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Abstract. We describe an adaptive procedure that approximates a function of many variables
by a sum of (univariate) spline functions s,, of selected linear combinations am, - x of the coor-

diuates
$(x) = Z Sm(dm *X).

1Sm<M

The procedure i's nonlinear in that not only the spline coefficients but aso the linear combina-
tions are optimized for the particular problem. The sample need not lie on a regular grid,
and the approximation is affine invariant, smooth, and lends itself to graphical interpretation.
Function values, derivatives, and integrals are cheap to evauate.
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1. Introduction

Multidimensional surface approximation is recognized as an important prob-
lem for which severa methodologies -have been developed. The aim is to con-
struct an approximation ¢(x) to a p-dimensional surface y = f(x) on the basis
of (possibly noisy) observations { (y;, %:) }, < ;< - MOst existing methods, such as
tensor product spliues, kernels, and thin plate splines (for a survey, see Schumaker
[1976]), are linear in that

px)= > wiy,
1<i<n
where the weights { w;} depend only on X and {xi}, ;< DUt NOt ON{yi }; < ;< -
These methods have the advantage that they are str—a;i{:;—htforward to comput:a and
their theory is tractable. In practice, however, they are limited because they

cannot take advantage of special properties of the surface. Due to the inherent
sparsity of high-dimensional sampling, procedures successful in high dimensions
must be adaptive and thus nonlinear.

In this paper we describe an adaptive procedure that approximates f(x) by a
sum of (univariate) spline functions s,, Of selected linear combinations a, . x of
the coordinates

o(x) = E Sm(am - X). (1)

1<m<M

The procedure is nonlinear in that not only the spline coefficients but aso the
linear combinations are optimized for the particular problem.

2. The algorithm

The spline function s,,, aong & - X is represented as a sum of j,, B-splines
[de Boor, 1979) of order q

Sr(8m - X) = Z BrmiBmj(am - x). (2)

1€7<im
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The approximation ¢(x) (given by equations (1) and (2)) is specified by the direc-
tions {8m }; < m< ar the knot sequences along a, .x for 1<m <M, and the
B-spline coeflicicnts {Bmjiti< m~<-M_l-S_§{ne': For particular { a}, the knots are
placed heurigtically and then the { 8, } -are determined by (linear) least squares.
The residua sum of sgquares from thisfit is taken to be the inverse figure of merit

for {am}lgmsM'

Following Friedman, Jacobson, and Stuetzle (1980}, the approximation is con-
structed in a stepwise manner: given { am }; < ,,< m—1, find ap to optimize the
figure of merit of {am},<mc - TEminate when the figure of merit is not
significantly improved.

3. Xmplcmentation

The most difficult part of the algorithm is finding each direction a,,,. We per-
form a numerical search using a Rosenbrock method [Rosenbrock, 1966} modified
for the unit sphere, starting at the best coordinate direction. On any given search,
there is no guarantee that the global optimum will be found. If the local optimum
is insignificant, the search is restarted at random directions. This guards against
premature termination. If the local optimum is significant but not identical to
the global optimum, no great harm is done because a new search is performed
in the next iteration on an object function for which the previous optima have
-been deflated. Each iteration of the optimizer requires 3.5 p function evaluations,
on the average, where p i§ the dimension of x. Two iterations are nearly aways
sufficient.

‘For high dimensionality, the computation is dominated by the evaluations
of the object function. Since it is not crucial to find the precise optimum, con-
siderable savings can be achieved by substituting a smilar, but much less ex-
pensive figure of merit during the search for a new direction. For this figure of
merit not only the previously found directions but also the corresponding spline
coefficients arc held fixed. The new direction can thus be found by considering
the residuals from the model of the previous iteration. For a given direction, the
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residuals are modelled by a smooth based on local linear fits [Cleveland, 1979],
[Friedman, Jacobson, and Stuetzle, 1980]. The characteristic bandwidth (that is,
the average fraction of observations used in each loca fit) is taken to be inversely
proportional to the number of knots. The residua sum of squares from the smooth
is the figure of merit used for the smooth. Solving the least squares problem for
the origina figure of merit requires

o{+( 2]

operations, while the new figure of merit can be evaluated in roughly n operations
using updating formulas for the moving average. The least squares problem has
to be solved only once for each iteration to determine the new model after a,, has
been found.

To solve theleast squares problem, we form the normal equations and use a
pseudo-inverse, since the design matrix might not:have full rank. The singularity
which arises form the inclusion of a constant term for each direction is remedied
by ssmply dropping one column per direction from the design matrix. Higher
order singularities caused, for example, by the linear terms for three co-planar
directions, are not explicitly taken care of, but are handled by the pseudo-inverse.

Our knot placement procedure is motivated by the sequential nature of the.
algorithm. At each iteration, the knot positions are required for the least squares
fit, after the new direction has been found. Our model at this point is the spline fit
of the previous iteration, plus the moving average smooth aong the newly found
direction. The knot placement is based on the residuals { r;} from this model.
Multidimensional structure in these residuals due to incompleteness of the model
manifests itself as high local variability in the scatterplots of r; against a,,.x;.
In order to preserve the ability of fitting this structure in further iterations, it is
important to avoid accounting for it by spurious fits along existing directions. For
this reason we place fewer knots in regions of higher local variability. Since the
residuals change, the knots are replaced along all directions at each iteration.
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The knots along a direction a,,, are placed as follows: the smooth described
aboveis applied to { (ri, am-xi) }, < ;< , @d thelocal variability v; at each point is
taken to be the average squared residual from its local linear fit. The Winsorized
local variabilities are defined by

20 if v; > 20
wi=14v if vi<iv
U; otherwise

(where o =} 57, ;< v), and then are scaled so that 32, <;<, & = 1. The
knots { ¢; } are placed to divide the line into intervals with equal content of L.

1 1

for each |, _— =
Im—q+ 1y et Y

4. Examples

In this section we present and discuss the results of applying the
Multidimensional Spline Approximation method (MASA) to four examples. (A
FORTRAN program implementing MASA is available from the authors)) The
first three examples were suggested elsewhere for testing surface approximation
procedures. The function in the fourth example was studied in connection with
a problem in mathematical genetics.

The first example is taken from Friedman [1979]. In this example uniformly
distributed random points {z;| 1 <i< 200) were generated in the six-
dimensiona hypercube [0,1]¢. Associated with each point z; was a surface value

yi = 10 sin(wz(1)z,(2)) + 20[z,(3) — 0.5]2 +-10z,(4) + 5z4(5) + 0z,(6) + ¢y,

where the { ¢, } were independent identically distributed standard normal. The
inverse figures of merit for the approximation with M = 1,. .., 4 terms were
6.71,4.29,1.87,0.97. In three restarts, the figure of merit did not decrease below
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0.86, so M = 4 waschosen. The four linear combinations and the corresponding
spline functions arc shown in figures 1.1-1.4. (For completeness, the program
parameters are also listed; see the program comments for a detailed explanation.)
The spline along the first linear combination (figure 1.1) is seen to mode! the linear
part of the surface. The second term in the approximation (figure 1.2) models
the additive quadratic dependence on z(3). The final two terms (figures 1.3, 1.4)
model the interaction between z(1) and z(2). The L, norm of the error || f — ¢|l2
was 0.57.

Although the full advantages of MASA compared to other procedures are
realized in higher dimensional or noisy settings, we applied it to two bivariate
examples used by Franke [1979] to compare a number of interpolatory surface
approximation schemes.. For both examples 100 uniformly distributed random
points in the unit square [0,1]? were generated. The function in Franke's first

SApIels )= 0.75 expls (9 27 (0 2

4
+ 0.75 exp|— S (9z 1) — 9y +1
19 —0

AV — 122

+O.5exp[—(9x 7) :(Qy 3)]

+ 0.2exp|—(9z —4)2—(9y — 7)?].

Considerations similar to those in the previous example led to an approximation
with three terms, The linear combinations and corresponding spline functions are
shown in figures 2.1-2.3.

The function in Franke's second example is
(2, y) = Sltanh(9y —92) + 1.

For this case the approximation used only one term, shown in figure 3.1.

Since different randorn points were used in Franke's and our tests, precise
comparisons are not possible. On the first example, MASA gave roughly an order
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of magnitude larger errors than the best methods in Franke's trials (global basis
function methods) while on the second example, MASA gave an order of mag-
nitude smaller errors than the best methods. These results are not surprising since
the peak-shaped basis functions of the global basis methods are especially suited
for representing the peaks of the first example, whereas the ridge-shaped basis
functions of MASA are especially suited to the second example. Unfortunately,
peak-shaped basis functions are not appropriate for moderate or higher dimen-
sionality. The difficulty is that in order to achieve a smooth fit, the width of
the basis peaks needs to be comparable to the distance between data points. For
n uniformly distributed random points in a p-dimensiona hypercube [0, 1], the
typical nearest neighbor distance is (31«)%. In particular for n = 1000 and p =
10, this distancc’is 0.5, and.for p = 20 is 0.7. Thus variation of the surface
over distances small compared to such large interpoint distances cannot be well
approximated with these global basis functions methods.

Our final example is a19-dimensional function encountered by Carmelli and
Cavalli [1979]. An important question is the structure of this function near its
minimum. Wc sampled the function at 200 points uniformly distributed in a small
hypcrcube centered at the minimum found by numerical optimization and applied
MASA. Theinverse figure of merit for the best constant fit was 13.3. The inverse
figure of merit for M = 1 was 0.78. In 30 restarts, the figure of merit did not
decrease below 0.42. Figure 4.1 gives the linear combination and corresponding
spline function. This picture shows considerable structure that was not revealed

inthe original study.

5. Discussion

MASA can be expected to work well to the extent that the surface can be
approximated by a function of the form (1). Of course in the limit M — oo al
smooth surfaces can be represented by (1), but even for moderate M functions of
this form constitute a rich class.

As seen in the previous section, an advantage of using essentially one-
dimensional basis functions is the possibility of graphical interpretation. The
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entire model can be represented by graphing sm{am . X) against a, . x and by
specifying { am}; ¢ menr (PErhAPs graphicaly for p= 2 or 3). Additionally, ade-
guacy of the kno{pl;cement can be judged using the M plots of the residuals
from the final model against a,, . X. Proper termination of the algorithm can be

assured by monitoring at each iterationthe plot of the residuals from the model
of the previous iteration along the newly found direction.

The problem of sparse sampling in high dimensions is not encountered, since
MASA is fitting one-dimensonal projections of the entire sample. The sample need
not lie on a regular grid, and the approximation is affine invariant and smooth.
Function values, derivatives, and integrals are cheap to evauate. In addition,
since the approximation is locally quadratic for g = 3, optimization algorithms
can be expected to converge rapidly.
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figure 2.3



MULTI DI MENSI ONAL - ADDI TI VE  SPLI NE  APPROXI MATI ON  (4/19/80)
PATAMETERS FOR TH' S RUN
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MODE
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figure 3.1



MULTI DI MENSI ONAL - ADDI TI VE SPLI NE APPROXI MATI ON (4/19/80)
NégﬁNEr ERS FCR THI S RN
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MODE
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KORDER 3-

.
IPRINT N
NPRI NT 1

PLOTRM .9
é\VERAGE SQUARED RESI DUAL AROUND THE MEAN  .972118E-@2



SPLINE FUNCTION AND KNOTS ALONG DIRECTION NR 1
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MULTI DI MENSI ONAL  ADDI Tl VE  SPLI NE APPROXI MATI ON (4/19/88)
PARAMETERS FOR THIS RUN

NOBS 200

NPRED 19

MODE 2

MAXTRY 2

MAXPRO 2
PPCONV ngﬂﬂﬂ

11
BANFAC 1.5%090

NPRINT [
PLOTRM a
.f)\VERAGE SQJARED RESI DUAL AROUND THE MEAN  13.2975






