
June 1981

!
Report. No. STAN-CS-81-863 i

A Programming and Problem-Solving Seminar

bY

Donald E. Knuth

Allan A. Miller

v> >‘. l. .C.“n”rnrr\r 1,,rC I...

International Business Machines

Department of Computer Science

Stanford University
Stanford, CA 94305

. - _..-.

Computer Science Department

A PROGRAMMING AND PROBLEM-SOLVING SEMINAR

bY

Donald E, Knuth and Allen A. Miller

This report contains 8 record of the autumn 1980 session of CS 204, a
problem-solving and progremming reminer taught at Stanford that is primarily
intended for first-yeor Ph.D. students. The seminer covers a lsrgs range of

_ topics, research paredigms, and programming peredigmt in computer 8cienCe,
so these notes will be of interest to gr8du8te students, professors, and profer-
rionel computer scientists.

Thr productlon of thlr report waa mupportod In part by the IBM Corpormtlon.

Table of Contents

Introduction, . . , , . , , , , . 1

Datasheet . . , .2

First class meeting . 3

Problem 1 - alphabetized integers . 4
Problem description . 4
October7 . 5
October9 . 7
October 14, . 10
Solutions . 12

Problem 2 - a chess endgame . 15
Problem description . ‘15
October 16 . 15
October 21. 18
October 23 . 20
October 28. 22

,Octobcr 30. 23
November 4 . 24
Solutions . 27

Problem 3 - unrounding . 30
Problem description . 30
October 30. 31
November6 . 34
November 11 . 37
November 13 . 41
Testdata . 42
Solutions . 46

-Problem 5 - grid layout . 48
Problem description .’ . . 48
November 13 . 49
November 18 . 51
November 20 . 55
November 25 . 56
Testdata . 57
Solutions . 58

Problem 4 - communication through unreliable links 60
Problem description . 60
December 2 . 60
December 4 . 63
December9 . 65
MESA programs . 66
Solutions . 77

Appendix - cast of characters . 78

..,..........~.,..... Introduction . 1

This report is a record of the autumn 1980 session of CS 204, a problem-solving
and programming seminar taught at Stanford that is primarily intended for first-
year Ph.D. students.

The class is organized as a discussion section in which students work on five
problems. Two weeks are spent discussing and solving each problem (usually
involving some form of computer programming in the solution).

On the following pages, each problem is presented, followed by a summary of
the class discussion it provoked, followed by a summary of the solutions students
came up with. Some of the discussion appears to be out of order (for example,
Problem 5 appears before Problem 4), due to the fact that Problem 4 required some
hardware and software resources that were not available as planned. However, the
class discussions are all organized by problem number. In the interest of brevity,
each participant is referred to by a two- or three-letter name. The correlation
between these names and the actual students can be found at the end of the report.

2 , , , . . Datasheet , . , . ,

Class: CS 204, “Problem Seminar”. Meets ll:OO-12:15 Tuesdays and Thursdays in
room 380U (math corner, in the quad).

Discussion leader: Don Knuth. Office is MJH 328, telephone 497-4367. Meetings
outside of class time are by appointment only.

Teaching assistant: Allan Miller. Office is MJH 022, telephone 497-3796. Office
hours are the hour following class, plus any other time you can find me.

Textbooks: Alto and Mesa manuals, available from your friendly TA.

Purpose (from “Courses and Degrees”): Solution of various problems, numeric and
symbolic, on a computer, using various languages. Emphasis on efficiency of
programming, proofs of correctness, and clarity of documentation. Presenta-
tion of solutions by students.

Actual purpose (for next year’s uCourses and Degrees”): To introduce the major
paradigms of computer science research,

Grading: Students should work in groups of two or three on each problem. There
are five problems and we will take them in order, spending about two weeks
on each. You should hand in a commented listing of your computer programs
for each problem, along with a writeup describing the approaches you took
to solving it. This writeup should include a discussion of what you did that
worked or didn’t work, and when appropriate it should also mention what you
think would be promising approaches to take if there were extra time to pursue
things further. Your written work will be graded on an A-E scale for your
own information, but your overall grade for the course will be either upass” or
“nothing”.

Class notes: Classroom discussions will mostly involve the homework problems,
but we will try to emphasize general principles of problem solving that are
illustrated by our work on the specific problems that come up. Everyone isa
encouraged to participate in these discussions, except that nobody but Knuth
will normally be allowed to talk more than three times per class period. After
class, the TA will prepare notes about what went on, so that you will be able
to participate freely in the discussions instead of worrying about your own
note-taking. According to department policy, these classnotes cost $1.00 for
the entire quarter; please pay this amount to the TA as soon as you can.

Computer use: You may use the SAIL and/or SCORE and/or LOTS and/or ALTO
computers, or anything else you can steal time on.

Caveat: This course involves more work than most other 3-unit courses at Stanford.

October 2 . . . , , First class meeting 3

Today was spent mostly in taking care of administrative details and getting
to know each other. DEK explained that the course is supposed to teach research
and problem-solving methods, i.e., creative solutions to problems. He said that the
goal of the course is to discover general techniques for problem solving rather than
specific tricks. (A trick is a method that is used once; a technique is a method
that can be used at least twice!) He stressed that the class will work together
on problem solutions rather than in a competitive atmosphere; and in order to
encourage participation by everybody, a limit of three turns at speaking per class
period will be enforced.

Then DEK read some comments from the course evaluation of CS 204 the last
time he taught it. The evaluations stressed that the program write-ups are one of
the most important parts of the class, and that they should emphasize the methods
used to solve the problems rather than the specifics of the programs. The evaluations
also noted that the work load in the course is rather heavy. DEK explained that
his goal is to work students ;~t their “maximum capacity”.

In closing, DEK noted that he likes to work on problems a while before reading
what others have done to solve them, and when he reads about a problem he is
working on he tries to guess what will be on the next page before he sees it. This
is not only more fun, it makes the next page easier to understand.

4 , Problem 1. Problem description

Problem 1. Alphabetized Integers.

If you were to express the positive integers in English (e.g., 1 as Uone”, 2 as
“tWOn, and so on) and then alphabetize them, the first power of two in the list
would be 8 (“eight”) and the first prime number in the list would be 8,018,018,851
(“eight billion eighteen million eighteen thousand eight hundred fifty-one”). Here
we are assuming that blanks and hyphens are ignored in the alphabetization, so
that num.bers beginning with “eight billion eight hundred thousand . . .” are larger
than those beginning wi&h “eight billion eighteen million . . .“.

The problem is to find the lsst power of two and the last prime.
The problem of the first prime was raised by Edward R. Wolpow in Word Ways

13 (1980), 55-56, who said that it is “computationally impossible to determine the
alphabetically last prime.” We hope to prove him wrong.

The English names for numbers have to be defined rigorously to do this prob-
lem. We will decide on an exact rule in class. The only number names for higher
powers of ten in Webster’s Third Unabridged dictionary are:

102 = hundred 1oT31 = decillion

10:j = thousand 103eI = undecillion

10” = million 1o3g = duodecillion

10” = billion * 1o42 = tredecillion
10’” r

= trillion 10”” = quattuordecillion ’
10”’ = quadrillion

10’” = quintillion

lo”* = quindecillion

10”’ = sexdecillion
,

10)’, = sextillion lo54 = septendecillion
,

lOA4 = septillion 1o57 = octodecillion
r

1oL7 = octillion loo0 = novemdecillion
1 (p’ = nonillion loo3 = vigintillion

and lOiSO;j = centillion. (In addition, lO’oo is sometimes called a “googol”, but we
will ignore this anomaly.) That leaves us with gaps of nameless numbers k l 10”‘” +
10” < n < (k + 1) . 10’
that islO”‘” or more.

?03 for 0 < k < 1000, and no way to name any number_

However, there is a natural way to continue the pattern from loo3 to 10303:
To get from one decillion to one vigintillion, note that the prefixes Uun-“, Uduo-“,
“tre-n, “quattuor-“, “quin-“, ‘sex-“, *septen-“, Uocto-n, and unovem-” systemati-
cally increase the power of ten in steps of three. We can use this method along with
each of the following ‘suffixes”:

October7 ,Probleml...... 5

103?t I = decillion

loo3 = vigintillion
loo3 = trigintillion

l()‘23 = quadragintillion
10153 _- quinquagintillion
1p3 = sexagintillion
10213 = septagintillion
10243 -- octagintillion
10273 -- nonagintillion

For example, the conventional name for a googol would be ‘ten duotrigintillion”
under such a scheme. To solve this problem, we shall assume that if anyone ever
invents analogous names for lOan+” with n > 100, these names will be come
alphabetically after “billion” and alphabetically before “vigintillion”.

An efficient test for primality was devised by Michael Rabin and Gary Miller;
this test is not rigorous but it fails with probability < i. Therefore, if the test
succeeds fifty times for a number n, the probability that n is not prime is < 2-‘O”.
For practical purposes, we will say that this means n is prime, since such reliability
is better than that of any computer. The test is implemented with the following
algorithm:

Let n = 1 + 2’g where Q is odd. Choose a random integer z in the range
1 < z < n. Set j +-- 0 and y + zQ modn (the remainder of XQ divided by n). Now
repeat the following: If j = 0 and y = 1, or if y = tz - 1, terminate and call n
“prime”. Ifj>Oandy=l,orifj= k - 1, terminate and call IZ konprime”.
Otherwise set j +- j + 1 and y + v2 mod tz. Note that in the loop it is always true

e that y = z2’q mod n.

Class notes for October 7.

DEK started a discussion of the first problem by saying that even though it
is a “toy problem” it can help develop the mental structures needed for computer
science problems arising in real applications.

The discussion then turned to the problem of formalizing the method of naming
numbers in English. We found that there is some disagreement on how certain num-
bers are named. For example, 3,000,144,010,000 is called “three trillion one hundred
forty-four million ten thousand” in America; but RSF, from New Zealand, calls it
“three trillion one hundred and forty-four million ten thousand” (he mentioned that
the older British custom of calling lOi ‘one billion” has fallen into disuse, probably
even in Britain). The class decided to stick with the American system, which does
not use the word “and” (which might have changed the problem considerably since

6 . . , , . , Problem 1 October 7

it is so alphabetically small!) and uses the suffixes listed in the problem statement.
As for the task of formalizing the naming of numbers, RSF suggested expressing
the numbers in “base 1000” so that a number N would be

n
N = (a,. . . a2 a1 ~0)1000 = c

ai lOOO’, where 0 _< ai 5 999.
i=O

With this setup, a function name(d) can be defined on 0 5 d 5 999 and’then the
name of a number N is

American(N) = t(n). . . t(0)

where

t(i) =
name(di) thousandname(lOOO’), if di # 0;
null

) if di = 0.

JMM suggested that finding name(d) includes three cases: 1 < d < 19, 20 < d <
99, and 100 5 d < 999. In the second and third cases the definition of name(d)
uses a value from the previous case. DEK formalized this by saying that

smallname(if 0 < d < 19;
n a m e (d) = tenname([&J) name(d mod lo), if 20 5 d 5 100;

name([&I) ‘hundred” name(d mod loo), if d > 100.

Here smallname, tenname, and Uzousandname can be combined into a single func-
tion dictionary. There was some discussion on whether or not this means that the
algorithm will work for most other languages simply by changing the dictionary,
but the class decided that it won’t; for example, the French system is based in
part on twenty rather than ten (e.g., 94 is “quatre-vingt-quatorze”, literally Ufour-
twenty-fourteen”).

The discussion then turned to methods for naming numbers larger than 10303.
MMS suggested that the same algorithm could be used, but powers of 10 greater
than 1030” could be named by using more “centillion”s. For example, 103’e would
be “one thousand centillion”, 10Co” would be ‘one centillion centillion”, lOGoB would
be uone thousand centillion centillion” and so on. DEK formalized this by writing:

as in class notes, if k 5 100;
djctjonary(l03(k-l01)+3) “centillion” , if k > 100.

For example, 300,300 x 10°oo would be called “three hundred thousand centillion
centillion three hundred centillion centillion”.

October 9 Problem 1 7

GMK proposed another system that split numbers into groups of 10303* using

“centillion” American(N mod 10303)

when N > 10”~0~3. In this scheme 300,300 X 10°oO would be called “three hundred
thousand-three hundred centillion centillion”. Although both schemes can be inter-
preted unambiguously, the class decided to use the one proposed by MMS since
there is no “last number” in the one proposed by GMK; an alphabetically larger
number can always be produced by adding another “centillion” onto the end of the
name.

The discussion turned to finding the ulastn prime and power of two given this
algorithm for generating the English names of numbers. DOH mentioned that
the powers of two are well-I*chaved, easy to calculate, and fairly sparse, whereas
the prime numbers are hard to generate and fairly dense. This suggested that
finding the last power of two might be done by generating powers of two unear” the
last number, and finding the last prime would be done by generating numbers in
decreasing alphabetical order and testing their primality. This started a discussion
of how the last numbers might be generated. JP and DEK talked about a method
that would generate all legal “next letters” using a finite automaton, but only use
the alphabetically largest one. The class finished just as RLH suggested that it
would be easier to just generate the form of the alphabetically last hundred or SO

numbers by hand and then use a program to test their primality.

Class notes for October 9.

DEK began by saying that someone had pointed out that the naming conven-
tion chosen last class period had the disadvantage of making it impossible to find
the first prime since an arbitrary number of “centillion’? can be put in “eight billion
centillion centillion . . .“. He suggested changing the dictionary function to

dicfionary(103k+” =
) {

as in class notes, if k < 100;
“CS’ dictionary(103(k-r01)+3) “centilliop” if k: > 100.

This made the official name of 300,300 X 10Oo6 “three hundred CS CS thousand
centillion centillion three hundred CS centillion centillion”.

The rest of the class was spent discussing the prime-testing algorithm. The
algorithm to test the primality of t2 is:

8 Problem 1 October 9

Find k such that tz = 1 + 2”q
Find a random z such that 1 < x < n
j + 0
y+-xqmodn
Repeat:

If(j=O A y = l) V y = n - 1
Then terminate calling n ‘prime”.

Else if (j > 0 A y = 1) V (j = k - 1)
Then terminate calling n konprime”.

Else
C--j+1
y+ y2modn

This algorithm gives the correct answer when it says ‘nonprime” and is correct at
least $ of the time when it says “prime”. It relies on two facts about arithmetic
modulo a prime, namely (in this discussion p denotes a prime)

if xmodp # 0 then xp-’ modp = 1 (A)

which is also called “Fermat’s test”, and

if x”modp = lthenxmodp=lorxmodp=p-1. uv

Eq. (A) follows from the fact that the set {xmodp, 2xmodp, . . .,(p - 1)x modp}
is just the numbers {1,2, . . . ,p - 1) in some order; hence x l 2x l l l l l ((p - 1)x) -
1*2.... ’ (p - 1) = (zP-i - l)(p - l)! is a multiple of p, and xp-’ - 1 must be a
multiple of p. To prove (B), note that x2 - 1 is a multiple of p if and only if x - 1
or x + 1 is a multiple of p, since x2 - 1 = (x - 1)(x + 1).

The algorithm sets y to (xq mod n), (x29 mod n), (~“4 mod n), (z”q mod n), and
so on up to (z(~-‘)/~ mod n). Each value of y except the first is the square of the
previous y. By out fact (B), any y other than the first one can only be 1 if the
previous y was either 1 or n - 1. But the way the algorithm is set up, this cannot
be true. So if we find j > 0 A y = 1 then n cannot be prime. Furthermore, if we
run through all values of y and find that (x(~-‘)/~ mod n) is not 1 or n - 1 then we
know by (B) that xn-i mod 1’ had better not be 1. But by (A), xn-* mod n must be
1, so if we reach j = k - 1 without detecting that y = 1 or y = n - 1, the number
n cannot be prime. Although DEK didn’t justify the statement with a proof, he
said that if these tests for non-primality fail, the number n has a probability of more
than $ of being prime, in the sense that more than 9 of all numbers 1 < x < n
will witness to the fact that a non-prime n isn’t prime.

The next topic of discussion was about techniques for doing high-precision
arithmetic. MWT started things off by asking if x can be generated as a single-
precision (one-word) number, since all starting values of x are supposed to be equally

October 9 . , , . . . , , . . Problem 1 , 9

good. DEK replied that if the generalized Reimann hypothesis is true, then there is
at least one good x in the range 1 to 4(ln n)2, in which case the algorithm could be
made into a deterministic one by testing n with all values of x in this range. MPH
asked how many bits of precision are necessary to represent the numbers involved,
and DEK estimated that about 200 bits would be needed to represent numbers near
two vigintillion. Jf arithmetic is done using a base of 2r7 (to prevent overflow while
doing integer multiplies on the PDP-10) then 200.bit numbers will fit in an array of
10 to 15 words. The class decided that in finding (y2 mod n), the y2 part is pretty
easy but the modulo operation is more difficult since it requires a division. DEK
mentioned that division is relatively easy to do in base two, involving only one-bit
shifts and binary subtractions. FJB suggested that the shifting might be done in
words rather than bits; DEK agreed, but pointed out that the program would get
more complicated since a trial divisor would have to be calculated in order to avoid
doing about 2’” multiple-precision subtractions.

The next problem was to figure out how to find xqmod n. RSF suggested the
following recursive algorithm:

if q = 1 then return(z modn) else
if q is even then return(&i2) mod n)” mod n
else return ~(29~’ mod n) mod n

The number of “mod n” operations is then at most 21og, q.
DO11 suggested some methods for speeding up the process of finding the last

prime. Rc said that numbers divisible by two or five can be discarded syntactically
(i.e., not even generated), and divisibility by three could be easily determined by
adding digits together mod three. RLH added that a sieving method can be used to
remove all numbers that are divisible by small primes from the last hundred or SO

numbers. The big multiple-precision primality test should be used only when there
e is good reason to suspect that n is prime.

PEV was interested in the number of operations involved in the multiple-
precision arithmetic, in order to estimate the running time of the programs. DEK
-did a quick analysis of the algorithm for finding (xQ mod n). Assuming that t‘z has
-V bits and q has p bits and T(p) is the number of operations to find xQ mod n, then

w = { >(p - 1) + O(V2)
if p = 1;

) ifp> 1

which is O(pv2). [The O(v2) represents one or two operations of multiplying v-bit
numbers and then dividing a %v-bit number by a v-bit number.]

The class finished just as DEK mentioned that one of the “bad” numbers for
the prime-testing algorithm (a number for which almost ;f of the values of x return
uprime” when the number is actually composite) is 1729. This number is also the

10 Problem 1 October 14

smallest number that can be represented as the sum of two cubes in two different
ways.

Class notes for October 14.

Today in class about eight people said they had found the last prime and the
last power of two, but they were unwilling to reveal their answers. FNY finally said
his group’s program had to check 23 numbers for primality and that the answer is
the same as the alphabetically last number except the last three digits are 293. He
said he had calculated the last power of two using a calculator.

The question came up of whether or not there is an algorithm to find the
alphabetic predecessor of a given number. MMS said he had thought of a “simple,
obviously correct method” to do so. It uses a procedure parse that determines if
a string is either a valid number or a valid prefix. Each string is a sequence of
words from a dictionary, ignoring spaces, where no word in the dictionary can. be
a prefix of another word in the dictionary. Therefore, “eighty” and “eighteen” do
not appear in the dictionary, but “eight”, “y”, and ‘een’ do. The algorithm works
as follows:

Replace the last word in the string with its alphabetic predeces-
sor, unless there is no predecessor. In the latter case, remove the
last word; if the result is a valid number, terminate, otherwise,
continue working on it. In the former case, if the result is a
valid prefix, append the last word in the dictionary to the string
repeatedly until obtaining something that is not a valid prefix. If
the string that is not a valid prefix is a valid number, terminate,
otherwise keep working on it.

A similar algorithm finds the alphabetic successor.
- TCII pointed out that the problem of finding the predecessor is equivalent to

looking at a tree with a branching factor of 26 where each branch corresponds to
adding a letter (this is slightly simpler than a branching factor of d corresponding
to a d-word prefix-free dictionary in MMS’s scheme). Each node in this tree is a
string that can be tested with parse and then the problem can be viewed as one of
finding the previous node of a preorder traversal. CXF said that you can also think
of the problem in terms of a stack-the number would be on a stack as powers
of 10” followed by a number between 1 and 999. The dictionary of possible stack
entries is sorted in alphabetical order and the last entry in the stack is replaced by
its alphabetic predecessor (unless there is none, in which case the same method is
applied to the next-to-last entry in the stack). Such a method, which combines the
parsing with the preorder traversal, is however not “simple and obviously correct’,.

DEK started discussing modulo arithmetic by explaining how parallel proces-
sors can do arithmetic with large numbers. Each processor does the same operations,

October 14. . . . , . . . , , , , . Probfem 1 1 1

but processor i works module mi. The rni are chosen to be relatively prime so that
the “Chinese remainder algorithm” can be used to combine the results in a final
step to find the answer modulo M where A4 is the product of the mi.

Next, DICK brought up the question of how badly the choice of x in the
primality-testing algorithm can affect the results. Working through an example
of testing n = 1001 (note that 1001 = 7 x 11 X 13) went this way: the only
values of x that cause the algorithm to incorrectly say “prime” for 1001 are those
for which x iOo” mod 1001 = 1. This is equivalent to saying that x*ooo mod? = 1,
xlOOOmodll = 1, and x’000mod13= 1; equivalently, if zmod7 = a, zmodll =
b, and x mod 13 = c, then

aioo0mod7 = 1,

b’OOOmodll = 1,

ciooomod 13 = 1.

Fermat’s theorem says that xemod7 = 1, xi0 mod 11 = 1, and xl2 mod 13 = 1. It
can be proved (using Euclid’s algorithm) that if P modp = 1 and xn modp = 1
then xRc(J(mtn) modp -- 1. Therefore, since gcd(6,lOOO) = 2, gcd(l0, 1000) = 10,
and gcd(l2,lOOO) = 4, the only values of z that might “fool” the algorithm are
those x such that (z mod 7, x mod 11, x mod 13) = (u, b, c) where

a2mod7 = 1,

b”modl1 - 1- t
c4 mod 13 = 1.

Since this is the “roots of unity” problem, there are 2 values of a, 10 values of b,
and 4 values of c that solve these equations. Therefore there are 2 X 10 X 4 = 80

values of x that might “fool” the algorithm. Since the algorithm chooses z randomly
between 1 and 1001 here, it picks a bad value at most about 8% of the time. In fact,-
the algorithm isn’t even fooled by all of these; for example if c2 mod 13 = 12 then
x25o mod 13 = 12 and x2” mod7 = x25o mod 11 = 1, so x25o mod 1001 @ (1,lOOO)
but x”“” mod 1001 = 1.

JJW asked why DEK had mentioned at the beginning of class that it would be
desirable to know the factors of N - 1 (where N is the alphabetically last prime).
DEK replied that these factors could be used to make a deterministic test for the
primality of N. This test takes advantage of the fact that if

and xnAi mod n = 1 for some x, then n is prime. In addition, if n is prime there are
many values of x for which these statements are true. However, if the powers of z do
not generate the numbers from 1 to tz- 2, then the numbers they generate will have
some period d, and 72 - 1 is a multiple of d. So if n - 1 factors into pilQ e l p;*

12 Problem 1 Solutions

then it is only necessary to show that x@-*)lJ’{ modn # 1 for 1 < i < k for
some value of x and in addition xn-r mod n = 1. This proves the pTmal;y of n.
DEK mentioned that the best known way to factor N - 1 is to take out the small
(single-precision) factors, then use the nondeterministic primality-testing algorithm
on what is left. He said that sometimes large numbers factor into a set of small
primes and one large one; we might be lucky.

The class ended with DEK presenting a factoring problem that had recently
been solved. It had been known for some time that 22”0 + 1 is nonprime, but no one
knew any of its factors. The algorithm that found one of its factors (an U-digit one)
worked like this: Suppose N = ni n2. If the series xj is generated so that xi+1 =
(x; + 1) rnod N, and we take yj = Zj mod nr and Zj = xj mod n2, then we will find
that yj+ 1 = ($ + 1) mod nl and Zj+ 1 = (2; + 1) mod 722 since multiplication and
addition are valid operations modulo a prime. While generating yr, ~2,. . . , yk, . . . ,
eventually a y, is generated such that ym = yk for some value of k and n, and
the expected size of k and m is about 6. (This is something like hashing: if you
put random numbers into a hash table of size n, two of them will almost surely
hash to the same place by the time you have inserted about fi numbers.) At
this point gcd(x, - xk, N) = nl , unless we have the highly unlikely coincidence
2, = zk, thus providing the desired factor. So the algorithm just needs to generate
the sequence of xj and check 217 - ~10, ~18 - ~10,. . . ,231 - ~10, ~33 - ~32,. . . for
having a CCD with N that is larger than 1. This GCD is the desired factor.

Solutions for problem 1.

Most groups solved this problem successfully, finding the ‘1asV prime to be .2,-
000,000,000,000,000,000,000,000,002,000,000,000,000,000,000,000,002,000,000,002,~
293, which is pronounced ‘*two vigintillion two undecillion two trillion two thousand
two hundred ninety three”, and the “last” power of two to be 2’j2’, which is 2,135,.
~?,035,~20,910,082,395,021,?06,169,552,~14,602,?04,522,356,652,?69,94?,041,60?,~
822,219,?25,?80,640,550,022,962,086,936,5?6 and is pronounced 7,wo untrigintil-
lion one hundred thirty five trigintillion nine hundred eighty seven novemvigintil-
lion t.hirty five octovigintillion nine hundred twenty septenvigintillion nine hundred
ten sexvigimtillion eighty two quinvigintillion three hundred ninety five quattuor-
vigintillion twenty one trevigintillion seven hundred six duovigintillion one hundred
sixty nine unvigintillion fivcb hundred fifty two vigintillion one hundred fourteen
novemdecillion six hundred two octodecillion seven hundred four septendecillion five
hundred twenty two scxdecillion three hundred fifty six quindecillion six hundred
fifty two quattuordccillion seven hundred sixty nine tredecillion nine hundred forty
seven duodccillion forty one undecillion six hundred seven decillion eight hundred
twenty two nonillion two hundred nineteen octillion seven hundred twenty five sep-
tillion seven hundred eighty sextillion six hundred forty quintillion five hundred fifty
quadrillion twenty two trillion nine hundred sixty two billion eighty six million nine

Solutions . . . , . . , . , , . . . , Problem 1. . . . , . , , ,13

hundred thirty six thousand five hundred seventy six”.
Everyone’s approach to the problem was basically the same for finding the last

prime. MACLISP was used by JP/HWT/JJW, PB/RLH, FNY/ML/MMS, and
JDH. Each of these groups took advantage of the BIGNUM feature of MACLISP to
do infinite-precision arithmetic. The groups that didn’t use MACLISP came up with
some interesting ideas for doing extended-precision arithmetic. Some groups used
“base 1000” numbers for the convenience of converting these numbers to alphabetic
form and back. FJB/OP, JMM/GMK, and RV used “base 100,000” numbers to
reduce the size of the arrays holding the numbers. CXF/PHW/PEV used ubase
10” numbers, storing one digit in each array position. DOH/RSF used “base 1000”
numbers for the largest power of two and ‘base 2*e” for the largest prime.

There were some other special tricks for handling extended-precision arith-
metic. FJH/OP, DOH/RSF, and JMM/GMK each found an extended-precision
number mod an integer by repeatedly multiplying the current partial result by the
base, adding the next digit (going from most significant to least), and taking the
mod of that as the next partial result. DOH/RSF and JMM/GMK checked to
make sure that xQ was greater than n before doing an extended-precision divide
when finding xQ mod n. JMM/GMK suggested that a special method for squar-
ing extended-precision numbers could be used that would only compute the inner
products once (rather than twice). JMM/GMK also used floating-point division
to get an approximation for their trial divisor in the extended-precision modulus
routine, although they had some trouble with roundoff errors.

Generating random numbers was done in two different ways: FJB/OP, JJM/
GMK, JDH, CXF/PHW/PEV, JP/HWT/JJW, and FNY/ML/MMS generated the
random number z over the entire range 1 < z < n. DOH/RSF, PB/RLH, and
RV generated the random number over a limited range, about one single-precision
integer.

- Almost all programs removed numbers that were divisible by two or five. Many
programs checked divisibility by a number of other small primes in addition. The
program of FJB/OP was notable in this respect in that it checked divisibility by
all primes less than 1000. JDH actually used a formula to determine the “optimal”
number of small primes to check, although he checked divisibility by odd numbers
rather than primes.

JP/HWT/JJW factored the number 2.. .293 - 1 and got

where nl has no factors less than 107. [During winter quarter, JJW was able to find
the factorization

n1 = 7396423814267~194699817241332307058500113471280388980613,

14 Problem 1 Solutions

and to prove that these factors were prime. (The latter was considerably more
difficult than factoring t2i !) This led to a “rigorous” proof that our number 2.. .293
is indeed the largest prime.]

The methods for generating numbers in reverse alphabetical order varied widely.
C#F/PHW/PEV, JP/HWT/JJW, and RV programmed methods to generate all
numbers in reverse alphabetical order; CXF/PHW/PEV used an explicit heapsort
to order the names of the numbers from 1 to 999. DOH/RSF and JDH had a method
that could generate the last 100 numbers in reverse alphabetical order, and FJB/OP,
JJM/GMK, and FNY/ML/MMS had a method to generate the last 1000 numbers.
PB/RLII had an interesting method-they tested 200 numbers close to the desired
answer for primality and checked by hand to see which one was alphabetically last!

People approached the “last power of two” problem in three ways. OP/FJB,
SGD/DEK2/MPH, JDH, and FNY/ML/MMS found the proper exponent of two by
hand (using a hand calculator) and then used a program to find the actual number.
DOH/RSF’ generated all powers of two that fit in their number representation and
kept track of which one was last alphabetically. JP/HWT/JJW, PB/RLH, and
RV checked a subset of the powers of two and kept track of which one was last
alphabetically.

October 16.. , . . . Problem2.. . . ,15

Problem 2. A Chess Endgame.

It is well known that a king and queen can defeat a king and rook except
for a few unusual starting positions, However, at the IFIP congress at Toronto in
197’7, Ken Thompson presented a program that took the side of king and rook in
this game. Be challenged Hans Berliner, the former World Correspondence Chess
Champion, and Lawrence Day, the Chess Champion of Canada, to demonstrate
how the king and queen could win. They accepted the challenge but failed to beat
the computer, finally giving up.

Thompson’s program moved from each position to the next legal one that
maximally delayed checkmate. Your problem is to do the same: write a program
that plays a black king and rook against a white king and queen from any starting
position, making sure that Black remains in play as long as possible.

! Several things should be easy to determine as spinoffs of your program. Can
you find a position that forces white to use the maximum number of moves in order
to checkmate Black (assuming that each player makes the best possible move at
every turn)? Can you count and perhaps also characterize all positions with White
to move in which White can/jot force checkmate? It will probably also be easy to
modify your program to take the part of Berliner and Day, and do better than they
did (if it is possible for White to win)..

In doing this problem, we will of course ignore the U50-move” rule that allows
the king-rook player to declare a stalemate after 50 moves have been made.

Class notes for October 16,

Discussion of problem two, the chess endgame problem, began today after the
results of problem one were collected. JDH had brought in a book about chess
endgames. This book stated that the king and queen vs. king and rook problem
is a tricky one to play, and that the strategy for the white king and queen is to-
try to force Black to make a bad. move. It showed a stalemate possibility for Black,
namely:

16 Problem 2 , October 1 6

After White moves his king, Black checks again with the rook. The white king dare
not move into the king file because the black rook would do the same and take the
white queen on the next move. Eventually Black forces the white king to get into
a loop or to take the black rook in the rook file; then Black is left without a move
but is not in check.

FJB suggested that there are two ways to solve Problem 2: using heuristics
to guide the play or enumerating every possible play. DEK said that this type
of problem arises often in artificial intelligence research. It is a generalization
of the “shortest-path” problem, for which positions are represented as a graph
consisting entirely of “OR” nodes; in this case there are both “AND” nodes and
“OR” nodes. He mentioned that Ken Thompson’s solution reportedly involved the
use of a database with three million entries in it, and said that this indicated that
memory management would be an important part of the problem solution.

OP raised a question about the ‘50-move” rule in chess. There was some
discussion, and the class finally agreed that the official rule has changed at least
twice in recent years but in general if 50 moves are made without a pawn move or
a piece being calpturcd, either side has the option to call a draw unless the other
side can prove that there is a winning strategy.

DEK pointed out that humans and computers play chess in very different ways.
.In this problem, the computer has access to a large data base, something a human
does not have. IJc mentioned that John McCarthy is doing research into how humans
“condense” this database internally. DOB asked if one would use a different strategy
playing against a computer than against a human, and DEK replied that in general
while playing chess against a computer it is a good idea to make sacrifices early if
they will lcad to positional advantage later on, since the computer will never miss
a short-range play but current programs do not see long-range plans using general
goals. DEK2 said that some psychology studies indicate that a grand master’s
memory of a chess position is dependent on his having played into that position;
i.e., it is very dificult for humans to remember random positions.

DEK prodded the class into formalizing the method of finding the optimal
solution as required by the problem statement, FNY said that the idea is to define
the number of “moves to win” for any board position, and try to maximize that. OP
objected that this rule didn’t distinguish between whose turn it was to move, given
the same board position. Finally DEK suggested defining p as a board position,
W(p) as the smallest numbc;. of White moves necessary to force a win for White,
and B(p) as the largest number of moves that checkmate can be delayed. The
class reached a consensus that if the next legal plays by White are to positions
Pl,PZ, ” ’ 1 pn, and White is to move, then

w(p) = zi&?(pl) B(p)
if n = 0 ;

) 2 #“‘) B@nN + 1, if n # 0;

October 16. Problem 2.17

while if the next legal plays by Black are to positions pi, ~2,. . . , pn, and Black is to
move, then

0, if n = 0 and black king in check;

W -- m if n = 0 and black king not in check;

maxw(PI 1, wP2), � l � t WPt☺,
if n # 0.

SGD pointed out that this definition does not distinguish the case where Black
checkmates White. DEK suggested that a possible solution for this might be to use
something like 03’ for the n = 0 case in the definition of W(p), but this point was
not discussed in great detail.

DOII brought up the memory management problem at this point by asking
how many different board positions exist. To set an upper bound, DEK said that
a crude method is to simply represent each piece’s position, and use some special
encoding like putting the rook on top of the king to indicate that the rook has been
taken. This met-hod requires 64’ board positions. There was a brief discussion of
how the encoding can be reduced through the use of symmetry. DEK mentioned
a theorem by Burnside on symmetry: if the transformations on an object form a
group with size G then the total number of inequivalent positions is

1
E C(number of ways an object is unchanged under g)

B

where the gs represent the transformations. For example, in the chess endgame
being considered, there are 64’ ways the board can be unchanged under the identity
transformation and 8” ways the board can be unchanged under reflection around a
diagonal. There are eight different transformations including the identity transfor-

- mation, but the other five do not have fixed points, so the total number of inequiv-
alent boards is k(64’ + 8” + 8’) which is about 2.1 million. Assuming about 6 bits
per position, the program requires about 12 million bits, or about 3 megaword on
the PDP-10. The discussion ended with DEK telling about a trick for declaring
large arrays in SAIL: the SAIL compiler won’t allow array indices over 16 or so
bits, but an array of 200,000 words can be declared as [O: 1,O: SSSSS] and the ith
element referred to as memory[location(a[O,O])+i].

[Here is a proof of Burnside’s theorem: Let the positions be pl through PN
and the transformations be gi through gc. Two positions pi and pj are equivalent
if pi = g&j) for some k. Suppose there are m classes of inequivalent positions,
and assume that pi, . . . , pm are mutually inequivalent. Then the list gkbj) for
1 < J’ < ?n and 1 < k < G includes each position pi exactly Xi times, where
Xi iS thenumber of g’s such that g(pi) = pi, For example, if pi is equivalent to
Pl, saY Pi = gl(p,), then there are Zi solutions to the equation &I) = pi, since

18 , Problem2 October 21

gkbl) = pi if and only if gk(gl’(pi)) = pi. Thus mG = ~1 + . . . + 2~. Bu t
x1 +***+ zN is the sum over all g of the number of positions fixed by g; hence m
is this sum divided by G.]

Class notes for October 21.

Today DEK presented the idea that the chess problem can be expressed using
a context-free language. Let W(p) denote the set of all strings that define winning
strategies for White starting at position p with White to move, and let B(p) denote
the set of all strings that define winning strategies for White starting at position p
with Black to move. These strategies are to be given in some appropriate format;
for example, we can say in pseudo-BNF that

(W(p)) ::=
move P to PI; MPI)) I � l * I move p to pn; UqPn))

and
(B(P)) :I.= {P to PI + (w(Pl)); . l l ; P to Pn + (W(pn))}

if the legal moves from position p are to positions pi,. . . ,pn; however, we have

(B(p)) ::= “checkmate”

if Black is checkmated in position p. If there are no legal moves from position p
(i.e., stalemate), the corresponding (W(p)) or (B(p)) is not the left-hand side of any
production so the corresponding language will be empty (it will contain no strings).

This grammar obviously defines the language of all possible winning strategies
for White, starting from a given position. It is a huge grammar with millions of
nonterminals, and the individual languages W(p) are often infinite. So how can this
help with Problem 2? Answer: the context-free formulation of this problem puts
the complex circular recursions into a more familiar theoretical setting; we can use
this grammar as a conceptual tool, although we would never actually construct it.
JMC said that it would be helpful to think about the language in terms of a “meta-
BNF” to generate the large grammar. OP suggested that the “winning moves” for
White arc those that lead to positions with a winning strategy. Similarly, Black
positions with a winning White strategy are those in which all possible moves are
winning moves for White. RLH pointed out that there are some moves that are
not in the language. For example, in some board positions White has a choice of
moves where some are “winning moves” (guaranteeing a forced win) and some are
not. In this case the language will not generate the non-winning moves, because
the corresponding language B(pi) will be empty.

.

One of the interesting features of the grammar is that each language w(p)
it defines will be empty if and only if there is no winning strategy for White
starting at position p. There is a well-known algorithm to determine whether or

October 21. Problem 2.19

not a context-free language is empty (at least DEK and HWT knew it): Start with
all terminal symbols “marked” and all nonterminal symbols Qnmarked”. Then
repeatedly mark any nonterminal symbol that produces a string consisting entirely
of marked symbols, until this is no longer possible. At this point it is not difficult
to prove that a nonterminal produces at least one string if and only if it is marked.

It is not difficult to find the shortest string derivable from any nonterminal
symbol whose language is nonempty, using a slight modification of this emptiness-
testing algorithm. If we look at what that procedure does, in the case of the chess-
playing grammar, it first marks the B(p) that are checkmates, then marks the W(p)
that are “mate in one”, then marks the unmarked B(p) whose only moves lead to
marked W(p), then marks the predecessors of these B(p) (which are umate in two”),
and so on. Thus we obtain a systematic procedure that applies nicely to Problem 2.
[See D. E. Knuth, “A generalization of Dijkstra’s algorithm”, Informaition Processing
Letters 6 (1977), 1-5, for other applications of this context-free language approach
to finding the shortest paths in AND/OR graphs.]

The discussion turned to specific implementation details when FJB asked if
the program should find the optimal strategy for Black when Black can checkmate
White. DEK said that it wuld probably be best to do whatever was easiest and
fit into the algorithm best, rather than trying to treat the situation as a special
case. RSF suggested that it might be easier to work on a smaller version of the .
problem, for example a 4 x 4 board. DEK said this would be a good way to test the
program before using a lot of computer time doing the full 8 X 8 board, as long as
no special hacks are in the program that take advantage of the board size. He said
that these special hacks are often necessary to optimize the program enough to run,
and usually involve either optimizing inner loops of code (since they are executed
so often) or optimizing the structure of the basic elements in the data base (since
they are replicated so many times). FJB suggested that an easy way to reduce

- the number of disk accesses (one of the slowest operations) is to split the database
into sections based on the least moved piece (the white king). Since there are ten
positions for this piece (using symmetry, and Burnside’s theorem), the data can be
split into ten “pages”, one of which can be in core at any time. This started a
discussion of symmetry, and OP asked whether it is known that the 8 rotation and
reflection transformations are the only symmetries in this problem (for example,
some other transformations might involve swapping rows or columns). DEK said
that since adjacency must be preserved and corners must map into corners, only
those eight transformations are symmetric. RSF asked what the definition of an
“illegal move” was, and FNY said that it was any move that left the king in check.
He also pointed out that this was assuming that we would be ignoring the possibility
that Black’s first move was to castle!

DOH suggested that one way to reduce the number of disk accesses is to keep
two versions of the database, one of which is indexed by the position of the black

20 , . , . , Problem 2 October 23

pieces and the other of which is indexed by the position of the white pieces. In this
way, all possible moves for Black can be examined without any disk accesses, and
after a move is made the white database can be accessed to examine all possible
white moves.

The class finished just as RSF mentioned that it is necessary to generate all
possible checkmates and stalemates in order to start a “bottom-up” algorithm. PB
said that it is only necessary to generate the checkmates since the database can be
initialized with each entry having an infinite number of moves to checkmate, and
when the program finished the unchanged entries are moves leading to stalemate.

Class notes for October 23,

DEK started the class by saying that the context-free language approach he
used last class was only a formalism for thinking about the problem and shouldn’t
be thought of as an actual implementation of a solution. He also mentioned that
by calling disk accesses uone of the slowest operations” he meant random-access
operations in which the disk head had to move, since an actual disk transfer is
usually less than ten times as slow as a memory transfer once it gets started.

JMC then gave a small talk on his ideas about the problem. He feels that the
problem can be done in one 256K core image. The important thing to do is to
dvoid reprcscnting illegal positions and store only “significant” positions. He had
used a “Monte Carlo” method to estimate the number of significant positions and
had found that about i of all possible positions are significant. He suggested using
the position of three of the pieces to index a table of pointers that are either zero
(for the “insignificant” positions) or point to a table in which every entry had 6
bits indicating the fourth piece position and 6 bits to hold the count of umoves
to checkmate” (this final table would need to be searched sequentially). He also
mentioned that the division of 6 bits (one piece) is rather arbitrary; the final table
could have entries of 5 bits of the fourth piece and 6 bits for the count, or 7 bits
(storing partial information about the third piece) of piece information and 6 bits
of count, and so on. He suggested that effective use can be made of a space/time
tradeoff in two ways. Only even counts need to be stored, since the “operating
program” that uses the tables to play against an opponent can use a 4-ply lookahead
to find the best move in the table.

He then made a very interesting suggestion that the program can keep two
bit-maps indexed by every possible position. One is the “White-to-move” table and
one the “Nack-to-move” table. At the start of the program the positions in the
“Black-to-move” table corresponding to illegal positions or losses for Black would
be marked (i.e., set to one). Then all possible backward moves for White would be
generated and these positions would be marked in the “White-to-move” table (the
“White-to-move” table marks positions in which White has a sure win). Following
that, the “Black-to-move” table would be marked by starting from every position

October 23. , Problem 2.21

and marking positions where every possible move leads to a position marked in the
“White-to-move” table. By repeating this cycle, all the umate in n” positions for
White can be found, and the table of counts can be updated.

He suggested a speedup for the program: in the inner loop, while checking
moves, it would be faster to check to see if queen moves would change the count
(i.e., they made fewer moves to mate) before checking their legality, since legality-
checking would be more complicated and the count-changing test would eliminate
most of the moves right away. He estimated that the look-ahead needed to generate
the “Black-to-move” table would be a lo-instruction loop and would therefore
execute about 500,000 positions X 25 average moves per position X 10 instructions
or 125 million instructions, about 2 minutes of CPU time on the PDP-10.

DEK and JMC had a small discussion summarizing the main points. DEK said
that the hack for illegal positions probably doesn’t work quite right for stalemate,
and MMS said that there is a problem of having kings take kings while moving into
check. DEK asked if there is any good solution for checking the legality of queen
moves, and FNY suggested making a small chessboard in memory and simulating
stepping the queen through the move while checking for collisions with other pieces.

MPH asked about how symmetries could be handled. DEK suggested using two
octal digits ij to represent a piece position, and generating the symmetrical positions
with ij, ij, ij, ji, si, jr, and g where i is the binary one’s complement of i. JMC pointed
out that the program can be done in two passes; one pass generates the uto-move”
tables and outputs them to disk or tape sequentially, and another pass reads them
back in to generate the “count” table (since this is a sequential operation). DEK
said that it might even pay to keep another bit table of ujust-marked” positions.
He thought that the graph of the number of bits marked in the table as a function
of how many moves to mate would be very interesting (the graph of “ways to mate
in pt” as a function of n). JDH said he thought the graph would have a peak at

- about 8 moves since after capturing the rook White could usually force a mate in
about 8 moves. The topic of doing tricky bit manipulations came up, and DEK
asked how to find the rightmost bit turned on in a word. AAM suggested ANDing
the word with its two’s complement to get only that bit turned on, and DEK said
that the actual bit position can be determined from a table lookup indexed by the
result of taking the output of the AND modulo 37 (since the first 36 powers of two
have different remainders mod 37).

DEK asked if there are any problems associated with White’s “backward moves”
in JMC’s scheme. FNY pointed out that the backward moves have to be able to
“uncapturc” a piece. JDH mentioned that it is illegal to make a backward White
move that puts Black into check, since this means that it was White to move with
Black in check (an illegal position).

F JR suggested that instead of doing a forward search from the UBlack-to-move”
map, a set of counts can be kept for each position; each count telling how many

22 Problem 2 October 2 8

ways Black has to escape from check when playing from that position. Every time
a winning move for White is found, the count of all positions that are backward
moves from that winning position are decremented (the counts are initially set to
the number of ways Black can move in that position). DEK suggested a way to
calculate how much running time this approach saves: Assuming that each forward
move is checked in a random order and the forward move-checking stops as soon as
a winning white position is found, then if Black has 20 moves from one position, the
number of forward moves checked when only one winning white position has been
found is 21 x &. After two winning white positions have been found the average
number of forward moves checked drops to 21 X &. The total average number of
forward moves checked when building the entire database is

21 & + k + . l l + a> RS 21(ln20 + 7 - 1) RS 54.6

where 7 is Euler’s constant. This result is to be compared to the 20 counter-
decrementing operations done using FJB’s method.

Class notcs for October 28.

Today FNY claimed to have a working program for a 4 X 4 chess board. His
program output indicated that the maximum n for which White has a umate in n”
is n = 20. The graph of “mates in n” as a function of n starts at 213, drops down,
peaks at 330 with n = 4, then falls off to 4 at n = 20, One of the umate in 20”
positions is

and one of the “draw” positions is

October 30. Problem 223

FNY also ran his program on a 6 x 6 board. It found a maximum value of 23
for tz, with the “mate in tt” curve having local maxima at n = 1, n = 6, and
n = 17. FJB suggested that the peak at 6 probably corresponded to forced mate
after a rook capture, as JDH had conjectured in the previous class meeting. RSF
conjectured that if captures were elilminated the second maximum of the curve (at
n = 17) would be eliminated.

FNY was not the only person with partial results. DOH said his program had
finished calculating “mate in 1” positions on an 8 X 8 board and had found about
10,000, taking about 5 minutes of CPU time. JMC said that in talking to Donald
Michie he had learned that the maximum value of n on an 8 x 8 board was 31. The
class was excited to hear this (since it meant that counts fit in 5 bits), but became
less excited when JMC revealed that he wasn’t sure if Michie meant moves to mate
or moves to rook capture. He also mentioned that Michie had worked on the king
and rook vs. king and knight endgame.

l JMC asked if anyone had made any estimates on the execution time of their
program. FNY reported that his 4 x 4 program had taken 20 minutes and his 6 X 6
had taken 2 hours, but these figures were real time rather than CPU time. JMC
said he thought the whole 8 x 8 case should only take about 10 minutes of CPU
time to run. He was interestA in the execution time because the program seems to

* . have a non-constant ?nner loop”: at the beginning of execution the program spends
most of its time generating backward moves for White since not many positions are
marked and the forward moves for Black usually find an unmarked position soon,
but toward the end of execution most of the time is spent generating forward moves
for Black and skipping over marked positions.

DEK explained how Monte Carlo methods can be used to estimate the size of
a tree. If, while randomly picking a path down a tree from the root to a leaf, the
branching factors of the nodes encountered are nl (at the root), n2 (at the first

- node encountered), and so on up to pzk (at the parent of the leaf), then the expected
number of nodes in the tree is

By doing this process several times, a good estimate of the order of magnitude of the
size of the tree can be obtained. PB asked if the commonly quoted figure of 10i2’
for the size of the chess-game tree was obtained in this way. JMC said that the
figure was probably just guessed at by using the average number of moves available
at any position in tournament play and the average game length and assuming the
tree is well-balanced and has a fairly constant branching factor.

Class notes for October 30,

No one had any operational programs to play the chess endgame today, but
HWT and GMK said they were almost done with the 8 X 8 board and that the

24 , . . . , , Problem2. ., ,November4

graph of “mate in n” appeared to have two local maxima, one at n = 1 and the
other at n = 7. They mentioned that it was hard to tell if their program was
correct, and DISK said that it is always difficult to debug game programs, especially
heuristic ones, since the bugs are usually “covered up” later on by the program’s
heuristics, before an actual move is made. He said that the famous chess program
by Greenblatt was probably the first debugged one. The class discussion turned to
Problem 3 (which appears later in this report).

Class notes for November 4.

Today was an exciting class. We connected the department’s video projector to
a terminal so that the entire class could watch the proceedings, then we called Ken
Thompson from Bell Labs in Murray Hill and pitted some of our programs against
his. The first game we played was with the program of JDH and JJW playing White
against Ken’s program playing Black on the board

with White to move. (Ken’s program said that this starting position resulted in the
longest possible game.) The game proceeded as follows:

1. K-N7 R-K2 ch
2. K-B8 R-K1 ch
3. K-Q7 R-K2 ch
4. K-Q8 R-K5
5. Q-Q5 R-K4

_ 6 . Q - Q 3 K-K3

At this point it was obvious to everyone that these moves were anything but obvious!
Ken remarked that this was true in general; the ‘best” moves never seemed to follow
any intelligent pattern, but both programs agreed that these were the best moves.
The next three moves, according to Ken, were Uforced” (in the sense that there was

November4. ,...... Problem225

only one best move for White):

7. K-B7
8, K-N7
9. Q-N6 ch

At this point the board looked like

R-QB4 ch
R-Q4
K-K4

The next few moves actually had some structure, since White was forcing Black to
the side of the board. Ken remarked that this play was the first time he had seen
any “systematic” moves so far away from the checkmate.

10. K-B6 R-Q5
11. Q-N5 ch K-K5
12. K-B5 R-Q6
13. Q-N4 ch K-K6
14, K-B4 R-Q7
15. Q-N3 ch K-K7

The play continued with some more non-obvious moves:

16. K-B3 K-B8
17. Q-R3 ch R-N7
18. K-Q3 K-B7
19. Q-B5 ch K-N8
20, K-K3 R-N6 ch
21. K-B4 R-N7
22. Q-B5 ch K-R7

26 , , , , . Problem2.. November4

Now the board was

When the program of JDH and JJW made the next move, Ken said they had lost
one move (they could have had a win in one less move). Not only that but the
reply of Ken’s program caused JDH and JJW to say that Ken could have delayed
a loss by one more move! A little discussion brought out the fact that the program
of JDH and JJW was trying to minimize the number of moves to checkmate, but
Ken’s program was trying to maximize the delay to loss of the rook. The result
was that each program had a slightly different “optimal” strategy.

23. Q-Q5 ? R-N6 ?
24. Q-K5 R-N7
25. K-B3 ch K-R8
26. Q-R5 ch K-N8

he had seen before, and
JDH and JJW reported

JEB remarked that the position was now a ‘book” position
that checkmate would happen fairly soon. The program of
that Black could only last at most 7 more moves, but the next move Ken’s program
made‘(in order to save the rook as long as possible) was a “blunder” that reduced
the count to 6. The result was a strange checkmate in which the rook was taken
very late.

27. Q-R4 R-N3 ?
28. Q-Q4 ch K-R8
29. K-B2 R-N7 ch
30, K-B1 R-N6

- 31. Q-R8 ch R-R6
32. QXR mate

Solutions., Probfem2.. 27

There were still about fifteen minutes left in the class, so GMK and HWT
decided to give their program a shot against Ken’s. Ken asked if anyone had found
any “interesting” drawn games (unlike the standard one) but no one had seen one.
The class decided to start from a standard drawn position

with GMK and HWT taking Black and Ken taking White. The game went pretty
much as expected, although in several places the programs disagreed on the best
-move again. We didn’t finish the game out afier about 20 moves, since it became
clear that Black could force a draw.

Solutions for problem 2.

The most successful approach to the chess endgame problem was the one used
by FJB/OP/JP, JDH/JJW, and RSF/DOH in which two tables are kept: a “mate
in n or less” table and a “next black escape” table. Both tables are indexed by
board position (symmetrical board positions have the same index). The “mate in
n or less” table is a one-bit table; setting the bit for a particular position during
pass n of the algorithm means that white can force a checkmate in tz moves or

28 Problem 2. Solutions

less. The “next black escape” table entry for a particular position has a number
indicating one of the 22 possible black moves that will take black from that position
to a position that can postpone checkmate for at least n more moves. One “step”
of the algorithm backs up one black move from each position marked in the Qmate
in n or less” table. If the “next black escape” in the resulting position still leads
to a position not marked in the “mate in n or less” table, the algorithm continues
(since the “escape” still works). Otherwise, the algorithm looks for the next legal
black move (in the sequence of 22) that leads to a position not marked in the umate
in n or less” table. If one is found, its move number is inserted in the “next black
escape” table, otherwise all positions that can lead to the position by a white move
are marked as “mate in n or less”.

By saving the positions that are marked in the umate in n or lessn table on
each pass of the algorithm, enough information exists to have either white or black
play optimally with only a one-move lookahead. However, JDH/JJW also saved
B(p), the number of moves black can delay checkmate. This allowed them to play
black with no lookahead.

All three groups had small but interesting twists in the algorithm. FJB/OP/JP
handled symmetrical positions by flipping the board to one of the ustandard” posi-
tions before applying the algorithm. This simplified their data structures con-
siderably (they had ten disk files that corresponded to tables for the ten different
positions of the white king), but it also resulted in large amounts of Uspecial-case”
code that was very repetitive. JDII/JJW used LEAP data structures (part of the
SAIL language) in a very clever way to generate moves with very little code, and
they also made good use of macros (another SAIL feature) to deal with repetitive
code. JDJJ/JJW also had an interesting way to test their program: they used a
random number generator to print out a sample of the database and hand-check it.
RSF/DOJ[incorporated “heuristics” to speed up the test for checkmate, e.g., they
made sure the white queen was present and the black king was either on the edge
or in a corner before making more elaborate tests for checkmate. They tested their
program by playing it against JDH/JJW in the iongest possible game.

FNY/MMS/ML used an algorithm with three one-bit tables indexed by board
position. One of these, the umarked” table, tells which positions lead to white
checkmate in less than p1 moves with white to move. Another, the uqueue” table,
tells which positions lead to checkmate in exactly n moves, again with white to
move. A third, the “black to move” table, tells the positions where one or more black
moves lead to positions marked in the ‘queue” table. One pass of the algorithms
marks all positions in the Qarked” table that are marked in the uqueue” table.
Then it sets up the “black to move” table by making backward black moves from
the marked positions in the ‘queue” table. It then makes one pass through the
“black to move” table to find the positions where all forward black moves lead
to positions marked in the umarkedn table (positions where black has no escape).

Solutions , . Problem 2. 29

When it finds one of these positions it goes back one white move and marks the
resulting positions in the “queue” table if they aren’t marked in the “marked” table.

FNY/MMS/MI, had a great deal of trouble with getting PASCAL to deal with
the large arrays they were using, and decided to work with a 6 x 6 board. Their
program took advantage of the similarity between forward and backward moves
(the only difference being the distinction between capturing and “uncapturing”).
They also used one “heuristic” (as did RSF/DOH), but didn’t explicitly mention
it-namely, checking that the black king was on the edge of the board before making
more elaborate tests for checkmate.

PEV/I’II W/CXF kept two values for each board position, the minimum number
of moves for white to checkmate (which would be used by white) and the maximum
(which would be used by black). They used the scheme suggested by JMC for
indexing board positions in which only legal positions are kept in the table and
indexing the table is done with a binary search. Rather than sequencing the set
of searches for moves by procedural calls, they kept an explicit queue of “things to
do”, where doing the task at the beginning of the queue could add more to the end
of the queue.

RLII/PB decided to spend some time trying to encode piece positions in a
clever way to make move computations reduce to simple arithmetic. They didn’t
have much success, but they did make good use of SAIL macros to greatly simplify
the coding of the repetitive tasks in computing moves and testing for checkmate.

GMK/HWT used an algorithm practically identical to that of FNY/MMS/ML,
but they finessed the problem of dealing with large arrays by coding in C and
using a VAX computer, which has a very large virtual address space. Their “play”
program (which they used in the demonstration) was really just a simple program
for displaying parts of the database. In order to get the next move they would
display W(p) from their database and pick the move (manually) with the smallest

- value.
Several of the groups had a lot of trouble getting finished and many mentioned

the difficulty of testing the programs for obscure bugs. In general, people felt that
this was an interesting, challenging, “real-world” problem.

30 $ Problem 3 Problem description

Problem 3. Unrounding.

This is a problem that arises in connection with digitized alphabetic characters
such as the ones used to print the page you are reading. We are given the boundary
of such a character as a sequence of “king moves” forming a closed circuit. For
example, the boundary of the letter ‘S”:

is described by the following king moves (starting in the upper right corner and
going counterclockwise): W, S, S, SW, NW, NW, W, NW, W, W, W, W, W, W,
SW, W, SW, SW, S, SW, S, S, S, S, S, SE, S, SE, SE, SE, E, E, SE, E, E, E, SE, E,
E, SE, SE, S, SE, S, S, S, SW, SW, SW, SW, W, W, W, W, NW, W, NW, W, NW,

October 30. , . , . . , Problem 3 ,31

NW, N, NW, N, N, W, S, S, S, S, S, S, S, S, S, E, N, N, NE, SE, E, SE, E, SE, E,
E, E, E, I!:, E, NE, NE, E, NE, N, NE, N, N, N, N, N, N, NW, N, NW, NW, NW,
W, W, NW, W, W, W, NW, W, W, NW, NW, N, NW, N, N, NE, NE, NE, NE, E,
E, E, E, SE, E, SE, SE, SE, S, SE, S, S, E, N, N, N, N, N, N, N, N, N.

We arc actually interested in characters with a much higher resolution than this
particular character, for example, characters that are 300 pixels high. We would
like to find a smooth curve or set of curves that will 7ound” the boundary so that
we can extend discrete characters to infinite resolution. In particular, if a boundary
curve comes from a straight line, we would like to deduce what one such straight
line is,

The boundary can first be broken into consecutive blocks such that in each
block all of the king moves have only two adjacent directions; for example N and
NE, or N and NW, or W and NW, etc. By symmetry let us assume that we are
dealing with a section of the boundary such that all of the moves are E and NE.
These points can be graphed as

where CQ+ 1 = ak + (0 or 1) for 1 5 k 5 n.
All of this is background for the following interesting computational problem:

Given a sequence of integers aI, a2, . . . , determine the largest n such that there
exists a cubic polynomial f(z) with

ak - 0.5 < f (k) 5 ak + 0 . 5 , l<k<n.- _ _

After solving this problem, we will apply it to data from actual digitized
characters.

Class notes for October 30.

Discussion on problem three began with DEK saying that the solution to it
would probably be qualitatively different from the solution to problem two in that
Some clever, easily programmed algorithm would do the trick and the interesting
part is to find the most elegant algorithm. He suggested attacking the problem
by first considering the linear case instead of cubits. Consider straight lines of the
form y = mx + b where 0 < m 5 1. In this case, the rounded points are

The “king move” description consists entirely of N and NE moves. The problem
statement is simply, :Find all m and b that could have generated the given data.”
For example, m = h and b = 3, having k = O,l, 2,3,4,5,6,7,8 gives yA; =

32 , Problem 3 October 30

O,O, 1, 1, 1,2,2,2,3. In general, if m is rational the pattern repeats with a cycle
equal to fhc denominator of m.

Next, DEK tried using pn = $ = l/4 M .61803.. . and b = 0. The number 9
is interesting in this problem in that we want the fractional part of ktl, for integral
values of k. It turns out that ti2 + II) = 1, so we know that @” + e2 = +.
Subtracting the first equation from the second gives 2$- 1 = $“, so the fractional
part of 2$ is @. Similarly, using the fact that $l + ti3 = $2 we can find that
2 - 3$ = *I, so the fractional part of 3+ is 1 - $I’. Continuing in this way, we
find that plotting the fractional part of k$ always causes a new point to fall in the
largest remaining interval, and it cuts this interval in the golden ratio. The range
of k = 0, 1,2,3,4,5,6,7,8 gives yk = 0 1 1 2 2 3 4 4 5,t I 1 # I 1 I I

The constraints on m and b can be written

-it< b L& [k = 0]

h<m+b<li [k=l]

44 <8m+ b< 54 [k = 81

JJW said that since this is a set of linear equations, linear programming methods
can be used to solve it. JMM suggested that one might be able to combine the
inequalities to further constrain m and b. OP said that the problem might lend
itself to a binary search for m and b. DEK decided to take these suggestions one
at a time, starting with JMM’s. By combining the first two inequalities, one gets a
bound of 0 < m 5 2. Unfortunately, this was already known. FNY suggested that
using inequalities for more widely spaced values of k results in tighter bounds on m.
DEK replied that although that is true, it would be nice to have an algorithm that
treats values of k sequentially and knows when the constraints on m and b are no
longer satisfiable if the next value of k is considered. He mentioned that Motzkin
had developed a variable-elimination method procedure in the 1930s that can be
used to solve linear inequalities. For example, we can write

and so on. For some value of m to exist, all of the left hand sides must be less than
or equal to all of the right hand sides. Conversely, if all the left hand sides are less
than all the right hand sides, a value of m will exist. Therefore we can remove m
and obtain about tt2 inequalities involving b alone. In general,

1
-;b+yk;2 <m< yklh-tb- -

October30.. ProblemS.. 33

so for all values of j and k the inequality

must be satisfied. This is equivalent to

!h+h Yj-3

k - j

and since the equation should be symmetrical with respect to j and k,

b< Yj+i yk-5

- j a- k l

Combining these two equations gives

Yk+h Yj-3

k - j

for all j > k. Therefore a necessary and sufficient condition for the existence of m
and b is that

max
yk-h Yj+i <-

I<k<jsn k j -
min

Yk + 3 Yj - 3-
l<k<j_<n k j ’

Now the class started discussing the binary search approach, using a graphical
method to think about the constraining inequalities. Considering the b-m plane

- with b horizontal and m vertical, the inequality -& 5 b 5 3 limits the region
of solution to a vertical band of thickness 1 centered about the m axis. Each
successive inequality intersects this region with another band sloping to the left;
each successive band has a shallower slope than the previous ones. JDH suggested
that all vertices making up the polygonal region of intersection can be found by
the following method: if a vertex is contained within the current intersecting band,
it remains as is, otherwise it is replaced by two vertices which are along the lines
emanating from it. However, JMM provided an example of where this method
wouldn’t work, namely the case where the band intersects only the top of the
polygonal region and loses a lot of vertices. SGD objected to the use of a binary
search algorithm, since it is not obvious whether m is too large or too small if the
current band doesn’t intersect the polygonal region. Although this problem was
not completely resolved in the class discussion, the class agreed that it would be
possible to decide if a particular value m = mo was too large or too small by looking

34 Problem 3. November 6

at the interval where m = mo intersects the polygon; mo is OK if the successive
intersections by bands 1,2,. . , does not make the interval disappear, while m. is
too large if the kth band hit*s the line m = mo strictly to the left of the interval
determined by bands 1,2,. . . , k - 1.

RLI-I made a meta-comment that the discussion of the linear case was not
really addressing the problem as stated, since the stated problem was to find a
cubic rather than linear equation, and that some of the methods being discussed
were only applicable to two-dimensional spaces. DEK said that it is true that the
two-dimensional case won’t always show you what to do for the four-dimensional
case, but it will show you what not to do, and it is easier to draw two-dimensional
pictures on a blackboard than it is to draw four-dimensional ones.

DEK finished by presenting a small addendum to the properties of yk =
[mk + bj w h e n m = @. Using the recursive relation S, = S,-i Sn-2 where
so = a and S1 = b (for ex.ample, Sz = ba, Sa = bab, Sd = babba, and so on),
the kth letter of any string is L(k + l)@j - [k+J, with a suitable assignment of uan
and “b” to 1 and 0. Another unusual property of these strings is that in any string
there are only k + 1 different substrings of length k. Yet another property is that
Sn - l & a - - 2 is the same as S,- z&-i with the last two letters “complemented”
(i.e., “a” changed to “b” and Ub” changed to “a”). Probably the most interesting
property of these strings in terms of problem three is that if ua” means “take an
E step” and “b” means “take a NE step”, then all of these strings correspond to
drawing a line of slope $J on a raster.

Class notes for November 6.

Discussion continued on the unrounding problem today. DEK said that some
test data is available for the characters “C”, “S”, “2”, “0”, and “4” in the file
CS204,DAT[MF,DEK] at SAIL or <CSD .MILLEtR>CS204.DAT atSCORE.Inthis data,
the 8 king moves arc represented by single-digit integers, where 0 means Ueast”, 1
means “northeast”, and so on up to 7 being Usoutheast”.

Throughout the discussion today, one idea that constantly arose was the ques-
tion of howthe unrounding program would be used. There are actually at least two
ways: it can be used: (1) a “data reduction” problem in which the raster form of a
character is converted into a set of simple curves describing the character (this is
like the METAFONT program in reverse), thereby having a compact encoding scheme;
(2) a ‘(t-shirt” problem in which the raster form of a character is used to generate
the same character on a much finer raster or with essentially infinite precision, as
if we wanted to make large characters to print on a t-shirt.

SGD suggested that perhaps the problem could be solved using the fairly
simple approach of representing the desired cubic function parametrically (as z(t)
and y(t)) and connecting together groups of four points using splines. DEK said
that this method doesn’t seem to help in the data reduction problem, and in the

November 6 , Problem 3.35

t-shirt problem it might produce some strange results. For example, cubic splines
go through all knots, so a cubic spline fit to the points resulting from drawing a
straight line into a raster would be a wiggly line through all the raster points. Even
B-splines, which are affected by the knots but don’t necessarily pass through them,
would probably fit a wiggly line to the raster points of a straight line.

Along the lines of the data reduction problem, DOH observed that only one
bit is nccdcd to encode each step of a gradual curve in one octant. SGD suggested
that an appropriate data representation (not using cubits) is a fixed-size word with
a count of the number of steps to follow, followed by the octant number (3 bits),
followed by a stream of bits telling the steps for drawing the curve. DEK said he
believed c~hics might be able to encode the data in fewer bits, especially where there
are long pieces of boundary that can be encoded as one cubic; but this remains to
be proved, and the value of cubits for data reduction would stand or fall based on
the results the class finds for Problem 3. SGD said the division into octants seemed
rather artificial and would hurt even the cubic encoding scheme when a smooth
curve went, from one octant to another, since the switch would cause a new cubic
to be started. He suggested that the problem could be solved with a parametric
representation of the curve. DEK said he had once thought so too, and that this
in fact was one one of the problems in CS204 two years ago, but no really good
solution had been found.

DEK mentioned that it i: fairly easy to produce hardware that generates cubits
on raster points. If we have

f(k) =u+)k-tc(;)+uJ(;)

then
A f(k) = f(k + 1) - f(k)

because

= b + c k + d

z A k(k - 1). . . (k - n + 1)n,
.

- (k+l)k...(k-n+2) k(k-l)...(k-n+l)--
n! n!

k(k - 1). . . (k - n + 2)((k + 1) - (k - n + 1))--
?Z!

- k(k-l)...(k-(n-1)+1) -- -
(n - l)!

36 , . Problem% November6

Similarly,
A2f(x) = c + dk

A”+) = d

so if we have three hardware registers A, B, and C with

c = f(k)
B = Al(k)

A = A2 j (k)

then we can move to the next step (from j(k) to j(k + 1)) by setting

C + f(k + 1) = f(k) + Af (k) = C + B
B +- A j(k + 1) = A j(k) + A2 j(k) = B + A

A +- A2 j(k + 1) = A2 j(k) + A3 j(k) = A + d.

In particular, note that all three additions can be done in parallel. SGD pointed
out that this method also works with parametric equations using six registers
rather than three. DEK said that one of the problems with using a parametric
representation is that sometimes the locus of solutions for the equation az3+bz2y+
. . . -- 0 crosses itself. The problem is that the function UZ’ + bz2y + l l v is positive
on one side of the locus of solutions and negative on the other side, and at the
crossing point an unusual arrangement of positive and negative occurs, causing
algorithms to lose track of what direction they are moving along the locus. This
does not happen with quadratics,.however, so parametric quadratics might turn out
to be better than cubits.

MMS said that an interesting problem to consider is how to fill in a character
given its outline. DEK said that one method that works is to go through every point
visited on the raster and complement it and all the points to the right of it. MMS
pointed out that this method doesn’t work on horizontal lines, and DEK confessed
that it has to be hacked a little bit to get everything to work out right. One correct
rule is to complement to the right of the bit you are moving to, if the move is N,
NE, or NW; to complement to the right of the bit you are moving from, if the move
is S, SE, or SW; and to do nothing if the move is W or E.

FJB asked what a good method would be to handle the problem of corners, i.e.,
how to fit together the cubits making up different sections of the letter boundary.
PHW said that corners are no problem in the data reduction algorithm, but would
have to be considered for the t-shirt algorithm. DEK suggested that it might be
useful to know how many points can be represented by a cubic starting at each point
in the character boundary. Someone suggested that a good method might be to
generate cubits that include some overlapping points, then to use a very small cubic

November 11 , Problem837

to generate the path through the overlapping points. HWT said that this method
would be bad for corners, since sometimes including too many points in a cubic
would change it from a very straight one to one with a slight but noticeable curve.
DEK agreed and said that corners would either have to be deduced automatically
or specified in the input, for the t-shirt application.

Class notes for November 11.

Today PIIW asked a question about linear programming and DEK spent most
of the class talking about how linear programming works.

To simplify the discussion, we shall consider the linear case of the unrounding
problem, since the generalization to cubic and higher cases will be straightforward
once the linear case is understood. In the linear case we have

fl L a+6 Lfr+s
f2 < 2a+b L I;+s

f3 z 3(J+b L Ir,+J

and so on. Let us introduce “slack variables” s; and ti, so that these inequalities
can be rewritten as three pairs of equalities

~I+SI= a+b =fi+J-tr
j2+52 =2a+b=fi+6-t2

f3 + $3 =3a+b=f,7+&--t3

where s; L_ 0 and t; 2 0. Actually, since si + ti = 6, one of them could b e
eliminated, but it is convenient to use both in discussing the algorithms for linear
programming. If we subtract the first equation from the second, we get

a = j2 - jl + $2 - 81;

e and if we subtract the second equation from twice the first, we get

b = 211 - j2 + 2si - a2.

If we let sI and s2 be independent variables, then we can use the fact that tl =
a-- s1 and 12 = 6 - s2 and make the following table:

---a - b const -si -tl -s2 -t2

38 Problem 3 November 11

In this table, each row gives the multiplying factors for the column headers; the
sum of those products is zero. Thus, each row of the table corresponds to a
linear equation. The rows for sr and s2 are marked with stars since they are the
independent variables.

The idea of linear progr&nming is to maintain such a tableau subject to two in-
variant conditions. First, only two columns, corresponding to the independent vari-
ables in this two-dimensional application of linear programming, will have nonzero
entries, except that all the other columns will contain ‘1’ in the row corresponding
to their column header. Second, all rows will be lexicographically positive; in other
words, the leftmost nonzero entry will be positive. In such cases, there exists a
solution to the system of inequalities, since there will be a solution to all of the
equalities if WC assign zero to the independent variables.

The algorithm proceeds by adding multiples of one row to another row, or
appending new rows corresponding to new inequalities that need to be satisfied,
while trying to maintain the two invariants. Columns u and b will contain zero in all
but the first two rows, since variables u and b will never be selected as independent
variables.

Let’s try now to append two more rows to the tableau, corresponding to the
equations 1;s + s;~ = 3a + b = js + 6 - t3. After subtracting appropriate multiples
of the a and b rows, so that columns u and b of the two new rows are zero, the
tableau looks like this:

- a--
a 1-___- -
b 0-.--
81 +_ -_-. -
21 0-_-- - -
Ld?$, :i+

-. -.-.
f_ 0.‘)-.---
s;j 0---.
t;, 0- - -

-4 const -s1 -t] -s2 -t2 -sg -43

J: * * * * * * *

0 6 0 0 1 1 0 0
A0 2f2-jr-jl 1 0 - 2 0 1 0

0 b-2jz+ja+jl -1 0 2 0 0 1 &-

Now, as long as both of the new rows are lexicographically positive, the two
previously mentioned constraints are satisfied. If, however, one of them is negative
(it cannot happen that both arc negative, since their constant terms sum to 6), then
that row must be “fixed up” so that the invariant is re-established.

The row that needs to be fixed up can be of two types: (a) Its constant term
is negative, and it has nonnegative entries in all other columns. Then there is
no solution to the system of inequalities, since the algorithm has deduced a linear
combination that cannot possibly sum to zero. (b) It has a negative entry in some

November 11 . . . , Problem839

independent-variable column. In this case, it is possible to replace that variable with
another one,. as follows: Let’s say that one of the independent variables is uo, two
of the dcpcndent variables are VI and ~2, and we wish to make UJ an independent
variable and u() a dependent variable. Let ug be the other independent variable.

’Before the transformation, the table looks like

c o n s t -ug -tq -u2 -ug

‘!I

except that the columns might be in a different order. The ur row means that
Cl - aiuc - uI - b1u3 = 0. Dividing by ai gives

Cl 1 61- - u() - -?.q - -u3 = 0 ,
4 Q1 a1

which we can put into the uo row. Similarly, we can subtract ~12 times this equation
from the equation in the u2 row, obtaining

C2
a2

- --Cl +
a1

zul--u2-(b2-;bl)u3=o.

So the new table is
const -u() -uJ -u2 -u3

)I

In order to satisfy the constraint that the new row ue be lexicographically positive,
it is necessary and sufficient that ui be positive. In order for the new row u2 to
be lexicographically positive, the condition is more interesting. Let + denote the
relation ‘lexicographically greater than’, let 0 denote a row vector of all zeroes, and
let rr and r2 denote old rows u1 and 112. Then r2 - (u&)rr + 0 if and only if
either a2 < 0 or--

a2 > 0 A r&2 - rl/al > 0.

The latter relation is equivalent to r2/a2 + r&i. Note that it is impossible to
have r2fa2 = rl /ai because of the entries in columns -ui and -u2.

In view of this theory, the algorithm fixes up a lexicographically negative row
u2 as follows: Find a column uo corresponding to an independent variable such
that u2 < 0. Look through all rows ul having an entry ui > 0 in this column,
and choose the row having lexicographically minimum value when divided by ~1.

40 Problem8 November 11

Make ul an independent variable instead of uo. This transformation preserves the
invariants, except perhaps in the row u2 that was bad to start with; but since
u2 < 0, this bad row has gotten lexicographically greater than it was, so things
are improving. Indeed, a finite number of such steps will either fix the bad row or
produce an unfixable row. (The algorithm cannot loop, because if it chooses the
same independent variables it produces the same tableau, yet the bad row is getting
lexicographically larger at each step so it cannot return to a former value.)

DEK mentioned that the data structure can of course be squeezed down from
a square array quite a bit since all the zero columns can be deleted and since row
ti can be deduced from row si without storing them both. The big array was used
in the derivation only to make the proof simple.

He mentioned that most programs for linear programming use a simpler in-
variant: instead of the lexicographic business, they only require the constant term
to be nonncgativc. Such algorithms can get into a loop, but the conditions for
looping arc so rare that they are ignored. He feels that this is dangerous practice,
and noted that the lexicographic test can be implemented in such a way that it runs
essentially as fast as the simpler test of minimum c&r in most cases. The problem
data jk = k f- (k mod 2) and 6 = 1 will cause this algorithm to produce many rows
with constant term zero, and looping might well be possible. HWT suggested that
a better idea might be to keep a count of how many times the process was being
repeated, and to ask for manual intervention if the count became too large. DEK
said that you could get away with that when solving Problem 3, but not if you were
producing software for use by other people than yourself.

Both FNY and CXF brought up the question of roundoff error. CXF mentioned
that this kind of approach (subtracting a multiple of one row from another) is a
bad way to solve a set of linear equations, and that an LU decomposition is a
much bcttcr way. DEK said that the roundoff problem is even worse than usual
because a small roundofl’ error can completely change the results of a comparison
against zero, thus changing the whole course of the algorithm. FNY suggested
that since the process starts with all integers and the only nonintegral operation is
divison, the arithmetic could be done with rational arithmetic (saving numerator
and denominator). Someone objected that keeping the fractions in lowest form
would be difficult, but DEK said that it depends on how fast the denominators
grow; perhaps fractional arithmetic wouldn’t be too bad. He mentioned that he
was always surprised that no one had implemented Euclid’s algorithm (for finding
the GCD of two numbers) in hardware.

TCH mentioned that the problem of solving large linear programming problems
has been studied extensively. He offered two references: R. E. Gomory, uLarge and
non-convex problems in linear programming” in Proceedings of Symposia in Applied
Mathematics 15 (AMS, 1963) and R. E. Gomory, “Mathematical Programming”,

November 13 Problem 841

Amer. Math. Monthly 72 (2) Part V, pp. 99-110, Feb. 1965.

Class n&s for NOVCJI~W 13.

Discussion finished on the unrounding problem today as DEK mentioned a
typical solution to the roundoff problem: the “step-by-step” method can be used
for a while, followed by a matrix inversion using more stable methods to solve for
the current indcpcndcnt variables. The whole tableau is determined by the choice
of independent variables, so accumulated rounding error will disappear. The only
trouble occurs if your independent variables lead to a tableau that violates the
invariant, in which case you have to go back or fix things up.

The class then turned to the “real-world” problem of deciding whether or not
the ALTOS (which appeared to have no hardware support) should be used for
Problem 4, or if communicating processes would be simulated either in a single
program or using multiple jobs on SAIL or SCORE. The class opted for using the
ALTOS, and AAM braced himself for the task of getting a MESA program running.

In the meantime, class discussion started on problem five, the outerplanar graph
problem. (This discussion appears later.)

42 , . , . . Problem3,. , Testdata

Test Data for Problem 3

The letter C...
4444444444444444444444444444444454444444444544444445444445444454
4445444454445444544544454454454454454454544544545445454545445454
5454545454554545454554545545545545545545554555545555455555545555
5555555555555555565555555655555655556556555655655655655656556565
5656565656556565GG56565656565665656656566565G65665665665G656G5665665G
665666566656665GGG65666666566665666666665666666666665666666666666
6666666666G6GGGGG6666GG676GG6666666676676GG666676666676666676666766
67666766G76667667667667667667667667667676G7676676767676767667676
7767676767677676776767767767767767767776777677767777767777777677777
7777777777777777077777707777077770777077077077877877878778787078
7707070707070707007070707807070070070788700788700788708878078807
0007000070000700807080007000008070800000000788800000088088088888
000000000000~000080001000081808100018001801801001081801018810101
0101010101011010110101181118110111181111110111111111111111111211
1111211112111211121121121121211212112121212121212121212121212212
1212212212122122122122122122122212221221222212221222222223223233
3343443444444544545555656656656665666656656665666566566566566565
6656656565665656565656565656565655656556565565655655G5565556555655556
5555556555555555545555554555545545554554545545455454545454545445
4544544544544454445444544444544444444544444444444444444344444444
3444443444434444344434434434434434434343443434343434343343433434
3343334334333433334333333343333333332333333323333233332332333233
2332332323323232332323232323232323232232322323223232232232232232
2322322232232223222232223222232222322222322222322222223222222223
2222222222222322222222222222222222222222222212222222222222122222
2221222222212222212222212222122221222122221222122122212212212212
2122122121221221212122121212121212121212112121211212112112112111
2112111121111211111112111111111011111118111181110118111011018110
1011010101010101001810100108180100100180818880180001800081888888
0010000000000000000070000000070000078087808708078870070070708707

- 0707070707707077070770777077077770777777877777777776777777677776
7776777677677677676776767767676767676767676767G7667676766766767667
6676676676667666766766667666766766767777078070008001081011112122
1222
22
2222222222222222222222222222222322323333434434444445445455556566
56656GG6G56GGGG5G66G656G6656666656666656666656666566666565332333
2333233332333333233333333333333333343333334333343343334334343343
4334343434343434343443434434434434434434443444344434444434444444
43

Testdata Problem3 ,...43

The letter S...
4444444444444444444444444444544444444544445444454445445445445445
4454544545454545454545545455455545545555545555555555555555565555
5655565565565655656565656565656566565656656656656G5666566656665666
665666666G656666666666666666666666666666676666666766666766G676667
6676676676676676676767667676767677676767767767767777677777767777
7777777077777707778770770778707707070707870700707007878070878007
00780070007OO07000788070007000078O070007000700070007008700070807
00870O070O0700O7080700070007080708870887080788878700707087070787
0770707707707778777777077677777767776776776776767676767676766766
76676667666676GG6676666666666G7656666666G6656666G6566656665665665
665656656565565656556556556555555655555555554555554555455455454554545
4545445454454544454454444544445444444454444444444444444434444444
4434444434444434443444344434434434434434344343434343434343433434
3343343343334333433333343333333332333333233323332332332332323323
2323232323232322323223223223223222322232223222232222223222222223
2222222222222322323333434434444445445455556566566666666666666666
6666666GG66G66.GGG66G6666666666G666GG66G66G66666G66666666G666666
66666666G6666666666G6666666666666666666666G666G66666666666666666
6666666666666676676777707007088000100101111212212221222222212222
221222222212222221222222212222217G777677777767777777777777777707
7777707770777077077077078770707078707070707878708787887807887887
0070070807000700070080070000070000000087800808008000800080008888
00000108000O8100O01800010081081001801801010818101810181810101101
1011011101111011111111111111111111211112111211211211212121121212
1212212121221212212212212212221221222212222122222122222222122222
2222222222222222222222222322222222322222322223222232223223223223
2232232232323223232323232323323233232333233233332333333333333333
3333333433334334334334343343434343434344343443434434434443444344
4344434443444344434443444344434443444344434443444344434443444344
4344434444344434443444344434443444344344434434344343434343433434
3343343334333333432333333233323323323323232323223232232232222322
2232222222223221222222222122221222122212212122121212112121121121
1112111111111110111011811811810110101018818181001881888188108881
800001000OO08100O00800080800087000000070088870807888700070870878
0707070070787077070770707707770777077770777777777777767777677776
77677677677676776767676767G766767667667676676676G766676G676667666
676666676GGG67GGG6G666667666666GG666667G676777787087808008188181
1112122122
22
2222222222222222222222222222222222222223223233334344344444454454
55556566566656GGGGG65666666566666G656666665666G66654323333233332
3333333333333333333334333343334333433434334343343434343434434343
44344344344344344434443444344444344444443

44, . Problem8,.... . Testdata

The numeral Z...
4444444444444444444444444445444444454444544445445444544544545445
4544545454545455454554554554555545555555555555555555655556555655
6565565G5G5G5G5G5G5656G56566566566566566656666566665666666656666
666666666G6666676666766766767677677777777777777077070780788700087800
0~000~~01~O0~1001~010l~ll~llllllllll2ll2l2l22l22l2222l2222222222
2322223223223232332333333333343343434434434444344444444321212121
2121121211211121111211111111111011110110118118181101010108101001
0100010010000100001080000010000800000007880887000788700787870778
7077077770777777777767777767767776767767G767767676676767667G76676
676676676667666766667666676667666666676666666667666666666666666
666666656GGG666G65GG666656666566566656G65666566566566566566565
6656565665656565656565565656556565565565565565556555G55565555G55555
5565555555555555455555554555545555455545545554554554545545545455
4554554554554555455545555455555545555555555555555555555655555565
55565556556556556556565565656565656565656565665G565665665665665665
66G5G665GGG566GGG6G676676777707007800800000008000008088088800080
80000000OO0000000O000000000000O000000000000000000800080000888888
O00OOOOO~OO0000O0O00O08OO8
800000000OOO0000O0000OO00000000000000000800088000080000008000800
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22221222221~2222122221222221222221222212222212222212222212222122
2221222221222212222212222222232232333343443444444544545555656656
656666656GG65GGG665G6666566665GGGGG566GG656GGG656G66566666566654
4444444444444444444444444444444444444444444444444444444444444444
4444444444444444444444444444444444444444444444444444444444444444
4444444444444444444444444444444444444444444444444444444444443111
21111121111111211111110111~1111011111011101110111011011101101011
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1011110111111101111111111011111111111111111211111111112111112111
1211121112112111211212112121121212121212121212121221212212212212
2122122212221222212222221222222222222222222222222222322222222322
2223222232222322322232232232232232322323232323232323232323323233
2333233323333233333333333333333334333334333433433434334343434343
4343434344343443443443443444344434443444443444444443

The numeral O... outer boundary:
4444444444444444444444444445444444454444544445445444544544544545
4454545454545454545545455455545554555555555555555555555655556556
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
656665G665GG665GGG5G6GGG5GGG656GGGG56666G65GG66665G666G666566666
66665GG6666GGGG6656GGGGGGGGG6G666G6656GG6G66666~6GG6666666666666
6666G66GGGG6666GG66G66666666666676666G6G6666GG66G7G66666666666
76666666G67G6666G6G766G66766666667666667666676666676667666676667
66676667GG766676G7667667667667667667676676767676G767676767767676
7767767767777677777777777777777777707770777077070770707070707070
7O7OO7O70O7OO7OO7OO07007000070000700000007O000000008080000808888
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0110111011101111111111111111111112111121121121121212112121212122
1212121221212212212212212212212212221221222122212221222212221222
2212222122222122222212222221222222221222222222122222222222212222
222222222222221222
2222222222322222222222222222232222222222223222222222322222222322
2222322222232222232222322222322232222322232223222322322232232232
2322322322322323223232323223232323233232323323323323333233333333
3333333333333433343334334343343434343434343434434344344344344434
43444434444344444443

Test data . . . , . . . ‘. . . . , , Problem 3 ,45

The numeral O... inner boundary:
4444444445444444544454454544545455454555455545555556555565565565
56565656565665656656656656656665665666566656666566656666566666566665
666666566GGG65GGG666656666666566666666665GGG6G6G666656666GG66666
6666566666666666666666666666665666666666G666666666666666666666666
666666666666666666666GGGG6GGGG6766666666GG6GG666666G6G6676G6G666
6666666676GG6666GGG6766GGG6GG66766666667666666676666667666666766
66766666766667666766667GGG76676667667667667G67667G76676767676767767
7677677776777777077707778707707070070780788870000087880808888108
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2121221221221221222122122212222122212222122222122221222222122222
2122222221222222212222222222122222222222122222222222222212222222
2222222222222222212222222222222222222222222222222222222222222222
2222222222222222222322222222222222222222222232222222222222223222
2222222232222222222322222223222222232222223222222322223222223222
2322232222322232232223223223223223232232323232323323323323333233
3333433343334343343434434344344434444443

The numeral 4... outer boundary:
4444445445455555655655655565565565565565565556556556556556556555
655655655G556556556555655655655655655655655655565565565565565565556556
5565565565565556556556556556556555655655655655655655655565565565
5655655655565565565565565565556556556556556556555655655655655655
6555655655655655655655565565565565565565565556556556556556556556555
655655655G5565565556556556565G565GG5GG66667G676777707007888808000800
88O8OOO0000000000000000000000000000000000000000000000000000000OO
~O~O88000000000OO00O0000O000000000000000000000008000008000O00000
88O8O8O0O000000O00000000OO000000000000000000076GGGG6666GG6G66666
6666666G6GGGGGGGGGG66GG6GGG66666GGG666GG6G6666666666666G666G6666
66666656G5565565554554545444544454444445444444544444445444444544
444444444444444446666666666666666666666G666668808808800800800088
880OO0O00000O000O000000O000O000080880000O008000000080O8880880808
8800O8O00OO00000000080000008000000008008800880080O8088800888O008
8OO8OO0O0000O0O0O0U0000000000O00000000000O000080000O022222222222
2222222222222222244444444444444444443444444344444443444444344444
4344434443434334333233233223222222222222222222222222222222222222
2222222222222222222222222222222222222222222222222222188880808880
8000800000000000000080080000008000088000800080001081011112122122
2222322323333434434444444444444444444444444444444444444444444444
4444444444444322222222222222222222222222222222222222222222222222
2222222222222222222222222222222222222222222222222222222222222222
2222222222222222222222222222222222222222222222222222222222222222
2222222222222222222222222222222222222222222222222222222222222222
2222222222222222222222222222222222222222222222222222222222222222
2222222222222232232333343443

The numeral 4... inner boundary:
55655565565565565565565556556556556556556555G55655G5565565565556
5565565565565565565556556556556556556555G555655655G55G55655655565565
5655655655655565565565565565565556556556556556556555655655655655
6556555655655655G5565565565556555G55G7080000000800000080088008008880
0080800000000000000000000000000000000000800000000000000000088800
8OOO8OO0O0OOO00O00000~0000000000000000000000000000000000O00l2222
2222222222222222222222222222222222222222222222222222222222222222
2222222222222222222222222222222222222222222222222222222222222222 *
2222222222222222222222222222'22222222222222222222222222222222222
22222222222222222222222222223



46 . . . . . . . . . . . . . . . . . . Problem 3. . . . . . . . . . . . . . . . . . Solutions

Solutions for problem  3.

Almost everyone used the method of linear programming discussed so exten-
sively in class. However, CXF found the Tschebysheff approximation for a cubic
polynomial to solve the equations

a3x;: + u2x;4 + UlXO + aozo--D  = yo
u,xy + u2xy + CZJX] + u()xJ+D = vj
a,$ + u,x; + UlX2 + u()x2--D = r&j

a3x; + u25 + QlX3 + uox3+D  = y3

a3x; + Q2X4  + UP4 + aox4--D = y4

Adding more equations to this set increases the value of D. When D > .5 the last
equation added is removed and the resulting set of points has been fit with a cubic.
CXF found that this method would fit cubits to long linear sections of data but it
usually only fit between four and six points on curved sections.

GMK/HWT used a method conceptually similar to the one discussed in class,
but since they wrote their program before the class discussion, they ended up solving
a “dual” problem phrased in terms of a minimization rather than a maximization.
Adding a constraint to the original problem corresponds to adding a variable to the
dual problem.

PB/ICT,H used the method discussed in class, but rather than having an al-
gebraic derivation they used a geometric derivation where each constraint formed
a %lice”  bounded by two hyperplanes in the space of coefficients for the cubic.

One problem that all groups had to deal with was the reality of using finite-
precision rational arithmetic. Most groups used a comparison with a small c rather
than directly comparing with zero. JMM/RV/SGD  used a value of 6 that was
slightly less than one-this probably has the same effect but has a slightly different
implementation. JMM/RV/SGD  and PHW/PEW/CXF both had “infinite-precision’
rational arithmetic versions in which they kept an integer numerator and denomina-
tor for each number, but both groups had problems with the numerators and
denominators becoming very large.

Another problem that everyone had to address was the problem of cycling. Most
groups ignored the problem successfully (apparently the test data didn’t exercise any
cycling problems). FJB/OP/JP speculated that even if their program would have
cycled theoretically (they got some “zero pivots”), they might have been saved by
roundoff error. GMK/IIWT had a slightly different problem, since the “ratio test”
was not needed to solve the dual problem. However, they needed some arbitrary
ordering of variables to prevent a cycling problem, so they used the order in which
the variables were added to the system. RSF/DOH dealt with cycling by putting
a limit on the number of pivots that could be used before the program would give



Solutions . . . . . . . . . . . . . . . . . . Problem 3. . . . . . . . . . . . . a . . . . .47

up trying to add a point. However, this method seemed to be detrimental to the
algorithm, bccausc increasing this limit from ten to twenty increased the number of
points fit by one cubic quite a bit.

ML/MMS/JJW  improved the data compression by interpolating groups. of
three difT’erent king moves (for example, northwest, north, and northeast) instead
of only two. This meant that they were fitting cubits to functions which could go
down as we11 as up. GMK/HWT had a slightly different scheme: for example, if
one cubic started in a string of moves moving east and ended in a string of moves
moving northeast, the next cubic was not forced to end when the northeast moves
ended. Instead, they allowed the cubic starting in the northeast moves to continue
into north moves.

JMM/RV/SGD mentioned that the data ‘compression” achieved by their algo-
rithm was very poor- it actually expanded the amount of data by a factor of about
three. However, ML/MMS/.J,lW  paid more attention to “squeezing the bits” and
came up with a compression scheme which reduced the number of characters in a
file describing the data by a factor of about three over the original king-move data.
In addition, they made an effort to find how many bits were significant in the man-
tissa of the cubic coeficients,  by truncating the mantissas until they didn’t satisfy
the constraints on the cubic equations. Although it seems as though truncating any
nonzero parts of the mantissa would result in constraints not being satisfied, they
found that in many cases the mantissas could be truncated quite a bit!



48 . . . . . . . . . . . . . , . Problem 5 . . . , . . . . . . . . . . Problem description

Problem 5. Grid Layout. ’

An “outerplanar graph” can be defined as a set of vertices 1,2,. . . , n and a set
of distinct edges (al, b I), ((~2, bz), . . . , (a,, bm), where Ui < bi for all i and we never
have “crossing” edges such that ai < Uj < bi < bj. A free tree can always be
represented as an outerplanar graph, but there are many outerplanar graphs that
are not trees; thus outerplanar graphs are more general than trees but less general
than planar graphs.

The problem we wish to solve is to embed a given outerplanar graph in a
rectangular grid in the following sense: The vertices 1,2,. . . , n will be placed at
points of the grid, and there will be paths along edges of the grid from point ai to
point bi for 1 < i < m; at most one path can go through any one edge of the grid.
For example, &e of the ways to lay out the graph

is to use

We will assume that no vertex is the endpoint of more than four edges in the given
outerplanar graph, since only four edges can enter one gridpoint.



November 13 . . . . . . . . , , . . . . ,s. Problem 5 . . . . . , . , . . . . . . . . .49

In practical applications (VLSI design, for example), it is desirable to find such
embeddings that fit in a rectangle containing the smallest area. The bounding
rectangle in the previous example is 5 x 5, giving an area of 25 squares; this is not
the best possible embedding.

Try to find a method that yields a small area in a reasonable amount of time.
It is probably intractable to find the absolutely smallest area for a given graph, but
you should use a method that attempts to come close.

Note: It is rumored that somebody has proved it possible to embed outerplanar
graphs of n vertices in rectangles of area 5 ctz for some constant c. Can you discover
such a proof too? It may be helpful to consider maximal outerplanar graphs, i.e.,
outerplanar graphs in which no further edges (rr,+i,  b,+l) can be added without
violating the no-crossing rule. Such graphs seem to have an interesting structure.

After you have tested your program, it will be run on some test data in a small
contest to see whose algorithm finds the smallest rectangles in a reasonable amount
of time.

Ch3ss notes for November 13.

DEK suggested that a good place to start on Problem 5 might be to figure
out what the maximum number of edges in an outerplanar graph can be. RLH
suggested that you can connect all adjacent vertices, then all those separated by
two, then all those separated by four, and so on. The number of edges in a graph
with n vertices connected this way is

which is just 2n- 3 whenever n is one more than a power of two. For example the
a graph with 9 vertices



50 . . . . . . . . . . . . , . . . . Problem 5 . . . . . . . . . . . . . . . . . November 13

has 15 edges. DD suggested that another construction is to connect all adjacent
vertices, then connect the first vertex to the second, third, and so on. This yields
2n - 3 edges for any graph; for example, the g-vertex graph looks like

The problem with both of these constructions is that neither one satisfies the
constraint given in the problem statement that each vertex be of degree four or
less.

At this point, DEK observed that if all edges are present between adjacent
vertices, and an edge between the first and last vertices, the outerplanar graph can
be represented as an n-gon with non-intersecting chords forming the rest of the
edges in the graph. The maximum number of edges occurs when the polygon has
been divided into triangles, and we get 2n - 3 edges in such a case. FJB then came
up with a construction having 2n - 3 edges with no vertices having degree more
than four. For example,



November 18 . . . . . . , . . . . . . . . . Problem 5 . . . . . . . . . . . . . . . . .51

has 9 vertices and 15 edges.
MMS and DIG<  discussed the fact that outerplanar graphs have a dual repre-

sentation, namely the tree found by placing a vertex at the center of each cycle and
putting a tree edge across every chord. There are a few complications: extra edges
must be, added to put the graph into its n-gon representation, and to make the tree
a binary tree extra edges must be added to fully triangulate the n-gon.

DOH mentioned that in experimenting with some outerplanar graphs, it seemed
to him that the vertices of degree four “determinedn the layout since they could
only have edges attached to them four different ways (each way a rotation of the
others), not counting reflections.

DEK suggested that the problem of embedding an outerplanar graph in a
rectangular grid might be approached by finding an embedding for some uhardestn
graph and then embedding any other graph as a special case. The class finished just
as he proposed considering the problem of embedding a binary tree in a rectangular
grid.

Chss  notes for November 18.

AAM started the class by announcing that test data describing an outerplanar
graph is in CSZM.DAT[l,DEK] on SAIL and <CSD  .MILLEWPROBS.DAT  on SCORE.
In ,addition,  five ALTOS will be available for CS204 students to use on a signup
basis; each group can sign up for at most two hours a day.

DEK rncntioned that he had heard a rumor claiming that outerplanar graphs
can be laid out in area linear with respect to the number of vertices in the graph.
However, this is not true for all planar graphs, since graph8 such as



require about 16n2 area. Even planar graphs with vertices of degree three or less
cannot be laid out in linear area, since graphs such as

also require about 16n2 area. (The difficulty of laying out these particular graphs
was first pointed out by Leslie Valiant; an interesting thesis about layout of planar
graphs was completed by Don Woods at Stanford in June 1981.)

DEK stressed that there are two completely different but equally valid ways to
approach Problem 5: one can either try to find a construction that is guaranteed
to find an embedding using area linear in the number of vertices (the “theoretical”
approach); or one can try to develop heuristics that will find an embedding whose
area is very close to the area used by the optimal embedding (the “practical”
approach). It would be nice, of course, to find an algorithm that solves both the
theoretical and the practical problems simultaneously, but life isn’t usually that
simple. Theory and practice don’t come together closely when really hard problems
are involved, at least not in the early stages of research; yet they do support each
other.

DEK showed the class a construction for laying out binary trees in linear area,
using the so-called “N-method”, which seems to be of both theoretical and practical
interest. The root of the tree is placed at the center of the construction. Its two
descendants are placed to the right and left of it. Their two descendants are placed
above and below them. (At this point the construction looks like the letter “H”,
hence the name.) Subsequent levels are placed in a similar fashion. The full binary



November 18 . . . . . . . . . . . . . . . . Problem 5 . . . . . . . . . . . . . . . . .53

tree with 127 vertices (7 levels) looks like

.i
I.--

-- i- -_ -- _--.--. I1
f I----1I I

f f1
i - --.---I

. I
’1---..-- -

i i--
i -1--Ii f--

f I__

itI

OP said that since the problem deals with graphs having vertices of degree four, a
construction for ternary trees would be needed. DEK tried to draw a “T-method”
which looked like a fractal: I

I) -__.
I

-

0 0

l -.,)---- l 0 :: l

- - .-- 1v - -

� I

&-...-,)---.a e-b-+

� ! --I �

l--- -. - -

O---d-



54 . . . . . . . . . . . . . . . . . Problem 5 . . . . . . . . . . . . . . . . . November 18

but JDH objected that it didn’t look like this construction would use a linear amount
of area in the rectangular bounding box. MMS said it might be possible that the
wasted space would be some constant fraction of the bounding box, which would
preserve the “linear-ness” of the construction, although resulting in a larger constant
of linearity. There was some more discussion on just how bad the “T-method”
would be, and then OP proposed a uY-method”  resulting in constructions like

Y
This method seems to require linear area but it is tricky to force it into a rectangular
grid. JDII suggcstcd that you might be able to use a slightly modified “H-method”
where the four corners of the “H” represented a vertex and its three ancestors.
SGD asked why the problem had been restricted to rectangular grids, implying that
the use of rectangular geometries in VLSI circuit design might be more a result of
available design aids rather than properties of the circuits and materials themselves.
DEK replied that he wasn’t sure why VLSI is done with rectangular grids, but that
when- he had tried using triangular grids for making fonts he had run into problems
with different horizontal and vertical resolution.

DEK changed the subject to constructions for laying out triangulated n-gons.
SGD suggested a “long, thin” approach, and DD elaborated by drawing an example
for a lo-gon:



November 20 . , . . . . . . . . . , . . . . Problem 5 . . . . . . . . . . . . . . . . .55

The class finished as DEK drew a construction for a lo-gon which he pointed out
was very elIicicnt in terms of actual area, but relatively inefficient in terms of area
of the bounding box:

Class notes for November 20,

Today was spent mostly on trying to come up with a method of approaching the
problem of embedding an outerplanar graph; no one had come up with a successful
approach.

MMS suggested that some kind of “branch-and-bound” method might be ap-
plicable if there is some way to tell whether one placement of a vertex in the graph
is better than another placement. DEK said that this was using the idea of doing
breadth-first search rather than depth-first search. He mentioned that it would
probably be infeasible to do a full search on the problem space since most programs
of that kind must be limited to search trees with a depth of about ten or fifteen.

DOH suggested that certain impossible layouts could be discarded quickly,
especially those involving vertices of degree four. JMM agreed, pointing out that
cycles in the graph must be represented as squares or rectangles. JDH said that one

e method might bc to take the largest cycle in the graph, then find ways to lay out all
vertices of degree four in that cycle. DD objected that this method doesn’t always
yield a layout even though one is possible. He summarized some unpublished work
by Leslie Valiant on laying out trees, the basic method being to lay out subtrees in
Isuch a way so that there is always a path out of them to connect them together.
He admitted, however,  that there doesn’t seem to be a similar construction for
outerplanar graphs. TCH said he thought it would be a good idea to come up with
some construction to embed a maximal graph, then just take edges out of it in order
to embed any one particular graph.

RSF came up with the idea of using a random method for laying out the
graph. Me proposed choosing one vertex, finding the spot where it can be placed
with the smallest increase in the bounding box, and repeating this process for each
vertex. Following some more discussion, RSF decided that it would be a good idea
to ‘increase the likelihood of selecting vertices with higher degree. RLH thought



56 . . . . . . . . . , , . . . . . , Problem 5 . . , . . . . . . . . . , . . . . November 25

that it would also be better to bias the selection towards vertices connected to
already-placed ones. We tried the method on an example graph, and the results
weren’t optimal but they weren’t too bad.

The class finished as DOH mentioned that some small local optimizations could
be applied to the final embedding. He gave an example of “closing cycles” by
reducing them to the smallest possible rectangles.

Class notes For November 25.

The discussion seemed to be lagging today as no one had any new ideas about
the embedding problem. CXF mentioned that probably the reason no one had any
suggestions was that it is not too clear how to take advantage of the outerplanarity
of a graph in order to embed it. DEK brought up the distinction between the
“theoretical” and “heuristic” approaches to the problem again. HWT said he was
trying to figure out a way to lay out the spanning tree of the dual graph in linear
area using Valiant’s method, then embed the graph around the spanning tree. SGD
pointed out that this was no guarantee on coming close to the solution to the
problem as stated, since even a ‘linear” layout could be far from optimal.

DIN said that he was intrigued by RSF’s suggestion to have a layout based
on a random sequence. One can repeat the random experiment several times and
look for common features of the layouts. He mentioned that Monte Carlo methods
are often an excellent way to get a good feeling for the problem space. This may
have something to do with the fact that “80-20” rules pop up all the time (e.g.,
20% of the program takes 80% of the time, 20% of the people own 80% of the
wealth, and so on). He also pointed out that it is a common misconception that
in ‘cm-n”  rules like these it is necessary for m + n to be 100. In fact, the 80-20
rule is the same as the 64-4 rule; the ratio of log fzlcr to log & is the significant
parameter that determines  such a distribution. (See Eq. 6.1-12 in The Art of
Co’mputer  Programming.)

The conversation turned to different ways to instrument and optimize programs
(from the “20% of the code . . .“) just as the class ended.



Test data. . . . . . . . . . . . . . . . . . Problem 5 . . . . . . . . . . . . . . . . . .57



58 , . . . . . . . . . . . . . . . . , Problem 5. . . . . . . . . . . . . . . . . . Solutions

Solutions for problem 5.

Most, people didn’t get very far with this problem, although it was apparent
from the writeups that they spent a lot of time thinking about it.

RV/JMM/SGD thought that a successful approach to finding a near-optimal
layout would involve laying out the degree-four vertices, then working with succes-
sively larger  cycles in the graph.

OF’ found an embedding for trees having vertices of degree four in Mandelbrot’s
book on fractals. He noticed that the ‘empty space” in the construction had the
same recursive structure as the construction itself, and thought that this might be
useful for connecting cycles in an outerplanar graph. However, he was unable to
find a wa#y to make these connections.

RSF/DOFI implemented the random embedding technique. They limited the
runtime of their program by setting a limit on the amount of backtracking done.
The program embedded the graph randomly several times, keeping track of the
“best” embedding found (the one with the smallest bounding box). In terms of the
contest mentioned in the problem statement, they were clearly the winners.

HWT found a construction for embedding outerplanar graphs in linear area.
First the graph is drawn as a fully triangulated polygon (extra edges may be added
to do this, and some vertices may end up having degree greater than four). Then
the dual tree is formed by placing vertices of the dual tree in the center of triangles
in the original graph and edges of the dual tree across every interior edge of the
original graph. It is easy to see that every vertex in the dual tree has degree three
or less. ‘I’hc dual tree is then laid out in linear area using a slight variation of
Valiant’s method which preserves the topology of the tree (this is important to
prevent lines from crossing, since the tree really represents the %pace  between the
original edges”). Then the original graph is laid out around the dual tree, without
the edges that were added to triangulate the polygon. By using the fact that the
vertices in the original graph had degree four or less, HWT was able to show that
this final layout could be done by using a 9 x 9 grid for each vertex in the dual
tree. -He indicated that he thought an 8 x 8 grid would probably actually be large
enough, but in any case the layout is linear in the number of vertices in the original
graph.

[At this time, DD and HWT are preparing a paper, “On Linear Area Embedding
of Planar Graphs”, which presents a simplification and extension of HWT’s method.
If the dual tree is formed by placing one vertex in the center of each triangle
(as above) and one vertex outside each exterior edge (so that every edge in the
triangulation of the original graph is crossed by exactly one edge of the dual tree),
then the dual tree can be laid out and the original graph can be imbedded around
it by using at most a 7 X 7 box for each vertex in the dual tree.

In general this transformation can be applied to any planar graph, but the



Solutions . . . . . . . . . . . . . . . . . . Problem 5. . . . . . . . . . . . . . . . . . . 59

dual is a graph rather than a tree. However, if k is the maximum over all vertices
of the shortest path from that vertex to the outermost cycle in the graph, then
k transformations will reduce the planar graph to a binary tree. This tree can
be laid out, and each graph can be embedded around the graph it transforms to.
(The graphs arc generated, then embedded in the opposite order.) This provides a
method for embedding the planar graph in area proportional to k.)



60 . . . . . . . . . . . . . . . . . Problem4 . . . . . . . . . . . .,.....December2

Problem 4. Communication Through Unreliable Links,

Alice wants her computer to send a message to Bill’s computer, and she wants
to make sure that Bill receives it. Unfortunately, she is in London and Bill is in
Hong Kong, so she has to use a slow and noisy communications channel named
Charlie.

We wish to study the problems associated with this situation, so we will be
simulating it using the Alto minicomputers and the Ethernet. You will be writing
programs to simulate Alice’s and Bill’s computers, and Charlie will be simulated
by-what could be more unreliable?-a program written by the TA. We will be
using a PASCAL-like subset of the MESA language to do the programming for this
simulation.

All communication to Charlie will be in the form ‘%end this packet to Alto
number ‘II”  and communication from Charlie will be in the form uhere is a packet
from Alto number n”. Charlie will always send packets in the order he receives
them. However, packets may be delayed for a few dozen seconds, they may be
lost, or their contents-may be garbled-bits may be changed or lost, or the entire
packet may be set to all zeros or all ones. Therefore, packets should contain enough
redundancy to give at most about one chance in a billion that a garbled packet is
received and considered legitimate.

Alice and Bill must devise a scheme that transmits entire messages (sequences
of ten or more packets) and appropriate acknowledgements through Charlie. Note
that Alice must be able to retransmit packets that were not received, but Bill’s
acknowlcclgcmcnt  of a received packet might get lost, too! It would be nice if the
scheme worked efficiently on those days when Charlie was not losing packets, so
simply sending packets one at a time and retransmitting them until an acknowl-
edgement arrives is not a satisfactory scheme. Since Charlie is often slow, a new
packet should be transmitted before the previous one is acknowledged, in the hope
t&at the previous transmission will take place properly.

Further details about Charlie’s interface will be available in time for you to
implement your solution to this problem.

Class -notes for I)ecernber 2.

AAM started the class by talking a little bit about MESA and handing out some
materials to make it easier to use.

DO11  said that in the “real world” the biggest problem with communication
protocols is making them work with existing protocols built into hardware, since a
large investment has already been made in those protocols. He also pointed out other
important problems that have been finessed out of our Problem 4, for example the
question of how to recognize the end of a variable-length message (or a partially-
transmitted message) on a serial line. He observed that in large communication



December 2 . . . . . . . . . . . . . . . . . Problemd..  . . . . . . . . . . . . . . . .61

networks the assumption in Problem 4 that Charlie does not permute the order of
ungarblcd messages is not valid, since different messages might travel via different
routes. DIN suggested that we try first to solve the problem under the non-
permutation assumption, but keep in mind that it would be nice to solve it also
without that assumption; then we can compare the efficiency of our best solutions
with and without allowable permutations.

JMM mcntioncd that the nature of the “garbling” on the communication
channel must be known before a probability of error less than one part in 10’ can
be guaranteed.  DOII said that even without this knowledge, a minimum number
of bits of redundancy can be established, namely [log, lo”1 = 30. For example,
a 16-bit checksum would not be sufficient since such a check applied to randomly
garbled data would still come out OK by chance, about one time in every 65536.
DEK said that this was what he had in mind when he made up Problem 4, but he
realizes now that it isn’t correct, since JMM’s  point is perfectly valid. For example,
suppose the nature of the garbling was known to be such that each bit was clobbered
with probability p, independent of other bits, where p is some given quantity. Then
a 16-bit checksum would be enough redundancy provided p is sufficiently small.

DEK sketched some ideas about message encoding; he said that most encoding
schemes arc “linear” in the sense that the message ~1 . . . xn is valid if and only if
j(~l,.‘.,GL) I- c where f is some linear function and c is some m-bit constant (here
the “message” includes both the data being sent and the redundant checksum). A
linear function satisfies f(z$Q) = j(z)@f(&  where $ denotes exclusive-or on bit
vectors; hence if 3 represents the error vector of clobbered bits, we fail to recognize
the error if and only /(a) = 0.. .O. For example, the ordinary “odd-parity” code is
the special case m = 1, c = 1, f(zr,.  . .,x,) = q $ l 0’ $ x,,. Any linear function
can be rcprcscntcd in the general form f(zr, ~2,. . . , x,,) = x1 201 $ 22202  @ l . l @
XnWn, where  UJi is the nt-bit result of the function f applied to the vector that is

e all zeros except Xi = 1. Thus if the error vector y contains exactly one 1 bit, the
error will be dctcctcd provided the w’s are all nonzero;  if y contains exactly two 1
bits, the error will be detected provided the w’s are all distinct.

FNY asked if it would be worth considering error-correcting codes. DEK said
such codes arc quite useful in practice, but he would recommend that they not be
added to this problem unless it is really easy to do so, since he intended the real focus
of Problem 4 to be on the nature of asynchronous parallel processes. If a message
is garbled, Alice and E3ill can treat it just as if it were totally lost, since lossage
is another thing Charlie might do; the message must in general be retransmitted
anyway. In other words, error correction would only have the effect of a slight
improvement of Charlie’s transmission capability; it does not affect the protocols
for resending messages and acknowledgments that have been really clobbered.

Howcvcr,  WC talked about error-correction anyway.
simple error-correcting code can be made by putting bits

JMM said that a very
into a rectangular array,



62 . , , . . . . . , . , . . . . , . Problem4.  . . . . . . . . , . . . . . . . . December 2

then creating an extra row fuade up of parity bits for the columns and an extra
column made up of parity bits for the rows. If one transmitted bit is changed, we
can identify it because its row and column will have bad parity. FNY said this
scheme won’t work if an error occured in the ‘extra” row or column, but it was
pointed out that it can be fixed it by adding a parity bit for the entire rectangle.
Thus, a message of nl x n2 bits can be encoded by (ni + 1) X (n2 + 1) bits having
even parity in each row and column. This is a simple example of a linear code. For
example, if 721 = n2 = 2, the message bits are xi, x2, x3, x4, and the parity bits
are cl, ~2, ~3, ~4, ~5, then the rectangular array looks like

where ci -- x1 @ x3, c2 = 22 $ 24, CY, = XI $ 52, cd = z3 @ x4, and c3 =
Cl G3 c2 = c5 CB c4 = x1 $ x2 $ x3 $ x4* The receiver can check the message
by checking the parity on, for example, all three rows and the first two columns.
In this case n = 9, m = 5, c = 00000,  and f(xI,x2,x3,x~,CI,C2,C3,c~,c~)  =

(*Xl  @ x2 @ 0, x3 @ x4 $ C4,CI $ c2 $C3,Xl  $ $3 $ Cl,X2 $24 CD c2). with this

assignment of f, we find
Wl = 10010

w2 = 10001

w3 = 01010

w4 = 01001

W5 = 00110

W6 = 00101

w7 = 0 0 1 0 0

WI3 = 01000

WJ = 10000.

In general, whenever the wi are distinct and nonzero, it is obvious that we can not
only detect single and double errors, we can correct single errors (although we may
not be able to distinguish the case of correctable single errors from uncorrectable
double errors). This particular rectangular code not only makes the error correction
possible, it makes the correction simple.

DEK spoke briefly about Hamming codes for error correction; this is essentially
the extreme case where we choose the w’s to be all possible distinct nonzero m-bit
vectors. The Hamming code scheme uses m bits of redundancy to correct single
errors in 2m - m - 1 bits of data (unlike the rectangle scheme, which uses m bits of



December 4 . . . . . . . . . . . . . . . . . Problem4..  . . . . . . . . . . . . . . . .63

redundancy to correct single errors in only ( w)2 bits of data). To use Hamming
codes, m linearly independent m-bit vectors are chosen, and the other nonzero
vectors arc given indices from 1 to 2m - m - 1 in any convenient way. Then, for
each bit xi, a checksum is started at zero and if xi = 1 the vector with index i is
exclusive-or’cd into the checksum. The redundancy bits are computed so that the
checksum has a desired value c. At the receiving end, if the computed checksum is
different from c, exclusive-or with c will tell which bit is in error (including the case
if the error bit is in the redundant bits).

Finally, DEK returned to JMM’s  original question, which still hadn’t been
answered, admitting that the problem specification wasn’t clear enough. He decided
to substitute the following criteria for transmission: (a) Your encoding scheme
should be such that it will detect with certainty whenever Charlie alters exactly
one or two bits of the message, or when he sets an entire packet to all O’s or all
1’s. (b) Your scheme should also be such that it will detect with probability at least
.999999999 when Charlie has replaced a packet by a packet of completely random
bits.

DEK said that we should be ready to talk about lost acknowledgments from
Bill to Alice at the next clas.* session.

Class notes ror Dcccmbcr 4.

Today DEK led off with the question of whether or not the problem of com-
municating is solvable, even if Alice is only trying to send one packet. JMM said he
didn’t think it is, unless some assumptions are made about the reliability and speed
of transmission, due to the following problem: when Alice sends Bill a message, in
order for Alice to know that Bill has received it Bill must acknowledge it. However,
in order for Bill to know that Alice knows that Bill has received the original mes-
sage, Alice must acknowledge the acknowledgement. But for Alice to know that Bill

- knows that Alice knows that Bill received the message, . . . the acknowledgements
go on forever. Whoever last sent some data will be uncertain whether the data was
received, and if their uncertainty is unimportant there is no point in sending the
data in the first place. DEK suggested that, at best, the problem must be resolved
with one party still active and ready to receive subsequent communications. For
example, suppose Bill remains active after sending the first acknowledgement. If
Alice doesn’t hear from him, she can transmit the message again, while if she does
get confirmation she can “go to sleep” and effectively forget about the entire trans-
action; Bill, on the other hand, must remain on call. Somebody pointed out that
they can both “go to sleep” if there is a central server mechanism (like Charlie) that
stays active In a sense, the problem of termination has been transformed into the
problem of getting started.

For our purposes, we will henceforth ignore the problem of deciding when the
last message has been received, concentrating instead on the problem of getting the



64 . . . . . , . . . . . . . . . . . Problem 4. . . . . . . . . . . . . . . . . . December 4

other messages across the line.
DIM handed out an article on communication protocols by Stein Krogdahl

[R/T 18 (1978), 436-4481, He mentioned that this paper is noteworthy because
of the techniques it uses to prove the validity of parallel programs via invariant
relations that remain true about the system as a whole.

DEIC illustrated the method treated by Krogdahl in the simplest case by
paraphrasing it as follows: Alice keeps a counter A representing how many packets
she knows Bill has received; Bill keeps a counter B representing how many packets
he knows hc has received. Initially A = B = 0; the packets to be sent are numbered
consecutively starting with 0. The basic operations performed by Alice and Bill, in
some order, are these: (Al) Alice sends packet number A. (A2) Alice receives an
acknowledgement ‘b’ and sets A + b. (Bl) Bill sends an acknowledgement 3’. (B2)
Bill receives packet number j for some j; if B = j he stores it and increases the
value of 11. Packets and acknowledgements might “disappear” after they are sent;
garbled transmissions are treated as equivalent to messages that never arrive.

Now it is possible to prove that, regardless of what order the operations (Al),
W), (WI WI arc intermixed, the values of A and B will satisfy B = A or B =
A+ 1. Furthermore, the value of b received by Alice in (A2) will always equal either
A or A + 1, and the value of j received by Bill in (B2) will always equal either B
or B - 1. Therefore it suffices for Bill to transmit only the one-bit value 3 mod 2’
instead of ‘b’, and it suffices for Alice to transmit only the one-bit value ‘j mod 2’
to identify packet number ‘j’. In other words, only two kinds of acknowledgements
are necessary, and only one bit of a packet is needed to identify it with respect to
other packets  that have been retransmitted or transmitted before Bill is ready to
receive thrn.

Of course, this scheme isn’t efficient enough for our purposes. It can ‘be
generalizrd in several ways. DEK stated that if operation (Al) is extended so that
Alice sends any of the packets numbered A through A + k - 1 inclusive, it can
be shown that A < B < A + Ic and that the value of j received by Bill in (B2)-
will lie in the range LI -- k < j < B + k. In such a case the modulus 2 can be_
replaced by k -/- 3. Furthermore we can generalize (B2) so that Bill will store packet
number j whcncvcr B 5 j < a+ I, where I is some number representing the size of
Bill’s bufTcr storage (as k represents the size of Alice’s); in this case, Bill is allowed
to increase  13 after (B2) to any value such that all packets whose number is less
than B have been stored. It turns out that it now suffices to transmit the value of
j mod ml with each packet and the value of b mod m2 with each acknowledgement,
whenever 7221 > k + I and rnz > k + 1. Verification of these facts is a good exercise- -
in understanding parallel processes.

The above statements are correct only if transmissions are strictly first-in-first-
out, however. [After class, DEK decided to look at the method under the assumption
that no packet is “passed” by more than ~1 packets in the message queue and no



December 9 . . . . . . . . . . . . . . . . . Problem4..  . , . . . . . . . . . . . . . .65

acknowledgement is “passed” by more than q2 packets in the acknowledgement
queue. In this general case the conditions ml > k + 1+  q2 and m2 2 kql + k + 1-
are necessary and sufficient.]

Class notes for December 0.

Since today was the last official class period (Thursday is reserved for the
famous “ask Don Knuth any question”), people were mostly working on finishing
up problems four and five.

RSE’ and 11011  said that they had implemented the random layout method,
and had found that one of the major problems with it is a kind of “hill-climbing
problem” where it lays out long cycles in a straight line since adding each point
increases the bounding box by the smallest amount. Then when the cycle is finally
closed a lor~g line must be added alongside the sequence of vertices.

SGD said that he thought we were cheating by using one packet size in the
communication problem, since it is possible to take advantage of very long acknowl-
edgements that might not be available in a realistic situation. DEK said that he
was preparing a paper based on an optimized form of Krogdahl’s algorithm; one
that uses a restricted range of integers for the packet identifier rather than any
integer. He said it was interesting that the easiest way he had found to prove the
algorithm correct is to prove it for unrestricted packet identifiers, then show that
the restriction does not affect the arguments in the proof. He likened the process to
optimizing a working program. [This paper, “Verification of low-level protocols,”
was later published in MT (1981).]

The rest of the period was used by HWT to describe a method he devised to
lay out outcrplanar graphs in linear area. Since his method is described in detail in
the writeup for problem five, it will not be discussed here.



66 . . . . . . . . . . . . . . . . Problem 4. . . . . . . . . . . . . . . . . MESA programs

MESA programs prepared for use in Problem 4

-- "Charles" program. CS 204, Fall 1988, Knuth.
-- This program serves as a noisy communications interface between
-- "Alice" and "Bill" using the Pup protocol on the Xerox ethernet.
-- written by Allan Miller

DIRECTORY
IODefs: FROM "iodefs" USING [

WriteString,
WriteDecimal,
WriteLine],

ABCDefs: FROM 'abcdefs'  USING [
AliceBillSocket,
CharlieSocket,
NumBuffers,
Buffet-Size,
PacketLen,
GroupNumberType,
ABCPacket],

RandomDefs: FROM "randomdefs" USING [
Random],

GarbleDefs: FROM "garbledefs' USING [
LosePacket,
Garble],

PupTypes: FROM "puptypes' USING [
PupNetID,
PupWostID-J,

PupDefs: FROM "pupdefs"  USING [
PupSocket,
f)upBuffer,
f)upAddress,
SecondsToTocks,
AdjustBufferParms,
PupPackageMake,
PupSocketMake,
SctPupContentsWords,
GetFreePupBuffer,
ReturnFreePupBufferj';

- Charlie: PROGRAM IMPORTS IODefs, PupDefs, GarbleDefs, RandomDefs =

BEGIN
OPEN IODefs, PupDefs, PupTypes, ABCDefs,  GarbleDefs, RandomDefs;

Socket: PupSocket; -- all pup io goes through here
Buffer: PupBuffer;  -- data goes here
Packet: ABCPacket; -- info g'oes in here
Gnum: GroupNumberType; -- group that sent an incoming packet
Contact: TYPE = RECORD [

Count: INTEGER, -- how many people have made contact
TotalDelay:  INTEGER, -- how much delay this group has built up
AliccAddr:  PupAddress, - - note that Charlie doesn't really care
BillAddr:  PupAddress]; -- which one is Alice and which one is Bill

Table: ARRAY GroupNumberType OF Contact;
MaxDelay:  INTEGER = 15; -- largest amount of total delay
LastInQueue:  CARDINAL = NumBuffers - 4; -- number of packets that Charlie can queue

-- Pup package uses 2.of  total, ethernet
-- driver also uses 2

QueueObject:  TYPE = RECORD [
Delay: INTEGER,
Contents: PupBuffer];



MESA programs . . . . . . . . . . . . . l , , Problem4.  . . . . . . . . . . . . . . . .

PacketQueue: ARRAY [l..LastInQueue)  OF QueueObject;
EndOfQueue: CARDINAL;

AcknowledgeContact: PROCEDURE [who: PupAddressJ=
BEGIN
b: PupBuffer;

b GetFreePupBuffer[];
btysource Sockett.getLocalAddress[];
bt.dest who;
SetPupContentsWords[b,  PacketLen];
Packet LOOPtlOLE[@bt.pupBody];
PacketTTGroupNumber  _ 0; -- Group 8 is Charlie himself
Packett  .MessageType ConfirmContact;
Sockett.setRemoteAddress[whoJ;
Sockett.put[b]  -- note that this calls ReturnFreePupBuffer

END;

QueueForSending: PROCEDURE [g: GroupNumberType,  b: PupBuffer]  =
BEGIN
DoIt: PROCEDURE[a:  PupAddress] =

BEGIN
P: ABCPacket;

WriteString["Queueing  packet for group "3;
WriteDecimal[gJ;
WriteLine[".'];
bt.source
bt.dest a;

Sockett.getLocalAddress[J;

SetPupContentsWords[Buffer,  PacketLen];
EndOfQueue
IF EndOfQuebe

EndOfQueue + 1;
> LastInQueue THEN

BEGIN
WriteLine["Losing  packet for group "1;
WriteDecimalCgJ;
WriteLiner" due to lack of buffer space!! !"I;
ReturnFreePupBuffer[b];
EndOfQueue _ LastInQueue;

END
ELSE

BEGIN
WriteStringC'Packet  for group "1;
WriteDecimal[g]; WriteString[':  "1;
IF LosePacket[] THEN

BEGIN
WriteLine['lost"];
ReturnFreePupBufferCb];
EndOfQueue _ EndOfQueue - 1;

END
ELSE

BEGIN
SecondsToDelay: INTEGER;

LOOPHOLE[@bt.pupBody-J;
~r~teLine[Garble[DESCRIPTOR[Pt.MessageJ]];
PacketQueue[EndOfQueue].Contents b;

-- The total amount of delay for a group is kept under MaxDelay  to prevent them fFom
-- flooding us with packets. The "4" in the 3rd line is because this is the number of
-- checks before sending...

SecondsToDelay _ Random[MaxDelay+l-Table[g]
.TotalDelay];

Table[g].TotalDelay  _ Table[g J.TotalDelay  +
SecondsToDelay;

PacketQueue[EndOfQueueJ.Delay  _ Table[gJ.To
talDelay + 1 ;

END;



68 . . . . . . . . . . . . . . . . Problem 4. . . . . . . . . . . . . . . . . MESA p r o g r a m s

END;
END;

SELECT bt.source  FROM
Table[g].AliceAddr => DoIt[Table[g].BillAddr];
Table[g].BillAddr => DoIt[Table[g].AliceAddr];
ENDCASE =>

BEGIN
WriteString["Someone  used the group number "1;
WriteDecimal[g];
WriteLine[" when they shouldn't have!! !‘]

END
END;

SendPendingPackets:  PROCEDURE =
BEGIN
Pnum, I: CARDINAL;

Pnum 1 ;
WHILE-Pnum <= EndOfQueue DO

PacketQueue[Pnum].Delay PacketQueue[Pnum].Delay - 1;
IF PacketQueue[Pnum].Delay  <= 8 THEN

BEGIN
WriteLine["Sending  a packet."];
Sockett.setRemoteAddress[PacketQueue[PnumJ.Contentst.~est];
Sockett.put[PacketQueue[Pnum].Contents];  --this calls Retur

nFreePupBuffer
FOR I IN [Pnum..EndOfQueue) DO

PacketQueue[  I] _ PacketQueue[I+l];
ENDLOOP;
EndOfQueue
Pnum _ Pnum--

EndOfQueue - 1;
1; -- granted, this is a little hackish

END;
Pnum _ Pnum + 1;

ENDLOOP;
END;

-- initialize
EndOfQueue 0;
FOR Gnum IN-GroupNumberType  DO

Table[Gnum].Count 8 ;
Table[Gnum].TotalDelay _ 8;

ENDLOOP;
AdjustBufferParms[NumBuffers,  BufferSize];
PupPackageMake[];
Socket _ PupSocketMake[CharlieSocket,

[PupNetID[B], PupHostID[8],  AliceBillSocket], -- this addr never really use
kl

SecondsToTocks[ l]]; -- check the aueue every second

WHILE TRUE DO
SendPendingPackets[];
-- Get a pup
Buffer Sockett.get[];
WHILE Buffer = NIL DO

SendPendingPackets[];
Buffer _ Sockett.get[J; -- no filtering is done, so Charlie gets

-- everything that's addressed to him
ENDLOOP;

-- Do the right thing with it
Packet LOOPHOLE[@Buffert.pupBody];
Gnum Packett.GroupNumber;
WriteString["Received  a packet from group "1;

WriteDecimal[Gnum];



MESA programs . . . . . . . . . . . . . . . . Problem 4. . . , . . . . . . . . . . . L . 6 9

WriteString[", which has count "1;
WriteDecimal[Table[Gnum].Count];
WriteLine["."];
SELECT Packett.MessageType FROM

EstablishContact =>
BEGIN

SELECT Table[Gnum].Count  FROM
8 => --this is the first connection

BEGIN
Table[Gnum].AliceAddr  _ Buffert.source;
Table[Gnum].Count  _ 1

END;
1 => --this is the second connection; acknowledge both

BEGIN
-- fix bug where alice gets started twice before bill
IF Buffert.source # Table[Gnum].AliceAddr THEN

BEGIN
Table[Gnum].BillAddr
Table[Gnum].Count  2;

Buffer*.source;

WriteString["Estab%shing  contact for group "1;
WriteDecimal[Gnum];
WriteLine[V'];
AcknowledgeContact[Table[Gnum].AliceAddr];
AcknowledgeContact[Table[Gnum].BillAddr);

END;
END;

2 => --too many connections, try to recover
SELECT Buffert.source FROM

Table[Gnum].AliceAddr, Table[Gnum].BillAddr  =>
-- someone restarted their program; let it slide

AcknowledgeContact[Buffert.source];
ENDCASE =>
- -. someone moved or made a mistake; too bad for them

BEGIN
WriteString["Too  many contacts for group "1;
WriteDecimal[Gnum];
WriteLine["!!!"]

END;
ENDCASE => --this can never happen

WriteLine["Dryrot--bad  value of count!! !"I;
ReturnFreePupBuffer[Buffer]

END;

I;

SendPacket =>
IF Table[Gnum].Count  < 2 THEN

BEGIN
WriteString["Group  "];
WriteDecimal[Gnum];
WriteLine[" is attempting to communicate with a nonexistent partner!! !"

ReturnFreePupBuffer[Buffer]
END

ELSE QueueForSending[Gnum,Buffer];

FinishContact =>
BEGIN

IF Table[Gnum].Count < 1 THEN
BEGIN

WriteString["Group  "1;
WriteDecimal[Gnum];
WriteLine[" is doing too many CloseContacts!!  !,I]

END



70 . . . . . , ‘, . . . . . . . . . Problem4,  . , . . . . . . . . . , . . . . MESA p r o g r a m s

ELSE
Table[Gnum].Count Table[Gnum].Count  - 1;

ReturnFreePupBuffer[BuTfer]
END;

ENDCASE =>
WriteLine["Someone sent me a bad packet type!!!"];

ENDLOOP; --WHILE TRUE
END.

RandomDefs: DEFINITIONS =
BEGIN

InitializeRandom: PROCEDURE [Seed: CARDINAL];
GeneratorOut: PROCEDURE RETURNS [CARDINAL];
Random: PROCEDURE [MaxVal: CARDINAL] RETURNS [CARDINAL];

END.

-- Random number generator. CS 204, Fall 1988, Knuth.
-- 'This is used by Charlie in his garbling of messages. From 2.3.6. of the Art of Computer
Programming.

-- written by Allan Miller

DIRECTORY
RandomDefs: FROM "randomdefs";

RandomSubs: PROGRAM EXPORTS RandomDefs =
BEGIN

-- parameters for subtractive random number generator
j: CARDINAL q 24; -- j and k from table 3.2.2-1, with k > 58
k: CARDINAL = 55;
cl: CARDJNAL = k-j;
c2: CARDINAL = j+l;
d: CARDINAL = 21; -- d should be about 8.382 k
BigNum: CARDINAL = 580;
StartSeed: CARDINAL = 314;
Initialjzed:  BOOLEAN FALSE; -- tells whether or not InitializeRandom has been called
NextNum: CARDINAL; ---tells which number in array is next random one
Rands: ARRAY [ 1.. k] OF CARDINAL;

InitializeRandom:  PUBLIC PROCEDURE [Seed: CARDINAL] =
BEGIN
ii, iii: JNTEGER;
Ai, kk: INTEGER;. ,

Seed MOD BigNum;
i%&[k] _ jj;
kk *
FOR--i?IN  [l..k) DO

iii (d*ii) MOD k;
Rand<[iii] k k ;
kk *' - k'i;*
IF kkJ<J 8 THCN kk _ kk + BigNum;



MESA programs . . . . . . . . . . . . . . . . Problem 4 . . . . . . . . . . . . . . . . . ‘71

jj _ Rands[iiiJ;
ENDLOOP;
-- "warm up" the generator
RecomputeRandom[J;,
RecomputeRandom[];
RecomputeRandom[J;
NextNum 0;
Initialired  _ TRUE;
END;

RecomputeRandom:  PROCEDURE =
BEGIN. .

: INTEGER;
;;: INTEGER;
FOR ii IN [l..j] DO

jj Rands[ii]  - Rands[ii+clJ;
IF jj < 0 THEN jj _ jj + BigNum;
Rands[iiJ _ jj;

ENDLOOP;
FOR ii IN [cZ..k) DO'

jj _ Rands[ii)  - Rands[ii-j];
IF jj < 0 THEN jj _ jj + BigNum;
Rands[iiJ _ jj

ENDLOOP;
END;

GeneratorOut:  PUBLIC PROCEDURE RETURNS [CARDINAL] =
BEGIN
NextNum
I F  NextNim

(NextNum MOD k) + 1;
= 1 THEN RecomputeRandom[J;

RETURN[Rands[NextNumJ];
END;

Random: PUBLIC PROCEDURE [MaxVal: CARDINAL] RETURNS [CARDINAL] =
BEGIN
IF NOT Initialized THEN InitializeRandom[StartSeed);
RETURN[(MaxVal*GeneratorOut[])/BigNum);
END;

END.

DIRECTORY
AHCDefs:  FROM "abcdefs"  USING [

PacketBody];

GarbleDefs: DEFINITIONS =
BEGIN
OPEN ABCDefs;

LosePacket: PROCEDURE RETURNS [BOOLEAN];
Garble: PROCEDURE [p: PacketBody] RETURNS [STRING);
END.



72 . . . . . . . . . . . . . . . . Problem&. . . . . , . . . . . . . . . . MESA programs

DIRECTORY
GarbleDefs:  FROM "garbledefs",
ABCDefs: FROM "abcdefs"  USING [

McsgLen,
PacketBody],

MiscDefs: FROM "miscdefs"  USING [
CurrentTime],

InlineDefs: FROM Vnlinedefs" USING [
LowHalf,
BITNOT,
BITSHIFT,
EJITXOR],

RandomDefs: FROM "randomdefs' USING [
InitializeRandom,
Random];

GarbleSubs:  PROGRAM
IMPORTS RandomDefs, InlineDefs, MiscDefs
EXPORTS GarbleDefs =

BEGIN
OPEN ABCDefs,  RandomDefs, InlineDefs, MiscDefs;

Startup: BOOLEAN _ TRUE;

LosePercentage:  CARDINAL = 50; -- about as reliable as Allan  himself
SwapPercentage:  CARDINAL = 10; -- switching two words
BitZapPercentage: CARDINAL = 10; -- changing one bit
TwoBitZapPcrcentage:  CARDINAL = 10; -- changing two bits
OnesPercentage:  CARDINAL = 10; -- setting to all ones
ZerosPercentage:  CARDINAL = 10; -- setting to all zeros
GarblePercentage:  CARDINAL = SwapPercentage  + BitZapPercentage +

TwoBitZapPercentage  + OnesPercentage + ZerosPercentage;

LosePacket:  PUBLIC PROCEDURE RETURNS [BOOLEAN] =
BEGIN

IF Startup THEN -- I’m taking advantage of the fact that LosePacket  is called first
BEGIN

InitializeRandom[LowHalf[CurrentTime[]]];
Startup _ FALSE;

ETND;
RETURN[Random[  1001 < LosePercentage];

END;e

Garble: PUBLIC PROCEDURE [p: PacketBody] RETURNS [STRING] =
BEGIN
g: CARDINAL; -- used to figure out how to garble the message
-- this code decides whether or not to garble, then splits garbles up as desired
IF Randdm[  1001 >= GarblePercentage  THEN RETURN["ungarbled"];
Q- Random[GarblePercentage];

IF g < SwapPercentage  THEN
BEGIN

i,j: CARDINAL; t: UNSPECIFIED;
i Random[MesgLen]; j Randomj: MesgLen];
---prevent the obvious bug
WHILE i = j D O j Random[MesgLen]; ENDLOOP;
t d31; PI31 PIXI; NJ1 t;
REiURN["swaooed-two  wordsn];-

END;
g - 9 - SwapPercentage;

IF g < BitZapPercentage THEN
BEGIN



MESA programs . . . . . , . , . . l I . . . . Prob1em.J..  , . . . . . . . . . . . . . .73

w: CARDINAL; -- word number to zap
W
Pm

Random[MesgLen];
BITXOR[p[w], BITSHIFT[  1, Random[  16]]];  .

RETURN["zapped  one bit'];
END;

9 -9 - BitZapPercentage;

IF g < TwoBitZapPercentage THEN
BEGIN

wl,w2: CARDINAL; -- words to zap (note that bits in different words are zap
wd)

wl Random[MesgLen];  w2
WHILE wl

Random[MesgLen];
= w2 DO w2 Random[MesgLen]; ENDLOOP;

PCW - BITXOR[p[wl],  BITSHIFTC  1, Random[16]]];
PCW21 BITXOR[p[w2], BITSHIFTC  1, Random[  16]]];
RETURN["zapped  two bits"];

END;
9 -g - TwoBitZapPercentage;

IF g < OnesPercentage  THEN
BEGIN

i: CARDINAL;
FOR i IN [B..M esglen) DO p[iJ _ BITNOTCB];  ENDLOOP;
RETURN["set  to all ones"];

END;
g -g - OnesPercentage;

IF g < ZerosPercentage THEN
BEGIN

i: CARDINAL;
FOR i IN [B..MesgLen) DO p[i] , 0; ENDLOOP;
RETURN["set  to all zeros"];

END;

RETURN["Hey!  ! ! There's a bug in the Garble routine!!!"];
END;

END.

DIRECTORY
PupDefs: FROM "pupdefs"  USING [

PupSocketID];

ABCDefs: DEFINITIONS =
BEGIN
OPEN PupDefs;

AliceBillSocket:  PupSocketID = [0,45B];
CharlieSocket:  PupSocketID = [0,4GB];
DelayInSeconds:  CARDINAL = 0;
MaxGroup: CARDINAL = 15; -- largest number of groups working on this problem
GroupNumberType:  TYPE = [B..MaxGroup); -- suitable for arrays GROUP 0 IS CHARLIE!!!
NumBuffers:  CARDINAL = 30; -- number of pup buffers to allocate
BufferSize: CARDINAL = 70; -- this only needs to be this big in case the

-- program is ever run at PARC (network info, etc.)
MesgLen: CARDINAL = 20; -- length of packet IF LARGE, EXPAND BufferSize!!!
PacketLen: CARDINAL = MesgLen + 2; -- length that actually gets sent



‘74 . . . . . . . . . . . . . . . . Probiem4.  . . . . . . , . . . . . . . . . MESA programs

ABCMesgType: TYPE = {EstablishContact, SendPacket,  ConfirmContact, FinishContact}
ABCPacketObject: TYPE = RECORD [

GroupNumber:  CARDINAL, --ID of group that sent packet
MessageType: ABCMesgType, --what kind of message it is
Message: ARRAY [B..MesgLen) OF UNSPECIFIED
I;

ABCPacket:  TYPE = POINTER TO ABCPacketObject;
PacketBody: TYPE = DESCRIPTOR FOR ARRAY [B..MesgLen)  OF UNSPECIFIED;

-- stuff from ABCSubs
SetUpContact: PROCEDURE [g: GroupNumberType];
SendPacket:  PROCEDURE [p: PacketBody];
ReceivePacket: PROCEDURE [p: PacketBody] RETURNS [BOOLEAN];
CloseContact:  PROCEDURE;
END.

-- Procedures used by Alice and Bill to communicate with Charlie.
-- written by Allan Miller

DIRECTORY
IODefs: FROM "iodefs"  USING[

WriteDecimal,
WriteString,
WriteLine],

ABCDefs: FROM "abcdefs" USING [
NumBuffers,
EsufferSize,
AliceBillSocket,
CharlieSocket,
GroupNumberType,
PacketBody,
PacketLen,
MesgLen,
ABCPacket],

PupDefs: FROM "pupdefs"  USING [
AdjustBufferParms,
PupPackageMake,
PupPackageDestroy,
PupSocketMake,
PupSocketDestroy,
PupSocket,
SetPupContentsWords,
PupBuffer,
PupAddress,
ReturnFreePupBuffer,
GetFreePupBuffer,
Tacks],

Pup-Types: FROM "puptypes"  USING [
allNets,
allHosts];

ABCSubs: PROGRAM
IMPORTS ABCDefs, PupDefs, IODefs
EXPORTS ABCDefs =

BEGIN
OPEN ABCDefs,PupDefs,PupTypes, IODefs;



3

MESA programs . . , . . . . , . . , . . . . . Problem 4. . . . . . . . . . . . . . . . .75

Socket: PupSocket;
Buffer: PupBuffer;
Packet: ABCPacket;
OurGroup: GroupNumberType; -- to save for later use
CharlieAddr: PupAddress; -- ditto

SetUpContact: PUBLIC PROCEDURE [g: GroupNumberType] =
BEGIN

OurGroup g ;
-- Set up-the pup package
AdjustBufferParms[NumBuffers, BufferSize];
PupPackageMake[];
Socket _ PupSocketMake[AliceBillSocket,

[allNcts, allHosts,  CharlieSocket],
Tocks[l]]; -- very short delay in this one, note that 0 does NOT work!

-- Send Charlie our group number
Buffer GetFreePupBuffer[];
BuffertTsource Sockett.getLocalAddress[];
Buffert.dest CallNets, allHosts, CharlieSocket];
SetPupContentsWords[Buffer,PacketLen];  -- size of packet
Packet LOOPlIOLE[@Buffert.pupBody];
Packett,GroupNumber  _ OurGroup;
Packett.MessagcType EstablishContact;
Sockctt.put[Buffer];--- this also does a ReturnFreePupBuffer
-- and wait for his reply
Buffer Sockett.get[];
WHILE Buffer = NIL DO Buffer Sockett.get[]; ENDLOOP;
-- take the socket out of broidcast mode (Charlie won't move)
CharlicAddr Buffert.source;
Sockett.setRemoteAddress[CharlieAddr];
-- better safe than sorry...
Packet LOOPHOLE[@Buffert.pupBody];
IF Packctt.MessageType # ConfirmContact  THEN

WriteLine[;"Terrible error!!! Charlie gave a bad confirmation!! !"];
END;

SendPacket:  PUBLIC PROCEDURE [p: PacketBody] =
BEGIN
I: [B..MesgLen);

-- send a packet with the info in p to Charlie
Buffer- GetFreePupBuffer[];
BuffertTsource Sockett.getLocalAddress[];
Buffert.dest CharlieAddr;
SetPupContentsWords[Buffer,PacketLen];  -- size of packet
Packet LOOPHOLE[@Buffert.pupBody];
PackettTGroupNumber _ Out-Group;
Packctt.MessageType SendPacket;
FOR I IN [O..MesgLenj DO Packett.Message[I] p[ I ] ;  ENDLOOP;
Sockett.put[Buffer]; -- also does a ReturnFreePupBuffer

END;

ReceivePacket:  PUBLIC PROCEDURE [p: PacketBody] RETURNS [BOOLEAN] =
BEGIN
I :  [B..MesgLen);

-- try to receive a packet from Charlie and put the information in p
Buffer
IF Buff&-

Sockett.get[];
= NIL THEN RETURN[FALSE];

-- try to make sure it's really from Charlie
IF Buffert.source # CharlieAddr THEN

BEGIN
WriteLine["Terrible error! Someone is trying to impersonate Charlie!! !"I;
RETURNCFALSE]

END;



76 . . . . . . . . . . . . , , , , Problem  4, , . . . . , . , . , . , . . . . YESA pro(grams

-- try to make sure it contains valid data
Packet LOOPHOLE[@Buffert.pupBodyJ;
IF Pack&.GroupNumber # OurGroup THEN

BEGIN
WriteLine["Terrible error! Charlie sent a packet to the wrong group!! !"I;

WriteString["He  sent to group "3;
WriteDecimal[Packett.GroupNumberJ;
WriteString[" but we were expecting "3;
WriteDecimalCOurGroup];
WriteLine["!!!"J;

RETURN[FALSE-J
END;

IF Packett.McssageType # SendPacket THEN
BEGIN

WriteLine["Terrible error! Charlie didn't send us data!!!"];
WriteString["He  sent us a packet of type "1;
WriteDecimal[LOOPHOLE[Packet?.MessageType,INTEGER]];
WriteString[" but we were looking for type "1;
WriteDecimai[LOOPHOLE[SendPacket,INTEGER]];
WriteLine["!!!"];

RETURNCFALSE]
END;

-- if we survive to here everything "must" be all right
FOR I IN [B..MesgLen)  DO p[I] _ Packett.Message[I]; ENDLOOP;
ReturnFreePupBuffer[Buffer'J;
RETURNITRUE]

END;

CloseContact:  PUBLIC PROCEDURE =
BEGIN

Buffer GetFreePupBuffer[];
Buffertysource Sockett.getLocalAddress[];
Buffert.dest CharlieAddr;
SetPupContentsWords[Buffer,PacketLen];  -- size of packet
Packet LOOPHOLE[@Buffert.pupSody];

- PackettyGroupNumber  _ OurGroup;
Packett.MessageType FinishContact;
Sockett.put[Buffer];--- this also does a ReturnFreePupBuffer
PupSocketDcstroy[Socket];
PupPackageDestroyCJ;

END; I

END.



Solutions . . . . . . . . . . . . . . . . . . Problem 4. . . . . . . . . . . . . . . . . -. .77

Solutions for problem 4.

The most interesting variety in the solutions for this problem was the number
of different schemes people used for error detection. OP/JP  used a rather simple
scheme of making the message size half the packet size and repeating each message
twice in a packet. ML/MMS/JJW computed a 2-word Hamming code for the data
in each packet and put it at the end of the packet. DOH/RSF computed a Vertical”
parity word in which each bit served as the parity for the corresponding bit in all
data words, and several uhorizontal” parity words in which each bit served as the
parity for one data word. RLH/PB had in interesting scheme where a checksum was
formed as 2: dip; where d,- is the ith data word in the packet and pi is the ith prime
number (193 proved that this scheme will detect all single-word errors). JDH/FNY
used a schcmc which was kind of fine-tuned to the errors Charles produced: they
made one checksum which was the XOR of all words XOR’ed  with 31415 (the 31415
was to catch the all zeros and all ones errors), and a two more checksums ~1 and ~2
which were made by XORing data words into ~1 and ~2, rotating yl one bit every
operation and y2 one hit every eight operations. Since the packet size was less than
64, this scheme caught all double-bit errors.

Everyone used a scheme very similar to the one presented in class for a message
protocol. Everyone solved the “termination problem” by having Alice send a large
number of termination packets to Bill and assuming that at least one got through.





78 . . . . . . . . . . . . . . . . . . . . . Appendix . . . . . . . . . . . . . . . . . . . . .

Cast of Characters

Staff
DEK

Don Knuth Allan Miller

CXF‘

Chris Fraley

FNY

1

Students

DOH FJB

Doug Hartman Duffy Boyle

GMK HWT

Frank Yellin

-._ ._.. . . . _-- ---  --

Gabriel Kuper Howard Trickey



. . . . . . . . . . . . . . . . . . . . . . Appendix. . . . . . . . . . . . . . . . . . . . . .79

JDH JJW JMM

John Hobby Joe Weening Jitendra Malik

JP ML MMS

.

L

Jerry Plotnick Mark Lake Mike Spreitzer

PB PEV

Oren Patashnik Per Bothner Paul Vianna



80 . . . . . . . . . . . . . . . . . . . . . Appendiz . . . .

PHW

Pat Worley

RV

Rick Vistnes

DEK2

Dan Kolkowitz

RLH

not

Bob Hess

Auditors

MPH

pictwe

not

Martin Haeberli

RSF

Ross Finlayson

SGD

Stefan Demetrescu

PPH

Peter Hochschild



DD

Danny Dolev

. . . . . . . Appendix. . . . . .

Visitors

JMC

John McCarthy

. . . . . . . . . . . . . .

TCH

T. C. Hu

. . 81


