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.

The concept of binding, as used in programming systems, is analyzed
and defined in a number of contexts. The attributes of variables to be bound
and the phases of binding are enumerated.

The definilion  is then broadened to cover general issues in information
systems. Its applicability is demonstrated in a wide range of system design
and implementation issues. A number of Database Management Systems are
categorized according to the terrns defined. A first-order quantitative model is
developed and compared with current practice. The concepts and the model
are considered helpful when used as a tool for the global design phase of large
information systems.
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Sect. 1. Introduction

1.  INTRODUCTION

The term binding is being used with increasing frequency in the computer science
literature, in particular when alternatives in system design are being described. Use
of the concept can bring both economy and breadth to discussions about information
processing. Although it appears from its use that the concept of binding is powerful
and deserves some analysis, many computer science reference texts do not attempt
to define the term. This contradiction has prompted the generation of this paper.
We will first review the traditional uses of the concept of binding, apply it to
programming, and then broaden the definition to cover many issues in system design.
The utility of the concept will be demonstrated through a wide range of data system
topics.

.

In descriptions of programming systems the term binding has been used to
describe the replacement of symbolic references by absolute references. For instance
Elson states: “By the term binding we mean execution of the mapping algorithm
for deducing the righthand member of a pair from the left” [Elson77]. Graham
defined binding in a less syntactic sense as the “resolution of variability” [Graham75].
In language system design a major decision is the establishment of the point in
time when such binding should take place. In one of the earliest computer science

texts, Wegner, when discussing program translation, used the notion of binding
time to distinguish compiling from interpretation of source code [Wegner68].  Earlier
Strachey, without using the term binding, described a macro-generator where the
symbols are bound iteratively at compile-time by sequential expansions of macros in
the source text (Strachey66]. “Bound Variables” is a chapter heading in Dijkstra62,
when presenting effects of the matching of arguments to parameters in a translator
for ALGOL-60,  but not otherwise used within the text; neither does the term occur
in the ALGOL-60 report itself. The concept in this context is of course identical to
the use of variables in Mathematical Logic [cf. Church56].

.

Binding takes place in a compiler when the symbolic names that denote vari-
ables are associated with specific memory cells and with computer instructions
suitable for the size and type attributes specified for the variable. During execution
only the value of the variable is determined. In a pure interpreter binding is delayed
until the time that the instructions are executed, since the instruction sequence
which generates data may also determine the appropriate size, representation, and
storage allocation for the new data value[Smith70].  I?‘or instance, the interpreter for
APL programs determines, during execution, from a symbol table, whether the data
operands in the statements have the structure of a scalar, an array, or a matrix.
The APL interpreter then carries out the appropriate sequence of machine instruc-
tions, and, when done, stores an appropriate result structure into free storage and
updates the symbol table. This interpreter hence binds all attributes of the result to
the variable name at the same time that the data values are generated. There are,
of course, many intermediate techniques, from incremental compilers which permit
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redeclaration of some attributes [Breitbard68],  to interpreters which preprocess the
source text in order to gain execution speed [Nori73, Bush7g].  In the latter case the
ability to adapt the code to current results is largely lost, portability and compact-
ness of implementation remain.

2. THE EFFECT OF BINDING

2.1 Efficiency versus flexibility

The examples shown in the introduction indicate that late binding of programs
to data increases flexibility and adaptability, but also that the deferral of binding
decisions tends to increase the time required for program execution since a greater
variety of resolution options have to bc considered by the program code. In pure in-
terpreters, every time a statement is executed, the type and size of every operand has
to be determined[Smith70]. This typically increases execution times by a factor of 20
to 200 [Hellerman75]. While hardware which interprets type descriptors [Feuste173,
Flynn78] can reduce this factor a great deal, late binding remains significantly more
costly in terms of machine cycles required for a given computation.

Defenders of interpretive techniques will correctly point out that where suf-
ficient processing cycles are available, or where the flexibility that is obtained is
essential, no economic benefits will be gained by early binding. It is in fact easy
to construct examples where interpretation, in a real sense, performs better than
compiled code. Many execution failures, for instance those due to data sequences
exceeding array limits, waste the compilation effort, and are inefficient.

2.2 Binding and programming languages

The design of a programming language is affected by the selection of early versus
- late binding. DECLARE statements are needed for early binding, so that the symbols

become related to the attributes of the variables. When a language intended for
compiling 1s interpreted, the interpreter cannot take advantage of the flexibility
afforded by late binding. If, for instance, the size of a result exceeds the declared

I and allocated space, an error has to be indicated, although a space reallocation
might have been feasible. On the other hand, a language which is designed with
interpretation in mind may ignore scope and restrict the size of the names and the
syntax of programming statements in order to regain some of the efficiency lost due
to interpretation.

In Table 1 we classify some languages into this spectrum. The ranking is based
on criteria which are not objectively comparable, though we will justify some of
them in the next section. Another problem with this ranking is that implementation
decisions made by a compiler writer can, for a particular product, shift entries in
this list up or down.
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Programming languages oriented towards compiling

I COBOL : static, predeclared structures and types

I FORTRAN : subroutines can operate on arrays of undeclared size
1 PASCAL : dynamic allocation in recursion, rigid parameter matching

PL/l : various storage allocation schemes, parameter conversion
BASIC : typing implied by val;iable  names
MUMPS : the type of a value can be determined at execution time

t APL : data stuctures  and types determined in execution

I SNOBOL : ability'to execute strings generated during execution

I LISP : programs and data are equally manipulatable
Programming languages oriented towards interpretation

Table 1. Categorization of programming languages

2.3 Attributes to be bound

There are several attributes that are bound to a symbol during the translation
process and these attributes may be bound at different times. The principal at-
tributes are:

environment : the scope where the symbol obtains its validity and its inter-
pretation. Symbols of identical spelling, but from different environ-
ments are distinct and describe distinct data.

type : defines the data representation of an element,. An element will be a

member of a predefined set or of a set defined in an preceding type
definition.

size : elements of many types can exist in long or short forms.
structure : for aggregations of multiple elements a structure definition will

establish the access algorithm to the individual elements.
cardinality : array, matrix, and string structures require specification of the

number of individually accessible elements.
location : the address or placement, rule of the element or structure has to be

established to permit referencing by hardware instructions.

Table 2. Attributes of variables to be bound

The dependency among these attributes is obvious, so that the earlier attributes can
be considered to imply a weaker binding than tne final ones. Binding of symbols
to the environment is accomplished early in most languages, so that no symbol
disambiguation is needed at execution time. The remaining attributes bind the
data to a distinguishable symbol.

If the language does not bind all data attributes formally, then flexibilty ap-
pears to increase, but, more demands are placed on the programmer. All attributes
are bound eventually to permit execution and the generated and stored repre-
sentation constrains subsequent usage. The knowledge about attributes that are
not explicitly bound by the language and declarations, is either in the programmer’s
head, in documentation, or in auxiliary tables created by the programmer. If it is
in neither place, i.e. not recorded and forgotten, then it might be deduced from
inspection of the code sequences which create the data.
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For instance, since LISP [McCarthy65] is typeless it is always the programmers
responsibility to correctly interpret the data structures that have been created. The
absence of type binding is not restricted to interpreters. For instance, some system
programming languages, as for instance BLISS, do not bind type information to
symbols [Wulf7r].  We hence find it difficult to rank BLISS in Table 1. A compiler for
such a language will not report type conflicts, errors will occur however if program
instructions violate th’e data representation.

Violations of structure or cardinality constraints can be made in many lan-
guages by carelessness or deviousness. The location, on the other hand, is always
bound to the symbol and expertise is needed to defeat the efforts of the compiler
writers. Languages with weak rules of environment or scope, as BASIC or COBOL,
have minimal limits on the validity of symbols. The languages listed in the middle
of the table are strong in scope. Many of the the interpreter-based languages have
limited scope expression to lower interpretive cost; a notable exception is LISP. In
LISP the designers’ motives were of course not ease of interpretation, but access
to facilities not envisaged in the design of the hardware. It is interesting to note
that the interactive environment, made possible by interpretation, has contributed
greatly to the popularity of LISP [Sandewal178].

3. BINDING IN PROGRAMMING SYSTEMS

Binding does not only occur in compiling or interpretation of code. As programs
proceed from the programmer’s hands to the point of actual execution on computing
‘machinery they go thorough several phases, and each of these phases involves
binding. We will describe five of the binding phases which be invoked.

3.1 Binding by source language preprocessing

Language preprocessors, as exemplihed by PL/~ or BLISS macros, provide an initial
level of binding to compilers and assemblers. Such macros are frequently used
to define the computing environment and will adapt the symbolic source code so
that system software is made suitable for a specific hardware configuration. The

e transformed text, seen by the compiler or assembler itself, appears specific to the
hardware and the generated code can avoid testing at run-time for configuration
parameters such as the memory size and the existence of input/output devices. A
preprocessor for PASCAL programs, for instance, was used within a software project
-of ours to adapt system programs to run on either one of two distinct computer
‘types [Lansky”].

3.2 Binding by defining constants

Declaration of a symbolic name with the attribute constant, as seen in PASCAL

[Wirth72],  provides one of the binding advantages of macros: the compiler knows
that the values associated with the constant symbols will remain bound to a fixed
value during execution so that simpler referencing mechanisms can be used. If
the constant is small, then in most computer architectures a single cycle Load-
immediate instruction can replace a two cycle Load-from-memory.
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3.3 Binding in loading and linking

Most compilers support the joining of separately complied program segments (ex-
ternal procedures) prior to execution. This facility requires some selective deferral
of binding decisions. References in compiled code to other external procedures
or global variables are left by the compiler in symbolic form to be resolved by a
linking loader. In systems which support dynamic binding the linking and loading
process itself may be deferred to the time of first reference [Daley68,  Wiederhold73].
Dynamic binding permits a compiled procedure to generate or adapt another pro-
cedure which then can be invoked subsequently, within the same execution cycle.

3.5 Binding of parameters

The transmission of arguments into subroutines or functions provides further  choices
for binding. The available methods are well described in compiler textbooks [for
example Aho&Ullman77],  and we will only put the techniques into the binding
concept. All binding issues: type, size, structure, cardinality, and location, that
were discussed previously, occur in this setting.

When the semantics of a language require that arguments and pararneters are
to match fully in terms of type, size, structure, and cardinality as, for instance, in
PASCAL, then the binding is rigid and interpretation at runtime is minimized. In
more complex languages at least the cardinality of arrays and strings can remain
unbound until the time of the CALL. In PL/I,  for instance, the notation (*) indicates
that the dimension bounds of parameter arrays are to be inherited frorn the bounds
of the argument.

The cost of supporting flexibility through automatic mechanisms within a CALL
varies a great deal for the live data attributes. Setting the values of cardinality or
dimension bounds into the code of the called procedure is not difficult. If the number
of dimensions changes, giving access to the cross-section of a matrix argument,
which is also permitted in PL/I,  then more run-time overhead is incurred. Other
changes of structure are, to my knowledge, never formally supported. A change of
size or type is also costly, unless the compiler has access to sufficient information
to generate conversion instructions into the code. Changes of type and size are
often limited to parameters without structure and of cardinality one. When a
language forces the compiler to cope with arbitrary cross-sections or unknown types,
then indirection will be used, so that at least partial interpretation takes place at
execution time.

The ALGOL-60 language distinguishes two types of variable bindings explicitly,
CALL by VALUE and CALL by NAME. A VALUE parameter is evaluated and hence
bound at the execution time of the CALL and cannot be affected by subsequent
changes of the environment. The use of a NAME parameter postpones binding of
the parameter to the argument. The argument expression is to be evaluated only
at the time of usage within the called procedure, although the environment for the
evaluation of the binding is that of the caller. The value of the parameter will hence
be affected by value changes made to the calling environment. Implementations of
ALGOL allow the called procedure to gain access to that environment by executing
mini procedures for each NAME argument which were compiled with the CALL state-



8 Binding in Information Processing

ment. These mini procedures evaluate or set the argument and in this manner bind
it to the calling environment in terms of type and structure. While some supris-
ing constructs are possible, for instance Jensens’ device which permits a general
evaluation of arbitrary functions given as arguments [Jensen61],  modern program-
ming techniques frown on these techniques which are dependent on side effects and
aliases. . .

ALGOL-68 carefully restricts parameter conversion by passing all arguments by
VALUE. Any conversions take place prior to argument passing, so that no repetetive
interpretation takes place. The use of a reference as a parameter type gives
the called procedure access to the calling environment, so that large structures
do not have to be copied. The referenced structures have to match according
to strong coercion rules. To permit the called procedure to operate on array
structures transmitted by reference, prirnitive functions are available that provide
the dimensions, i.e. the cardinality of the argument and its row components.

Many languages, for instance FORTRAN-66, do not specify type, structure or
cardinality-binding through a CALL, and others have compilers that do not enforce
it. The referencing mechanism only promises that the location of the argument is
transmitted. The ability to mismatch type, size, and cardinality in FORTRAN i s
used and misused freely.

The location attribute of arguments is always unbound, and in fact defines
the concept of a procedure versus a macro expansion. Resolution of location, and
storage allocation and setting for value parameters is the initial task for the called
procedure. If elements or structures are transmitted via reference then the values of
the argument are often not bound to the program code until the time of reference.
Inconsistencies in implementation of binding can lead to errors if arguments are
accessed by more than one method within the called program. This problem of
aliasing is well known and one of the major problems in the verification of complex
programs.

The environment for the evalution of the argument is an issue that can lead
to subtle, but important differences in language implementations  [Organick78]. We
distinguish deep binding, where the argument carries its environment along, and
shallow binding, where it does not. The problem addressed by deep binding is

- that complex arguments, as functions or data structures, can be created within
procedures. When the procedure is completed and terminates, definitions relevant
to created structures have to be retained.

With shallow binding the environment for the symbol is the most recent in-
stance encountered. Since most recursive language compilers are implemented us-
- ing a stack concept, where every invocation of a procedure deposits a set of local

definitions, called a display, on the stack, this environment is the one of the proce-
dures which is associated with the most recent display containing the symbol. When
a procedure terminates, the corresponding display is removed from the stack.

Deep binding is most explicitly managed in LISP. When a function is defined
in LISP the LAMBDA list names explicitly all the parameters that are to be bound
when the function is invoked [Church4’, Scott72]. Other variables remain free, and
are to be interpreted according to the most recent binding when encountered. In
order to manage deep binding correctly in LISP, the equivalent of a display is not
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unstacked when a procedure terminates. New procedure invocations grow separate
stack branches, the data structure used is a tree of displays. The LISP garbage
collection mechanism will remove stack branches that are no longer referenced
[Allen78].

3.6 A summary example

We have found a wide range of binding choices in current programming language
systems, but also that the choices are presented in quite inconsistent forms. For a
PL/l environment we can cite for instance five levels:

1 compile time macro facilities,

2 static variables and constants, assigned fixed attributes by the compiler,

3 external variables resolved by the loader,

4 controlled and automatic storage of dynamically allocated program variables
managed by the operating system, and

5 type and size adjustment at execution time for parameterized variable struc-
tures using nearly interpretive routines which are included as run-time support code
for the compiler.

We have demonstrated with these examples that binding is a concept which has
much breadth, and that it is convenient to discuss issues in programmming systems
design and their tradeoffs in terms of binding decisions. We will return repeatedly
to the paradigm of binding as shown in these programming examples as we broaden
the definition of binding.

4. A BROADER DEFINITION OF BINDING

In our work on database design [Wiederhold77] we found that binding was a recur-
ring theme when issues of flexibility versus efficiency had to be discussed. A general
definition suitable to the broader view is:

Binding is
the Commitment of Knowledge to Structure.

Anytime that knowledge about data usage or constraints on data values is utilized
to translate application objectives into into a database structure and into associated
programs the extent of binding is increased. With every binding step some flexibility
is lost, but the opportunity for automated processing is increased.

The range of binding choices is particularly striking when we view entire
systems from their inception to the time they are able to produce results. At
every point in this process the designer uses some knowledge to impose structure,
and each structuring step reduces the number of implementation alternatives that
remain. Since it takes a long time to bring information systems into operation, these
binding decisions are made over a span of several years, so that a global insight,
using the common concept of binding, will be important. The motivation for an
improved conception of binding will be restated at the conclusion of this paper.
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5. BINDING IN DATABASES

We will now, in the central part of this paper, illustrate binding opportunities at
various points in the design process for systems which process large quantities of
data. Databases are an essential part of such systems, but we are not only concerned
about the data, but also about the meaning represented by these data. To identify
the breadth of concerns in this and the following sections we consider that we deal
with binding decisions applied to information systems. The objective of collecting
and processing large quantities of data must be information. This section will
consider binding issues within the data itself, and Section 6 will deal with other
binding options provided by file and database systems technology.

5.1 Binding during Data Selection and Collection

The real-world entities to be described within an information system have typically
many attributes. Some of the attributes which define an entity are obvious to
a designer, others may be difficult to perceive. Of the known attributes, certain
are expected to be important and others are not seen to have much import in the
conception of a system application. Some useful attributes may be ignored since
they are assumed to be too costly to collect.

It is obvious that only recognized aspects of the entities can be collected into
the database, so that the initial explicit binding decision is the selection of some
of these aspects as attributes. When, for instance, the productivity of a factory
is measured in dollars, we fail to measure its benefits in terms of satisfaction of
its employeees and its effect on the environment. The productivity in terms of the
weight of its output may also not be regarded as useful. The selection of attributes
restricts the class of potential analyses of the enterprise.

The observed values of these attributes are to be measured and encoded into
data representations and the measure and encoding chosen also binds the design.
When we describe the disease of a patient using a diagnostic term, say “Arthritis”,
we resort to a shorthand notation for a complex constellation of symptoms, history,
and physical findings. This type of binding might be reduced by permitting much
latitude in the choice of entries and their representations. Unfortunately, even

- keeping all data in the apparently natural form of free text does not avoid binding
completely. The terminology used in written text is inseparably bound to the
writer and 1,;s environment. Words which express standards of size - i.e. “a large
computer” - or measures of goodness - “a trivial error” - or - “a minor ailment”

- vary rapidly over time, and what one person considers an unimportant aspect of
- an entity may well be another’s primary concern [Komaroff7g].  At the same time,

if encoding is avoided, the cost of encoding of the text is moved to the time of data
analysis, and incurred every time the data is to be used.

5.2 Binding into Tuples.

The next stage in the binding process occurs when we assign the data to entities
and to attributes of entities. The minimal structured data entry is a binary relation
of two values, forming a triplet as shown in Figure 1, where the entity JOHN and a
value of a date are bound by the relationship birthdate.
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*-------* *---e------m*
1 JOHN I--- birthdate ---I 24AUCl954  1
*-----em* *----w--v---*

Figure 1 Binary relation

It is sensible to bind these two values together, neither value is apt to ,change  inde-
pendently, and the interpretation of the relationship is fixed. A binary relationship
of this type is in fact a minimal information-carrying structure. If any of the three
components is omitted no ‘specific information remains. Languages used in Artificial
Intelligence provide facilities to describe and manipulate these atomic relationships.
The data structures are constructed as needed from atomic elements provided in
list processing languages as LISP. An example of the use of such tuples as basic
data structures for programs occurs in the LEAP system [Feldman6’]  as well as
in its derivatives and relatives. LEAP labels the elements of the triplet as object,
attribute, value, and provides functions to build and interrogate data structures
composed of complex binary relationships.

LEAP treats the three parts in a symmetric manner, but database theory
considers values as 24AUGl954  to be functionally dependent on the object, here JOHN,
and birthdate to be the attribute function upon the object. The introduction of
the notion of functional dependency leads to an asymmetry in binding. The effect
of this asymmetry is noticed in updating, as shown in Figure 2. To promote JOHN to
SUPERVISOR requires a change of the value field only, changes of object or attribute
have further implications.

*-------* *-----e-e*
I JOHN I----- job ------>I WELDER I
*a------* *--------*

Figure 2 Functional dependency

These binary relationships are soon bound into more complex structures; a
development of our example, forming a hierarchy, is shown in Figure 3.

*----e-o* *--------B-m*
I JOHN I--- birthdate ------------------------>I 24AUGlg54  1

I
I *-----------*

I
I *---e-B* *--------e-e*

I
I
--- spouse -->I MARY I--- birthdate -->I 23JUNl955 I

*------* *----m-w----*
I

I
I *--------*
I--- job ---->I WELDER I

*----m-B* *--e----e*

Figure 3 Binary relations forming a hierarchy

When no constraints are placed on the binding structure, the interconnec-
tions will form complex nets [Abria17”].  In Figure 4 a relationship lives-at is
added which transforms the structure into a network. Examples of extensive repre-
sentations of knowledge in this form are found in artificial intelligence applications
using the term semantic nets [Quillian68, Duda78].
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* ------- 4
I JoHN  I
I I
I I
I

I
I

I I

I I

I I
I I
*  - - - ----  4

t *-----------  *
--- birthdate ---------------------->I 24AU(-J‘1954  1

*-------a---*

*------* *---  --------  *
I --- birthdate -->I 23JUNl955  1
I *-----------*

--- spouse -->I MARY I

I I
*----a-----------  *

r --- lives-at -->I I
*---a--* I I

1 14 SEAVIEW  RD. 1
_----------  lives  at ---------------->I

I I
*--------* *----------------*

--- job ---->I WELDER 1
c *-----s-w*

Figure 4 A network of binary relations

In order to make knowledge available for mathematical and statistical process-
ing, a simpler structure is more appropriate. It is common to arrange the data
into records, a structure which is modeled well by n-tuples in a relational algebra.
Figure 5 shows an n-tuple which describes an Emploiee.

name birthdate spouse spouse-bd address job
*------ *-----------*------*----------m *-----------s----*------e-*

I JOHN 1 24AUGl954  I MARY I 23JUNl955  I 14 SEAVIEW  RD. 1 WELDER 1
*------ *-----------*------*----------- *----------------*--------*

Figure 5 An n-tuple

By composing data into tuples a strong relationship among data items placed in the
same tuple is implied. In the pure relational model the diversity of relationships
among the data items within a tuple is ignored, the columns may in fact be freely
permuted [Codd7’]. The use of a single strength of binding within the tuple leads
to a loss of source information; but manipulability of the data is greatly enhanced.

The example shown in Fig. 5 demonstrates also an undesirable binding decision:
since the birthdate of the spouse is dependent on the current value of the spouse-
we have here a structure which will contain inconsistent values when the spouse
field is updated. If furthermore MARY is also listed in an Employee tuple then
both spouses’ bir Lhdates  will appear redundantly and this may lead to more
update problems. The problem shown here can be solved by systematically avoiding
secondary dependencies within tuples, so that the binding structure is simplified.
This process is known as normalization of the data model, in the example this leads
to the creation of two sets of tuples as shown in Figure 6; the structure is now
bound only according to primary functional dependencies [Codd72].

name spouse address job name birthdate
*------*------*------------~-~~*~~~~~~~~* *------*-----e---w-*

1 JOHN 1 MARY I 14 SEAVIEW  RD. 1 WELDER I 1 JOHN I 24AUGl954  1
*------*------*-------------*--------* 1 MARY 1 23JUNl955  1

*------ *--------w-s*

Figure 6 Relationships arranged to avoid secondary dependencies
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The database will have to accomodate many tuples of each type. Similar tuples
are placed into relations, and we will name the two relations of Fig. 6 Employee
and Personal-data. How satisfactory is this arrangement of the data into these
relations?

We consider the case that two spouses may be employees. The structure above
will include similar tuples for both in the Employee relation, and the fact that JOHN
and MARY are husband and wife, and their address, would appear redundantly.
Changes to these data values will require multiple updates. A solution to this
problem is given by an alternate structure. We place Household data into a separate
set of tuples, as shown in Figure 7. Now non-employed spouses will also be listed
in the first set of tuples; MARY might be managing her Household or a company
division.

People: Household:
name birthdate job name-h name-w address
*------*-----------*---------* *------*------ *-------e-------e*

1 JOHN I 24AUGl954  1 WELDER I I JOHN I MARY 1 14 SEAVIEW  RD. 1
1 MARY I 23JUNl955  I MANAGER 1 *------*------ *----------------*
*------ *-----------*---------*

Figure ‘7 Relationships arranged to avoid redundancies

Tuples for employees often require many attributes beyond those kept for
people in general, so that the solution used in in Fig. 7 for the attribute job is
actually quite awkward. The concept of a subset relation of a more general relation
provides the answer [Smith77].  Figure 8 presents the data from this example for the
case that MARY is not an employee. No redundancies, other than a repeated name
as identification, are created if MARY becomes employed.

People: Household:
name birthdate name-h name-w address
*------*-----------* *- ----- *------ *--------s------e*
I JOHN I 24AUGl954  I 1 JOHN 1 MARY 1 14 SEAVIEW  RD. I
I MARY I 23JUNl955  I *------*------*-------------*
*------*-----------*

Employees:
name-e job date-employed salary
*------*---------*-------------*---------*

I JOHN 1 WELDER 1 16JAN1978 I 1500.00 I
*----me *------e-w *---we--------*---------*

Figure 8 A database with a subset relation

The rearrangement of data into multiple sets of tuples avoids most of the
problems of representation of a complex structure by permitting repeated use of
simple data structures, but note that two extremely different binding arrangements
are now in use. There is a quite strong binding implied among the elements placed
within one tuple, and a weak binding between tuples in different relations.  The weak
binding is exhibited by matching values in attribute columns that cover identical
domains. The difference in binding between name and birthdate, job, or spouse
is not based on semantic differences, but is due to structural requirements.

In Fig. 8 the values of the names provide the linkage information for relation-
ships between tuples. In literal implementations of the relational model the weak,
value-based binding between tuples is only used at the time when information is
to be retrieved from the database. A considerable computational effort may be
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required when relationships that are weakly bound, have to be explored [Gotlieb7”].
For example, a search to find instances of older spouses, will require for each result
a scan through both files that implement these relations.

The original semantic data structure can, in general, be modelled by more than
one valid normalized set of relations. Without .knowledge of the original structure
several alternative semantic interpretations can be made from the relations, as was
shown in Bernstein&Goodman*‘.

.
5.3 Binding into conceptual structures

While the data are organized into distinct normalized relations the knowledge
about the interrelationships of these data will remain crucial to the operation of
the database[Chen76]. The terrns generalization and aggregation have been used
to describe the processes which designers use to organize the relational schemas
into a model of the overall database [Smith77].  In our examples People could
be considered a generalization of Employees, and a Household can be viewed an
aggregation of People and Children. Such relationships impose constraints on the
databases which implement these concepts. We will not want to enter into our
database Employees or Households which have names not found within People.

Existing file structures and databases do recognize such intermediate forms of
binding. For instance references between People and Household tuples may be
described and explicitly maintained, or Children may be linked into a hierarchical
structure under a relation Households [Wiederhold77].

Another relationship type that has to be recognized is an association among
entities and subsets. We define a structural model where relationships among en-
tities are represented using connections of three types, which confer well defined
maintenance semantics on the database being modelled[EIMasrisO].  The three con-
nection types used are reference, ownership, and identity.

People: Household:
name :> birthdate name-h name-w:> address

*-------- *---------* references *--e--e* ------ *----------------*
1 JOHN 1 24AUG54 I<-------------------- 1 JOHN 1 MARY 1 14 SEAVIEW  RD. 1
1 MARY *I 23JUN55  I<---------------------1 . . . 1 . . . 1 . . . I

-
i PETER 1 MAY43  1 * ------ *- -----*-----m-e--------*

1 j,,~Ny 1 ;1j1Ep,7  I<------------------+ 1

1 RANDY i 19DEC70  i'------------------; I
. . . . . . I

*----m-w- *---------*
I

1 ownership.A Children: *
name-f name-m name-c :> school grade
*------*------*--------*------------------*-----*

A identity 1 JOHN I MARY I JOHNNY I HOOVER SCHOOL 1 7 1
f JOHN 1 MARY 1 RANDY 1 ESCONDIDO SCHOOL 1 3 1

. . . . . . . . . . . .
*------ *-s-e-- *-------- *---------------.e--*-w-ee*

Employees:
name-e :> job date-employed salary
*--------*---------*--~~~~-------*~~~--~---*

1 JOHN I WELDER I 16JAN1978 1 1500.00 1
i PETER 1 BUYER

. . . . . . I 2gFEB1g74. . . I 1250*oo  f. . .
*--a----- *--------- f------------a*---------*

Figure 9 Tuples with reference, ownership, and identity connections

.
”
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Figure 9 shows the example of Fig. 8 with references and a subset, linked by an
identity connection. There is also a further relation Children with tuples that are
owned tuples of the Household relation. We use the term nest to describe such a set
of tuples that are dependent on or owned by another tuple in another relation. A
reference from the Children’s name-c field classifies Children also as People with
birthdates. All related tuples contain copies of the relating attributes to’define
the actual instances of the relating connections, i.e. which Household owns JOHNNY
or who is the WELDER.

,

The three types of connections have been formally defined [Wiederholdso],  but we
note here only that their semantics establish increasing degrees of binding between
tuples. A reference connection describes a n : 1, n = 0.. .nmaz,  relationship,
and requires only that the referenced tuple exist prior to insertion of a reference.
An ownership connection defines a 1 : m, m = 0.. .mmaz,  dependency, so that
furthermore owned tuples have to be deleted if the owner is deleted. An identity
connection also forces deletion of the subset tuple, but restricts the relationship
to 1 : s, s = 0,l. The formal maintenance of these constraints also requires the
identification of key fields, they are shown above to the left of a :> symbol.

The marntenance  of connections increases the degree of binding of the database.
Updates of the relations in this database model become constrained, but the knowl-
edge represented in this model increases the fidelity of the model to the real world. If
the constraints implied by these bindings can be maintained whenever the database
is updated, then many common database errors will be avoided. Knowledge of the
database structure can also provide substantial benefits during the processing of
.queries. We can, for instance, be assured that all Children can be located via the
Household relation or that each Employee has a corresponding People tuple with
a birthdate field.

5.4 Binding into physical structures

In order to implement the semantically relevant bindings discussed above, some
structures have to be added to the simple tables of data which implement pure
relations. The concept of a tuple in the models is mapped, directly or with some
transformations, into records, and records of one or more types are assembled
into files. The data from several relations may hence appear in one file, and
occasionally data from one relation may appear in more than one file. We introduce
the complexity of this mapping to permit a clean separation of the logical issues,
which dominate the model design, from the performance issues, which dominate
the physical implementation.

These file and record structures will bind the database, increasing the update
cost, but reducing the cost of information retrieval. There are many choices for
physical implementation of each of the connection types, so that the balance of
update cost to retrieval benefit can be adjusted. In practice the choice is limited to
the actual alternatives available in a given database system implementation, and by
the ability of programmers to deal with the alternatives in a rational way. We will
now discuss implementation alternatives in general, and in the next section present
the choices available in DBMS’s,
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A model, as shown in Fig. 9, may be implemented with various degrees of
binding. Table 3 lists a number of physical binding choices in increasing degree of
binding. The initial mapping of tuples to records is direct.

1 No binding exists in the database structure, all constraints are the program-
mer’s responsibility.

2 Constraints are given as assertion statements to the DBMS, to be automati-
cally checked on database update [Stonebraker75].

3 Connected tuples are physically clustered, by placing them in the same block
whenever possible[Astrahan76].

4 Connections are implemented through pointer structures. Fields in the
records contain references to other records in a form that can be rapidly interpreted

5 Connected tuples are merged into records, often creating redundant entries
or null fields in the database [McGee77].

Table 3 : Implementations of tuple relationships.

The problems encountered in the implementation of bindings in databases is-the cost
of poor locality, the difficulty of referencing remote records, which may not have
a fixed address, the high cost of searching the database files when references are
symbolic, and the wide range in cardinality of reference and ownership connections.

The bindings which are only provided by programmer’s knowledge or by asser-
tions do not provide direct retrieval benefits. Intelligent processing of queries can
take the assertions into account and permit rephrasing of queries to improve access
efficiency or to provide more cooperative answers [King”, Kaplan7”].

Pointers are the primary means of binding of connections. A symbolic value,
as shown in the earlier figures, requires a scan through the destination file for

- resolution. With auxiliary structures in the destination file, for instance indexes
as discussed in Sect. 6.1, this approach can be reasonably fast. Two further levels
of binding : y pointers are listed in Table 4.

Symbolic A key value is stored in the source tuple. A scan or an index is used
to locate the destination tuple.

Indirect An index to a table is stored. The table entry provides the physical
address of the destination tuple.

Direct The physical address of the destination tuple, or its computational
equivalent, is stored in the source tuple.

Table 4 : Implementations of pointers.
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Records of a file which is referenced symbolically can be moved freely, a distinct
advantage since records can be rearranged to improve locality or space utilization.
If the pointer field contains a record identification index, then moving the record
requires a change in the table. The third choice, an address pointer, permits
immediate access to the destination record, but binds the destination record to
a specific physical location. A direct or indirect pointer can replace a symbolic
reference or provide a redundant, alternate representation of the reference.

Simple pointers are pne-directional.  They are adeqtiate  for 1 : 1 and n : 1
relationships, but to implement a 1 : n relationship space for n pointers would be
required within the source record, and n is in general not known when the record
is first, written. The obvious solution is to place the n records into a linked list,
so that each source and destination record contains one pointer. The ordering of
the list provides another option for cost-of-access minimization, letting the most
frequently accessed destination record come first.

In most cases a need exists foi traversal of the connection in both directions,
but the binding requirements may well differ. Placing pointers according to each
requirement is a solution, but if a 1 : n linked list exists then linking the last
destination el$ment back to the source, creating a ring, is a simple and common
technique to support the n : 1 path. The cost of traversing rings that have many
records is high however, and leads to a desire for clustering them in the same or
nearby blocks.

Pointers may be added to the attributes specified in the tuple or may be used to
replace symbolic fields. If, for instance, in Fig. 9 pointers are used in the Children
tuples instead of parents’ names a significant space saving accrues. Certain queries
will require now more tuple accesses. An example is retrieval of the parents’ names
of Children at HOOVER SCHOOL. Careless replacement of values by pointers can
make some queries almost impossible, although expected queries may be processed
faster. Space savings, especially for tuples low in an ownership hierarchy, can be
spectacular, but should not justify creating logical query processing problems. A
taste of the space saving can be given by showing a tuple that contain grades of
courses taken by students of schools of schooltypes of schooldistricts of a
certain state. If each school also maintains personal data on Students then the
leading four fields can be replaced by a ring of pointers from JOHNNY SMITH’s record,
as shown in Figure 10.

Grades:
district schooltype school student sub j ect :> grade

*---------NW *- - - - - - - - e - e - * - - - - - - - - - - - - - - - *--------------*-------*-------*
I Palo Alto I Elementary I HOOVER SCHOOL I JOHNNY SMITH I Math I A- 1
*------w---e *------------ *---------------*----~~~-------*---~~--*~~~~~~~*

owner record (Student.name = ‘JOHNNY SMITH’) *-----*-------*-------*

previous sugiect  record
---+

I 7
I Math I A- I

*-- --*-------*-------*
I
1

next subject record or
owner record

Figure IO : Tuple and record at a low level in a hierarchy
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Rings of pointers are also used to implement networks, that is bindirigs of
databases where one record can have more than one owner. A typical example is
modelled in Figure 11. Given, for instance, three relations as shown, of which the
last one is an association of the other two, we see that two symmetric relationships
exist in the model. These relationships are modelled by two ownership connections
and are easily implemented by two ring structures, one persons-having-given-
skill(l) and the oth& skills-of -a-given-person(a).

I I
Person :

name :> person-description
* --------- *

I I 1’
Skill : *---------* /- (2)

skill-type :> skill-description \ I
(1) \ /

Skills-of-persons
skill-type, name

..
:> experience-level

* *
*---------w-e*
I I

Figure 11 Association

The next degree of binding is accomplished by physical clustering. Here tuples
with important connections are placed in close proximity, so that the retrieval of a
block or segment from a storage device has a high probability of also retrieving the
related tuples. In order to obtain an effect from this technique the file system has
to recognize when a block containing a record is already within a buffer in memory,
so that a disk access can be avoided. An identity connection is often implemented
with physical clustering, so that the tuples of the People and Employees relations
‘shown in Fig. 9 will appear in the following sequence:

People: JOHN . . . . Employee: JOHN . . . . People: MARY  . . . .
People: PETER . . . . Employee: PETER . . . . . . . . . . . . . . . .
People: JOHNNY . . . . People: RANDY . . . . . . . . . . . . . . . . .

This clustering technique is often extended to ownership connections in hierar-
chical databases, by placing the tree into a preorder physical sequence [Knuth73].
One tree instance can become very large and span many blocks. The traditional-
master-detail file is also an example of such a physical arrangment. If there are
multiple ownership connections then the designer has to decide which of the con-
nections is to benefit from physical clustering, since only one physical sequence is
feasible on our storage devices. Once this design decision is made the performance
of a symmetric model becomes very asymmetric. There are instances where access
times to subsets of network elements are seconds in one direction and hours in the
other.

Replication of owned tuples can solve this access problem, but at a very
high maintenance cost. Such structures occurred in traditional data processing
files, where for instance billing details were kept both with the customer file and
with the shipping file. The problems of keeping the logically very strongly bound
data consistent was a major motivation for moving to database technology. The
traditional binding techniques remain vazl~~al)le  if they can be employed without
creating logical problems.
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The strongest physical binding between tuples is achieved when tuples are
actually merged into single records. Not only will the data be clustered in storage,
but a single operating system action will fetch the related tuples. An identity
connection is a prime candidate for implementation by merging tuples. If the People
and Employees tuples from our example are merged then the 1 : 1 constraint is
easily enforced and exploited. The resulting records will have several null-fields for
non-employed people.

Tuples related by reference connections may also be merged, but now data
elements may have to be be replicated. For example, in the data structure of
Fig. 7, replication the addresses for People can eliminate the Household tuples.
Such replication increases performance whenever the address is needed while the
birthdate or the job fields are referenced.

The transformation from tuples to records should be noted by the database
system so that updates will be routed to all replicated data elements. In the above
example a Household address change will affect two records. The tradeoff is
similar to the one seen in replication with clustering and such replication is done
only if update is known to be infrequent.

When dtitabases are distributed over multiple computers, the need to keep
replicate data to improve access speed is especially strong. Significant access delays
occur in these systems, since transfer of blocks over communication lines is even
slower than block retrieval from disk storage. Replication of tuples is hence common
in distributed systems, and techniques to insure consistency are of great interest.
Again, making a carefully reasoned choice about the degree of actual consistency
maintenance among these tuples can effect system cost greatly. The requirements
for queries to a distributed database have been classified into no, weak, or strong
consistency [Gray76].  A further classification can specify the currency status of
the database expected by the issuer of a query: no currency, up-to-date to a given
time (t-bound), time-consistent at a given time (t-vintage,), or latest [Garciaso].
The processing demands of algorithms which satisfy the more stringent demands of
consistency among replicated data increase sharply. While the term binding is not
used in these analyses a strong relationship is obvious.

6. BINDING FOR ACCESS EFFICIENCY

In the exalnples shown in Section 5 some intrinsic semantic relationships of the
stored entities were exploited for implementation of binding needs. To these natural
connections certain artificial relationships can be added in order to gain access speed.
Linkages based on artificial relationships arc always redundant and can hence be
created and deleted without affecting the information content of the database. We
will first present arrangements of the database itself that improve access, and later
present auxiliary structures for that purpose. The rearrangements again employ
clustering.

6.1 Sequential clustering to improve access performance

A common clustering arrangement of tuples into a file places records together
according to some predictable order. In a sequential file, for instance, the tuples have
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been mapped to fixed length records, and the records placed in sequence according
to a key attribute. We find now a two-dimensional structure, as shown in Figure
12.

record key-
number a t t r ibu te

*--e---e--*-

:.
I Albert 1
I Bertha I

. . .
i

i+l
i+2
i+3 I Mary I
i+4 I Norbert I
. . . I . . . I

Figure 12 A sequential file

goal-
attributes.

-------- *-------e-*-w
'..12JUL56 1 LABORER 1

3Dec46  I CLERK

29FEB44 I 1 LABORER I 1
24AUC56  I WELDER I
lOMAY 1 LABORER 1
23JUN55  I MANAGER 1
2AUG22
. . .

1 LABORER 1
. . . I

**
I *
I

I
I
I

I
I

The elements appearing within OIR  record are strongly bound to each other, im-
plementing the tuple binding concepts from a relational model. The sequential
ordering of the records in the file does not represent a meaningful relationship in
terms of the data semantics. The records are maintained in an alphabetic key se-
quence in order to increase the access speed for subsequent usage of of the file. A
prime purpose of the sequentiality of files is the performance of rapid merges with
other data that are sorted according to the same key attribute.

The sequential structure is also effective for retrieval of individual records if the
search argument matches the key attribute, since a binary search can be used. The
retrieval efficiency gained by this redundant binding costs dearly when the file is to
be updated. Insertion of new records is so costly that sequential files are typically
updated only periodically, in batch mode; the price is paid in terms of not having
the file up-to-date.

The two-dimensional organization displayed in sequential files can be trans-
posed when access efficiency is desired for access by attribute. Now one record will
contain all the names, the next record all the birthdates, etc.

entity 1 entity 2 entity i . . . . . . . . . entity i+4
*---------*---------*- ---------*---------*---------*---~~-~~~*----~~-~

I Kevin1 Albert i Bertha 1 . . . Ian I John
I Mary

I Norbert
I I I

1 12JUL56  1 3DEC46  1 . . . 29FEB44  1 24AUG56  1 lOMAY 1 23JUN55  1 2AUG22
I I I I

1 LABORER 1 CLERK LABORER I WELDER 1 LABORER I MANAGER 1 LABORER
I

1 . . .
I I I I

. . . . . .
*---------*---------*- ---------*---------*---------*-------*----e---m*-- ---w-e

Figure 13 A transposed file

Now the structure of the record itself exists only for access purposes, and does
not represent any semantically meaningful relationship. This structure is efficient
when data analysis is directed towards patterns of data values, rather than towards
retrieval of data describing individual entities [Wiederhold75].  An example is the
selection of stocks having a certain price to earnings ratio. In a transposed file only
two records would bc accessed and scanned: the record containing all values of price
and the record containing all the values of earnings. In such situations, where data
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are used mainly for statistical inference, transposition, providing structural binding
by attribute type, gives very fast access.

Transposed files, however, are even more costly to keep up-to-date than sequen-
tial files. The insertion of a new entity forces a replacement of every record with
a larger record. A transposed file is also intuitively‘ not attractive. The loss of a
semantically meaningful structure to gain improved performance is not obvious and
not relevant when discussing retrieval of single data elements, say the profit on
sales of company C . However, the value of this individual data item means little
if the average profit of all businesses in the industry is not known. The com-
putation of the average using a file which is not transposed or already summarized
is a costly process requiring retrieval of many records.

6.2 Binding through summarization

The process of recalculating averages can be avoided if the data are structured so
that values which are common to a subset of records or to a nest, are kept in one
master record. Hierarchical data organizations have a structure which makes it
convenient to_ keep summary data available.

*----------a-*
I Management I -------->  Data on corporate assets, debts, plans
*------------*

I
*

*------w-e---*
I Division I
*---------e-v*

I
*

*------------*
I Employee I
*------------*

---v--m->

-------->

Data on division budget, income, obligations

Data on salary, skills, assignments

Figure 14 Hierarchical data structure

At the lower levels there are many instances of detailed data items. At the
higher levels detail, as for instance salaries, is summarized into new concepts as
budgets and salary obligations. Candidate computations for summarization are:

COUNT, SUM, AVERAGE and VARIANCE, RANGE ( Minimum and Maximum )

as well as various percentiles, and counts of selected special conditions.
The values produced by summarization are stored with descriptive names in

the database. Exarnplcs of such values arc the number-of -employees, sales-
totals, average-salary, etc. Summarizations  are typically maintained  in files
by procedures which operate on lower level data. The summarizations are, of course,
redundant relative to the the lower level data, and require additional computation in
order to remain up-to-date. These redundant elements are strongly bound to each
other, the knowledge about their relationship has to be represented symbolically or
procedurally to assure long term consistency of the database. We now find that
procedures have to be bound to the data or at least to their description in the
database schema.
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.

The CODASYL definition and the IMS system [McGee77] allow the specification
of database update procedures which are automatically executed when designated
data-elements are changed or accessed. The complexities of these systems become
great, but are tolerated where the pattern of access demands for retrieval is such that
such summarization binding pays off. Not having the summarization procedures
bound to the database forces reliance an organization to rely on scheduling o f
summarization programs to be executed between updates and queries.

Summarization in a database system can be performed whenever a lower level
data element is updated, or it can be deferred to the time of query execution. In
the former cases the procedures are bound to the updated element, and executed
whenever the base date are changed. Frequent or batched updates will be costly.
A cost-of-living salary increase will cause many recomputations of the average-
salary. When computation is performed with the query execution the response
time will suffer, and multiple accesses to a summarized element will cause excessive
recomputation. The latter case would occur if for instance the ratio of individual
sales to sales-totals is to be reported. Recomputation costs can become extreme
if several levels are involved.

We have here again an example of alternatives in binding. Neither extreme
is desirable. Generation of summarizations at data-entry time creates a delay
at that time which may be unaffordable, and computation at retrieval time can
make the response delay intolerable. In either case the high cost of consistency
maintenance concurrent with user transactions forces many systems to abandon
automatic maintenance of consistency of stored summarizations: the higher level
data are only updated periodically. We have suggested an automatic procedure
based on time-stamping and identification of currency needs of the query, in order
to make such binding dynamic and efficient, but we know of no implementation to
date[Wiederhold77].

6.3 Auxiliary binding choices

The binding methods presented in Section 6.1 organize the the entire database
structure to achieve some specific access goal. A clustering of the data into sequential
or transposed files represents a single and far-reaching binding choice. When the-
objectives are more diffuse it is better to attach auxiliary structures, for instance
indexes or nointer lists to the database. The variety of techniques is again great.
The additiunal structures are derived from the data in the database, and hence
require additional maintenance at update time. Since the structures are derivable
-it is possible to defer updates of auxiliary structures to a time of low system usage.
Queries executed during the deferral period will either give incomplete results or
incur the costs of looking both at the regular database and at a file of recent,
incompleted update transactions, and correlating the data found in the two paths
to avoid duplicates. We will present two approaches which use immediate updating,
first and briefly the use of indexes, and then the use of pointerlists, addressed by a
hashing algorithm, where the choices can be presented in a well-ordered fashion.

6.4 Indexes and their use

The most common auxiliary access structures are indexes. Index entries replicate
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values from selected attribute fields of the relation, and combine them with a ref-
erence to the database record. The entries are sorted and placed into a table or
tree. The tables of the older indexed-sequential file types are not updated when
changes to the files are made, but the files themselves are maintained so that inser-
tions can be found. A periodic reorganization creates a new index [Wiederhold77].
The more recent alternative keeps indexes in tree form, which are updated as the
database is changed [Bayer70].  An important binding decision is the selection of
attributes for indexing. If all attributes of a databases were indexed the database
would probably at least double in size, and the insertion of a single record would
require changes to the indexes of all the record’s attributes. The problem of index
assignment in the design and during operation of a database has been successfully
studied [Hammer7”,  Schkolnick ,76 Whang8’]  so that we will not cover it here. When
queries to the database involve multiple attributes simultaneously, the problem of
index assignment becomes more complex, since the design decision depends on the
strategy used by the query processor.

6.5 Direct access

As indicated above, we will use direct access as an example of alternatives of
auxiliary binding. Direct access or hashing provides rapid access to files. We will
demonstrate the range of binding choices available for implementation of direct
access by sampling methods for multi-attribute retrieval.

A basic direct access file consists of an addressable file storage segment, a key-
to-address transformation (kat) algorithm which gives the candidate address of a
record with that key in the segment, and a means to cope with collisions due to the
non-uniqueness of kat transformations which use hashing techniques. Direct access,
if collisions can be minimized, provides very fast access for storage and retrieval of
records whose key is known. In these,examples  we consider the more complex case
of multi-attribute access, so that any partition of attributes can be used for the
retrieval.

A typical approach to provide access for more than one attribute is to interpose
a pointer list for each attribute. This list is accessed via a kat for the search key
attribute and provides the actual address in the data file. The pointer list is itself a
file with only two fields, attribute value and actual data address as shown in Figure
15. The value field can be used to resolve collisions, but may be omitted if few
collisions are expected. In that case accesses to the main data file are needed to
assure the absence of a collision.

The pointer lists arc again redundant relative to the database itself and every
access to the database is mediated by them. This indirection causes some loss of
speed, but generality has been gained. For each attribute that may be used for
retrieval a pointer list can be created, and furthermore, since all access is indirect,
the constraint imposed by direct hashing on the location of the records in the data
file itself has been removed. This simplifies dealing with growing files [Fagin7*].  This
binding to the data lile has been replaced by bindings to the auxiliary structures.
Updates of the data impose matching updates of the access structure. Any change
to a data value of an attribute that has been defined to have a pointer list will
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require an update of an entry in this list, generally involving deletion of the old
entry and insertion of the new entry.

pointer list for an attribute

I attriblite address I
value of record 1

search key , I------^---
I

I I .

I
*----------------* . . .

1 key to address I I I *** I data
------- 1 transformation I----->1

*--------------we*
I

I I
--->  record

in file
I I

Figure 15 Direct access to a file via a pointer list

Multi-attribute queries require that several search keys, chosen from the set
of candidate search attributes, are matched with item values in a file record. The
match for each search attribute value can correspond to many records in the data
file. We consider now three alternatives for multi-attribute retrieval. The alterna-
tives shown use distinct degrees of binding.

que=Y-----
I*----------------------------------*

I selection of relevant attributes I
*----------------------------------*

I
--------------e-------e-

I I
term for term for

attribute attribute
D F
I I* - - - - - - - * *-----a-*

I kat D I I kat F I
*-m--e--* * - - - - - a - *

I I
1 1*-------* *-------*

---------------------- . . .
I I

term for term for
attribute attribute

J P
I I*-------* *-------*

I kat J I 1 kat P I
*-------* * ------- *

I fetch I
I from I

1 p.1.D  1 1 p.1.F  1 I p.1.J I I p.1.P I* - - - - - - - * * - - - - - - - * *-------* *-------*
I I I I

record id's record id's record id's record id's
of data-  D of data-  F of datacj  J of data- P

I I I I---------__---_--_-_---------------------- . . .
I
1*--------------e--m----*

I merge record id's I
I to match query terms I
*---------------------a*

I
record id's of data

to be retrieved

Fieure 16 Multi-attribute direct access
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The first alternative uses the pointer lists that were created for. retrieval by one
attribute. When a query is processed the the appropriate attributes are determined,
the search keys are transformed, each of the pointer lists is accessed, and lists of
candidate pointers into the data file are obtained. These lists are merged as specified
in the query, and the remaining addresses are used to fetch the goal records from the
file. This process is illustrated in Figure 16. The retrieval is quite rapid, although
multiple access lists have to be accessed and merged. The access speed for retrieval
is now a function of the number of search attributes, and the size of the address
lists extracted for each search value.

The second alternative requires additional access lists, bound to specific multi-
attribute queries. If, for instance queries involving all four attributes D, F, J, and
P were frequent, an additinal access structure could be created by combining these
four attribute values, and filling in a pointer list according to this combination. To
combine the attribute values the strings of the values would be catenated ( 1 1) and
the result submitted to the kat. This list would be bound a priori to any updates
of these attributes, and assure fast retrieval for such four-attribute queries. An
extreme case of such binding occurs if pointer lists to the file were constructed using
all the possible search attribute combinations. There would be n2 - 1 pointer lists
for tuples having n attributes. In order to simplify access management a single file
could be used for all the pointerlists and insertion of a record would create n2 - 1
entries [Wong71]. Figure 17 gives a simple illustration of a new employee record
with three potential search keys. There will be 7 entries in the combined pointer list
to correspond to the seven query combinations. The combination where no search
attribute value is specified, ( any 1 1 any 1 1 any 1, would of course retrieve the
entire file.

salary skill

John: ( 20.000 II Welder
( 20.000  iI Welder
( 20.000 II

l 20*ooo II

any

any 11 WZZer
any II Welder
any I I any

department

I Fdundry )-+ kat L pointer list entry 1
I any )-, kat -+ pointer list entry 2
I Foundry )---+ kat --+ pointer list entry 3
I any I--+  kat -+ pointer list entry 4
I Foundry I--+ kat -+ pointer list entry 5
I any 3-t kat -+ pointer list entry 6
I Foundry )-, kat 3 pointer list entry 7

Figure 17 Hashed entries for all partial mate,, queries to one entity

This alternative takes only a single auxiliary file access to locate a record which
matches any of the potential queries. The access file will be large, much greater
than the data file, and costly to maintain, whereas the space for the access lists in
the first alternative is approximately equal to the data file size.

A third alternative is less extreme, and demonstrates an intermediate binding
method [Rivest 76 Burkhard7”]. Here the attributes are first processed by the kat,
and then the combinations are generated by catenation of the addresse: “. “. .
combined address determines the placement ‘of the record as shown in Figure I&.
The address segments will be short. For up to 500 employees a nine-bit address is
suficient, so that three attributes only have to contribute three bits each.
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salary skill department

John: ( 20iOO0 Welder
I

Foundry )
Ii

kat
i

kat
1

kat
I I I
1 1 1 record

address II address II address ---, address + in data
segment 'segment segment file

i.e. 110  II 001 II 101 --+ 110001101-+  John . . .

Figure 18 Address generation by segments

A partial match query creates address segments for the specified attributes, and then
searches the file at all record addresses which satisfy the known address segments.
If, for instance, only the salary of 20.000 and the Foundry is specified, then all
candidate records will appear at addresses of the form 110 xxx 101. Records at the
eight addresses (110 000 101, 110 001 101, . . . , 110 111 101)will  then be
retrieved, together with any linked data records due to collisions.

7. EXAMPLES OF THE RANGE OF BINDING CHOICES

In order to illustrate that the range of binding is wider than perhaps obvious from
the earlier discussions, we will review some examples of extremes.

7.1 Extremes in data representation

There have been proponents of complete avoidance of binding when entering data
into a database. Instances of this view have occurred in medical environments,
where medical data were kept in unstructured textual form. The expectation
was that, by the time the database was large enough to warrant processing for
statistical or deductive inference of disease phenomena, the techniques to process
natural language text would be well enough developed to permit the the appropriate
analysis. It is unfortunately doubtful whether the meaning of a sentence remains the
same over time. Both medicine and language can be expected to change between
entry and use. Such delayed binding would hence cause a loss of classification
knowledge that could have been captured when the data were entered.

The other extreme, early binding to gain maximal efficiency for processing, has
I been the basis for the early major database management systems. Many data base

systems used in business as IMS (113M), IDS (Honeywell), the early proposals of the
Database Task Group (CODASYL), and the distributed systems being developed
at CCA [Bernstein&Shipmanso]  show the effects of such a philosophy. All possible
paths that a query may take are pre-defined using various access mechanisms. If
queries occur which need to follow some path which is yet undefined, then the
database has to be reorganized or the relevant subset of the database has to be ex-
tracted and processed outside of the database management system. The reorganiza-
tion of a bound database can take considerable time. An official from the Equitable
Life Assurance Cornpany has stated that the reorganization of their database takes
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70 hours of computer processing and hence presents a major interruption for the
enterprise.

7.2 Binding in knowledge-based systems

Extreme cases of binding can also be found in systems which use the techniques of
artificial intelligence on data. Quite complex network structures have been used
in knowledge-based systems, such as are seen in applications involving natural
language understanding [Hendrix77]. Implementations generally use linked lists of
nodes or frames. Each node is labelled with a term and defines the term through
connections with other nodes. A program can relate one concept to another by
following paths of connections through the network. The connections may be
labelled in order to denote appropriateness or according to strength so that choices
may to be made by the processing algorithms. If the knowledge is incorporated into
the network by direct insertion of nodes and connections then the structure of the
resulting semantic net is very rigidly bound. Such a knowledge base is carefully
crafted and rarely dynamically updated. These semantic nets have rarely exceeded
a few hundred entries. In order to deal with excessive complexity due to size the
net may be partitioned so that the bindings are organized in a hierarchical manner.

An alternative method for the representation of collected knowledge is found in
rule-based systems. Here the relationships are expressed in symbolic form [Davis77].
Queries about terms in the knowledge base may require inferencing through many
rules. A rule has the form:

IF ( term-predicate rel-op state ) THEN ( term-result := value 3;

and any rule where the predicate is satisfied can be executed. The result of execution
changes the state of the system, enabling and disabling other rules. An example of
such a rule in a knowledge base about personnel management is

IF age = young AND salary-increase-rate > average
THEN training-payoff := high ;

This rule may be invoked in the process of determining a promotion; initial data
given may have been a birthdate and a salary history. Searches through the rule
base to match predicate conditions of the state variables take place until the desired
closures are found. In an unbound rule base the symbolic searches will require much
processing effort.

The processing effort can be greatly reduced by execution of a binding phase,
invoked after the knowledge is collected, but prior to its use for queries or the making
of inferences. A backchaining process will scan the entire knowledge base and
implement connections by setting up pointers between related nodes [van Melle”].
The system is now tightly bound and can be processed like a traditional semantic
net. During processing new knowledge may create new potential connections, these
may be left in symbolic form or may also be bound, depending on the specific system
design.

Since knowledge bases work on abstractions, rather than on data, the size of
the stored bases is mu’ch smaller. Because of their smallness, performance issues
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in knowledge bases have not received as much attention as databases have. A s
knowledge-based systems increase in size, in number and in range of applications,
binding issues will gain interest.

8. IMPLEMENTATION WITHIN DATABASE MANAGEMENT SYSTEMS

Traditional Database Management Systems (DBMS) are designed with the expec-
tation that they will spend much of their time servicing known patterns of usage.
Binding to accomodate  these patterns is hence important.

We have described about half a dozen basic implementation structures which
support differing strengths of binding. In this Section we will look at the implcmen-
tation practice and draw some conclusions from these observations.

8.1 Binding Choices provided by Database Management Systems

The choice of structures, made available by the designers of the various DBMS’s,
gives a clue to the usage assumptions made during DBMS design. The user, having
selected a DBMS,_is  then constrained to select among a few alternatives. In the
simplest, often called user-oriented systems, there may in fact be only one choice.

Most routine production work is carried out today with designer-oriented sys-

tems. Here, before the database is initially loaded, a designer specifies the bindings
to be used. The design has to satisfy both the constraints due to logical correctness
requirements and provide adequate performance for all users. The choices may be
difficult.

Most current production oriented systems support single (TOTAL, IMAGE) o r
multi-level hierarchies (System 2000, BASIS), a family of systems supports networks
of multiple hierarchies based on multiple attributes (CODASYL oriented systems),
and one major system, IMS, provides nearly arbitrary interlinking hierarchies using
procedural linkage definitions. The table below lists some well-known systems in
order of decreasing binding. We use the term record to describe a set of data
elements which is manipulated as a single physical unit and made available as such
to the user.

System
------

Technique
---------

Effect
----we

IBM IMS Data elements and their nested Rapid sequential retrieval of

(HISAM) descendants are packed physi- records with nested segments,

tally adjacent, using a pre- slow or limited on-line update.

order sequence. Users of secondary hierarchies

Additional hierarchies can be obtain logically identical, but

defined and use pointers. lower performing functions.

Cullinane Data elements and pointers to Data elements in nests re-

IDMS related records are placed into quire an extra access step,

(CODASYL)  records. Chains are used to ' but new subrecords can be in-

link nested records to each serted with a similar effort.

other and their owners.
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INTEL-MRI Data elements at the same level Data elements in nests re-

System are placed physically adjacent, quire an extra access step, new

2000 nested records are placed into subrecords can be independently

files with auxiliary index inserted to simplify update.

structures for retrieval.

Software Data elements are placed into Rapid processing of potentially
s

AC records which have a permanent complex multi-attribute queries

ADABAS identification. One level of that return single or a few

nested data can exist within records is done by locating

the record. Pointers are kept the pointers and merging lists

in separate pointerlists and of pointers for selection of

can relate records from several data elements.

relations. The lists can be

maintained throughout or

generated during retrieval.

CII Relationships are described in Complex structures can be

SOCRATE a schema, data elements are implemented. Retrieval time is

found through hashing of is proportional to the number

symbolic names and values into of single elements retrieved.

a virtual memory space.

RSI Records are placed in hierar- Full generality of relational

Oracle chical  files, assuring physical operation is provided.

clustering according to one Retrieval times depend generally

access path. Queries will take on the size of the relations,

advantage of available clusters retrieval of records according

without user direction. to a hierarchy is rapid.

IBM Records are placed in areas Retrieval times depend on the

System R and physical clustering is number of records accessed and

encouraged, but not enforced. the effectiveness of clustering.

Retrieval functions optimize The user language contains

by rearranging query terms and statements to advise the system

selecting between index,use  and about clustering. Update of

sort-merge procedures. the database is rapid.

Table 4. Binding strategies in Database Management Systems
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In the final two systems in the table, examples of implementations of the relational
model, the bindings above the record level are used only for access purposes, and
these can be varied to serve the requirements of performance, without affecting the
users’ interfaces.

In relational systems, which impose few update’constraints, binding is weak.
In order to avoid excessive recomputation of relationships during a period where a
certain set of relationships is explored, it is possible to create temporary working
sets of tuples in a workspace, which are not updated when the underlying database
changes. The workspace does not have to obey the rigorous rules which assure non-
redundancy and structural independence [Todd75].  The use of temporary bound
copies of data based on unbound collections of data is a very effective compromise
when one wishes to have a stable collection of data during analysis. It assures con-
sistency and integrity of the answers obtained, and allows effective summarization
of past data. The process steps being executed to create the workspace can be
catalogued so that, when a significant number of updates have been made to the
source database, a new copy of the workspace can be created.

.

8 . 2  Schemas

In order to specify binding alternatives to a DBMS we give statements to a schema
processor. A schema language addresses of course many other issues as well, and
binding choices are only given in implicit form. We will indicate here briefly aspects
of data description that reflect binding decisions as discussed above. Directives,
given in the schema, which lead to physical binding include:

data value constraints
assignment of attributes to records
descriptions of hierarchical relationships
ordering specifications
references and triggering options for database procedures

Schema languages are hence the primary tool for binding specification, although
the descriptive power of most of them is oriented towards implementation details.
The knowledge about the relationships, described in the schema, is used to build

e the database.
In most implementations this knowledge becomes embodied within the database

and the procedures that are generate to operate on the data. Relationships are
represented by sequential placement of related records (clustering) where possible

and via pointers for other linkages between data items. These linkages are then
exploited during database retrieval. They reduce flexibility during update, and
increase the effort expended during update. Which relationships should be bound
is an implementation decision which affects the performance in a critical way and is
difficult to change once the database has been loaded. A change in the description,
the schema, can imply major database changes.’ Other implementations keep the
schema available for interpretation and place no or little linkage information within
the database.

The alternatives in schema  implementation are again directly comparable with
the alternative binding decisions faced in program translation. When knowledge
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about data relationships is derived by matching symbolic field values then an
interpretation has to take place in order to locate and process the data. When the
knowledge about relationships is stored within the data in the form of addresses
or pointers, then the retrieval can proceed at hardware access speed. In databases
where access to the data itself is relatively slow, the cost of interpretation of database
manipulation commands, using a simple symbolic schema, small enough to reside
in primary memory, will be quite bearable. Insufficient binding has a high cost
when the search for matching symbolic values has to scan large data spaces, which
are not rapidly accessible. We do assume in general that, even when the data are
large, the data descriptions will be much smaller. The schemas deal in fact with
abstractions, and can be viewed as knowledge bases about the database. It is hence
the structure of the data themselves and not the structure of the data description
which requires most attention to performance in system design. Schema languages
which recognize this tradeoff have the potential to simplify database administration.
The TOD schema language for instance allows the specification of auxiliary access
structures for each attribute from the set

( INDEX, RANGE, TRANSPOSED, PRIVATE )

and the system interprets the schema and automatically takes advantaee of these
structures when they are available [Wiederhold75] .

8.3 Related effects

The choice of binding time also has effects on the design of the mechanisms which
assure the integrity of the database and the protection of the privacy of its contents.
The redundancy required to provide such security provides an additional binding
between data elements. The definition of access paths which delimit access privileges
in order to protect privacy implies binding knowledge about data and access paths
to the definition of the users. Late binding means that a sophisticated procedural
interface is required to assure that privacy rules cannot be subverted. On the other
hand, extreme reliance on pre-specified access paths has its own dangers. If an
intruder finds an unplanned access path combination, i.e. a loophole, then violations
of security may remain undetected for a long period of time.

8.4 The complexity of binding

The physical complexity of network databases with many bound relationships is
frightening. Verification within the actual database of consistency, completeness,
closure, and lack of circularity becomes nearly impossible. The question is now,
“When does it make sense to bind relationships in a physical manner?”  We have
given many examples where binding improved query performance, but it is obvious
that in order to have the benefit of bound linkages when responding to any possible
question, the number of linkages which would have to be established among n data
elements is on the order of n2. If only direct linkages are represented, then the
number will be much less than this limit, but the number of possible relationships
among the n items will still greatly exceed the number of items itself.

There are however a number of issues which further reduce the number of
linkages to be considered. First, we have a limitation due to imperfect foresight.
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Not all of the possible relationships will be recognized at design time, and hence not
be candidates for early binding. The available design methodologies for conceptual
models give no guarantee of completeness. Knowledge-based systems will attempt
completeness among a relatively small set of items, but do provide for additions
during processing. A second point is that we cannot expect benefits from all
bindings. In practice binding in a database is not determined by the existence
of a relationship, but is only implemented when the designer foresees a processing
use for the relationship. The number of implemented linkages is further reduced by
having conceptual levels of binding, as indicated throughout: binding into tuples,
between tuples, and between relations in the schema.

From current practice we can assess the degree of structural complexity caused
by binding which is tolerable. Network structures in databases pose a typical
management problem. We find that large systems have seen limited binding. Mea-
surements of such systems have indicated on the order of twenty fields per record,
with fairly wide variances. Values ranged from two to nearly a thousand. The
total number of record types, or relations, varied from ten to more than a hundred,
with an average of about forty. Connections between relations are described in
CODASYL implementations by the schema through definitions of sets of linkages.
Bachman  has reported that networks implemented using the IDS database system
contain records that are on the average linked to two superior relations. We can
consider that the key fields participate in all relationships, and the dependent fields
generally in only one. Ordering specifications would cause selected fields to have
a further binding implemented, and procedural restrictions, which are not easily
measured, can implement reference connections in a CODASYL-based system for
some fields. When these considerations are taken together it appears that the total
number of implemented connections for dependent data items is still less than two,
and the average over all items is not much more.

We see that, in practice, the degree of implemention  of structural binding is
quite limited. If we assume  that experienced database designers achieve reasonably
optimal databases, we can conclude that at the measured levels of binding an
optirnum is reached. At that point the cost of complexity should begin to exceed
the benefits of binding. We do recognize that the measurements are suspect, sincea
the designers freedom to choose binding alternatives is severely limited in existing
systems. While system limitations might reduce bindings, it may well be that in
order to compensate for performance loss, altern,ce  and perhaps additional auxiliary
bindings may be chosen. The fact that any DBMS limits the choices is, of course,

Ialso due to the problems of complexity of its maintenance, which is just another
aspect of the binding issues we want to address. A sirnple model  will be used in the
next section to demonstrate the likelihood of an optimum in degree of binding.

9. A PERFORMANCE MODEL OF BINDING

We can use the complexity concepts that have been discussed in the section above
to construct a simple cost model of binding. This model will not be precise enough
to provide performance estimates for database design at an engineering level, but
will provide some quantitative insight into the effect of binding decisions.
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9.1 A matrix representation

We consider a database D with a set of {er, . . .e,, . . .e,} entries, where each of the
entries ei participates, and derives its meaning from its participation in up to p;
relationships. We permit at most one relationship between any pair {e,, e3}. For
the entire D the sum of the number of relationships p,, i = 1.. .n, is then bound by
n2, although the total will be typically much less. Instances of these relationships
could be placed into a matrix Q of size n X n, which would be quite sparsely filled.

We have to collect relationship information into a processible form to make it
useful for an implementation. Using the structural database model the relationships
are defined in a conceptual schema by having attributes assigned to relations and
by defining connections among relations. The connections specify the relating
attributes. An instance of a connection between records of D is represented by
explicit entries in files which correspond one-to-one with relations. We assume
that all relationships are reducible to binary relationships, and hence we ignore the
complexity of multi-attribute connections.

We have to augment the conceptual model with the capability to collect rela-
tionships created for access efficiency,  for instance an ordering constraint placed
onto a set of tuples according to sorne key. Such a constraint would be described
by entries in Q that bind pairs of ruling part entries. These entries can be added
to the set of potential and the set of recognized relationships for each e,.

Out of these relationships a certain number will be selected by the database
designer for actual implemented binding.

As we discussed above, we cannot expect to recognize all potential relationships,
‘so we will define s, to be the number of relationships of e, that are recognized and
noted in the conceptual and implementation schemas,  and we will also define b, to
be the number which are actually bound. From the discussion in Sect. 5.1 we also
recall that each element in a database has to be associated with at least one other
element.

There is hence an ordering of the number of binding choices for an element ei

with typically p, << n. Unfortunately, the true value of p, is never known, so that
we will continue to carry n as an absolute upper bound.

We considered conceptually that binding among all pairs of elements in E is
defined by entries in a matrix Q, with elements qtJ. The states taken by any
element qz3 are one of the set {bound, recognized,potential,null}.  Being b o u n d
implies recognized, and recognized implies potential. We note that the matrix is
not symmetric about the diagonal since there are binding techniques, such as hashed
access, which cannot be exploited in a symmetric fashion. The number of entries
in qzJ, j = 1. . .n, which are not null, is equal to pi.

9’.2 A performance analysis

Benefits are obtained from binding when the database is used for retrieval, and ad-
ditional costs are incurred for binding at update time. Each bound linkage is equiv-
alent in this first order cost model and brings equal benefits at equal costs. These
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simplifications appear drastic, but these assumptions are for instance approximated
by a CODASYL approach without clustering and without directly accessed entry
points. We will furthermore deal with an environment where n, the size of the
database, remains constant, but relationships are updated as entities change.

Updates in this model incur costs U proportional to the extent of binding of
the elements, so that for element ei

Uz = ub,, l<b,<p;<n_ _

where u is the unit update cost.
Typically an update is preceded by a retrieval operation in order to locate the

element which is to be changed. This cost is not included in 77, but is seen as part
of the retrieval effort.

The relationships which are bound during updating are used at retrieval time.
Since there are b, entries associated with every element e,, the decision as to which
connection to follow, partitions the remaining search space into n/b, subspaces. In
an optimally structured database each successive decision will further partition the
previously selected gubspace.  In order to find a destination element in D the number
of decisions is hence logb,n,  where i identifies the nodes on the retrieval path. We
assume now that there is indeed a bound path to be followed from every node
that has been reached. This is typically true for routine processing in databases
where performance was considered in the design phase, and those are the databases
measured earlier.

The cost of a decision at e,, regarding which path of the b, alternatives to
follow, is also a function of b,. Since the choices are typically few, and of different
types we will assume that the cost of making the choice is proportional to b,. The
retrieval cost R is then

R, = rb, &b, n, l<b,<p&n-

with r as the unit retrieval cost.
a In most databases, retrieval transactions occur with a greater frequency than

updates. A ratio f of 10 is not unusual for a dynamic database, and for static
databases ++e number can be much higher. At the same time the cost of an update
operation on an element is typically much higher than extracting a value. An
-optimistic ratio for u/f is 2, but a ratic u/r of 10 is not out of range. In order to
‘combine the effect of U and R we make the following assumptions:

1 an update is always preceded by a retrieval.

2 two cases of retrieval activity, respectively 9 of 10 and 99 of 100 transactions.

3 two cases of update cost ratios u/r, 2 and 10.
Figure 19 shows the behavior of U and R for a database of n = 100 000 entries for
values of the average binding B of b, ranging from 1.. .6. The values of the total
cost Tf = U + f *R were computed for both retrieval to update activity ratios and
for both update cost ratios.



Sect. 9. A performance model of binding 35

t.4=  2r,

- . - - . .
o u

-_ _-
U

--a------------- i ----------------------------------------------

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
B --me>

Figure 19
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Tradeoff between binding cost and benefits

The aggregates are plotted in Fig. 19 as TlO and TlOO,  scaled to a single
transaction cost basis. TlO is plotted for update cost ratios u/7;  of 2 and 10, for TlOO
the difference is negligible. We notice first that the optima for the combinations
considered are achieved at values of B ranging from 2.5 to 2.75. This range is
suprisingly narrow. We see furthermore that an reasonable overall performance, that
is within 20% of the optimum for each case, is obtained within a range corresponding
to 1.5 < B < 5, and that further bindings do not have a high cost penalty.

These observations support a view that the desigriers of current applications
have a reasonable intuition about binding levels. We do need to recall again that
we assumed perfect useability of bindings for retrieval, and this is only achieved in
practice when processing known transaction patterns. A greater variety of query
types would tend to increase the number of bindings so that the useful bindings can
remain at the optimal level.

We assumed in the evaluations above that the decision cost at a node was
proportional to the number of available choices. This is a a reasonable assumption
in network structures. Several of the access structures that are being introduced
to a greater *extent into databases make use of physical clustering, such as indexes,
transpositions, or hierarchies defined by the users. In such structures, once the
physical access has been made, a series of decisions can be evaluated at little in-
cremental cost. To assess these conditions we looked also at a model which did
not assume homogeneity of binding. To capture the fact that access to physically
adjacent data is an order of magnitude more rapid than randorn access, the cost of
making decisions at a node was set to be proportional to 1 + (B - l)/lOO, so that
now

R’ = ~(1 +  ( B  - l)/lOO)logBn
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For the same conditions, with U/T = 10 the optimum point for 90% retrieval activity
(f = 10) occurs now at B = 4.5 and for 99% retrieval (f = 100) transactions at
B = 14. A tentative conclusion for such databases is that a greater extent of
binding may be appropriate for such systems. Unfortunately there seem to be few
measurements of current practice in these systems. R’database using the transposed
system cited in Sect. 6.1 shows a value of B = 12 with a value of f estimated at
20.

I

The model presented can be similarly exploited to assess effects of database
size, update to retrieval ratio, other ratios.of  update to retrieval transaction costs.
While this model is certainly simplistic, it allows a qualitative assessment of binding
choices, and satisfies the objective of summarizing some important design choices
in a broad, conceptual manner.

10. CONCLUSION: BINDING AS A SYSTEM DESIGN CONCEPT

Via this circuitous route, we have returned to the issue which was used to illustrate
binding in information systems initially. This issue was: “To what extent should
relationships between data, that are recognized early, be specified so that they are
implemented at data entry time?” Insertion of binding information into the database
with each update implies the use of coding, pointers, and physical adjacency. The
alternative keeps the data, to the greatest feasible extent, in the form and order that
it is obtained. Relationships are established by search when the query demands.
An important intermediate stage is seen in relational database systems where the
data is formalized and structured into relations containing coded data in identical
formatted tuples, and any inter-relation binding is deferred to query execution time.
The optimal organization of data into tuples is not obvious, and the rationale for any
particular compromise is a mix of theoretical and implementation considerations.

.

Looking at information and database systems from a standpoint of binding time
provides a gross picture and obscures many of the detailed considerations required
to actually implement databases. ‘Binding does provide a point of view which cuts
across many structural levels which have to be considered: data representation, data
structuring, file design, and information structuring; and when used as a guidelinea
in the design of systems can assist in providing a consistent design philosophy which
is difficult to achieve by other means. At each of the structural levels, the same basic
relationships hold: efficiency is obtained by aggregation and by linking, flexibility

is obtained by using atomic concepts and avoidance of binding.
We can observe failures in system design where the lack of a central direction

which considers the effects of two concepts has led to unbalanced systems: we find
systems where the programming and data representation is extremely flexible and
the data structure is inflexible. In these systems the extensive knowledge captured
in the databases can only be extracted with the help of experts and at great costs.
We see similarly systems where flexibility in structuring cannot be exploited because
of inflexibility in data representation concepts or information system concepts. Now
the data are accessible, but nothing of interest can be found.

Another system design attitude can be described by the sequence: build it,
measure it, tune it. The flexibility of modern software encourages this approach.
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However, measurement as design tool for information systems has to be used with
care. If lack of binding causes a high cost of retrieval, then retrieval usage will be
discouraged, so that updates will predominate. System measurements taken at that
point will indicate that the system is optimally designed, since a high update to
retrieval ratio favors minimal binding.

We hence advocate the concept of binding as the primary tool for system design
and evaluation. Issues to be resolved in the design of information systems are of
two types. It is important to assure that decisions at one level do not bind the
system to an extent that flexibility designed into other levels cannot be utilized.
The other issue is that the flexibility, associated with lack of binding, can be costly,
and should be invested at the most profitable stage.

The design of systems to generate information involves a wide spectrum of
expertise and takes place over along timespan. The breadth that the concept of
binding brings to system design can give individuals of differing background a focus
in a joint system design effort.
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