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vertices are the endvertices of the same number of paths and each vertex

[edge] occurs in the same number of paths of the list. The dependencies

and independencies between the various path-regularity, regularity  of

degree, and symmetry properties are investigated. We show that every

connected vertex-[edge-Isymmetric graph is vertex-[edge-Ipath-regular,

but not conversely. We show that the product of any two vertex-path-

regular graphs is vertex-path-regular but not conversely, and the iterated

product GxGx... xG is edge-path-regular if and only if G is

edge-path-regular. An interpretation of path-regular graphs is given

regarding the efficient design of concurrent communication networks.
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I. Introduction and Summary.

A combinatorial regularity property of a graph is expressed by a

numerical requirement on the consistency of structure TcJithin  the graph.

The standard property that a graph is regular of degree k , requiring

simply that each vertex be adjacent to exactly k other vertices, has

received the most thorough investigation in the literature. The more

stringent conditions of "strongly regular" [ C78] and "distance-regular"

[B74] have also received considerable treatment. In this paper we

characterize and investigate the regularity of connectivity that can

exist between all pairs of vertices concurrently. This regularity isNW-

realized by the identification of equitable numbers of shortest paths

between all pairs of vertices that at the same time make equitable  use

of either each vertex, each edge, or both. To develop the concept of

path-regularity we explicitly specify our terminology for describing

shortest paths in a graph. Other graph theoretic terms not defined here

may be found in Harary  [H@].

For n > 0, the sequence vo,vl)...,vn of distinct vertices of the-

graph G , where vivi+l is an edge of G for all 0 5 i < n-l , shall

denote a path of length n . Paths are assumed unordered, so vo,v19..,~vn

and vnJvn-l' . . .,vo denote the same path. Vertices v. and vn are

endvertices of the path vo,v19...,vn  , with all other vertices of the

path then being interior vertices. The path v3,vl,...,vn is a shortest

path of G whenever any other path with endvertices v. and vn has

length at least n , with d(vo,vn) = n then denoting the distance between- - -

"0 and vn'
All paths of length at least one have a distinct pair of
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endvertices. The path v. of length zero has the single endvertex
v. '

and is also said to have the nondistinct pair vo' "0 of endvertices.

Hence a connected graph may be taken to contain shortest paths between

every (unordered distinct or nondistinct) pair of vertices.

For the complete bipartite graph K15 of Figure l(a), every pair

of vertices are the endvertices of a unique shortest path. A list of

all the resulting shortest paths would then have each edge, but not each

vertex, occur in the same number (5) of paths of the list, providing a

concept of regularity for the shortest paths versus the edges of
$15 l

The list of all shortest paths for the cycle C
5

of Figure l(b) wo;rld

then have each vertex occur in the same number (6) of shortest paths

and each edge occur in the same number (3) of shortest paths, yielding

a stronger concept of regularity encompassing the shortest paths, vertices,

and edges of c5 l

If we allow multiple copies of shortest paths of the

graph x Kp
3

of Figure l(c) in composing a path list, then it is

possible to exhibit a list of shortest paths of
%x%

where each pair

of vertices v,v' E V(? x $, are the endvertices of the same number of

shortest paths of the list and where each vertex, but not each edge, is

in the same number of shortest paths of the list. This then provides

a concept of regularity for shortest paths versus vertices of
3

xK2 .

Formally, let a list (equivalently multiset) denote a finite

collection of elements where multiple copies of each element may occur

in the list. A nontrivial graph G is termed vertex-path-regular

[respectively, edge-path-regular] with parameters (k,mv) [respectively

(k,me) ] if an associated list x of shortest paths of G exists where

every pair of vertices are the endvertices of exactly k > 1 paths of e
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Figure 1. Examples of (a) edge-path-regular,

w strongly path-regular, and

cc> vertex-path-regular graphs.
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and each vertex [respectively, edge] occurs in exactly mv [respectively,

me ] paths of 1: . A graph is strongly path-regular with parameters

ov$pe) and associated list 1: of shortest paths if it is both

vertex-path-regular with parameters (k, m.J and edge-path-regular with

parameters (k,me) for the same associated list $ . For completeness

the trivial graph is taken to be vertex-, edge-, and strongly path-regular

with parameters (k,k) , (k,k) and (k,k,k) , respectively, for every

k_>l. A graph is said to be vertex-, edge-, or strongly path-regular

whenever there exist some parameters for which the graph has the

specified path-regularity property, and a graph is said to be path-regular

if it is at least either vertex- or edge-path-regular.

From our preceeding  discussion it is then clear that
%5 Of

Figure l(a) is edge-path-regular with parameters (L5) t and C5 of

Figure l(b) is strongly path-regular with parameters (l&,3) . For

3xs
of Figure l(c), consider the list 1: containing two copies of

every shortest path of length at most one in
Sx$

and one copy of

every shortest path of length two. By direct application of the definition

this list 1: is then sufficient to confirm that
5x%

is vertex-path-

regular with parameters c&14)  l

Note that if G is vertex- or edge-path-regular with parameters

bq or owe) 9 respectively, or strongly path-regular with parameters

(k,mv9me) , then the associated list must have each vertex of G present

as a path of length zero with multiplicity k and each adjacent p&r of

vertices of G present as a path of length one with multiplicity k .

Thus it is sufficient to show that each edge occurs in exactly (me-k)

paths of length 2 2 of the list to confirm the edge-path-regularity



property, and/or that each vertex occurs as an interior vertex in

exactly mv-k\V(G)\ paths of the list to confirm the vertex-path-

regularity property. Consider the wheel W5 of Figure 2. Giving

multiplicity 2 to the shortest paths of length two with interior

vertex
"1

and multiplicity 1 to the other shortest paths of length

two, we note that each edge then appears in the same nwnber  (2) of

these paths. Hence W5
is edge-path-regular with parameters (4,Q l

Alternatively, giving multiplicity 1 to the same paths containing vl

and multiplicity 2 to the other shortest paths of length two allows

us to confirm that W5
is vertex-path-regular with parameters (5,271  l

The graph W5 is not regular (of degree), so by Theorem 1 of the next

section can not be strongly path-regular. Hence the example W-
3

demonstrates that a graph can be both vertex-path-regular and edge-path-

regular without being strongly path-regular.

Path-regular graphs may be visualized as providing efficient design

of communications networks, Let the vertices of an edge-path-regular

graph with parameters owe) represent communication bases in the

network and the edges trunk lines each cap*able of hosting me channels

of concurrent communication. The edge-path-regularity property then

allows for k dedicated communication channels to be provided between

every pair of bases concurrently. Furthermore, the channel allocation

is efficient both in that all dedicated channels follow shortest paths

and that every trunk line is used to full capacity. If the constraint

in a communication network is alternatively related to a fixed level of

switching capacity at every communication base, then the vertex-path-

regular graphs indicate efficient network design. The associated lists
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Figure 2. The wheel W5 which is vertex-path-regular

with parameters (5927) and edge-path-regular

with parameters (4,6) , yet not strongly
path-regular.



of the path-regular graphs, as specified for the examples of Figures 1

and 2, then provide the dedicated channels for such a communication

network interpretation. This concurrent communication interpretation

provides some motivation and an intuitive appeal to many of our

derived results but is not explicitly mentioned in the balance of the

paper.

The example graphs of Figures 1 and 2 all possessed considerable

symmetry that was instrumental in the demonstration of the respective

path-regularity properties of these graphs. As succinctly noted by Biggs

in his book Algebraic Graph Theory [B74], "A symmetry property of a graph

is related to the existence of automorphisms -- that is, permutations of

the vertices which preserve adjacency. A regularity property is defined

in purely numerical terms. Consequently, symmetry properties induce

regularity properties, but the converse is not necessarily true."

In Section II we investigate the dependencies and independencies

between the various regularity, path-regularity, and symmetry properties.

Cur main result is in accord with the preceeding  observation on regularity

and symmetry properties. Specifically, we show that:

*
w a connected fvertex-symmetric graph is vertex-path-regular but

not conversely,

-f**(ii) a connected edge-symmetric graph is edge-path-regular but not

conversely, and

(iii) a connected graph that is both vertex- and edge-synmetric  is

strongly path-regular but not conversely.

*
J Also termed vertex-transitive by some authors.

-.I**
Also termed edge-transitive by some authors,



These results insure that many important classes of graphs have a

path-regularity property. Cycles, cubes and regular cmplete k-partite

graphs are strongly path-regular, and any complete bipartite graph is

edge-path-regular. We also indicate in Section II the considerable

extent to which the vertex-, edge-, and strongly path-regular properties

are independent of other graph properties and parameter values.

The fact that a graph is vertex- or edge-path-regular does not

determine the parameters (k,mv) or (k,m,) uniquely, but it uniquely

determines their ratio. Hence we define a(G) = k/mv as the vertex-

path-regularity of the vertex-path-regular graph G and p(G) = k/m,

as the edge-path-regularity of the edge-path-regular graph G . In

Section III we obtain the following formulas for evaluating a(G) and

p(G) :

For any vertex-path-regular graph G with n vertices and 1 edges,

c

n - - for 2; of any diameter,
x Cd(v,v' >+ll

i

v,v' U(G)

o(G) =

n
2
3n -n-21

and for any edge-path-regular graph

a-

c d(v, v' >
v,v' eV(G)

p(G) =

I

a
n(ii-TyjT

for G of diameter 2,

G with n vertices and 1 >l edges,

for G of any diameter

if G has diameter < 2 .-

9



A table of values of a(G) and p(G) is then provided for the major

classes of path-regular graphs. In Section III we also derive some

nontrivial necessary conditions for a graph to be vertex- and/or

edge-path-regular involving inequalities between the relative size

of the cuts and separating sets of the graph and the required values

for c and p from the preceeding formulas.

There is an intimate relation between shortest paths in the product graph

GxH and the shortest paths of G and H . This relation is exploited in

Section IV to obtain our major results on the products of path-regular graphs:

(i) The producty graph GxH is vertex-path-regular whenever G and

H are both vertex-path-regular, but not conversely, and

(ii) the product graph GxH is edge-path-regular if and only if G

and H are both edge-path-regular with IV(G) \p@> = IV(H) Ip@) t

where specifically Gx GX . . . xG is edge-path-regular if and

only if G is edge-path-regular.

Finally, in Section V, we propose and discuss several interesting

open questions that arose in our investigation of path-regular graphs,

of which the most intriguing to us is the following: Is there an

edge-path-regular graph G with p(G) = r for every nonzero rational r

in the unit interval?

J* Also termed the Cartesian product graph, The product graph is defined
in Section IV.
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II. Rwularity,  Path-Regularity and Symmetry.

The primary goal of this section is to determine the dependencies

and independencies between the various regularity, path-regularity, and

symmetry properties. Our first theorem provides some affirmative

implications between regularity (of degree) and path-regularity

properties. Although the wheel W5 of Figure 2 illustrates that a

graph can be vertex-path-regular and/or edge-path-regular without

being regular, Theorem 1 demonstrates that a strongly path-regular

graph must be regular. And conversely, although the property that the

connected graph G be regular of degree k is not by itself sufficient

to induce either the vertex- or edge-path-regularity property for G ,

the property that the connected graph G be strongly regular is

sufficient to *make G strongly path-regular. Note that G is strongly-

regular with parameters +12 j* ,i. > .whenever  G is regular of degree il ,

where also any two adjacent vertices have exactly i2
common neighbors,

and any two nonadjacent vertices have exactly
i3

common neighbors.

Theorem 1. A strongly path-regular graph with parameters (kG+pe)

and n vertices is regular of degree (2mv-kn-k)/m,  . On the other

hand, any strongly regular graph with parameters (i1, i2, i3 2 1) 3rd

n > 2 vertices is strongly path-regular with parameters (k,mv'~,!

where k = i3’ mv= 3ni +il(il-i2-1)/2 , and me = i3
+2(il-i2-1)  l

Proof. Let the n vertex graph G be strongly path-regular with

parameters (k,mv9me)  , where J is the associated list of paths, Any

specific vertex v of G will occur as an endvertex in k(n-1) paths

of length at least one in 1: , and each of these paths will contain

ll



exactly one edge incident to v . Also, v will occur as an interior

vertex in mv-kn paths of J , where each of these paths will contain

exactly two edges incident to v . Thus the total nurriber  of occurences

of edges incident to v in all paths of 1: is 2mv-kn-k . But the

total number of occurences of edges incident to v in all paths of d:

is also given by mexdegree(v)  since each edge of G occurs in me

paths of 1: . Therefore degree(v) = (=Smv-kn-k)/m,  for any v in G .

For the second part of the theorem let the graph G = (V,E) have

n>2 vertices and be strongly regular with parameters (il,i2,i3  _> 1) .

Let the list e contain
i3

copies of the zero length path v for every

VEV 9
i3

copies of the path v, w for each edge V-WEE  , and one copy

of the path u,v, w for every nonadjacent pair of distinct vertices u,weV

and every distinct v adjacent to both u and w . The fact that

every two nonadjacent vertices of G have i
3

common neighbors implies

that e contains k = i >l shortest paths between every pair of
3-

vertices of G . Any edge V-WEE occurs in
i3 paths of length one

of x. Noting that there are il-i2-1 vertices other than v adjacent

to w and not to v and also il-i2-1 vertices other than w adjacent

to v and not to w , the edge VW also occurs in 2(il-i2-1) of the

paths of length two of J, so in total in me = i3+2(il-i2-1) paths

of 1:. Every vertex VeV Will Occur  as an endvertex in ni3 paths

of 1: and as the mid-vertex of il(il-i2-1)/2 paths of length two of 6: ,

so in total in ni
3
+il(il-i2-1)/2 paths of 1 . Hence G is strongly

path-regular with the associated list I: . 13
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As another partial converse to the first part of Theorem 1 we now

derive the following lemma which will be employed in the subsequent

theorem.

Lemma 2. Every graph which is both regular and edge-path-regular is

strongly path-regular.

Proof. Let the n vertex graph G be regular of degree j and

edge-path-regular with parameters (k,me) , where 1: is the associated

list of paths. For any vertex v of G , there are jme occurences

of edges incident to v in the paths of x . A total of k(n-1) of

the jme such occurences correspond to v being an en&vertex, the

remainder corresponding to v being an interior vertex of the paths.

Each occurence  of v as an interior vertex of a path involves exactly

two occurences of edges incident to v in that path, so v must occur

as an interior vertex in [jme-k(n-1)]/2 paths of 1: . Hence each

vertex v of G occurs in [jm,+k(n-1)]/2  paths of J , so G is

strongly path-regular with paraketers (k, be + kb-1) l/&me) . c7

As previously noted, the sylnnetrie s characterized by the automorphisms

of a graph induce extensive numerical regularity properties, although the

converse implications generally do not hold. In accord with this maxim,

the standard vertex and edge spmetry properties of graphs are now shown

to induce the corresponding vertex- and edge-path-regularity properties

while the converses are shown to fail by counterexamples.

13



Theorem 3.

w Every connected vertex-symmetric graph is vertex-path-regular, but

not conversely;

(ii) every connected edge-symmetric graph is edge-path regular, but not

conversely;

(iii) every connected graph that is both vertex- and edge-symmetric is

strongly path-regular. However, there exist strongly path-regular

graphs that are, respectively, not vertex-symmetric and not

edge-symmetric.

Proof. Let G = (V,E) b e connected and either vertex-symmetric or

edge-symmetric or both. Let k(u,v) be the number of distinct shortest

paths between u and v in G , and let k* = lcm{k(u,v)  \ u,vev} .

Let the list 1 contain k*/k(u, v> copies of each distinct shortest path

between u and v for all pairs of vertices of V , so then every pa.ir

u,veV are the endvertices of k* paths of g .

Assume G is vertex-symmetric. For each veV , form the sublist  .&

composed of all paths of d: containing the vertex v . For any v,ueV ,

the assumption that G is vertex-symmetric means there exists an

automorphism cx mapping v into u . Now any path p of xv is

mapped by Q! to a path, a(p) J containing the vertex u where 4P)

is also a shortest path between its endvertices in G ) so Cl(p) is

in e, . Furthermore, each distinct shortest path between the endvertices

of the path p is mapped by a into a distinct shortest path between

the endvertices of the path a(p) and vice-versa for the inverse

automorphism Q!
-1

. Thus p has the same multiplicity in d:
V a.5 a(P)

14



L,( l
Since CX

-1
is an automorphism mapping

I , and G is vertex-path-regular verifying (i).
Ll

Now assume G is edge-symmetric and for each edge eeE form the

sublist X, composed of all paths of J containing the edge e . For

any two edges e,e' EE ) the assumption that G is edge-symmetric means

there exists an automorphism a which maps edge e into edge e' .

By the same argument as preceeding  we then obtain that I’el = I’ef I
for any edges e,e' eE , so G is edge-path-regular verifying (ii).

(9Noting that the same list 2 was utilized in the proofs of both

and (ii) then verifies (iii).

To show none of the converses hold first consider the wheel

of Figure 2.
w5 is neither vertex- nor edge-symmetric, yet it is

both vertex- and edge-path-regular, demonstrating that neither the

converse of (i) nor (ii) hold.

For counterexamples  to the converse of (iii) first note that

Folkman  [F67; ~~78, p. 951 has demonstrated the existence of a regular

graph which is edge-symmetric but not vertex-symmetric. By part (ii)

of this theorem and Lemma 2 such a graph is then strongly path-regular

without being vertex-symmetric, To demonstrate that a strongly path-

regular graph need not be edge-symmetric, consider the graph C +C
5 5

composed  of two distinct chordless five cycles along with all edges

between vertices of these distinct five cycles. The list containing

each path of G of length zero or one with multiplicity 7 , each path

of length two in a chordless five cycle having multiplicity 2 , and

each path of length two with nonadjacent endvertices in one chordless

five cycle and midvertex in the other five cycle having multiplicity 1 ,

15



is sufficient to confirm that C +C
5 5 is strongly path-regular with

para;neters  (7,77,11) . Although C5+C5 is clearly vertex-symmetric,

it is not edge-symmetric since some edges are in chordless five cycles

and others are not, completing the theorem. 0

From Theorem 3 it follows that the class of strongly path-regular

graphs is quite broad, including all cycles, complete graphs, regular

complete k-partite graphs, and the cubes of every dimension, Also

all ccmplete bipartite graphs are edge-path-regular. As might be

expected, the condition that a graph be vertex-, edge-, or strongly

path-regular is quite independent of most other typical parameter values

and/or properties associated with a graph, a partial summary of which is

noted in the following.

Corollary 3.1. There exist strongly path-regular graphs of any specified

girth, or of any specified diameter, or of any specified edge or vertex

connectivity, or of any specified chromatic number.

Proof. The cycle Cn is strongly path-regular of girth n and

diameter LGJ , thus realizing any specified girth or diameter,

The complete graph Kn+l , regular complete bipartite graph Kn n ,
Y

and n dimensional cube are all examples of strongly path-regular

graphs of edge and vertex connectivity n . The complete graph K
n

and any regular complete  n-partite graph have chromatic number n . g
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Two properties of a graph will be termed independent properties

if there are examples of graphs exhibiting all four possible cases:

(a) having both properties, (b) having each specified property

without the other, and (c) having neither property. Figure 3 provides

examples showing that the property that a regular graph be strongly

path-regular is independent of the property that a graph be either

(i) Hamiltonian, or (ii) Eulerian,  or (iii) planar. Verification

that the graphs of Figure 3 satisfy the respective properties is

straightforward from standard results in the literature regarding these

properties. To confirm that the cited example graphs are not strongly

path-regular, consider the following: Every edge of an n vertex graph,

other than Kn , that is edge-path-regular with parameters (k,me) must

have each edge occur in me-k > 1 paths of length at least two in the-

associated list. Alternatively:

Observation. If G is a graph other than a complete graph where some

edge of G does not occur in any shortest path between any nonadjacent

endvertices in G , then G is not edge-path-regular, hence also not

strongly path-regular.
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I I !

I

I i
Hamiltonian Not Hamiltonian

i
Eulerian

I
Planar Not Eulerian Not Planar

1 !
I

t

Regular and

Strongly

Path-Regular

,

Regular and

Not Strongly

Path-Regular

Figure 3. Graphs showing that the property that a connected regular

graph be strongly path-regular is indenpendent of the

properties that a graph be either (i) Hamiltonian, or

(ii) Eulerian, or (iii) planar.

Now let us return to the primary theine of this section which is to

describe the dependencies and independencies that exist between the various

regularity, path-regularity, and symmetry properties. In Figure 4 and

the following corollaries we describe the extent to which the vertex-path-

regularity and edge-path-regularity properties are distinct and independent of

other regularity and symmetry properties,

.
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II Vertex-symmetric
vertex-path-regular ‘1
and regd-ar I

Edge-symmetric

(3 edge-path-regular)
l 0

Not edge-path-regular

(* Not edge-symmetric)

Not vertex-path-regular

Not regular

( s Not vertex-symmetric

----

Figure 4. An indication of the independence of regularity,

path-regularity, and symmetry properties.

Corollary 3.2. The property that a graph be edge-path-regular  is

independent of the property that a graph be (i) vertex-symmetric,

or (ii) vertex-path-re,gular, or (iii) re,gAar.

Proof. All possible cases are covered by the examples of Figure 4.

Three of the four example graphs are immediately seen to have the

indicated properties. The other graph, 3x%.,
is the classic example

of a graph that is vertex- but not edge-symmetric, and we need only show

that it is not edge-path-regular. From the theorems proved in Section IV

it follows that Kix K.
J

is vertex symmetric but not edge-path-regular

for any i>j>2. We include a separate proof for
%x$

to keep

this section self-contained.
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Let the six edges of
5x%

that are in triangles be type A

edges and the other three be type B edges. Note that every shortest

path of length two in
y-2

uses one type A and one type B edge,

SO any list of shortest paths in which every pair of vertices of
%xK2

are the endvertices of the same number of shortest paths can not have

each edge occur in the same nwnber of paths. 0

Corollary 3.3. The property that a graph be vertex-path-regular

independent of the property that a graph be (i) edge-symmetric,

(ii) edge-path-regular, or (iii) regular.

Proof. All cases for (i) and (ii) are confirmed by the examples

Figure 4. To show that the property of being vertex-path-regular

is

or

of

is

independent of the property of being regular, note that K
2

has both

properties, Kl
Y2

has neither property, and the wheel W5 of Figure 2

is vertex-path-regular but not regular. Finally the regular graph of

Figure 3 (lower right corner) that is Eulerian  and not planar and not

strongly path-regular is readily seen not to be vertex-path-regular

as the separating vertex would have to be an interior vertex of too

many paths. c1

20



III. kraluation  of Path-Regularity.

Although knowledge that a graph G is either vertex- or edge-path-regular

is not sufficient to determine the parameters (k,m) Y it is now shown to

be sufficient to determine their ratio k/m . The class of vertex- and

edge-path-regular grapns of diameter two are of special importance and

the ratio k/m takes on a particularly simple formulation in that case.

Theorem 4. Let G be a

'where G has vertex set

regularity c(G) is then

f
I

I
C Cd(Vi,Vj )+lJ
i< ,i

vertex-path-re,tiar  graph with parameters 0% "J

cVlYV2Y l l l ,7☺n 3 and 1 edges. The vertex-path-

given by

n
for G of any diameter,

O(G) = ” =
V

2n
2

for G of diameter < 2,
3n -n-21

(1)

(2)

where d(vi,vj)  denotes the distance between vi and v. .
J

Proof. Let G be a vertex-path-regular graph with parameters 0% "J

and associated list e of shortest paths. The total number of vertices

in all paths of x is given by k C Cd(vi,vj)+‘I since each pair
i<j

of vertices v. , v.
13

are the endvertices of k paths of length d(vi,vj)

where each such path contains d(vi,vj)+l vertices. But the total

number of vertices in all paths of 1: is also given by nm since
V

each vertex occurs in mv paths of 1: . Thus k ~ [d(Vi,Vj )+‘I = nmv ,
i<j

verifying formula (1).
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When G has diameter at most two, 1: must then contain exactly

kn paths of length zero, k1 paths of length one, with the remaining

k[n(n-1)/2 - 11 paths of length two, yielding formula (2). [7

An analogous result is now stated for edge-path-regular graphs,

where the proof is immediate by the same arguments utilized in the

preceeding  theorem.

Theorem 5. Let G

where G has vertex

edge-path-regularity

p(G) = ” =
e

R
n(n-l)-l for G of diameter < 2 .- (4)

be an edge-path-regular graph with parameters owe)

set [v ,v ,...,v,)
1 2 and R >l edges. The-

P(G) is then given by

&

' d(Vi,Vj >
for G of any diameter, (3)

i<j-

Fran (1) and (3) we then obtain:

Corollary 5.1. For any strongly path-regular era-oh with n vertices

and 0 > 1 edges,-

n & 1
qq- =

- + 2 ri(n+l) .
P(G)

Formulas (l)-(4) allow for straightforward computation of a(G)

and p(G) when G is known to be vertex- and/or edge-path-regular.

Complete graphs, cycles, regular complete j -partite graphs, and the

cubes of all dimensions a..we known to be strongly path-regular from the

results of Section II, and the values of (5 and p for these graphs

(5)
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Classes of Graphs

Complete: Kn

n even, n_>4

Cycle: Cn

n odd, n 2 3

Regular Complete

j -partite: K. . .1,1,...,1

j -dimension Cube: .
t.J

Product of

Complete Graphs: KixK.
J

Complete Bi-partite: K.
1~3

.

vertex-path-regularity 1 edge-path-regularity
0 P

P

8
----T 8
b+2 > n2

8--
(n+2)2-l

8
n2-1

ji-i
ji+i-2

2 1

(j+P)Pj-'+l
2j-1

jij-F-j+1
Not edge-path-regular

for i > j > 2

Not vertex-path-

regular for if3
1

ij

i2+ j2+ij-i-  j

1
';;

1

Table 1. Values of the vertex-path-regularity and edge-path-

regularity for several important classes of path-regular

graphs.
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are tabulated in Table 1. The product graph KixK. is vertex symmetric,
J

hence vertex-path-regular. The value of 0 for KixK. along with the
J

value of p for the edge-path-regular complete bipartite graph K.
1, j

are also given in Table 1. The relation between c and p given by (5)

is seen to hold for the four classes of strongly path-regular graphs in

Table 1. The fact that Kix K.
3

is not edge-path-regular for i>jz2

follows from Theorem 3 of Section IV. It is also noted in Table 1 that

K.
.b 3

is not vertex-path-regular for ifj. For this fact consider

that in any list having the same number of shortest paths between all

pairs of vertices of K.
1, j

for i > j , the number of times a vertex

occurs as an interior vertex of a path of the list is greater for vertices

of the j membered set than for the i membered set.

Utilization of formulas (1) - (4) as in Table 1 req-.Cres  that we

first know that the graphs have the corresponding path-regularity property.

A test to determine if a particular graph is vertex- and/or edge-path-

regular can be developed utilizing the computational  procedure of linear

programming. Such a test to determine if a graph is edge-path-regular

is outlined in the following.

A Test for Edge-Path-Regularity of G.

IJet p = CPl,P2'"" pj] be the set of all shortest paths of the

graph G . Assign nonnegative weights xi to the paths of P such that:

w the sum of the weights xi for all paths of P between the

endvertices v,v' eV(G) is unity for every pair v,v' O(G) ,

(ii) the sum of the weights on the paths containing the edge e E E(G)

is less than or equal to z for every eeE(G) , and
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(iii) zmin is the minimum value of z satisfying the constraints

of (i), (ii), where z
min can be found efficiently by linear

programming techniques. From Theorem 5 we then obtain:

(a) if + f b(G) 1 , then G is not edge-path-
min x dbb v' >

v,v' O(G)

regular,

(b) if $- = b(G) i , then G is edge-path-
min c dh v' >

v,v' O(G)

regular, where zmin is the value of l/p(G)  and integral

parameters 0% me> can be found by rationalizing the

fractional values of xi that are obtained (rational

solution values for x
i

are guaranteed for such a linear

program).

A test for vertex-path-regularity is readily obtained by an analogous

linear program utilizing formula (1) for the test criteria.

Although such tests can be reasonably efficient when the number

of shortest paths is not prohibitive (e.g. when diameter(G) = 2 ),

they can become computationally intractable. Furthermore, they do not

readily identify general classes of graphs that either possess or fail

to possess a particular path-regularity property. To complement the

results of Section II which determined large classes of graphs that

have particular path-regularity properties, it is desirable to identify

certain necessary structural properties of path-regular graphs whose

absence is then sufficient to insure that certain general classes of

graphs do not possess a particular path-regularity property. Some
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nontrivial necessary conditions for graphs to be vertex- and/or

edge-path-regular are obtained by examining the cuts and separating

vertex sets of the graphs.

Theorem 6. The graph G = (V,E) with vertex set {v v . . .,v }
1' 2'

and
n

1 >l edges:

w can be edge-path-regular only if for any cut (A,$ = E J

I(AY9I
I4 1x1 L

I
C d(Vi,Vj) ’
i<j-

where further if G has diameter at most two, only if

(ii) can be vertex-path-regular only if for any separating vertex set

s c v , such that no edge joins any point of the non-void set

A c V-S to any point of the non-void set B = V-S-A ,

ISI
>-

n

\AUS( IBuSI -
Y

r [d(Vi,Vj >+‘I
i<j

where further if G has diameter at most two, only if

I ! 2n

IAUS/'\BJS/ ' g-n-21 l

(6)

(8)

Proof. Let 6: be a list of shortest paths of G such that every pair

of vertices vi, v.
3

are the endvertices of k paths of 2, and consider

two cases:
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(i) Assume further that each edge of G is contained in me paths of

the list J . Then for any cut (A,i) c E , note that klA\ Ill

paths of r. have one endvertex in A and one in i and so must

contain an edge of (A,A) , hence klA\ IX\ 5 mel(A,~)l or

From (3) and (4) we obtain (6) and (7).

(ii) Assume for this case that each vertex of G is contained in exactly

mv paths of 1:) and let S c V separate A c V-S from B = V-S-A .

Each vertex of S is the endvertex of klvl paths of 1 , and any

path of J with one endvertex in A and the other in B contains

at least one vertex of S , so +I Iv\+ +I PI 5 qsl *d

“< 1 \ I I
v - I4 PI f PI Iv\ = )AU S&U S\ l

Then from (1) and (2) we obtain (8) and (9). 0

Theorem 6 will now be utilized to characterize a large class of graphs

that are vertex-path-regular but not edge-path-regular.

Corollary 6.1. Let G be edge- and vertex-symmetric with diameter at

most two and regular of degree r>4.- Then GxK2 is vertex-path-

regular but is not edge-path-regular.

Proof.- - F7hen G is vertex-symmetric and connected Gx% will also be

vertex-symmetric  and connected, hence vertex-path-regular by Theorem 2.

Let G have n vertices and 1 = y > 2n edges. The cut (A, ?I)

separating Gx%
into two copies of G has \(A,A)I = n and
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\A\ = \A\ = n , so if GxI(2 is edge-path-regular from (6) we obtain

-IE(GXJQl < 1
C d(viYvj)  -

n l

i<j
-

Vi,Vj EV(GX~)

N o w  Gx s has 21+n edges, which are the number of vertex pairs at

distance one in Gx%. Furthermore GxK2 has 2[(z)-L]+21 vertex

pairs at dista.nce two, and 2[(:)- a] vertex pairs at distance three,
L

which is the diameter of Gx
52

. Thus

> = 2P+n+2(2[(:)-  1]+21)+3(2[x
i<j

d(vi,v.
3

-
(;I - .el)

Vi,Vj E V(G X Is1)

= 5n2-4n-41 .

But then from (10) noting 1 > 2n ,-

1El----2 I+n

5n2 -4n-41

>
q------n-12 Y

a contradiction. Hence
Gx%

is not edge-path-regular. c]
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IV. Products of Path-Regular Graphs.--

Given a class of graphs satisfying a specified symmetry or regularity

property, it is often possible to determine a broader class of graphs
i
i

pxsessing the same ayxmetry or regularity property by performing certain

standard graphical composition operations on member grap'ns of the class.

shortest paths in G and H . Furthermore, every edge of any particular

shortest path from (vo,wo) to (vp,wq)  in GxH is either of type

(V' J 4 WY w) , denoting an edge v'v" of a path from v. to v
q

in G, or oftype (v, w' > b-5 w") , denoting an edge w'w" of a path

from w. to w in
q

H , where in fact these p‘aths must be shortest paths

For the graphs G and H the product, GxH ii: the graph wi.C,h vertex

set; V(G) XV(H) where (v,w) is adjacent to (v,,w')  in GxH whenever

v = v' and w is adjacent to w, in H , or whenever w = w' *and v

is adjacent to v, in G . Regarding symmetry, it is straightforward

to show that the product of any two vertex-spnetric  graphs is vertex-

symmetric, however, even the product of an edge-symmetric graph with

itself need not be edge-smetric, e.g.
%,2x%,2 is not edge-symmetric.

RegarSng path-regularity properties, deeper relations between graphs and

their products are obtained beyond 3ose attrioutable  simply to considerations

of syrrunetry. The stronger results are inherent in the relation between

shortest paths in G , H , and GxH as noted in the following. If

vo,vp  l VP is a s:lorteat path from v. to v in G and
P

wc),wp  l l .YWq is a shortest path from w. to w in H , then
q

(vo, wo> Y (v,,  wl) 1 l � � Y (vg�  wqml)  Y kg� wq) 1 blY wgl Y . l l Y (Q� wq) Y �VP, WY)

is a shortest path from (vo,wo)  to (vp,wq)  in GxH . Thus certain

shortest paths in GxH may in effect be ccrmposed simply by concatenating
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in G and H, respectively. Thus a particular shortest path of GxH

may be decomposed by projections into G and H , determining a ;miqAe

pair of shortest paths in G and H . These relations between shortest

paths in G , H , and GxH provide sufficient foundation to obtain

several results on the products of path-regular graphs.

Theorem 7. The product graph GxH is vertex-path-regular  whenever

the graphs G and H are both vertex-path-regular.

Proof. Assume G and H are vertex-path-regular with parameters

Ck~Ym~) and (kH,,mH)  , respectively. Then G and H are also

vertex-path-regular for paratmeters WY "b> and (k',rl;)  where

k' = LCM(kG,kH,2)  and mG = mGk'/kG , with "1; defined similarly.

Let 1:
G

be a list of shortest paths of G where each vertex of G

occurs in rn; paths of the list, and where every pair of vertices

of G are the endvertices of k' paths of eG . Further assume

these k' paths are then (arbitrarily) divided into k1/2 forward

paths and k'/2 reverse paths. Define d;r with designation of forward
A

and reverse paths similarly. The above designations can be viewed as

yielding k/2 oriented paths between every ordered pair of vertices

in G and in H .

Compose a list 6: of paths in GxH as follows. For each distinct

pair of vertices (vo,wo)y(vp,~q)~V(G~H)  , pair up each of the k'/2

forward paths, from v. to v of the list
P

LG, saY vo,v~'-~,vp  ,

with a distinct one of the k1/2 forward paths from w. to w of
cl

the list
% Y say wpl, l l .)wq Y to determine a path

(V()Y wo > Y byy)) Y .*. , bP~,Yw,)  Y cgY�o, Y (Vp�WI☺  Y P � l Y (v,YW,-1)  Y (v,YW,)
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of 1:) and also pair up each of the kt/2 reverse paths "p' v;".1, l .*,VijVO

of the list sG with a distinct one of the k'/2 reverse paths

w yw’ of to determine
q qmlY  l l l YwiYwo 53

(Vp�Wq) Y (v$-lYWq)  Y l ** , (v�Yw

1 q

> Y Cv Yw

0 q

> Y (v Yw�0 q-l > Y l  * *  Y (voYwi>  Y (voYwo)

of 1:. The forward paths can be viewed as oriented from (v,,w,> to

(vp,wq)  in GxH , and the reverse paths as oriented from (vp,wq)

to (VOY wo) in GxH. Also include k1 copies of the single vertex

path (vo,wo)  in e for each (v~,w,>EV(GXH) .

Thus for every pair of vertices of GxH , the list x contains

k' shortest paths between those vertices. Each vertex (v,w) of' GxH

is then an endvertex of k'\V(GxH)\  paths of I: . The paths of $ in

which (v,w) is an interior vertex may be divided into three subclasses.

Each of the m,G-k' IVY paths of x, containing v as an interior
U

vertex is utilized in forming IV(H)1 paths of r. in which (v,w) is

an interior vertex. Similarly, each of the s-k'\V(H)(  paths of s

containing w as an interior vertex is utilized in forming IV(G) \

other paths of 1: in which (v,w) is an interior vertex. Finally,

there are (IV(G)\-l)((V(H)I-1) pairs of vertices (vl,w),(v,wl)  of

GxH with v' #v, w' f w , where each such pair are the endvertices

of k'/2 other paths of $ containing (v,w) as an interior vertex.

This accounts for all occurences of (v,w) in the paths of L:, and

confirms that (v,w) occurs in the same number of paths, specifically

m;;)V(H)  \ + m#(G) \ - g ( \V(GX H) 1 + IV(G) \ + IV(H) 1 - 1) Y for =Y

(v,w)eV(GxH) . Hence GxH is vertex-path-regular. 9
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SUprisingly, the converse of 5%eorem 7 does not hold. Specifically,

it is straightforward to show by enumerating appropriate paths that

‘3 x%,2 is vertex-path-regular with parameters (224) , even though

FLY2
is not vertex-path-regular.

Explicitly contained in the proof of Theorem 7 is the fact that the

parameter k' for GxH can be as small as the least common multiple

of k and
G 3-I

except for only an additional factor of 2 when kG

and
53

are both odd.

Corollary 7.1. If G and H are vertex-path-regular with parazneters

Ck~JrnG) and (]lk,%)  , then GxH is vertex-path-regular for parameters

(kGXyymGXH)  where kG⌧H = EM(kG,,,2) l

A .A

TO achieve the edge-path-regular property for a product graph,

GxH , of edge-path-regular graphs G and H , we must be able to

choose respective parameters Ck~Y "G) and (s,mH) so that (i)

the number of occurences of a vertex of G as an endvertex in the

associated list xG'given by IV(G) \kc Y is the same as the number

of occurences of a vertex of H as an endvertex in the associated

list $, given by \vw 1% Y and (ii) the edge multiplicities

mG
and

YH
are equal. The quantity, \V(G)(~(G) , is termed the

end-degree of the edge-path-regular graph G , and its critical

significance  is evident in the following theorem.

Theorem  8, The product graph GxH is edge-path-regular if and only

if G and H are both edge-path-regular of the same end-degree, i.e.,
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with IV(G) lp(G) = IV(H) Ip@) . Furthermore, if GxH is edge-path-regular,

then GxH, G, and H all have the same end-degree and

p(GxH) = PW / Jwo \ = p(H) / IV(G)  1 . (11)

Proof. Assume G and H are edge-path-regular with the same end-degree,

We may then assu-ne G and H are edge-path-regular for the parameters

(k,mG) and by-J where IV(H) 1 /mH = IV(G) 1 /mG

list of shortest paths of G where each edge of G

of the list, and where every pair of vertices of G

of k paths of G . Define s similarly. By the

utilized in the proof of Theorem 7, compose a list

. Let J& be a
\I

occurs in mG paths

are the endvertices

ssme construction

x of shortest paths

in GxH. For every pair of vertices of GxH , the list 1: as

previously noted contains k shortest paths with those vertices as end-

vertices. Furthermore, each of the mG paths of sG containing w'

as an edge is utilized in forming IV(H)\ paths of x containing

hd(v',w> as an edge for each wsV(H) , and these are the only

occurences of (VJW) (VW as an edge in the paths of L: . Similarly

each of the mu paths of r, containing ww' as an edge is utilized

in forming \V(G)( paths of J containing hw> b,w' > as an edge

for each vsV(G) , and these are the only paths of e containing

(v, w) (v,  w� > l since mGIV(H)) = ~H\v(G)\ ., GxH is edge-path-regular.

Assume GxH is edge-path-regular, and that x is a list of

shortest paths of GxH where every pair of vertices of GxH are

the endvertices of k paths of 1: and where each edge of GxH

occurs in m paths of x . For any fixed voyy V(G) , each of the

klV(H)12 paths of J with endvertices (v(p) and (vp,w')  for some
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w,w' eV(H) identifies [by considering only the constituant  edges

(v',w*)(v",w*)  ] a shortest path between vO
and v in G. For each

P

of the IV(G) I2 ordered pairs of vertices of G we then so identify

k(V(H# paths of G , and out of all these paths exactly mlV(H)(

of them will contain any specified edge wt eE(G)  . Hence G is

edge-path-regular with p(G) = \V(H)(p(GxH)  . The corresponding

argument for p(H) then completes the theorem. 17

Analogous to Corollary 7.1 and by the same reasoning we obtain:

Corollary 8.1. If G and H are edge-path-regular with parameters

Ck~Yrn~) md ($.pQ where IV(G) lk$n, = IV(H) Ilf~/%  y then G xH

is edge-path-regular for parameters (k
GxH,mGxH) where

k
GxH

= LCM(kG,s,2) .

By noting that the process of constructing the paths of GxH in

the list 1: from the paths of the associated lists xG and J+ was

identical in Theorems 7 and 8, we obtain:

corollary  8.2. The product graph GxH is strongly-path-regular

w'nenever G and H are both strongly-path-regular of the same end-

degree.

For an iterated product Gx Gx . . . xG of a path-regular graph

we immediately obtain from Theorems 7, 8 and their corollaries:

Theorem 9. For the graph G let ,[13 = G , and ,[j' = Gx ,[j-ll

for j > 2 .- Then for any j 2 1
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w ,[jl is strongly path-regular with parameters (k,m[jl,m~t~l
V e )

whenever G is strongly path-regular with parameters

(k,m[" [13)
V Y-m, and k is even.

(ii) G[j' is vertex-path-regular with parameters (k,mPI) whenever

G is vertex-path-regular with parameters (k,m 111
v ) and k is

even.

(iii) G[j' is edge-path-regular with parameters (k,m, IV(G) Ij-',

whenever G is edge-path-regular with parameters (k,ae)  and

k is even.

Significant from Theorem 9 is the ability to readily identify a

large class of graphs fram which the edge-path-regular property does

not derive from the edge-s;nnmetry  property. For example, the graph

[jl
%-l n for any j 2 2 and any m f n is edge-path-regular by Theorem 9,

d Y

but is clearly not edge-symmetric.

For cases where G is vertex-symmetric, Theorem 9 demonstrates

that ,[j' is vertex-path-regular for parameters (k,mv)  where k can

be chosen independently of j . This is in sharp contrast to the

dependence of k on j that would be implicit from the earlier proof

of Theorem 2. More specifically note that there are m! distinct

shortest paths between opposite corners of the m-dimensional cube $4 .

Yet from Theorem 9 it is possible to specify just two shortest paths
- - -

Cm1between any and every pair of vertices of I$ such that the resulting

list of shortest paths has the same number of paths containing any

specified vertex and the sane number of paths containing any specified

edge.
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v . Open Questions Regarding Path-Regular Graphs.

The previous sections have developed some fundamental properties

regarding path-regular graphs. At the same time some interesting

questions have arisen that suggest further directions for research

concerning the property of path-regularity.

Question 1. Given that p(G) is always rational and in the range

0 < p(G) 1. 1 Y is there an edge-path-regular graph G with p(G) = i/j

for any rational 0 < i/j < 1 ?-

Comment.- - From Table 1 it is seen that ~(5,~) = l/j for j 2 1 ,

2) = (j-1)/j for any j > 2 , yielding the extreme

J

irreducible fraction values for the range 0 < i/j 5 1 . Many other

intermediate rational values are obtained by the classes of edge-path-

regular graphs so far identified, and composition rules such as in

Theorem 9 provide further classes of achievable rational values for p +

The more camprehensive problem of characterizing all realizable parameter

values (k,mv) , (k,m,) and (k,mv'me)  for vertex-, edge-, and strongly

path-regular graphs may also yield interesting results, but appears less

tractable.

Question 2. For which directed graphs D is it possible to construct a

list 1: containing exactly one directed path between each pair of

vertices, such that each vertex and/or each directed edge occurs in the

sane number of directed paths of J ?

Comment. From the discussion at the end of Section IV it is clear that

the symmetric directed graph whose directed edges correspond to the edges of
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the m-dimensional cube Q = yZ has the property described.
m

Furthermore, the constructions utilized in the proofs of Theorems 7

and 8 should provide for the identification of numerous classes of

directed graphs having this desired property. Such graphs could be

applicable to the problem of

requiring a single dedicated

every pair of vertices where

\

synthesis of communication networks

directed channel concurrently between

the network must utilize the same type

of multichannel cable for all arcs. A more comprehensive task would

be to develop and investigate the concept of path-regularity for general

directed graphs.

Question 3. Is there a good characterization for the classes of

vertex-path-regular, edge-path-regular, and strongly path-regular graphs?

Co*mment. Several results in this paper lead to the conclusion that

a simple characterization of path-regular graphs may not be possible.

The fact that many nonsymmetric as well as symmetric graphs have particular

path-regularity properties probably precludes a constructive approach

starting from a limited set of path-regular graphs and using identified

composition procedures. The fact that C
3 52

x is vertex-path-regular

even though
Kl,2

is not, suggests further difficulties in fashioning a

characterization. Attempts at characterization using procedures similar

to the linear programming test of Section III probably will yield only

variations of the definition of path-regularity rather than genuine

alternative characterizations. A more promising approach is to generalize

and extend the concept of cut [~80] and separating vertex set as employed

in Theorem 6 in view of the Mengerian duality [H69, p. 471 that exists in
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.

the non concurrent case, i.e., regarding paths between a single fixed

pair of vertices and their separating cuts and vertex sets.

As a final observation we note that many simplifications and

further specialized results for path-regularity properties can be

obtained regarding the specific class of graphs of diameter 2 ,

and we are pursuing that approach in a subsequent p,aper [DM 803.
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