; el, ea))
by the yield of a
sequence property above < 3.24 >

= val(s; el, e2)
by the definition of the
value of an expression <3.12>

This concludes the introduction of our descriptive apparatus. In the following
sections we will apply these notions to particular classes of expressions and simple
programming languages.
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In this section we describe a very simple class, the “static expressions,” whose
evaluation produces no side effects and involves no procedure calls. This class is
not of great interest in itself, but the discussion will illustrate the application of
our situational operators. Moreover, static expressions will be a component of
other, more complicated expressions.

A. Pure Constructs

Certain constructs of a programming language, such as (typically) arithmetic
operators, produce no side effects. We will say that a. construct f(ul, ~3, . . . , u,)
is pure if it has the following properties:

l no aide eJecta:

The evaluation of a pure construct, if it is defined, produces no side effects;
i.e.,

<4.1> if yiew,  f(% e2, l  l  ’ # en)) #h

then s;f(el,ez,  . . . ,en) w,s;el;ez;  . . .;e,

for all states s and expressions el, e2, . . . , e, of PL. Note that the operators
el, e2r l S-J en themselves may produce side effects, and that expressions are
evaluated in left-to-right order. Special treatment is required for languages, such
as ALGOL 68, in which the evaluations of el, es, . . . , e, may be interleaved.

0 pure value:

The construct f corresponds to a function fd(dl,  da, . . . , dn), mapping data
objects into data objects, such that

<4.2> vaf(s,  f(el, e2, . . . ,e,)) =
fd(val(s,  el), ual(8;  el, e2), l . . , val(8; el; e2 . . . ; s-1, e , ) )

for all states s and expressions el, e2, . . . , e, in PL. We assume that jd
is strict; i.e., if any of dl, d2, . . . t d, is the undefined data object ld then
f&h,  d2, ’ ’ . , d,J =ld as well.

35
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For example, the arithmetic operators of algebraic languages and the binary-
tree functions left and right are usually pure constructs; random number gener-
ators and the CON  function of LISP produce side effects and are not pure.

B. Static Expressions

We now introduce static expressions, which consist of sequences of nested
pure constructs and identifiers. More precisely, we define the static expressions
by the following rules:

l every identifier x is a static expression.

l if f is a pure construct and et, e2, . . . , e, are static expressions then
f(el, e2, . . . 9 en) is a static expression.

l if el, e2, . . . , e, are static expressions, then el; e2: l en is a static expres-. . . ,
sion.

For exampl’e, if plus(u,  v) and times(u, v) are pure constructs, then

times(plus(x;  1, y). 2; x):1

is a static expression.

From this definition we can prove the following lemma.

Lemma (static expression):

The evaluation of a static expression e produces no side effects; i.e.,

<4.3> if yield(s, e) #l-L then s; e M 8,

for all states 8.

The proof is by induction on the structure of the expression e; we assume
inductively that the property holds for all proper subexpressions of e. Suppose
that yield@, e) #_Lt. The proof distinguishes between several cases, depending
on the structure of e.

Case: e is an identifier. Then s;e M 8, because we have assumed that
yield@, e) #ll and that the evaluation of identifiers produces no side effects
<3.23>.
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Case: e is ofform f(ei, e2, . . . ) en), where f is upure construct undel,  82, . l l ) en
are static ezpressions. We have assumed that

yiefd(s,f(ei,  e2, . . . 9 en)) #Ll;

it follows, because pure constructs produce no side effects <4.1>,  that

8; f(ei, e2, . . . , en) ~3 s;el;e2; . . .;e,

and also (by <3.13>)  that

8; f(el, e2, . . . w en) #L

Hence, by <3.22>,

s;el;e2; l l l ;en #L*

and, by <3.14>,

yiefd(s; el; . . . ; ei,1, ei) $11

for each i, 1 < i < tz.- -

Then

8; f(eh e2, . . . ) en) M s;el; . . ..e.
by <4.1> again

...
tas;el;  . . ..ei

by repeated application
of the induction hypothesis
(and the transitivity of m)

...
M 8,

Note that we were able to apply the induction hypothesis above only because
we had established that

yield(s;  el; . . . ; ei-1, ei) #lt

I
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for each i.

Case: e is of form el;eg; . . . en, where el,ea, . . . , en ore static ezpressiona.
We have assumed that

yield(s, el; es; . . . ; e,) #JJ;

thus, by <3.13>,

s;el; . .
l ;eta  #.L

It follows (by <3.14>)  that

yield(s;  el; e2; . . . ; ei-1, ei) #ll

for each i between 1 and n.

Then

s; (el; e2; . . . ; en)= a; el; e2; . . . ; e,
by repeated application of
the sequence property <3.1>

.I.
M 8; el ; e2; . . ..ei

by repeated application of
the induction hypothesis

...
w 8.

Again, we needed to establish that

yiefd(s;  el; es; . . . ; ei-1, ei) #_Ll

for each i, to apply the induction hypothesis. I

Corollary. If e is a static expression, then

<4.4> uul(s,  e) = data(s,  yield(e, e)) for every state 8.

I5.
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For, by the definition of the value of an expression,

ual(s,  e) = data(s; e, yield(s, e)).

In the case that yield(s, e) #_Ll, the lemma tells us that e; e w 8 and hence
(by <3.17>)

data(s; e, yield(s, e)) = data(s, yield(s, e)).

On the other hand, if yield(s,e)  =1-t,  then

data(s; e, yield(s, e)) = ld = data(s, yield(e, e))

Corollary. If f(U1Jl2, . . . , u,) is a pure construct and 81, e2, . . . , en are static
expressions, then

<4.5> ual(s, f(ei, e2, . . . ) en)) = fd(u+, el), uu+,e2),  . w . , ual(s,e,)),

where fd is the data object function corresponding to f.

Proof:

We have that

uul(s,  f(el,  e2, . . . ( en)) =
fd(uaf(8J el), ual(s; elJ e2),  .  .  .  J  ua+; e1 J e2J 0 l  l  ; en-lJ en)

by the pure-value property ~4.2 >. If we can show that

s;el;ez; . . . ;ei M S

for each iJ 1 < i < ~8, this will imply the desired resultJ by <3.1’?> and <3.18X- -

In the case that

yiefd(s,  f(el, e2, . . . p en))  #ltJ

we have (by <3.13>)  that

s; f(el, e2, . . . 9 en) #L
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.

and, hence, because pure constructs produce no side effects <&I> and by <3.22>,
t h a t

s;el;e2;  . . .; en #L*

By <3.14> then, this tells us that

yield(s;  el; . . . ; e&l  J ei) #l_c

for each i, 1 < i < n. Finally, by repeated application of the static expression
lemma itself, we conclude that

S;el; . , . ;ei-l;ei  W 8

for each iJ implying the desired result.

On the other hand, in the case that

yiefd(8  ☺ f(el a e2r .  l  . ) en))  =LtJ

we would like to show that

hi(ua’(sJ el)J uaf(8J e2), l l l J uaz(8J ‘?%)) =b*

If UUf(S, ei) =Ld for any i, the desired result follows from the strictness of
fd <4.2>; so  we  can  a s sume  ual(8, ei) #l-d for each i. ConsequentlyJ

yield(s, ei) $l_c for each i, by the definition of the ual operator <3.10X By
repeated application of the kmmaJ then, we have that

s;el m 8

s;el;e2  cd 8

...
s;el;e2;  . . . ;ei RS 8

for each i, by the transitivity of kz, implying the desired result. 1

To prove the Hoare assignment axiom, the right-hand side of an assignment
statement will be restricted to be a static expression. But first we must introduce
the assignment statement itself.
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We are now ready to define the semantics of a simple assignment statement in
terms of the situational operators. The statement we describe is only a prototype:
different programming languages provide different varieties of assignment. For
these languages, our definition can be altered accordingly.

An assignment statement in PL is of form

x + e,

where x is an identifier and e is any expression in PL. The execution of this
statement in a state a takes place in three stages:

(1) The location loc(s,x)  associated with the identifier x is determined. It
is assumed that this step produces no side effects. If loc(s,x) is not a storage
location, an “error condition” occurs; in this caseJ we will say that

(2) The expression e is evaluated, yielding the location yiefd(s,e)  that repre-
sents the value of e, and producing a new state 8; 8. (In generdJ the edUatiOn

of e may produce side effects.)

(3) The location ybeld(s, e) is stored in the location ~oc(s~x), producing the
new state s; x + e. The location yielded by the evaluation of the assignment
statement itself is the same as that yielded by the evaluation of e.

We illustrate this process diagrammatically as follows:
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Figure 5.1
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Note that in the second picture, correponding to the state a; e, the lot link leading
from x and the store link leading from ~1 have been changed; this is because the
evaluation of e may have side effects that can change any of the links at state 8.

The information suggested by the above diagram is conveyed more precisely,
if perhaps less readably, by the following assignment uzioms.  These express the
effect of the assignment statement on each of the situational operators:

0 principal aziom

<5-l> StOfe(s;x + e, loc(s,x))  = yiefd(s,e) if i$$t0Tt?(8,10C($,x))

for all states s and identifiers x and expressions e in PL. The above axiom
describes the change that is the intended effect of the assignment statement. It
is also necessary to introduce frame azioms indicating that no other changes are
produced by the assignment.

0 frame azioms

<5.2> fOC(S;x + e, y) = fOC(S;e,  y)
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<5.3> store(s; x + e, t) = store(s; e, t) if e # loc(8,  x)

< 5.4,> data(s; x h e, L) = data(s;e, t!) if isdata(s;e,  L)

<5.5> isdata(s; x + e, t) if and only if isdata(s; e, L)

<5.6> isstore(s; x + e, e) if and only if isstore(s;  e, L)

<5.7> isstructure(8;  x + e, L) if and only if isstructutc(e; e, C)

for all states s, identifiers x and y, expressions e, and locations C, such that

isstore(s, loc(s, x)).

The axioms express that only the store link of loc(s,x) can be altered by the
execution of the assignment itself. Note that other links can be altered by the
evaluation of e. Also note that, although the assignment is assumed to leave the
data link of data locations unchanged, it can indirectly alter the data link of other
locations. For example, consider the configuration illustrated below:

Figure 5.2

Here, evaluating an assignment statement x + e will alter the store link of
~3. Consequently, it will indirectly alter the data link of the storage locations a3,
~2, and al, by virtue of the relationship <3.7> we have assumed, uiz.,

data(s, tf) = data(s,  store(s, L)) if isstore(s,  C).
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Structure locations can also have their data links altered indirectly by assignment
statements, as will be seen in the forthcoming Part II.

Because we regard assignment statements as expressions which may appear
as subexpressions of other expressions (e.g., we consider 2 + (X * (x - 1)) to be
a legal expression), we need an axiom that defines the location representing the
value of an assignment statement.

l yield axiom:

<5.8> yield(s,  x + e) = yield(s, e) if isstore(s, foc(s, x))

for all states s, identifiers x, and expressions e. In other words, the location
yielded by the evaluation of the assignment statement itself is the same as that
yielded by the evaluation of e,

l illegal aziom:

<5.9> s;x+e =L6 if not’ @tore(s,  loc(0, x)).

l undefined axiom:

<5.10> s;x+e=1_,  if s;e=ls,

In other words, if x is not associated with a storage location when the assignment
is executed, an error condition is produced; and if the evaluation of e in state 8
is undefined, then the evaluation of the assignment statement is also undefined.

Let us illustrate the use of these axioms to prove a simple property that is
beyond the expressive power of the Hoare rules. We show that if e is an expression
that creates no aliasing, then x * e also creates no aliasing; i.e.,

Lemma (no aliasing):

Suppose e is an expression in PL with the property that

*( 1 if foc(s, x) # loc(s,  y) then foc(s;  e, x) # foc(a; e, y)
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for all states s and identifiers x and y. Then

if loc(s, x) # loc(s, y) then loc(s; z + e, x) # loc(e; z + e, y),

for all states s and identifiers x, y, and z, such that

isstore(s, loc(s, 2)).

Proof:

Assume that e has the above property (*) and that

loc(s, x) # loc(s, y).

Then

loc(s; z + e, x)= Zoc(s; e, x)
by the frame axiom
for assignment < 5.2 >

# l.oc(s; e, y)
by the assumed property (*)

= loc(s; z + e, y)
by the frame axiom for assignment, again.

In short,

loc(s;  z + e, x) # loc( 8; z + e, y). g

45



6. ASSERTIONS WITHIN STATES

Our situational operators can describe properties of a program in terms of
machine locations. Often it is necessary to express such properties in terms of
assertions, where an assertion is a relationship among the values of the program’s
identifiers that is intended to hold when the execution reaches a certain point in
the program. In this section we connect these two levels of description, assertions
and situational .operators.

A. Assertion Language

An assertion will customarily involve constructs from both the programming
language and the program’s subject domain. For example, suppose we have a
program that is intended to assign to an identifier z the greatest common divisor
gcd(x, y) of (the values of) two identifiers x and y, without changing x and y.
Then we might wish to assert that, when the execution of the program terminates,
the following relationship is true:

Z = maz{u  : ulx and uly}.

Here X, y, and z are identifiers in the programming language; the other symbols
maz, {u: . . . }, 1, and and are constructs from the theory of the program’s subject
domain. l

In general, then, we assume we have a domuin language DL for expressing
sentences about the program’s subject domain; we would like to extend this
language to form an assertion language AL, that also includes identifiers and pure
constructs from the programming language PL. This extension can be achieved
with no confusion, because we have adopted disjoint vocabularies for the domain
language and the programming language. In our discussion, subject domain
constructs will always be denoted by italic (italic) characters while programming
language constructs will be denoted by boldface (boldface) characters.

The truth of an assertion in AL is only meaningful with respect to a state s
of the execution; each programming language identifier x in the assertion is then
taken to refer to the data object ual(s, X) in the program’s domain. For example,
the above assertion

Z = max{u : ulx and u/y}
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is true in a state s if the sentence

ual(s, z) = maz{u : ulual(s,  x) and uluaf(s,  y)}

is true in the subject domain.

B. The Extended Ual Operator

To discuss the truth of a sentence in the assertion language, we allow assertion-
language expressions among the objects’we consider, and extend the situational
operator uaf to apply to such expressions. We will then say that an assertion P
holds in a state s if ual(s, P) = true.

The extension of the ualoperation  is similar to Tarski’s  definition of the truth
of sentences in logic. We will pay special attention to quantified expressions in the
assertion language. We want to say that an expression VuQ has value true in a
state s if & bas value true in s regardless of the value of the dummy variable u. To
formalize thrs definition, we introduce the notion of a substantiation e, a function
that maps some of the variables of the domain language into data objects in D. We
will add a substantiation as a third argument to the ual operator, ual(s, t, @); our
intention is that the substantiation 11) will supply the values of any free variables
in the assertion language expression t. We will then be able to define the uuf of
Vu&, s:~y, in terms of the ual of &, for appropriate substantiations.

Let us be more precise. If ul, ~2, . . . , tbk are variables in DL and dl, 4, . . . , dk
are data objects, then the list

$: (ul +- dl,u2 + d2, . . . ,tik + dk)

is a substantiation. We do not assume that the variables ~1, ~2, . . . , UA;  are
distinct, and we do regard the order of the list as significant. We will say that
the variables ~1, ~2, . . . , uk are substantiated by @. We denote by ( ) the empty
substantiation, which substantiates no variables. If u is a variable, d is a data
object, and 1c) is as above, we denote by (u + d) o #J the eztended substantiation

(u +- d, u1 + dI, u2 + dz, . . . ) uk + dk).

Henceforth, we will regard ual as a situational function ual(s, t, $) of three
arguments: a state s, an expression t of AL, and a substantiation $. We consider
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the earlier notation vu@, t) with two arguments as an abbreviation for ual(s, t, ()),
where ( ) is the empty substantiation; i.e.,

<6.1> uul(s, t) = ual(s, t, ( )).

We define the language AL and the extended uul function according to the
following rules:

l As usual, in the undefined state LB,

for any expression t in AL and any substantiation $

l A constant c in DL is a constant of AL and is associated with a data object cd
in D. Thus,

<6.3> UC+ c, $) = Cd

for all (defined) states s and all substantiations $.

l All variables of DL are variables of AL. For distinct variables u and u in DL,

<6.4> uao, u, ( 1) =-Lcf

<6.5> uul(s,  u, (u +- d) 0 9) = d

<6.6> uul(s,  u, (u t d) 0 q) = uul(s,  u, 3)

for all (defined) states s, data objects d and substantiations tt). Note that if
a variable occurs more than once in a substantiation, the leftmost occurrence
predominates; e.g.,

vu@, u, (u t dl,u +- da+ +- da)) = dl.

On the other hand, if a variable in DL is not substantiated at all, its value is
undefined; thus if u is distinct from variables u and W, then

uuf(s,  u, (u +- dl, w +- dz)) =lde

l If x denotes an identifier in PL, then x is in AL and

<6.7> uel(s, x, $) = UC+, x )
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for all states s and substantiations $. Thus, the value of an identifier is independ-
* ent of the substantiation +.

. l A function symbol g in DL is a function symbol of AL and is associated with a
strict function gd over the set D of objects; thus

for all states s, expressions tr, t2, . . . , t, in AL, and substantiations q.

Similarly, a predicate symbol in DL is associated with a strict function over
the set D of objects; a similar definition applies.

l If f denotes a pure construct in PL , then f is a function symbol in AL and is
associated with a strict function /‘d over the set D of data objects (see <4.2>);
then

<6.9> u+, f(h, t2, l  l  ’ tn), ?q =

fcfbl(~, h, v% 44 t2, $1, ’ l l # 44 L Q))

for all states s, expressions tl, tz, . . . , t, in AL, and substantiations 9.

l The value of a logical expression of form 1P in AL is the negation of the value
of P; i.e.,

<6.10> u+, ‘P, *I e not(uul(s,  P, $))

for all states s and substantiations $.

l The value of a logical expression of form PA & in AL is the conjunction of the
values of P and &; i.e.,

<6.11> ds, P A Q, to) = uul(s,  P, $) and uul(s,  Q, JI).

The other logical connectives are treated similarly.

. l The value of a quantified expression VxP in AL (where z is a variable in DL
and P is a logical expression in AL) is true if the value of P is true regardless of
how we substantiate x; more precisely:

<6.12> uul(s, VzP, $) = true
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if, for every data object d, uaZ(s, P, (z + d) o $) = true

<6.13> uul(s, VzP, 9) = julse
if, for some data object d, vu@, P, (z + d) 0 $) = julse

<6.14> vu@, VzP,  +) =I_d otherwise

Note that the value of VxP will be undefined if P is undefined for some substan-
tiations but P is never false.

Because 3zP is logically equivalent to +z7p) the above definition suggests
a definition of ual(s, 3zP, @); i.e.,

<6.15> UC&, 3zP, 9) = UUl(8,  +2-P) 3).

l The value of the set constructor {u: P} in AL is a set of all data objects in D
that satisfy P; more precisely:

<6.16> vu@, {u: P}, $) = the set of all data objects d in D such that
vu@, P, (u + d) o 9) = true

If the domain language includes other constructs; then uuf must be extended
for them as well. Note that we do not include the “impure” constructs of the’
programming language PL, i.e., those constructs with side effects, in the assertion
language AL.

We will need the following simple properties of the extended uul operator.

l The value of an expression t in DL (which contains no identifiers of PL) is
independent of the state; i.e.,

<6.17> uuf(s, t, +) = uuZ(s’, t, $)

for all states s and 8’ and substantiations $J.

l The value of a static expression e in PL is independent of the substantiation;
i.e.,

<6.18> uul(8, e, yb) = vu+, e)

for all states s and substantiations $. These properties can be proved from
the definition of the extended vu1 operator by induction on the structure of the
substantiations and expressions.
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c. The 0 and 0 Operators

Now that we have extended uul to apply to expressions in the assertion
language, we can define two situational operators, o and 0, for expressing that
an assertion P holds in a state s:

<6.19>
true if uul(s, P) = true or ual(8, P) =ld

q (8, P) =
false if vu@, P) = false

In short, O(S, P) holds if P is not false in a.

<6.20> o(s, P) =
true if vu@, P) = true

false if vu@, P) = false or vu@, P) =ld

.

In short, O(s, P) holds if P is true in S. Note that ~3 and o are always true or
false; they are never undefined even if their arguments are. Furthermore, they
satisfy the usual dualities of modal logic:

<6.21> a(4 -4 = 1 o(s,P)

<6.22> oh +I = 1 o(s, P).

These operators are distinct from the [e]P and < e > P of dynamic logic (Pratt
[1976]) in that they are applied to states s rather than program segments 8.

Typically, the o operator is used to express the partial correctness of a
program, the o operator to express its total correctness. For example, to represent
a statement in Hoare’s logic of form

where e is a program segment, we write

if q (S, P) then q (S; e, Q) for all states 8.

This sentence expresses the partial correctness of the program segment e with
respect to the input assertion P and the output assertion Q; it is automatically
true if the program segment e fails to terminate; i.e., if s;e =1_#, because then

u~~(s;e, Q) =h
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and, therefore,

q (s;e, Q) = true,

by the definition of O, <6.19>.

On the other hand, to express the total correctness of e with respect to the
same assertions P and Q, we write

if O(s, P) then O(s;e, Q) for all states 8.



7. PROVING HOARE’S ASSIGNMENT AXIOM

We have now introduced the concepts necessary for expressing the classical
Hoare  assignment axiom and the restrictions under which it is true. One virtue of
this situational-calculus approach is that it allows us to formulate these restric-
tions explicitly in a mathematical language and to deal with them in the same
framework in which we conduct all our reasoning. In this section, we will prove
the “assignment theorem,” that the Hoare axiom is true under the appropriate
restrictions.

Usually the axiom is expressed as

{Pe(x+e)}x+e{P},

where P is an assertion, x is an identifier, and e is an expression in PL.  Recall
that P Q (x +- e) stands for the result of replacing all free occurrences of x in P
by e. The axiom indicates that if the assertion P 4(x + e) holds before executing,
the assignment x + e, and if the execution terminates, then the assertion P holds
afterwards.

Expressed in terms of the situational operator O, the axiom reads

<7.1> if O(s,  P 4(x +-- e))
then q (S;X + e, P)

for all states s, where EI(S, Q) means that the assertion Q is either true in 8 or
undefined in 8.

A. Problematic Phenomena

In the section on MOTIVATION, we have given many situations arising in
actual programming languages for which the above axiom is false. In this section
we will review those phenomena, and specify the restrictions for precluding them.

l the ezpression e must be static:

This restriction prohibits assignment statements such as

x + (y + 2).
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.

Such statements violate the assignment axiom. For example, suppose a=m is the
domain language equality predicate. Then, for a state 8 in which y = 1, it will
be true that

oh (Y = lb+-(Y W),

i.e.,

o(s, y = 1).

However, after executing the assignmeht,  y will be 2; i.e.,

q (8; ⌧ a= (y + 2),  y = 2);

SO it will be false that

q h ⌧ + (Y a= 2), Y = 11,

contradicting the axiom.

l P must be an assertion in the assertion language AL:

Otherwise, P might be a condition such as

“there exists an identifier whose value is 2.”

Here P contains no occurrences of x at all. Therefore, if 8 is a state in which x
is the only identifier whose value is 2, it is true that

i.e.,

q PI*

However, after executing the assignment x + 0, there is no identifier whose value
is 2; therefore, it is false that

o(s; x + 0, P),

contradicting the axiom.
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l x must not be an alias of any other identifier that occur8 in P:

For, suppose x and y are aliases, and s
we execute the assignment x + 1, y will be
true that

i. e.,

ok, (Y = 0) 4x e l)),

ob, Y = 01,

but false that

q (8;x + 1, y = o),

is a state in which y = 0. Then if
changed to 1. In other words, it is

contradicting the axiom.

l x must not be “pointed to” by any ezpreasion:

For, suppose a configuration such as the following exists in state 8;

Figure 7.1

In other words, the location p to which the identifier x is bound is the location
yielded by the evaluation of the identifier y. Then x and y both have the same
value, 0 in this case, because the store operator transmits the value (<3.7> and
<3.11>). If we execute the assignment x + 1, we indirectly alter the value of y,
to 1. In other words, it is true that

o(s, (Y = 0) 4x +- l)),
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i. e.,

q Y = 01,
but false that

o(s;x*  1, y=o),

contradicting the axiom. Thus, problems may arise if some identifier y in the
assertion P “points to” x.

Similar problems arise if x is “pointed to” by some identifier in the expression
e. For example, suppose that in state 8 above, instead of executing x + 1 we
execute x + y. Then the configuration in state 8; x + y is

Figure 7.2

7-l
Here, x is bound to a circular tree; although we have not yet defined the data
object represented by such a structure, it is certain that this object is not 0. Thus,
although it is true initially that

q (8, (X =? 0) 4x +- Yh

i. e.,

q h Y = 01,
it is not true that

o(s; x + y, x = o),

thereby contradicting the axiom. Here, a problem occurs because x was pointed
to by an identifier in e, not in P.
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Finally, problems can occur if x is “pointed to” by an expression other than
an identifier. For example, suppose that the following configuration occurs in
state 8:

Figure 7.3 lot
X- 01

store

I data

Here x is an identifier (whose value is 0), e is any static expression in PL that
contains no occurrence of x, and a is a structure location whose left descendant is
k~c(s,  x). The evaluation of the PL expression left(e) yields the location hC(8, x).
Thus, in this state, left(e) = 0. If we then execute the assignment x +r e, we
create the folloking configuration in 8; x * e

Figure 7.4
lot

Note that in this configuration left(e) # 0. Hence, while it is true that

q (s, (left(e) = 0) 4(x t e)),
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i.e., (because x does not occur in e),

q (8, left(e) = 0),

it does not follow that

O(s;  x’+ e, left(e) = 0),

contradicting the axiom.

Surprisingly enough, no damage is done if x is the alias of some other
identifier in e. For example, suppose that x and y are aliases, and 8 is a state in
which x (and y) are 0. Then, if we execute the assignment x + y+l, x (and y)
will both be changed to 1, In other words, it is true that

0(8, (X = 1) 4% e y+w,

i.e.,

q (8, y+l = l),

but it is also true that

as the axiom requires.

B. Accessibility

The informal notion of “pointing to” that we used casually in the last section,
will be formalized by introducing a concept of “accessibility” in the forthcoming
Part II of this paper, on data structures. Roughly speaking, we will say that a
location p is accessible  from a location at (in a given state) if there is some way
of reaching p from a by applying a possibly empty sequence of store operators or
other data structure operators. For example, consider the following configuration:
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Figure 7.5

store

1
k--l

Here, /3 is accessible from a, but 7 is not.

Some more examples: if p = store(s,  a) in a state 8, then B is accessible from
0 in s; and if /3 and Q are identical, then p is accessible from or. Furthermore, if
two identifiers w and x are aliases, then loc(s, x) is accessible from foc(s,  w).

An expression e in PL will be said to point to a location a (in a state 8) if a
is accessible (in s) from the location yieM(s,  e) yielded by the evaluation of e. On
the other hand, a location will be said to be isolated (in 6) if it is not pointed to by
any expression in PL. Note that it is possible for an identifier to have aliases but
still be bound to an isolated location; e.g., we may have kx(s, x) = (oc(s, y), for
two distinct identifiers x and y, where loc(s, x) is a storage location not accessible
from any location other than itself.

Although we do not actually define accessibility formally until the forthcom-
ing Part II, we can state the one “accessibility property” that we will need to
prove the assignment theorem. Then, in Part II, we will prove this property as a
lemma.

First, let us define a static assignment  to be any assignment x + e in which
e is a static expression.

Now, to illustrate the accessibility property assume that the following configuration
exists in state s:
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data

Figure 7.6

IOC
X-

1

store

I

Here, d is any location and foc(s,x) is a storage location. Then, if loc(s,x)  is
not accessible from cq a static assignment x + e cannot alter the data object
represented by 0.

In terms of our situational operators, this is expressed as follows.

Static  accessibility property: Suppose 8 is a state, x is a n
identifier, and e is a static expression in PL. If loc(s, x) is not
accessible from some location c)1 in state 8, then

<7.2> data(s; x + e, a) = data(s, a).

This is actually a special case of the following more general statement, which
applies to nonstatic expressions e as well.

Accessibility property: Suppose 8 is a state, x an identifier,
and e is any expression in PL. If loc(s,x) is not accessible
from some location a in state s;e, then

<7.3> data(s; x + e, a) = data(s; e, a), and

<7.4> loc(s, x) is not accessible from c1 in state 8; x + e.

c. Static Assignment Theorem

We are now is a position to state the restricted Hoare axiom as a theorem.
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Theorem (Static Assignment): Let 6 be a state, x an identifier, e a static expres-
sion in PL, and P an assertion in AL, such that
(a) x is not an alias of any other identifier that occurs in P; i.e., (oc(8, x) #

loc(s, w) for any identifier w distinct from x that occurs in P.
(b) loc(s,x) is isolated.

Then we have

<7.5> if O(s,  P-(x +- e))
then q (S; x + e, P),

The restriction (b) above is stronger than necessary, but it eliminates with
a single stroke all the problematic phenomena we discussed involving expressions
pointing to loc(s, x).

The proof of the theorem relies directly on the following lemma.

Lemma (static assignment): Let s be a state, x an identifier, e a static expression
in PL, t an expression in AL, and tl) a substantiation such that
(a) x is not an alias of any other identifier that occurs in t,
(b) loc(s, x) is isolated.

Then we have

<7.6> if uuf(s; x + e, 4 54 #lA
then ua;l(s;  x + e, t, $) = ual(s,  t 0(x + e), $).

Intuitively, the lemma asserts that, under suitable restrictions, the value of
the expression t after executing the assignment will be the same as the value
of t’ before, where t’ is the expression obtained from t by replacing every free
occurrence of x by e. The third substantiation argument tl) is included to allow
for the possibility that t contains free occurrences of variables from the domain
language DL. The condition urzl(s; x + e, t, $) #l_d avoids the situation in which
e contains some identifiers whose value is undefined in s; i.e., uuf(6,e) =ld; for
then s; x + e =Ls. Otherwise, if the identifier x does not occur in t and t is
defined in 6, it could happen that

because x does not occur in t, but

uul(s;  x * e, t, *) = u41_*, t, Itr) =Li*
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Lemmu * Theorem: To see that the lemma implies the theorem, assume 8, X,

e, and P satisfy the restrictions of the theorem, and that

O(8, P 4(x + e))

is true; i.e., either

vu@, P Q (x 4- e), ( )) = true

or

by the definition of the o operator <6.19> and the extension of uul to the
assertion language <6.1>.

We distinguish between two cases:

Case:  uul(s; x + e, p, (11 =JA* Then the desired conclusion

q (s; x + e, P)

is true, by <6.1> and <6.19>, again.

Case: ual(s;  x + e, p, ( 11 #J-d* Then by the lemma (taking t to be P),

vu@; x + e, P, ( )) = uuf(s,  P a(% 4- e), ( )).

But we know that

uuf(s,  Pa(x t- e),( )) = tfue or
vu@, p-(x + 4, ( )) =Ldr

and therefore

uul(s; x + e, P, ( )) = true or
uul(s;  x + e, P, ( )) =_Ld.

In either case, the desired conclusion

O(8; x + e, P)
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is true, again by <6.1>  and <6.19>. m

It remains to prove the lemma. The proof depends on the following proposi-
tion.

Proposition (static assignment): Suppose 8 is a state, x is an identifier, and e is
a static expression in PL, such that Ioc(8,x) is a storage location, i.e.,

isstore(s,  loc(s, x)).

and that the execution of the assignment x + e is defined, i.e.,

s;x+e#_Ls.

Then

l The location bound to any identifier is unchanged by a static assignment; i.e.,

<7.7> loc(s; x + e, y) = loc(s, y) for all identifiers y

l Whether a location is a storage location is unaffected by a static assignment;
i.e.,

<7.8> isstore(s; x + e, a) if and only if isstore(e,  a) for all locations a.

l The location yielded by evaluating x after executing the static assignment ⌧ * e
is the same as the location yielded by evaluating e before; i.e.,

<7.9> yield(s; x + e, x) = yield(s, e).

0 Suppose, in addition, that x is not pointed to by an expression in PL, i.e.,

loc(s, x) is isolated,

and that y is an identifier not an alias of x, i.e.,

loc(s, x) # loc(s, y).
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Then the location yielded by the evaluation of y is unaltered by the assignment;
i.e.,

<7.10> yield(s;  x + e, y) = yield(8, y).

l Futhermore, the value of x after executing the assignment is the same as the
value of e before; i.e.,

<7.11> uuf(s; x + e, x) = uul(s,  e)

* Proposition ---I  Lemma: The proof of the lemma is by induction on the structure
of t. In other words, we assume inductively that the lemma holds for every
proper subexpression ti of t.

Let us suppose that the restrictions of the lemma are satisfied for t; thus
( 1a x is not an alias of any other identifier that occurs in t; i.e.,

loc(s, x) # foc(s, w) for all identifiers w in t such that w # x.

(b) loc(s, x) is isolated; i.e.,

loc(s, x) is not accessible from (oc(s,  e’), for any expression e’ in PL.

Therefore, foc(s,  x) satisfies the static accessibility property <7.2> :

dutu(s;x + e, a) = dutu(s,  a)

for every location 0 such that CL # loc(s,x).

Let us suppose also that

It follows that the states we are concerned with are also defined; i.e.,

s#ls a n d  s;x+e#18

and that foc(s,x)  is a storage location; i.e., .

isstore(s, loc(s, x)).
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For otherwise, by the illegal axiom for assignment <5.9>,

s;x+e=_Ls.

We attempt to derive the desired conclusion, that

uul(s;  x + e, t, $) = uul(s, t 4(x + e), $).

The proof distinguishes between several cases, depending on the structure of t.

Cuse: t is an ezpression  in the domain lunguuge  DL. Then t contains no
identifiers of the programming language PL, and t a(x + e) is t itself. Our
desired conclusion reduces to

uul(s;  x + e, t, *) = vu+, t, @).

But this is true, because the value of any expression in DL is independent of the
state <6.17>.

Case: t is the identifier x itself. Then t 4(x + e) is simply e, and our desired
conclusion is

uul(s;  x + e, x, @) = uul(s, e, q).

Here, x and e are static expressions, which contain no domain language variables;
therefore, by < 6.18 >, their values are independent of the substantiation 9, and
our desired conclusion reduces to

uuf(s; x + e, x) = uul(s, e)

But this is precisely the fifth part of the static assignment proposition <X11>.

Case; t is un identifier y distinct from x. Then t 4(x + e) is simply y, and
our desired conclusion is

--

Because y is a static expression, its value is independent of the substantiation
@, by <6.2 >. In other words, our conclusion reduces to

uul(s; x + e, y) = uul(s,  y),



66 PROVING HOARE’S ASSIGNMENT AXIOM

i.e., (by the definition of value <3.10>),

dutu(s;  x + e, yield(s; x + e, y)) = dutu(s, yiefd(s, y)).

But

dutu(s;  x + e, yield(s; x + e, y)) = dutu(s;  x + e, yield(s,  y))
by the static assignment
proposition < 7.7 >

= dutu(s, yield(s, y))
by the static accessibility
property <7.2 > .

Note that in this last step we have relied on the fact that Ioc(8, x) is isolated, and
therefore not accessible from yiefd(s, y).

Case: t is ofform  f(tl, t2, . . . I t,J, where f is u pure construct in the program-
ming language PL, and. tl, t2, . . . t, 4re ezpressions in the assertion language AL.
Then our desired conclusion is

u+; x + e, f@l, t2, l ’ l 1 tn), $1

= u+, f(h) t2, l  l  l  I tn) 4% + 4, 91,

i.e. (by properties of substitution),

vu@;  x + e, f(tl, t2, . . . , tn), $) = uul(s,f(t~ 4(x + e),
t24x+e),

.

ha ,ix + 4, $1

But, by the extension of the uul operator to the assertion language <6.9>, this
amounts to showing that

fd(uu@; x + e, tl, @)

uul(s;  x + e, t2, *)
...
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vu+; x + e, trb, $1)
= fd(u+, tl =‘(x + e), $1,

uu@, t2 4% + 4, $1,

ual(s, tn a(% + 4, $))*
But this is true, because tl, t2, . . . , t, are all subexpressions of t; hence, by the
induction hypothesis, we have

uul(s;  x + e, ti, *) = uul(s, tj a(x + e), ~6) for i = 1,2, . . . ) n.

Note that we are justified in applying the induction hypothesis in this case:
That Conditions (a) and (b) are satisfied is straightforward. Furthermore, we have
assumed in the statement of the lemma that

uul(s;x + e, t, 9) #si.sd

i.e.,

uul(s; x + e, f(h, t2, . . . I L), $) ykLde

By the extension of the uuf operator to the assertion language <6.9>,  this means
that

jdb@; x + % tl, $1,

ua@; x + e, t2, 3%

Uul(s; X + e, tn, +)) #Ld l

It follows, because we have assumed in <4.2> that fd is a strict function over
the domain, that

U+; X + e, ti, +) #ld

for each i, i = 1,2, . . . , n. But this is precisely the condition for applying the
induction hypothesis of the lemma.

The cases in which t is a logical expression of form p(tl, t2, . . . , tn), tl A ta A
. . . A t,,  t1 v t2 v 0� l v t,, +‘, etc., are similar to the above case.
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Case: t is ojform (Vw)t’. Then, because t’ is a proper subexpression of t, our
induction hypothesis tell us that

if ual(d; % + e, t’, $‘) #ld
then ual(s; x + e, t’, $‘) = uuf(s,  t’a(x + e), 9’)

for any s, x, e, and J/J’ satisfying the conditions of the lemma. (Note that we
have renamed the dummy variable tl) to be $’ to avoid confusion with the $J in
the conclusion of the lemma).

We would like to show that

uul(s; x + e, (VW)*,  $) = uul(8, ((Vw)t’) 4(x + e), JI),

i.e. (by properties of substitution),

uul(s;  x + e, (VW)& *) = ual(s, (Qw)(*  + + e)), $)-

We consider two possible subcases:

Subcuse:  uul(s;  x + e, (Vw)t’,  $) = true. Then, by the extension of the uol
operator to the assertion language <6.12>,

uul(s;x  + e, t’, (w + d) 0 $) = true

for every data object d. Therefore, surely,

Ud(S;x  + e ,  t', (W + d)qh)#_Ld

for every data object d. Hence, we can apply our induction hypothesis (taking 9’
to be (w + d) o $J) to deduce that

uuZ(s, t' 4(x + e), (w + d)o $) = true

for every data object d. It follows (by the extension of the uul operator to the
assertion language <6.12> again) that

uui(s,  (Vw)(t’  4(x + e)), *) = true.

Subcuse :  ual(s; x + e, (Vw)t’,  e) = false. Then, by the extension of the uol
operator to the assertion language <6.13>,

bul(s; x + e, t’, (w + do) o @) = false
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for some data object &. Therefore, surely for that data object

ouZ(s;  x + e, P, (w + do) 0 $) #Lb

Hence, we can apply our induction hypothesis (taking $’ to be (w + 6) 0 $) to
deduce that

uaf(s, t’ Q(X t e), (w + do) 0 +) = false

It follows, (by the extension of the ualoperator to the assertion language <6.13>,
again), that

t.mf(s,  (Vw)(t’ 4(x + e)), +) = fulse.

In both subcases we have shown that

vul(s; x + e, (VW)*, *) = vul(s,  (VW)(t’  + + e)), lb);

a third conceivable subcase, in which

is excluded by the hypothesis of the lemma.

The case in which t is of form (3w)t’  is similar to the above case and employs
the equivalence between (3w)t’ and l(Vw)+‘.  The case in which t is a set
constructor of form {w: t’} is also similar, and employs the extension of uaf to set
constructors <6.16>, i.e.,

uuz(s, {w: t’}, 9) = the set of all data objects in D such that
uul(s, P, (w t d) 0 yb) = true

If the assertion language includes other constructs, then the lemma must
also be proved for these constructs, using the corresponding extension of the uol
operator. I

This concludes the proof of the lemma. We still must prove the proposition.
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Proof of Proposition:
.

Suppose that s is a state, x is an identifier, and e is a static expression in
PL such that

isstore(s,  Zoc(s,  x)) and
s;x+e#l_,.

It follows, by the illegal axiom for assignment < 5.9>, that

isstore(s, loc(s, x))

and, by the undefined axiom for assignment <5.10>,  that

s;e #L

and hence, by <3.13>,  that

We would like to prove the following five properties:

0 Zoc(s;  x + e, y) = loc(s, y) for all identifiers y.

But,

foc(s;  x * e, Y)’ ww Y)
by the frame axiom for assignment <5.2>

= loc(s, y)
by the static expression lemma <4.3> and
the properties of indistinguishability < 3.15 >

0 isstore(s;  x + e, 4!) if and only if isstore(s, e) for all locations C.

The proof is similar, by the’frame axiom for assignment <5.6>,  the static-
expression lemma < 4.3 > , and the definition of indistinguishability ,< 3.20 > .

0 yield(s; x + e, x) = yield(s, e).

Note that, because we have supposed that

isstore(s, loc(s,  x)),
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it follows, by the first two parts of this proposition, <7.7>  and <7.8>, that

isstore(s; x + e, loc(s; x + e, x)).

But then

yield(s; x + e, x)= store(s; x + e, loc(s;  x + e, x))
by the definition of the
yield operator for identifiers <3.9>,

= store(s; x + e, loc(s,  x))
by the first part of this proposition <7.7>

= yield(s, e)
by the principal assignment axiom < 5.1>.

l Suppose that, in addition, loc(s,x) is isolated, and that y is an identifier such
that

loc(s, x) # loc(s, y).

We would like to show that

yield(s;  x + e, y) = yield(s, y).

The proof distinguishes between two cases, depending on whether or not y
is bound to a storage location. (If y is bound to the undefined location, the
conclusion follows from the strictness of the situational operators.)

Cuse. isstore(s,  loc(s,  y)). It follows that

isstore(s; x + e, loc(s; x + e, y)),

by the first two parts, <7.7> and <7.8>,  of this proposition. By the definition
of the yield operator <3.9>,  in this case, our desired conclusion reduces to

store(s;  x + e, loc(s; x + e, y)) = store(s,  loc(8,  y)).

But,

store(s; x + e, foc(s;  x + e, y)
= store(s; x + e, ws, Y))

by the first part <7.7> of this proposition
= store(s;e, foc(s, y))

by the frame axiom for assignment < 5.3>
= store(s, Zoc(s, y )

by the static expression lemma < 4.3>
and the definition of indistinguishability
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Cuse, not isstore(s,  foc(s,  y)). It follows that

not isstor e(s; x + e, foc(s;  x + e, y))

by the first two parts of this proposition, <7.7>  and <7.8>.  It also follows, by
<3.3>, that y is bound to a data location or a structure location in both state
8 and state s; x + e. By the definition of the yield operator in this case <3.8>,
our desired conclusion reduces to simply

loc( s; x + e, y) = loc(s, y),

which is the first part <7.7> of this proposition.

0 Suppose again that loc(s,  x) is isolated. We want to show that

uul(s;  x + e, x) = uul(s,  e).

By the corollary <4.3>  to the static expression lemma, our desired conclusion
in this case reduces to

dutu(s; x + e, yield(s; x + e, x) = dutu(s, yield(s, e)),

because x and e are both static expressions. But

dutu(s; x + e, yield(s; x * e, x))
= dutu(s;  x * e, yield(s, e))

by part <7.9> of this pioposition
= dutu(s,  yield(s, e))

by the static-accessibility
property <7.2>,
because loc(s, z)) is isolated

This concludes the proof of the proposition.

We have shown in this section that, if an appropriate set of restrictions is
satisfied, the Hoare assignment axiom is true and can be proved as a theorem.
In some simple programming languages these restrictions will always be satisfied
and we can apply the assignment theorem with no second thoughts. In the
more complex programming languages we find in practice, we can still apply the
theorem if we can manage to prove that the restrictions are satisfied.

In languages for which the Hoare axiom does hold, the complexity of deduc-
tions will be greatly reduced by application of the above theorem. In general, for
languages with similarly regular properties, we can shorten proofs by establishing
these properties as theorems. The full power of the situational calculus is required
only for languages without such regular properties.

In the next section, we will deal with a more powerful class of expressions
for which the assignment theorem does not hold.
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Now let us consider the class of “assignment expressions” obtained by freely
intermixing the assignment operation and the pure constructs. This class is a
subclass of the expressions allowed in several programming languages, such as the
ALGOL dialects and LISP.

More precisely, we define the assignment ezpressiona by the following rules:

l Any identifier x in PL is an assignment expression.

l If f is a pure construct and el, es, . . . , e, are assignment expressions, then
f(el, e2, . . . , en) is an assignment expression.

l If x is an identifier and e is an assignment expression, then x + e is an assignment
expression.

l If et, e2, . . . , e, are assignment expressions, then el; eat . . . ; en is an assign-
ment expression.

For example,

x a= ((y + z);(x + (x+1)))  + (y @= (z-l)) + 2

is an assignment expression.

Thus, in an assignment expression one assignment statement may occur on
the right-hand side of another. For this reason, the Hoare axiom fails to hold for
general assignment expressions. However, we can prove the following proposition,
which allows us to shorten many deductions concernieg assignment expressions.

First, let us define a Zelt identifier of an expression e to be one that occurs
on the left-hand side of an assignment in e , and a right identifier to be one that
occurs anywhere else. Thus, in the above example, x and y are left identifiers,
and x and z .are right identifiers. Note that the same identifier can be both a left
and a right identifier.

Proposition (assignment ezpression): Suppose s is a state, x an identifier, and e
and e’ are assignment expressions in PL, such that x is not pointed to by
any expression in PL, i.e.,

foc(s, x) is isolated,
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and the evaluation of the assignment x * e is defined, i.e.,

s;x+e#_Ls.

Then we have

0 principal assignment

<8.1> vul(s; x + e, y) = vul(s, e)

if y is an alias of x , i.e., if loc(s, x) = loc(s, y);

0 value of assignment

<8.2> vul(s,  x + e) = vul(s, e);

0 frame’ assignment

<8.3> uul(s;  x + e, e’) = uul(s;  8, e’)

if, for every right identifier z of e’, foc(s,  x) # foc(s,z)

0 frume  ezpression

<8.4> vul(s;  e, e’) = uul(s,  e’)

if, for every left identifier y in e and every right identifier z in e’, loc(s, y) #
loc(s, z) and loc(s,  y) is isolated.

We are not going to prove this proposition; the argument is reminiscent of
the previous section. However, we will present some counterexamples to indicate
why the restrictions on this proposition are required.

Let us suppose that the following configuration exists in state 8:

Figure 8.1 I store

lot c3
x-

T

store

y+o
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Here loc(s, x) is not an isolated location, and the value of z is 0, i.e.,

ual(s, 2) = 0.

If we execute the assignment x * z in this state, we create the configuration
illustrated below:

Figure 8.2 store

Here the identifier x is bound to a looping data structure. We have not yet defined
the data object represented by a looping data structure, but it is fair to assume
that

ual(s; x + 2, x) # 0.

In other words, we have obtained a contradiction to the conclusion of the principal
assignment proposition ual(s; x + e, y) = uaf(s, e) <8.1> by taking e to be z
and y to be x . Similar contradictions are obtained from this example for the
conclusions to the other parts of the assignment expression proposition. In fact,
any configuration in which an identifier is assigned a structure that points, however
indirectly, to that identifier will lead to counterexamples to the proposition.

Another counterexample: the conclusion of the frame expression proposition,
uul(s; e, e’) = uuf(s, e’), <8.4>,  is contradicted immediately if we take e to be
x * x + 1 and e’ to be x; i.e.,

ual(s; x + x + 1, x) # ual(s, x).

Here a condition for the proposition was violated because a left identifier x of e
is an alias of a right identifier x of e’ (in fact, they are identical).
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Eza mple:
.

Let us use the assignment expression proposition to characterize the effect of
the assignment expression

x + NY + (y+z))  + xl,

in a state s in which the identifiers x and y are bound to isolated storage
locations that represent numerical values: We suppose that uaZ(s,  2) = 2 and
that the programming language construct + is a pure construct associated with the
ordinary function + over the numbers. (Thus we ignore the vagaries of computer
arithmetic.).

(a) ual(s; x + ((y + (y + 2)) + x), x) = uul(s,  x) + ual(s, y) + 2
if loc(s, x) # loc(s, y)

(b) uul(s; x + ((y + (Y + 2 )) + x), y) = uaf(s, y) + 2
if foc(s,  x) # foc(s, y)

(c) ua@; x + ((y + (Y + 2 )) + x), x)
= uul(s; x + ((y + (y + 2)) + x), y) = 2 l uuf(8,y)  + 4
if :foc(s, x) = loc(s,  y).

We will prove both (a) and (c); the proof of (b) is similar.

Proof of (a): We assume loc(s,  x) # loc(s, y). Then

u+; x + ((y + (y + 2)) + x). x)

= ua@, NY + (Y + 2)) + 4)
by the principal assignment proposition <8.1>

= uul(s, y + (y + 2)) + uul(s;y  + (y + 2), x)
by the pure-value axiom <4.2>

= uul(s,  y + 2) + ual(s; y + (y + 2), x)
by the value of assignment proposition <8.2 >

= ual(s, y) + uul(s, 2) + ual(s; y + (y + 2), x)
by the corollary to the static-expression lemma <4.5>

= ual(s, y) + 2 + uaZ(s; y + (y + 2), x)
by our supposition
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= ual(s, y) + 2 + uaZ(s,  x)

h by the frame expression proposition C8.4 >
because loc(s, y) # foc(s,  x) and loc(s, y) is isolated.

Proof of (c): We assume loc(s,x) = loc(s,y). Then

uczl(s; x + ((y + (y + 2)) + x), x)
= ual(s, y) + 2 + ual(s;  y + (y + 2), x)

as in the proof of (a)

= ual(s, y) + 2 + uaf(s,y  + 2)
by the principal assignment proposition <8.1>,
since foc(s,  x) = loc(s, y)

= uqs, Y) + 2 + ual(s, Y) + 2
as in the proof of (a)

= 2 l uul(s,y) + 4

. These computations are tedious, but purely mechanical. 1



DISCUSSION .

This concludes our treatment of the simple assignment statement; in Parts
II and III of this paper we will apply the same approach to data structures and
procedure calls. We will defer a full discussion of this approach and a comparison
with other approaches until the end of Part III. At this point, however, we can say
a few words comparing the situational calculus to both early and contemporary
work in the description of programming languages.

The situational calculus was employed by McCarthy [1962] and Burstall
119691  to describe subsets of ALGOL-60. However, the approach has not been .
further developed or pursued in program verification systems, perhaps because of
the apparent relative simplicity of the Floyd/Hoare approach.

The denotational approach of Scott and Strachey (see, e.g., Gordon (1979))
resembles the situational-calculus approach in scope. In the denotational ap-
preach,  the meaning of a program is represented by a formula of the lambda
calculus, whose treatment involves the manipulation of lambda expressions. The
situational calculus avoids such expressions, and can therefore exploit such first-
order theorem-proving techniques as unification. For this reason, we find the
situational calculus more amenable to implementation in automatic verification
and synthesis systems.
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