
Stanford Department of Computer Science
Report No. STAN-(X-80-827

November 1080

ON THE PARALLEL COMPUTATION FOR THE KNAPSACK PROBLEM

bY

Andrew Chi-Chih Yao

Research sponsored by

National Science Foundation

DEPARTMENT OF COMPUTER SCIENCE
Stanford University

i

On the Parallel Computation for the Knapsack Problem’

Andrew Chi-Chih Yao
Computer Science Department

Stanford University
Stanford, California 94305

Abstract. We are interested in the complexity of solving the knapsack problem
with n input real numbers on a parallel computer with real arithmetic and branch-
ing operations. A processor-time tradeoff constraint is derived; in particular, it is
shown that an exponential number of processors have to be used if the problem
is to be solved in time t 5 fi/2.

Keywords: Branching operations, complexity, knapsack, parallel computation.

* This research was supported in part by the National Science Foundation under
grant MCS-77.05313AOl.

1

1. Introduction.
Given n real numbers 21, ~2, . . . , zn, the knapsack problem is to determine if

there exists a subset S C {1,2,. . . , n} such that cys zi = 1. We are interested-
in the complexity of solving the knapsack problem on a parallel computer with real
arithmetic and branching operations (but without ceiling and floor functions). A._
constraint on the time-processor tradefoff will be derived. In particular, it implies
that p > i2fii2 processors have to be used if the problem is to be solved in time
t 5 &/2-1. Th’1s seems to be a rare case, where a natural problem is shown to
be not solvable in simultaneous O((logn)&) time and O(nlk) processors for any k,
without being shown to require exponential time for the sequential computation
(p = 1).

In the literature, the sequential complexity of the knapsack problem has been
considered in a somewhat different model (Dobkin and Lipton [3], Steele and Yao
(8)). In Section 4, an extension of the time-processor tradeoff constraint to a
parallel version of that model will be considered. (We recommend the readers
to [3] [8] for background reading, where many concepts used in this paper were
originlly introduced.)

Hardware size and parallel time required for computations in a variety of
models have received much attention recently (see, e.g., Borodin [2],.Dymond and
Cook 141, Hong Jai-Wei [S]). Our model differs from them in that the inputs zi
are treated as real numbers and not as finite bit strings. Thus, our conclusions
do not translate into results in those models, in which the individual bits in the
inputs can be manipulated. However, our model is quite proper for the knapsack
problem, and other problems such as network flows, finding shortest paths, etc.,
as many algorithms for these problems treat Zi just as real number8 (see e.g. [l]

2. The Parallel Arithmh Model.
Let MI s 2%” be any set, The membership problem for MI is the following:

Given E = (zl,zp, . . .,xn) E R”, determine if 2 E W. As in [3], we regard
the n-input knapsack as a membership problem with W = Wfn), where W(“) is
defined to be

We will be interested in solving the knapsack problem on a parallel computer
with p processors. Each processor can perform an arithmetic operation and test
for the sign (less than, equal to, or greater than 0) of the resulting value. The
selection of the next (parallel) step may depend on the results of all the previous
tests (thus, a priori, there are 3P possible branchings at each step). Formally, a
parallel program with p processors T is a multi-way tree, with each internal node
u containing a set of p rational functions 3” = {f&!), fu&), . . . , fup(2)}, and
with each leaf C containing Q, a “yesr or ‘no” answer. Let

where u’ < u denotes that u’ are ancestors of u. Each fui(Z) is either of the form
g(2) o h(Z) or of the form c oh(Z), where o E {+, -, *, /}, g, h E &,, and c is any
constant. Each branch leaving u is labeled by a distinct string 6 = bl b2.. . b, E
{l,O, -l}P. (Hence there are at most 3P branchings at any node u; there may
be fewer.) Given an input 3 E Rn, the program traverses a path P(Z) in the tree
T from the root down. At each internal node u, the comparisons {fu@): 0) are
made and the branch labeled 6 (where bi = l,O, -1 according to whether fv@):
-0 is <, =, >) chosen. When a leaf C is reached, the answer Q is returned. We
say ‘2 passes through u” if u is a node on the path P(2). We require that, if an
input E passes through a node u and fvi is g/h or c/h, then the value h(2) # 0.

We say that a parallel program T solves the membership problem for W, if
the answer returned is correct for every input Z E Rn. Let Cost(2, T) denote
the number of internal nodes that Z passes through. The running time t of T is
given by the maximum of Cost& T) for any 2.

For any open set W, let #W denote the number of connected components

3

IV has. It was proved in Dobkin and Lipton [3] that, for the knapsack problem,

This last inequality was used in [3] [8) to derive lower bounds on the knapsack
complexity, and will again be crucial in this paper.

We will prove the following results:

Theorem 1. Let W C Rn be an open set, and T be a parallel program with p
processors and running time t that solves the membership problem for W. Then

Theorem 2. Let T be a parallel program with p processors and running time t
that solves the n-input knapsack problem. Then

p > 2n/(w+1))-@+3) .

Corollary. If a parallel program solves the knapsack problem in time t 5 36-1,
then the number of processors p is at least 2*fio2.

a Theorem 2 and its corollary follows from Theorem 1 and inequality (2) easily.
Thus, we need only to prove Theorem 1.

3. Proof of Theorem 1.
We need some preliminary definitions. For any polynomial Q(z~, 22, . . . , zn),

let S, = {Z 1 q(2) # 0). For any integer 111,n > 0, let

B(m, 4 = max{#S, 1 Q is a polynomial in n variables and of degree at most m}.

It follows from a fairly deep result of J. Milnor [T] that

P(m, n) 5 (m + 2& + V+ (3)

For more discussions of inequality (3), see reference [8, Section 31.
We now begin the proof. Without loss of generality, we assume that no

branching in T is redundant, i.e., there is at least one input 2 taking each
branching. This implies that each leaf can be reached by some input E. The
running time t is now the same as the height of the tree T. The depth of a node
u, denoted by depth(u), is its distance from the root; the root has depth 0.

We can also assume that no test function ,/vi(Z) is identically 0, because we
can replace such a function by any non-aero constant function (say 1) and then
relabel the branchings.

For each node u, let Vv be the set of inputs Z that pass through u.

Lemma 1. Let u be an internal node of depth j, and Jet f E 3v. Then there exist
polynomials a(Z), b(Z) each of degree at most 2j+l such that, for all Z E Vo, we
have d(Z) # 0 and f(Z) = a(Z)/d(Z).

Proof. We prove by induction on j. The lemma is true for j = 0 by-
inspection. Suppose the lemma is true for all j < C (L > 0), we will prove it for
j= 4, There are two possibiities:

- Case 1. I(Z) = g(2) 0 h(g), where g(2) E {l,zl, . . .) zn} U 7ul and h(s) E
{La, l l �

, 2,) U 7,/t for some U < ?J, 0” < U.

By the induction hypothesis, we can write g(Z) = g#)/g#) for Z E Vb
and h(Z) = h#)/h#) for 2 E V’M, such that deg(gi) 5 ll+dcpth(“‘) 5 2j and
deg(hi) < 2l+dcpth(V”) < 2j for i =- - 1,2, and such that g&!) # 0 for Z E IQ
and h&k’) # 0 for Z E V,II . In particular, this implies g&!) # 0, h&) # 0,for
all 2 E Vu.

5

If 0 = -J-, then f(Z) = a(Z)/d@) for Z E Vu, where a(2) = g#)ha(Z) &
g&)h&!), d(Z) = g&)h&!). Clearly, deg(a(Z)),deg(d(S)) 5 2j+’ and d(Z) #
0 for all 3! E Vo.

If 0 = *, then we can take a(Z) = g&)h#) and d(Z) = g@)h2(2). Then

f(Z) = a&)/d(Z) for 2 f Vu, and all conditions are satisfled.
If 0 = /, then by assumption h(Z) # 0 for Z E Vvll, and hence h#) # 0

for Z E Vu. One can then easily verify that o(2) = g#)h#), d(2) = g&)h#)
satisfy the conditions.

Case 2. I@9 = co h(E) where c is a constant and h(E) E {l,~, . . . , z,) U 7ut
for some u’ < u.

A similar (and simpler) argument as given above takes care of this case. We
omit the details.

This completes the inductive proof. 1

Let A = (6 1 8 = bl b2.. . b, with bi E {1,-l} for all i}.

Lemma 2. Let u be any internal node, and Bv be the number of branches from
u that have JabeJs 6 E A. Then B, 5 /Y(2j+2p,n) where j = depth(u).

Proof. Let 3v = {fl, 12, . . . , fp}. By Lemma 1, we can choose polynomials
ai, di for 1 5 i < p such that deg(ai) 5 2j+‘, deg(di) 5 2j+’ and f(Z) =
ai(Z)/di(S), di(Z) 2 0 for all Z E Vu.

For each b E A, let Xi = (2 1 di(2) # O,bif$t) < 0 for all i}. Then B, is
no greater than the number of 6 E A with Xi # 0. Now, we can write X8 = (2 I
biai(Z)di(S) < 0 for all i}. Note that Xi; is an open set. Consider the polynomial
a9 = rI l< i<p(ai(2)4(2))* Then Sq = UgEa Xg. Since all Xg are disjoint open

I sets, we haie & 5 (the number of 6 E A with Xi # 0) 5 #S, < /Y(p2j+l, n). m

Let US write W = Ul<i<#w Wi, the disjoint union of nonempty open sets.
Let L be the set of leaves,fT with a ayes* answer and which can be reached
from the root using only “inequality” branches (i.e., branches labeled by 8 E A).
Clearly, ULEL Vc 5 W.

Lemma 3. The set U4t Vt intersects all the open sets Wi*

6

Proot”. The set W - UIEL V’, is contained in the union of V& where c’ are
leaves that satisfy at least one equality constraint along the path from the root.
Such V’,t have measure 0 and so does W - ULEL Vi. As each Wi is of non-aero
measure, the lemma follows. 1

Lemma 4. For each C E L, I+ intrsects at most /9(~2’+~, n) of the Wia

Proof. Let root = uo, ul, u2, . l . , u, = C be the sequence of nodes from
the root to C (8 5 t). Consider &,, = {fir, fj2, l l l , fjp}- BY Lemma 1, we
can write fji(2) = aji(2)/dji(Z) with dji(jt) # 0 for all 2 E Vu,, and d&ii) 5
2j+l, deg(dji(2)) < 2j+l.

Let 6”) = ib(j) b(J)2* . . . pb(j) be the label on the branch from Vi to ui+l l Then

Vf = {3! 1 by’aji(Z)dji(Z) < 0 for 0 5 j < 8,1 5 i 5 p}.

Clearly the open set V’, is the union of some components of the set Sq, where
q(2) = ni j(aji(jE)dji(P)). Thus, #Vc 5 @(m, n), whereI

m = C (p2j+‘) = p(2’+l- 4) < p2’+‘.
OSj<e

Since Vc G W, each component of Vc is completely contained in some component
of W. Thus I+ can intersect at most #Vt 5 p(m,n) components of W. The
lemma then follows from the monotonicity of /9(m, n) in n. 1

We now complete the proof of Theorem 1. By Lemmas 3 and 4, we have

ILIP@2t+2, n) 2: #W.

But from Lemma 2, 1 LI i (B(pZ’+l, n))‘. Hence,

MP2t+2, -n))t+l > #W.

Applying (3), we obtain

@2’+2 + 2)” 2 (#wpt+‘).

The theorem follows. 1

4. Parallel Algebraic Decision ‘12ees.
Dobkin and Lipton [3] considered the decision-tree complexity of the knap

sack problem for sequential computation, and showed that n(n2) tests are needed
if only alinearb tests xi Xizi: c are employed. Steele and Yao [8] extended this
n(n2) lower bound to d-th order algebraic decision trees for any fixed d, where
tests f(zl, 22, . . . , z,,): 0 are allowed with f being any polynomial of degree’ < d.

A natural extension is to consider parallel d-th order algbraic trees with p
processors, which are multiway trees with each internal node storing p d-th
(or less) degree polynomial tests j#): O,j#): 0, . . . &(2): 0, and with its
branches corresponding to the different combinations of outcomes for the tests.
The running time t is again the maximum number of internal nodes any input
E can encounter. This model differs from the ‘arithmetic” model considered
earlier, in that the latter model counts the arithmetic cost in computing the test
functions and can build up high order test functions. However, using the same
basic approach (and technically simpler), one can prove the following results.

Theorem 3. Let W G Rn be an open set, and T a parallel d-th order algebraic
tree that solves the membership problem for W, Then the number of processors
p and the running time t must satisfy

’ ’ 2(d+ 2)
l (#w)‘l(“(‘+‘))*

Corollary. For the knapsack problem, p = n($Y’it) where X = ‘6

’ Corollary. In the knapsack problem, one cannot solve the problem in time o(I+)
and with a polynomial number of processors, for fixed d.

Proof. We will only sketch the proof. We can assume that all leaves of 2’ can
be reached and that, in every test j(Z): 0, f is not the identically 0 polynomial.

Consider the set L of leaves C with “yes* answer and with no test with
equality results along the path from the root to C. Consider the part of the tree
T that consists of the paths (and the nodes on them) from the root to leaves in

8

f. Noting that at most /Y(pd, n) branchings can occur at each node, we have

Let Vt be the set of inputs Z leading to leaf 6. Then each Vl for C E f, can be
shown to intersect at most /9(ptd, n) of the components of W. This leads to

using (2), (41, we obtain from (5)

#W ,< (pd + 2)“‘(ptd + 2)”
5 (p(d + 2))n(1+r)tn.

The theorem follows by noting t-(li(l+t)) > l/2 for t > 1.
The corollaries follow from the theoremand inequality (2). H

9

5. Remarks.
In this paper we have shown that, in some real-arithmetic models, the knap

sack problem is hard to solve fast in parallel. However, this does not imply the
same behavior in the bit-oriented models [2] [4] [5], which are commonly employed
in complexity theory. The following example illustrates the point:

Given 21, ~2, . . . , Zn, determine if xlcicn zi = j for some integer 1 5- -
j < 2’C AS W = (z I nl<j<2n*(zl<i<nZi- j) # 0) satisfies #W = 2”‘,
we obtain the same type of time-processortradeoff constraint as in the knapsack
problem. However, circuits of small depth and size can obviously be built for this
problem with finite-precision inputs Zi. It is interesting to note that this problem
becomes trivial even in real arithmetic models, if we add the floor function [vJ
to the models. (Thus, Theorems 1 and 3 cannot be true if the floor function is
allowed .)

The above example also gives in our model a problem whose sequenial com-
plexity is O(n2), but a speedup to time 5 fi would call for an exponential
number of procesors. In a way this can be considered as an extension of the prob-
lem of locating an item in an ordered table to m items. With p parallel probes
at a step, it takes w (logm)/(logp) steps. Set m = 2” and try to reduce the
number of steps from n to fi, we will find that we need p fiz 26 processors.

To conclude this paper, we remark that a major open problem on this sub-
ject is to determine the sequential complexity of the knapsack problem in real
arithmetic models. Even a determination of the complexity with only linear tests
would be of great interest.

10

References

[l] A. V. Aho, J, E. Hopcroft, and J. D. Ullman, The Design and Analysis or
Computer Algorithms, Addison-Wesley, Reading, Massachusetts, 1974.

[2] A. Borodin, “On Relating Time and Space to Siae and Depth,” SLAM J. oa
Computing 6 (1977), 733-744.

[3] D. Dobkin and R. J. Lipton, ‘A Lower Bound of &n2 on Linear Search
Programs for the Knapsack Problem,” J. Comput. System Sci. 16 (1978),
413-417.

[4] P. W. Dymond and S. A. Cook, *Hardware Complexity and Parallel Compu-
tation,” Proc. 21.st IEEE Annual Symp. on Foundations of Computer
Science, Syracuse, New York, Oct. 1980, 360-372.

[S] Hong Jai-Wei, “On Similarity and Duality of Computation,” Proc. 214
IEEE Annual Symp. on Foundations of Computer Science, Syracuse, New
York, Oct. 1980, 348-359.

(61 E. L. Lawler, Combinatorial Optimisation: Networks and Matroids, Holt,
Rinehart and Winston, New York, 1976.

[7] J. Milnor, “On the Betti Numbers of Real Varieties,” Amer. A4ath. Sot. 15
(1964), 275-280.

(81 J. M. Steele and A. C. Yao, aLower Bounds for Algebraic Decision Trees,”
Stanford Computer Science Department Report STAN-CS-80-810, July 1980,
submitted to the Journal of Algorithms.

11

