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1. Introduction - The Qualification Problem

. (McCarthy 1960) proposed a program with “common sense” that would represent what it
knows (mainly) by sentences in a suitable logical language. It would decide what to do by
deducing a conclusion that it should perform a certain act. Performing the act would create a new
situation, and it would again decide what to do. This requires representing both knowledge about
the particular situation and general common sense knowledge as sentences of logic.

The “qualification problem”, immediately arose in representing general common sense
knowledge. It seemed that in order to fully represent the conditions for the successful performance
of an action, an impractical and implausible number of qualifications would have to be included
in the sentences expressing them, For example, the successful use of a boat to cross a river
requires, if the boat is a rowboat, that the oars and rowlocks be present and unbroken, and that
they fit each other. Many other qualifications can be added, making the rules for using a
rowboat almost impossible to apply, and yet anyone will still be able to think of additional
requirements not yet stated.

Circumscription is a rule of conjecture that can be used by a person or program for
“jumping to certain conclusions”. Namely, the objects that can be shown to have a certain property
P by reasoning from certain facts A are all the objects that satisfy P. More generally,
circumscription can be used to conjecture that the tuples cx, y . . . , z> that can be shown to satisfy
a relation P(x, y, . . . , z) are all the tuples satisfying this relation. Thus we circumscribe the set of
relevant tuples.

We can postulate that a boat can be used to cross a river unless “something” prevents it.
Then circumscription may be used to conjecture that the only entities that can prevent the use of
the boat are those whose existence follows from the facts at hand. If no lack of oars or other
circumstance preventing boat use is deducible, then the boat is concluded to be usable. The
correctness of this conclusion depends on our having “taken into account” all relevant facts when
we made the circumscription.

Circumscription formalizes several processes of human informal reasoning. For example,
common sense reasoning is ordinarily ready to jump to the conclusion that a tool can be used for
its intended purpose unless something prevents its use. Considered purely extensionally, such a
statement conveys no information; it seems merely to assert that a tool can be used for its intended
purpose unless it can’t. Heuristically, the statement is not just a tautologous disjunction; it suggests
forming a plan to use the tool.

Even when a program does not reach its conclusions by manipulating sentences in a formal
language, we can often profitably analyze its behavior by considering it to believe certain sentences
when it is in certain states, and we can study how these ascribed beliefs change with time. See
(McCarthy 1919a).  When we do such  analybes,  we again discover  that successful  people  and
programs must jump to such conclusions.

.

2. The Need for Non-Monotonic Reasoning

We cannot get circumscriptive reasoning capability by adding sentences to an
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axiomatization or by adding an ordinary  rule of inference to mathematical logic. This is because
the well known systems of mathemattal logic have the following monotonicity property. If a
sentence q follows from a collection A of sentences and A c B, then q follows from B. In the
notation of proof theory: if A k q and A c B, then B l- q. Indeed a proof from the premisses A is
a sequence of sentences each of which is a either a premiss, an axiom or follows from a subset of
the sentences occurring earlier in the proof by one of the rules of inference. Therefore, a proof
from A can also serve as a proof from B. The semantic notion of entailment is also monotonic; we
say that A entails q (written R r= q) i’ q is true in all models of A. But if A b q and A c B, then
every model of B is also a model of 1, which shows that B B= q.

Circumscription is a formaliztd rule of conjecture that can be used along with the rules of
inference of first order logic. Pzdicate  circumscription assumes that entities satisfy a given
predicate only if they have to 01 the basis of a collection of facts. Domain circumscription
conjectures that the “known” entities are all there are. It turns out that domain circumscription,
previously called minimal inferencr, can be subsumed under predicate circumscription.

We will argue using examples that humans use such “non-monotonic” reasoning and that it
is required for intelligent behavior. The default case reasoning of many computer programs
(Reiter 1980) and the use of THNOT in MICROPLANNER (Sussman, et. al. 1931) programs
are also examples of non-monXonic  reasoning, but possibly of a different kind from those
discussed in this paper. (Hewitt 19’12)  gives the basic ideas of the PLANNER approach.

.

The result of applying circumscription to a collection A of facts is a sentence schema that
asserts that the only tuples satisfying a predicate P(x, . . . , Z) are those whose doing so follows
from the sentences of A. Sine adding more sentences to A might make P applicable to more
tuples, circumscription is not monotonic. Conclusions derived from circumscription are
conjectures that A includes all :he relevant facts and that the objects whose existence follows from
A are all the relevant objects.

A heuristic program nught  use circumscription in various ways. Suppose it circumscribes
some facts and makes a plan on the basis of the conclusions reached. It might immediately carry
out the plan, or be more cautious and look for additional facts that might require modifying it.

Before introducing tti formalism, we informally discuss a well known problem whose
solution seems to involve sum non-monotonic reasoning.

3. Missionaries and Catrnibak

The Missionaries anl Cannibals puzzle, much used in AI, contains more than enough detail
to illustrate many of the isues.

“Three missionaries and three cannibals come to a river. A rowboat that seats true is
available. If the cannib& ever outnumber the missionaries on either bank of the river, the
missionaries will be eaten. How shall they cross the river?“.

Obviously the puzler is expected to devise a strategy of rowing the boat back and forth
that gets them all across ;nd avoids the disaster.
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Amarel (1970 considered several representations of the problem and discussed criteria
whe<eby  the following representation is preferred for purposes of AI, because it leads to the
smallest  state space that must be explored to find the solution. A state is a triple comprising the
numbers  of missionaries, cannibals and boats on the starting bank of the river. The initial state
iv 331, the desired final state is 000, and one solution is given by the sequence
,~31,220,321,300,31  I,1 10,!221,020,031,010,021,000).

We are not presently concerned with, the heuristics of the problem but rather with the
correctness of the reasoning that goes from the English statement of the problem to Amarel’s state
space representation. A generally intelligent computer program should be able to carry out this
reasoning. Of course, there are the well known difficulties in making computers understand
English, but suppose the English sentences describing the problem have already been rather
directly translated into first order logic. The correctness of Amarel’s representation is not an
ordinary lc@cal  consequence of these sentences for two further reasons.

First, nothing has been stated about the properties of boats or even the fact that rowing
across the river doesn’t change the numbers of missionaries or cannibals or the capacity of the
boat. Indeed it hasn’t been stated that situations change as a result of action. These facts follow
from common sense knowledge, so let us imagine that common sense knowledge, or at least the
relevant part of it, is also expressed in first order logic.

The second reason we can’t deduce the propriety of Amarel’s representation is deeper.
Imagine giving someone the problem, and after he puzzles for a while, he suggests going upstream
half a mile and crossing on a bridge. “What bridge”, you say. “NO bridge is mentioned in the
statement of the problem.” And this dunce replies, “Well, they don’t say there isn’t a bridge”. You
look at the English and even at the translation of the English into first order logic, and you must
admit that “they don’t say” there is no bridge. So you modify the problem to exclude bridges and
pose it again, and the dunce proposes a helicopter, and after you exclude that, he proposes a
winged horse or that the others hang onto the outside of the boat while two row.

YOU now see that while a dunce, he is an inventive dunce. Despairing of getting him to
accept the problem in the proper puzzler’s spirit, you tell him the solution. To your further
annoyance, he attacks your solution on the grounds that the boat might have a leak or lack oars.
After you rectify that omission from the statement of the problem, he suggests that a sea monster
may swim up the river and may swallow the boat. Again you are frustrated, and you look for a
mode of reasoning that will settle his hash once and for all.

In spite of our irritation with the dunce, it would be cheating to put into the statement of
the problem that there is no other way to cross the river than using the boat and that nothing can
go wrong with the boat. A human doesn’t need such an ad hoc narrowing of the problem, and
indeed the only watertight way to do it might amount to specifying the Amarel representation in
English. Rather we want to avoid the excessive qualification and get the Amarel representation
by common sense reasoning as humans ordinarily do.

.

t

Circumscription is one candidate for accomplishing this. It will allow us to conjecture that
no relevant objects exist in certain categories except those whose existence follows from the
statement of the problem and common sense knowledge. When we circumscribe the first order
logic statement of- the problem together with the common sense facts about boats etc., we will be
able to conclude that there is no bridge or helicopter. “Aha”,  you say, “but there won’t LU *trry
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oars either”. No, we get out of that as follows: It is a part of common knowledge that a boat can
be used to cross a river unless there is something wrong with it or something else prevents using it,
and if our facts don’t require that there be something that prevents crossing the river,
circumscription will generate the conjecture that there isn’t. The price is introducing as entities in
our language the “somethings” that may prevent the use of the boat.

If the statement of the problem were extended to mention a bridge, then the circumscription
of the problem statement would no longer permit showing the non-existence of a bridge, i.e. a
conclusion that can be drawn from a smaller collection of facts can no longer be drawn from a
larger. This non-monotonic character of circumscription is just what we want for this kind of
problem. The statement, “There is a bridge a mile upstream, and the boat has a leak .” doesn’t
contradict the text of the problem, but its addition invalidates the Amarel representation.

In the usual sort of puzzle, there is a convention that there are no additional objects beyond
those .mentioned  in the puzzle or whose existence is deducible from the puzzle and common sense
knowledge. The convention can be explicated as applying circumscription to the puzzle statement
and a certain part of common sense knowledge. However, if one really were sitting by a river
bank and these six people came by and posed their problem, one wouldn’t take the
circumscription for granted, but one would consider the result of circumscription as a hypothesis.
In puzzles, circumscription seems to be a rule of inference, while in life it is a rule of conjecture.

Some have suggested that the difficulties might be avoided by introducing probabilities.
They suggest that the existence of a bridge is improbable. The whole situation involving
cannibals with the postulated properties cannot be regarded as having a probability, so it is hard
to take seriously the conditional probability of a bridge given the hypotheses. More to the point,
we mentally propose to ourselves the normal non-bridge non-sea-monster interpretation bcfors
considering these extraneous possibilities, let alone their probabilities, i.e. we usually don’t even
introduce the sample space in which these possibilities are assigned whatever probabilities one
might consider them to have. Therefore, regardless of our knowledge of probabilities, we need a
way of formulating the normal situation from the statement of the facts, and non-monotonic
reasoning seems to be required. The same considerations seem to apply to fuzzy logic.

Using circumscription requires that common sense knowledge be expressed in a form that
says a boat can be used to cross rivers unless there is something that prevents its use. In
particular, it looks like we must introduce into our ontology (the things that exist) a category that
includes something wrong with a boat or a category that includes something that may prevent its
tlse. Incidentally, once we have decided to admit something wrong with the boat, we are inclined to
admit a lack of oars as such a something and to ask questions like, “Is a lack of oars all that is
wrong with the boat?“.

Some philosophers and scientists may be reluctant to introduce such things, but since
ordinary language allows “something wrong with the boat” we shouldn’t be hasty in excluding it.
Making a suitable formalism is likely to be technically difficult as well as philosophically
problematical, but we must try.

We challenge anyone who thinks he can avoid such  entities to express in his favorite
formalism, “Besides leakiness, there is something else wrong with the boat”. A good solution would
avoid counterfactuals as this one does.
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Circumscription may help understand natural language, because if the use of natural
language involves something like circumscription, it is understandable that the expression of
general common sense facts in natural language will be difficult without some form of non-
monotonic reasoning.

4. The Formalism of Circumscription

Let R be a sentence of first order logic containing a predicate symbol P(xr , . . . , x,) which
we will write P(E). We write A(@) for the result of replacing all occurrences of P in A by the
predicate expression @. (As well as predicate symbols, suitable X-expressions are allowed as
predicate expressions).

Definition: The circumscription of P in A(P) is the sentence schema

1) A(@) A VZ.(@,(F)  3 P(z)) =) VX.(P(z)  3 @(x3).

(1) can be regarded as asserting that the only tuples (3 that satisfy P are those that have to
- assuming the sentence A. Namely, (1) contains a predicate parameter..@ for which we may
subsitute an arbitrary predicate expression. (If we were using second order iogic,  there would be a
quantifier V@ in front of (1)). Since (I) is an implication, we can assume both conjuncts  on the
left, and (1) lets us conclude the sentence on the right. The first conjunct A(@) expresses the
assumption that * satisfies the conditions satisfied by P, and the second VX.(@(Z)  3 P(F)>
expresses the assumption that the entities satisfying @J are a subset of those that satisfy P. The
conclusion asserts the converse of the second conjunct which tells us that in this case, @ and P
must coincide.

We write A l-P q if the sentence q can be obtained by deduction from the result of
circumscribing P in A. As we shall see I-p is a non-monotonic form of inference, which we S!I ‘3 I’
call circumscriptive  Inference.

A slight generalization allows circumscribing several predicates jointly; thus jointly
circumscribing P and Q in A(P, 0) leads to

in which we can simultaneously substitute for @ and q. The relation A l-p,o  q is defined in a
corresponding way. Although we don’t give examples of joint circumscription in this paper, we
believe it will be important in some AI applications.

Consider the following examples:

1. In the blocks world, the sentence A may be

3) isblock A A isbiock  B A isblock C

asserting that A, B and C are blocks, Circumscribing isblock  in (3) gives the schema

4) @(A) A a(B) A a(c) A vX.(@(X) 3 isblock x )  3 Vx.(isblock  x 3 a(x)).
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If we now substitute

5) a(x) E (x = A v x - B v x = C)

into (4) and use (3), the left side of the implication is seen to be true, and this gives

6) v#.(isbhck  x 3 (x - A v x - B v x - C)),

which asserts that the only bloc&s are A, B and C, i.e. just those objects that (3) requires to be
blocks. This example is rather trivial, because (3) provides no way of generating new blocks from
old ones. However, it shows that circumscriptive inference is non-monotonic since if we adjoin
isblock  D to (3),  we will no longer be able to infer (6).

2. Circumscribing the disjunction

isblock A v irblock B

leads to

8) (@(A)  v G(B))  A V%.@(x) 2 isbfock x) 3 Vx.(isblock  x 3 a(x)).

We may then substitute successively a(x) E (#=A) and a(x) H (x=B), and these give respectively

9) (A-A v A-B) A Vx.(x=A 3 hblock  x) 3 Vx.(isblock  x 3 x=A),

which simplifies to

10) isblock A =) Vx. (isblock  x =) x-A)

and

11) (B=A v B=B) A Vx.(x=B 3 isblock x )  =) Vx.(isbtock x 2 x=B),

which simplifies to

12) isblock B 3 Vx.(isblock  x 3 x=B).

(IO), (12) and (7) yield

131 Vx.(isblock  x 2 x-A) v Vx.(isblock  x 3 x=B),

which asserts that either A is the only block or B is the only block.

3. Consider the following algebraic axioms for natural numbers, i.e. non-negative integers,
appropriate when we aren’t supposing that natural numbers are the only objects.

14) isnatnum 0 A Vx.(isnatnum  x 2 isnatnum succ x).

Circumscribing isnatnum in (14) yields
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15) a(O)  A Vx.(@(x)  3 @(WCC  x)) A VX.(~(X)  =) isnatnum x) =) Vx.(tsnatnum  x 3 @((x)).

(15) asserts that the only natural numbers are those objects that (14) forces to be natural numbers,
and this is essentially the usual axiom schema of induction. We can get closer to the usual schema
by substituting a(x) P q(x) A isnatnum x. This and (14) make the second conjunct drop out
giving

16) %P(o)  A Vx.(\;lr(x) 3 e(succ  x)) 3 Vx.(tJnatntlm  x 3 q(x)).

4. Returning to the blocks world, suppose we have a predicate on(x,  y, s) asserting that block
x is on block y in situation 3. Suppose we have another predicate above(x,  y, s) which asserts that
block x is above block y in situation S, We may write

17) Vx y s.(on(x,y,  s) 2 above(x,y, s))

and

18) V X y z s. (above(x, y , s) A above(y  , z, J) = ah&,  z, fh

i.e. above is a transitive relation. Circumscribing above in (17)~(  18) gives

1% Vx y s.b(x,g,  d = @kg, $1)
A VX ‘j 2 S.(@k y, 5) A @ty,  z, d = @lx, z, 5))
A V x  y s.(@(x,y, s) 2 above(x,y,  s))

=) Vx JI s.(above(x,y,  s) 3 @(x,y, s))

which tells us that above is the transitive closure of on.

In the preceding two examples, the schemas produced by circumscription play the role of
axiom schemas rather than being just conjectures.

5. Domain Circumscription

The form of circumscription described in this paper generalizes an earlier version called
minimal inference. Minimal inference has a semantic counterpart called minimal entailment, and
both are discussed in (McCarthy 197’1)  and more extensively in (Davis 1980). The general idea of
minimal entailment is that a sentence q is minimally entailed by an axiom A, written A b,,, q, if q
is true in all minimal models of A, where one model if is considered less than another if they
agree on common elements, but the domain of the larger many contain elements not in the domain
of the smaller. We shall call the earlier form domain circumscription to contrast it with the
predicate circumscription discussed in this paper.

The domain circumscription of the sentence A is the sentence

20) Axiom(@) A A* =) Vx.@(x),

where A@ is the relativization of A with respect to @ and is formed by replacing each universal
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quantifier Vx. in A’by Vx.@(x) 3 and each existential quantifier 3x. by 3x.@(x)  A. Axiom(@) is
the conjunction of sentences @(a) for each constant a and sentences Vx.(@(x)  3 @(f(x))) for c:++
function symbol f and the corresponding sentences for functions of higher arities.

Domain circumscription can be reduced to predicate circumscription by relativiting A with
respect to a new one place predicate called (say) all, then circumscribing all in Aa’l A Axiom(d),
thus getting

21) Axiom(@)  A A* A Vx.(@(x)  =) a/l(x)) 3 Vx.(a/l(x)  3 a(x)).

Now we justify our using the name all by adding the axiom Vx.all(x)  so that (21) then simplifies
precisely to (20).

In the case of the natural numbers, the domain circumscription of true, the identically true
sentem,  again leads  to the axiom schema of induction, Here Axiom does  all the work, because it
asserts that 0 is in the domain and that the domain is closed under the successor operation.

6. The Model Theory of Predicate Circumscription

This treatment is similar to Davis’s (1980) treatment of domain circumscription. Pat Hayes
(1979) pointed out that the same ideas would work.

The intuitive idea of circumscription is saying that a tuple E satisfies the predicate P only if
it has to. It has to satisfy P if this follows from the sentence A. The model-theoretic counterpart
of circumscription is minimal entailment. A sentence q is minimally entailed by A, iff q is true in
all minimal models of A, where a model is minimal if as few as possible tuples T? satisfy the
predicate P. More formally, this works out as follows.

Definition: Let M(A) and N(A) be models of the sentence A. We say that M is a submodel of
N in P, writing M IP N, If M and N have the same domain, all other predicate symbols irl A
besides P have the same extensions in M and N, but the extension of P in M is included in
its extension in N.

Definition: A model M of A is called minimal in P iff M’ SP M only if M’ - M. As discussed
by Davis (1980), minimal models don’t always exist.

Definition: We say that A minimally entails q with respect to P, written A kp q provided q is
true in all models of A that are minimal in P.

Theorem: Any instance of the circumscription of P in A is true in all models of A minitnal in
P, i.e. is minimally entailed by A in P.

Proof: Let M be a model of A minimal in P. Let P’ be a predicate satisfying the left side of ( 1)
when substituted for 9. By the second conjunct of the left side P is an extension of P’. If the
right side of (1) were not satisfied, P would be a proper extension of P’. In that case, we could
get a proper submodel  M’ of M by letting M’ agree with M on all predicates except P and agree
with P’ on P. This would contradict the assumed minimality of M.
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Corollary: If R l-p q, then A @p q.

While we have discussed minimal entailment in a single predicate P, the relation <P,Q,
models  minimal in P and Q, and r==p,o  have corresponding properties and a corresponding

. relation to the syntactic notion l-p,q mentioned earlier.

7, More on Blocks

The axiom

22) Vx y 5.(Vr. iprevencs(z,  moue(x, y), 5) 3 072(x,  y, result(motre(x,  y), 5)))

states that unless something prevents it, x is on y in the situation that results from the action
move(x)  9).

We now list various “things” that may prevent this action.

23) Vx y s.(lisblock x v lisblock  y 3 prevents(NONBLOCK,  move(x,  y), 5))

24) Vx y s.(xlear(x,  S) v iclear(y,  5) =) preuents(COVERED,  moue(x,  y), 5))

25) Vx y s.(tooheavy  x 3 prevents(weight  x, moue(x,  y), 5)).

Let us now suppose that a heuristic program would like to move block A onto block C in a
situation JO. The program should conjecture from (22) that the action motre(A,  C) would have the
desired effect, so it must try to establish Vr.~preuents(z,  moue(A,  C), $0). The predicate
Ar.preuentr(r,  moue(A,  C), SO) can be circumscribed in the conjunction of the sentences resulting
from specializing (231,  (24) and (25),  and this gives

26) (lisblock  A v lisblock  C 3 @(NONBLOCK))
A (xlear(A,  $0) v dear@, SO) =) @(COVERED))
A (tooheavy A 3 @(weight A))
A Vx.(@(r) 3 prevent&,  move{4 CL ~0))

3 Vr.(preuents(r, mozre(A, Cl, $0) 3 a(d)

which says that the only things that can prevent the move are the phenomena described in (23),
(24) and (25). Whether (26) is true depends on how good the program was in finding all the
relevant statements. Since the program wants to show that nothing prevents the move, it must set
Vr.(@(r) P false), after which (26) simplifies to

.
27) (isblock  A A isblock  B A clsar(A,  SO)  A clear@, $0)  A Vooheavy  A

3 Vr. lpreventJ(x,  move(A, C), $0).
.

We suppose that the premisses of this implication are to be obtained as-follows:

1. isblock  A and isblock B are explicitly asserted.
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2. Suppose that the only onness assertion explicitly given for situation $0 is on(A) B, SO).
Circumscription of XX y .on(~,  y, JO) in this assertion gives

28) @(A, B) A VX y.(@(X,y)  3 On(X,y, JO)) = VX 9.(On(&y, $0) = @(Gy)),

and taking @(x, y) = x=A  A y=B yields

2% vx y.(on(x, y, so) =) x=A A y=B).

Using

30) Vx s.(ctear(x, 5) = Vy. ion(y,  x, J))

as the definition of clear yields the second two desired premisses.

3. ttboheauy(x)  might be explicitly present or it might also be conjectured by a
circumscription assuming that if x were too heavy, the facts would establish it.

Circumscription may also be convenient for asserting that when a block is moved,
everything that cannot be proved to move stays where it was. In the simple blocks world, the
effect of this can easily be achieved by an axiom that states that all blocks except the one that is
moved stay put. However, if there are various sentences that say (for example) that one block is
attached to another, circumscription may express the heuristic situation better than an axiom.

8. Remarks and Acknowledgements

1. Circumscription is not a “non-monotonic logic”. It is a form of non-monotonic reasoning
augmenting ordinary first order logic. Of course, sentence schemata are not properly handled by
most present general purpose resolution theorem provers. Even fixed schemata of mathematical
induction when used for proving programs correct usually require human intervention or special
heuristics, while here the program would have to use new schemata produced by circumscription.
In (McCarthy 1979b)  we treat some modalities in first order logic instead of in modal logic. In
our opinion, it is better to avoid modifying the logic if at all possible, because there are many
temptations to modify the logic, and it would be very difficult to keep them compatible.

2. The default case reasoning provided in many systems is less general than circumscription.
Suppose, for example, that a block x is considered to be on a block y only if this is explicitly
stated, i.e. the default is that x is not on y. Then for each individual block X, we may be able to
conclude that it isn’t on block A, but we will not be able to conclude, as circumscription would
allow, that there are no blocks on A. That would require a separate default statement that a block
is clear unless something is stated to be on it.

3. The conjunct E.{@(Z) 3 P(C))  in the premiss of (1) is the result of suggestions by Ashok
Chandra (August 1979) and Patrick Hayes (September 1979) whom I thank for their help.
Without it, circumscribing a disjunction, as in the second example in section 4, would lead to a
contradiction.
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4. The most direct way of using circumscription in AI is in a heuristic reasoning program
that represents much of what it believes by sentences of logic. The program would sometimes
apply circumscription to certain predicates in sentences. In particular, when it wants to perform
an action that might be prevented by something, it circumscribes the prevention predicate in a
sentence A representing the information being taken into account.

Clearly the program will have to include domain dependent heuristics for deciding what
circumscriptions to make and when to take them back.

5. In circumscription it does no harm to take irrelevant facts into account. If these facts do
not contain the predicate symbol being circumscribed, they will appear as conjuncts  on the left
side of the implication unchanged. Therefore, the original versions of these facts can be used in
proving the left side.

6. Circumscription can be used in other formalisms than first order logic. Suppose for
example that a set u satisfies a formula A(a) of set theory. The circumscription of this formula
can be taken to be

vx. (A(x) A (x c a) 3 (a c x)).

If a occurs in A(a) only in expressions of the form x Q a, then its mathematical properties should
be analogous to those of predicate circumscription. We have not explored what happens if
formulas like a c z occur.

7. The results of circumscription depend on the set of predicates used to express the facts.
For example, the same facts about the blocks world can be axiomatized using the relation on or
the relation above considered in section 4 or also in terms of the heights and horizontal positions
of the blocks. Since the results of circumscription will differ according to which representation is
chosen, we see that the choice of representation has epistemological consequences if
circumscription is admitted as a rule of conjecture. Choosing the set of predicates in terms of
which to axiomatize as set of facts, such as those about blocks, is like choosing a co-ordinate
system in physics or geography. As discussed in (McCarthy 1979a), certain concepts are definable
only relative to a theory. What theory admits the most useful kinds of circumscription may be an
important criterion in the choice of predicates. It may also be possible to make some statements
about a domain like the blocks world in a form that does not depend on the language used.

8. This investigation was supported in part by ARPA Contract MDA-903-76-C-0206,
ARPA Order No. 2494, in part by NSF Grant MCS 7800524,  in part by the IBM 1979
Distinguished Faculty Program at the T. J. Watson Research Center, and in part by the Center
for Advanced Study in the Behavioral Sciences.

ADDENDUM: CIRCUMSCRIPTION AND OTHER NON-MONOTONIC FORMALISMS

Circumscription and the non-monotonic reasoning formalisms of McDermott and Doyle
(1980) and Reiter (1980) differ along two dimensions. First, circumscription is concerned with
minimal models, and they are concerned with arbitrary models. It appears that these approaches
solve somewhat different though overlapping classes of problems, and each has its u’t‘: The‘
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other difference is that the reasoning of both other formalisms involves models directly, while the
syntactic formulation of circumscription uses axiom schemata. Consequently, their systems are
incompletely formal unless the metamathematics is also formalized. and this hasn’t yet been done.

However, schemata are applicable to other formalisms than circumscription. Suppose, for
example, that we have some axioms about trains and their presence on tracks, and we wish to
express the fact that if a train may be present, it is unsafe to cross the tracks. In the McDermott-
Doyle formalism, this might be expressed

32) M o&rain,  tracks) =) isafe-to-cross(tracks),

where the properties of the predicate on are supposed expressed in a formula that we may call
Axiom(on).  The M in (32) stands for “is possible”. We propose to replace (32) and Axiom(0-n)  by
the schema

33) Axiom(&) A @(train, tracks) 3 lsafe-to-cross(tracks),

where @ is a predicate parameter that can be replaced by any predicate expression that can be
written in the language being used. If we can find a @ that makes the left hand side of (33)
provable, then we can be sure that Axiom(m)  together with on(tratn, tracks) has a model assuming
that Axiom(on)  is consistent. Therefore, the schema (33) is essentially a consequence of the
McDermott-Doyle formula (32). The converse isn’t true. A predicate symbol may have ;r ~-KKM
without there being an explicit formula realizing it. I believe, however, that the schema BE ‘~;\I-,le
in all cases where the McDermott-Doyle or Reiter formalisms can be practically applied, and, in
particular, to all the examples in their papers.

(If one wants a counter-example to the usability of the schema, one might look at the
membership relation of set theory with the finitely axiomatized Ciidel-Bernays  set theory as the
axiom. Instantiating Qi in this case would amount to giving an internal model of set theory, and
this is possible only in a stronger theory).

It appears that such use of schemata amounts to importing part of the model theory of a
subject into the theory itself. It looks useful and even essential for common sense reasoning, but
its logical properties are not obvious.

We can also go frankly to second order logic and write

34) 3@. (Axiom(@) A on(train,  tracks) 2 xafe-to-cross(tracks)).

Second order reasoning, which might be in set theory or a formalism admitting concepts as objects
rather than in second order logic, seems to have the advantage that some of the predicate and
function symbols may be left fixed and others imitated by predicate parameters. This allows us to
say something like, “For any interpretation of P and Q satisfying the axiom A, if there is an
interpretation in which R and S satisfy the additional axiom A’, then it is unsafe to cross the
tracks”. This maybe needed to express common sense non-monotonic reasoning and it seems more
powerful-than any of the above-mentioned non-monotonic formalisms including circumscription.

The train example is a non-normal default in Reiter’s sense, because we cannot conclude
that the train is on the tracks in the absence of evidence to the contrary. Indeed, suppose that we



want to wait for and catch a train at a station across the tracks. If there might be a train coming
we will take a bridge rather than a shortcut across the tracks, but we don’t want to jump to the
conclusion that there is a train, because then we would think we were too late and give up trying
to catch it. The statement can be reformulated as a normal default by writing

35) M isafe-to-cross(tracks)  =) isafe-to-cross(tracks),

but this is unlikely to be equivalent in all cases and the non-normal expression seems to express
better the common sense facts.

Like normal defaults, circumscription doesn’t deal with possibility directly, and a
circumscriptive treatment of the train problem would involve circumscribing safe-to-cross(tracks)
in the set of axioms. It therefore might not be completely satisfactory.
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