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Abstract

This report contains two papers inspired by the “dinner table problem”: If
e 7~ people are seated randomly around a circular table for two meals, what is

the probability that no two people sit together at both meals? We show that
this probability approaches em2 as n -+ 00, and also give a closed form. We
then observe that in many similar problems on permutations with restricted

1 position, the number of permutations satisfying a given number of properties
is approximately Poisson distributed. We generalize our asymptotic argument
to prove such a limit theorem, and mention applications to the problems of
derangements, minages,  and the asymptotic number of Latin rectangles.

This work was supported by National Science Foundation Grant MCS-77-23738 and by OfWe
of Naval Research contract N00014-76-C-0330.



Introduction

The so-called udinner table problem” is introduced by Bj@rstad, Dahlquist,
and Grosse [0] as follows:

“At the most recent Gatlinburg conference on linear algebra, nametags
were scattered about the dining room to encourage people to make new
acquaintances. One evening a participant remarked: ‘This can’t be
random - I just sat next to this guy at lunch.’ Suppose that n people
are seated randomly around a circular table for two meals. What is the
probability pn that no one can make such a remark?”

It turns out that versions of this problem were considered as early as 1919 by
Poulet [3], who gave a recurrence relation for pn. Using this recurrence, Bjarstad
et. al. obtained a numerical estimate for lim,,,p, that was very close to e-‘,
and they conjectured that this was the exact limit.

In the first part of this report, we verify the above conjecture, and also give
a combinatorial derivation of a closed form for pn. Essentially the same results
have been published by Robbins [5].

In the second part, we generalize our argument to explain why many prob-
abilities arising in similar combinatorial problems tend to a value emx for some
small integer A. In so doing, we attempt to formalize a notion of “nearly independ-
ent” events that behave independently in the limit. For example, in the dinner
table problem, we may argue that the probability that two people who sat next
to each other at lunch do not sit next to each other at dinner is approximately
(n - 2)/n. There are n such pairs, so the probability pn is roughly ((n - 2)/n)n,
which tends to em2 asn-+oo.

Using the principle of inclusion and exclusion, these events correspond to
“properties” that may be satisfied by a permutation. We will show that when there
is limited “interference” between properties, the number of properties satisfied by
a random permutation approaches a Poisson distribution, as would be expected
if the properties were truly independent.



Part 1: Asymptotic Analysis of the Dinner Table Problem

We can restate the dinner table problem as follows: Consider permutations
of {l,..., n} around a circle; there are (n - 1)!/2 different such permutations
(not counting rotation and reflexion). Let qn be the number of permutations such
that the difference between two adjacent elements is not 1 or n - 1; we have
4n = p,(n - 1)!/2.

In 1919, Poulet [3] gave the following recurrence relation for q,, n 2 8:

( Y? - 7n + 9)q,, = (n” - 8n2 -/- 18n - 21)q,-I+  4n(n - 5)&,-p

- 2(n - 6)(n’ - 5n j- 3)qn-a -j- (n’ - 7n + 9)q,-4

+tn - 5)(n’ - 5n + 3)qn-5*

We give the first few values of qn below.

n I 34567 8 9 10 11

Qn 0 0 1 3 23 177 1553 14963 157931

From the recurrence relation, we can derive a differential equation for the generat-
ing function P(z) = Cnpnzn.  Unfortunately, this does not seem to be of much
help because of its complicated form.

We will use the principle of inclusion and exclusion in order to find the
asymptotic behaviour of pn. Let N = (n - 1)!/2 be the number of distinct
permutations of { 1,. . . , n} around the circle. Let xi, for 1 < i <_ n, be the
property of i being adjacent to i + 1 (mod n) along the circle, and let Ni be the
number of permutations that have property Q (they may have other properties as
well). Similarly, let Nij be the number of permutations that have both property
K/T~ and property rj, for 1 < i < j < n, etc. Thus N~z,,.~  is the number of
permutations that have all; proper& (and in our case this number is one).
From the inclusion-exclusion formula, we have

Qn =N- C Ni + C Nij - C Nijk + l . l + (-l)�Nla...n*

l<iln l<i<jSn l<i<j<kln

Let us view the right-hand side as an alternating series &<k<n(-l)k~kn,- -
where

skn = c NiliQ...ik*

l<il<ia<.--<iksn

In order to find the asymptotic behaviour of qn, we truncate the alternating series
after I= [log2 nj terms and show that the truncation error is negligible for large
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values of n. we then show that 8kn is essentially (n - l)!/2 X 2k/k!,  for 1 <,
k < I, with the main contribution coming from those terms for which there is no-
summation index ii such that ij+l = ij + 1.

We start by showing that, for 1 < k < n,-

Nili,..,ik  5 2
k (n - k - l)!

2 l

LetBbetheset{il+l,iz+l,. . . ) ik + 1 }, i.e., the set of elements with “forced”
positions. Ignoring the elements of B, there are (n - k - 1)!/2 ways to permute
the remaining n - k elements around the table. There are then at most two
ways to insert each of the elements of B so that the k properties qi, rig,. . . , nik
hold. Since this accounts for all permutations having these k properties, we have
established the above bound, and thus

8kn <
( n - k - l)!

2
=

2k
(n - k - l)! n n

2 =
( - l)! 2k

n-k 2 k!’

Let cx > 1 be any constant. Then, for I = [log, n) > 2a+4 e,
of the truncation error is bounded by

the absolute value

c Skn 5 n
(n- l)!

2
Llkln

(n- l)! 2e f--
2 ( >

20+‘e o(na) = (n i 1)‘2-(a+aliO(na) = tn i l)!o(n-aj,

Our next step is to show that, for 1 < k < I, we have- -

6kn
2k (n

=- - ‘$1 + O(k’/n)).
k! 2

We have already established an upper bound on &n of this form; it remains
to derive the lower bound. We do so by considering only those terms of Skn

I for which no two consecutive properties ri and ni+l are chosen. That is, we
consider partitions of { 1,. . . ) n} into three disjoint sets A, B, and C such that
AUBUC = {I,...+},  IAl = IBI = k, andB = {i+l ( m o d n )  1 i E A } .
The set A corresponds to the chosen properties, and the set B to the “forced”
elements. Given any such partition, there are (n - k - 1)!/2 ways to permute
the elements in AU C around the circle. We can then insert each element of B
in exactly two different ways so that the chosen k properties hold. Thus 8kn >
rkn 2k (n - k - l)!/ 2, where rkn is the number of ways to perform the above
partition.
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To determine rkn, we will use the fact that there are (“-:+I) ways to select
k elements from { 1,2,. . . , n} such that no two consecutive elements are selected
(here n and 1 are not considered consecutive). For the circular case, suppose that
element n is not selected. There are then (“y”) ways to choose k non-consecutive
from{1,2,...,n- 1 }. To remove the restriction on n, consider the n cyclic shifts
of each of the above choices. This overcounts each unrestricted choice n-k times,
so we have

rkn
l

Let us estimate rkn for 1 < k < I = [log, nl; we have- -

(1
k-1- -
n - l )(1

Furthermore,

1 2 (1- S)(l - S)...(l
n - 2

- s) > (1 - s)* = 1 + O(k’/n),

and hence rkn = (“,‘)(l+ O(k2/n)). Therefore we have the desired lower bound

skn > rkn Sk
( n - k - l)! (n - l)! 2”

- 2 =2 GO + W/4~*

Using our estimate of 8kn,  we have

(n-
qn =

l)!
2 c

(-2)k  + (n - l)!

k!
2 c g O(k’/n) + (n i %(nwa)

llk<l '
-

OSk<L

(n-
= l)! --)

2 e (1 + O(n-l)).

Hence pn = e -2(1 + CJ(n-I)).  Combining this with a result from [0], we have
the following asymptotic formula:

4 20 58 736 8428
Pn =e

-a
(I--+-

3na 3n’+ t iis t 45ns tn
g + O(n-*)).

(Except for the constant e-2, this expansion was obtained from the recurrence
relation by the method of undetermined coefficients.)
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We can in fact get an exact formula for the quantity qn by counting the terms
of Skn more carefully. Recall that Skn is the number of permutations satisfying
a given set of k properties, summed over all (F) choices of k properties. For the
above analysis, we showed that it was sufficient to consider only the rkn choices of
Ic properties such that no two consecutive properties 7~ and ni+l are chosen. To
refine this analysis, let rjkn be the number of choices of k out of the n properties
such that there are exactly j “blocks”, where any group of consecutive properties
xi) ri+lj ***I is considered a block. Thus rkn = rkkn.

T O evaluate Yjkn, consider first the case where property x,, is not chosen. If
we now list the properties in increasing order and consider the sizes of the blocks,
we get an ordered partition of k into j parts. The number of such partitions is
exactly (:I:). We then need to count the number of choices of k out of 7t - 1
properties corresponding to each partition. This is equal to the number of ways
of choosing j out of n - 1 - k + j objects, no two consecutive. This number is

(n-I-k+j)-jjl

j
)=(“;“>.

To eliminate the restriction on property rn, consider the n cyclic shifts of each
of the above choices, As before, this overcounts each unrestricted choice n - k
times, so we get

rjkn=(~~~)(“3”)&*

Now given a choice of k properties with j blocks, there are (n-k - 1)!/2 X 2j
permutations satisfying these properties. Therefore we have

Qn =
( n - l)!

2 + c (-Gk c
lSk<n

l,j<k(~~~)(n~k)~(n-~-l)!2j)+(-l~”
- --

From this formula, it is possible to obtain the asymptotic expansion given above.
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Part 2: The Poisson Approximation for the Number of Permutations Satisfying
k Properties

Suppose that 112  people leave their hats at the checkroom before going to
dinner in a restaurant. When they leave, they are handed hats at random. What
is the probability pk that exactly k people get their own hats back?

This is the well-known proMme  des rencontres (matching problem), and it
is a rather striking result that the probability po that no person gets his own hat
back approaches e-l as n + 00. In fact, it turns out that for any fixed k, we
have lim,,,pk = e-l/k!. In other words, the distribution of the number of
people who get their own hats back approaches a Poisson distribution

Xk
p(k; X) = emA F,

.

where in our case X = 1,
As another example, consider the problem of neighbors remaining neighbors

([a], [3], [5]): If n people are seated at a circular table for two meals, what is the
probability that no two people sit next to each other at both meals? It turns out
that this probability approaches eN2 as n --) 00. Furthermore, the probability
that exactly k pairs of people sit next to each other at both meals approaches
eb22”/k!, that is, a Poisson distribution with parameter X = 2.

Actually, the relation of these problems to the Poisson distribution should
not be all that surprising. In the hat-check problem, we can compare the events
that each person gets his own hat back with a sequence of n trials, each with
probability l/n of success. It is well known that the Poisson distribution is an
excellent approximation to the outcome of a sequence of n independent Bernoulli
trials, where the probability p of success in each trial is small, but X = np is
“moderate” . The probability of exactly k successes in n trials is

I For fixed k, the above expression approaches eAxXk/k! as n + 00, since lim,,,
(1 - x/n)n = e-?

In most problems on permutations with restricted position, the “events” are
not independent. As a result it can be difficult to determine the exact probability
of k successes. However, we will show that the effect of the dependence can be
ignored if we are only interested in the asymptotic behavior of the pk.

Our arguments will be based on the principle of inclusion and exclusion (sieve
method). The sieve method is a powerful technique in enumeration problems of
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this type, and in fact the exact solution to the matching problem is one of the
best-known examples of this technique. Our approach will be to combine the
inclusion-exclusion formula with simple bounds on the terms involved in order to
estimate the pk.

Let us first restate our examples in terms of permutations with restricted
position. Given a permutation T of (1,2,, . . , n), the matching problem is con-
cerned with the number of i such that r(k) = i. In the language of inclusion-
exclusion, these n conditions are “properties” which may be satisfied by the per-
mutation. Similarly, the neighbors remaining neighbors problem can be thought
of as counting the number of j such that J’ is next to j + 1 in a random permuta-
tion. (For simplicity, we will also count n next to 1, so that there are n properties.
Furthermore, we will consider the people as being arranged in a line rather than
in a circle.)

So suppose that we have defined n properties of objects in some set, where
for now we will be referring to the set of all n! permutations on { 1,2, . . . , n}. The
inclusion-exclusion formula tells us that the number of permutations which satisfy
none of the properties is given by

No = c (-l)ksk,
O<k<n

(1)

where
Sk = c N(il,  iz, . . l ,ik)

il,
.

. . ..sk

is the number of objects satisfying a given set of k properties, summed over all
choices of k out of the n properties.

More generally, the number of permutations satisfying exactly on of the
properties is given by

N, = c (-l)k(m;  k)sm+ka
O<kSn-m m

In the examples we have given, each of the properties can be satisfied in X
“ways”, where X is some small fixed number. More precisely, we have, for 0 <
k < n,-

Sk <_ i Xk(n- k)! = n!F.
0

x”
.

(2)

The interpretation is that there are (;) ways to choose k out of n properties, at
most X ways to satisfy each property for a total of Xk ways, and finally (n - k)!
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4

ways of permuting the remaining elements. Thus in the hat-check problem we
have X = 1 and in the neighbors remaining neighbors problem X = 2 (ignoring the
k “forced” elements j + 1, there are (n - k)l ways to arrange the other elements,.
and then at most two ways to insert each of the forced elements j + 1 so that it
is next to j).

Notice that we say “at most X ways”, because a particular way of satisfying
one property may interfere with some other property, that is, it may reduce the
number of ways of satisfying the other property. Hence we have only an upper
bound on Sk.

However, we cannot allow each property to interfere with too many other
properties, or else we will not get a satisfactory estimate for Sk. So suppose that
each property can “interfere” with at most d properties, where d is usually a small
fixed number. There are then at least n(n-d)*  l l (n-(k-l)d)/k! ways of choosing
k properties such that no two of them interfere with each other. Our requirement
of limited interference between properties can be expressed as the following lower
bound on Sk, assuming (k - 1)d < n:

Sk >
n(n - d)* l l b - (’ - l)d)Xktn  _ k)j . .- k!

For example, in the hat-check problem we have d = 1, because each property
interferes only with itself. In this case the bounds in (2) and (3) are identical, so
we have equality. In the neighbors remaining neighbors problem, we have d = 3,
because property j interferes with properties j - 1 and j + 1, as well as itself.

Theorem. Suppose that each of the n properties can be satisfied in X ways, and
that there is limited interference between properties. More precisely, suppose that
inequalities (2) and (3) are satisfied. Then for any fixed m we have

XM
lim Pm = es’;,

n+oo .

where pm = Nm/n! is the probability that a random permutation on {1,2,. . . I n}
satisfies exactly m of the properties.

Proof. The lower bound (3) can be rewritten

S k > n(n - d)* + *(n - (k - 1)d) Xk
n! - n(n - l)***(n - (k - 1)) k!



Combining this with the upper bound (a), we get, for (k - 1)d < n,

(Note that for d = 1 the error term is actually zero.)
In the inclusion-exclusion formula (l), the error made by truncating the sum

at any point is bounded by the absolute value of the first term omitted. Then
from (2), we have

Now using (4), we obtain

(5)

If d and X are fixed, and I < n/d goes to infinity with n (e.g. I = logn), then we
get lim -A -

n4d0=-  .
The general case of m properties is similar, and after some work we find that

where (m + 1)d < n. Then for I = logn, we get lim,,,p, = ewxXm/m!,  as
asserted. p

Actually, we can obtain a stronger result than that stated in the theorem, if
we remove the restriction that m be fixed. From (6) we see that in fact

for any m < n1j2Y
We may also note that for fixed m, I can be chosen so that (6) yields

Pm = e -A Am
2 + w+l*.

We now mention some other problems to which our result can be applied.
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1. Successions. In a random permutation, how many times is j followed
immediately by j + l? For simplicity, we also count n followed by 1. Now given
any k of the above properties, there are (n - k)! ways to permute the unforced
elements, and then at most one way to insert each of the forced elements j + 1.
Therefore X = 1 and d = 3. (A more careful consideration of 8k will show that
we can actually take d = 1 in (3), except when k = n. However, for our purposes
any fixed bound on d will do.)

Note that for both successions and neighbors remaining neighbors there are
four possible variants of the problem, depending on whether or not we consider
n to be followed by 1 and whether we consider permutations in a line or around
a circle. Some of these variants introduce slight complications, but it is not hard
to show that they all have the same asymptotic behavior. (For example, see [6].)

2. Probl&me des m&ages. In how many ways can we seat n couples around
a circular table, men and women alternating, such that no man sits next to his
wife? The properties are r(i) = i or i + 1 (mod n), for 1 < t < n, and we have
x = 2 and d = 3.

3. Reverse derangements, A permutation R such that r(i) # i for any i is
also called a derangement. How many permutations are there such that neither x
nor its reverse are derangements? That is, the properties are a(i) = i or n + 1 -i,
for 1 < i < n. We have X = 2 and d = 2. (Note that n should be even or else
property  (n+ 1)/2 can only be satisfied in one way. However, again it is not hard
to show that this does not affect the asymptotic behavior, because we need only
replace n by n - 1 in (3) and the proof still works.)

4. Asymptotic number of Latin rectangles ([l], [4, p, 2091).  In a k X n Latin
rectangle, each of the rows are permutations of (1,. . . , n} and no element appears
twice in the same column. Thus the number of 2 x n Latin rectangles is just n!

- times the number of derangements, which we know is asymptotically n! e-l. Now
given any k X n Latin rectangle (ai& how many ways are there to extend it to
a (k + 1) X n Latin rectangle? The properties for row k + 1 are r(i) = uli, u2iJ

or ski, for 1 < i < n, and we have X = k and d = k2 (there are k ways
1 tb’;atisfy  each property, and each way might interfere with k other properties).

Thus we can successfully apply our argument up to k = (1 - 6) log n, at which
point the ex factor in (5) becomes too large, We get that the number of k X n
Latin rectangles is asymptotically

II c ..
n! ew3 = (n!)k e-

k
OSj<k3 = (n!)"e- 0 .0

O<j<k
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5. Successions in a chessboard permutation. How many ways are there to
place the numbers 1 to n2 on an n X n chessboard so that j is never adjacent
horizontally or vertically to j + l? We include the case n2 adjacent to 1 and also
consider the board to be a torus. Here it seems to be easier to state the properties
in an alternate way, namely, we consider the properties that x(i) and x(i) + 1
(mod n2) are adjacent, for 1 < i 5 n2. Now given any choice of k properties,
there are at most 4 ways to select an adjacent square for each chosen property,
and then exactly (n2 - k)’ ways to complete the arrangement. Also, we see that
property i interferes with properties i & 2n, i & (n & l), i ;rtZ n, d & 2, and i & 1,
as well as with itself, Thus we have X = 4 and d = 13.
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