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This list supplements previous errata published in Stanford reports CS551 (1976)
a n d  CS712 (1979). It includes the first corrections and changes  to the second
edition of volume two (published ,January,  1981) as well as to the most recent
printings of volumes one and three (first published in 1975). In addition to the
errors listed here, about half of the occurrences of ‘which’ in volumes one and
three should be changed to ‘that’.

1. .ix l i n e  - 7 101 IO/79 I

historically have always developed from $+
almost always owe their origin to

1 .Xx l i n e  - 5

2.2 + 2.2.

l/5/81 2

1 . 1 historical improvements o/4/79 3

l i n e s  - 6 ,  - 4 :  Khow~rizm~  j/,+ Khw%rizm’i
lines -5, -4: KhowGizrn.”  . . . Khiva. i”G) Khwgrizm.”  T h e  hral S e a  i n

C e n t r a l  A s i a  w a s  o n c e  k n o w n  a s  J,ake Khw%rizm, and the Khw;irizm
region is located in the Amu River basin just south of that sea.

l i n e  - 3 :  w’al-muqabala  + wa’Ln]uqiibala
l ine -3:  restorat ion and reduct ion J”G) restoring and equating

lines -2, -1: although . . . algebraic. $+ which was a systematic study of

the solution of linear and quadratic equations.

1.25 exercise 19 l/26/80 4
a  14 -d ig i t  i n t ege r ,  $+ an integer whose decimal representation is 14 digits

long,

I.42 l i n e  4

c I<k<n +  Cl<kjn-.

1.61 lines 4 and 5 6/l/81 6

2/23/81 5

to introduce still further complication $+ to complicate things even more

1 . 7 2 line -4 ( overrides 1979 change #18) 8/30/80 7
h(k-1) + (L). + A(?+l)(k-1)  + (L)J for nk > 0.
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1.78 l i n e  - 2

al-Khowkizm’i + al-Khwkizmi

1.86 l i n e  - 1 2

IZI < zo- A/+ IZI < Izol.

1.87 three l ines af ter  (4)

latter -rG, l a s t - m e n t i o n e d

1.88 bottom line

l<j<m $+ Olj<?n

’ 97 c l a r i f y i n g  r e m a r k sI .

1 .

1 .

1 .

1 .
-

1 .

1 .

line 10: A = k. ‘G) A = k. Let this number be P&.
l i n e  1 4 :  t h a t  +

t h a t  P& = P(nTI)(k-I)  + (n - l)Pcn-r)k,  which leads to

108  l i n e  7

Academz $+ A c a d e m i a :

110 j u s t  a f t e r  (131, overriding 1976 change #31

provided that . . . to n. $+ p r o v i d e d  tha t  f(‘k+2)(,),(2k-t-~1)(5)  > 0 for
l<x<n.

112 new wording for exercise 3 10/25/79 15

3. [HM,20]  T,et C, = ((-l)“B,,,/m!)(f(“‘-l)(n)-f(m-‘)(l))  be the mth correction
term in Euler’s summation formula. If f(2k) (2) has a constant sign for 1 5 z 5 n,
s h o w  t h a t  I&k/ 5 jC2k 1 hw en k > 0; in other words, the remainder is not larger in
absolute value than the last term computed.

119 new exercise 3/16/81 16

18. [M%] Show that the sums c (L)kk(n-  k)n-k and c (;)(k + l)“(n  - k)n-k can
be expressed very simply in terms of the Q function.

122 improvements in wording 614180 17
line 1: A . . . position has + A computer word consists of five bytes and a

sign. The sign portion has
line 8: bytes, and its sign $+ bytes; it behaves as if its sign
line 17: the preceding “JUMP” instruction, $+ t h e  m o s t  r e c e n t  “ j u m p ”

operation,

123 more improvements in wording 4112181 18

9/4/79

12/16/79

10/26/79

4/l/79

3/10/81

O/26/80

10/25/79

8

l ine 2 af ter  (3) :  8  is  $+ 8 specifies
lines 10 and 11 after (3): address of an instruction. Jc-) effective address.

lines 13 and 14 after  (3): address of the instruction. & address.
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1.132 wrong fonts

line -17: A through 2 $+ A through Z
line -16: 0, 1, . . . , 9; + 0, 1, . . . , 9;
l ine -12:  <p and II J\r A, C, and iI

I.132 l i n e  - 9

6/4/8O 19

3/30/81 20
ignored. Q gi nored. When a typewriter is used for input, the “carriage
return” that is typed at the end of each line causes the remainder of that line to
be filled with blanks.

1.136 and also page 13‘7 (i/6/80 21
replace by the chart on the endpapers of the new volume 2

I.140 l i n e  - 3 G/6/80 22

bytes 20, . . . since ‘j,+ bytes 10, 20, 21, 49, 50, . . . (i.e., t,he characters A, C, l$ $,
< , ‘.. ) since

1.141 line 13 6/4/W 23
cell(X + i). $+ CONTENTS (X -/- i>.

1.148 changes brought about by the demise of punched cards 3/30/81 24
Fig. 15 will change to include also the following copy as typed on a typical
hardcopy terminal:

* EXAMPLE PROGRAM . . . TABLE OF PRIMES
*

L EQU 500

PRINTER EQU 18

The caption will change to “. . . onto cards, or typed on a terminal.”
l i n e  - 6 :  c a r d s ,  Q cards or typed on a computer terminal,
l i n e  - 5 :  u s e d :  $+ used in the case of punched cards:

1.149 new paragraph to follow line 5 3/30/81 25
When the input comes from a terminal, a less restrictive format is used: The L O C
field ends with the first blank space, while the OP and ADDRESS fields (if present)
begin with a nonblank  character and continue to the next blank; the special OP
code ALF, however, is followed by either two blank spaces and five characters of
alphameric data, or by a single blank space and five alphameric characters, the
first of which is nonblank. The remainder of each line contains optional remarks.

1.150  l i n e  2 2 6/1/81 26
c o n t e x t ) ,  + O P  f i e l d , as shown in Table 1.3.1-l),

1.151 lines 9 and 10 6/4/80 27

values: C, F, A, and I; the Q values: C, F, A, and I. The
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1.173 new material for this page and the following one 11/l l/HO 28
here is a new Algorithm I together with a new Program I:

A l g o r i t h m  I (Inverse in place) .  Replace X[l]X[2].  . .X[n],  a permutation on

{1,2, * * *, n}, by its inverse. This algorithm is due to Huang  Bing-Chao.

Il .  [Init ial ize.]  Set  m +- n, j t- -1 .

12. [Next element.] Set i +- X[m]. If i < 0,  go to  s tep 15 ( the  e lement  has
already been processed)

13. [Invert one.] (At this point j < 0 and i = X[m]. If m is not the largest ele-
meut  of its cycle, the original permulation  had XL-j] = m.) Set X im] t- j,
j t- - m ,  m  +- i, i t X[m].

14. [End of cycle?] If i > 0, go back to 13 (the cycle has not ended); otherwise
s e t  i  + j. (In the lat ter  case,  the original  permutation  has X[-j]  = m,
and m is largest in its cycle.)

15. [Store final value.] Set X[m] t -i. (Originally X[i] was equal to m.)

16. [Loop on m.] Decrease m by 1. If m > 0, go back to 12; otherwise  t h e
a l g o r i t h m  t e r m i n a t e s .  a

For an example of this algorithm, see Table 2. The method is based on inversion
of successive cycles of the permutation, tagging the inverted elements by making
them negative, afterwards restoring the correct sign.

Table 2
COMJ’UTING  THE INVERSE OF 6 2 1.5 4 3 BY ALGORITHM I

(Read columns from left to right.) At point *, the cycle (163) has been inverted.

After step: 12 13 13 13 15” 12 13 1 3 15 12 15 15 I.3 15 15
X[l] 6 6 6 - 3 - 3 - 3 - - 3  - 3 - 3 - 3 - 3 - 3  - 3 - 3 3
x[2] 2 2 2 2 2 2 2 2 2 2 2 2 - 4 2 2
xi31 1 1  - 6 - 6 - 6 - 6 - 6  - 6 - 6 - 6 - 6 6 6 6 6
x14] 5 5 5 5 5 5 5  - 5 - 5 - 5 5 5 5 5 5
x[5] 4 4 4 4 4 4 - 1 - l 4 4 4 4 4 4 4
Xi61 3 - 1 - l - 1 1 1 1 1 1 1 1 1 1 1 1

m 6 3 -i -y -6 5 4 5 5 4 4 3 2 2 1
j -1 -6 1 - 1 - 5  - 4 - 4 - 4 - 4 - 4  - 2 - 2 - 2
i 3 1 6 - 1 - 1 4 5  - 1 - 4 - 5 - 5 - 6  - 4 - 2 - 3

Algorithm I resembles parts of Algorithm A, and it very strongly resembles
the cycle-finding algorithm in Program B (lines 50-64). Thus it is typical of
a number of algorithms involving rearrangements. When preparing a MIX i m -
plementation, we find that it is most convenient to keep the value of -i in a
register instead of i itself:

Program I (Inverse in place).  rI1 z m; r12 = -i; r13 = j; and n = N, a symbol
to be defined when this program is assembled as part of a larger routine.

01
02
03
04
05
06
07
08
09
10
11
12
13

INVERT ENTl  N 1
ENT3 - 1 1

2 H LD2N  X,1 N
J2P 5F N

3H S T 3  X,1 N
ENN3 0,l N
ENNl 0,2 N
LD2N  X,1 N

4H J2N  38 N
ENN2 0,3 C

5H S T 2  X,1 N
6H DECl 1 N

JlP 28 N

I1 IIlitialiae m +-- n .1-d
j t - 1 .
12. Next element. i t X[m].
To 16 if i < 0.
1 3  Invert one X[m]  t j.L-
j t - m .
m  t  i .
i t X[m].
End of cya To 73 if i > 0.
Otherwise set i t- j.
15. Store final value. X(m]  +-- -4.
16. I,oop on m.
To 12 if m > 0. 1



The timing for this program is easily worked out in the manner shown earlier;
every element  X[m] is set first to a negative value in step 13 and later to a positive
value in step 15. The total time comes to (14N + C + 2)u, where N is the order
of the permutation and C is the total number of cycles. The behavior of C in a
random permutation is analyzed below.

There is almost always more than one algorithm . . .

A, B, and I, + A  a n d  B ,

1.209 program line 21 4/4/80 30
L D A  ‘jp ENTA

I.234 l i n e  - 1 7 3/3/81 31
i.e., + e.g.,

1.246 improved overlap 214179 32
line -10 should become: OLDTOP  [j] - D [j] -. NEWBASE  [j + l]

l i n e - g :  n+l; + n ;
lines -8 and -7: delete the sentence “It will . . . overlap.”

I.248 addendum to 1979 change -#47 2/7/79 33
See also A. S. Fraenkel,  hf. Proc.  Letters 8 (1979), 9-10, who suggests  working
with pairs of stacks that grow towards each other.

1.250 new rating for exercise 13

[M47] + [HM44]

3/i/79 34

1.252 lines -12 and -11 8/18/80 35
together or to break one apart. * together, or to break one apart into two
that will grow independently.

1.254 replacement for lines 16 and 17 2 14179 36
Otherwise set X +- POOLMAX  and POOLMAX  t- POOLMAX  -j- c,

where c is the node size;
(7)

OVERFLOW now occurs if POOLMAX  > SEQMIN.”

1.284 the line for time 0693 7/t/79 37
hll + M5

1.309 l i n e  1 0

a n d  t w o  $+ and the elements of two

9/4/80 38

5
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1.323 trivial improvements to Program S 10/17/w 39
l i n e  0 3 :  ENTG  $+ ENT5
lme 03: ld $+ P
line 04: S2 + 2F
line 09: n I- 1 + n
line 09: Set + $J. Search to left. Set
line 10, first column: %+ 2H
line 11: *-2 + S2

Il.324 line 5
8%7

1.381 new exercise 5/19/81 41
27. [MJU]  (Steady states.) Let G be a directed graph on vertices VI, . . . , I&, whose

arcs have been assigned probabilities p(e) as in exercise 26. Instead of having “start”
and “stop” vertices, however, assume that G is strongly connected; thus, each ver-
tex V, is a root, and WC assume that the probabilities p(e) are positive and satisfy
~,,,,t(PJ=V  p(e) = 1 for all J’. A randorn process  of the kind described in exercise 26

is said to have a “steady state” (~1,.  . . , xrL) if

x3 = c p(e)xl”lt(e), 1 L j 5 n-
fin(e)=VJ

Let t, be the sum, over all oriented subtrees  T3  of G that are rooted at V,, of the
products II,,,; p(e). Prove that (tl,. . . , t,,) is a steady state of the random process.

1 402 three lines before (9) 3/10/81 42
Huffman: + Huffman  [Proc. I R E  40 (1951)  1098-11011:

1.404 lines 1 through 5 3/15/81 43
In general, . . . method has +

Every time this construction combines two weights, they are at least as big as
the weights previously combined, if the given w, were nonnegative. This means
that there is a neat way to find Huffman’s tree, provided that the given weights
have been sorted into nondecreasing order: We simply maintain two queues, one
containing the original weights and the other containing the combined weights.
At each step the smallest linused weight will appear at the front of one of the
queues, so we never have to search for it. See exercise 13, which shows that the
same idea works even when the weights may be negative.

In general ,  there are  many trees  that  minimize C wJ13. If  the algorithm
sketched in the preceding paragraph always uses an original weight instead of a
combined weight in case of ties, then the tree it constructs has

1.405 second line of exercise 10

given weights J”G) given nonnegative weights

3/15/81 44

1.405 rating for exercise 12 (overrides 1976 change #81)

S u p p o s e  + [M20]  S u p p o s e

3/15/81 45
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1.405 new exercises 3/15/R1 46
13. [%?I Design an algorithm that begins with m weights wi 5 w2 5 .s. < w, and

constructs an extended binary tree having minimum weighted path length. Represent
the final tree in three arrays

A(l], . . . ,A[2m - 11; L[l), . . . ,L[m - 11; R[l], . . . ,R[Tn - I];

here L[i] and n[i] point to the left and right sons of internal node i, the root is node 1,
and A[i] is the weight of node i. The original weights should appear as the external
node weights A[m], . . . , A[ 2m - 11. Your algorithm should make fewer than 2m weight-
comparisons. Caution: Some or all of the given weights may be negative!

14. [25] (T. C. H u and A. C. Tucker.) After k steps of Huffman’s algorithm, the
nodes combined so far form a forest of m - k extended  binary trees. Prove that this
forest has the smallest total weighted path length, among all forests of m-k extended
binary trees that have the given weights.

15. [A4251 Show that a Huffman-like algorithm will find an extended binary tree that
minimizes (a) max(wi  + Ii,. . . , w,,, -+ 1,); (b) wizll + .. . + w,zlm,  given z > 1.

16. (M25] (F.  K.  Hwang.)  Let  201 2 a.. 5 w7,,  and We 5 .. . 5 w:, be two sets of
weights with

T;7 Wj I c w; for 1 < k 5 m.

l<j<k 1135k

Prove that the minimum weighted path lengths satisfy x1 <j _< ,,w3 lj 5 XI I; j I; m  w~Z;.-
17. [HMSU] (C. R. Gl assey and R. M. Karp.) Let si, . . . , s,,,- i be the numbers

inside the internal (circular) nodes  of an extended binary tree formed by IIuffman’s
algorithm, in the order of construction. Let si, . . . , .s:,,-, bc the internal node weights
of any extended binary tree on the same set of weights {WI,.  . . , w,,,}, listed in any
order such that each non-root internal node appears before its father. (a) Prove that

c 1s3skSj L xl<j<kSi  for 1 L k < m. (b) Th e result of (a) is equivalent to- -

for every nondecreasing concave function f, i.e., every function f with f’(x) > 0 and
J”(X)  5 0. [Cf. Hardy, Littlewood, and Polya, Messenger of Math. 58 (1929),  145-152.1
Use this fact to study the recurrence

F(n) = f(4 + min (F(k) + F(n - k)), F(l) = 0,
l<k<n

given any function f(n) s u c h  t h a t  Af!n) = f(n -1 1) --  f(n)  > 0  a n d  A2f(n)  =

W(n + 1) - W(n) L 0.

1.420 new paragraph before the exercises 217179 47

Daniel P. Friedman and David S. Wise have observed that the reference
counter method can be employed satisfactorily in many cases even when lists
point to themselves, if certain link fields are not included in the counts [M
hoc.  Letters 8 (1979), 41-451.

1.448 line 6 after the caption

changed from + changed to vary from

4/6/81 48
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1.449 lines -7 through -4 S/21/81

algorithms . . . and here are $+ met,hods  that are recommended as a con-.
sequence of the remarks above: (i) the boundary tag system, as modified in
exercises 12 and 16; and (ii) the buddy system. Here are

1.451 bottom line 3/20/81

36-40. j/p 36-40, and in exercises 42-43 where he has shown that the
best-fit method has a very bad worst case by comparison with first-fit.

1.455 new exercises for bottom of page 4/l/81

42. [AL@] (J. M. Ro son, 1975.) Let N~~~~(n, m) be the amount of memory needed tob
guarantee  non -overflow when the best-fit method is used for allocation (cf. exercise 38).
Find an attacking strategy to show that N~JI;(~,  m) 2 nm -- O(n + m2).

4 3 .  [WV&w]  c ont inuing exercise 42, let, N~,~I:(~, m) be the memory needed when the
first-fit method is used. Show that Nr~l;(n, m) 5 nH,,/ln  2, so the worst case of first-fit
is not far from the best possible worst case.

1.463 correction to 1979 change #73 z/14/79

Such graph machines . . . fixed. J”G) Linking automata can easily simulate
graph machines, -taking at most a bounded number of steps per graph step.
Conversely, however, it is unlikely that graph machines can simulate arbitrary
linking automata without unboundedly increasing the running time, unless the
definition is chinged  from undirected to directed graphs, in view of the restriction
to vertices of bounded degree.

1.472 first two lines 718181

Note: The formulas . . . differences.” Q Notes: Dr. Matrix was anticipated in
this discovery by L. Euler in 1762; see Euler’s Opera Omnia, ser. 1, vol. 6, 486-493.

1.474 he 7 6/25/81

i+n-l,andj-tn---1. $+ i-tn-l,j+n-l,n--+l,andn---tl.

1.478 answer 41 * l/5/80

line -2: i.e. Ap i.e.,
a line -1: are . . . 21. +

art: [fi-- 31, [(--1 + J1S8n)/21,  l(l + &GCT)/2J, e t c .

1.488 line 1 of answer 52

7r2/6-1. $+ 7r2/6.

l/10/81

1.488 line 3 of answer 58

q--k)k %+
q(s-n+“)k

10/20/79

1.488 new answer to exercise 59 8/30/80 58

49

5-o

51

52

53

54

55

56

57

5g* cn -t l)(E) - (k;l).
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1.498 new answer to 1.2.11.2-3, overrides 1976 change j/104 10/15/79 59

3 .  IR2kl  5 IL?,,/(zk)!l  Jln If(zkJ(:t) dxl. [Notes: We have B,,&)  = (-l)‘Vm(l - z),
a n d  B,,(x) :; m! t imes the coefflcicnt  of z7’l in zezz/(er --  1).  In particular,  since
cC/~/(~‘: - 1) = l/(ezi2  - 1) - l/(e’ - 1) WC have B,,(4) = (2’-“’ - l)B,,,. It is not
difficult to prove that the maximum of IBz,,l -R:!,,,(s)1  for 0 5 z 5 1 occurs at x = 3.
Now when Ic 2 2 we have Rzk-2 = Czk-/-Rtk  = ~~“(nzk:-~~zr;({r}))f(2k)(~)  dz/(2k)!,

and &I; -.&k({z}) is between  0 and (2- 21--2”)B2k, h ence  R~k-2  lies between 0 and
(2 - 2’-9h It follows that Rzk lies between -Czk and (1 - 2’-2’)C2k,  a slightly
stronger result. According to this argument we see that if I(21r: t2)(z)f(2k+4)(x)  > 0
for 1 < z < n, the quantities C2k+2  and Czk-+,l have opposite sigus, while IZzk has
the s ign of  Czk.+z and R2k+2  has the sign of C2k+4 and lR2k-t-21 2 IC21~+21;  this
proves (13). Cf. J. F. Stcffcnsen,  Innterpolalion  (Baltimore: 1927),  $14.1

1.499 exercise 7 (overrides 1979 change  #80) 3/25/81 60
(It is “Glaisher’s constant” 1.2824271.. .) To + To

This formula . . . n = 4. +
(The constant A is “Glaisher’s constant” 1.28242. . . , which equals (2xe7-f’(2)lf(“))  ‘/12;
cf. F. W. J. Olver, Asymptotics  and Special Functions (New York: Academic Press,
1974),  Section 8.3.3.) ’

1.501 . new answer 3/16/81 61

18. Let S,L(z,y) = c (;)(~-/-k)~(y+n---k)~-~.  Then for n > 0 we have SrL(x,y)  =

xc (i)(x  -+- k)“-.‘(y  + n - k)lL-’ + n c (nk’)(z  + 1 -t k)k(y -/- n - 1 -k)“-‘-’  =
(z + y + n)” -t nS,-l(z -$- 1, y) by Abel’s formula 1.2.6-16; consequently Sn(x,  y) =
c (;)k!(z +  y  +  n)n---k. [Th is formula is due to Cauchy, who proved it by quite
different means in Exercices de MathCmatiques (Paris: 1826),  62-73.1  The stated sums
are therefore equal respectively to nn(l + Q(n)) and (n + l)“Q(n  + 1).

1.510 answer 13 G/1/80 62
line 2, replace by two lines: TAPE EQU 19 Input unit number

TYPE EQU 19 Output unit number
lines 16 and 18: UNIT $+ TAPE (twice)

lines 38 and 42 (the latter is on page 511): 19 $+ TYPE (twice)

1.515 he 5 10/18/79 63
For . . . h i s t o r y ,  Q

Historical notes: C. Hares gave a (more complicated) rule for constructing such
sequences, in J. de 1’&ole Polytechnique  4, 11 (1802),  364-368; his method was correct,
but his proof was inadequate. The geologist John Farey independently  conjectured
several years later that zk/yk is always equal to (zk--1 + zk+l)/(yk--l  + yk+1) [Philos.
Magazine and Journal 47 (1816),  385-3861; a proof was supplied shortly afterwards by
A. Cauchy [BulI.  SociEtd  Philomathique  de Paris (3) 3 (1816),  133.-1351,  who attached
Farey’s name to the series. For more of its interesting properties,

9
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I.531 l i n e - 2 101 I$/79 64
X’s. For the history of the ballot problem Q X’s. This problem was actually
resolved as early as 1708 by Abraham de Moivre, who showed that the number of
sequences containing 1 A’s and 711 Ij’s, and containing at least one initial substring with n
more A’s than H’s, is f(l, m, n) = (,,,,,, rz,‘iL-n,). In particular, a, = (‘?I”> - f(n, n, 1) as
above. (De Moivre stated this result without proof [Philos.  Trans. 27 (1711),  262-2631;
but it is clear from other passages in his paper that he knew how to prove it, since the
formula is obviously true when 1 2 m + n, and since his generating-function approach
to similar problems yields the symmetry condition f(l, m, n) = f(m I- n, 1 --- n, n) by
simple algebra.) For the later history of the ballot problem

1.538 insert new answer 3/l/79 65

13 .  A. C. Yao has shown that max(lcl,k2)  will be $rn  + (27r(l - 2~))~““fi  +

Ob-““(logm)“)  for large m, w hen p < 3. [SIAM J. Computing 10 (1981),  398403.1

I.547  a n s w e r 5 3/3/81 66
(Solution by B. Young.) $+ (Cf. exercise 2.2.3-7.)

1.548 first line of answer 9 4/17/79 67
should. $+ should; except in the instructive anomalous case that COEF = 0 for
some term with ABC 2 0, when it fails badly.

1.. 5 50 exercise 18 (corrects 1979 change #96) 3/2/77 68
denotes, . . . a r e  i nc luded  * denotes “exclusive or.” Other invertible operations,
such as addition or subtraction module the pointer field siae, could also be used. It is
convenient to include two adjacent list heads

1.560 additional sentence to follow 1976 change #135 l/17/79 69
(Steps T4 and T5 can be streamlined so that nodes are not taken off the stack and
immediately reinserted.)

1.562 answer 21 IO/ 17179 70
21. The following $-+ .

21. (Solution by I). Branislav, traverses either in preorder or inorder.)

Ul. [Initialize.] If T = A, terminate the algorithm. Otherwise set Q t T .

U2. [Preorder visit.] If traversing in preorder, visit NODE(Q).

U3. [Go to left.] Set R t LLINK(Q).  If R = A, go to U5.

U4. [Insert a right thread.] Set P t Q and Q t R, then set R t RLINK(R) zero or more
times until RLINK(R)  = A. Set RTAG(R) t “-)) and RLINK(R)  t P. Return to
step U2.

U5. [Inorder visit.] If traversing in inorder, visit NODE(Q) .

U6.[Go  to right.] If RLINK(Q)  #A and RTAC(Q)  = “j-",  set Q t RLINK(Q)  and go to
step U2.

U7.[Removethe  thread.] Set Rt RLINK(Q),RTAG(Q)  t “-j--",RLINK(Q)  t-h.

US. [Go up.] Set Q t R . Go back to step U5 if Q # A, otherwise terminate the
a lgo r i t hm.  1

Alternatively, the following slightly slower

lO----
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1.562 amendments to Algorithm V

s t e p s  Vl a n d  V 7 :  LOC(T) v h
step V3: delete “(It is . . . .)”

10/17/79 71

1.562 the paragraph after Algorithm V 3/25/81 72
line 2: to solve this problem v to traverse in any of the three orders
l i n e  6 :  14.1 + 14.1 A much simpler way to avoid the tag bits, at least for preorder

and inorder traversal, was derived a few years later by J. M. Morris [Information
Proc. Letters 9 (1979),  199-2001. Sec also the articles by G. Lindstrom . . . (etc.,
move the sentence from t’;e end of the following paragraph to here)

1.562 new answer 22 (extends to page 563) 10/17/79

22. Let r14 z R, r15 zz Q, r16 = --P; use other conventions of Programs T and S.

73

01 Ul LD5 T 1
02 J5NZ U3 1
03 JMP DONE 0
04 U4 ENN6 0,5 a - l
05 ENT5 0,4 a - l
06 4H ENT3 0.4 n -- b

.07 LD4 i,S(RLINK)  n--b
08 J4NZ 4B n - b
09 STY ~,~(RLINKT) U- 1
10 U3 LD4 0,5 (LLINK) n
II j4NZ U4 n
12 U5 JMP VISIT n
13 U6 ENT4 0,5 n
14 LD5 1,5(RLINKT)  n
15 J5P U3 n
16 U7 STZ 1,5(RLINKT)  a
17 U8 ENN5 0,5 a
18 J5NZ U5 a

u1. Initialhe.  Q +- T.

Special exit if T = 0.
U4. Insert a rig&t  thread. P t Q.
Q t R.
S t R.
R tRLINK(S).
Repeat until R = A.
RLINKTW t -P.
U3 Go to left R t LLINK(Q).L-L
To U4 if R # A.
U5.  Inorder visit.
U6. Go to rig&  R t Q.
Q t RLINKTCQ).
ToU3ifQ  > 0.
U7.  Remove the thread.
U8. G o  up. Q +- -Q.
To U5 if Q # A. 1

Note that the search in step U4 is not time-consuming, since it examines each RLINK at
most once. The total running time is 12n + 8a - 4b -- 2, where n > 0 is the number of
nodes, a is the number of null RLINKs,  and b is the number of nodes on the tree’s “right
path” T, RLINK CT), RLINK (RLINK CT)  > , etc. Thus, the algorithm is competitive with
that of exercise 20. The running time of an analogous orogram  based on Algorithm V
of exercise 21 is 22n - 10.

1.567 the missing MIX program on bottom four lines c/8/80 74
ST3 6F(O:2)
ST2 7F(O:2)
ENT2 8F
JMP IF

1.568 program line 86

0,2 + 0,2 (RLINKT)

6/a/80 75

11
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1.568 improvements to program lines 93-100 6/a/80 76
93 C4 LDA O,l(LLINK) Cd Anything to lefb?- -*--
94 JANZ 4B Jump if LLINK(P)  #A.
95 STZ 0,2(LLINK) LLINK(Q)  t A.
96 C5 LD2N  0,2(RLINKT) C5. Advance. Q t --RLINKT(Q).
97 LDl O,l(RLINK) P t RLINK(P).
98 J2P C5 Jump if RTAG(Q)  was “-".
99 ENN2 0,2 Q+- - Q .
100 C6 J2NZ C2 C6 Test if complete._f--

1.568 lines 3 and 4 of answer 14 ti/8/80 77
89-95, . . . 18~); + 89-94, n; 95, n - a; 96-98, n j- 1; 99-100, n - a; 101-103,
1. The total time is (36n + 22)~;

1.57 5 exercise 12 line 5 (improves 1979 change #lOO)

O”* + co. Here c(;, j) means c(j, i) when j < i.

g/21/76 78

1.579 .in the biggest matrix

change the label on row 3 and the label on column 3 from [lo] to [ZO]

5/1/79 79

1.579 in the second-biggest matrix, row 1 5/t/70 80

1.581 new answer 5/10/81 81
27. Let az3 be the sum of p(e) over all arcs e from V, to V’. We are to prove that

t, = C, a,3tt  for all j. Since C, a,, = 1, we must prove that C, a,itj = xi a,,ti-
But this is not difl?cult,  because both sides of the identity represent the sum of all
products p( e 1) . . . p(e,) taken over subgraphs {e,, . . . , e,,} of G such that init = V,
and such that there is a unique oriented cycle contained in { el, . . . , e,,}, where this cycle
includes V,. Removing any arc of the cycle yields an oriented tree; the lefthand  side
of the identity is obtained by factoring out the arcs that leave V,, while the righthand
side corresponds to those that enter Vj.

In a sense, this exercise is a combination of exercises 19 and 26.

1.582  line - 9 3/l/79 82
a N o t e :  K r u s k a l ’ s  * Note: Kruskal actually proved a stronger result, using a

weaker form of embedding. His

I.582 line - 6 3/25/81 83
305. + 305. See N. Dershowitz, Information Proc. Letters 9 (1979),  212-215,
for applications to termination of algorithms.

1.588 lines -4 and -3 of answer 32 3/16/Rl 84
is . . . methods above % is minimal. Still another proof, by G. Bergman, induc-
tively replaces dk&+l by (dk + &+I - 1) if dk > 0 [Algebra Universalis 8 (1978),
129~1301.

The methods above
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1.589 line 1 of answer 4 lO/ 18/79 85
lj>l,+l  + lj >lj+l

1.590 addendum to answer 10

(place th , fge L ure at the right margin and set the copy narrower, to its left)
The desired ternary tree is

The desired ternary tree is shown at the right.
F. K. Hwsng has observed [SIAM J. Appl.
Math. 37 (1979),  124-127)  that a similar pro-
cedurc is valid for minimum weighted path
length trees having any prescribed multiset
of degrees: at each step the smallest t weights
are combined, where t is as small as possible.

1.590 new answers replacing answer 12

IO/IS/79 86

10/m/79 87
12. By exercise 9, it is the internal path length divided by n. [This holds for general

trees as well.]

13. [Cf. J. van Leeuwen, Proc. 3rd International Colloq. Automata, Languages, and
Programming, Edinburgh (July 1976),  382-410.)

HI. [Initialize.] Set A[m - 1 -l- i] e w, for 1 5 i 5 m. Then set x e m, i +- m + 1,
j t- m - 1, k +-- m. (During this algorithm A[i] 5 . . . 5 A[2m - l] is the queue
of unused external weights and A[k] 2 ..a >_ A[j] is the queue of unused internal
weights; the-current left and right pointers are z and y.)

H2. [Find right pointer.] If j < k or A[;]  5 A[j], set y t i and i t i + 1; otherwise
set y t j and j t j - 1 .

H3. [Create internal node.] S e t  k t k - 1, L[k] t 3;, R[k] t y ,  A[k]  t A[z] + A[y].

II4. [Done?] Terminate the algorithm if k = 1 .

II5. [Find !eft pointer.] (At this point j 2 k and the queues contain a total of k unused
weights .  I f  A[y] < 0 we have j = k, i = y + 1, and A[i] > A[j].) If A[i] < A[j],
set z t- i and i t i -11; otherwise set z t j and j t j - 1. Return to step H2. 1

14. The proof for k = m - 1 applies with little change. [Cf. SIAh/f  J. App!.  Math. 21
(1971),  518.1

15. Use the combined-weight functions (a) 1 -1 max(wl,  wp) and (b) Z(WI + WZ),
respectively, instead of WI + wz in (9). [Part (a) is due to M. C. Golumbic, I E E E
Trans. C-25 (1976),  1164-1167; part (b) to T. C. Hu, D. Kleitman, and J. K. Tamaki,
SIAlLl J. Appl. PJiattr. 37 (1979),  246-256. Part (a) may be considered as the limiting
case of part (b) as z -+ co; Buffman’s problem is, similarly, the limiting case as z -+ 1,
s i nce  C(l $ $J WI = E wj + E C w~l~ + QtE2)-l

D. Stott Parker, Jr., has pointed out that a I-Iuffman-like algorithm will also find
the minimum of wizll -I- ... + w,,~z~“’ when 0 < 3; < 1, if the two maximum weights
are combined at each step. In particular, the minimum of wl2-” + . . . + w,,2-I”‘,
w h e n  wr 5 ... 5 w,,,, is wi/2 + .. . -t w,,,--r/2’“-’ + ~~/2~-‘.

16. Let 1,+i = Z’,+r - 0. T h e n

l<J<m llj<k

lSkl;m l<j<k

since I: 2 I:+ I as in exercise 4. The same proof holds for many other kinds of optimum
trees, including those of exercise 10.
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17. (a) This is exercise 14. (b) W,e can extend f(n) to a concave function j(z), so the
stated inequality holds. Now F(m) is the minimum of c1<3<,,L  f(sl), where the sj are
internal node weights of an extended binary tree on the wzghts  1, 1, . . . , 1. Huffman’s
algorithm, which constructs the complete binary tree with m - 1 interna.  nodes in this
case, yields the optimum tree. Therefore the choice k = 2 h3 n/31 yields the minimum
in the recurrence, for each n. [Reference: SiXvf J. Appl. Math. 31 (1976),  368-378.
We can evaluate  >T(n)  in O(logn)  steps; cf. exercises 5.2.3- 20 and 21. If f(n) is convex
instead of concave, so that A”j(n) 2 0, the solution to the recurrence is obtained when
k = [n/2].]

1.603 new version of lines ?‘I-24 (overrides previous changes) LO/ 181/79 88
[This method is called the “LISP 2 garbage collector.” An interesting alternative,
which does not require the LINK field at the beginning of a node, can be based on the
idea of linking together all pointers  that point to each node-see Lars-Erik Thorelli,
BIT  16 (1976),  426-441; F. Lockwood Morris, CACM  21 (1978),  662-665, 22 (1979),
571; and H. B. M. Jonkers, hf. Proc. Letters 9 (1979),  26-30. Other methods have
been published by B. K. Haddon and W. M. Waite, Comp.  J. 10 (1967),  162-165;
B. Wegbreit, Comp. J. 15 (1972),  204-208; D. A. Zave, Inf. Proc. Letters 3 (1975),
1677169.1
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1.606 new answers 4/l/81 89
42. We can assume that m 2 6. The main idea is to establish the occupancy pattern

Rnl--2(Ii’>,,-  :3Rl)k at the beginning of the memory, for k = 0, 1, . . . , where  R3 and Fj
denote reserved and free blocks of size j. The transition from k to k + 1 begins with

R,,,-z(Fn,-SRI)”  -+ Rm---2(Frn-~R1)knm-2Rm-2

-+ Rrn--2(Fn,--3Rl)k-*F2~--lRln--2

--) f&n--2(F,n-:A) k--lR,,,R,,,-~R,Rm--2

-+ Rrrr-2(~,,r-:~R~)&-‘~~nRm--sR1;

then the commutation sequence F,,I-:\Rj F,,,Rrrr--5Rl -+ F,,--.7Rl  Rm-2 RzRm-SRI  -b
F2,,,-.,R2Rm--sRI --+ R,,R ,,,- sR,RzR  ,,,- SRI -+ F,,,R,,-~R~F,,--3R~  is used k times
until we get F,R,,,-SRI  (Fn,--3Rl)& + J’!L,,~-sR~(F,~--~R,)~  --+ R,-a(F,,,-rjR,)k+‘.
Finally when k gets large enough there is an endgame that forces overHow  unless the
memory size is at leasl (n - 4m + ll)( m - 2); details appear in Comp. J. 20 (1977),
242-244. [Note that the worst conceivable worst case, which begins with the pattern
Fm-iR,F,,,-,R,F,,t  --.I RI . . . . is only slightly worse than this; the next-Et strategy of
exercise 6 can produce this pattern.]

43. We will show that if DI , Da, . . . is any sequence of numbers such that 11,/m +
Dz/(m  -1 1) + ..e + D,,/(2m - 1) 2 1 for all m 2 1, and if C,, = D,/l + D2/2 +
.a . -t Dr,,/m,  then N~~~~~~(n,  m) < nC,,,.  In particular, since

;+ &+...+L = 1

2m-1
1 - f + . . . + & - - +2m-2

the constant sequence D,,, = l/(ln 2) satisfies the necessary conditions. The proof is by
induction on m. Let Nj = nC, for j > 1, and suppose that some request for a block of
size m cannot be allocated in the leftmost N,, cells of memory. Then m > 1. For 0 5
j < m, we let N: denote the rightmost position allocated to blocks of sizes 5 j, or 0 if
all reserved  blocks arc larger than j; by induction we have N: 5 N3. Furthermore we
let N’,,, be the rightmost occupied position 5 N,,, so that Nk 2 N,, - m + 1. Then
the interval (Ni-, , Ni] contains at least [j(N: - Ni- ,)/(m + j - I)] occupied cells,
since its free blocks are of size < m and its reserved blocks are of size 2 j. It follows
that n - m 2 number of occupied cells 2 x,,j,,j(N$ - N>-,)/(m  j-j - 1) =

mNrl/Pm--  1)-b-l) C,<j<m N~/(m$j)(m+j-1)  > mN,/(2m-l)-m-

(m-1) CI<J<rn N,(l/(m+j-l)-l/(m-tj)) = C1<jjrrrnD,/(m+i-l)-m  2
n - m, a c&tradiction.

[This proof establishes slightly more than was asked. If we define the D’s b y
D,/m  -j- e.. + Dm/(2m - 1) = 1, then the sequence Cl, C2,  . . . is 1, :, vZL, &&$, . . . ;
and the result can be improved further, even in the case m = 2, cf. exercise 38.1

1.61711 entry for Abel, binomial formula generalized 3/16/81 90
398. ++ 398, 501.

1.617~ Q/4/79 91
al-KhowGiami  . . . Mohammed + al-Khwirismi, abu Ja’far Muhammad

1.6 18~ entry for Best-fit 4/l/81 92
add p. 455

1.618~
Bergman, George Mark, 493, 588.

3/16/81 93
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1.618~ entry for Bernoulli polynomials

add p. 498

l.618~ entry for Binary trees, complete

401. + 401, 590.

1.618~ entry for Binary trees, copying of

3 3 2  + 3 3 1 - 3 3 2

1.618~ entry for Binomial theorem, Abel’s generalization

398. + 398, 501.

1.619L 10/17/79 98
Branislav,  emian, 562.

Cauchy,  hugustin Louis, 36-37, 501, 515, 578.

Complete binary tree, 400-401, 590.

1.620~ 3/15/81

Concave function, 405.

line -10

strongly, 372, 377, 381.

1.620~ 3/l 5181

Convex function, 590.

I .620~ entry for Copy a . . . tree 10/17/7Q 104
332 $+ 331-332 -

Dershowitz, Nachum,  582.

1.621~ lines 3 and -21 7/a/81 106
omit these entries about ‘divided differences’

line 2

add p. 472 to the Euler entry

1.622~
Farey, John, 157, 515.

1.623 L entry for First-fit 4/t/81 109
add p. 455

10/25/79

-

94

3/15/81 95

IO/l?/79 96

3/16/81 97

3/16/81 99

3/15/81 100

101

5/19/81 102

103

3/25/81 105

7/8/81

10/18/79

107

108
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1.623~ 2/7/7Q 110
Fraenkel, Avieari  S., 248.

I .623~ 217179 III
Friedman, Daniel Paul, 420.

1.623~
Glassey,  Charles Roger, 405.

1.623~
Golumbic, Martin Charles, 590.

1.623~ 3/l S/81 114
Hardy, Godfrey Harold, 12, 405, 490, 515.

I .623~ 10/18/79 115
Haros, Ch., 515.

I .624~ 3/15/81 116
Hu, Te Chiang, 405, 590.

I .6241, lO/ 18179 117
Hwang, Frank Kwangming, 405, 590.

1.625~ IO/l%/79 118
Jonkers, Henricus Bernardus Maria, 603.

1.625~ 3/15/81

Karp, Richard Manning, 405.

1.625~ 3/L5/81

Kleitman, Daniel J., 590.

1.626~ 3115181

Littlewood, John Edensor, 405.

1.627~ 3125181

Morris, Francis Lockwood, 603.
Morris, Joseph Martin, 562.

I .627~ 4/l/81

Next-fit method, 452 (exercise 6), 606.

1.628~ 3125181

Olver, Frank William John, 499.

1.628~
Parker, Douglass Stott, Jr., 590.

3/15/81

3/15/81

5/19/81

112

113

119

120

If21
.

122

123

124

Ii?5
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1.63OL he 1
271, 458, 596. + 271, 405, 458, 590, 596.

1.6301,  line 7

3/l 5/81 127

12/12/79 128
249. + 249, 405, 590.

1.631~ new subentry under Schrijder

numbers, 534, 587.

1.631~

3/3/81 129

2/20/81 130
Spanning tree, minimum, 370-371.

1.631~ 5/19/81 131
Steady states, 381.

1.631~ 313018 1 132
Steffensen, Johan fiederik, 498.

1.632~ . S/19/81 133
Strongly connected directed graph, 372, 377, 381.

1.632~ 3/15/81 134

Tamaki, Jeanne Keiko, 590.

I .633~ entry for Trees, copying of

3 3 2  + 3 3 1 - 3 3 2

1.633R
Tucker, Alan Curtiss, 405.

10/17/79 135

3/15/31 IS6

- I .633~ 3/15/81 137
van Leeuwen, Jan, 590.

1.634~ 2/7/79 138
Wise, David Stephen, 420, 434, 595.

-1.634~ 3/l/79 139
Yao, Andrew Chi-Chih, 538.

1.634~
delete the entry for Benna Kay Young

3/3/81 140

2 .Xii l i n e  - 6

300 + 302

4112181 141
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27. first line of exercise 7

l e a s t  + greatest

2.14 l i n e  19 l .

D E C  2 0  + DECsystem  20

2.38 lines 14 and 17

too much space after ‘Dr.’ (twice)

2.45  line -9

though though + t h o u g h

2.55  l i n e  lo

0 and 1 Q 0 and n

2.58 exercise 19

Kolomogrov + K o l m o g o r o v

2.61 l i n e  - 7

above the mean” and “runs below ‘/,+

2.64 l ine 4 after Algorithm P

‘III ‘S’

3/6/81 143

12/20/80 144

l/27/81 145

l/27/81 146

212181 147

212181 149
below the mean” and “runs  above

Q/9/80 150
e;;chang?  Tjr U, + exchange  U, +-+ US

2.66 left side of second  equation in (14)

&j + zq3

2 !2/81 151

2 . 6 7 right side of second equation in (18)

%i + %i

3126181 152

2.68 b i g  m a t r i x  d i s p l a y  ( 2 2 ) l/12/81 15s
(I’ll fix this so the numerators and denominators are a little bit further from the
fraction lines)

2.75  l i n e  4 2f2/81 154
axk j- pyk + auk + pvk

2.104 line -9 2/28/81 155

6X,+2 + 6X,+1
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2 .

2 .

2 .

2 .

2 .

2 .

2 .

2 .

3

117 five lines after (10) 3/2/01 157
2 8  (1958), 6 1 0 ;  $-+ 2 9  (1958), 610-611;

125 line -2 4/28/81 158
-4/lnU,  $-+ -4lnU,

127 E q u a t i o n  ( 2 8 ) 4/13/81 159
l/cu 2r l/b)

129 three l ines before (35) S/4/81 160
see  G .  Marsag l i a ,  Q see E. B. Wilson and M. M. Hilferty, Proc. Nat. Acad.
Sci. 17 (1931), 684-6i8; G. Marsaglia,

130 line - 1 5

( 1  -2) + (1--

135 line 2

4) 2r 44

136 line 1 9

(J. L. Bentley and J. D. Saxe.) Fint +

142 line 1

3.5. + ‘3.5 .

1 40
hi-f3 I,nr 16

Ul,  u2, + uo, Ul,

- 2.164  l i n e  4

Find

defined in exercise 1.1-8.) +t discussed b. Section  1.1.)

2.17 1 line -17 (and LAO  page 172 line 12) 4/10/81 167
D I M E N S I O N  IA(l) + DIMENSION IA(55)

2.172 lines -3 to -5 of the FORTRAN subroutine

IRN55(IA) $+ K  =  IRN55(IA) ( t h r i c e )

2.184 line 1
I’Academie + I’hadkmie

2/2/81

4/13/81

5/4/81

l/18/81

- .,?.

2/2/81

161

162

163

164

155

166

12/12/80 168

9/26/80 169

20
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2.193 last line before exercises l/12/81 171
roman + R o m a n

2.195 last line o f exercise 23 4/2/81 172
zero. 2r zero, if 0 E D. Show that this conclusion need not be true if 0 e D.

2.198 Planck’s constant replaces Dirac !-

line 21: h = 1 .0545 + h = 6.6256
l ine -3:  h = (24, +.10545000). Q h = (24, +.66256000).

l/10/81 173

2 . 2 0 1  step N5 1/l 2181 174

choose the . . . odd. + c h a n g e  f to the nearest multiple f’ of 6-P s u c h
t h a t  bpf’  + $b is odd.

2.210 l i n e  - 4 l/12/81 175
computer System, + C o m p u t e r  S y s t e m ,

2.213 l/12/81 176
move the two quotations down between exercise 19 and the beginning of 4.2.2

2.216 new (18) l/12/81 177

2.218 line -2 4/27/81 178

(6 + 4; +p (mih f2));

2.222 lines 23-26 ’ l/8/81 179
line 23: but if $-+ if
l i n e  2 4 :  o c c u r .  [ R o y  Q occur, although repeated rounding of a number

like 2.5454 will lead to almost as much error. [Cf. Roy
l ine  25:  On the  other  hand,  s ince Q Some
line 26: remainder Jj,+ l eas t  s ign i f i can t  d ig i t
line 26: often. + often. Exercise  23 demonstrates  this  advantage of

round-to-even.

2.223 Planck’s constant replaces Dirac h

l i n e  - 1 7 :  ( - 2 3 ,  +.00010545)  ZG) ( - 2 3 ,  +.00066256)
l i n e  - 1 6 :  ( - 2 6 ,  +.10545000)  Q ( - 2 6 ,  j-.66256000)

line - 10: (0, $-.00063507) $+ (1 J + .00039903)

l/10/81 180

21



2.226 replacement for line 3

N @I h  =  I(-2, +.39898544),  ( - 2 ,  +.399C76’7G;].
(also change h to h on line 2)

l/10/81 182

4/22/81 1832.227 corrections to bad German

l i n e  2 4 :  B e g r u n d -  Q Begriin-
l i n e  2 5 :  u n g  d e r  R e c h e n a r i t h m e t i k  +

2.227 last line before exercises

1 9 8 0  ++ 1981

2.268 exercise 3 6

Appendix B + A p p e n d i x  A

2.268 last line of exercise 36

1974.1  + 1973.1

2.276  l i n e  21 4/30/8  1 188

dung  der Rechnerarithmetik

6/16/81 184

Informaci 3 Q Informaci (Information Processing Machines) 3

2.305 l i n e  -5 l/18/81 189

2.307 last line of Example 1 l/27/81 190
(14198757)10. + (1419857)10.

-

2.314 new display for line 7

2.353 l i n e  4

partial fractions + .continued  f r a c t i o n s

2.369 lines 1 and 2 2/23/81 193
4th  ed .  (Oxford ,  1960)  + 5th ed. (Oxford, 1979)

2.371 line 7 6/16/81 194
+ 1. + + 1. [Math. Camp. 36 (1981), 627-630.1

4113181 185

l/15/81 186

4128181 187

l/20/81 191

2/4/8i 192
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9 174I l �. f;ne c

S’,i, 7,‘: ,. + $“;I, AL,.

2.377 t o p  l i n e  o f  ( 1 6 )

X
n4-  - 1 +  xn4--1

2.377 line -5 1

l/26/81 196 *

2/l/81 197
this, $+ this:

2.384 lines -7, -5, - 4

NzG)V (thrice)

2.384 last three lines

D. R. Hickerson . . . 224. Q
H. C. Williams, Math. Comp. 36 (1981), 593-601.

l/11/81 198

6/16/81 199

2.385 *line 25 3/25/81 200
Dixon’s method + Dixon’s method [Math. Comp. 36 (1981), 255-2601

2.336 line - 1 1

1979 + 1978

2.388  l i n e  12

Q ln mp2 a45 + $lnplp2=90

2.388 line - 1 6

651 + 654

2.Fjgp hnr-  20

sd(x, Y) ‘\r !id(x - Y r N)

2 -39 1 f irst  l ine of  (23)

22032281, + 2203, 2281,

2.391 l i n e  4  a f t e r  ( 2 3 )

C R A Y - I  + C R A Y - 1
see 3. + see M a t h . Comp. 35 (1980), 1387-1390, a n d J.

2.396 line 2

a l l  p r imes  Q al l  odd  p r imes

2.396 exercise 24 line 2

2=?l + zmodn  = 0

2/17/81 201

2/12/81 202

4/:2/81 203

5,i:;jb. XL,;

l/27/81 205

l/27/81 206

3/31/81 207

l/17/81 208
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39. [HMSOJ  (L. Adleman.) Let  p be a rather large prrme number and let a be a
primitive root modulo p; thus, all integers b in the range 1 5 b < p can be written
b = a” mod p, for some unique n with 1 5 n < p.

Design an algorithm that almost always finds n, given b, in O(p’)  steps for all
c > 0, using ideas similar to those of Dixon’s factoring algorithm. [Hint: Start by
building a repertoire of numbers nI such that uni modp has only small prime factors.]

2.402 line 15 2/15/81 210
q(x) = 0. + Q(X) = r2(x).

2.402 line 2 of step DI

4-2c)=

2.407  l i n e  - 2

gcw4 PP((W) + gcd(44, PP(+4))

2.409 fract ions in (13)  and (14) 4/28/81 213

2/3/81 211

3/3/81 212

(the numerators-and denominators will be moved a bit further from the fraction
lines)

2.414 line -4.

(25) 2r (26)

2.415 line 7

( 1 6 )  a n d  ( 1 7 )  $+ ( 1 7 )  a n d  ( 1 8 )

2.429 line -5

c<d -\+ ! Lc<d

2.430 line -10

d(d4 t(x) (Pd--1W)  ’ + gcd(g&), t(,)(P+)12 -
-

2.430 line -4

Camp.,  to appear.] + Comp.  36 (1981), 587-592.)

‘2.432 line -9

(x2 - 13 - 7) + (x2- 1 3 x - 7 )

2.432 line -8

a r e  f a c t o r s  + could be a factor

2.433 b o t t o m line

d > 3~. ++ d 5 it. ,

6/5/81 214

6/5/81 215

2/2/81 216

2/22/81 217

6/16/81 218

6/11/81 219

3/3/81 220

5121 J81 221
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2.438 line 3 of exercise 18

* - .uou~-l. +P *** +uou;-‘.

2.439 l i n e  1 4 r

m o d  2  ‘j,+ modulo 2

2.442 three lines before Algorithm A

5 + .5

2.4-2  l i n e  1 6

Math., to appear. % Math.  7  (1981), 73-125.1

2.484 bottom line

2n2  j-2 + 2n2 +2n

2.487 t h e  d i s p l a y  a f t e r  ( 4 6 )

(; “1> +. (i -Y>

2.496 line  2 6 l/10/81 229

Ui.b . 2 !96.-

,I , r. - , _ 222.

4/27/81  223

3/3/%1 224

6/18/81  225

l/10/81  226

S/6/81  227

l/27/81  228

462. + 462; JACM  27 (1980), 822-830. See also his interesting discussion
of commutative bilinear forms in XAM J. Computing 9 (1980),  513-728.

2.506  l i n e s  4-5 4/29/81 230

t h e i r  q u o t i e n t ,  e t c . ,  ZG) au d sometimes their quotier,t,

2.517  l i n e  -12

Xo=a + xt=a
2/2/81 231

2.519 line 2
6+7% + j/G

5/5/81 232

2.520 exercise 15 2/l/81 233
(m - l)naj77z, z\r (m - l)m/mn,

2.523 lines 8 and 9 2/2/81 234
so . . . r e s u l t .  + so (de -’ - l)/(a - 1) z 0 (modulo 2’) iff (02’-l - 1)/2 E 0
(modulo 2e+1/2), which is true.
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2.523 line 4 of exercise 1 1

(hz.2e--f-1 + (fZ)2c-f-1

z2e--f
+ z2-

(+c)2e--f  + (+ty

2/2/81 235

2.531 l i n e  - 2

F&) - h(Y),  + K(Y)  - w41

2.536 exercise 15

a n d  S h a s  fj,+ and X has

2.536  l i n e  - 5

(
u: u;...LJ;-,
v; v; . . . VA-, 1 + (

u:, u; . . . u:,-,
v:, v: * . . v;-, >

2.540 line 3

2.543 line 5 of exercise 5

(h’ - q/f +. (h’ - q’h)2

2.546 line 2 of exercise 24

m o d n  v mod m

2/2/81 236

:/2/81 237

2/2/81 238

Z/2/81 239

2/2/81 240

2/ 2181 241

2.547 line 10 of exercise 27

7-t + ut

212181 242

2.550 line -2 of answer 10

61, + (bl,

2.550 first line of answer 1 1-

s," + K

2.554 lines 2 and 3 5/J/81 245

414181 243

4/9/81 244

[ACM . . . appear.] % [This technique was apparently introduced in the 1960s
by David Seneschol; cf. Amer. Statistician 26,4 (October 1972),  56-57. The alternative
of generating n uniform numbers and sorting them is probably faster unless n is rather
large, but this method is particularly valuable if only a few of the largest or smallest
X’s are desired. Note that (F-l (Xl), . . . , F-‘(X,))  will be sorted deviates having
distribution F.]

2.561 bottom line of answer 37 3/20/81 246
334.1  JLGr 334; see also the Ph.D. thesis of Thomas N. Herzog, Univ. of Maryland
(1975).]
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2.565 answer 23 3/21/81 247
line 4: zero since it is + zero if 0 E D, since T is
line 5: 10k + bk
line 6: zero. $+ zero. On the other hand, as pointed out by K. A. Brakke,

every real number has infinitely many representations in the number system of
exercise 21.

line 9: less $+ fewer

2.568  l i n e  14 6/L5/81 248
ICY*(Z). % Ic,r(z). [Cf. J. Algorithms 2 (1981),  31-43.1

2.568 replacement for previous answer 1/10/81 249
1. N = (62, j-.60 22 52 00); h = (37, -j-.66 25 60 00). Note that 10h  would be

(38, +.OS  62 56 00).

2.570 line 9 l/15/81 250
after this instruction ‘ENTZ  0’, insert a new one ‘JXNZ *+3’ on a new line

2.570 line 2 of answer 19

b/20 -+ b/2 0

l/15/81 251

2.573 new ar;lswer 23 212 j81 252
23. If u 2 0 or u 5 -1 we have u @ 1 = umod 1, so the identity holds. If -1 <

u < 0, then u @ 1 = u @ 1 = u + 1 -f r where ]rl 5 $bAp; the identity holds iff
round(1  -/- 7) = 1, so it always holds if we round to even. With the text’s rounding
rule the identity fails iff b is a multiple of 4 and -1 < ‘1~  < 0 and umod 2bmP = $bwP
(e.g., p = 3, b = 8, u = -(.0124)s).

2.589 line 7 11/11/80 253
, to appear. + 9 (1980),  4 9 0 - 5 0 8 .

2.596 answer 20

p(. . .) + (. . .)p ’ (thrice)

5/21/81 254

2.608  l i n e  -I 11/11/80 255
2.4771 is chosen “optimally” as the root of (p” - 1) lnp = p2 - p -t- 1. See BIT 20
(1980),  176-184.1

2.613 exercise 24 I/17/81 256
line 3: passes + f a i l s
lines 4 and 5: at most 4qn + . . . < $N +

a t  m o s t  - 1  +  q(b,,  + 1) + min(b,  + 1,~) <
q( $(n - 1) + 1) + min(+(n  - l), r - 1) <
$qn -j- min(an,  7) = $N + min($n  - &r, 37) 5 gN + Qn 5 3;N



-The Art of Computer  Progralnmlng.  ERRATA  ET ADDLSNDA- July 13, 1981-

2.614 last three lines of exercise 27 12/12/80 257
n = 1, 3, 7, 13, 15, 25, 39, 55, 75, 85, 127, 1947, 3313, 4687, 5947. See R. M. Robinson,
Proc. Amer. Math. Sot. 9 (1958),  673-681; G. V. Cormack and H. C. Williams, Math.
Comp. 35 (1980),  1419-1421.1

2.616 new answer 4/5/81 258
39. After finding an1  mod p = n t <3 I m pii’ for enough ni, we can solve c, xi1 keii +

(P - 1)t 3k = &k in integers x,]k, Gk for 1 5 j, k 5 m (e.g., as in 4.5.2-23),  thereby
knowing the solutions N3 = (c, xL3ke,k)mod(p  - 1) to uNJ  m o d p  =  p , .  T h e n  i f

ba”‘modp  = ll,,,~,,, p,“, we have n +- n’ = c , <~ em e; N, (modulo p). [Cf. Proc.

IEEE Symp. Foudations of Comp. Sci. 20 (1979),  !?5-60.1

2.619 last line of exercise 12 l/10/81 259
[JACM, to appear.] + [Cf. JACM 27 (1980),  701-717.1

2.626 last line of exercise 19 4/27/81 260
uo. + uu. [The idea of this proof actually goes back to T. Schonemann,  J. fiir
die reine . . . Math. 32 (1846),  100.1

2.637  l i n e  -14 - t2/1/f30 261
D. J. S. Brown -I”G) D. J. Spencer Brown

2.637 *end of answer 26 512  l/RI 262
1 9 0 . 1  + 190.1 In fact, as Richard Brent has observed, the number of operations
can be reduced to O(d” logn), or even to O(dlogd logn) using exercise 4.7-6, if we first
compute xTL mod (xd - ulxd-’ - . . . - ad) and then replace x3 by x3.

2.639 line 8 of answer 39 6/15/81 263
arcs. + arcs. [Cf. J. Algorithms 2 (1981),  13-21.1

2.639 exercise 41 l/27/81 264
N P  h a r d  + NP- hard
NP complete J”G) N P - c o m p l e t e  ( t w i c e )

-

2.647 line 6 of exercise 41 2/o/01 265

2.653 line 8 3/7/81 266
x2m--1 + X2,,,-1’11

m-1

2.653 first line o f step N2 3/7/81 267
2 ml+1  Yzj + Xmj+i,  Xj

2.657 last two lines of exercise 13 12/13/80 268
Fred . . . (1979). + Richard P. Brent, Fred G. Gustavson, and David Y. Y. Yun,
J. Algorithms 1 (1980),  259-295.

28
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2.666 l i n e  - 4 3/3/81 269

4/5/81 270
Adleman, Leonard Max, 380, 386, 396, 398.

4/2/HI 271
Balanced decimal number system, 195, 565.

5/4/81 272
delete the entry for Jon Bentley

2.6701, Berlekamp entry 313181 273
420, 423, +b 420-423,

2.670~ ‘l/2/81 274
Brakke, Kenneth Allen, 565.

2.670 n Richard Brent entry S/21/81 275
add p. 637

2.670~ . 3/2/81 276
Brooks, Frederick Phillips, Jr., 210.

2.670~ 12/l/80 277
delete ‘Brown, D. J. Spencer, 637.’

2.671~ near the Congruential sequence entry l/12/81 278
delete the spurious comma in the right margin

2.672~ 12/12/HO 279
Cormack, Gordon Villy, 614.

2.672~ l/27/81 280
CRAY-1,  391.

2.672~ 12/20/80 281
DECsystem  20, 14.

2.673~ 4/5/al 282
Dixon, John Douglas, 356, 385, 395, 397, 398.

2.675~ 4/13/81 283
Galois, Evariste, + Galois, Evariste,

2.676 J, GRH entry 3/12/81 284

Reimann %+ Riemann

29
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2.676~ 3/20/81 285
Herzog,  Thomas Nelson, 166, 558, 561.

2.676~ 6/16/81 286
delete the entry for D. R. Hickerson

2.676~
Hilferty, Margaret M., 129.

514  /81 287

2.677~ entry for Knuth, Donald

vi- vii, 2r iv, vi-vii,

s/2/81 288

2.678 L Leibniz entry

freiherr Q F’reiherr

5/22/8t 289

2.678~ new subentry under Logarithm

modulo p, 398.
415  /a1 290

2.678~
Mandelbrot, Benoit -Baruch,  564.

2/2/81 291

2.680 R line -?4

balanced decimal, 195, 565.
412181 292

2.680~
NP-complete problem, 480, 550, 639.

l/27/81 293

2.682~
Pippenger, Nicholas John, 461, 639.

3/3/81 294

2.682~ 12/12/80 295
delete ‘Plass, Michael Frederick, 614.’

2.683 L- entry for Primitive root

add p. 398
4/5/81 296

2.684~ entry for Rounding

364. $-+ 364, 573.

212181 297

2.684~
delete the entry for James Saxe

S/4/81 298

2.685~ 4/27/81 299
SchGnemann,  Theodor,  626.

2.685~
Scneschol, David, 554.

S/4/81 300

30
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2.685 L Shanks entry 6f16/81 301
384, 385, + 385,

2.685~
Sobol’, Il’Ca  Meerovich, 519.

S/25/81 3 0 2

2.685~
Spencer Brown, David John, 637.

12/l/80 3 0 3

2.687~ von Mises entry

e d l e r  % Edler

5/22/81 304

2.688~ 6/16/81 305
Williams, IIugh Cowie, 378, 384, 397, 614.

2.688~
Wilson, Edwin Bidwell,  129.

5/J/81 306

2.688~
Wynn-Williams, Charles Eryl, 186.

12/l/80 307

2.688 R Zaremba entry l/20/81 308
Slanislaw Al+ Stanislaw

3 9 exercise  1 7 l/31/79 309.

How * (This n is called the index of 6 modulo p, with respect to a.) How

3.10 l i n e  - 9

less ++ fewer

7 j4/81 310

3.19 second line of exercise 9

its own inverse $+ an involution (i.e., its own inverse)

4/13/81 311

3.23 lines 17 and 22

AnuyogadvarZi $+ Anuyogadviira (twice)

10/18/73 312

3.76 line - 7

P(n) 2r PP)

10/18/79 313

3.90 c a p t i o n

Fig. 12 Q Fig. 12.

10/18/79 314

3.108  line - 1 4 217179 315
betwecen ‘jp b e t w e e n
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3.204 lines -12 and -11 G/24  180 316
This proof . . . 6.) + The reader may have noticed a pattern in the three
formulas just proved; Paul Stockmeyer and Frances Yao have shown that the
pattern holds in general, i.e., that the lower bounds derived by the strategy above
suff ice to establ ish the values M(m,  m + d) = 2m + d - 1 for m 2 2d - 2 .
[SIAM J. Comput ing !I (1980),  85-90.1

3.317 correction to step Bl

transpose the two sentences ‘Then write . . .’ +-) ‘Set A[O, 0] . . .’

11/14/79 317

3.321 line 4 lOj5 179 318
i n d i v i d u a l  $+ individually

3.378 new exercise lOjlOj80 319

19 .  [HM2.5] (R. W. Floyd.) Show that the lower bound of Theorem F can be
improved to

(k + l)nb lg b + nb/ln  2

b+c -(1+$?))

w h e n  n  = bk, for fixed k as b -+ 00, and also to nb + O(n/log  n) for fixed 6 as
n -+ co, in the sense that some initial configuration must require at least this
many stops. [Hint: Count the configurations that can be sorted after s stops.]

. 3.381 *the line for “Diminishing increments” 3/17/81 320
mP2”  + 15N’ 25 t- 10 loiz,(N/3)

3.384  l i n e  15 3jr5ja1 321
is an incidental remark which appears in an article $+ is in a book by
Robert Fcindler, Das I~ollerith-lochkarten-Verfahren  (Berlin: Reimar Hobbing,
1929),  126130; it was also mentioned at about the same time in an article

3.389 line -11 (also make this change throughout the book)

data base Q d a t a b a s e
-

3.392 lines -12 and -11

Cincinnati Redlegs + Chicago  Whi t e  Sox

3.405 line 3 of exercise 1 9

i,j? + ifj?

3.412 l i n e  - 6

3/25/81 322

LQjlOj80 323

6/l 181 324

4/8/81 325
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3.419 l i n e  2 2 G/2/80 326
but . . . 23). % but a successful search will require about one more iteration,
on the average, because of (2). Since the inner loop is performed only about
lg N times, this tradeoff between an extra iteration and a faster loop does not
save time unless N is extremely large. (See exercise 23.) On the other hand
Bottenbruch’s algorithm will find the rightmost occurrence of a given key when
the table contains duplicates, and this property is occasionally important.

3.420  l i n e  - 9 3/2/81 327
11 + 11.

3.422  l i n e  9 t-i/2/80 328
necessary ! )  + necessary on a successful search!)

3.422 exercise 27 line 6

n%+k
l/24/79 329

3.439 update t o 1979 change #240 2128181 330
the Hu-Klei tman-Tamaki  paper  appeared in SIAM J. Appl. M a t h .  3 7  (1979),
246-256

3.448 last line of exercise 6

o f  c’,-,? + of this distribution?

4/13/81 331

3.449 exercise 23 (cf. 1979 change #311)

p1=5 + Pl =9

3.451  l i n e  - 3

Akademiia + A k a d e m i i

3.471 insert quotation before Section 6.2.4 3/15/81 334

Samuel considered the nation of Israel, tribe by tribe,
and the tribe of Benjamin was picked by lot.

Then he considered the tribe of Benjamin, family by family,
and the family of Matri was picked by lot.

Then he considered the family of Matri, man by man,
and Saul son of Kish was picked by lot.

But when they looked for Saul he could not be found.

-1 S a m u e l  10:20-21

3.472  l i n e  II

log, A/+ k

l/31 179 335
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3.476 clarifications l/31/79 336
l i n e  - 1 4 :  n e w  n o d e  $+ new key
l i n e  - 1 1 :  n o d e s  % internal nodes
l i n e  - 1 0 :  n o d e s  -/G) internal nodes
l i n e  - 8 :  a  n o d e  % a node while building a tree of N keys

3.480 exercise 5 2/23/79 337
Bowing.“) + fl owing”; pass up the key that makes the remaining two parts most
nearly equal in size.)

3.491 F i g u r e  3 3 2/23/79 338
(It would be desirable to show the 5-bit binary codes in fine print under the
TEXT line; to make room, “TEXT:" should be brought up to a line by itself.
Furthermore, this figure needs to be redrawn; the word in node 7 should be
changed to (THE), and the word in node E should be changed to (THAT)  ; also,
the dotted line at the lower left of node E should become a circular dotted line
that points right back to node E (cf. /3 and 0, while the dotted line at the lower
right of E should point tip to 7.)

3.491 l i n e  - 1 2 -_ 2/23/m 339
contains the number 24 (the JG) would contain the number 24 (which indi-
cates the

3.491 l i n e  - 1 0

3.492 replacement for lines 2 through 1 1 12/27/79 341

A search in Patricia’s tree is carried out as follows: Suppose we are looking up
the word THE (bit pattern 10111 01000 00101). We start by looking at the SKIP
field of the root node N, which tells us to examine the first bit of the argument.
It is 1, so we move to the right. The SKIP field in the next node, 7, tells us to
look at the 1 + 11 = 12th bit of the argument. It is 0, so we move to the left.
The SKIP field of the next node, E, tells us to look at the (12 + 1)st bit, which
is 1; now we find RTAG = 1, so we go back to node 7, which refers us to the TEXT.
The search path we have taken would occur for any argument whose bit pattern
is lxxxx xxxxx x0 1 . . . , and we must check to see if it matches the unique key
beginning with that pattern.

-3.506  line 8
S e c t i o n  J\r Sections

3.507 update to 1979 change #259 311 j79 343
850 + 850, 22 (1979), 104,

34
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3.518 corrected analysis l/10/80 344
line 9, a new equation: Cl, = 1 +

N ( N  - 1)

2M2
= 1+ $a”

line 6 after (19): T hc method introduces a tag bit in each entry; the average
number of probes needed in an unsuccessful search therefore decreases
slightly, from (18) to

( >l-$
N

+ X x eMa +  a . (18’)

line 8 after (19): delete the sentence ‘If separate . . . CY > 1.’
line 11 after (19): 3. J”G) $. However, it is usually preferable to use an

alternative scheme that puts the first colliding elements into an auxiliary
storage area, allowing lists to coalesce only when this auxiliary area has
filled up; see exercise 43.

3.519 bottom line 6/6/80 34 5
9u + 8u

3.522 - last line of (24)

ORR + OR

414180 346

3.524 several * refinements l/10/80 347
line 1 of (30): -M-l, 1 + I-M, 1
line 1 just after (30): In this $+

P r o g r a m  D  t a k e s  a  t o t a l  o f  8C + 19A + B +  26  - 135’  - 1751 u n i t s
of  t ime;  modif icat ion (30)  saves about 15(A - Sl) zz 7.5~ of these in a
successful search. In this

furthermore, Fig. 42 needs to be more accurately redrawn using the following
data:

a = 0.0 0.2 0.4 0.6 0.8 0.9 0.92 0.94 0.96 0.98 0.99
L = 24.0 24.9 26.3 29.3 38.0 55.5 64.3
D = 23.0 25.7 28.8 32.6 38.4 43.9 45.7 47.9 51.2 56.8 62.5

D mod = 23.0 24.2 26.0 28.8 34.1 39.6 41.5 43.9 47.2 53.1 58.9

3.526 new paragraph after line 19 1/l j81 348
E. G. Mallach [Comp.  J. 20 (1977),  137-1401 has experimented with refine-

ments of Brent’s variation, and further results have been obtained by Gaston H.
Gonnet and J. Ian Munro [SIAM J. Computing 8 (1979), 463-4781.

3.539 Change to curves S and SO in Figure 44(a) l/10/80 349
CY = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

S = 1.0 1.005 1.020 1.045 1.080 1.125 1.180 1.245 1.320 1.405 1.500

SO = 1.0 1.003 1.013 1.029 1.051 1.079 1.112 1.151 1.195 1.244 1.299

3.543 new rating for exercise 10 3/l/79 350
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3.544 exercise 14 (replacement for lines 3 and following) 2/23/79 351
2-bit TAG field and two link fields called LINK and AUX, with the following interpretation:

TAG(P) = 0 indicates a word in the list of available space; LINK(P) points to the
next entry in this list, and AUX(P)  is unused.

TAG(P) = 1 indicates any word in use where P is not the hash address of any key
in the scatter table; the other fields of the word in location P may have any
desired format.

TAG(P) = 2 indicates that P is the hash address of at least one key; AUX(P)  points
to a linked list specifying all such keys, and LINK(P) points to another word
in the list memory. M’uenever a word with TAG(P) = 2 is accessed during
the processing of any list, it is necessary to set P t LINK(P) repeatedly until
reaching a word with TAG(P) 5 1. (For efficiency we might also then change
prior links so that it will not be necessary to skip over the same scatter table
entries again and again.)

Show how to define suitable algorithms for inserting and retrieving keys in a combined
table of this sort.

3.544 exercise 23

PI + PI
2/23/79 352

3.546 replacements for exercises 34(c), 35, 36 l/10/80 353
(c) Express the average number of probes for a successful search in terms of this
generating functicn. (d) Deduce the average number of probes in an unsuccessful
search, considering variants of the data structure in which the following conventions
are used: (i) hashing is always to a list head (cf. Fig. 38); (ii) hashing is to a table
position (cf. Fig. 40), but all keys except the first of a list go into a separate overflow
area; (iii) hashing is to a table position and all entries appear in the hash table.

35. [A&?4] c on inuing exercise 34, what is the average number of probes in an unsuc-t
cessful search when the individual lists are kept in order by their key values? Consider
data structures (i), (ii), and (iii).

36. [Mzs] Continuing exercise 34(d), find the variance of the number of probes when
the search is unsuccessful, using data structures (i) and (ii).

3.546 new wording of exercises 37 and 40 l/10/80 354
b 37. [M29]  Eq. (19) g ives the average number of probes in separate chaining when the

a search is successful; what is the variance of this quantity?

40. [ MJS] Eq. (15) g ives the average number of probes used by Algorithm C in an
unsuccessful search; what is the variance of this quantity?

3.546 new wording for exercise 39 (keep the old last line) 6/I /a0 355
39. [A&?71 I, te cN (k) be the total number of lists of length k formed when Algorithm C

is applied to all MN hash sequences (35). Find a recurrence relation on the numbers
CN(k) that makes it possible to determine a simple formula for the sum

SN = c ; W ( k ) .

k 0

36
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3.546 New rating for exercise 43 a/a/au 356
w421  + [JIM441

3.563  l i n e  1 2 tT/1o/ao 357
{NEEDLE,NODDLE,NO~DLE}  + {NEEDLE,NIDDLE,N~DDLE,NOODLE,NUDDLE}

3.576 addendum to 1976 change #324 4/s/81 358
John M. Pollard [Math. Comp. 32 (1978),  918--9243  has discovered an elegant way

to solve this problem with very little memory in about O(,/@) steps, based on th? theory
of random mappings. See also the asymptotically faster method of exercise 4.5.4-39.

3.593 display in answer 25

z”/n! + zn

3.608 l i n e  - 8

ZN+1--6,~
+

ZN+’

3.609 answers 24 and 27

line 3 of answer 24: replace by lines 8 and 9 of answer 27

lines 8 and 9 of answer 27 should be:

a # /3; g(z)  = zb(lnz + C)  for  a  =  p. W e  h a v e  pt(---t
solution to our diEferentia1  equation is

3.614 line -6 of answer 55

rA $+ rA

3.617  l i n e  - 6 12/14/79 363
(exercise 4.5.4-8) is a O(N) $+
(as implemented in exercise 4.5.4-8) is a O(N log log IV)

3.619 answer 31

2/26/80 359

2/15/79 360

3/l/79 361

2) = 0; so the general

l/29/80 362

3/16/81 364

lines 1 and 2: Let . . . B[i] for + (Solution by J. Edighoffer.) L,et A be an array
of 2n elements such that A[2[i/2]] < A[24 and A[2[i/2J - l] > A[2i  - 1] for
1 < i < n; furthermore we require that A[2i - l] 2 A(24  for

l ine 4:  twin-heap + twin heap

3.624  l i n e  - 5 5/l/79 365
g”n:r: (4 + dy!G%)

3.633 new answer 11/11/80 366
14. [SIAM J. Computing 9 (1980),  298-320.1

3.665 new answer 10/10/00 367
19. There are at least (nb)!/b!2” configurations, and the number that can be obtained

from a given one after s stops is at most ((n - l)(bTc))s,  which is less than ns2(b+c)S.
Hence s > (ln(n6)! - 2n In b!)/(ln  n + (b + c) In 2) and the stated results follow.
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3.667 answer 19 6/l/81 368
line 1: We + Assuming that d(i,i) = 0, we
line 3: is due $+ for i # j is due

3.672  line 4 3/15/81 369
[From excrcisc 6.2.1-25b we can therefore i”G) ,[By exercise 6.2.1-25(b) we can use
the mean and variance of C:, to

3.672 line 1 of answer 15

al + aj

10/23/79 370

3.67 5 answer 11 (improvement to 1979 change j/312) l/31/79 371
p r o d u c e s  + results in (twice)

[To be published.] * [SIAM J. Computing 8 (1979),  33-41.1

3.680 addendum to 1976 change #359 3/25/81 372
s u f f i c e . ]  + suflicc. In general, if we want to compress n sparse tables containing
respectively zl, . . . , 3;,, nonzero  entries, a ‘first-fit’ method that offsets the jth table
by the minimum amount r3 that will not conflict with the previously placed tables will
h a v e  r3 5 (~1 --/-..-.-/-z~--~)z~, since each previous noneero  entry can block at most ~j
offsets. This worst-case estimate gives r3 _< 93 for the data in Table 1, guaranteeing
that any twelve tables of length 30 containing respectively 10, 5, 4, 3, 3, 3, 3, 3, 2, 2,
2, 2 nonzero  entries can be packed into 93 -+ 30 consecutive locations regardless of the
pattern of the nonzeros. Further refinements of this method have been developed by
R. E. Tarjan and A. C. Yao, CACM  22 (1979),  SOS-611.1

3.683 answer 14 line 4

T A G  + TAG

l/31/79 373

3.688 new answer 10 3/l/79 374
10. See F. M. Liang’s elegant proof in Discrete Math. 28 (1979),  325-326.

3.689 l i n e  2 . 3/16/81 375
lists, Q lists, following a suggestion of Allen Newell,

-

3.689 new paragraph inserted ai: beginning of answer 14 2/23/79 376
14. According to the stated conventions, the notation “X += AVAIL” of 2.2.3-6 now

stands for the following operations: “Set X t AVAIL; then set X t LINK(X) zero or
more times until either X = 0 (an OVERFLOW error) or TAG(X)  = 0; finally set AVAIL t-
LINK(X)  .”

3.689 new paragraph appended at end of answer 14 2123179 377
Another way to place a hash table “on top of’ a large linked memory, using

coalescing lists instead of separate chaining, has been suggested by J. S. Vitter [Ph.D.
thesis, Stanford Univ. (1980),  72-731.
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3.690 new answer 23 fi/t;/ao 378
23. J. S. Vitter [Ph.D. thesis, Stanford Univ. (1980),  61-681 has introduced a deletion

method for coalesced  chaining that preserves the distribution of search times.

3.693 answer 34 111 o/a0 379
lines 4 and 5: Ch . . . all keys. $+ Consider the total number of probes to find all

keys, not counting the fetching of the pointer in the list head table of Fig. 38
if such a table is used.

line -1: Thus we obtain (13), (19). $+ (d) In case (i) a list of length k- requires k
probes (not counting the list-head fetch), while in case (ii) it requires ‘; + 6ku.
Thus in case (ii) we get CL = x(k -1 6ku)P~k L= Ph(l) -j- p,(O) = N/M j-
( 1  - l / M ) ”  w cr -1 eMa, while case (i) has simply c/N = N/M = (11. T h e
formula MC& = M - N + NC.” applies in case (iii), since M - N hash
addresses will discover an empty table position while N will cause searching to
the end of some list; this yields (18).

3.693 new answer 35 r/10/80 380
35.  (i) ~(l+~k-(k+1)-‘)P.v~  = l-tN/2M--M(l---(1-l/M)“+‘)/(N -j-l) z

1 +  ho - (1 - e -“)/cu. (ii) Add c 6kuP,vk = (1 - l/M)N  E e-a to the result of (i).
(iii) Assume that when an unsuccessful search begins at the jth element of a list of
length k,- the given key has random order with respect to the other k elements, so the
expected length of search is (j-1 + 2 $ . . * + (k + 1 - J’) -t (k $- 1 - j))/(k + 1).
Summing on j now gives MC’, =  M  - N  +  M  c(k” $- 9k2 + 2k)PNk/6(k  + 1 )  =
M - N -t M(;;N(N  - 1)/~2 + $V/M  - i + (M/(N -+ l))(l - ( 1  .- l/bqN+‘));
herlcc~  c:,  F=:  $a + $a” + (1 - epol)/a.

3.693 answer 36 6/6/80 381
line 1, replace first sentence by: (i) N/Ivi - N/M2.  (ii) c(6k0  + k)2P,t,k =

C(6ko -j- k2)P,yk, = P,v(O)  + P;(l) + P;(l).
line -1, add new remark: [For data structure (iii), a more complicated analysis like

that in exercise 37 would be necessary.]

3.694 replacement for lines l-3 and big display of answer 39 G/l/&W 382
39. (This approach to the analysis of Algorithm C was suggested by J. S. Vitter.)

We have c,~+~(k)  = ( M  - k)ciy(k) + (k - l)c.v(k  - 1) for k 2 2, and furthermore
c kchr(k) = N M ” .  Hence  SN-+l  = ck2z (i)cN+l(k)  = c,,, (i)((M-k)cN(k)+

( k  - l)civ(k  - 1 ) )  =  ~k>l((M + 2)(i)  -I- k)w(k)  = (M + 2j%v + NMN._-

3.694 line 1 o f answer 40 6/ 1180 383

(i) replaced by (j:‘). Q (i) replaced by (“$I).

3.694 new answer 6/6/80 384
43.  Let  N = aM’ a n d  M = PM’, and let e-’ -j- X = l//3, p = o/p. T h e n  CN =

1 + ip and C:,,, F= p + eeP,  if p 5 X; CN z &(e2(P-x)  - 1 - 2(p - X))(3  - 2/p +

2X)++(p+A)++A(l-h/p)  and Cl, z 1/~$~(e2’“-“~-l)(3-22/~f2X)-~S(p-~),
if p 2 X. For (I! = 1 W C  get the smallest CN z 1 .69  when  p z .853;  the smallest

c:, z 1.79 occurs when p E .782.  So it pays to put the first collisions into an area
that doesn’t conflict with hash addresses, even though a smaller range of hash addresses
causes more collisions to occur. These results arc due to Jeffrey S. Vitter [Ph.D. thesis,
Stanford Univ. (1980); Prot.  Symp. Foundations Camp.  Sci. 21 (1980),  238-2471.

39



3.710R
Anuyogadvarz %+ Anuyogadvzra

3.712~ delete 1979 change ,+334
(Fan Chung no longer mentioned on page 688)

3.713L
Edighoffer,  Judy Lynn IIarkness,  619.

3.713R
Feindler, Robert, 384.

3.714L
First-fit allocation, 471, 680.

3.715L
Index modulo p, 9.

3.716R
Liang, Franklin Mark, 688.

3.718~
Newell, Allen, 689.

3.718~ ( this entry now moves to the preceding column)

ORR + OR

3.719 L Vaughan Pratt entry

add p. 450

3.720~
Samuel, 47 1.

- 3.720~
Sparse array, 680.

3.7 2 11 L update to 1979 change #384

Sprugnoli, Rcnzo, 507.

'3.721~
Stockmeyer, Paul Kelly, 204.

3.721~
Tarjan,  Robert Endre, 216, 624, 680.

3.722~
Twin heap, 619.

385

387

388

389

396

398
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3.722~
Vitter, Jeffrey Scott, 639, 690, 694.

3.722~ von Mises  entry 5/22/Al 402
cdler Ai-+ Edler

. .3.722~ ,
3/25/81 403

Yao, Andrew Chi-Chill,  232, 235, 422, 479, 549, 639, 678, 680.
Yao, Foong Frances, 204, 232, 422.
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