
Stanford Department of Computer Science
Report No. STAN-CS-80-826

October 1980

A DATABASE APPROACH TO COMMUNICATION IN VLSI DESIGN

bY

Gio Wiederhold
Anne Beet em
Garrett Short

.

Research sponsored by

Advanced Research Projects Agency

DEPARTMENT OF COMPUTER SCIENCE
Stanford University

A Database Approach to Communication in VLSI Design

Gio Wiederhold, Anne Beetem, and Garrett Short
Slanford University

Depl. of CompicCer Science
October, I980

Abstract

This paper describes recent and planned work at Stanford in applying database technology to
the problems of VLSI design. In particular, it addrcsscs the issue of communication within a
design’s different representations and hierarchical levels in a multiple designer environment. We

_ demonstrate the heretofore questioned utility of using commercial database systems, at least while
developing a versatile, flexible, and generally efficient model and its associated communication
paths. Completed work and results from initial work using IXK DBMS-20 is prcscnted, including
macro expansion within the database, and signalling of changes to higher structural levels.
Considerable discussion regarding overall philosophy for continued work is also included.

““““““““““““““““““““““““““““““““”””””””””””””””““““““““““”””””---““““--““““--““““--“-“““““””””””““““““““““““““““““““““““”

Keywords and Phi-ases: database, communication, hierarchical design, INMS-20, cnginecring change
orders, commercial databases, macro expansion

A Database Approach to Communication in VLSI Design

Gio Wiederhold, Anne Beetem, and Garrett Short
Stalzford Urliversity

Dept. of Computer Science
October, 1980

I. Introduction

The design of a VLSI dcvicc involves the manipulation of a large volume of diverse intcrrclated

data. For a given design task, such as simulation or layout, some data may be generated through

tither computation or through recording of interactively made human dcsigncr decisions. In current

design mcthodologics, these design tasks operate on diffcrcnt representational levels of the same

device, ranging from overall functional or logical descriptions [Mill801 down to the physics of

individual s-.itching cells. A single task may carry out verification within one level, may gcncratc

lower level units by expansion of more abstract definitions, or othcrwisc necessitate movement

between different representational levels. In addition, if complex designs are to be produced in a

tolerable time frame, then scvcral design specialists must be allowed to work concurrently on

distinct sections or at distinct levels. All this causes the management of the design data to become

increasingly difficult since not only will data requirements overlap, but one design task will often be

dependent on the data being manipulated in another area. This data communication effort probably

contributes significantly to the increase in effort from 4 to 30 man-years for microprocessor designs,

and makes single-designer oriented methodologies infeasible [Sch79]. The exponential growth of

design cost while production costs diminish - as stated by E’aggin and Moore in [Rob801 - is

changing the outlook of the microprocessor industry, pointing to the riced for more effective

.

.

handling of design data.

Database technology has dealt with both the management of large volumes of data and the

problems caused by concurrency of data access. Many existing database systems support inter-area

communication functions; instances are found of systems dealing with inventories, where production

and sales issues interface, or patient management, where individual cart and global health care

Concerns come together. Databases arc used as well to resolve the multidisciplinary design issues in

aircraft design [F:11180] and to manage the problems of engineering changes in computing systems

[Sic80]. Given this background, WC forcsec that databases may proviclc tools to serve the VLSI

dcsigncrs; however, the tool is complex and will not bc effective unless well understood and

adapted to the demands of this application.

We have identified several issues that have to bc addrcsscd if databases are to become effective

tools in VLSI design. (The interested rcadcr may wish to compare these to [Lcy79] which has a

somewhat different approach.)

2

1.) The database system must support a variety of design methodologies. The support of a top-

down approach is most easily achicvcd, but processes at a lower lcvcl may contribute information to

higher levels. Also, a designer may riced to make changes at any level, which have to be reflected

throughout the design levels. An example of the first exception td a pure top-down method is the

handling of timing data than can be produced only after a detailed layout is available, while gates

have been dimensioned using simple assumptions of intergatc transit times. A second case arises

when a particular gate of a series is changed to satisfy special intcrfacc demands or terminating

conditions.

2.) Explicit storage for all attributes of all elements at lower levels must be avoided in order to

permit effcctivc managcmcnt of change emanating at a higher 1~~61. Excessive replication of lower

level clcmcnts vitiates the benefits of hierarchical design methods, and creates excessive storage

demands. This implies that the database system must bc able to fetch actually instantiated data or

compu tc potential, non-instantiated data using stored algorithms.

3.) The database must be able to provide a convcnicnt interface to a wide and changing variety of

programs. This interface should not change as the database is developed and extended.

4.) The performance of the database system has to bc such that the degradation of performance

relative to an isolated design file operation is proportional to the benefits gained.

II. Approach

The approach WC arc using in our work includes the USC of commercial database systems to

assess the general suitability of database approaches to *VLSI design data. One objective is to

determine whether commercial database systems, used knowlcdgcably , can perform adequately, or

if they do not, whcrc the bottlenecks are. The current set of cxpcrimcnts uses a network system,

DEC’s DBMS-20. This is a system based on the published COl>ASYL database definition, which-
has a strong orientation to well-understood business applications, such as inventory management.

The database designer can, through schema specification, select which of the logically appropriate

linkages should be implemented [WEM80]. As a successor experiment in this arca we plan to

investigate USC of a relational database system, RIMS, with strong automatic query optimization

capabilities [Sim80].

.

After having dcmonstratcd replacement of a custom design by an equivalent database

representation, WC explored implementation of novel data managcmcnt facilities not provided by

specialized design files. Specifically, as is necessary in order to operate in the mode for the VLSI

design cnviromncnt, the database system has to be augmented with communication paths between

lcvcls. Thcsc paths may ultimately bc oriented in any combination of directions. WC a r e

investigating the constituent directions, viz. down hierarchical lcvcl, up to higher level units, and

sideways.

3

In the downward direction, a method must exist to create the effect of lower level instantiation

using procedures and higher level descriptions. It is desirable that the query interfaces which access

the lower levels do not have to distinguish between actual or computed data elements. Along these

same lines, WC intend to look at the issues and possibilities of when and how we wish to store

redundant or computed data.

Communication in the upward direction relates detail to more abstract specifications. The

creation or modification of lower level instances has to bc bound to the appropriate higher level

clcments. An initial approach we consider promising and have implemented is signalling such

changes to the next lcvcls up in the hierarchy. Multiple structures may bccomc involved because an

element may be defined by an association of several higher level entities [Wic77]: a simple example

is an element that is defined from the expansion of a fUnctiona component and a library

description. ‘l’hc signal creates an exception flag at the higher structures. At a later time, when the

level to which the signal was directed is accessed by its owner, the system can provide a l:larning.

An appropriate action could then bc taken; for example, verification of continued corrcctncss of the

design at that level, 0; the introduction of a new version of a component, or a new parameterization

of the library descriptions. With experience, sclcctcd types of changes could trigger automatic

updates.

While the need and techniques for up and down passing of information are relatively clear,

travel in the orthogonal direction is not nearly so, yet may be essential in the future design system.

To explain the need consider the following scenario. Suppose we are designing a microcomputer

chip with an AIN composed primarily of rcgistcrs , dense RAM and ROM, a finite state PLA

controller, some random logic, etc. Designing this chip with only one methodology would be a.

terrific waste of time and cncrgy as, although there are design tools whidh can fairly efficiently

model, for example, random logic, it would very inefficient to design a regular structure like a

PLA using random logic techniques. It would be far more effective to allow a sub-module to be-
designed or simulated in its most appropriate manner. Allowing for generalized sideways

communication could then greatly increase the overall flexibility and efficiency of a design system.

Current working design systems give no consideration to this sideways communication issue, but the

research has begun (see [IJc80] for example) . We hope to learn from it and incorporate these new

ideas into our database system.

III. Current Work and Kesults

Before we to discuss what actual work we have done, it must be noted that due to availability

of data, programs, and otherwise existing material at hand, we arc using data from conventional

circuit board design to model the VLSI design process. Even so, many of the problems arc similar

and as such, WC belicvc that the results arc validly applicable to the VLSI design process as well.

More importantly, by using this data, WC wcrc able to make benchmark comparisons with existing

I

spccializcd design files and programs on the same data. This is essential for measuring the relative

performance of commercial database systems. WC feel that we have gained insight into the problems

involved in a database oriented design system, and in particular, have demonstrated the viability and

efficiency of using commercial database systems at least until the complctc model of the design

process and its communication requirements is well understood. So, without further ado let us

describe exactly what we have done so far.

Readingfiom a Database

First, an cvalution was made of DEC’s DBMS-20 performance on data retrieval times.

Specialized design files of circuit information were used as the control to the experiment. The user

begins with his design written in SDL (Structural Design Language [vC79]), a straightforward

hierarchical description language. The SDL description is input to the SDL compiler, which then

produces a dump file containing the logical description of each component dcscribcd in the design.

This design mcthodogy is strictly hierarchical: the logical description of one component is described

in terms of smaller lower level components. For cxamplc, gates arc described in terms of transistors,

flip-flops arc described in term of gates, registers arc described in terms of flip-flops, etc. Each

description lcvci is given an unique name in the design file. Figure 1 shows the hierarchical

structure of the PDP-11 processor, as dcscribcd in SDL [SL,79]. The dump file from the compiler is

loaded into the SPRINT database [Stc79], the specialized control subject, via a ‘hardwired’ schema.

Level Components

CPU PDP- 11

reg IKEG, PROCOUNT, BUSCOUNT, RAM16X16, ALU, STATUS, AMUX

rfl PRIOAR I3, TIMER

rf2 TCFF2, RAM16, 40181, 40182

ff T C F F , LFF16, DFF4, BUSL116, MUX16, R A M
- gate DFF, LFF, XOR, BUSD, MUX

trans TRANSP, INV, NAND, 3NAND, 4NAND, NOR, 3NOR, 4NOR

bottom TN, TP, PLA-SMALL, PLA-MED, PLA-LARGE

Figure I

Initially the CODASYL schema was modeled very closely to the SPRINT schema, and due to

SPRINT’s hierarchical structure, CODASYL network capabilities were not utilized in the first

iteration. Later the schema was modified to take advantage of network structures: this effort

provided linked access to the library file of components. A loader program was then written to load

the same dump file produced by the SDL compiler into the DBMS-20 database. Comparison of

loading times showed the SPRINT database to bc quicker, as expcctcd, but DBMS times were quite

acceptable. The initial loading of the PDP-11 example took SPRINT about one minute and

rcquircd about four minutes for DBMS-20.

For the actual test of the retrieval times, a macroexpander program [Pay801 was used. This

program reads the logical description of a high level component from the database. The user then

specifics the levels to be expanded. Thus, if the user specified the program to expand all levels

down to the trar(;istor, then the resulting output will bc the logical description of the original

component described totally in terms of transistors. This form of description may not bc very usefill

to the designer, but could be the input to, for example, a simulator program. Also, in the VLSI

environment, this could be the first step in producing the layout diagram.

.

The macrocxpander program needs to do a trcmcndous amount of random read operations,

especially if the component that is being expanded is large and described at a high level. The

following are the results of expanding the ALU and the PDP-11:

SPRINT DBMS-20 records read words read

ALU 10 time 21 s 33 s 1514 7754
CPU time 30 45

. PDP-11 IO time 66 115 5925 28501
CPU time 120 190

These results show less than a factor of two degradation in performance of the DBMS-20. This is an

acceptable trade-off for the incrcascd flexibility and gcncrality of CODASYI., and disputes the

original theories that thcrc would be at least an order of magnitude difference in performance.

Writing into the Database
- We next evaluated DBMS-20 performance in writing back into the database. In order to

simulate a real application of VLSI design, we considered how the database would handle

instantiations. Seeing how this might be done requires a closer look at the schema. Figure 2 shows

a subset of the network diagram of the schema. This is a version of the SPRINT schema, with a few

changes to more closely model VLSI design. For each component described in the database there is

a 1,ogical Description record containing its name. This field is used as the key to find the record

directly via a hashing function. Records arc conncctcd to rclatcd records through three distinct

rings of pointers, forming a complex network. One of the rings off of the L,ogical Description

record dcscribcs each external pin, with a unique name and its function (i.c. input, output, tristate).

The equivalent-group ring describes the cquivalcnce between pins and sets of pins. The remaining

ring off of the logical description record supplies the internal description of the part. For each

Internal Description record, a General Information record is kept describing general characteristics.

The attribute fields, creator, a fine stamp, level, purpose, and versiorl number arc meant to fully

Logical Description

name

Equivalent-ElementsEquivalent-Elements

elementelement

General Information

creator

time

level

purpose

version T”icomponent

pin

Figure 2

I

6

describe the corresponding internal description.

In order to exercise the representation, the macroexpander program was modified so that it

could write back into the database. When working in this mode, after the program expands a

component, it stores the new representation as another internal description along with a general

information record with the appropriate data. In the design atmosphere, suppose one is working on

a component at another level or perhaps at the same levt-1. The user makes some changes from the

original description and stores his version into the database. This may be done to several or all the

components. Now when a higher level component is expanded, the program can selectively choose

the appropriate internal description to USC. The above scenario was tested on the ALU with

following results:

The upper level description of the ALU contains the following picccs and levels:

40181 rf2

4 0 1 8 1 rf2

MUX gate
--

XOR gate

INV trans

NAND trans

4NAND trans

NOR trans

4NOR trans

The following is some of the data on expanding the pieces of the ALU:

40181: Total read time = 17.4 seconds.

record name quantity

net 152

component 127

camp-pin 564

Total read 843 (4432 words)

Total write time = 41.3 seconds.

record name quantity

net 154

net-pin 898

component 293

camp-pin 898

Total written 2243 (10136 words)

1

I

40182: Total read time = 8.78 seconds

record name quantity

net 79

component 67

camp-pin 268

Total read 414 (2240 words)

Total write time = 8.82 seconds

record name quantity

net 38

net-pin 186

component 59

camp-pin 186

Total written 469 (2128 words)

The mux anr! the XOR pieces were also expanded. Then the ALU was expanded again with the

expanded version of the lower level pieces in the database

Total read time = 48.0 seconds.

record name quantity

net 341

component 441

camp-pin 1575

Total read 2357 (12745 words)

Total write time = 203 seconds.

record name quantity

net 721

net-pin 4384

component 1441

camp-pin 4384

Total written 10930 (49364 words)

The current state of the SPRINT design system dots not allow writing instantiations back into the

database, so no parallel cxpcrimcnts were done, but again the DBMS-20 implcmcnnnion showed an

acceptable performance.

Sigttal!itrg Changes it1 the Database

The next and most recent test on DEC IIDMS-20 was to flag the ncccessary upper level pieces

regarding changes made to lower level components. A straightforward approach to this problem

would bc to have each component keep track of the upper level parts that use that component. To

implement this in CODASYL, we would like to have each Logical Description record own other

Logical Description records in a owners set, as such:

Logical Description
name
changed

owners
linkset

Besides causing cyclic errors, this structure is not allowed in the CODASYL definition. The

technique used was to add another record off the logical description to indirectly find the owners,

illustrated below.

Logical Description

name
changed

PointerBox

marked

The following example illustrates how upper level pieces are warned of lower level changes.

Suppose the multiplexer (MUX) has been changed and we wish to flag all the components that use

the multiplexer. In the database there arc several parts that use the multiplexer, and for each one of

these thcrc is a PointerBox record in the multiplexer’s owners linkset. Some of these include the

ALU, status register, and a 16-input multiplexer (MUXlG), see figure 1. These same PointerBox-
records are in the picccs linkset of the parts that use the multiplexer. The multiplexer itself is made

up of invertcrs and transistor pairs (TRANSP). Thus there are two PointerBox records in the pieces

linkset of the multiplexer. The flagging process begins by marking the first record of the owners

lin)tsct, in this case say it is the ALU. Here the field marked of the PointerBox is incremented.

Next, the owner record of the pieces linkset of the current PointerBox is found. Each PointcrBox

record has a pointer directly to the owner record of both the picccs linksct and the owners linkset.

At this time, the logical description record of the ALU is located and the field chztzge is

incremented. Flagging continues from the ALU in a recursive manner. When a logical description

record with a empty owners linkset is found, the upper most level has been reached. The flagging

must then move back to the previous level by finding the next PointerBox record of the owners
linkset.

9

This method of flagging upper level components is best characterized as “height-first”. This

method requires more record accesses, since many of the same records are rctricved many times,

than a possible level or breath-first flagging, but the height-first method allows more information to

be stored.

Consider the following example: Suppose the multiplexer and the inverter are changed and

their upper level pieces are notified. As shown in figcyc 1, the multiplexer and the invertcr are

described on different levels of the hierarchy, and a change to the inverter will also affect the

multiplexer. If you now query the PDP-11 data record as to whether any changes have been

flagged, only the inverter will show up as an altered component. If the upper level pieces of the

invcrter are unflagged (decrement the change and marked fields), and the PDP-11 data record is

queried again, the multiplexer will be identified as the modified component since correcting for the

inverter does not resolve the othere multiplexer modification. Now, suppose the multiplexer and

the NAND gate, which is described on the same level as the inverter, are changed. A subsequent

query from the PDP-11 record will reveal that both the NAND gate and the multiplexer hzve been

changed. The multiplexer is caught in this situation because none of its lower level pieces were

changed. Thus this flagging algorithm allows easy detection of all the lowest level independent

modifications. Also, every component can be unflagged uniquely by reversing the flagging

procedure. The time to carry out this flagging algorithm depends on the level at which the process

is started. Here are some sample flagging times:

Piece Level

ALU w3
MUX, XOR gate

INV trans

Time (seconds)

.13

.9

7.1

TN bottom 21.

IV. Conclusion

With the successful implementation of flagging, we have taken time out to write this paper and

so WC shall summarize our findings and predict our next moves. Looking back over our work, WC

bclievc our initially stated approach to be most promising: the commercial database system allowed

us to implement both initial designs and modifications relatively quickly and easily. Coupled with

the discovery that performance is not badly affected, this has allowed LIS to experiment productively.

This ability to experiment is important to obtain the knowledge needed for designing useful

database systems for VLSI design. As we, and designer: +_ themsclvcs, gain more insight into the

design process, we hope to develop a database supporting ‘1;. the types of communication paths for

I

10

many different kinds of interlocking design tasks. The final long range goal is, of coucsc, a usable,

flexible, expandable, and efficient database oriented VLSI design system.

Further cxpcriments are in progress to complete the tasks outlined in Section II. The

immediate task is to manage queries that access partially instantiated and partially computable

clcments. Work by others is in progress on the relational database approach and a comparison will

provide further insights and directions for future work.

i

11

References

[B&O] Bcetem, John: “Structured Design Using Isomorphic and Non-Isomorphic Multiple

Representations”, Stanford University, Electrical Engineering Department, CIS (Center for

Integrated Systems), August, 1980. .

[Fu180] Fulton, Rubert E., “National Meeting to Review IPAD Status and Goals”, Asfronautics and

Aeronautics, July/August 1980.

[Hi11803 Hill, Dwight: ADLJB, User’s Manual, Stanford CSL Technical Report No. 177, August

1979.

(1~~~791 Lcyking, L.W.: “Database Considerations for VLSI”, Proceedings of the Caltech Conference

on Very L,arge Scale Integration, pp. 275301, January 1979.

[PaySO] Payne, Thomas: Pascal macroexpander program, Stanford University, Electrical Engineering

Dcpartmcnt, CSL (Computer Systems Laboratory), CIS, 1980.

[Rob801 Robinson, Arthur L.: “Giant Corporations from Tiny Chips Grow”, Science,vol. 208, no.

4443, pp. 480-484, May 2, 1980.

[Sch79] Scheffer, Lou: “Database Considerations for VLSi Design”, Design Automation at Stanford,

ed. W. vancleemput, Stanford University, CSL, CIS, 1979.

[Ma1801 Mallmann, Felix P., “The Management of Engineering Changes Using the Primus System”,

The Seventeenth Design Automation Conference Proceedings, pp. 348-366, June 1980.

[Sim80] Simpson, J. et al: User’s Manual for the RimdFPDB System; Science Applications Inc. Palo

Alto, CA., March 1980.
e

[SL79] Slutz, Eric: SDL description of DEC PDP-11, Stanford University, CSL, CIS, 1979.

[Stc79] Stevens, K., vanclcemput, W.: Design File Organization in the SPRINT System, Stanford

&I, Technical Report No. 133, 1979.

[vC79] vanClecmput, W.: SDL: A Structural Design Language for Computer Aided Design of Digital

Systems, Stanford CSL Technical Report No. 136, 1979.

[WEM79] Wiederhold, Gio and El-Masri, Ramez: “The Structural Model for Database Design”;

Proceedings of the International Conference on Entity-Relationships Approach to S’yst~w~s Analysis

and Design, pp. 247-267, December 1979.

[wic77] Wiederhold, Gio : Database Design, McGraw-Hill, 1977.

