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| ntroduction and Summary.

A conbinatorial regularity property of a graph is expressed by a
numerical requirenent on the consistency of structure within the graph.
The standard property that a graph is regular of degree k , requiring
sinply that each vertex be adjacent to exactly k other vertices, has
received the nost thorough investigation in the literature. The nore
stringent conditions of "strongly regular" [ 78] and "distance-regul ar"
[B74] have also received considerable treatnent. In this paper we
characterize and investigate the regularity of connectivity that can
exi st between umw vertices concurrently. This regularity is
realized by the identification of equitable nunbers of shortest paths
between all pairs of vertices that at the same tinme make equitable use
of either each vertex, each edge, or both. To develop the concept of
path-regularity we explicitly specify our terninology for describing
shortest paths in a graph. Qher graph theoretic terms not defined here
may be found in Harary [H69].

For n > 0, the sequence VgrVyseeesVy of distinct vertices of the

graph G, where ViViig is an edge of G for all 0 <i <n-l1 , shall
denote a path of length n . Paths are assumed unordered, so VorVpseeerVy
and v ,v, . ...V, denote the same path. Vertices v, and v are

endvertices of the path \ASTERETR with all other vertices of the
path then being interior vertices. The path Vgp VyzeeesVy is a shortest

path of G whenever any other path with endvertices v, and v, has

length at least n , wth d(vo,vn) = n then denoting the distance between

v

o and vy - Al'l paths of length at |east one have a distinct pair of



endvertices. The path vy of length zero has the single endvertex vy
and is also said to have the nondistinct pair vy, v, of endvertices
Hence a connected graph may be taken to contain shortest paths between
every (unordered distinct or nondistinct) pair of vertices

For the conplete bipartite graph Ki,S of Figure I[(a), every pair
of vertices are the endvertices of a unique shortest path. A list of
all the resulting shortest paths would then have each edge, but not each
vertex, occur in the same nunber (5) of paths of the list, providing a
concept of regularity for the shortest paths versus the edges of Ki,S
The list of all shortest paths for the cycle C5 of Figure I (b) would
then have each vertex occur in the sane nunber (6) of shortest paths
and each edge occur in the sane number (3) of shortest paths, yielding
a stronger concept of regularity enconpassing the shortest paths, vertices

and edges of ¢ If we allow nultiple copies of shortest paths of the

5.
graph Kf K, of Figure I(c) in conmposing a path list, then it is
possible to exhibit a list of shortest paths of K3)<Ké where each pair
of vertices wv,v'e V(K3 X KE) are the endvertices of the same nunber of
shortest paths of the list and where each vertex, but not each edge, is
in the same nunber of shortest paths of the list. This then provides
a concept of regularity for shortest paths versus vertices of K% XKE'
Formally, let a list (equivalently nultiset) denote a finite

collection of elenents where nultiple copies of each elenent may occur

inthe list. A nontrivial graph G is termed vertex-path-regular

[respectively, edge-path-regular] wth paraneters (k,mv) [respectively

(k,me)] if an associated list £ of shortest paths of G exists where

every pair of vertices are the endvertices of exactly k > 1 paths of ¢



(a) (b)

()

Figure 1. Exampl es of (a) edge-path-regular,
(b) strongly path-regular, and
(¢) vertex-path-regular graphs.



and each vertex [respectively, edge] occurs in exactly m [respectively,

m, ] paths of £ . A graph is strongly path-regular with paraneters

(k’mv’me) and associated list g of shortest paths if it is both
vertex-path-regular with paraneters (k, mv) and edge-path-regular with
parameters (k,me) for the same associated list & . For conpleteness
the trivial graph is taken to be vertex-, edge-, and strongly path-regular
with paraneters (k,k), (k,k) and (k,k,k) , respectively, for every

k>1. Agraphis said to be vertex-, edge-, or strongly path-regular

whenever there exist sone paraneters for which the graph has the
specified path-regularity property, and a graph is said to be_path-regular
if it is at least either vertex- or edge-path-regular.

From our preceeding discussion it is then clear that K'.L,S of
Figure I(a) is edge-path-regular with paraneters (1,5) , and C5 of
Figure I(b) is strongly path-regular with paranmeters (1,6,3) . For
Kijg of Figure I(c), consider the list g containing two copies of
every shortest path of length at nost one in KBXKQ and one copy of
every shortest path of length two. By direct application of the definition
this list g is then sufficient to confirmthat K3xK2 i s vertex-path-
regular with parameters (2,1L) .

Note that if G is vertex- or edge-path-regular with parameters
(k,mv) or (k,me) s respectively, or strongly path-regular with parameters
(k,mv,me) , then the associated |ist nust have each vertex of G present
as a path of length zero with nultiplicity k and each adjacent pair of
vertices of G present as a path of length one with nultiplicity k .

Thus it is sufficient to show that each edge occurs in exactly (m-Kk)

paths of length > 2 of the list to confirmthe edge-path-regularity



property, and/or that each vertex occurs as an interior vertex in
exactly mv-k\V(G)l paths of the list to confirmthe vertex-path-
regularity property. Consider the wheel V\é of Figure 2. Gving
multiplicity 2 to the shortest paths of length two with interior
vertex v

1
two, we note that each edge then appears in the sane number (2) of

and nultiplicity 1 to the other shortest paths of |ength

these paths. Hence V\é is edge-path-regular with paraneters (4,6) .
Alternatively, giving nultiplicity 1 to the same paths containing vy
and multiplicity 2 to the other shortest paths of length two all ows
us to confirm that V\é is vertex-path-regular with paraneters (5,27) .
The graph ¥,

5

section can not be strongly path-regular. Hence the exanple wS

denonstrates that a graph can be both vertex-path-regular and edge-path-

is not regular (of degree), so by Theorem 1 of the next

regul ar without being strongly path-regular.

Pat h-regul ar graphs may be visualized as providing efficient design
of comunications networks, Let the vertices of an edge-path-regular
graph with paraneters (k,me) represent communication bases in the
network and the edges trunk lines each capable of hosting m, channel s
of concurrent comunication. The edge-path-regularity property then
allows for k dedicated communication channels to be provided between
every pair of bases concurrently. Furthernore, the channel allocation
is efficient both in that all dedicated channels follow shortest paths
and that every trunk line is used to full capacity. |If the constraint
in a comunication network is alternatively related to a fixed |evel of
switching capacity at every communication base, then the vertex-path-

regul ar graphs indicate efficient network design. The associated lists



Figure 2. The wheel W5 which is vertex-path-regular
Wi th parameters (5,27) and edge-path-regul ar
with parameters (4,6) , yet not strongly

pat h-regul ar.



of the path-regular graphs, as specified for the exanples of Figures 1
and 2, then provide the dedicated channels for such a comunication
network interpretation. This concurrent communication interpretation
provi des some notivation and an intuitive appeal to many of our
derived results but is not explicitly mentioned in the balance of the
paper .

The example graphs of Figures 1 and 2 all possessed considerable
symretry that was instrunmental in the denonstration of the respective
path-regul arity properties of these graphs. As succinctly noted by Biggs

in his book Al gebraic Gaph Theory [B74], "A symmetry property of a graph

is related to the existence of autonorphisns -- that is, pernutations of
the vertices which preserve adjacency. A regularity property is defined
in purely nunerical terns. Consequently, symmetry properties induce
regularity properties, but the converse is not necessarily true."

In Section Il we investigate the dependencies and independencies
between the various regularity, path-regularity, and symetry properties
Cur main result is in accord with the preceeding observation on regularity

and symmetry properties. Specifically, we show that:

(1) a connected vertex-synnetricf/ graph is vertex-path-regular but
not conversely,

(i) a connected edge-synnetricff/ graph is edge-path-regular but not
conversely, and

(iii) a connected graph that is both vertex- and edge-symmetric is

strongly path-regular but not conversely.

) Also terned vertex-transitive by sone authors.

*%
x*/ Also termed edge-transitive by some authors,



These results insure that many inmportant classes of graphs have a
path-regularity property. Cycles, cubes and regular camplete k -partite
graphs are strongly path-regular, and any conplete bipartite graph is
edge-path-regular. W also indicate in Section |l the considerable
extent to which the vertex-, edge-, and strongly path-regular properties
are independent of other graph properties and paraneter val ues.

The fact that a graph is vertex- or edge-path-regular does not
determne the paraneters (k,mv) or (k,me) uni quely, but it uniquely
determines their ratio. Hence we define o(G) = k/m_as the vertex-

path-regularity of the vertex-path-regular graph G and p(G) = k/me

as the edge-path-regularity of the edge-path-regular graph G. In

Section Il we obtain the following fornulas for evaluating a(G and
p(@) :

For any vertex-path-regular graph Gwith n vertices and ¢ edges,

- n_ . - for ¢ of any dianeter,
> [d(v,v' )+1]
v,v' € V(G)
o(e) =
n for G of dianeter 2,
L gn -n-21

and for any edge-path-regular graph G with n vertices and 7z > 1 edges,

— for G of any dianeter
2 d(v, v')
v,v' e V(@)

a . .
ACSA if G has dianmeter < 2 .



A table of values of a(G and p(G) is then provided for the major
classes of path-regular graphs. In Section Il we also derive sone
nontrivial necessary conditions for a graph to be vertex- and/or
edge-path-regular involving inequalities between the relative size
of the cuts and separating sets of the graph and the required val ues
for o and , fromthe preceeding fornul as.
There is an intimate relation between shortest paths in the product graph
GxH and the shortest paths of Gand H. This relation is exploited in

Section IV to obtain our major results on the products of path-regular graphs:

(i) The productf/ graph GxH is vertex-path-regul ar whenever G and
H are both vertex-path-regular, but not conversely, and

(ii) the product graph GxH is edge-path-regular if and only if @
and H are both edge-path-regular with [V(G) |p(G) = |V(H) |p(H) »
where specifically GxGx . . . xG is edge-path-regular if and

only if G is edge-path-regular.

Finally, in Section V, we propose and discuss several interesting
open questions that arose in our investigation of path-regular graphs,
of which the nost intriguing to us is the following: |Is there an
edge-path-regular graph G with p(G =r for every nonzero rational r

inthe unit interval ?

*/ Nso terned the Cartesian product graph, The product graph is defined
in Section IV.

10



[I. Regularity, Path-Requl arity and Symmetry.

The primary goal of this section is to determne the dependencies
and independenci es between the various regularity, path-regularity, and
symetry properties. Qur first theorem provides some affirmative
inplications between regularity (of degree) and path-regularity
properties. Al though the wheel w5 of Figure 2 illustrates that a
graph can be vertex-path-regular and/or edge-path-regular without
being regular, Theorem 1 denonstrates that a strongly path-regular
graph nust be regular. And conversely, although the property that the
connected graph G be regular of degree k is not by itself sufficient
to induce either the vertex- or edge-path-regularity property for G,
the property that the connected graph G be strongly regular is
sufficient to make G strongly path-regular. Note that Gis strongly
regular with parameters (il,ig,iB) whenever ¢ IS regular of degree i
where also any two adjacent vertices have exactly i, common neighbors,

2

and any two nonadjacent vertices have exactly i3 common nei ghbors.

Theorem 1. A strongly path-regular graph with parameters (k,mv,me)
and n vertices is regular of degree (Emv—kn-k)/me . On the other
hand, any strongly regular graph with parameters (il, i 13 > 1) and
n > 2 vertices is strongly path-regular with paranmeters (k,mv,me)

where k =ig m_=nig+ il(il'iz'l)/g , and m_ = i 3+2(il—12-1) .

Proof . Let the n vertex graph G be strongly path-regular with

par aneters (k,mv,!ne) , where (g is the associated list of paths, Any
specific vertex v of Gwll occur as an endvertex in k(n-1) paths

of length at least one in ¢, and each of these paths will contain




exactly one edge incident tov . Also, v wll occur as an interior

vertex in m_-kn pat hs of g , where each of these paths will contain

exactly two edges incident to v . Thus the total number of occurences

of edges incident to v in all paths of gis em -kn-k .  But t he

total nunmber of occurences of edges incident to v in all paths of ¢

is also given by mexdegree(v) since each edge of G occurs in n,

paths of g . Therefore degree(v) = (2mv-k_n-k)/me for any v.in G.
For the second part of the theoremlet the graph ¢ = (V,E) have

n >2 vertices and be strongly regular with paraneters (il’ie’i3 > 1)

Let the list g contain i, copies of the zero length path v for every

3
veV , 13 copies of the path v, w for each edge vweE , and one copy

of the path u,v, W for every nonadjacent pair of distinct vertices wweV

and every distinct v adjacent to both u and w. The fact that
every two nonadjacent vertices of G have i3 comnmon nei ghbors inplies
that g contains k = i3 >1 shortest paths between every pair of
vertices of G. Any edge vweE occurs in 15 paths of length one

of £ . Noting that there are i-iy-1 vertices other than v adjacent
to wand not to v and al so i-i,-1 vertices other than w adjacent

to v and not to w, the edge wwal so occurs in 2(il-i2—l) of the

paths of length two of g, so in total in m, = i5+2(il-i2-1) pat hs

of £ . Every vertex veV will occur as an endvertex in ni5 pat hs

of ¢ and as the md-vertex of i -1)/2 paths of length two of ¢ ,

108715
so in total in ni3+i1(il'ie'l)/2 paths of ¢ . Hence Gis strongly

path-regular with the associated list g . O

12



As another partial converse to the first part of Theorem 1 we now
derive the following Iemma which will be enployed in the subsequent

t heorem

Lemma 2. Every graph which is both regular and edge-path-regular is

strongly path-regul ar.

Proof . Let the n vertex graph G be regular of degree j and
edge-path-regular with parameters (k,me), where £ is the associated
list of paths. For any vertex v of G, there are jm_ occurences
of edges incident to v in the paths of g . A total of k(n-1) of

t he Jmg such occurences correspond to v being an en&vertex, the
remai nder corresponding to v being an interior vertex of the paths.
Each occurence of v as an interior vertex of a path involves exactly
two occurences of edges incident to v in that path, so v must occur
as an interior vertex in [jme-k(n-l)]/2 paths of g . Hence each
vertex v of G occurs in [jme+k(n-l)]/2 paths of ¢, so Gis

strongly path-regular wth parameters (k, [Im, + k(n-1) ]/2,me) , d

As previously noted, the symmetries characterized by the autonorphisnms
of a graph induce extensive numerical regularity properties, although the
converse inplications generally do not hold. In accord with this maxim
the standard vertex and edge symmetry properties of graphs are now shown
to induce the corresponding vertex- and edge-path-regularity properties

while the converses are shown to fail by counterexanples.

13



Theorem 3.

(1) Every connected vertex-symmetric graph is vertex-path-regular, but
not conversely;

(i) every connected edge-symmetric graph is edge-path regular, but not
conversely;

(iii) every connected graph that is both vertex- and edge-symmetric is
strongly path-regular. However, there exist strongly path-regular

graphs that are, respectively, not vertex-symmetric and not

edge- symetric.

Proof. Let G = (V,E) be connected and either vertex-symetric or
edge-symetric or both. Let k(u,v) be the nunber of distinct shortest
paths between u and v in G, and let k* = lmnﬂdu,v)l u,veV} .

Let the list ¢ contain k*/kﬁh v) copies of each distinct shortest path
between u and v for all pairs of vertices of VvV, so then every pair
w,veV are the endvertices of k* paths of ¢ .

Assume G is vertex-synmetric. For each vev , formthe sublist L,
conposed of all paths of g containing the vertex v . For any v,ueV ,
the assunption that G is vertex-symetric means there exists an
aut omorphism o mapping v into u. Now any path p of £, is
mapped by o to a path, «a{p) , containing the vertex u where a(p)
is also a shortest path between its endvertices in G , so a(p) is
in £, - Furthernore, each distinct shortest path between the endvertices
of the path p is mapped by a into a distinct shortest path between
the endvertices of the path a(p) and vice-versa for the inverse

autormrphismcx—l . Thus p has the sanme nmultiplicity in g, as a(p)

14



has in g, SO |£v| < |£ul- Si nce ot i's an autonmorphi sm mappi ng
|

u into v, !;v = !_s;u , and G is vertex-path-regular verifying (i).

Now assume G is edge-symetric and for each edge eckE formthe
sublist £ conposed of all paths of g containing the edge e . For
any two edges e,e'e¢E, the assunption that G is edge-symetric neans
there exists an autonorphism a which maps edge e into edge e'.

By the sane argument as preceeding We then obtain that |£e| = |£e' l
for any edges e,e' ¢E, so Gis edge-path-regular verifying (ii).

Noting that the same list £ was utilized in the proofs of both (i)
and (ii) then verifies (iii).

To show none of the converses hold first consider the wheel w5
of Figure 2. w5 is neither vertex- nor edge-symmetric, yet it is
both vertex- and edge-path-regular, denonstrating that neither the
converse of (i) nor (ii) hold.

For counterexamples to the converse of (iii) first note that
Folkman [F6T; CM78, p. 95] has denonstrated the existence of a regular
graph which is edge-symetric but not vertex-symmetric. By part (ii)
of this theorem and Lemma 2 such a graph is then strongly path-regular
wi thout being vertex-symmetric, To denonstrate that a strongly path-
regul ar graph need not be edge-symetric, consider the graph C5+(;‘5
composed of two distinct chordless five cycles along with all edges
between vertices of these distinct five cycles. The list containing
each path of G of length zero or one with nultiplicity 7 , each path
of length two in a chordless five cycle having nultiplicity 2 , and
each path of length two with nonadjacent endvertices in one chordless

five cycle and midvertex in the other five cycle having multiplicity 1 ,

15



is sufficient to confirm that 05+% is strongly path-regular with

paraneters (7,77,11) . Al though ¢ is clearly vertex-symetric,

+C
5 5
it is not edge-symetric since some edges are in chordless five cycles

and others are not, conpleting the theorem O

From Theorem 3 it follows that the class of strongly path-regul ar
graphs is quite broad, including all cycles, conplete graphs, regular
conplete k-partite graphs, and the cubes of every dimension, Also
all camplete bipartite graphs are edge-path-regular. As night be
expected, the condition that a graph be vertex-, edge-, or strongly
path-regular is quite independent of nost other typical parameter val ues
and/or properties associated with a graph, a partial summary of which is

noted in the follow ng.

Corollary 3.1. There exist strongly path-regular graphs of any specified

girth, or of any specified dianmeter, or of any specified edge or vertex

connectivity, or of any specified chromatic number,

Proof. The cycle C, is strongly path-regular of girth n and
diameter | n/2] , thus realizing any specified girth or dianeter,
The complete graph K41
and n dinmensional cube are all examples of strongly path-regular

regul ar conplete bhipartite graph Koo
2

graphs of edge and vertex connectivity n . The conplete graph Kn

and any regul ar complete n-partite graph have chromatic nunber n . O

16



Two properties of a graph will be termed independent properties

if there are exanples of graphs exhibiting all four possible cases:

(a) having both properties, (b) having each specified property
without the other, and (c) having neither property. Figure 3 provides
exanpl es showing that the property that a regular graph be strongly
path-regul ar is independent of the property that a graph be either

(i) Hamiltonian, or (ii) Bulerian, or (iii) planar. Verification
that the graphs of Figure 3 satisfy the respective properties is
straightforward from standard results in the literature regarding these
properties. To confirmthat the cited exanple graphs are not strongly
path-regular, consider the following: Every edge of an n vertex graph,
ot her than K that is edge-path-regular with paraneters (k,me) must
have each edge occur in m -k > 1 paths of length at least two in the

associated list. Alternatively:

Observati on. If Gis a graph other than a conplete graph where sone
edge of G does not occur in any shortest path between any nonadjacent
endvertices in G, then G is not edge-path-regular, hence also not

strongly path-regular.

17



| |
Hami | t oni an Not Hamiltonian Eulerian
Pl anar Not Eulerian Not Pl anar
Regul ar and
Strongly
Pat h- Regul ar
)'aN'
|
|
Regul ar and ;
Not Strongly ‘
Pat h- Regul ar
Figure 3. G aphs showing that the property that a connected regular

graph be strongly path-regular is indenpendent of the
properties that a graph be either (i) Hamltonian, or
(ii) Eulerian, or (iii) planar.

Now I et us return to the primary theme of this section whichis to
describe the dependencies and independencies that exist between the various
regularity, path-regularity, and symetry properties. In Figure L and
the following corollaries we describe the extent to which the vertex-path-
regularity and edge-path-regularity properties are distinct and independent of

other regularity and symetry properties,

18




Vertex-symetric Not vertex-path-regul ar

vertex- pat h-regul ar }\ Not regul ar
> and regular J 'l (= Not vertex-symmetric

Edge- symretric

(= edge-path-regular)

Not edge- path-regul ar
(= Not edge-symetric) A___,

Figure 4  An indication of the independence of regularity,
path-regularity, and symetry properties.

Corollary 3.2. The property that a graph be edge-path-regular is

i ndependent of the property that a graph be (i) Vvertex-symmetric,

or (ii) vertex-path-regular, or (iii) regular.

Proof. Al possible cases are covered by the exanples of Figure k.
Three of the four exanple graphs are immediately seen to have the
indicated properties. The other graph, ¥;xX,, is the classic exanple
of a graph that is vertex- but not edge-symetric, and we need only show
that it is not edge-path-regular. From the theorens proved in Section IV

it follows that K; x K., 1s vertex symetric but not edge-path-regular

J
for any i >j >2 . W include a separate proof for szKQ to keep

this section self-contained.

19




Let the six edges of Kz)(Ké that are in triangles be type A
edges and the other three be type B edges. Note that every shortest
path of length two in K3><Ké uses one type A and one type B edge,
soany list of shortest paths in which every pair of vertices of K3 x K,
are the endvertices of the same number of shortest paths can not have

each edge occur in the same number of paths. O

Corollary 3.3. The property that a graph be vertex-path-regular is

i ndependent of the property that a graph be (i) edge-symetric, or

(ii) edge-path-regular, or (iii) regular.

Proof . All cases for (i) and (ii) are confirnmed by the exanples of

Figure 4 To show that the property of being vertex-path-regular is
i ndependent of the property of being regular, note that K2 has both

properties, L has neither property, and the wheel W. of Figure 2
)

5
is vertex-path-regular but not regular. Finally the regular graph of
Figure 3 (lower right corner) that is Eulerian and not planar and not
strongly path-regular is readily seen not to be vertex-path-regular
as the separating vertex would have to be an interior vertex of too

many paths. O

20



[11. Evaluation of Path-Regularity.

Al though know edge that a graph G is either vertex- or edge-path-regular
is not sufficient to deternine the paraneters (k,m) , it is now shown to
be sufficient to deternine their ratio k/m. The class of vertex- and
edge- pat h-regul ar graphs of diameter two are of special inportance and

the ratio k/mtakes on a particularly sinple formulation in that case.

Theorem 4, Let G be a vertex-path-regular graph with paraneters (k mv)
'where G has vertex set {vy,v,, N 450l and 1 edges. The vertex-path-

regularity c(Q is then given by

r i for G of any dianeter, (1)
Z [d(vy,vy )+
i< ] J

OG) -

2n

—— for ¢ of dianmeter < 2, (2)
3n -n-2¢

wher e d(vi’vj> denotes the distance between A and ey
Proof . Let G be a vertex-path-regular graph with paraneters (k, mv)
and associated list g of shortest paths. The total nunber of vertices
in all paths of g is given by k 25 [d(vi,v.)+1] since each pair
i< J

of vertices v. L v.J are the endvertices of k paths of length d(vi’vj)
where each such path contains d(vi,vj)+l vertices. But the total
number of vertices in all paths of g is also given by o, since

each vertex occurs in m paths of g . Thus k X [d(v,,v. )+1] = mm
v i<j i3 v
verifying fornula (1).

21



Wen ¢ has dianeter at most two, ¢ nust then contain exactly
kn paths of length zero, k¢ paths of length one, with the remaining

k[n(n-1)/2 - ] paths of length two, yielding fornula (2). O

An anal ogous result is now stated for edge-path-regular graphs,

where the proof is immediate by the sane arguments utilized in the

preceeding t heorem

Theorem 5. Let G be an edge-path-regular graph with parameters (k,me)
where G has vertex set {vl,v »e..5v )} and £ >1 edges. The

edge-path-regularity p(G) is then given by

( ! for G of any dianeter, (3)
2 d(vi,v. )
1< J
k
(O = = = {
e
£ .
(a1 <1 for G of diameter <2 . (L)
"

From (1) and (3) we then obtain:

Corol lary 5.1. For any strongly path-regular gravh with n vertices

and ¢ > 1 edges,

sty = (e * B () ©)

Formulas (1) - (%) all ow for straightforward conputation of o(g)
and p(G when G is known to be vertex- and/or edge-path-regular.
Conpl ete graphs, cycles, regular complete | -partite graphs, and the
cubes of all dinensions a..re known to be strongly path-regular from the

results of Section Il, and the values of o and , for these graphs
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O asses of G aphs

vertex-path-regularity

edge-path-regul arity

o] p
. 1
Conpl et e: K = 1
neven, n > 8 5 8
(n+2) 02
Cycl e: c,
nodd, n>3 8é-— 8
(n+2)7-1 21
Regul ar Conpl ete S
j -partite: 1K,'1,.' o1 2ji+i-1 Ji+i-2
;_\/_...J
J
j -dinension Cube: 2 _1_
- . . —._ ._l
E (g#2)el™ 41 2?

Product of
Conpl ete G aphs: K, xX

2
513-1-3+1

Not edge- path-regul ar

for i >j >2

i-partite: K. .
Conpl et e Bi-partite 5,5

Not vertex-path-

143

regul ar for

|

f4 Prig-i-

Table 1.

Val ues of the vertex-path-regularity and edge-path-

regularity for several inportant classes of path-regular

graphs.
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are tabulated in Table 1. The product graph KiXKj]

hence vertex-path-regular. The value of o for K, x X,

is vertex symretric,
Jalong with the
value of , for the edge-path-regular conplete bipartite graph L

2

J
are also given in Table 1. The relation between o and p given by (5)
is seen to hold for the four classes of strongly path-regular graphs in
Table 1. The fact that K; x K.J is not edge-path-regular for i >gJ >2
follows from Theorem 8 of Section IV. It is also noted in Table 1 that
K.l:j is not vertex-path-regular for i # j . For this fact consider
that in any list having the same number of shortest paths between all
pairs of vertices of K.)j for i >j , the nunber of times a vertex
occurs as an interior vertex of a path of the list is greater for vertices
of the j nmenbered set than for the i nenbered set.

Uilization of formulas (1) -(4) as in Table 1 requires that we
first know that the graphs have the corresponding path-regularity property.
Atest to determine if a particular graph is vertex- and/or edge-path-
regul ar can be developed utilizing the computational procedure of |inear

progranming. Such a test to deternmine if a graph is edge-path-regul ar

is outlined in the follow ng.

A Test for Edge-Path-Regularity of G

Let P = {pl,pg,...,'_pj} be the set of all shortest paths of the

graph G . Assign nonnegative weights x; to the paths of P such that:

(1) the sum of the weights X, for all paths of P between the
endvertices v,v'eVv(g)is unity for every pair v,v'eV(G),

(i) the sum of the weights on the paths containing the edge e< EQ

is less than or equal to z for every ecE&(G), and
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(iii) Z in is the mininumvalue of z satisfying the constraints

of (i), (ii), where Ziin cat be found efficiently by |inear

programmng techniques. From Theorem > we then obtain:

(a) if L £ RO , then Gis not edge-path-
“nitn 2 a(v, v')
v, v' e V(G)
regul ar,
(b) if —L_ - |E(G) | . then Gis edge-path-
ni'n 2 alv, v')
v,v' e V(G)

regular, where znin is the value of 1/p(G) and integral
paraneters (k, me) can be found by rationalizing the
fractional values of X, that are obtained (rational

solution values for X; are guaranteed for such a linear

program.

A test for vertex-path-regularity is readily obtained by an anal ogous
linear programutilizing fornula (1) for the test criteria.

Al though such tests can be reasonably efficient when the nunber
of shortest paths is not prohibitive (e.g. when dianeter(Q =2 ),
they can becone conputationally intractable. Furthernore, they do not
readily identify general classes of graphs that either possess or fail
to possess a particular path-regularity property. To conpl enent the
results of Section Il which determned large classes of graphs that
have particular path-regularity properties, it is desirable to identify
certain necessary structural properties of path-regular graphs whose
absence is then sufficient to insure that certain general classes of

graphs do not possess a particular path-regularity property.  Some
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nontrivial necessary conditions for graphs to be vertex- and/or

edge-path-regular are obtained by exanining the cuts and separating

vertex sets of the graphs.

Theorem 6. The graph G = (V,E) with vertex set {vy,V. . ) and

n

{ > 1 edges:

(1) can be edge-path-regular only if for any cut (A,A) c E,

G | : (©)

where further if G has dianmeter at npst two, only if

§A;I\) { . (
A A S AEDIT ¢ 7

(ii) can be vertex-path-regular only if for any separating vertex set
scv, such that no edge joins any point of the non-void set

Ac V-Sto any point of the non-void set B = V-S- A,

sl i : (8)
laus| |Bus| izj[d(vi’v'j >+

where further if G has diameter at nost two, only if

5] - (9)
laus| [Bus| 3n° - n - 24

Proof . Let ¢ be a list of shortest paths of G such that every pair
of vertices V.o v.J are the endvertices of k paths of g, and consider

two cases:
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(i) Assune further that each edge of G is contained in m, pat hs of
the list ¢. Then for any cut (A,A) c E, note that k|a||A]
paths of g have one endvertex in A and one in A and so nust

contain an edge of (A,A) , hence k|A| |&] < me\(A,Tx)l or

L] m_k_
e

lal 1A}~

From (3) and (4) we obtain (6) and (7).

(ii) Assume for this case that each vertex of Gis contained in exactly
m, paths of £, and let S <V separate Ac V-SfromB = V-SA .
Each vertex of S is the endvertex of k|v| paths of £, and any
path of ¢ with one endvertex in A and the other in B contains

at least one vertex of S, so k|s| [v]+ k[A] |B] < m |s| and

ko s | [s]

——

W= lal fa] ¢ lsl ] = laus| [Bus|

Then from (1) and (2) we obtain (8) and (9). O

Theorem 6 will now be utilized to characterize a large class of graphs

that are vertex-path-regular but not edge-path-regular.

Corollary 6. 1. Let G be edge- and vertex-symetric with dianeter at

most two and regular of degree r >4 . Then GxK, is vertex-path-

regul ar but is not edge-path-regular.

Proof. Wnen G is vertex-symetric and connected Gx K, will also be

vertex-symnetric and connected, hence vertex-path-regular by Theorem 2.
Let G have n vertices and £ = % > 2n edges. The cut (4, A)

separating Gx K, into two copies of G has |(A,.Z\.)| = n and
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|A|=\A\ =n, soif GxX, is edge-path-regular from (6) we obtain

E(G )

| ZXKE | < % (10)
a(v,,v.

i <j vy

iy € V(G x K2)

- Gx K, has 2¢+n edges, which are the nunber of vertex pairs at

di stance one in Gx K, . Furthernmore GxK. has 2[(;)-H+22 vertex

2
pairs at distance two, and 2[(2)- {] vertex pairs at distance three,

[a4

which is the dianeter of GXK2 . Thus
) - n n
Ej d(vi,vj) = 2r+n+2(2[(,) - 11+20)+3(2[ () - £])

vi,vjeV(G X KE)

5n2-1m-1uz )

But then from (10) noting ¢ > 2n ,

o 2 T324+n
5n2 -Ln -4y

>

2 Sp-12

5n-12 ’

a contradiction. Hence GxX, is not edge-path-regular. O
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[V. Products of Path-Regular G aphs.

Gven a class of graphs satisfying a specified symnetry or regularity
property, it is often possible to determine a broader class of graphs
possessing the sanme symetry or regularity property by perfornming certain
standard graphical conposition operations on nember graphs of the class.

For the graphs G and H the product, GxH 1is the graph with vertex
set V(G xV(H) where (v,w) is adjacent to (v',w') in GxH whenever
v =v' and wis adjacent to w'in H, or whenever W= w' and V
is adjacent to v'in G. Regarding symetry, it is straightforward

to show that the product of any two vertex-symmetric graphs is vertex-
symetric, however, even the product of an edge-symetric graph with
itself need not be edge-symmetric, e.g. Kl’exKl,g is not edge-synmetric.

Regariing path-regularity properties, deeper relations between graphs and
their products are obtained beyond shose attributable sinply to considerations
of symmetry. The stronger results are inherent in the relation between
shortest paths in G, H, and GxH as noted in the following. If

TV 0 E&)Py is a sanortest path from v. to VPin G and

0
WO’W""’Wq is a shortest path from w5 to wqin H , then
(VO’ WO) ’ (VO’ Wl) 2.0 (VO’ Wq_l) ’ (VoJ Wq) s (Vl’ Wq\) PP (VP_]_: Wq) ’ (VP, Wq)
is a shortest path from (vo,wo) to (vp,wq) in GxH . Thus certain

shortest paths in GyH may in effect be composed sinply by concatenating

shortest paths in G and H . Furthermore, every edge of any particular
shortest path from (vo,wo) to (vp,wq) in GxH is either of type
(v', w) (v'y w) , denoting an edge v'v" of a path from o to vq

in G or of type (v, w')(v,w") , denoting an edge w'w" of a path

from W, to V(\ll in H, where in fact these paths nust be shortest paths
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in G and H, respectively. Thus a particular shortest path of GyxH
may be deconposed by projections into G and H, determining a unique
pair of shortest paths in Gand H. These relations between shortest
paths in G, H, and g¢xH provide sufficient foundation to obtain

several results on the products of path-regular graphs.

Theorem 7. The product graph GxH i s vertex-path-regular whenever

the graphs G and H are both vertex-path-regular.

Proof . Assume G and H are vertex-path-regular with paraneters
(kG,mG) and (kﬁ,mH) , respectively. Then G and H are al so

vertex-path-regul ar for parameters (k', m!

G) and (k"mf{) wher e

k' = Lcm(kG,kH,z) and m('} = mGk'/kG ,
be a list of shortest paths of G where each vertex of G

with m{{ defined sinmlarly.
Let SG
occurs in m('} paths of the list, and where every pair of vertices
of G are the endvertices of k' paths of ,gG. Further assune
these k' paths are then (arbitrarily) divided into k'/2 forward
paths and k'/2 reverse paths. Define £y with designation of forward
and reverse paths sinilarly. The above designations can be viewed as
yielding k/2 oriented paths between every ordered pair of vertices
in Gand in H .

Conpose a list g of paths in GxH as follows. For each distinct
pair of vertices (VO,WO),(VP,Wq)eV(Gx H) , pair up each of the k'/2
forward paths, from vy to VP of the list .sG, say vO’vl”"’vp ,
with a distinct one of the k'/2 forward paths from W, to gvof

the |ist LH’ say Wo’wl""’wq’ to deternmne a path

(VO’ WO) ’ (Vl’WO) 3 eee (Vp_l,WO) ’ (VP)WO) s (Vp,Wl) 20 L2 (vp’wq—l) s (Vpqu)
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of £, and also pair up each of the k'/2 reverse paths vP, v]'p-l’ 0 ..,vi,vO

of the Iist s with a distinct one of the k'/2 reverse paths

wq,w(;-l,,,. geffte  of g, to deternine

(Vp:Wq) ’ (vi)—l’wq> s . . (V]'_:Wq) ) (VO’wq) P) (VOJWC;_| ) s . b (VO:W_-I_) ) (VO’WO)

of g . The forward paths can be viewed as oriented from (vo,wo) to
(vp,wq) in GyH , and the reverse paths as oriented from (vp,wq)
to (Vo Wo) in GxH . Aso include k' copies of the single vertex

pat h (vO,wO) in ¢ for each (vo,wo)eV(GxH) )

Thus for every pair of vertices of GyH , the list g contains
k" shortest paths between those vertices. Each vertex (v,w) of' GxH
is then an endvertex of k' |V(GxH)\ paths of £ . The paths of g in
which (v,w) is an interior vertex may be divided into three subclasses.
Each of the m('}-k' |v(a)| paths of £, cont aining v as an interior
vertex is utilized in forming |V(H)| paths of £ in which (v,w) is
an interior vertex. Simlarly, each of the mﬁ-k'IV(H)l paths of £,
containing w as an interior vertex is utilized in formng \V(G)\
other paths of g in which (v,w) is an interior vertex. Finally,
there are (|v(G)|-1)(|v(#)|-1) pairs of vertices (v',w),(v,w') of
GxH with v' £v, w'#w, where each such pair are the endvertices
of k'/2 other paths of ¢ containing (v,w) as an interior vertex.
This accounts for all occurences of (v,w) in the paths of g, and
confirms that (v,w) occurs in the same number of paths, specifically
mélV(H) | + mﬁlV(G) | - kg—' (|viax H) | + |v(6) | + |v(H) |- 1), for any

(v;w) e V(GxH) . Hence GxH is vertex-path-regular. O
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Surprisingly, the converse of Theorem 7 does not hold. Specifically,
it is straightforward to show by enunerating appropriate paths that
CBXKLE is vertex-path-regular with parameters (2,24) even though
K’.L,2 is not vertex-path-regular.

Explicitly contained in the proof of Theorem 7is the fact that the
parameter k' for GxH can be as small as the l[east common multiple
of kG and kH except for only an additional factor of 2 when k

G
and k_H are both odd.

Corol lary 7.1. If ¢ and H are vertex-path-regular wth parameters

(kG,mG) and (kH,mH) , then GxH is vertex-path-regular for paraneters
(kaH’meH) where kaH LCM(kG,kH,E)
To achieve the edge-path-regular property for a product graph,
GxH , of edge-path-regular graphs G and 5, we nmust be able to
choose respective paraneters (kG, mG) and (kH,mH) so that (i)
t he nunmber of occurences of a vertex of G as an endvertex in the

associated list g, , given by |v(a) |k is the same as the nunber
o

G J
of occurences of a vertex of H as an endvertex in the associated
list [y gi ven by lV(H) lkH’and (ii) the edge nultiplicities

m, and m, are equal . The quantity, |V(G)|p(G), is terned the

G
end- degree of the edge-path-regular graph ¢, and its critical

significance is evident in the follow ng theorem

Theorem 8, The product graph GxH is edge-path-regular if and only

if Gand H are both edge-path-regular of the same end-degree, i.e.,
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with |V(G) |p(G) = |V(H) |p(H) . Furthermore, if GxH is edge-path-regular,
then GxH, G, and H all have the same end-degree and

p(GxH) = p(a)/|v(E)| = o)/ |V(E)]| . (11)

Proof. Assune G and H are edge-path-regular with the sanme end-degree,
W may then assune G and H are edge-path-regular for the paranmeters
(k,mG) and (k,mH) where |V(H) | /mH = |v(a) | /mGr . Let L, be a
list of shortest paths of g where each edge of G occurs in m, pat hs
of the list, and where every pair of vertices of ¢ are the endvertices
of k paths of G. Define £ simlarly. By the same construction
utilized in the proof of Theorem 7, conpose a list g of shortest paths
in GxH . For every pair of vertices of GxH , the list g as
previously noted contains k shortest paths with those vertices as end-
vertices. Furthermore, each of the mG pat hs of ‘“G cont ai ni ng vv!
as an edge is utilized in formng [IV(H\ paths of g containing
(vsw)(v',w) as an edge for each weV(H) , and these are the only
occurences of  (v,w) (v',w) as an edge in the paths of ¢. Simlarly
each of the m, pat hs of 5y containing ww' as an edge is utilized
in forning |v(G)| paths of g containing (v,w) (v,w') as an edge
for each veV(G), and these are the only paths of g containing
(v,w)(v,w') . since mGlV(H)l = m,|V(6)| , GxH is edge-path-regular.
Assume GxH is edge-path-regular, and that gis a list of
shortest paths of GxH where every pair of vertices of GxH are
the endvertices of k paths of g and where each edge of GxH
occurs in mpaths of g . For any fixed VorVp € V(G , each of the

k\V(H)[2 paths of g with endvertices (vy,w) and (vp,w') for sone
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w,w' e V(H) identifies [by considering only the constituant edges
(v',w*)(v",w*) ] a shortest path between Vo and \llD in G For each
of the |v(g) ]2 ordered pairs of vertices of G we then so identify
k|V(H)\2 paths of G, and out of all these paths exactly m|v(H)|
of themw |l contain any specified edge vv'eE(G). Hence Gis
edge-path-regular with p(G = |v(H)|p(GxH) . The corresponding

argunent for p(H) then conpletes the theorem O
Anal ogous to Corollary 7.1and by the sane reasoning we obtain:

Corollary 8.1. If G and H are edge-path-regular with paraneters
(kpm,) and (k,m.) where IV(e) |ky/m, = [V(H) |k /m, , then G xH
is edge-path-regular for parameters (k
kaH = LCM(kG,kH,e) :

By noting that the process of constructing the paths of GyxH in

a8 "Gy H) where

the list ¢ fromthe paths of the associated lists ,gG and ":H was

identical in Theorens 7and 8, we obtain:

Corollary 8.2. The product graph GxH is strongly-path-regular

whenever G and H are both strongly-path-regular of the same end-

degr ee.

For an iterated product GxGx. .. xG of a path-regular graph

we imrediately obtain from Theorens 7,8 and their corollaries:

[1] (3] [3-11

Theorem 9. For the graph Glet G =G and G =Gx G

for j >2 . Then for any j > 1
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(1) G[j] is strongly path-regular wth parameters (k,m\[f'j],mg'j])

whenever G is strongly path-regular with paraneters
(k,m\[rl],mil]) and k is even.

(ii) G[j] is vertex-path-regular with parameters (k,m‘[rj]) whenever
G is vertex-path-regular with parameters (k,m\[/l]) and k is
even.

(iii) G[j] is edge-path-regular with parameters (k,m, |v(a) |‘j'l)
whenever G is edge-path-regular with paraneters (k,me) and

k is even.

Significant from Theorem9 is the ability to readily identify a
| arge class of graphs from which the edge-path-regular property does
not derive fromthe edge-symetry property. For exanple, the graph
Kv&?r]l for any j > 2 and any m# n is edge-path-regular by Theorem 9,
but is clearly not edge-symmetric.

For cases where G is vertex-symmetric, Theorem 9 denonstrates
t hat (}[j] is vertex-path-regular for paraneters (k,mv) where Kk can
be chosen independently of j . This is in sharp contrast to the
dependence of k on j that would be inplicit fromthe earlier proof
of Theorem2. Mre specifically note that there are ml  distinct

[

shortest paths between opposite corners of the mdinmensional cube sz]
Yet from Theorem9 it is possible to specify just two shortest paths
between any and every pair of vertices of Kém] such that the resulting
list of shortest paths has the same nunber of paths containing any

specified vertex and the sane number of paths containing any specified

edge.
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V. Open Questions Regarding Path-Regular G aphs.

The previous sections have devel oped some fundamental properties
regarding path-regular graphs. At the same tinme some interesting
questions have arisen that suggest further directions for research

concerning the property of path-regularity.

Question 1. Gven that p(G is always rational and in the range
0<p(G) <1, is there an edge-path-regular graph G with p(G) = i/]j

for any rational 0 <i/j <17

Conment.. From Table 1 it is seen that p(K1 J.)= [/j for j > 1,
s 2

and p(K2 5 2) = (j-1)/j for any j > 2, yielding the extrene
ICyeeey

J
irreducible fraction values for the range 0 <i/j <1 . Mny other

intermediate rational values are obtained by the classes of edge-path-
regul ar graphs so far identified, and conposition rules such as in
Theorem 9 provide further classes of achievable rational values for ;.
The nore canprehensive problem of characterizing all realizable parameter
val ues (k,mv) , (k,me) and (k,mv,me) for vertex-, edge-, and strongly
path-regul ar graphs may also yield interesting results, but appears |ess

tractable.

Question 2. For which directed graphs D is it possible to construct a
list g containing exactly one directed path between each pair of
vertices, such that each vertex and/or each directed edge occurs in the

sane nunber of directed paths of g ?

Comment . From the discussion at the end of Section 1v it is clear that

the symetric directed graph whose directed edges correspond to the edges of
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the mdi nmensi onal cube é? = K;m] has the property descri bed.

Furthernore, the constructions utilized in the proofs of Theorens 7

and 8should provide for the identification of nunmerous classes of
directed graphs having this desired property. Such graphs could be
applicable to the probl em of synthesi; of communi cation networks
requiring a single dedicated directed channel concurrently between
every pair of vertices where the network must utilize the sane type

of nultichannel cable for all arcs. A nmore conprehensive task woul d

be to develop and investigate the concept of path-regularity for general

directed graphs.

Question 3. Is there a good characterization for the classes of

vertex-path-regular, edge-path-regular, and strongly path-regular graphs?

Comment. Several results in this paper lead to the conclusion that
a sinple characterization of path-regular graphs may not be possible.
The fact that many nonsymetric as well as synmmetric graphs have particul ar
path-regularity properties probably precludes a constructive approach
starting froma linmted set of path-regular graphs and using identified
composition procedures. The fact that C3><K'1,2 is vertex-path-regular
even though Ki,e is not, suggests further difficulties in fashioning a
characterization. Attenpts at characterization using procedures simlar
to the linear programming test of Section Il probably will yield only
variations of the definition of path-regularity rather than genuine
alternative characterizations. A nmore promising approach is to generalize
and extend the concept of cut [M30] and separating vertex set as enployed

in Theorem 6 in view of the Mengerian duality [H69, p.47] that exists in

37



the non concurrent case, i.e., regarding paths between a single fixed

pair of vertices and their separating cuts and vertex sets

As a final observation we note that many sinplifications and
further specialized results for path-regularity properties can be
obtai ned regarding the specific class of graphs of diameter 2 ,

and we are pursuing that approach in a subsequent paper [DM 803.
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