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I..  Introduction

Multidimensional surface approximation is recognized as an important prob-

lem for which several methodologies -have been developed. The aim is to con-

struct an approximation 4(x) to a p-dimensional surface y = f(x) on the basis

of (possibly noisy) observations { (yi, xi) )I<i<n. Most existing methods, such as- -
tensor product spliues, kernels, and thin plate splines (for a survey, see Schumaker

[1976]), are linear in that

where the weights ( wi} depend only on x and { x&~<~, but not on ( yi},<  i< ,,.

These methods have the advantage that they are strai&tforward to compute and

their theory is tractable. In practice, however, they are limited because they

cannot take advantage of special properties of the surface. Due to the inherent

sparsity of high-dimensional sampling, procedures successful in high dimensions

must be adaptive and thus nonlinear.

In this paper we describe an adaptive procedure that approximates f(x) by a

sum of (univariate) spline functions sm 0f selected linear combinations a, . x of

the coordinates

The procedure is nonlinear in that not only the spline coefficients but also the

linear combinations are optimized for the particular problem. a

2. The algorif;hm

The spline function sm along a, 0 x is represented as a sum of j, B-splines

[de Boor, 19791 of order g

smjam * Ii) = C P*jBmj(am  ’ X)0 (2)
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The approximation 9(x) (given by equations (1) and (2)) is specified by the direc-

tions hdl<,<~, the knot sequences along a, l x for I 5 m 5 M, and the

B-spline coeflicicnts { Pmj)l<,<M I<j<j : For particular { a,}, the knots are- - - -
placed heuristically and then the { imj } .arz determined by (linear) least squares.

The residual sum of squares from this fit is taken to be the inverse figure of merit

for Camll<m<jbf*- -

Following Friedman, Jacobson, and Stuetzle [1980],  the approximation is con-

structed in a stepwise manner: given { a,}l<m<M--l,  find aM to optimize the- -
figure of merit of { am ]I< m< M. Terminate when the figure of merit is not- -
significantly improved.

3. Xmplcmentation -_

The most difficult part of the algorithm is finding each direction am. We per-

form a numerical search using a Rosenbrock method [Rosenbrock, 19661  modified

for the unit sphere, starting at the best coordinate direction. On any given search,

there is no guarantee that the global optimum will be found. If the local optimum

is insignificant, the search is restarted at random directions. This guards against

premature termination. If the local optimum is significant but not identical to

the global optimum, no great harm is done because a new search is performed

in the next iteration on an object function for which the previous optima have

-been deflated. Each iteration of the optimizer requires 3.5 p function evaluations,

on the average, where p is the dimension of x. Two iterations are nearly always ’,
sufficient.

‘For high dimensionality, the computation is dominated by the evaluations

of the object function. Since it is not crucial to find the precise optimum, con-

siderable savings can be achieved by substituting a similar, but much less ex-

pensive figure of merit during the search for a new direction. For this figure of

merit not only the previously found directions but also the corresponding spline

coefficients arc held fixed. The new direction can thus be found by considering

the residuals from the model of the previous iteration. For a given direction, the
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residuals are modelled by a smooth based on local linear fits [Cleveland, 19791,
[Friedman, Jacobson, and Stuetzle, 198Oj.  The characteristic bandwidth (that is,

the average fraction of observations used in each local fit) is taken to be inversely
proportional to the number of knots. The residual sum of squares from the smooth

is the figure of merit used for the smooth. Solving the least squares problem for
the original figure of merit requires

operations, while the new figure of merit can be evaluated in roughly n operations

using updating formulas for the moving average. The least squares problem has

to be solved only once for each iteration to determine the new model after am has
been found.

To solve the 1eas.t  squares problem, we form the normal equations and use a

pseudo-inverse, since the design matrix might notthave full rank. The singularity.
which arises form the inclusion of a constant terr;ci  for each direction is remedied

by simply dropping one column per direction from the design matrix. Higher

order singularities caused, for example, by the linear terms for three co-planar

directions, are not explicitly taken care of, but are handled by the pseudo-inverse.

Our knot placement procedure is motivated by the sequential nature of the.
algorithm. At each iteration, the knot positions are required for the least squares

fit, after the new direction has been found. Our model at this point is the spline fit

of the previous iteration, plus the moving average smooth along the newly found
direction. The knot placement is based on the residuals (r,-} from this model.
Multidimensional structure in these residuals due to incompleteness of the model

manifests itself as high local variability in the scatterplots of ri against 8, l xi.
In order to preserve the ability of fitting this structure in further iterations, it is

important to avoid accounting for it by spurious fits along existing directions. For

this reason we place fewer knots in regions of higher local variability. Since the

residuals change, the knots are replaced along all directions at each iteration.
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The knots along a direction am are placed as follows: the smooth described

above is applied to { (ri, am- xi) }1I iL n and the local variability t)i at each point is
taken to be the average squared residual from its local linear fit. The Winsorized

local variabilities are defined by

2U if Vi > 20
Wi = ~-~ if .Ui < $0

vi otherwise

( hw ere 0 = i C l<i<n Vi), and then are scaled SO that Cl<i<n ??; = 1. The- - - -
knots { ti} are placed to divide the line into intervals with equal content of &:

for each I,
1

c
1

.
h-8 - Q + 1 = a x Eltl tr+Ij G’

m‘ i t

.

4. Exernplcs

In this section we present and discuss the results of applying the

Multidimensional Spline Approximation method (MAW) to four examples. (A

FORTRAN  program implementing MASA is available from the authors.) The

first three examples were suggested elsewhere for testing surface approximation
procedures. The function in the fourth example was studied in connection with

a problem in mathematical genetics.

The first example is taken from Friedman [1979]. In this example uniformly

distributed random points { zi ] 1 < i < 200) were generated in the six-- -
dimensional hypercube [O, l]! Associated with each point Xi was a surface value

Yi = 10 sin(rzi(l)Zi(2))  -{- 2O[Zi(3) - 0.5J2 j- lOZi(4)  + 5Zi(5)  + OZi(6) + Ci,

where the { ci} were independent identically distributed standard normal. The

inverse figures of merit for the approximation with M = 1,. . .,4 terms were

6.71,4.29,1.87,0.97. In three restarts, the figure of merit did not decrease below
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0.86,. so hd = 4 was chosen. The four linear combinations and the corresponding

spiine functions arc shown in figures 1.1-1.4. (For completeness, the program

parameters are also listed; see the program comments for a detailed explanation.)

The spli;le along the first linear combination (figure 1.1) is seen to model the linear
part of the surface. The second term in the approximation (figure 1.2) models

the additive quadratic dependence on z(3). The final two terms (figures 1.3, 1.4)

model the interaction between z(1) and z(2). The Lz norm of the error III- #I[2

was 0.57*

Although the full advantages of MASA compared to other procedures are

realized in higher dimensional or noisy settings, we applied it to two bivariate

examples used by Franke 119791 to compare a number of interpolatory surface

approximation schemes.. For both examples 100 uniformly distributed random

points in the unit square (0, 112 were generated. The function in Franke’s first

example is
f(s, y) = 0 . 7 5  exp[- (9 2)2 + (9y 2)2]x - -

4
+ 0.75  exp[-----49-- (9x -I- 1)” - 9Y + 1]

10

+ 0.5 exp[-(” - v2 + PY - VI4

-t 0.2 exp[-(92 - 4)2 - (9y - 7)2],

Considerations similar to those in the previous example led to an approximation
with three terms, The linear combinations and corresponding spline functions are

shown in figures 2.1-2.3.

The function in Franke’s second example is

f(z, y) = !-[tanh(9y - 92) --/-  I].

For this case the approximation used only one term, shown in figure 3.1.

Since different randorn points were used in Franke’s and our tests, precise

comparisons are not possible. On the first example, MASA gave roughly an order
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of magnitude larger errors than the best methods in Franke’s trials (global basis

function methods) while on the second example, MASA gave an order of mag-
nitude smaller errors than the best methods. These results are not surprisingsince
the peak-shaped basis functions of the global basis methods are especially suited

for representing the peaks of the first example, whereas the ridge-shaped basis

functions of MASA are especially suited to the second example. Unfortunately,

peak-shaped basis functions are not appropriate for moderate or higher dimen-
sionality. The difficulty is that in order to achieve a smooth fit, the width of

the basis peaks needs to be comparable to the distance between data points. For

n uniformly distributed random points in a p-dimensional hypercube 10, l]P, the

typical nearest neighbor distance is ($. In particular for 92 = 1000 and p =

10, this distancc’is 0.5, and.for p = 20 is 0.7. Thus variation of the surface

over distances small compared to such large interpoint distances cannot be well

approximated with these global basis functions methods.

Our final example is a 19-dimensional function encountered by Carmelli and

Cavalli [1979].  An important question is the structure of this function near its

minimum. WC sampled the function at 200 points uniformly distributed in a small

hypcrcube centered at the minimum found by numerical optimization and applied

MASA.  The inverse figure of merit for the best constant fit was 13.3. The inverse

figure of merit for 1M = 1 was 0.78. In 30 restarts, the figure of merit did not

decrease below 0.42. Figure 4.1 gives the linear combination and corresponding

spline function. This picture shows considerable structure that was not revealed

in the original study.

5. Discussion

MASA  can be expected to work well to the extent that the surface can be

approximated by a function of the form (1). Of course in the limit M --+ 03 all

smooth surfaces can be represented by (l), but even for moderate iV functions of

this form constitute a rich class.

As seen in the previous section, an advantage of using essentially one-

dimensional basis functions is the possibility of graphical interpretation. The
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entire model can be represented by graphing sh(arn . x) against a, . x and by

specifying { a,, } 1 < ,,.,( M (perhaps graphically for p = 2 or 3). Additionally, ade-

quacy of the knotplzcement  can be judged using the M plots of the residuals

from the final model against a, . x. Proper termination of the algorithm can be

assured by monitoring at each iterationthe plot of the residuals from the model

of the previous  iteration along the newly found direction.

The problem of sparse sampling in high dimensions is not encountered, since

MASA is fitting one-dimensonal projections of the entire sample. The sample need

not lie on a regular grid, and the approximation is affine invariant and smooth.

Function values, derivatives, and integrals are cheap to evaluate. In addition,

since the approximation is locally quadratic for Q = 3, optimization algorithms

can be expected to converge rapidly.
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AXIS 30000001010000000101011010101030~111100010010100001000010003 i&g

0.1978
0.1917

0.1550

Et%
0:1367
0.1306

ME
0:1122

0.0083
0.0022

-0.13a39

1---~ ~
I**********;*********&****

I I I

I

** :
** I
*
**
*
**
*
*
**
*
*
*
*
**
*
*
*
**
*
*
*
*
**
*
*
*
**
*
*

I
I
I
I

** i*
** :
* T
Jr** ?

*** I*********************I
'0.0100 I I
-0.0161 I
-0.11222 +3 ++

I
+++t+++33+-t++ +++ + + 3+

LEFT --------e-----e-----------
BIN 000~000~Q000~Q0000~00000000000000000~000000~000~00000~0~0~0~
EIXE 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

665555544444333332222211111000000000111112222233333444455555
319753197531974208642086420753102468024691357913579136802468
99876654332100987765443211098873455678890112344567789~012334
8~3580358035803580358035702570253085308530853085318631863186

figure 3.1



MULTIDIMENSIONAL ADDITIVE SPLINE APPROXIMATION (4/19/80)
PARAMETERS FOR THIS RUN
NO%
NPRED
MODE
WRY
MAllPRO
PPCONV
MAXIT l 15o4oo0
KORDER 3

Eli%%
3cI

IPRINT l 80?0a
NPRINT 1
PLOTRM .0
$VE3AGE SQUARED RESIDUAL AROUND THE MEAN .972118E-02
a



""K$JJ2;UNC;I;N AND ~~2AL~~G2~~~ECT~O~3~~  1

-;:;242 0:0 0:0556 -0:0384 -0:0141 .-E4g5 2;351.
. -0.0039 -0.0660 -0.0153 -0.0235

PLOT STATISTICS = 0. 0. 0. / 0. 11. 0. / 0. 0. 0.
PRQJ
ON X
AXIS

%t%~
29: 3884
29.1366

E%El
28:3813

%E85
27:6260

2 172;;
25:8707
26.6190
26.3672
26.1154

E-E97.
25.3601
25.1084
24.8566

21.3319
21.08fl2
20.8284
20.5766

e %03%
19:8214

LEFT
BIN
EIXE

?

PRQJ
ON Y

4000000000000000Q0010~0000000~000001000001000000000000000004  AXIS

I
I

*
**
*
*
**
*
*
**
*
*
**
*
*
**
*
*
**
*
**
*

I
*+

111111111111111111111111110000000000000000000000000000000000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
111110~0000000000000000~009999999999999999999998888888888888
211009988777665544332211~09988777665544332211009988877665544
27283839494Q505161627273838494950506161727283839495050616172
257025803580358036813681368146914691469247924792570257025703

figure 4.1



MULTIDIMENSIONAL ADDITIVE SPLINE APPROXIMATION (4/19/80)
PARAMETERS FOR2gIS RUN
NOBS
NPRED
MODE lz!
MAXTRY
MAXPRO s
PFCONV
MAXIT
KORDER

EKE?
IPRINT

l Is;000

4
11

105t000

!iE%K i
.0

$VERAGE SQUARED RESIDUAL AROUND THE MEAN 13.2975
.




