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ABSTRACT

Although the effectiveness of the Knee Criterion [7] as a virtual memory management strategy is

widely accepted, it has been impossible to take advantage of it in a practical system, because little

information is available about the program behavior of executing jobs.

A new memory management technique to achieve the Knee Criterion in a multiprogrammed

virtual memory system is developed. The technique, termed the Optimum Working-set Estimator

(OWE), abstracts the programs’ behavior from their past histories by exponential smoothing, and

modifies their working set window sizes in order to attain the Knee Criterion.

The OWE method was implemented and investigated. Measurements demonstrate its ability to

control a variety of jobs. Furthermore the results also reveal that the throughput improvement is

possible in a space-squeezing cnvironmcnt. This technique is cxpectcd  to increase the efficiency of

multiprogrammed virtual memory systems.
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1. Introduction

Considerable work has been done related to the performance of virtual memory management as

summarized by Smith [24].  A large part of it, however, assumes a uniprogramming environment as a

basis of its argument, either explicitly or implicitly. The major reason for the uniprogramming

assumption is the simplification of the analysis. In a multiprogramming system, the optimality in

memory allocation to a specific program cannot be discussed solely in terms of its own page fault rate.

Various performance factors such as CPU/channel service rate, CPU/channel scheduling policy, the

behavior  of other programs in a multiprogramming set, etc., must also be taken into consideration.

These factors make it virtually impossible to obtain a simple and straightforward solution. Despite  that,

it is obvious that multiprogramming is one of the most common features of actual virtual memory

systems.  There is thcreforc an urgent need for the study of this area.

Scvcral papers have already addressed  this problem of multiprogrammed memory managcmcnt. In

addition to the cotnparative analysts of various memory management strategies by Denning [6] and

Masuda [16],  some noteworthy  rules intended for USC in a multiprogramming system are given by

Bclady  [l], Dcnning [7],[8]  and Lcroudier [14].  Above  all, the “Knee Criterion”  and the “L=S

Criterion”  proposed  by Dcnning [7],[5]  arc among the most important. The Knee Criterion is a memory

allocation strategy which achieves the maximum ratio of the lifetime to the memory allotment for each

program in a multiprogramming set. It can be easily shown that this corresponds to the minimization of

edch prog:m’s  space  time yr-oduct  due to paging [7]. On the other hand, the L-S Criterion keeps  the

avcragcd lifetime at least as great as the page transfer time for a page f:lult. Obviously, the L=S

Critcriou  considers  the nvcrnged behavior of the programs rather than the behavior of EL& program in

a multiprogramming set. Since program behavior is intrinsic to each program, a memory allocation

mechanism will bc more stable if it is based on each program’s own behavior. The Knee Criterion

considers  individual programs and some simulation reports  and theoretical  arguments show its

exccllcncc [7],[8],[13].  However,  the problem of Knee Criterion  is its difficulty in implcmcntation. This

is bccausc it csscntially rcquircs  information of program behavior in advance of program execution,  and
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such information is not generally available. The lifetime curves of the jobs to be processed are hardly

known in a practical environment. Consequently, to our knowledge, no experimental reports on the

Knee Criterion have yet appeared.

This paper presents some results of our experiments with the Knee Criterion. A new virtual

memory management technique is developed, which is termed the Optimum Working-set Estimator

(0 WE). The OWE enables the approximate implementation of the Knee Criterion in the following

way. First the OWE abstracts the characteristics  of each program’s memory reference behavior from its

past history by exponential smoothing. Secondly it modifies the window size of each program’s working

set [4] in such a way as attains the Knee Criterion. The OWE, therefore, constitutes a nlulti-window-size

working set scheduler. In this respect the OWE is quite diffcrcnt from conventional implementations of

rrni-window-size working set schedulers in which there is only one window size  which is shared by all

programs in a multiprogramming set [2],[22]. It should bc noted that the OWE, since it employs an

abstraction (learning) algorithm, addresses  primarily large jobs with a long CPU execution time, which

will have a significant influence on the syst,em  throughput.

First, in section 2., WC discuss the relation between  the Knee Criterion and other control rules from

the view point of throughput maximization. Although the Knee Criterion has so far been associated

solely with program’s lifetime, an attempt is made to extend the notion and associate it with the concept

of program’s processor eftficietxy  dcfincd by Hclady [l]. It is shown that the Knee Criterion applied  to

processor  efficiency curve is the minimization of the space time product due to processing  as well as to

paging. In section 3. the OWE is presented, showing how the Knee Criterion can be implemented in a

practical cnvironmcnt. The experimental results ar * shown in section 4. and 5. In section 4., the ability

of the OWE to achieve system optimality is invcstigatcd  by examining the space time product. For this

purpose, a synthetic  workload is employed of which the minimum of the space time product is

theoretically  calculable. ‘l’hc  ovcrhcad due to the OWE is also considered. Finally, mcasurcmcnts on the

throughput of the benchmark workload arc carried out in section 5, to reveal the improvcmcnts when

the OWE is applied.
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2. Optimality  in Multiprogrammed Memory Mnagement

The lifetime of a program is defined to be the mean virtual time between page faults. The lifetime

function e(z) of a given program is illustrated in Fig.la, where the lifetime is specified  in terms of page

references when the program’s resident set size averages z pages. Although the lifetime curve might take

various shapes, it is generally known to have concave region following convex region as z increases [8].

The critical point corresponding to d2,/dz2  of 0 ( max de/dz ) is called the parachor, which identifies

the core requirement zl to achieve reasonable processing [l]. The knee, on the other hand, is defined

geometrically as the highest point of tangency between a ray from the origin and the curve [7]. The

Knee Criterion is the rule to keep the system operating at the knee [7],[8].  In other words, the Knee

Cri’tcrion corresponds to the memory allotment z2 which maximizes the cost performance ratio &z,

where the Jifetimc e and the memory size z each arc considered to be gain and investment respectively.

It is possible  to think of another gaits, which is shown in Fig.11~.  J3elady  [l] proposed as a measure

the processor efficietxy  of a program e/(e+ S), and discussed that memory allotment should be at least

the point 23 yielding d2{e/(e-i-S)}/d z2 of 0 ( max d(e/(e+ S)}/dz )[9].  Here S dcnotcs the mean

processing delay for a page fault. By substituting the processor efficiency for the lifetime, a new type of

Knee Criterion can be obtained. Apparently this memory allotment z4 yields the maximum

performance ratio of (e/(e+ S)}/z.  To avoid confusion, we denote the new one as the Processor

Efficiency Knee (J’J:-J<nce)  Criterion  and the traditional one as the J,ifeTimc Knee (J,‘J’-Knee)

Criterion hcreaftcr.

It is noteworthy that the satisfaction of either of these Knee Criterions achieves the mini17  i&ion of

the space time product of the program. I.cttingf  bc page fault rate, the space time product due to

- program cxccution  of Y rcfcrcnccs  is given by ( Vz + S V’ ) [1],[3].[  11],[21],[23].  ‘1’1~ space time product

per refcrencc X, and that due to only paging Y, arc obtained as follows:

X=z+Y. (2.1)

Y = sfi. (2.2)

Sincefequals to l/e, the next relations hold.

(2.3)





1/ Y =(1/S) e/z. (2.4) *

The above  formulae show that the PE-Knee Criterion and the LT-Knee Criterion each represent the

rule to minimize Xand Y respectively. In most cases the LT-Knee Criterion is expected to yield larger

memory  allotment than that of the PE-Knee Criterion [20].

The appropriateness of memory management, however, does not ensure the sufficient condition to

attain the throughput maximization in a multiprogramming system. Apparently it is the management of

a critical ( highly utilized ) resource  that has significant influence on the throughput. For instance, in a

system with plenty of memory and a very slow CPU, the throughput depends more on the management

of CPU than that of memory. That is, high dispatching priority assignment to I/O bound jobs can

improve the throughput regardless of memory management [17]-[19].

In spite of that, the following argument shows that the Knee Criterions contribute to throughput

improvement. Denoting the lifetime of program i in a multiprogramming environment as ei, the upper

limit of CPU utilization by i is given by ei/(ei+ 51 [l]. Consequently, the total CPU efficiency zlcpu

satisfies formula (2.5),  where the summation is taken over all  programs in a multiprogramming set.

Ucpu < min( 1, T ei/(“i+,I? 3.
L

(2.5)

This shows that the incrcasc in T ei/(ei+ S) is necessary to achieve high CPU efficiency.
L

The ucpu has another upper limit. Let /, be the s)‘slenl  /$?~ime  - the avcragc CPU execution time

between two successive  page faults. Note that L is the mean time between page faults averaged over all

programs rather than a yarlicularprogram  in a multiprogramming set.  I3y considering a simple

queucinb ,nodcl in an cyuilibrium staic, the fi)llowing  rcldtion can be obtained. ( Refer to [7], [20] for

the proof. )

ucpu < mint 1, /,/S ). (2.6)

This formula gives the thcorctical  reasoning to the “L= S Criterion” proposed by 0cnning  [7],[8],  which

is to keep I, just above S. ‘I’hus we obtain,

1,  F ei /(ei+bQ, L/S). (2.7)llcpu < mini



The system lifetime L is a weighted mean of the program’s lifetime ei , where the weight is
.

determined by its page fault generating probability. This probability depends upon not only intrinsic

program behavior but also other factors such as CPU allocation policy, I/O activities of all programs,

etc. Therefore it is not generally known which of the two limiting factors - Z ei/(eif S) or
i

L//S - actually constraints the system performance.  Since the PE-Knee Criterion and the LT-Knee

Criterion each require knowlcdgc  about ei/(ei+ $) and ei , this argument suggests that a simple and

general remark about thc,comparison  between the two Knee Criterions can hardly bc obtained.

3. Optimum Working-set Estimator (OWE)

‘l’hc  strict implementation of the Knee Criterion is impossible  without knowing the lifetime curve

of a program in advance of its execution.  The fact that this information is generally unavailable has

prevented the Knee Criterion from being implemented in current operating systems. However, if a long

job with a significant CPU execution amount shows sfationary  behavior (after having passed through its

initial unstable  phases), it is possible  to estimate the lifetime curve based on its past history. This

stability in program behavior is observed  in many jobs as excmplificd  by Hatfield [12],  although there is

no proof of it. These long jobs need cspccially to be properly controlled, since they will have a great

. influence on the system throughput.

The Optimum Working-set Estimator (OWE) is an approximate  technique to rcalizc the Knee

Criterion. Conceptually the OWE constitutes of two algorithms; one is the abstraction (learning)

algorithm to estimate the program’s lifetime/processor efficiency curve, and the oiher is the

optimization algorithm to make memory allotment bc done at the knee point. For this purpose, the

OWE works on the b:lsis  of a working set schcdulcr [4], which is one of the most widely-known program

driven memory management schedulers. In other words, the OWE dctcrmines each program’s window

size  to realize the tnemory allotment at the knee point.

It should be noted that working set schcdulcrs,  despite  of their capability to estimate program’s

locality, have so far been implcmcntcd solely  as u/ii-window-size schedulers.  All programs in a
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multiprogramming set share the window size, which is either fixed [22]  or dynamical19 adjusted

according to paging load [2]. They therefore have failed to be optimal in terms of the space time

product. Below is described the OWE, an attempt to achieve minimization of each program’s space time

product.

Let the sample points on program’s virtual time be t, (n= 1,2,  . . . ), which are chosen at every time

quantum of A. Although page replacement in a strict working set scheduler might be done at every

reference instance, it is done in our implementation only at sample points to avoid exccssivc overhead.

That is, the pages having been unreferenced since ([,-T-l)  are replaced at I,, where the window size 73s

assumed multiple of A. Denoting the working set at I,  with window size Tas W(l,T),  this

approximation is expressed as follows:

w,,+ d-l N- W( t,, + e,T+ e). (3.1)

( OS&A, II= 1,2, . ..)

Let the working set size  at f, be M.(tlp T), and the average working set size be z(T). The estimator sf z(T)

at t,, is dcfincd by cq.(3.2)  and denoted as {(f,,7).

i

!Ytzf,*7)  = (1-a)bt(ln*7)  + a!t(trp19T>*

w()n = elm. (3 -2)

( O<a<l,  n= 1,2, . ..)

This formula can bc also written as

[(r,,,T) = (I-aj%(l,,g)Ix~  + &t(t1,7J.
j=0

(3.3)

Namely { is an unbiased  estimator of z, which is given as a weighted sum of the working set sizes

measured in the past at cvcry time quantum of A. The weights are chosen so as to, more or less, reflect

the changes in program behavior.

The following relation holds bctwccn the page fault ratcfand average working set size z [5].

f = dz/dT. (3.4)

This leads us to the following definition of q( l,,, 7’), which is the estimator offat  t,,.

qttflT)  = l l(f,**T+ A> - lt1n-19Q liA - (3.9

(n = 1,2, . ..)

Let the number of the page faults gcncratcd from fn-l to t, with the window size of T bc g( I,,, 7). Under
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the assumption of eq.(3.1),  &,T) is calculated as

&,7-l = ti$,,T+A)  - ti’,,$J

By using eqs.(3.3),(3.5),(3.6),  we obtain

(3.6)

g1(~,,7) = [ (l-aF$&,mjT+  A)aj + a’b(~~,T+  A)
= p-2

- (l-a)j~o~~nmjm~,~a’-  an-$+7>  l/A

= [ (1-ari2141,1-j  T+ A) - w(t,-j-l,7JlJ + (l-a)till,  T+ Ajan-’
j:c

+ an4tl,T+  A) - an‘1w(t1,7)]/A

= (l-a;%‘{  g(tn-j7)/A }aj.

:;YZ-1 { w(q,T+A) - 4qJJ  VA (3.7)

This formula shows that &t,T)  is approximately the weighted  sum of the page fault rates measured at

every time period of A when the window size is set at T.

The estimates of the space time products X(7) and Y(T) at t, arc denoted each as x(lf17) and

\c/( I,,, 7J and are defined as follows:

x&J-l = so,,7) + ~cp(qx(~,T).

(n = 1,2, . ..) (3.8)

WJI = ~Q(t,,.T)s(t,,q.

(n = 1,2, . ..) (3 -9)

The approximate  implementations of the PE-Knee Criterion and the LA’-Knee Criterion each can be

rcalizcd by the minimization of x(t,,,7’)  and $~(/,~7)  respectively. It is indicated in

eqs.(3.2),(3.5),(3.8),(3.9)  that x(lrr 7’) and #41,7) can bc evaluated at every t, by measuring h(t,,7’) as a

function of T.

In order for the measurement, a table is set up whose entries are called unrcferenccd interval

counters.  Each page is associated with one of those counters, which indicates the virtual time clapscd

since the last reference to the page.  At every t,, (n= 1,2,  . . . ), each page is chcckcd whether or not it was

refcrcnced during the interval ( In- 1 , t, }. This information is always available for a computer with

reference bits. If it was rcfcrcnccd, the corresponding unrcferenccd interval counter is zero-cleared; if

not, the counter is added by one. The evaluation  of W&J) is done at cvcry window size interval of A.



That is, the measurement points Tm are given as follows:

Tm = mA. (m = 1,2, . ..) (3.10)

It is easily seen that w&,T,,)  (HZ= 1,2,  . ..) is obtained as the number of discrete pages whose

unrcfcrcnccd interval counters are less than or equal to m.

The actual measurement mechanism in a multiprogramming system  is based on both the real time

and the virtual time of each program in a multiprogramming set. The OWE becomes active at regular

real time intervals and calculates the CPU execution amount since its last activation for each program by

using the program’s accumulated CPU cxccution  time. If a program has executed more than A, the

unrcfcrenced  interval counters for the pages in its working set arc checked and df,,‘r,,,)  ( m= 1,2, . . . )

arc measured. ( For simplicity, those pages  shared by two or more programs arc not considcrccl in this

paper. ) Note that the errors in the sampling of cvcry A do not exceed  the OWE’s activation interval.

The above description shows that it is possible  to chose the optimal window size T for each program

so as to attain m&n x( t,,, Tt,,,) and/or r-12  #(t,,, T,,,) at cvcry t,,. However, it should be noted that the

obtained window size  might be a locnl optimal value, since it is to be chosen from a limited range.

Denoting the window size set at fnml  as Tlcr, the pages  whose unrcfcrcnccd interval counters arc

(A/l+ 1) or more are all rcplaccd at I,,- I. Therefore WC can measure solely ~r(f,,, T,,) (ttl= 1,2;--,M+ l),

and x( t,,, Tm)  and/or #(I,, Tm) can bc evaluated only in the limited range of O<_ T< Tlkf

In order to cope with the case whcrc the minimal point is out of the above range, w/c introduce a

heuristic technique : that is, page replacement is prohibited and the window size is increased from Tbf

to Thr+ I, whcnevcr both of the fullowine  conditi:,ls  are met.

(3.11)

(3.12)

( Obviously \cI is substituted for x in cqs.(3.11)  and (3.12) if the LT-Knee Criterion is cmploycd instead

of the PI’-Knee Criterion.) Since in most cases x and # are cxpccted to vary with Tin a relatively

simple manner [3],[  lO],[ll], there is a great possibility that this heuristic leads us to a point close to the

optimal one.



4. Minimization of the Space Time Product

The OWE was realized experimentally on the Virtual-storage Operating  System 3 (VOS3),  which is

a large scale operating system for HITAC M-180/M-200H. Since the OWE is an approximate

implementation of the Knee Criterion,  it is ncccssary to examine the degree of approximation. This

section describes the experimental results which, as a preliminary step of measurements, investigate the

space time product of a program whose minimization is achieved by the Knee Criterion.  The space

time product under the OWE was compared with its theoretical minimum under  the Knee Criterion.

For this purpose,  a set of synthetic programs was chosen as a workload, whose program behaviors are

readily known.

The page references in thcsc synthetic  programs are governed by the Simple Least Recently Used

stack Model (SLKUM)  [25]. That is, the page whose stack distance is k in a program of N pages is,

rcfcrcnced with the probability of [i(k)  (k= 1,2, . . . , N ). The q(k)‘s arc time-invaricnt and the sum of
N

them I:
kf

q(k) equals to 1. We can gcncratc programs of various stationary behaviors by assigning

appropriate  values to y(k)‘s.  When q(k)‘s are given, the average working set size z(7)  can be calculated

in the following way, as proposed  by Turner [26].

I>ct the probability that a working set size is Ir be f’(h,T),  which is the probability that Iz discrete

pages are refcrcnccd during T. Ry using the following formulae  [26],  I’(//,  7) (/I== 1,2, . . . ,N) can bc

calculated.
h

P(h,T)  - P(h-I,T-l)&(k)  -I- P(~,T-~;EJ(~).
=r/ .-

i

l:A=l
P(h,l)  =

0 : I/=2,3,  . . . ,N.

(4.1)

(4.2)

And the average working set size  z(7) is given by
PJ

z(7) =~p’(h,T).
L -L (4.3)

We can obtain Iilc page fault ratcfir7) from z(T)  by using eq.(3.4),  and finally calculate the space time

product of cq.(2.1)  and/or eq.(2.2).



Three different synthetic  programs Sl-S3 were created and investigated. The characteristics of them

calculated  by the above procedure are shown in Fig.2. The space time product X(7’) of S2 and S3 are

respcctivcly  monotonously decreasing and increasing, and only Sl has its minimum at the inflextion

point. They are considered representatives of three types of programs. The program sizes are all 50

pages.

The synthetic programs Sl-S3 wcrc executed under the control of the OWE in a multiprogramming

environment, and their working set sizes were observed. ‘The  OWE was invoked and executed at about

100,000 instructions of real time interval, and the virtual time sampling interval A was chosen at 200,000

instructions. Other parameters  were set as follows: the smoothing parameter a in eq.(3.2)  was 0.5, the

paging delay S in cqs.(3.8),(3.9)  was 80,000 instructions.

The mcasurcd  data arc compared with theoretical  optimal values in Table 1. The data were

collected and averaged at every virtual time sampling interval of 200,000 instructions over the

measurement period of about 8 minutes. The degree of coincidence bctwcen  the measured and optimal

values is satisfactory, cxccpt  for the case of S3 under the I.T-Knee Criterion. The rclativc differences in

the avcragc working set size and the space time product arc each 0.4-5.0 % and 0.8-10.2 % respectively.

Even the differences in the window size,  which do not look very small, are still considered to be in an

acccptablc  range since the varicncc in Taround the optimum is known to make an insignificant

diffcrcncc in X(7) and/or Y(T) [3],[  lO],[ll].

As fo. 33 under the LT-Knee Criterion, the degree of concordance is less saiisractory, as far as the

mlio (tdntive  differetm)  of the space  time product Y( 7) is concerned. Howcvcr,  it should bc noted that

the n6sollr/e  d@‘fircnce  bclwccn  the two is not significant, since Y(7) itself is small in this cast. This was

caused by the fact that the optimization algorithm of the OWE is based on cl6solute ralhcr than relative

value of X(T) and/or Y(rT). That is, the OWE judges a value of T to be almost optimal only when its

modification causes small absolute  diffcrcnccs in X(7)  and/or Y(7). Since the system throughput is

influenced not by rclativc but by absolute  values of the space  time product, this algorithm and its results

arc considcrcd rcasonablc. In summary, ‘rablc 1 rcvcals cxpcrimcntal verification of the OWE as an
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‘Table 1 The validation of the OWE’s ability to achicvc the Knee Clitcrion.

(upper row : measured values, lower row : optimal values)

CRITERION PE-KNEE LT-KNEE

PROGRAM S7 S2 s3 Sl s2 s3

AVERAGE WINDOW S!ZE

(1 O6 instructions)

AVERAGE WORKINS  :‘ET
SIZE

(pages  1

SPACE Ti%r\,:E PRODt!ST
PER REFERENCE

(pages- rwf-zory  access

(1 page = 4K bytes)



approximate implementation of the Knee Criterion. .

The overhead of the OWE was also cxamincd  in the measurements.  It is possible to set the

theoretically optimal window size throughout the measurement period not by dynamic abstraction

(learning) but as a pre-fixed value, since it is already known for the synthetic workload as indicated  in

Fig.2. The measurements of this idcalizcd case were carried out, and the CPU overheads of the

operating system were co!nparcd  with the OWE’s case where the optimal window sizes were found

dynamically. The increase in the CPU overhcacl is considered to comprise the overhead of the OWE.

The overhead  of the OWE is in general an increasing function of the working set size, since a large part

of the OWE’s processing is done for each page. We therefore carried out measurements for S2 and S3,

whose iYorking set sizes are each r&rtivcly  large and small rcspcctively. A sufficient number of S2 type

programs wcrc copied and exccutcd  for about 8 minutes in a multiprogramming environment. The

ovcrhcad of the OWE in this case was 1.2% for both the PE-Knee Criterion  and the I,T-Knee Criterion.

The same kind of mcasurcmcnt for S3 programs showed the overhead to be 0.35% for the PE-Knee

Criterion and 0.59% for the IX-Knee  Criterion rcspcctively. The overhead  for S 1 is expected to lit

between those for S2 and S3. Thcsc figures are considered to bc quite acceptable.

The OWE is a rather stable  controller. ‘I’hic  is beca~~sc, as was already mentioned, the X(T)  and/or

Y(7)  arc gcncrally inscnsitivc to the variation in Taround the optimal value [3],[  lO],[ll]. This fact also

implies that, once an approximately  optimal 7’has been found, it is not ncccssary to frcqucntly modify

Tany more, as long as the program shows stationary behavior. ‘I’hat is to say, a further reduction of the

overhead of the OWE is fairly promising, which will be our future  work.

5. Mc;lsurcnicrits 011 ‘l’hrougl~put

The decrease in the space time product is considcrcd to have generally preferable effect 011 the

system  throughput. This section shows the results of mcasurcmcnts on the throughput of benchmark

workload under the OWE. The object of these mcasuremcnts is to invcstigatc the dcgrce and the

rcquircd conditions of throughput improvements.
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The benchmark workload used in the cxpcrimcnt comprises FORTRAN programs with compile,

link, and execution phases (except for program B4 which constitutes of only an execution phase), all of

which have considerable amount of CPU execution time of more than 25 sec. Their average working set

sizes z( 7)‘s are approximately shown in Fig.3.,  which includes a peculiar linear curve along with those

for benchmark programs Bl-B4. This is a curve of a King Size Program added to the benchmark

programs to make the analysis easier.

The King Size Program is a synthetic program which references pages  only consecutively  at a

certain rate, and keeps  this behavior by returning to the first page when it rcachcs the last. It is

obviously preferable in terms of the space tirne product to allocate as small amount of memory as

possible to this kind of program. This is true because its page fault rate is virtually independent of its

memory allotment (unless  the whole program is included in memory). The conventional uni-window-

size  working set schcdulcr cannot achieve this goal, since it determines a common window size shared

by all programs in a multiprogramming set. The OWE, on the other hand, tends to decrease each

program’s space time product by adjusting each window size, so that WC can expect a higher throughput.

However,  the dcgrcc of throughput improvcmcnt depends greatly upon the cxtcnt to which the

memory usage is critical. The system pcrformancc is influcnccd by memory scheduling  only in a space-

squeezing  environment [17]-[19],  which often happens on an arrival of a job with heavy mcrnory usage.

This kind ofjob is not uncommon- an array manipulation job is a typical cxamplc. The King Size

Program was crcatcd as an abstract model of these jobs, and was used in the cxpcrimcnt to realize, more

or less, a space-squce&g  ctivironmcnt.

‘I‘hroughout the cxpcrimcnts, the number of job-initiators (virtual spaces)  was kept constant of 6,

one of which was dcvotcd to the King Size Program. Some M-134  programs were copied to create a high

enough workload. Thus all the virtual spaces were kept active during the measurement  period of around

10 minu tcs.

‘I’hc  throughput of the OWE is compared with that of a conventional uni-window-size working set

12
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scheduler in Fig.4. Although the window size in some uni-window-size working set schedulers is kept

constant [22],  it was modified in our experiment based on a paging load. Namely, the window size

shared by all programs in a multiprogramming set was increased when the paging system was

overloaded and decreased  when underloaded. This adjustment is considered to increase the throughput

as is suggested by the grounds of the 50% Rule [14]  and the Z,=S Criterion [7],[8].

Dcspitc that, the difference in the throughput between the OWE and a uni-window-size scheduler

is clearly indicated in Fig.4. The increase in the CPU utilization by the OWE is significant for both the

PE-Knee Criterion and the LT-Knee Crierion in a space-squeezing environment of the real memory

capacity of 2M bytes. This improvement is not achieved for the case of the real memory capacity of 3M

bytes, where memory  is no more a critical resource and its allocation schcdulc has therefore little

influence on the throughput.

The throughput diffcrcncc between uni-window-size and multi-window-size (OWE) working set

schedulers is also indicated by using another measure termed the total service CI~YIOLI~ZI,  which is the sum

of the scrvicc amount of each job which was active  in the measurement period. The service amount of

job i, RP is defined as follows [15],[17]-[19]  :

Ri = CI’Ui  -t IOiv

where CPUi and IOi each represent the amount of CPU scrvicc and file input/output scrvicc supplied

Jmeasure than the CPU utilization, since it includes  file input/output operations  and cxcludcs  the CPI

overhead :,f an operating system.  The difference between that of the OWE alid the uni-window-size

scheduler is 12.2-19.1%  in the space-squeezing (2M bytes) case and O-9-1.0  % in the non-space-

squcczi  ng (3 M by tcs) cast.

Some additional data arc shown in Fig.5, which clarifies the reasons for thcsc throughput

improvcmcnts. The memory allotment to the King Size Program under the OWE is much smaller than

that under the uni-window-size  working set schccluler. Tn a space-squeezing  environment, this causes

considerable incrcasc in a multiprogramming degree (= the number ofjobs  rcsidcnt in a real memory).

to job i in the mcasurcmcnt period.  An cxccution of 1,000 instructions and I file  input/output.

operation each constitute 1 scr-vice  unil. The total service amount 7 Ri is more precise throughput
c

13
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Fig.4 The throughput under the OWE (LT-Knee Criterion, W-Knee  Criterion),  in comparison  with

that under a conventional  uni-window-size working set scheduler.
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Finally this leads to the increased number of the ready-to-execute jobs, resulting in the improved

throughput. In a non-space-squeezing environment, however, the control of the space time product of

the King Size Program scarcely improves the multiprogramming degree and the number of the ready-

to-cxccute jobs, thus has no evident effect  on the throughput.

It is very likely that more large scale jobs like the King Size Program emerge, as virtual memory

systems  become more wic+ly used. This is a good reason that the OWE will be able to improve the

system performance to a great extent. However, there some problems remain to be investigated.  The

comparison between the PI+Knee  Criterion and the LX-Knee Criterion is among the most important.

The difference is not obvious in either Fig.4 nor Fig& although the PF:-Knee Criterion yields slightly

bcttcr  throughput.

6. Summary and Conclusion

An experiment on the Knee Crilcr-ion [7] was carried out, by the development of a new memory

management technique termed the Optimum Working-set Estimator (OWE).

‘I’hc  Knee Criterion was discussed in relation to the system  throughput, and the criterion was

applied to the processor  cfficicncy cur~‘c as well as the lifctimc CLI~VC.  Roth the Processor  Efficiency

Knee (PI<-Knee) Criterion and the Lifc’I’imc Knee (I.‘I’-Knee)  Criterion correspond to the

minimization of the space  time product per reference, for the former due to processing  and paging and

for the larter only due to paging. lt was slio~ that .‘,c dccrcasc  in Lhc space time product ha,j l)rci’crablc

effect on the system  throughput.

‘1’1~~ OWE employs an algorithm which estimates the lifetime and/or the processor efficiency of a

program in execution from its past behavior.  It adjusts the window sizes of individual program’s

ivorking  sets in such a way as attains the Knee Criterion.

An cxpcrinicntal implcmcntation of the OWE has made it possible to carry out mcasurcments

14



which are divided into 2 parts. The first part of the measurements revealed the effectiveness  of the

OWE in the achievement of the Knee Criterion (the space time product minimization), by using the

synthetic programs whose minimal space time products are theoretically calculable. The CPU overhead

of the OWE was also shown to be around 1% or less. The second part of the measurements employed

FORTRAN benchmark workload and a King Size Program to investigate the throughput improvement

under the OWE. The results demonstrated a significant throughput improvement  (12-19 %) in a space-

squeezing environment and an insignificant one (1%) in a non-space-squeezing environment, for both

the PE-Knee Criterion and the LT-Knee Criterion.

The OWE scheduling algorithm is considered to be promising for the improvement of the

performance of multiprogrammed virtual memory systems. There remain some problems to be

investigated about the OWE, at both practical and thcorctical  levels.  The reduction of its CPU overhead

and the comparison bctwccn the PE-Knee Criterion and the LT-Knee Criterion arc among the most

important ones.
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