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Recent Developments in the Complexity of Combinatorial Algorithms

Robert Endre Tarjan
Computer Science Department

Stanford University
Stanford, California 94305

1. Introduction.
In a 1978 paper (Tarjan  [1978]), the author surveyed the then-current state

of knowledge concerning combinatorial algorithms. Since the time that paper was
published, researchers in the area have obtained several major new results. These
include a sequence of more-and-more efficient algorithms for matrix multiplica-
tion, a similar sequence of algorithms for maximum network flow, a polynomial-
time algorithm for linear programming, and a number of new approaches to graph
isomorphism. In this paper we shall examine these recent advances, attempt to
access their significance, and suggest directions for future research. The paper in-
cludes an examination of recent work by the author and his students on dynamic
dictionaries, maximum flow problems, and related topics. Much of the work we
shall describe is still unpublished.

Before beginning this survey, it is useful to review the general framework
in which we shall view combinatorial algorithms and their complexity. We are
interested in sequential algorithms; that is, in algorithms that perform only one
step at a time. As a computer model, we use either a random-access machine with
uniform cost measure (Aho, Hopcroft, and Ullman [1974]), or a pointer machine
(Taijan [1979]).  With either machine model we can perform a single arithmetic
or logical operation in constant time, and we can store or retrieve a single piece
of information in constant time.

The difference between random access machines and pointer machines lies in
their memory organization. The memory of a random access machine consists of
a one-dimensional array of cells, each capable of holding a single piece of infor-
mation (such as a real number). The memory of a pointer machine is a linked
structure consisting of a collection of nodes linked by pointers; each node consists
of a’ fixed finite number of fields, some of which are designated as containing
pointers to other nodes. See Figure 1. Random access machines seem inherently
more powerful than pointer machines, since we can perform arithmetic on array
addresses but not on pointers. However, this difference in power amounts to at
most a factor of log n in running time, and in fact the algorithms we shall discuss
have the same asymptotic running times on either random-access machines or
pointer machines.
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[Figure l]

As a complexity measure we use the worst-case running time of an algorithm
as a function of the sire of its input. We shall ignore constant factors. For graph
problems we shall use n, the number of vertices, and m, the number of edges, to
measure the input size. For algorithms that manipulate real numbers, measuring
input size is more problematic. The issue is whether we should allow rational

numbers of arbitrary precision (or even irrational numbers) as input, and count
any arithmetic operation as a single step, or whether we should measure the sise
of real numbers by the number of bits needed to represent them, and count each
bit operation as a single step. The former approach is truer to the spirit of al-
gebraic complexity, and we shall adopt it in the case of matrix multiplication
and maximum network flow. The latter approach is more reasonable if we are
interested in issues of NP-completeness, and we shall adopt it in the case of linear a
programming.

The paper comprises 7 sections. Section 2 examines the recently discovered
ellipsoid method for linear programming and its implications for combinatorial
complexity. Section 3 discusses graph isomorphism. Section 4 surveys new work
on matrix multiplication. Section 5 examines recent results on dynamic die-
tionaries, and Section 6 discusses network flow. Section 7 contains conclusions
and remarks about promising directions for future research.

.



2. Linear Programming.
Garey and Johnson’s book on NP-completeness (Garey and Johnson [1979])

concludes with a list of problems whose status with respect to NP-completeness
was unknown at the time the book was published. A prominent problem on
this list is linear programming, which can be defined as follows: given a set of
linear inequalities aiz < bi for 1 < i < ti, find a vector z that satisfies these- - -
inequalities and maximizes cz = clzl + -0. + c,J~. Here z = (~1,. . ., z,) is a
vector of II variables, each ui is a vector of tz real numbers, and the hi’s and cj’s
are real numbers.

There is a well-known and empirically efficient algorithm for linear program-
ming, Dantzig’s simplex method (Dantzig [1951]),  but this algorithm runs in ex-
ponential time on certain sets of input data (Klee and Mints 119721).  However,
Khachiyan [1979] managed to prove that a completely different method based
upon ideas of Shor [19?0, 19’771 solves the linear programming problem in polyno-
mial time. The algorithm, which we shall call the ellipsoid method, is surprisingly
simple, and in retrospect it is a wonder that it was not discovered many years
previously.

The key idea of the method is to use binary search, maintaining an ellipsoid
that bounds the set of solutions. We shall assume that the ai’s, hi’s and c/s
.consist  of integers, and that the size of the input is measured by the number of
bits e required to write down all these integers in binary. We note first that if the
function cz has a finite maximum, then the value of z achieving the maximum
has a number of bits polynomial in e. If we add to our set of inequalities an
inequality cz 2 Q, where Q is a parameter, we can use binary search on Q to
determine the maximum value of a for which a feasible solution exists.

Thus we have reduced our original optimization problem to the problem of
solving a polynomial number of feasibility problems of the following form: given a
-set of inequalities uiz 5 bi for 1 < i 5 m, is there some value of z that satisfies
all the inequalities? By means of a second transformation (perturbing each Qi by
a sufficiently small value) we can make all the inequalities strict.

Now we come to the heart of the matter. In order to search for feasible solu-
tions, we construct an ellipsoid guaranteed to contain at least a certain volume of
solutions if there are any solutions at all. It suffices to choose a sphere centered
at the origin with sufficiently large (but polynomially bounded) radius. We then
repeatedly reduce the size of the bounding ellipsoid until either we find a solution
or the bounding ellipsoid is so small that it can’t contain any solutions, and thus
there are no solutions.

To carry out a general step of this reduction process, we test the center z
of the ellipsoid for feasibility. If z satisfies all the inequalities, we are done. If
not, we find a violated inequality uiz 2 bi. We then construct a new ellipsoid
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containing those points in the old ellipsoid that satisfy QiZ < bi. See Figure 2.
The crucial point is that the volume of the new ellipsoid is smaller by a constant
factor (depending polynomially on n) than the volume of the old ellipsoid; thus
after a polynomial number of steps either we find a feasible solution or we can
terminate the process and declare that no solutions exist. For further details of
the algorithm, see Gacs and Lovasz [1979] or Aspvall and Stone [1979].

[Figure 21

Khachiyan’s discovery has led to an explosion of research on related issues.
Of primary interest are the questions, ‘Is the algorithm ef3cient (or can it be made
so)?” and “What implications does the algorithm have for other combinatorial
problems?” As a tentative answer to the first question, it seems that the ellipsoid
method is not competitive in practice with the simplex method, although this
matter deserves further study.

The theoretical implications of the ellipsoid method are more interesting.
The algorithm does not depend heavily on linearity, only on the convexity of
the solution space. Indeed, Kozlov, Tarasov, and Khaciyan [1979] have extended
the algorithm to convex quadratic programming. On the other hand, the linear
case is the most interesting from the point of view of combinatorics. A standard
technique of operations researchers is to use linear programming to attack integer
programming problems. The idea is to define  an integer programming problem
as a linear programming problem with a large (possibly exponential) number
of inequalities, in such a way the inequalities defining the problem are easy to
generate. Karp and Papadimitriou [1979] have proved a negative result for this
approach: any NP-complete combinatorial optimization problem cannot be poly- .
nomially characterized by a set of linear inequalities, unless NP = co-NP. By

d “polyn6mially characterized” we mean that the set of inequalities is in NP; that
is, given an inequality that. is in the set we can construct a polynomial-length
proof of this fact. Since it is unlikely that NP = co-NP, this means that any

combinatorial optimization problem that can be polynomially characterized by
inequalities is unlikely to be NP-complete.

In order to run the ellipsoid method, we do not need an explicit listing of
all the inequalities defining the problem but only a way to test whether a point
is feasible and to generate a violated inequality if it is not. Suppose we have a
combinatorial opimization problem for which it is possible to test feasibility and
generate a violated inequality in polynomial time. Then by means of Khachiyan’s
algorithm we can solve the combinatorial optimization problem in polynomial
time (if certain other weak conditions are satisfied). Karp and Papadimitriou
and independently Griitschel,  Lovasz, and Schrijver [1980] made this obsermtion,
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which implies that NP-complete problems are unlikely to have polynomial time
generators of violated inequalities. The result also means that the ellipsoid method
is in some sense.a  universal method for combinatorial optimization problems, and
it can be used to generate new fast algorithms. For instance, Grotschel,  LOV~SS,
and Schrijver have derived a polynomial-time algorithm for vertex packing in
perfect graphs. This area appears to be ripe for further work. For an excellent
non-technical discussion of Khachiyan’s algorithm and its implication for com-
binatorial optimization, see Lov6sz  [1980].
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3. Graph bomorphism.

Another of Garey and Johnson’s open problems is graph isomorphism: given
two undirected graphs G1 and G2, determine whether there is a one-to-one map
ping of the vertices of G1 onto the vertices of G2 that preserves adjacency. This
problem has a number of applications, especially in the cataloguing  of chemical
molecules. Although no one has yet discovered a polynomial-time algorithm for
graph isomorphism, much progress has been made recently.

Most of the early algorithms for graph isomorphism (see for instance Corneil
and Gotlieb [1970],  Read and Corneil [1977]) combine backtrack search with
a partition refinement method to reduce the size of the search space. Such a
method is very efficient in practice but requires exponential time on some highly
symmetric graphs, because the refinement scheme becomes useless. For various
speci’al  classes of graphs, efficient algorithms are known. These classes include
trees (Aho, Hopcroft, and Ullman [1974]), planar graphs (Hopcroft and Tarjan
(19721, Hopcroft and Wong [1974]), series-parallel graphs (Valdes,  Tarjan,  and
Lawler [1979]), and interval graphs (Colbourn and Booth [1979]), for which linear-
time algorithms exist. The tree isomorphism algorithm depends upon clever use
of lexicographic sorting. The algorithms for series-parallel graphs and interwl
graphs are straightforward extensions of the algorithm for trees. The algorithm
for planar graphs combines the tree isomorphism algorithm with a linear-time
decomposition into triconnected components (Hopcroft and Tarjan [1973]), and
a reduction method for triconnected embedded planar graphs. The method is
fast for three reasons: the relationship among triconnected components can be
represented by a decomposition tree, a triconnected planar graph has only two
planar embeddings, and there is a linear-time algorithm for embedding a planar
graph (Hopcroft and Tarjan  [1974]). Recently Lichtenstein  [1980]  has disc’overed
a polynomial-time isomorphism algorithm for graphs embeddable in a projective
plane, and Miller (19801  and Filotti and Mayer [1980] have found a polynomial-
time isomorphism algorithm for graphs of any fixed genus. These methods com-
bine fast embedding algorithms (Filotti, Miller, and Reif [1979]) with a careful

- analysis of the ways a graph can be embedded in a surface of the appropriate
genus.

Other researchers have attempted to use degree constraints or symmetry
properties to aid in testing isomorphism. Miller [1977] showed that isomorphism
is in co-NP for arc-transitive trivalent graphs; that is, if two such graphs are
non-isomorphic, thre is a polynomial-length proof of this fact. Lipton [1980]
discovered an n”(loz n) -time isomorphism algorithm for arc-transitive trimlent
graphs, and Babai [1980] found an n”(filozn) -time algorithm for strongly regular
graphs. The major breakthrough was Babai’s discovery (Babai (19791)  of a random
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polynomial-t,ime  algorithm for vertex-colored graphs with bounded color multi-
plicities. Babai’s work is important much more for his techniques than for the
specific results to be obtained. He was able to use properties of the automorphism
group of a graph, describing this group by means of a tower of subgroups, in
such a way that one could quickly construct the tower. This work was extended
by Hoffman [1980],  who found a random nO(log”)-time algorithm for a class of
graphs called %one graphs”. Furst, Hopcroft, and Luks (private communication)
made Babai’s methods deterministic and generalized Hoffman’s algorithm to test
isomorphism of trivalent graphs deterministically in nO(l”xn)  time. Luks [1980]
reduced the running time of the algorithm for trivalent graphs to polynomial and
found an n”(log”)-time  algorithm for graphs of any fixed valence.

Extrapolating this work, it seems likely that a polynomial-time isomorphism
algorithm for graphs of any fixed degree will soon be discovered. Whether this
will lead to a polynomial-time algorithm for the general problem is less clear.
Much of the recent work on isomorphism depends heavily on properties of finite
groups, and a complete solution may require new results in group theory or at
least ingenious use of old ones.



4. Matrix Multiplication.
Not all research in combinatorial complexity has been devoted to finding

polynomial-time algorithms for problems not known to have them. Much effort
has also been devoted to finding faster algorithms for problems already known
to be solvable in polynomial time. For example, let us examine recent progress
on matrix multiplication. See Table 1. The classical algorithm for this problem
multiplies two n X ft matrices in O(n3) time. Strassen (19691  discovered a way to
multiply two 2 x 2 matrices with only seven multiplications, and using this obser-
mtion constructed a recursive algorithm to multiply n X n matrices  in O(d”~a7)
time.

[Table l]

After a hiatus of nine years, Pan 11978)  found a slightly faster (O(V?-~‘~)
vs. O(n2s807 )) method. Pan used an ingenious and complicated technique called
“aggregating, uniting, and cancelling.” A key point in Pan’s approach was to
use fairly large size matrices (n = 70) as the basis for the recursion, rathr than
very small matrices (n = 2 or 3 or 4). Shortly after Pan’s result appeared, Bini,
Capovani, Romani, and Lotti (19791 introduced a notion of *approximate” matrix
multiplication, and produced an O(n2m7*) -time algorithm to multiply matrices in
this approximate sense. Schiinhage [1979] showed that any approximate matrix
multiplication algorithm can be converted into an exact one, and he further
showed that any method for multiplying sparse matrices can be converted into a
method to multiply dense ones. The culmination of Schonhage’s advances was an
O(n2*6088)  -time algorithm. Subsequent work by Pan, Schijnhage, and Winograd,
using a combination of these techniques, has produced a sequence of faster-and-
faster algorithms; the best bound currently claimed is O(VB~*~~+),  due to Pan
(primte communication). Pan has recently written a long paper (Pan [1980]) sur-
veying these developments. It may be possible to multiply matrices in O(na+‘)
time for any positive E; certainly the recent results lead in this direction.



5. Dynamic Dictionaries.
Fast algorithms require the use of appropriate data structures, some of which

are quite complicated. In this section we shall examine efacient ways to represent
one important type of data structure, called a dynamic dictionary. A dynamic
dictionary consists of a collection items, each with an associated key. We assume
that the keys are totally ordered and can be compared; we further assume that
no two keys are the same. We are interested in performing the following kinds of
operations on dynamic dictionaries:

( 1a
(b)
0C
(4
0e

( f)

Given a key, access the item (if any) with this key.
Insert a new item in the dictionary.
Delete a given item from the dictionary.
Merge two dictionaries into a single dictionary.
Concatenate two dictionaries, such that all keys in one dictionary are smaller
than all keys in the other.
Split a dictionary on a given key into a dictionary containing all keys no
larger than the given key and a dictionary containing all keys larger than the
given key.

Dynamic dictionaries have widespread uses in computer science; see Knuth
(1973). There are a number of ways to represent such dictionaries. If only accesses
and insertions are to be performed, a hash table (Knuth 11973)) can be used. Hash
tables allow accesses and insertions in O(1) time on the average, although the
worst-case time is O(n), where tc. is the number of items in the dictionary. Hash
tables can be adapted to allow efficient deletion, but not merging, concatena-
tion, or splitting; such tables do not maintain the ordering information needed to
efficiently merge, concatenate, or split. A balanced tree structure, such as a 2 - 3
-tree (Aho, Hopcroft, and Ullman [1974]) or more generally a B-tree (Bayer and
McCreight [ 19721) a height-balanced tree (Knuth [1973]), or a weight-balanced
tree (Reingold, Nievergelt, and Deo [1974]), is appropriate if such operations are
to be performed. Such a structure allows access, insertion, deletion, concatena-
tion; and splitting in O(logn) time (see Aho, Hopcroft, and Ullman 119741  for
instance).

There are a number of recent results on dynamic dictionaries. Brown and
Tarjan [1979] showed how to merge two dictionaries represented as height-balanced
trees in O(m log E) time, if the smaller dictionary has m items and th larger one
has n items. This result also holds for B-trees and for weight-balanced trees.
Brown and Tarjan [1980] showed how to maintain ‘fingers” into 2-3 trees so that
access is very fast on the vicinity of a finger. Their proposed structure supports
fast access, finger creation, insertion, and deletion, as long as the insertions and
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deletions occur in separate parts of the tree. Huddleston (private communication),
Maier and Salveter [19’?9],  and Mehlhorn [1979b] independently used less balanced
versions of B-trees to extend Brown and Tarjan’s results so that arbitrary inser-
tions and deletions are fast.

An interesting question is what happens if we want to bias the dictionary so
that certain items are easier to access than others. This is desirable, for instance,
in keyword tables for compilers and in language dictionaries, where some words
are accessed much more often than others. To study this question we assume
that each item i has a weight wit and that we wish to minimize the sum of the
weighted access times CF,, W$i,  where ti is the access time of item i. Knuth
[1971] and Hu and Tucker [1971] have proposed efficient algorithms to construct
optimum binary search trees; Knuth’s algorithm requires O(n2) time but allows
items to be stored in internal nodes of the tree; Hu and Tucker’s algorithm uses
O(nlogn) time but requires that all the items be in external tree nodes. Garsia
and Wachs [1977] have given an interesting variant of the Hu-Tucker algorithm.

Optimum binary search trees are not suitable if insertions and deletions
are to be performed, because they require too much time to update. Mehlhorn
[1978, 1979a] has investigated the question of dynamically maintaining an almost
optimum tree. An entropy argument shows that the sum of the weighted access
times in an optimum tree is bounded below by a constant times ci”=, wilog E,
where w = CyXI uli; thus the goal is to maintain a tree in which each item i
has 0(1 + log g) access time. Mehlhorn has described a complicated version of
weight-balanced trees with the following properties:

(a) 0(1 + log g) .time to access, insert, or delete item i;

(b) w + b-1 time to change the weight of item i from tui to tui,
where UJ is the total weight before the change and w’ is the total weight after
the change.

Bent, Sleator, and Tarjan  [1980] have found a way to implement dynamic dic-
tionaries that is not only much simpler than Mehlhorn’s but allows fast concatena-

- tion and splitting; specifically, 0(1 + log 3) time to concatenate dictionaries of
total weights UJ and w’ with w > w’, and 0(1 + log t) time to split a dictionary-
at item i. The data structure resembles a 2 - 3 tree. Each node in the tree has
between zero and three children. Certain nodes contain items; others are non-
item nodes (an item node contains exactly one item). A symmetric-order traversal
of the tree visits the items in order by key. An item node has a left son and
a right son, either or both of which can be missing; a non-item node has either
two or three children. In addition, each node has a level, defined as follows: the
level of a node containing item i is [log wi]; the level of a non-item node is one
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greater than the minimum of the levels of its children. We impose the additional
requirement that the level of a node be strictly greater than the levels of all its
children; thus all children of a non-item node have the same level. Figure 3 gives
an example of such a tree.

[Figure 3)

It is not hard to implement access, insertion, deletion, concatenation, split-
ting, and weight change on such trees. Analyzing the efficiency of these operations,
however, requires a clever accounting argment. The data structure has not only
the obvious applications but also a number of not-so-obvious ones, as we shall see
in the next section.
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8. Maximum Network Flow.
An important special case of linear programming is the maximum network

flow problem: given a directed graph G = (V, E), two distinguished vertices, a
source s and a sink t, and a non-negative capacity c(e) on each edge e, find a
flow of maximum value from 8 to t. A flow is defined by a value f(e) on each
edge e, such that 0 ,< f(e) ,< c(e); for every vertex u except the source and sink,
the total flow on edges entering u must equal the total flow on edges leaving u.
The value of the flow is the total flow on edges leaving the source (or equivalently
on edges entering the sink).

Ford and Fulkerson (19621  were the first to study this problem. They proved
the famous max-flow min-cut theorem, which states that the value of a maximum
flow equals the capacity of a minimum cut. (A cut is a partition X,53 of the

. vertices such that 8 E x and t E r; the capacity of the cut is the total capacity
of edges leaving X and entering x.) They proved this theorem by means of an
augmenting path method which, given a flow, attempts to find a path from 8 to t
along which the flow can be increased. If the algorithm finds such a path, the flow
value is increased appropriately. If not, the method locates a cut whose capacity
is equal to the value of the current flow.

Ford and Fulkerson’s method does not automatically give a fast algorithm
for maximum network flow. If the capacities are large integers, the method can
require enormous amounts of time; if the capacities are irrational, the method
need not terminate. However, if the search for augmenting paths is systematic,
the method leads to a fast algorithm. Table 2 shows the running times of various
maximum network flow algorithms based on this idea.

[Table 21

Karp and Edmonds [1972] were the first to give a polynomial-time algorithm
for maximum flow. They showed that if a shortest augmenting path is always
selected, then no more than O(nm) augmentations take place. From this they

I obtained an O(nm2)-time  algorithm. Independently Dinic [1970]  made the same
observation, and further noted that all the augmenting paths of a given length
can be found at once, in O(nm) time, giving an overall bound of O(n2m).  All the
recent progress on maximum flow is based on Dinic’s work.

Karzanov 11974)  improved Dinic’s running time to O(n3)  by discovering how
to find all augmenting paths of a given length in O(n2) time. Karzanov’s algorithm
is quite complicated, but Malhotra, Kumar, and Maheshwari 119781 obtained a
very simple algorithm that achieves the same time bound. Cherkasky  (19771 dis-
covered an O(n2m1i2) algorithm, improved by Galil [1978] to O(na/3m213).  Galil
and Naamad [1979] and independently Shiloach [1978] found an O(nm(log@)
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algorithm, which Sleator and Tarjan [1980] improved to O(nmlog  n).
The Sleator-Tarjan algorithm obtains its speed by using sophisticated data

structures that maintain the flow information implicitly; thus it is not necessary
to perform an augmentation by changing the flow in every edge of the augmenting
path. The general method is illustrated in‘ Figure 4. The algorithm maintains a
tree of edges with residual capacity whose root is the sink. The path from the
source to the sink in this tree defines an augmenting path. An augmentation is
performed on this path, saturating at least one edge and causing the tree to break
into at least two edges. The tree is reassembled by adding new edges with residual
capacity, and the process is repeated.

[Figure 4)

[Figure 5)

To represent the tree, the algorithm decomposes it into paths, as in Figure
5. Before an augmentation is performed, the paths representing the tree are
rearranged, by splitting and concatenation, so that the source and sink are on

. the same path. Then the augmentation proceeds. Galil and Naamad [1979]
and Shiloach [1979] showed that only O(logn) splits and concatenations occur
per augmentation. By representing each path of the tree by a data structure
consisting of a balanced binary tree, they obtained an O(log n) bound per split
or concatenation, an O((log n)2) bound per augmentation, and an O(nm(log n)‘)
bound overall. By representing each path by a dynamic dictionary implemented
as described in Section 5, Sleator and Tarjan were able to reduce the time per
augmentation to O(logn), saving a factor of logn in the overall running time.
This algorithm seems hard to beat; further improvements in maximum flow may-
require a basic approach different from and more powerful than Dinic’s.
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7. Remarka.
What are we to conclude from all these new results in combinatorial com-

plexity? First, it is clear that NP-completeness is a very powerful and precise
tool for classifying combinatorial problems; it seems that any natural problem
is either NP-hard or has a polynomial-time algorithm. The candidates for coun-
terexamples, such as linear programming and graph isomorphism, are yielding to
diligent attack. Thus the P = NP question becomes, if anything, even more
important. In general, it seems that the lack of a non-trivial lower bound for a
problem is a good reason to believe that faster algorithms exist for it.

Second, some polynomial-time algorithms, such as the sophisticated algo-
rithms for network flow, show promise of being quite practical. Others, such as the
fastest methods for matrix multiplication, are only asymptotic results and seem
to hold no implications for practice. In order to detect such differences, much
more study is needed of algorithmic overhead, the associated constant factors,
and the practical trade-offs between algorithms.

Third, the careful and systematic study of data structures is extremely im-
portant in the design of algorithms that are fast both in theory and in practice.
In particular, there is much to be learned about the properties of various kinds of
trees and their use as data structures. We still lack an adequate theory that will
fit the appropriate data structure to each problem we wish to solve.

Fourth, the advent of very-large-scale integrated circuits has raised entirely
new questions for combinatorial complexity. We are faced with the problems
of designing new models of complexity matched to the new hardware, and of
discovering what part of the knowledge obtained for sequential algorithms will
translate into the new framework, which will incorporate large-scale concurrency.
Thus parallel algorithms and spatial layout problems are important topics for
future research.-
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Figure 1. A directed graph and its computer representation.

v

2

3

4

3

3

( )C 1

2

3

4

5

(a) Graph.

(b) Representation by two arrays.

(c) Representation by a linked structure.

21



Figure 2. One step of the ellipsoid method,

S Z= solution space.

El = old bounding elipsoid.

L = inequality violated by center of El .

E2 = new bounding ellipsoid.
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Figure 3(a). Relative frequencies of the twelve most common

words. Relative level is level minus ten.
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Figure 3(b). Biased 2-3 tree containing the words in

Figure 3(a).
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Figure 4. Candidate edges for augmenting paths. Bold edges

denote spanning tree. Sending flow along path from

source to sink saturates edge el '
which is replaced

bY 3 in the tree.
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Figure 5. Decomposition of the original tree of Figure 4 into

paths, one of which leads from source to sink.
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Date

1969

October 1978

November 1978

June 1979

October 1919

October lyj'9

October lg9

March 1980

Discoverer

Strassen 2.807

PaIi 2.795

Bini, et&l. 2.78

SchtSnhage 2.609

Pan 2.605

Schkhage 2.548

Pan and Winograd 2.522

Pm 2,49+

Exponent of n

Table 1. Lmprovements in matrix multiplication.
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Date Discoverer Running Time

1956

1969

1970

1974

1978

1977

1978

1979

1980

Ford and Fulkerson

Edmonds and Karp

Dinic

Karzanov

Malhotra, et, al.

Cherkasky

Galil

WA.1 and Naamad, Shiloach

Sleator and Tarjan

O(ntn2)

O(n2m)

o(n3 >

ok3 >

O(n2m1/2 )

O(n5/3 PI')

O(nm(log n)2)

O(nmlogn)

Table 2. Improvements in maximum network flow.
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