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It is reasonable to hope that the relationship between computation and mathematical logic
will be as fruitful in the next century as that between analysis and physics in the last.
The development of this relationship demands a concern for both applications and for
mathematical elegance.

John McCarthy [ll]

1. Foreword.

In recent years, more and more computer scientists have been paying attention to temporal logic, since
there are many properties of programs that can be described only by bringing the time parameter into
consideration. But existing temporal logic languages, such as Lucid, in spite of their mathematical elegance,
are still far from practical. I believe that a practical temporal-logic language, once it came into being, would
have a wide spectrum of applications.

XYZ/E  is a temporal-logic language. Like other logic languages, it is a logic system as well as a
programming language. But unlike them, it can express all conventional data structures and control
structures, nondeterminate or concurrent programs, even programs with branching-time order. We find that
the difficulties met in other logic languages often stem from the fact that they try to deal with these structures
in a higher level. XY?,/E adopts another approach. We divide the language into two forms: the internal form
and the external form. The former is lower level, while the latter is higher. Just as any logic system contains
rules of abbreviation, so also in XYZ/E  there are rules of abbreviation to transform the internal form into

-
the external form, and vice versa. These two forms can be considered to be different representations of the
same thing. We find that this approach can ameliorate many problems of formalization.

XYZ/E,  like other temporal-logic languages, treats variables as temporal object, i.e. it looks upon them
as potentially infinite vectors, each component of them corresponding to a time. Elephant[l2]  expresses a
variable v as v(t) with the time parameter t explicitly indicated. But since this method of expression must
make use of second-order logic to express assertions of a program; it seems too strong. Another approach
is to represent the value of v as Apply(v,  t). It is now within first-order theory. However we choose a third
approach, the modal-logic approach, and we express hpply(u, t) as #V and App!y(v, t + 1) as o#yl,.  Here,
“0” is an operator meaning nezt time. The symbol v is only a name and has no value; only #v or osjv has
a value [13].

With this convention, the statement expressed conventionally as % t v + 1” is expressed by “o#w =
#v+ 1.” Control flow can be handled similarly; thus, the statement goto z is expressed in XYZ/E’by  ‘o#lb  =
z, where lb is a special variable in the language used to indicate labels in control flow. The proposition that
we are at label x in a program can be expressed by the equation #lb = z. These are the basic steps in
expressing the statements of a conventional language as logical formula in XYZ/E.

This research was supported in part by the Office of Naval Research under contract N00014-76-C-0687 and
in part by the Air Force Office of Scientific Research under contract AFOSR-81-0014.
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In fact, the logical structures in both data and statements are identical; arrays correspond to loops,
records to compound statements, pointers to goto statements, etc. Starting with a few basic lower-level
items, we can construct complicated data and control structures with the same logical mechanism.

To make this possible, we create a new naming mechanism. A name has three parts: One is the type
symbol which represents the type of the variable. Since XYZ/E  is a many-sorted logical system, this part is
necessary, but it can be omitted in abbreviation. The second partis a conventional identifier. The third is
the name index which is used to express the component of a vector or a record. For example, Iabc-($)-age
represents a data item which is the age component of a record which is the third component of the array
abc. This data item is of type integer, which is expressed by type symbol I. For the component of an array
or loop, we can use a name scheme instead of a label, e.g. abc-(#Kabcj, where #Kabc is an integer variable
which can have as its value the positive integers in the process of looping. Thus abc-(#Kabc) can produce
different labels of the same pattern.

The two kinds of control structures have not been clearly distinguished in conventional languages:
the local control structures, wh ich are the control of information flow within one statement, an d the total
control, which expresses the information flow among modules and the whole program. In accordance with the
differences in total structures, we divide the language into three layers: the flowchart structure, the module
structure, and the nondeterminate structure (i. e. Petri net structure). Each structure is an extension of the
previous one, but with more data types and control forms. The whole language is divided into XYZ/EO,
XYZ/El,  and XYZ/E2.

With these conventions, XYZ/E  can be used
properties of the programs, but also as a practical
expressible by conventional languages.

not only as a logic system to express the assertions and
programming language which can express any algorithm

Thus, XYZ/E  is meaningful not only in program verification but in other areas, such as formal seman-
tics. In my opinion, the essence of programming languages and systems is operational, so an operational
approach to formal semantics looks more natural; however systems such as VDL involve details which be-
come voluminous; while the denotational approach, such as the Scott-Strachey system, is more elegant,
their treatment of the higher-level control structure, i.e. continuation, seems unnatural since the operational
aspects of the system have been twisted. But in XYZ/E  the operational characteristics of the language
are concentrated into the temporal transition of the time parameter and all the rest are static. As a logic
system, its formal semantics can be as easily defined denotationally as in any logic system; on the other
hand, it is an assembly-like language, so that it is easy to construct a compiler- ,like transformation to map
the semantics of higher-level language into this language. The formal semantics of any higher-level language
can be expressed in this two-level way. Importantly, the formal semantics of a language becomes tightly
connected with its compiler. Many people have shown a strong interest in using the compiler as the formal
semantics of a higher-level language. They have failed because the semantics of the language to which the
tompiler  is to map is not easily formalized. But XYZ/E, as a logic language does not have this defect; its
own semantics can be easily formalized denotationally. We can use XYZ/E  to describe the formal semantics
of other programming systems. There is yet another fact often neglected: for almost all formal semantics
methods, using their symbolisms to describe the semantics of a programming system is a hard job. Often, it
is more difficult to do that than to write a medium-size compiler. But to use XYZ/E  to describe the formal
semantics of a language is identical to writing the semantic routines for its compiler.

With certain extensions, XYZ/E  is also suitable to serve as an abstract specification language. It can
also be used as a formal means of describing the process of hierarchical programming. This is another major
application of XYZ/E,  which we discuss in [16].

XYZ/E  has yet other applications. It can be used as a portable intermediate language. Since it can be
used to describe the semantics of compilable languages and is also portable to different machines, it has the
characteristics of an ‘UNCOL’ in some restricted sense. Since both transformations from higher-level lan-
guages to XYZ/E  and the inverse transformations exist, it may be used for source-to-source transformations

Since it treats data structure and control structure in a similar way, this language can remember past
history. Its application to data-base management systems is strongly expected.

Not only does XYZ/E  have various practical applications, it also has a theoretical impact. As is well
known, most higher-level programming languages can be roughly divided into two kinds: applicative and
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algorithmic; LISP is representative of the first, and representatives of the latter include Algol 60, Fortran,
etc. It has been widely agreed upon that X calculus, or more generally, theory of computability, is the
logic foundation of applicative languages; but what theory can be considered as the logic background of
algorithmic languages ? No satisfactory answer seems to exist yet. A natural conclusion after the overview
presented above is that most probably, temporal logic can serve this ourpose.  The external form of XYZ/E
can be considered as a model, and its internal form as a kind of intermediate representation.



2. .XYZ/EO,  Internal and External Form of The Language.

A computer system consists of different layers of an abstract machine. Each layer has its super control
structure, which is the basic framework to control the flow of information within that layer. The most basic
super control structure is flowchart structure. XYZ/EO is a language which uses this structure.

The following are the features of XYZ/EO, and are also the common features of the whole XYZ/E
family.

(1) Names:

All names used to represent the entities in the system consists of three parts concatenated consecutively:
type symbol, name root and index part, which are defined as follows:

<name> ::= <type symbol><name root><name  index>
<type symbol> ::= <data type> 1 <label>
<data  type> ::= <basic type> 1 <structured type>
<basic type> ::= I 1 C 1 B 1 <extensible>

Hereafter, we use the convention <extensible> to mean that it is subject to possible extension.

<structured type> ::= kdata type> I R{<data  type sequence>}
I Pidata  type> I <extensible>

<data  type sequence> ::= <data  type> I <data  type sequence>,<data type>
<name  root> ::= <identifier>

Here identifier is used in the conventional sense, but the letters in it are limited to small Roman letters.

<name index> ::= <empty> 1 <name  index>-<node>
<node> ::= <identifier> I <integer> I (<integer>)
<label> ::= L

We use the capital letters I, C, B, V, R, P to represent the types integer, character, boolean, vector,
record, and pointer respectively. The index node identifer  or integer  is used to denote the component of a
record or a compound statement; ( ii n t ege r>)  is used to denote the component of a vector or a loop.
We use the Greek letters “8, o, 77 as meta symbols to represent <type  symbol>, <name root>, and
<n ame i n de X> respectively; we also use X to represent on. In order to be more readable, we also use x, y,
z, u, 21,  w to represent any name if its type symbol is not L .

Thus  VR{I,C,I)  ba c means that abc is a vector whose element; are of the type record R{I,C,Q  with 1,
C, I as the types of its three subfields. Iabc,(J)-age is the data item of the record of the vector abc which

-is labeled age.
We still need the concept of name scheme.

<name  scheme> ::= <type symbol><name root><name  sch index>
<name  sch index> ::= <empty> 1 <name sch index>-<identifier>

1 <name sch index>-<integer> 1 <name  sch index>-(<counter>)
<counter> ::= #K<identifier>  I o<counter>

Every counter is always of type I. If x-y is a name scheme, and y does not contain symbol (I-“,  we say that
y is the rightmost or last node of x,y. A name scheme is an expression. As an example, abc-(#Kabc)  is a
name scheme, #Kabc is the counter corresponding to abc, and (#Kabc)  is the rightmost node of this name
scheme.

(2) Formation rules:

i) Variables:
General variables are those variables whose values are time dependent. We distinguish its name from its

value. If a1 is a name whose type symbol is not L then #aA is a general variable Among general variables,
there is one kind of variable whose value does not change with time. We call them basic variables. If v is a
name, .U is a basic variable.
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ii) Constants:
Constants are expressed as in conventional formal languages. Thus, 0, 1, 2, . . . are used to represent

integers, character strings are quoted with double quotation marks, T and F are used to represent true and
false, etc. A name is a special case of a character string but with the quotation marks omitted.

iii) Expressions:
(1) every constant of type I or C is an expression.
(2) every basic variable of type I or C is an expression.
(3) every name scheme is an expression whose value is a name.
(4) if e is an expression of type 8, where 8 is I or C, and 8 is an unary operator, then @e is also an expression

of type a.
(5) if el, e2 are expressions of type 3, where d is I or C, and @ is a binary operation, then (ei Q es) is also

an expression of type a.
(6) if e is an expression then oe is an expression.

iv) Logical formulas:
(1) any general variable or basic variable of type B is a logical formula.
(2) if ei and e2 are two expressions both of type I or C, then ei = e2 is a logical formula called an equation.
(3) there are some special formulas denoted by special names:

(i) T and F are logical formulas which are called logical constants.
(ii) A type symbol without a root and an index following it is called an allocational formula. Every

allocational formula is a logical formula. Semantically, allocational formulas are equivalent to T,
but they have a different pragmatic meaning (which is beyond what we are going to formalize in
our system). They are introduced into the system in order to omit the type symbols in the names
of the variables.

.

(4) if P, Q, and R are logical formulas, then so are TP, P V Q, PA Q, P > Q, P = Q, and IF P T H E N
Q ELSE R.

’ (5) if P is a logical formula, and z is the name of a variable of type I or C, then VxP and 3zP are logical
formulas.

(6) if P is a logical formula, then q ( P), O(P), and o(P) are logical formulas. (These three operators are
read as necessary, possible,and nexttime  respectively).

(7) if P and Q are logical formulas, then (P)U(Q) is also a logical formula. (It is read as until.) [8].

Among the equations, there are some special forms:
(1) An equation of the form o#s = e (or e = o#z) is called an assignment equation if there is no o

occurring in the expression e and #z is a general variable Here o#z is called the next-time side and e
the present-time side of the equation.

,

(2) There is a special general variable #lb whose value is always a name. It always occurs in the equation
d of the form: #lb = e or o#lb = e, where e is a name 01  n a m e  sckemi*. it is used to express the

control flow of the whole formula. We give the special name lb equation to them. (#lb = e is called a
present-time lb equation and o#lb = e a next-time lb equation). There is a special form o#lb = stop
which is called the stop equation. Hereafter we abbreviate IF P THEN Q ELSE F as IF P THEN Q.

Logical formulas are the well-formed formulas in our system. From a programming point of view, we
have a special interest in well-formed formulas of the form:

q (AI v A2 v . . . v An)

where each Ai, i = 1,. . ., n has one of following two forms:

(i) (IF #lb = ei T H E N  <&;A>> o #lb = ej)

(ii) (IF #lb = e, THEN (IF Pi THEN <<QilA)>  o #lb = eji E L S E  <(Qt2~\))  0 #lb = ej2 ))
where <<X>> inplies  that X may be empty. e;, cj are names or name schema. No lb equations are allowed to
occur in Pz, Qt and no allocational  formulas are allowed to occur in P,. In addition, no more IF. . . TIIEN..  .
ELSE.. . f0fJ-n coficG~~o.n~l  statements are allowed to occur in P, and Qt. A formula of the above
form satisfying the following condition is called a programc  suu ‘-j-r&me  prcblem’  in I13J):
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For any general variable, say #aA, an equation of the form o#6I = e is called an updating
. equation, It has a special case, o#dX  = #ax, which is called a redundant equation. Let #all,,

. . . , #a,& be all the general variables occurring in the program. Then for each a’ = 1,. . ., n,
the Qi, or Qir and Qr2 must have an updating equation for each general variable as a conjunctive
component. Redundant equations can be omitted.

We always express the program in another, more readable, form:

(1) we express (i) as “#lb = e =+ <<Q,r\>>  o #lb = ej.”

(2) we express (ii) as “#lb = e A P, =+ <<Q,~A>>  o #lb = ejr; #lb = e A 1Pi =+ <<QizA>>  o #Zb = ejz.”

(3) We change the outermost parentheses of the program into square brackets.

A program is changed into the form: •I [RI + Sl; . . . ; R, 3 S,]. Each R, =+ Si is called a conditional
element. A program is regular if for any e3 the next-time lb equation o#lb  = e3 occurs, then there must
be a 1 (1 2 1 5 n) such that the present-time lb equation #lb = e3 occurs in Rl. We consider only regular
programs.

Also for readability, we divide a program into several blocks by using square brackets to group conditional
elements. A block symbol appears before the brackets. These block symbols are used to indicate the access
rights for those names declared (i.e. occurring in a present-time lb equation) in the block. There are five
kinds of blocks:

(1) Yo;[.  . .] is used to group the declaration of input basic variables. The variables in it must have initial
values and these values cannot be changed within the program.

(2) %o[. . .] is used to group the declaration of output basic variables. The variables declared in it must
have a value which can be accessed outside the program.

. (3) %io[.  . .] it is used to group the declaration of input-output general variables. The variables declared
in it must have initial values, but their values can also be changed within the program and accessed
outside the program.

(4) %u[. . .] is used to group the declaration of local general variables.

(5) %a[. . .] is used to group the algorithm.

The syntax of an EO program can be described as

<EO prog>  ::=
x%X part>::

q [ <%i part> x%0 part> <%io  part> <%v part> <%a part> ]
=<%X block> 1 <empty>

-X represents i, 0, io, v, or a.

<%X block> ::= %<X>[<conditional element seq>];
<x> :: =ilo 1 io 1 v I a
;<conditional  element seq> ::=<conditional  element> I

<conditional element seq>;<conditional element>
<conditional element> ::=

<present lb eqwcond  part> =+ <act  part><next lb eq>:
<present lb eq> ::= #lb=-cname  scheme>
<next lb eq> ::= oxpresent  lb eq>
<cond part> ::= A<logical  formula> I <empty>
<act part> ::= <logical formula>A  I <empty>

Example 1: The integral square root of a given non-negative integer.
The flowchart for this problem is shown in Figure 1.
By following the steps shown in the flowchart, we obtain a XYZ/EO program. We change the assignments

into assignment equations and use lb equations to express the flow of control:
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q [ #lb=sqrt=+o#lb=Im;

%;[ #lb=Im*IAo#lb=In  1;
%o[ #lb=In+IAo#lb=Ik  1;
%v[ #lb=Ik+IAo#lb=Ip;

#lb=Ip*IAo#lb=11  ]:
% a [  #lb=ll~o#Ik=OAo#Ip=lAo#lb=Z2;

#lb=/2A#Ip>  .Im*o#lb=/4;
#lb=/2A#Ip< .Im+o#lb=/3;
#lb=13+o#Ip=#Ip+2*#Ik+3Ao#Ik=#Ik+lAo#lb=~2;
#lb=/4=>.In=#IkAo#lb=stop ]]

We have included the type symbols in this example. We will omit them in future examples.

Example 2: Binary search in an array of integers. We search for the integer stored in .obj. The flowchart
is Figure 2, and the XYZ/EO program follows.

q [#1 b = binarysearch =+ o#l b = Kar;
%#[#lb = K ar=+IAo#lb=dpt;

#lb=dpt+IAo#lb=Zl;
#lb=fl=+o#K ar=lAo#lb=ar;

# l b  =  a r  A  # K a r  < .dpt + o#l b = ar-(#Kar);
#lb=ar-(#Kar)+IAo#lb=l2;
# l b  =  arA#Kar > .dpt =+ o#lb = o b j ;
#lb=l2+o#K ar=#Kar+lAo#lb=ar:
# l b  =  o b j  =+ IA o#lb = p l a c e ] ;

%o[# 1 b = place =+ I A o# 1 b = low] ;

%v[#l b  =  IowaIAo#lb=high;
#lb=high+IAo#lb=mid;
#lb=mid+IAo#lb=/3];

%a[#lb=l3=+o#low=1Ao#high=.dpt+1A~#lb=Z4~
#lb=/4A#Iow < #high =+ o#mid = [(#low + #high)/21 A o#l b = 15;
#lb=/4A#1 ow>#high+o#lb=l6;
# l b  = 15 A .obj  > .ar-(#Kar) =+ o#Zow =  # m i d  +  l/\ o#l b = 14;
#lb = 15 A .obj 5 .ar-(#Kar) * o#high = #mid A o#l b = 14;
#1 b = 16 A .obj = .ar-(#high) + .place  = #high A o# 1 b = /7;

# l b  =  Z~A  . o b j  # .ar-(# high) =+ .pZace  = 0 A o# 1 b = /7 ;

# l b  =  t7 + o#lb = s t o p ] ]

. ,
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Figure 2

XYZ/E  uses the same control structure for variable declarations and algorithms. In a compiler system, they
are realized at different times; for an interpretive system, both are elaborated at the same time.

There are too many occurrences of lb equations in an XYZ/E program. It is easy to see that there are
ways to simplify the representation. The result of this simplification is the external form of the. language.
(1) Within each conditional element, the rightmost (next) lb equation “o#lb = aA” is abbreviated as “1

6%“.

(2) Within each conditional element, the leftmost (present) lb equation “#lb = 31” is abbreviated as
(‘ax :“. If there is no formula between this leftmost lb equation and the “q”, then the ‘5” sign can
be omitted.

9



(3) For any rightmost lb equation, if the name in it is the name occurring in the leftmost lb equation of
next conditional element, then this rightmost lb equation can be omitted; if after the omission, the
conditional element becomes a formula of the form “81 =+;” or “aA :;“, then the semicolon can be
omitted.

(4) For any sequence of formulas after the above abbreviation, say “Ai; . . . ; A,“, if they do not contain
the symbol “=+I’, and all except the last do not contain formula of the form “7 z”, then they can be
grouped by a pair of square brackets.

(5) For any leftmost lb equation “aA :“, if no rightmost lb equation except its immediate predecessor has
its name occurring in its right side, then the “aA :” or “#lb = 8,” together with a “A” sign occurring
in its right side can be omitted, unless this lb equation occurs more than once.

(6) If two conditional elements have the same leftmost lb equation, but have contradictory conditions on
the left of the sign “==+“,  i.e. they have the form: “a1 : P + Qi; c~A : 1P =+ Qz;” the second leftmost
label can always be omitted.

(7) Any formula of the form “X : P =+ Q =+ R” can be abbreviated as “X : P A Q =+ R”; S i m i l a r l y ,
“A : P =+ Q ==+ R,; 7Q =+ R2;” can be abbreviated as “X : P A Q =+ RI; P A 1Q =+ R2;“.

(8) For each vet tor z, we always assu me that there is a counter (i.e. a general variable of type I) defined
together with it ; its name always starts with a capital K and is followed by the name of this vector.
This kind of counter is always initialized with the value 1.

(9) The type symbol of a name is omitted.

All these abbreviations can be easily restored mechanically. With these abbreviations, the Examples 1
and 2 above become:

Example 1 (cont.)

q [ sqrt :
%i[m : I];
%o[n : I];
%v[k  : I;

P : II;
%a[o#k = 0 A b#p = 1 ;

1 2  : #p > .m =+t 14;
#p~.m~o#p=#p+2*#k+3Ao#k=#k+l~fl2;

14 : .n = #k t stop]]

Example 2 (cont.)

q [ binarysearch:
%i[dpt  : I;

ar : #Kar _< .dpt  + [ar-(#Kar) : I; o#Kar = #Kar + 1A t ar] ;
#Kar > .dpt + obj : I];

1 %o[place  :  I ] ;
%v[low  : I;

high : I;
mid : I];

%a[o#low = 1 A o#high = .dpt + 1 ;
14 : #low < #high =+ o#mid  = [(#low + #high)/2]A  t 15 ;

# l ow  2 #high =+I 16;
15 : .obj > .ar-(#Kar) =+ o#low = #mid + 1A 114;

.obj  5 .ar-(#Kar) =+ o#high = -#midA 114;
16 : .obj = .ar-(#high) + .place = #highA 7 17;

.obj  f .ar-(#high) =+ .place = 0~ t 17;
17 :t stop]]
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3. XYZ/El.

XYZ/EO introduced above is confined in the framework of flowchart structure, and thus cannot express
subroutine calls, especially recursive ones. This can only be done in a higher luy*r super-control structure.
This constitutes the basic novelty of XYZ/El.  XYZ/El is extented from XYZ/EO with following new
features:

A general variable of type stack is denoted by a name whose type symbol is S concatenated with the type
symbol of its elements. The allocational formula for stack is “S <elementtype> “, where <elementtype> is
the allocational formula of its elements.

There are several operations that can be performed on a stack, e.g. “push( <stack> ,<element>)“,
“pop(  < stack>)“, “top( < stack>)“, and “depth( < stack>)“. These operations are defined by well-known
axioms.

We also introduce the concept of procedure and function modules. For XYZ/E,  we add the following
extentions:

<El prog>:: =n[ <main> <module part> ]
<main>::= -z%i part> x%0 part> <%io  part> <%v part> <%a part>

Now ‘(<main>”  is just as in ‘I< EO prog >“and  no more illustration is needed.

<module part> ::= ;<module  seq> 1 <empty>
<module seq> ::=<module>  1 <module seq>; <module>
<module> ::= <module  symbol>[  <module main> <module  part> ]
<module symbol> ::= @p 1 @f 1 . . .
<module main> ::= <%i part> <%o part> <%io  part> <%v part> <%a part>

We introduce two kinds of modules: One, with “%p” as its module symbol, we call procedure; the other,
with “%f” as its module symbol, is called function. For the external form of these two kinds of modules,
we adopt the convention that the “%i part”, “%o part”, and “%io part” of these modules are moved to the
position following the name of the module and grouped by parenthesis as a parameter part, as in conventional
languages. In order to distinguish among these three different parts, the block symbols Y?&“,  “%o” and
“%io” are put before their corresponding group of variables. For functions, the output variable will always
be unique and have a name beginning with F and followed by its module name.

Example 1 becomes:

%f[sqrt(%im : I; %oFsqrt  : I) :
%v[k : I;

P : II;
%a[. . .]]

The internal form of the procedure and function calls are exactly what one would do in a compiler
w:ritten in assembly languages: There is a stack #SCreturn  together with its counter #Kreturn.  To
call a procedure ax, we first assign the values of the input and input-output actual parameters to their
corresponding formal parameters, and then push the name of the next conditional element onto the stack.
W e  goto the label ax ( i.e. o//lb = ax). Upon completion, we pop the top label into a pointer and then
goto the position corresponding to the content of that pointer. It is then necessary to assign all output and
input-output formal parameters values corresponding their actual correspondents. Of course, this internal
form is unreadable, so an external form is necessary.

In the external form, to call procedure 3x(. . .) we say “1 3X(:, -, -)“, where “(-, -,-)” are’the actual
parameters. To call a function 3x(%;.. . ; %oFaX : a) we say “#FaA(-,-,-)“, where ‘I(-,-,  -)” are the
actual parameters which correspond to the %; part of the formal parameters. Thus to apply the function
sqrt to the integer ‘16’ we would say “#Fsqrt(lG).
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4. XYZ/E2.

XYZ/E2  is the layer that has the super structure which can be used to express concurrency and
nondeterminancy [14].

The new allocational formula for Petri Net is ‘W’. A general variable of type N is also accompanied by

variables of type I, which are called places.
There are also two new special operators from the domain of transition variables to {T,,F}:

(1) isfired( #NX)
(2) isenabled( #NX)

Each Petri net must obey the following axioms:

VNX(isfired(o#NX)  > isenabled(#NX))  A

SlNX(isenabled(#NX))  > 3NX’(isfired(o#NX’))  A

VNXVNX’(#NX  # #NX’  > l(isfired(#NX) A isfired(#NX’)))

I data 1

I--- -send + 1 I
I empty I
I

receive 4- [ 1

I data 1
-------------
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o [phi1 osophers :

%V[Pll : I ;

f12 : I;

7J13 : N;
2114 : I ;

2’15 : N;
elfj : I;

v17 : N;

Example 3: The well-known send-receive problem is shown in Figure 3, We assume that the buffer is circular
and that only one integer is to be sent or received each time. Modelling  this problem with a Petri net, we
get a net of the form in Figure 4 where VI and v:! model the sender, v4 and us the receiver, and 213 is the
buffer  which is k-bounded. When the sum (called tokens) is more than k, the transition object is suspended.

The program corresponding to Figure 4 is as follows:

-- - - _---

0 [sendreceive :
%V[Vl : I;

v2 : I;

v3 : I;

v4 : I;

V.5 : I;

v(j : N;
v7: N; _
vg: N ;
vg : N];

%+:#q > 0 =+ isenabled(0#v6)A  t n;
n:isfired(#~~)=,o#~,=#v~-i~~o#~~=~f~~+1~t~;
n:#v2 > OA#V~ < k=+ isenabled(o#v,)Atn;
n:#v2>OA#v3>  k+fn;
n :  isfired(#

O#Vv:!  = #V2 - 1 A O#Vl = #VI + 1 A 0#v3 = #v3 + 1A t n;
n:#% > OA#q > O* isenabled(O#v,)r\tn;
n:isfired(#vg)+

O#V4 =#v~-~A~#v~=#v~-IAo#v~=#TJ~+~A~~;
n:#% > 0 =+ isenabled(O#v&  t n;
n:isfired(#q)*o# V5 = #us - 1 A o#v4  = #v4 j- IA 7 n]]

- Example 4: The dining philolophers problem: For j = 1,. . . ,5, tljl = 1 means the jth philosopher holds
at least one of his forks. v,:!  = 1 means the 3.th
represents the 3’th

fork is held by the philosopher of its some side; vj6 = 1
philosopher is eating. The Petri net describing this problem is shown in Figure 5, and the

XYZ/E2  oroqram  follows.

. . . similarly for philosophers 2,...,5
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%~[~:#PII  > OA#f12 > 0 + isenabled(o#v13)A  t n;
n :  isfired(#v13)=+

O#V14 = #V14  -k 1 A O#prl  = #pll  - 1 A o#fl2 = #f12 - 1~ f n;
n: #%I > OA#f22 > 0 + isenabled(o#vl,)A  t n;
n :  isfired(#t+J*

O#e16  = #el6 + 1 A o#v14  = #v14  - 1 A o#f22 = #f22 - 1~ 1 n;
n:#w, > 0 * isenabled(o#v17)A  t n;
n :  isfired(#v17)=+

o#Pll  = #PH + 1 A o#f12 = #f12  + 1
Ao#fx = #f22 --k 1 A o#e16  = #elf3 - 1A 7 n;

. . . similarly for philosophers 2,...,5

One often runs into problems when using a Petri net to represent a concurrent program exactly since
some properties may not be explicitly expressed. In Example 4, we must require that no two philosophers
can hold a fork at the same time, and no philosopher can hold a fork not at his side. There is no problem
in expressing these conditions in XYZ/E,  since we can always supplement the program with a formula to
express these conditions. For example, we need to supplement the dining philosophers program with the
following formula:

b(l 5 3’ < 5>(#fj2 = 1 3 3k(l 2 k < 5)ffOLD(#p~,#f,~)) A

vj(l 5 3’ _< ~)(#P,I = 1 3 3k(l L k 5 5)HoLD(#~,~,#fk~)) A

vj, k(1 2 j, k 5 5)(HOLD(#pjl,  #fk2)  3 (j = k V IFj # 5THENk = j + 1ELSEk  = 1)) A

bj k(l 5 3’) k 2 S)(HOLD(#Pjl,  #fk2)  > (#p,l = 1 A #f/c2  = 1) A
vjj ICC1  5 3'1 Ic 5 5)(HOLD(#pJ1j  #fk2) > lgm(l  < m 2 5)(m # .jA Hom(#p&  #fk2)))
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5. Axiomatization and Verification.

The axiomatic system of XYZ/E  contains the following parts:

(1) the axioms of predicate calculus;

(2) the axioms for the modal operators Cl, 0, and U;

(3) the axioms for integers and characters.

These are easy to find in the literatures.

(4) We need a new set of axioms for the next-time operator o, since we lay emphasis on the commutativity
and distributivity of o with other operators in the system. These new axioms are as follows:

(i) For any logical formula A and any unary predicate operation a E (1, Vz, %, 0, 0}, o8A G a o A.
(ii) For any logical formulas A and B and binary predicate operation d E {A, V, >, =, U}, o[AaB] E

[oAG’  o B].
(iii) For any expression e and unary expresional operation E {+, -}, oae = ~3 o e.
(iv ) For any name scheme CY& where p is its rightmost node, OCY-p  = a- o p.
(v) For any expressions el and e2 and relational connective a E {=, <, >, . . .}, o(eiae2)  = (oeiao ez).

(vi) For any expression el and e2 and binary operation a E {+, -, *, /}, o(eide2)  = (oeia  o e2).
(vii) For any basic variables .y, 0.y = .y.
(viii) For any constant c, oc = c.

(ix) For any logical formula A, 0 A > oA.

By means of these axioms we can always move o’s inward until all are located in front of general variables.
XYZ/El  and XYZ/E2 have additional axioms for stacks and transition types. Those for transition have been
enumerated in section 4, while the axioms for stacks are well known.

This modal logic system can be easily reduced to the first order logic system. It has been shown [lo]
that for any UI, 0 u, corresponds to Vtw, and 0 20 to 3tw. Also, every general variable of the form #%A can
be expressed in first order logic by Apply(&rX,  t) w ere Apply is a predicate defined by each given program,h
and ok#&rA  is expressed by Apply(&rX,  t + k). 20111202  corresponds to following formula:

&3f2(h  < t2 A Apply(w2J2)

AVt3(h  L t3 < t2 3 APP~Y(wI,~~))).

Feng [4]  has established the Hoare-type proof rules for XYZ/E.  Like Lucid, XYZ/E  can also be used to
do mathematical proofs directly as a logic system.

Silice every program in XYZ/E  is a well-formed logic formula, it can be used directly as the local axiom
for proving any property from it. Thus, in Example 1, to prove its correctness, we need prove that if we

- start with a positive integer #m, that lb = stop A #n2 6 #m < (#n + 1)2 is provable. We only need to
prove:

#lb = sqrt A EXl  A #m > 0 > 0 [#lb = s t o p  A #n2 2 #m A # m  <  (#n + 1)2]

where EXl represents the program in Example 1. Similarly, to prove the invariant of the loop starting at
12, we need only prove:

#lb = sqrt  A EXl A #m > 0 > 0 [#lb = 12 > #p = #k2].

3ne of the interesting aspects of XYZ/E  in its application to verification is that invariant properties
which can only be expressed by introducing so-called ghost variables and passive statements [8]  in other
logic systems can be expressed directly in XYZ/E.  Take Example 2 in section 2. As pointed out in [8], the
invariant corresponding to the loop from 14 to 16 is expressed as:

.

high - low is strictly decreasing. If the object .obj is in the ordered array .ar, then one of
its positions is between low and high.

Now to formalize it as [8]:
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“A is ordered between 1 and N” is expressed as

“B is in the interval (L, R) of A/ is expressed as

ISINTERVXL(B,A,  L, R) = 3z(L 5 x 5 R A R(s) = B)

So the last part of the invariant can be expressed as

ORDERED(.ar,  1, .dpt) A

(ISINTERVAL(.  obj, . ar, 1, .dpt)  3 ISINTERVAL(.obj,  .ar, #low, #high))

How do we express the first sentence of the invariant ? In a logic system which has no explicit method of
expressing state transitions, we would have to add an extra ghost variable and an extra passive statements
into the algorithm and the assertion as [8] suggests. In [8], the ghost variable is C, and the passive statements
added to the positions corresponding to 13 and 14 respectively are “C := N + 1” and “C := (high - low)“;
the first sentence of the invariant expressed in [8] is “low < high 1 (high - low) < C”. No extra variables
or sentences are needed to express this sentence in XYZ/E.  We can express this sentence as

q I(#ZOW < #high > (o#high - o#low) < (#high - #low)).

As is well known [5], the modal logic system with operators 0, 0, o and ?.f can express not only the
properties of sequential programs, but also many of the significant properties of concurrent and nondeter-
ministic programs. In Example 4, if each philosopher holds his left-hand fork, then they would all suffer
from starvation (i.e. deadlock). In order to express this property, let & represent the formula concerning
IIOLD  given at the end of the last section, and let the program in Example 4 be represented by P. The
deadlock property of Example 4 can be represented as follows:

P A & A Vj, k(l 5 j, k 5 5)(#pjl  = 1 A #fk2 = 1) 3 Cl Vm(l 5 m 5 5)(#e,6  = 0))

However, if some philosopher does not hold any fork but all the forks are held, then at least one
philosopher can eat sometime. This property can be expressed as follows:

PA &(I L m < ~)(#P,I = 0 A ‘dj(l  5 j < 5)(#&2 = 1 A (j # m 3 #p,l = 1))
> 3k(l 5 k < 5 A k # m A 0 #e : k6 = 1)) .

Since in the nondeterminate case, the time is in branching order, the operators 0, 0 differ in meaning
from when used in linear time order. There are many different ways to deal with the modal operators in the
non-deterministic case:

(1) To explain the operator 0 as “for all pathes and for all time nodes”, and 0 as “there exists a path and
there exists a time node”. In this explanation, the system built above is applicable, but there are some
properties unexpressible in this system. We lack operators to express “for each path there exists a time
node” and “there exists a path for all time nodes”. Consequently, is this system, not all properties of
non-determinate programs are expressible.

(2) Another choice is to use the system given in [3]. The six modal operators are VG, 3G, VF, 3F, VX,
3X. They correspond to “for all paths and all time nodes on it”, “there exists a path for all time node
on it”, “for all paths there exists a time node on it”, “there exists a path and a time node on it”, “for
each path, the next node on it”, and “there exists a path,the next node on it” respectively.

This system of symbolism looks too novel and differs too much from the customary modal logic system
given above. It would be more desireable to be able to express all the properties expressible by these six
operators, but remain within the framework of the modal logic and first-order theory. Thus we instead  do
the following:

16



I

(3) Since we discuss nondeterminate properties on the basis of Petri nets which are expressed by XYZ/E2
programs, we define the concept of path in terms of XYZ/E2  constructs. To express this fact more
explicitly, we use first-order symbolisms instead of modal theoretic ones, i.e. we use Apply(aX, t),
Apply(dX,  t + l), Vt, 3t instead of #aA, o#dX,  Cl, 0 respectively. Let P be the XYZ/E2  program given,
Vnl, * * - I vnm are transition variables occurring in P and nl, . . . , nm are different integers to represent
the indices of these variables. Let q be an integer different from nl, . . . , nm. Then the definition of path
variable x can be given as below:

P > Vt(V  j( 1 5 j 5 m)(isfired(Apply(v,j,  t)) > Apply(s,  t) = nj)

A -3 j( 1 2 j 5 m)isfired(Apply(v,j,  t)) > Apply(~, t) = q)

Call this formula D(P, z). To make use of this formula and quantification over z and t, the six cases
shown above can be easily expressed.

The deadlock property of Example 4 can be expressed as:

P A Q A ‘dj,k(l  5 j,k < ~)(APP~Y(P,&)  = 1 A Apply(fmt) = 1)

3 vxvw(g E {15,25,35,45,55))(W, 4 3 APP~Y(~, t) f 9)))

We can similarly express the eating property as:

. . . 3 -t=b(g  E {15,25,35,45})(D(P,  z) A Apply(s,  t) = g)))

Obviously, we are still within the framework of first order theory, a fact indeed beyond our imagination.
All the expression above can also be expressed with modal theoretic symbolism. So the modal-logic system

. given in this paper can be used not only to express nondeterminate programs but also to express all sorts
properties required in [3].
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6. Two Level Formal Semantics and Semantics-directed Compilation.

Since XYZ/E  is an assembly-like language, it can serve as the target language for the compiler of any
higher-level language. Yet XYZ/E  is also a logic system and its denotational formal semantics is well defined,
so the compiler of the given higher-level language can be taken as the formal semantics of the given language.
This is a natural way to treate formal semantics, it makes formal semantics closely related with compiler,
and seems to give a satisfactory solution to the problem.

As an example, we first give a simple language Sample as follows:

<program> ::= -cname>(IN  <decl seq>; OUT <decl seq>;
INOUT  <decl seq>)<prog  body>

<prog body> ::= BEGIN <decl seq> END; <state>.
<decl seq> ::= <decl>  1 <decl seq>;<decl>
<state seq> ::= <state> 1 <state seq>;<state>
<decl>  ::= <name>:<type>
<type>  ::= <elem  type> 1 <pointer> 1 <array> I <record>
<elem  type> ::= INT I CHARS I BOOL
<pointer> ::= T<type>
<array> : := ARRAY (expression) OF <type> END
<record> ::= RECORD <decl seq> END
<state> ::= <assign> I <compound> I <conditional> I

<while  state> I <goto>  1 <name>:<state>
<assign> :: =<name>+<express-ion>
<compound> : :=BEGIN <state seq> END
<conditional> ::= IF <boo1 expression> THEN <state> ELSE <state>
<while state> ::= WHILE <boo1 expression> DO <state> END
<goto>  : : = GOT0 <name>

The transformation from Sample to XYZ/E  consists of two major steps:

(1) Name normalization: The naming system in XYZ/E  has been elaborated in Section 1. This system does
not differ significantly  from those used in high-lever languages except for the following points:

(i) Each name has a type part. Since It can always be restored by syntactical analysis, we omit it in
following discussions.

- (ii) The labels of th e subfields of record are always concatenated with the label of the record.
(iii) The component of an array (or the body of a loop) is labelled with a name scheme which is formed

by the name of that array (or loop) tagged with a node formed by the corresponding counter braced
with parenthesis, i.e.:

x: ARRAY(<expreession) OF X-(#KX):<type>  END
X: RECORD Lnl:<type>l;,..;  X-nk:<type>k END

(2) The following are the equations which transform Sample into XYZ/E.  In these equations, p represents
the semantic mapping. The English construct “if - then - elseif  - then - else -” is used as a metalanguage
to express case situations. There are other phrases, such as “it begins with” which is used to express the
leftmost symbol or symbol string, and “< . . . > is - - -” which is used to identify the kind of < . . . >.
lCH” means the left side of it can be replaced by its right side. In order to be more readable, we choose
the external form of XYZ/E  to represent the semantics. Of course it can be changed into the internal
form easily. We call these kind of semantics equations /# equations.

18



I

p(<program>) C) p( <name>(IN  xll:<type>ll;...;xlk:<type>lk;
OUT xZl:<type>21;...;x21:<type>21:
INOUT x31:<type>31;...;x3m:<type>3m)
BEGIN x41:<type>41;...;x4r:<type>4r  END;
1: <state>. )

++ 0 [ <name>:
%i[ x11: /?(<type>ll);...;  xlk: /3(<type>lk)  1;
%o[  x21: p(<type>21);...; x21: P(ctype>21) 1;
%io[ x31: P(dype>31);...;  x3m: P(<type>3m) 1;
%v[ x41: P(<&ype>41);...; x4r: P(<type>4r) 1;
%a[ 1: p(<sta0+  ]]

P(<tYPe>) e+ if it begins with "INT" then p(INT)
elseif  it begins with "CHARS" then P(CHARS)
elseif  it begins with "BOOL"  then p(BOOL)
elseif  it begins with "7" then p(<pointer>)
elseif  it begins with "ARRAY" then P(<array>)
else P(<record>)

P(INT)  ++ I

/3(CHARS) - C

p(BOOL) - B

P(<pointer>) +-+ p(t<tYPe>)
+-+ Pf5'(<type>)

p’Wyw)  t-) if it begins with "ARRAY" then &array>)

- elseif  it begins with "RECORD" then #@record>);
else p(<type>)

p'(<array>) - #3'(ARRAY(<expression>)  OF aX,#KaX):<type>  END)
* A/Wype>)

@(<record>) ++ #(RECORD iLnl:dype>l;  . . . ; aX-nk:<type>k END)
- R@(<type>l),...,&<type>k)}

dX:Q + P(<array>) ++ 6WQ =$ P(ARRAY (<expression>) OF 81,(#Ka)+<type>  END)
+-+ ~X:QA#K~X  </3(<expression>)==+  -

[6X(#KaX):P(<type>); o#KW=#KaX+  1; tax];
Qr\#K6+ >P(<expression>)*

Similarly, we have the /3 equation for the case that dX : p(< array>). Hereafter, we will no longer mention
this corresponding case for other constructs.
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aA:Q 3 P(<record>) ++ dX:Q =+
P(RECORD 81,nl:<type>l;.  . .; %..nk:<type>k E N D )

++ dX:Q + aA-nl: /?(<type>l);  . . . ; aX_nk: P(<type>k)

P(<state>) ++ if it begins with “IF” then P(<conditional>)
elseif  it begins with “BEGIN” then P(<compound>)
elseif  it begins with "WHILE" then P(<while state>)
else P(<assign>)

P(<assign>) ++ p(f3At<expression>) +-+ o#aA=p(<expression>)

X:Q + ,8(<compound>)
++ X:Q + P(BEGIN <stated;  . . . ;<state>k  END)
e-) X:Q =+ [ p(<state>l);  . . . ; P(<state>k) ]

X:Q + P(<conditional>)
++ X:Q =+ p(IF <boo1 expression> THEN <state>1  ELSE <state>2)
++ X:Q@(<bool  expression>) + P(<state>l)Afnext;
++ Q@(7<bool  expression>) + P(<state>2);
next:

X:Q * P(<while state>)
+-+ X:Q ==+ @(WHILE <boo1  expression> DO <state> END)
- X:Q,$(<bool expression>) =+ P(<state>)TA;
Q@(-4001 expression>) 3

/q<goto>) ++ P;GOTO A)
+-) tx

These equations constitute the semantics of Sample in terms of XYZ/E,  whose own denotational
semantics is direct. They also describe a compiler which translates Sample programs into XYZ/E.  This
is what we call two-level formal semantics and semantic-directed compilation.

it is easy to see that an inverse transformation which translates an XYZ/E  program back into Sample
exists. *
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