The Last Whole Errata Catalog

by
Donald E. Knuth

Office of Naval Research
and
National Science Foundation

Department of Computer Science

Stanford University
Stanford, CA 94305

States government.

THE ART OF COMPUTER PROGRAMMING

July 13, 1981

This list supplements previous errata published in Stanford reports CS551 (1976) and CS712 (1979). It includes the first corrections and changes to the second edition of volume two (published January, 1981) as well as to the most recent printings of volumes one and three (first published in 1975). In addition to the errors listed here, about half of the occurrences of 'which' in volumes one and three should be changed to 'that'.

1. ix line -7 10/10/79
historically have always developed from \checkmark almost always owe their origin to
2. XX line - 5 $1 / 5 / 81$ 2
2.2 か 2.2.
1,1 historical improvements 3
lines -6, - 4: Khowârizmî $\widehat{\checkmark} \rightarrow$ Khwârizmî
lines -5, -4: Khowârizm." . . Khiva. \downarrow Khwârizm." The Aral Se a in Central Asia was once known as Lake Khwârizm, and the Khwârizm region is located in the Amu River basin just south of that sea.
line - 3 : restoration and reduction \downarrow restoring and equating lines -2, -1: although . . algebraic. $\widehat{\boldsymbol{~}}$ which was a systematic study of the solution of linear and quadratic equations.
1.25 exercise 19 1/26/80 4
a 14-digit integer, $\widehat{\boldsymbol{~}}$ an integer whose decimal representation is 14 digits long,
1.42 in e 4 2/23/81 5
$\sum_{1 \leq k<n} \quad \boldsymbol{\gamma}^{\boldsymbol{1}} \quad \sum_{1 \leq k \leq n}$
1.61 lines 4 and 5
6/1/816to introduce still further complication $\boldsymbol{\gamma} \boldsymbol{\rightarrow}$ to complicate things even more
1.72 line -4 (overrides 1979 change \#18) $8 / 30 / 80$ 7$A_{n(k-1)}+\binom{n}{k} . \quad$ $~(~ A ~ A-1)(k-1)+\binom{n}{k}$, for $n k>0$.
\qquad
1.78 Ine - 2 9/4/79 8
al-Khowârizmî đ ${ }^{\text {+ }}$ al-Khwârizmî
1.86 line - 12 12/16/79 9
$|z|<z_{0} . \Downarrow|z|<\left|z_{0}\right|$.
1.87 three lines atter (4) 10/26/79 10
latter \uparrow last-mentioned
1.88 bottom line 4//79 11
$1 \leq j<m \quad$ か $\quad 0 \leq j<i n$
197 clarifying remarks 3/10/81 12line 10: $\mathbf{A}=\mathbf{k} . ~ \widehat{\boldsymbol{~}} \quad \mathbf{A}=\mathbf{k}$. Let this number be $P_{n k}$.line 14: that $\widehat{\boldsymbol{~}}$that $P_{n k}=P_{(n-1)(k-1)}+(\mathrm{n}-1) P_{(n-1) k}$, which leads to
1.108 line 7 9/26/80 13
Academe \downarrow Academia:
1.110 just after (13), overiding 1976 change \#31 10/25/79 14
provided that to $\mathrm{n} . \quad \checkmark \quad$ provided that $f^{(2 k+2)}(x) f^{(2 k+4)}(x)>0$ for $1<x<n$.
1.112 new wording tor exercise 3 10/255/70 15
3. [HM20] Let $C_{m}=\left((-1)^{m} B_{m} / m!\right)\left(f^{(m-1)}(n)-f^{(m-1)}(1)\right)$ be the mth correction term in Euler's summation formula. If $f^{(2 k)}(x)$ has a constant sign for $1 \leq x \leq \mathrm{n}$, show that $\left|R_{2 k}\right| \leq\left|C_{2 k}\right|$ wh en $k>0$; in other words, the remainder is not larger in absolute value than the last term computed.
1.119 new exercise 3/6/841 16
4. [M25] Show that the sums $\sum\binom{n}{k} k^{k}(n-k)^{n-k}$ and $\sum\binom{n}{k}(k+1)^{k}(n-k)^{n-k}$ can be expressed very simply in terms of the Q function.
1.122 improvements in wording 6/4/80 17
line 1: A . . position has $\underset{\sim}{\boldsymbol{r}}$ A computer word consists of five bytes and asign. The sign portion has
line 8: bytes, and its sign \nsim bytes; it behaves as if its sign line 17: the preceding "JUMP" instruction, $\boldsymbol{\gamma} \boldsymbol{\rightarrow}$ the most recent "jump" operation,
5. 123 more improvements in wording 4/12/81

line 2 after (3): 8 is \downarrow) 8 specifies | lines 10 and 11 after (3): address of an instruction. |
| :--- |
| lines 13 and 14 after (3): address of the instruction. |
| | addess.18

\qquad
1.132 wrong tons 6/4/80 19
line -17: A through $Z \quad$, A through Z
line -16: $0,1, \ldots, 9 ; ~ \widehat{ } \rightarrow 0,1, \ldots, 9$;line $-12: \Phi$ and $\Pi \quad A, \Sigma$, and Π
1.132 Ino -9 3/30/81 20
ignored. $\quad \boldsymbol{\gamma}_{\boldsymbol{*}}$ ignored. When a typewriter is used for input, the "carriage return" that is typed at the end of each line causes the remainder of that line to be filled with blanks.
1.136 and also page 13‘7 6/6/80 21replace by the chart on the endpapers of the new volume 2
1.140 ine - 3 6/6/80 22bytes $20, \ldots$ since $\quad \rightarrow$ bytes $10,20,21,49,50$, .. (i.e., the characters $A, \Sigma, \Pi, \$$,<, ...) since
1.141 line 13 6/4/80 23
$\operatorname{cell}(\mathrm{X}+i) . \underset{\sim}{\text { CONTENTS }}(\mathrm{X}+i)$.

1. 148 changes brought about by the demise of punched cards $3 / 30 / 81$ 24
Fig. 15 will change to include also the following copy as typed on a typicalhardcopy terminal:

* EXAMPLE PROGRAM . . . TABLE OF PRIMES
L EQU 500 PRINTER EQU 18
The caption will change to ". . onto cards, or typed on a terminal." line -6 : cards, $\widehat{\boldsymbol{~}}$ cards or typed on a computer terminal, line -5: used: $\widehat{\longrightarrow}$ used in the case of punched cards:
1.149 new paragraph to follow line 5 $3 / 30 / 81$ 25
When the input comes from a terminal, a less restrictive format is used: The LOC field ends with the first blank space, while the OP and ADDRESS fields (if present) begin with a nonblank character and continue to the next blank; the special OP code ALF, however, is followed by either two blank spaces and five characters of alphameric data, or by a single blank space and five alphameric characters, the first of which is nonblank. The remainder of each line contains optional remarks.
$1.150_{\text {line }} 22$ 6/1/81 26

context), | | |
| :---: | :---: |
| OP | field, as shown in Table 1.3.1-1), |

1.151 lines 9 and 10 $6 / 4 / 80$ 27
values: C, F, A, and I; the \uparrow values: C, F, A, and I. The
\qquad
here is a new Algorithm I together with a new Program I:
Algorithm ((Inverse in place). Replace $X[1] X[2] \ldots X[n]$, a permutation on $\{1,2, \ldots, \mathrm{n}\}$, by its inverse. This algorithm is due to Huang Bing-Chao.
II. [Initialize.] Set $m \leftarrow n, \mathrm{j} \leftarrow-1$.
12. [Next element.] Set $i \leftarrow X[m]$. If $i<0$, go to step 15 (the element has already been processed)
13. [Invert one.] (At this point $\mathrm{j}<0$ and $i=\mathrm{X}[\mathrm{m}]$. If m is not the largest element of its cycle, the original permutation had $X[-j]=m$.) Set $X[m] \leftarrow j$, $\mathrm{j} \leftarrow-\mathrm{m}, \mathrm{m} \leftarrow \mathrm{i}, \mathrm{i} \leftarrow X[m]$.
14. [End of cycle?] If i >0, go back to 13 (the cycle has not ended); otherwise set $\mathrm{i} \leftarrow j$. (In the latter case, the original permutation has $\mathrm{X}[-\mathrm{j}]=\mathrm{m}$, and m is largest in its cycle.)
15. [Store final value.] Set $X[\mathrm{~m}] \leftarrow-\mathrm{i}$. (Originally $\mathrm{X}[\mathrm{i}]$ was equal to m .)

I6. [Loop on m .] Decrease m by 1. If $\mathrm{m}>0$, go back to 12 ; otherwise the algorithm terminates.
For an example of this algorithm, see Table 2. The method is based on inversion of successive cycles of the permutation, tagging the inverted elements by making them negative, afterwards restoring the correct sign.

Table 2
COMPUTING THE INVERSE OF 621.543 BY ALGORITHM I
(Read columns from left to right.) At point *, the cycle (163) has been inverted.

After step:	12	13	13	13	$15 "$	12	13	1	3	15	12	15	15	I 3	15	15
$X[1]$	6	6	6	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	3	
$X[2]$	2	2	2	2	2	2	2	2	2	2	2	2	-4	2	2	
$X[3]$	1	1	-6	-6	-6	-6	-6	-6	-6	-6	-6	6	6	6	6	
$X[4]$	5	5	5	5	5	5	5	-5	-5	-5	5	5	5	5	5	
$X[5]$	4	4	4	4	4	4	-1	-1	4	4	4	4	4	4	4	
$X[6]$	3	-1	1	6	6	1	1	1	1	1	1	1	1	1	1	
m	6	3	-3	-1	-1	5	4	5	5	4	4	3	2	2	1	
\mathbf{j}	-1	-6	6	1	-1	-5	-4	-4	-4	-4	-4	-2	-2	-2		
i	3	1	6	-1	-1	4	5	-1	-4	-5	-5	-6	-4	-2	-3	

Algorithm I resembles parts of Algorithm A, and it very strongly resembles the cycle-finding algorithm in Program B (lines 50-64). Thus it is typical of a number of algorithms involving rearrangements. When preparing a MIX implementation, we find that it is most convenient to keep the value of -i in a register instead of i itself:

Program I (Inverse in place). $\mathrm{rl} 1 \equiv m ; \mathrm{r} 12 \equiv-i$; $\mathrm{r} 13 \equiv \mathrm{j}$; and $\mathrm{n}=\mathrm{N}$, a symbol to be defined when this program is assembled as part of a larger routine.

```
INVERT ENT1 N 1 I1.Initializenm }\leftarrow\textrm{n}
    ENT3 -1 1 j \leftarrow-1.
    2H LD2N X,1 N 12. Next element.i& X[m].
    J2P 5F N To 16 if i<0.
3H S T 3 X,1 N 1u? Lnvont~nveg X [m|\leftarrowj.
    ENN3 0,1N j t - m.
    ENN1 0,2 N m t i.
    LD2N X,1 N i t X[m].
    4H J2N 3B N End of cycle? To 73 if i>0.
    ENN2 0,3 C Otherwise set i\leftarrowj.
    5H S T 2 X,1 N 15. Store final value. }X[m]\leftarrow-i
    6H DEC1 1 N 16. Loop on m.
19 J1P 2B N To 12 if m>0.
```

\qquad
The timing for this program is easily worked out in the manner shown earlier; every element $X[m]$ is set first to a negative value in step 13 and later to a positive value in step 15 . The total time comes to $(14 \mathrm{~N}+\mathrm{C}+2) u$, where N is the order of the permutation and C is the total number of cycles. The behavior of C in a random permutation is analyzed below.
There is almost always more than one algorithm . . .
1.177 line 17 11/1/180 29
A, B, and $\mathrm{I}, \quad \nleftarrow \mathrm{A}$ and B ,
1.209 program line 21 1/1/80 30
L D A $\underset{\boldsymbol{~}}{\boldsymbol{~ E N T A}}$
1.234 line - 17 $3 / 3 / 81$ 31i.e., \downarrow e.g.,
1.246 improved overlap 2/4/79 32
line -10 should become: $\operatorname{OLDTOP}[j] \equiv \mathrm{D}[j] \equiv \operatorname{NEWBASE}[j+1]$
1 ine-g: $n+1$; $\boldsymbol{\natural}$ n ;
lines -8 and -7 : delete the sentence "It will . . . overlap."
1.248 addendum to 1979 change \#47 2/7/79 33See also A. S. Fraenkel, hf. Proc. Letters 8 (1979), 9-10, who suggests workingwith pairs of stacks that grow towards each other.
1.250 new rating for exercise 13 3/1/79 34
$\left[M_{47}\right] \underset{\text { [HM44] }}{ }$
1.252 lines -12 and -11 8/18/80 35together or to break one apart. \downarrow together, or to break one apart into twothat will grow independently.
1.254 replacement tor tines 16 and 17 2/4/79 36
Otherwise set $\mathrm{X} \leftarrow \mathrm{POOLMAX}$ and POOLMAX \leftarrow POOLMAX +c , (7) where c is the node size;
OVERFLOW now occurs if POOLMAX > SEQMIN."
1.284 the line for time 0693 37
Mi 人 M5
1.309 Ine 10 38
and two and the elements of two
\qquad
1.323 trivial improvements to Program S10／17／7939
1ine 0 3：ENT6 か

lin	

line 04：S2 $\xrightarrow{\longrightarrow} 2 F$
line 09：$n \nmid 1$ か
line 09：Set $\downarrow \rightarrow$ S2．Search to left．Set
line 10，first column：\downarrow 2H
line 11：＊－2 $\xrightarrow{\natural}$ S2
1.324 line 5 10／17／79 40
8 か 7
1.381 new exercise $5 / 19 / 81$ 4127．［M30］（Steady states．）Let G be a directed graph on vertices V_{1}, \ldots, V_{n} ，whosearcs have been assigned probabilities $p(e)$ as in exercise 26．Instead of having＂start＂and＂stop＂vertices，however，assume that G is strongly connected；thus，each ver－tex V_{J} is a root，and wc assume that the probabilities $\mathrm{p}(\mathrm{e})$ are positive and satisfy$\sum_{\text {init }(\mathrm{e})=v} \mathrm{p}(\mathrm{e})=1$ for all j ．A randorn process of the kind described in exercise 26is said to have a＂steady state＂$\left(x_{1}, \ldots, x_{n}\right)$ if

$$
x_{j}=\sum_{\operatorname{fin}(e)=V_{j}} p(e) x_{\text {init }(e)}, \quad 1 \leq j \leq n .
$$

Let t ，be the sum，over all oriented subtrees T_{j} of G that are rooted at V_{j} ，of the products $\prod_{e \in T_{1}} \mathrm{p}(\mathrm{e})$ ．Prove that $\left(t_{1}, \ldots, \mathrm{t}, \mathrm{)}\right.$ is a steady state of the random process．
1.402 three lines before（9） 3／1／2／s 42
Huffman： \mathcal{V}^{2} Hufiman（Proc．IRE 40（1951），1098－1101）：
1.404 lines 1 through 5 3／15／81 43
In general，．．．method has $\underset{\sim}{\boldsymbol{\gamma}}$

Every time this construction combines two weights，they are at least as big as the weights previously combined，if the given w_{i} were nonnegative．This means that there is a neat way to find Huffman＇s tree，provided that the given weights have been sorted into nondecreasing order：We simply maintain two queues，one containing the original weights and the other containing the combined weights． At each step the smallest unused weight will appear at the front of one of the queues，so we never have to search for it．See exercise 13，which shows that the same idea works even when the weights may be negative．

In general，there are many trees that minimize $\sum w_{j} l_{j}$ ．If the algorithm sketched in the preceding paragraph always uses an original weight instead of a combined weight in case of ties，then the tree it constructs has
1.405 second line of exercise 10 3／15／81 44
given weights \downarrow given nonnegative weights
1.405 rating for exericise 12 （overrides 1976 change \＃81） $3 / 15 / 81$ 45
Suppose $\underset{\downarrow}{ }$［M20］Suppose
\qquad

$$
\begin{aligned}
& \text { 1.405 new exercises } \\
& \text { 13. [22] Design an algorithm that begins with } m \text { weights } w_{1} \leq w_{2} \leq \cdots \leq w_{m} \text { and } \\
& \text { constructs an extended binary tree having minimum weighted path length. Represent } \\
& \text { the final tree in three arrays } \\
& \qquad A[1], \ldots, A[2 m-1] ; \quad L[1], \ldots, L[m-1] ; \quad R[1], \ldots, R[m-\mathrm{I}] ;
\end{aligned}
$$

3/15/81
here $L[i]$ and $R[i]$ point to the left and right sons of internal node i, the root is node 1 , and $A[i]$ is the weight of node i. The original weights should appear as the external node weights $A[m], \ldots, \mathrm{A}[2 \mathrm{~m}-1]$. Your algorithm should make fewer than $2 m$ weightcomparisons. Caution: Some or all of the given weights may be negative!
14. [25] (T. C. Hu and A. C. Tucker.) After k steps of Huffman's algorithm, the nodes combined so far form a forest of $\mathrm{m}-k$ extended binary trees. Prove that this forest has the smallest total weighted path length, among all forests of m-k extended binary trees that have the given weights.
15. [M25] Show that a Huffman-like algorithm will find an extended binary tree that minimizes (a) $\max \left(w_{1}+l_{1}, \ldots, w_{m}+1\right.$, ; (b) $w_{1} x^{l_{1}}+\cdots+w_{m} x^{l_{m}}$, given $x>1$.
16. [M25] (F. K. Hwang.) Let $w_{1} \leq \cdots \leq w_{m}$ and $w_{1}^{\prime} \leq \cdots \leq w_{m}^{\prime}$ be two sets of weights with

$$
\sum_{1 \leq j \leq k} w_{j} \leq \sum_{1 \leq j \leq k} w_{j}^{\prime} \quad \text { for } 1 \leq k \leq m
$$

Prove that the minimum weighted path lengths satisfy $\sum_{1 \leq j \leq m} w_{j} l_{j} \leq \sum_{1 \leq j \leq m} w_{j}^{\prime} l_{j}^{\prime}$.
17. [HMSO] (C. R. Glassey and R. M. Karp.) Let s_{1}, \ldots, s_{m-1} be the numbers inside the internal (circular) nodes of an extended binary tree formed by Huffman's algorithm, in the order of construction. Let $s_{1}^{\prime}, \ldots, s_{m-1}^{\prime}$ bc the internal node weights of any extended binary tree on the same set of weights $\left\{w_{1}, \ldots\right.$, w,,, $\}$, listed in any order such that each non-root internal node appears before its father. (a) Prove that $\sum_{1 \leq j \leq k} s_{j} \leq \sum_{i \leq j \leq k} s_{j}^{\prime}$ for $1 \leq k<m$. (b) The result of (a) is equivalent to

$$
\sum_{1 \leq j<m} f\left(s_{j}\right) \leq \sum_{1 \leq j<m} f\left(s_{j}^{\prime}\right)
$$

for every nondecreasing concave function f, i.e., every function f with $f^{\prime}(x) \geq 0$ and $f^{\prime \prime}(x) \leq 0$. [Cf. Hardy, Littlewood, and Polya, Messenger of Math. 58 (1929), 145-152.] Use this fact to study the recurrence

$$
F(n)=f(n)+\min _{1 \leq k<n}(F(k)+F(n-k)), \quad F(1)=0,
$$

given any function $f(n)$ such that $\Delta f^{\prime}(n)=f(n+1)--f(n) \geq 0$ and $\Delta^{2} f(n)=$ $\Delta f(n+1)-\Delta f(n) \leq 0$.

1.420 new paragraph before the exercises
 2/7/79

Daniel P. Friedman and David S. Wise have observed that the reference counter method can be employed satisfactorily in many cases even when lists point to themselves, if certain link fields are not included in the counts [Inf. Proc. Letters 8 (1979), 41-45].

1.448 line 6 after the caption
 4/6/81

1.449
 lines -7 through -4
 5/21/81
 algorithms . . . and here are $\not \checkmark$ methods that are recommended as a consequence of the remarks above: (i) the boundary tag system, as modified in exercises 12 and 16 ; and (ii) the buddy system. Here are

1.451 bottom line 3/20/81 50
36-40. \downarrow 36-40, and in exercises 42-43 where he has shown that the best-fit method has a very bad worst case by comparison with first-fit.
1.455 new exercises for bottom of page 4/1/81 5142. [M40] (J. M. Robson, 1975.) Let $N_{\text {BF }}(n, m)$ be the amount of memory nceded toguarantee non -overflow when the best-fit method is used for allocation (cf. exercise 38).Find an attacking strategy to show that $N_{\text {BF }}(n, m) \geq \mathrm{nm}-\mathrm{O}\left(\mathrm{n}+\mathrm{m}^{2}\right)$.43. [HM95] continuing exercise 42 , let, $N_{\text {IF }}(n, \mathrm{~m})$ be the memory needed when thefirst-fit method is used. Show that $N_{\mathrm{FF}}(n, \mathrm{~m}) \leq n H_{m} / \mathrm{ln} 2$, so the worst case of first-fitis not far from the best possible worst case.
1.463 correction to 1979 change \#73 2/14/79 52Such graph machines . . . fixed. \downarrow Linking automata can easily simulategraph machines, -taking at most a bounded number of steps per graph step.Conversely, however, it is unlikely that graph machines can simulate arbitrarylinking automata without unboundedly increasing the running time, unless thedefinition is changed from undirected to directed graphs, in view of the restrictionto vertices of bounded degree.
1.472 first two lines $7 / 8 / 81$ 53Note: The formulas . . . differences." \downarrow Notes: Dr. Matrix was anticipated inthis discovery by L. Euler in 1762; see Euler's Opera Omnia, ser. 1, vol. 6, 486-493.
1.474 line 7 6/25/81 54
$i+n-1$, and $j+n-1 . \quad$ 人 $\quad i+n-1, j+n-1, n-i+1$, and $n-j+1$.
1.478 answer 41 $1 / 5 / 80$ 55line -2: i.e. $\underset{\rightarrow}{ }$ i.e.,are $\left\lceil\sqrt{2 n}-\frac{1}{2}\right\rceil,\lceil(-1+\sqrt{1+8 n}) / 2\rceil,\lfloor(1+\sqrt{8 n-7}) / 2\rfloor$, etc.
1.488 line 1 of answer 52 $1 / 10 / 81$ 56
$\pi^{2} / 6-1 . \quad \leadsto \quad \pi^{2} / 6$
1.488 line 3 of answer 58 $10 / 20 / 79$ 57
$q^{(s-n-k) k} \quad$ $\quad q^{(s-n+k) k}$
1.488 new answer to exercise 59
8/30/80 58
59. $(n+1)\binom{n}{k}-\binom{n}{k+1}$.

1.498

3. $\left|R_{2 k}\right| \leq\left|B_{2 k} /(2 k)!\right| \int_{1}^{n}\left|f^{(2 k)}(x) d x\right|$. [Notes: We have $B_{m}(x)=(-1)^{m} B_{m}(1-x)$, and $B_{m}(x): 3 m$! times the coefficient of z^{m} in $z e^{x z} /\left(e^{z}--1\right)$. In particular, since $e^{z / 2} /\left(e^{z}-1\right)=1 /\left(e^{z / 2}-1\right)-1 /\left(e^{z}-1\right)$ wC have $B_{m}\left(\frac{1}{2}\right)=\left(2^{1-m}-1\right) B_{m}$. It is not difficult to prove that the maximum of $\left|B_{2 m}-B_{2 m}(x)\right|$ for $0 \leq x \leq 1$ occurs at $x=\frac{1}{2}$. Now when $k \geq 2$ we have $R_{2 k-2}=C_{2 k}+R_{2 k}=\int_{1}^{n}\left(B_{2 k}-B_{2 k}(\{x\})\right) f^{(2 k)}(x) d x /(2 k)!$, and $B_{2 k}-B_{2 k}(\{x\})$ is between 0 and $\left(2-2^{1-2 k}\right) B_{2 k}$, hence $R_{2 k-2}$ lies between 0 and $\left(2-2^{1-2 k}\right) C_{2 k}$. It follows that $R_{2 k}$ lies between $-C_{2 k}$ and $\left(1-2^{1-2 k}\right) C_{2 k}$, a slightly stronger result. According to this argument we see that if $f^{(2 k+2)}(x) f^{(2 k+1)}(x)>0$ for $1<x<\mathrm{n}$, the quantities $C_{2 k+2}$ and $C_{2 k+4}$ have opposite signs, while $R_{2 k}$ has the sign of $C_{2 k+2}$ and $R_{2 k+2}$ has the sign of $C_{2 k+4}$ and $\left|R_{2 k+2}\right| \leq\left|C_{2 k+2}\right|$; this proves (13). Cf. J. F. Steffensen, Interpolation (Baltimore: 1927), §14.]

1.499 exercise 7 (overrides 1979 change \#80)

3/25/81
(It is "Glaisher's constant" 1.2824271.. .) To § To
This formula . . $\mathrm{n}=4$. \quad
(The constant A is "Glaisher's constant" 1.28242 . . ., which equals $\left(2 \pi e^{\gamma-s^{\prime}(2) / s(2)}\right)^{1 / 12}$; cf. F. W. J. Olver, Asymptotics and Special Functions (New York: Academic Press, 1974), Section 8.3.3.)
1.501 new answer
$3 / 16 / 81$
18. Let $S_{u}(x, y)=\sum\binom{n}{k}(x+k)^{k}(y+n-k)^{n-k}$. Then for $\mathrm{n}>0$ we have $S_{n}(x, y)=$ $x \sum\binom{n}{k}(x+k)^{k-1} \cdot(y+n-k)^{n-k}+n \sum\binom{n-1}{k}(x+1+k)^{k}(y-1 n-1-k)^{n-1-k}=$ $(x+\mathrm{y}+n)^{n}+n S_{n-1}(x+1, \mathrm{y})$ by Abel's formula $1.2 .6-16$; consequently $S_{n}(x, \mathrm{y})=$ $\sum\binom{n}{k} k!(x+y+n)^{n}-k$. [This formula is due to Cauchy, who proved it by quite different means in Exercices de Mathématiques (Paris: 1826), 62-73.] The stated sums are therefore equal respectively to $n^{n}(1+\mathrm{Q}(\mathrm{n}))$ and $(\mathrm{n}+1)^{n} Q(n+1)$.

1.510 ansuer 13
 line 2, replace by two lines: TAPE EQU 19 Input unit number
 TYPE EQU 19 Output unit number
 lines 16 and 18: UNIT \downarrow TAPE (twice)
 lines 38 and 42 (the latter is on page 511) : $19 \quad$ (twice)

6/4/80

1.515 line 5

10/18/79
For ... history, $\boldsymbol{\downarrow}$
Historical notes: C. Haros gave a (more complicated) rule for constructing such sequences, in J. de l'École Polytechnique 4, 11 (1802), 364-368; his method was correct, but his proof was inadequate. The geologist John Farey independently conjectured several years later that x_{k} / y_{k} is always equal to $\left(x_{k-1}+x_{k+1}\right) /\left(y_{k-1}+y_{k+1}\right)$ [Philos. Magazine and Journal 47 (1816),385-386]; a proof was supplied shortly afterwards by A. Cauchy [Bull. Société Philomathique de Paris (3) 3 (1816), 133-135], who attached Farey's name to the series. For more of its interesting properties,

$1.531_{\mathrm{Ifne}-2}$

10/18/79
X's. For the history of the ballot problem $\boldsymbol{~} \boldsymbol{X}$'s. This problem was actually resolved as early as 1708 by Abraham de Moivre, who showed that the number of sequences containing $l \mathrm{~A}$'s and $m \mathrm{~B}$'s, and containing at least one initial substring with n more A's than H's, is $f(l, \mathrm{~m}, \mathrm{n})=\binom{l+m}{\min (m, l-n)}$. In particular, $\mathrm{a},=\binom{2 n}{n}-f(n, \mathrm{n}, 1)$ as above. (De Moivre stated this result without proof [Philos. Trans. 27 (1711), 262-263]; but it is clear from other passages in his paper that he knew how to prove it, since the formula is obviously true when $1 \geq m+\mathrm{n}$, and since his generating-function approach to similar problems yields the symmetry condition $f(l, m, \mathrm{n})=f(m+\mathrm{n}, 1--\mathrm{n}, \mathrm{n})$ by simple algebra.) For the later history of the ballot problem

> 1.538 insert new answer 13. A. C. Yao has shown that max $\left(k_{1}, k_{2}\right)$ will be $\frac{1}{2} m+(2 \pi(1-2 p))^{-1 / 2} \sqrt{m}+$ $O\left(m^{-1 / 2}(\log m)^{2}\right)$ for large m, when $\mathrm{p}<\frac{1}{2}$. [SIAM J. Computing $10(1981), 398-403$.]

1.547 answers

$3 / 3 / 81$
(Solution by B. Young.) $\quad \widehat{\longrightarrow}$ (Cf. exercise 2.2.3-7.)

1.548 tirst line of answer 9
 1/17/79

should. \downarrow should; except in the instructive anomalous case that COEF $=0$ for some term with $A B C \geq 0$, when it fails badly.
1.550 exercise 18 (corrects 1979 change \#96) $\quad 3 / 2 / 277$
denotes, ... are included \uparrow denotes "exclusive or." Other invertible operations, such as addition or subtraction modulo the pointer field size, could also be used. It is convenient to include two adjacent list heads
1.560
additional sentence to follow 1976 change \#135
1/17/79
(Steps T4 and T5 can be streamlined so that nodes are not taken off the stack and immediately reinserted.)

1.562 answer 21
 $10 / 17 / 79$

21. The following $\boldsymbol{\gamma} \boldsymbol{\rightarrow}$.
22. (Solution by $\check{\mathrm{D}}$. Branislav, traverses either in preorder or inorder.)

U1. [Initialize.] If $T=\mathrm{A}$, terminate the algorithm. Otherwise set $\mathrm{Q} \mathrm{t} T$.
U2. [Preorder visit.] If traversing in preorder, visit NODE (Q) .
U3. [Go to left.] Set $R \leftarrow \operatorname{LLINK}(Q)$. If $R=\Lambda$, go to $U 5$.
U4. [Insert a right thread.] Set P t Q and $Q t R$, then set R $t \operatorname{RLINK}(R)$ zero or more times until RLINK $(R)=\Lambda$. Set $\operatorname{RTAG}(R) t \quad$ "一" and RLINK $(R) \leftarrow P$. Return to step U2.
U5. [Inorder visit.] If traversing in inorder, visit NODE (Q) .
U6. [Go to right.] If RLINK $(Q) \neq \Lambda$ and $\operatorname{RTAG}(Q)="+"$, set $Q \quad t \operatorname{RLINK}(Q)$ and go to step U2.
U7. [Remove the thread.] Set $R \leftarrow \operatorname{RLINK}(Q), \operatorname{RTAG}(Q) \leftarrow "+", \operatorname{RLINK}(Q) \leftarrow \Lambda$.
U8. [Go up.] Set $\mathrm{Q} t \mathrm{R}$. Go back to step U5 if $\mathrm{Q} \neq \mathrm{A}$, otherwise terminate the algorithm.
Alternatively, the following slightly slower

```
steps V1 and V7: LOC(T) \
step V3: delete "(It is . . . .)"
```

1.562 the paragraph after Algorithm V 3/25/81 72
line 2: to solve this problem $\widehat{\boldsymbol{\rightharpoonup}}$ to traverse in any of the three orders line 6:14.] \downarrow 14.] A much simpler way to avoid the tag bits, at least for preorder and inorder traversal, was derived a few years later by J. M. Morris \{Information Proc. Letters 9 (1979), 199-200]. See also the articles by G. Lindstrom . . . (etc., move the sentence from tie end of the following paragraph to here)
1.562 new answer 22 (extends to page 563) 10/17/79
22. Let $\mathrm{r} 14 \equiv \mathrm{R}, \mathrm{r} 15 \equiv \mathrm{Q}, \mathrm{r} 16 \equiv-\mathrm{P}$; use other conventions of Programs T and S .

01	U1	LD5	T	1	U1. Initialize. $Q \leftarrow T$.
02		J5NZ	U3	1	
03		JMP	DONE	0	Special exit if $\mathrm{T}=0$.
04	U4	ENN6	0,5	a-1	U4. Insert a right thread. P t Q.
05		ENT5	0,4	a-1	Q t R.
06	4H	EnT3	0.4	$\mathrm{n}-\mathrm{b}$	$S \leftarrow R$.
. 07		LD 4	1,3(RLINK) n	$n-b$	$\mathrm{R} \leftarrow$ RLINK (S).
08		J4NZ	4B	$n-b$	Repeat until $\mathrm{R}=\mathrm{A}$.
09		ST6	1,3(RLINKT) a	$a-1$	RLINKT (S) t -P.
10	U3	LD4	0,5 (LLINK)	n	U3. $\because \Omega$ to. Jeft R t LLINK (Q).
11		J4NZ	U4	n	To U4 if $\mathrm{R} \neq \Lambda$.
12	U5	JMP	VISIT	n	U5. Inorder visit.
19	U6	ENT4	0,5	n	U6. Go to right. $\mathrm{R} \leftarrow \mathrm{Q}$.
14		LD5	1,5(RLINKT)	n	$Q \leftarrow \operatorname{RLINKT}(Q)$.
15		J5P	U3	n	To U3 if $Q>0$.
16	U7	STZ	1,5(RLINKT)	a	U7. Remove the thread.
17	U8	ENN5	0,5	a	U8. G o up. Q ¢-Q.
18		J5NZ	U5	a	To U5 if $\mathrm{Q} \neq \Lambda$.

Note that the search in step U4 is not time-consuming, since it examines each RLINK at most once. The total running time is $12 \mathrm{n}+8 a-4 b-2$, where $\mathrm{n}>0$ is the number of nodes, a is the number of null RLINKs, and b is the number of nodes on the tree's "right path" T, RLINK (T), RLINK (RLINK (T)), etc. Thus, the algorithm is competitive with that of exercise 20. The running time of an analogous orogram based on Algorithm V of exercise 21 is $22 \mathrm{n}-10$.
1.567 the missing MIX program on bottom four lines 6/8/80 74
ST3 6F(0:2)
ST2 7F
JMP IF
1.568 progam Ine s6 6/8/80 75
$0,2 \checkmark \quad 0,2$ (RLINKT)
\qquad
1.568 improvements to program lines 93-100 6/8/80 76
93 C4 LDA 0,1 (LLINK) C4.Anything to left?
95 STZ $0,2($ LLINK $)$ LLINK (Q) t A.
96 C5 LD2N 0,2 (RLINKT) C5. Advance. Q
98 J2P C5 P t RLINK (P).
ENN2 $0,2 \quad Q \leftarrow-Q$.
100 C6 J2NZ C2 C6. Test if complete.
1.568 lines 3 and 4 of answer 14 $6 / 8 / 80$ 77
$89-95, \ldots 18 u) ; ~ \downarrow ~ 89-94, \mathrm{n} ; 95, \mathrm{n}-\mathrm{a} ; 96-98, \mathrm{n}+1 ; 99-100, \mathrm{n}-\mathrm{a} ; 101-103$, 1. The total time is $(36 n+22) u$;
1.575 exercise 12 line 5 (improves 1979 change $\# 100$) 9/21/76 78
∞. \downarrow co. Here $c(i, j)$ means $c(j, i)$ when $j<i$.
1.579 in the biggest matrix 5/1/79 79
change the label on row 3 and the label on column 3 from [10] to [20]
1.579 in the socond.biggosst marix, row 1 5/1/79 80
$a_{0 m} \quad$ か $a_{0 n}$
1.581 new answer 5/19/81 8127. Let $a_{i j}$ be the sum of $\mathrm{p}(\mathrm{e})$ over all arcs e from V_{i} to V_{j}. We are to prove that$t_{j}=\sum_{i} a_{i j} t_{i}$ for all j . Since $\sum_{i} a_{j i}=1$, we must prove that $\sum_{i} a_{j i} t_{j}=\sum_{i} a_{i j} t_{i}$.But this is not difficult, because both sides of the identity represent the sum of allproducts $p\left(e_{1}\right) \ldots p\left(e_{n}\right)$ taken over subgraphs $\left\{e_{1}, \ldots, e_{n}\right\}$ of G such that $\operatorname{init}\left(e_{i}\right)=V_{i}$and such that there is a unique oriented cycle contained in $\left\{e_{1}, \ldots, \mathrm{e},\right\}$, where this cycleincludes V_{j}. Removing any arc of the cycle yields an oriented tree; the lefthand sideof the identity is obtained by factoring out the arcs that leave V_{j}, while the righthandside corresponds to those that enter V_{j}.
In a sense, this exercise is a combination of exercises 19 and 26.
1.582 ine - \quad 3/1/79
Note: Kruskal's $\widehat{\boldsymbol{~}}$ Note: Kruskal actually proved a stronger result, using a weaker form of embedding. His82
1.582 ine - 6 3/25/81 83
305. \downarrow 305. See N. Dershowitz, Information Proc. Letters 9 (1979), 212-215,for applications to termination of algorithms.
1.588 lines -4 and -3 of answer 32 3/16/81 84
is... methods above $\widehat{\boldsymbol{~}}$ is minimal. Still another proof, by G. Bergman, induc-tively replaces $d_{k} d_{k+1}$ by $\left(d_{k}+d_{k+1}-1\right)$ if $d_{k}>0$ [Algebra Universalis 8 (1978),129-130].
The methods above

1.589 line 1 of answer 4
 $l_{j}>l_{j+1}$ 内 $l_{j} \geq l_{j+1}$

 10/18/79
1.590 addendum to answer 10

(place the fgure at the right margin and set the copy narrower, to its left)
The desired ternary tree is $\boldsymbol{\sim}$
The desired ternary tree is shown at the right.
F. K. Hwsng has observed [SIAM J. Appl.

Math. 37 (1979),124-127] that a similar procedure is valid for minimum weighted path length trees having any prescribed multiset of degrees: at each step the smallest t weights are combined, where t is as small as possible.

1.590

new answers replacing answer 12
10/18/79
12. By exercise 9, it is the internal path length divided by n . [This holds for general trees as well.]
13. [Cf. J. van Leeuwen, Proc. 3rd International Colloq. Automata, Languages, and Programming, Edinburgh (July 1976), 382-410.]
HI. [Initialize.] Set $A[m-1+i] \leftarrow w_{i}$ for $1 \leq i \leq \mathrm{m}$. Then set $x \leftarrow \mathrm{~m}, i \leftarrow \mathrm{~m}+1$, $j \leftarrow m-1, k \leftarrow m$. (During this algorithm $A[i] \leq \ldots \leq A[2 m-1]$ is the queue of unused external weights and $A \mid k] \geq \cdots \geq A[j]$ is the queue of unused internal weights; the-current left and right pointers are x and y.)
H2. [Find right pointer.] If $\mathrm{j}<k$ or $A[i] \leq A[j]$, set $\mathrm{yt} i$ and $i \mathrm{t} i+1$; otherwise set y t j and $\mathrm{j} \leftarrow \mathrm{j}-1$.
H3. [Create internal node.] Set $k \mathrm{t} k-1, L[k] \mathrm{t} x, R[k] \mathrm{t} y, A[k] \mathrm{t} A[x]+A[y]$.
1I4. [Done?] Terminate the algorithm if $k=1$.
II5. [Find left pointer.] (At this point $\mathrm{j} \geq k$ and the queues contain a total of k unused weights. If $A[y]<0$ we have $\mathrm{j}=k, i=\mathrm{y}+1$, and $A[i]>A[j]$.) If $A[i] \leq A[j]$, set $x \leftarrow i$ and i t $i+1$; otherwise set $x \mathrm{t}$ and $\mathrm{jtj}-1$. Return to step H 2 .
14. The proof for $k=\mathrm{m}-1$ applies with little change. [Cf. SLAM J. Appl. Math. 21 (1971), 518.]
15. Use the combined-weight functions (a) $1-\vdash \max \left(w_{1}, w_{2}\right)$ and (b) $x\left(w_{1}+w_{2}\right)$, respectively, instead of $w_{1}+w_{2}$ in (9). [Part (a) is due to M. C. Golumbic, IE E E Trans. C-25 (1976), 1164-1167; part (b) to T. C. Hu, D. Kleitman, and J. K. Tamaki, SIAM J. Appl. Math. 37 (1979), 246-256. Part (a) may be considered as the limiting case of part (b) as $x \rightarrow$ co; Buffman's problem is, similarly, the limiting case as $x \rightarrow 1$, since $\sum(1+\epsilon)^{l_{j}} w_{j}=\sum w_{j}+\epsilon \sum w_{j} l_{j}+O\left(\epsilon^{2}\right)$.]
D. Stott Parker, Jr., has pointed out that a I-Iuffman-like algorithm will also find the minimum of $v_{1} x^{l_{1}}+\cdots+v_{m} x^{l, n}$ when $0<x<1$, if the two maximum weights are combined at each step. In particular, the minimum of $w_{1} 2^{-l_{1}}+\ldots+w_{m} 2^{-l_{m}}$, when $w_{1} \leq \cdots \leq w_{m}$, is $w_{1} / 2+\cdots+w_{m-1} / 2^{m-1}+w_{m} / 2^{m-1}$.
16. Let $l_{m+1}=l_{m+1}^{\prime}=0$. Then

$$
\begin{aligned}
\sum_{1 \leq j \leq m} w_{j} l_{j} \leq \sum_{1 \leq j \leq m} w_{j} l_{j}^{\prime} & =\sum_{1 \leq k \leq m}\left(l_{j}^{\prime}-l_{j+1}^{\prime}\right) \sum_{1 \leq j \leq k} w_{j} \\
& \leq \sum_{1 \leq k \leq m}\left(l_{j}^{\prime}-l_{j+1}^{\prime}\right) \sum_{1 \leq j \leq k} w_{j}^{\prime}=\sum_{1 \leq j \leq m} w_{j}^{\prime} l_{j}^{\prime}
\end{aligned}
$$

since $l_{j}^{\prime} \geq l_{j+1}^{\prime}$ as in exercise 4. The same proof holds for many other kinds of optimum trees, including those of exercise 10 .
17. (a) This is exercise 14. (b) We can extend $\mathrm{f}(\mathrm{n})$ to a concave function $f(x)$, so the stated inequality holds. Now $\mathrm{F}(\mathrm{m})$ is the minimum of $\sum_{1<i<m} f\left(s_{j}\right)$, where the s_{j} are internal node weights of an extended binary tree on the weights $1,1, \ldots, 1$. Huffman's algorithm, which constructs the complete binary tree with $m-1$ internal nodes in this case, yields the optimum tree. Therefore the choice $k=2^{[\lg n / 3]}$ yields the minimum in the recurrence, for each n. [Reference: SIAM J. Appl. Math. 31 (1976), 368-378. We can evaluate $F(n)$ in $O(\log n)$ steps; cf. exercises 5.2.3-20 and 21. If $\mathrm{f}(\mathrm{n})$ is convex instead of concave, so that $\Delta^{2} f(n) \geq 0$, the solution to the recurrence is obtained when $k=\lfloor n / 2\rfloor$.
1.603 neew vesion of tines $9-24$ (overides previuus changes) torsstro
[This method is called the "LISP 2 garbage collector." An interesting alternative, which does not require the LINK field at the beginning of a node, can be based on the idea of linking together all pointers that point to each node-see Lars-Erik Thorelli, BI'T 16(1976), 426-441; F. Lockwood Morris, CACM 21 (1978), 662-665, 22 (1979), 571; and H. B. M. Jonkers, Inf. Proc. Letters 9 (1979), 26-30. Other methods have been published by B. K. Haddon and W. M. Waite, Comp. J. 10 (1967), 162-165; B. Wegbreit, Comp. J. 15 (1972), 204-208; D. A. Zave, Inf. Proc. Letters 3 (1975), 167-169.]
\qquad
42. We can assume that $\mathrm{m} \geq 6$. The main idea is to establish the occupancy pattern $R_{m-2}\left(F_{m-3} R_{1}\right)^{k}$ at the beginning of the memory, for $k=0,1, \ldots$, where R_{j} and F_{j} denote reserved and free blocks of size j. The transition from k to $k+1$ begins with

$$
\begin{aligned}
R_{m-2}\left(F_{m-3} R_{1}\right)^{k} & \rightarrow R_{m-2}\left(F_{m-3} R_{1}\right)^{k} R_{m-2} R_{m-2} \\
& \rightarrow R_{m-2}\left(F_{m-3} R_{1}\right)^{k-1} F_{2 m-4} R_{m-2} \\
& \rightarrow R_{m-2}\left(F_{m-3} R_{1}\right)^{k-1} R_{m} R_{m-5} R_{1} R_{m-2} \\
& \rightarrow R_{m-2}\left(F_{m-3} R_{1}\right)^{k-1} F_{m} R_{m-5} R_{1}
\end{aligned}
$$

then the commutation sequence $F_{m-3} R_{1} F_{m} R_{m-5} R_{1} \rightarrow F_{m-3} R_{1} R_{m-2} R_{2} R_{m-5} R_{1} \rightarrow$ $F_{2 m-4} R_{2} R_{m-5} R_{1} \rightarrow R_{m} R_{m-5} R_{1} R_{2} R_{m-5} R_{1} \rightarrow F_{m} R_{m-5} R_{1} F_{m-3} R_{1}$ is used k times until we get $F_{m} R_{m-5} R_{1}\left(F_{m-3} R_{1}\right)^{k} \rightarrow F_{2 m-5}^{\prime} R_{1}\left(F_{m-3} R_{1}\right)^{k} \rightarrow R_{m-2}\left(F_{m-3} R_{1}\right)^{k+1}$. Finally when k gets large enough there is an endgame that forces overflow unless the memory size is at least $(\mathrm{n}-4 \mathrm{~m}+11)(m-2)$; details appear in Comp. J. 20 (1977), 242-244. [Note that the worst conceivable worst case, which begins with the pattern $F_{m-1} R_{1} F_{m-1} R_{1} F_{m-1} R_{1} \ldots$ is only slightly worse than this; the next-Et strategy of exercise 6 can produce this pattern.]
43. We will show that if D_{1}, D_{2}, \ldots is any sequence of numbers such that $D_{1} / m+$ $D_{2} /(m+1)+\cdots+D_{m} /(2 m-1) \geq 1$ for all $\mathrm{m} \geq 1$, and if $C_{m}=D_{1} / 1+D_{2} / 2+$ \cdots.. D_{m} / m, then $N_{\mathrm{FF}}(n, \mathrm{~m}) \leq n C_{m}$. In particular, since
$\frac{1}{m}+\frac{1}{m+1}+\cdots+\frac{1}{2 m-1}=1-\mathrm{f}+\ldots+\&-\frac{1}{2 m-2}+\frac{1}{2 m-1}>\ln 2$,
the constant sequence $D, \ldots=1 /(\ln 2)$ satisfies the necessary conditions. The proof is by induction on m . Let $N_{j}=n C_{j}$ for $j \geq 1$, and suppose that some request for a block of size m cannot be allocated in the leftmost N_{m} cells of memory. Then m >1. For $0 \leq$ $j<\mathrm{m}$, we let N_{j}^{\prime} denote the rightmost position allocated to blocks of sizes $\leq \mathrm{j}$, or 0 if all reserved blocks arc larger than j; by induction we have $N_{j}^{\prime} \leq N_{j}$. Furthermore we let N_{m}^{\prime} be the rightmost occupicd position $\leq N_{m}$, so that $N_{m}^{\prime} \geq N_{m}-\mathrm{m}+1$. Then the interval $\left(N_{j-1}^{\prime}, N_{j}^{\prime}\right]$ contains at least $\left\lceil j\left(N_{j}^{\prime}-N_{j-1}^{\prime}\right) /(m+j-1)\right\rceil$ occupied cells, since its free blocks are of size $<\mathrm{m}$ and its reserved blocks are of size $\geq j$. It follows that $\mathrm{n}-\mathrm{m} \geq$ number of occupied cells $\geq \sum_{\underline{1 \leq i<m}} j\left(N_{j}^{\prime}-N_{j-1}^{\prime}\right) /(m+j-1)=$ $m N_{m}^{\prime} /(2 m-1)-(m-1) \sum_{1 \leq i<m} N_{j}^{\prime} /(m+j)(m+j-1)>m N_{m} /(2 m-1)-m-$ $(m-1) \sum_{1 \leq j<m} N_{j}(1 /(m+j-1)-1 /(m+j))=\sum_{1 \leq j \leq m} n D_{j} /(m+j-1)-m \geq$ $\mathrm{n}-\mathrm{m}$, a contradiction.
[This proof establishes slightly more than was asked. If we define the D 's by $D_{1} / m+\cdots+D_{m} /(2 m-1)=1$, then the sequence C_{1}, C_{2}, \ldots is $1, \frac{7}{4}, \frac{161}{72}, \frac{7183}{2830}, \ldots$; and the result can be improved further, even in the case $m=2$, cf. exercise 38.]

1.617_{L} entry for Abel, binomial formula generalized

1617~

al-Khowârizmî... Mohammed $\boldsymbol{~} \boldsymbol{\rightarrow}$ al-Khwirismi, abu Ja‘far Muhammad

1.618R entry for Best-fit
 4/1/81
 add p. 455

Bergman, George Mark, 493, 588.
1.618 R ontry tor Bernoull poyymomias 10/25/79 94 add p. 498 10/25/79 ,
1.618 R entry tor Binary troes, complecte $3 / 15 / 81$ 95
401. $\checkmark 401, \quad 590$.

1. 618_{R} entry for Binary trees, copying of 10/17/79 96
332 ฟ 331 -332
1.618~ entry for Binomial theorem, Abel's generalization 3/16/81 97
2. 出 398, 501.
1.619 10/17/79 98
Branislav, Ďurian, 562.
1.619_{R} $3 / 16 / 81$ 99
Cauchy, hugustin Louis, 36-37, 501, 515, 578.
1.620 L 3/15/581 100
Complete binary tree, 400-401, 590.
1.620~ 3/15/81 101Concave function, 405.
1.620_{L} line - 10 5/19/81 102
strongly, 372, 377, 381.
1.620~ 3/15/81 103
Convex function, 590.
1.620_{R} entry tor copy a.. . tree 10117/79 104
332 か 331-332
1.621_{L} 3/25881 105
Dershowitz, Nachum, 582.
1.621~ lines 3 and - 21 $\begin{array}{ll}7 / 8 / 81 & 106\end{array}$
omit these entries about 'divided differences'
1.622_{R} line 2 7/8/81 107
add p. 472 to the Euler entry
1.622~ 10/18/79 108
Farey, John, 157, 515.
$1.623{ }_{\mathrm{L}}$ entry for First-fit $4 / 1 / 81 \quad 109$
add p. 455
\qquad
1.623~ $2 / 7 / 79$ 110
Fraenkel, Aviezri S., 248.
1.623 L 2/7/79 111Friedman, Daniel Paul, 420.
1.623~ 3/15/81 112
Glassey, Charles Roger, 405.
1.623~ 3/15/81 $\quad 113$
Golumbic, Martin Charles, 590.
1.623~ 3/15/81 114
Hardy, Godfrey Harold, 12, 405, 490, 515.
1.623 R 10/18/79 $\quad 115$
Haros, Ch., 515.
1.624 L 3/15/81 116
Hu, Te Chiang, 405, 590.
1.624 L 10/18/79 117
Hwang, Frank Kwangming, 405, 590.
1.625~ 10/18/79 118
Jonkers, Henricus Bernardus Maria, 603.
1.625~ 3/15/81 119
Karp, Richard Manning, 405.
1.625~ 3/15/81 $\quad 120$
Kleitman, Daniel J., 590.
1.626~
Littlewood, John Edensor, 405. 3/15/81 $\quad 121$
1.627~3/25/81 122Morris, Francis Lockwood, 603.Morris, Joseph Martin, 562.
1.627 R 4///81 123
Next-fit method, 452 (exercise 6), 606.
1.628~ 3/25/81 124
Olver, Frank William John, 499.
1.628~ 5/19/81 125
Parker, Douglass Stott, Jr., 590.
The Art © Computerf'rugramming ERRA'TA E'I ADDENDA——July 13, 1981 1 -
$1.629_{\text {i Poiva entrs }}$ 21:37 $\quad 106$
aad p. 405
1.630_{L} line 1 3/15/81 $\quad 127$
$271,458,596 . \mathcal{\sim}+271,405,458,590,596$.
$1.630_{\mathrm{L} \text { line } 7} 7$ 12/12/79 128
3. \downarrow 249, 405, 590.
1.631~ new subentry under Schröder 3/3/81 129
numbers, 2/20/81 130
Spanning tree, minimum, 370-371.
1.631_{R} 5/19/81 131
Steady states, 381.
$1.631_{\text {R }}$ 3/30/81 132
Steffensen, Johan Frederik, 498.
1632~ 5/19/81 133
Strongly connected directed graph, 372, 377, 381.
1.632~ 3/15/81 134
Tamaki, Jeanne Keiko, 590.
1.633 L entry for trees, copying of 10/17/79 135
332 人 $331-332$
$1.633_{\text {R }}$ 3/15/91 136
Tucker, Alan Curtiss, 405.
$1.633_{\text {R }}$ 3/15/81 137
van Leeuwen, Jan, 590.
1.634~ 2/7/79 138
Wise, David Stephen, 420, 434, 595.
$1.634_{\text {R }}$ 3/1/79 139
Yao, Andrew Chi-Chih, 538.
1.634~ 3/3/81 140
delete the entry for Benna Kay Young
2.xii line -6 $4 / 12 / 81 \quad 141$
$300 \downarrow 302$
4. f lis: -i0 :/4's, 142
ieit iábie $\downarrow \rightarrow$ filt-coreas icule
2.7 first line of exercise 7 3/6/81 143
least \downarrow greatest
2.14 inne 19 12/20/80 144
DEC 20 内 DECsystem 20
2.38 lines 14 and 17 $\begin{array}{ll}1 / 27 / 81 & 145\end{array}$
too much space after 'Dr.' (twice)
2.45 line -9 $\begin{array}{ll}1 / 27 / 81 & 146\end{array}$
though though $\downarrow \rightarrow$ though
2.55 rine 10 2/2/81 147
0 and $1 \nprec 0$ and n
2.58 exercise 19 1/27/81 148
Kolomogrov \downarrow Kolmogorov
$2.61_{\text {line }-7}$ 2/2/81 149
above the mean" and "runs below \uparrow below the mean" and "runs above
2.64 line 4 after Algorithm P 9/9/80 150
e.scriange $U_{r} U_{s} \nprec$ exchange $U_{r} \leftrightarrow U_{s}$
2.66 left side of second equation in (14) 2/2/81 151
$Z_{p j} \downarrow Z_{q,}$
5. 67 right side of second equation in (18) 3/26/81 152
$Z_{p j} \not{ }^{\downarrow} Z_{q j}$
2.68 big matrix display (22) 1/12/81 153
(I'll fix this so the numerators and denominators are a little bit further from thefraction lines)
2.75 Iine 4 2/2/81 154
$\alpha X_{k}+\beta Y_{k} \quad \forall \quad \alpha U_{k}+\beta V_{k}$
2.104 line -9 2/28/81 155
$6 X_{n+2}$ ฬ $6 X_{n+1}$
2．115 nive lines beiore（3） 156
（19゙6），才（1977），
2.117 ive ines ater（10） 3／2／81 $\quad 157$
28 （1958）， 610 ；认 29 （1958），610－611；
2.125 ino． 2 158$-4 / \ln U, \quad \downarrow+\quad-4 \ln U$,
2.127 Equation（28） 159
$1 / c u \quad \downarrow 1 /(c u)$
2.129 three lines before（ 35 ） $\begin{array}{ll}5 / 4 / 81 & 160\end{array}$
see G．Marsaglia， $\boldsymbol{\downarrow}$ see E．B．Wilson and M．M．Hilferty，Proc．Nat．Acad．Sci． 17 （1931），684－688；G．Marsaglia，
2． 130 line－ 15 2／2／81 161
$\overline{(1-z)}$ ฬ $\overline{(1-Z)}$
2.135 line 2 4／13／81 162
$c g(t) ~ \forall \quad c g(t)$
2.136 line 19 5／4／81 $\quad 163$
（J．L．Bentley and J．D．Saxe．）Fint $\not \downarrow$ Find
2.142 line $\begin{array}{ll}1 / 18 / 81 & 164\end{array}$

2.143 uns 16 ．．．． 165$U_{1}, U_{2}, \nVdash U_{0}, U_{1}$,
$2.164 \mathrm{ine4}$ 2／2／81 166
defined in exercise 1．1－8．） $\boldsymbol{\sim} \boldsymbol{\rightarrow}$ discussed in Section 1．1．）
2.171 line－ 17 （and also page 172 line 12） 4／10／81 167
DIMENSION IA（1）$\downarrow \rightarrow$ DIMENSION IA（55）
2．172 lines－3 to－5 of the fortran subroutine 12／12／80 168 IRN55（IA） $\boldsymbol{\gamma} \rightarrow \mathrm{K} \quad=\operatorname{IRN} 55(I A) \quad$（thrice）
2.184 line 1 $9 / 26 / 80 \quad 169$l＇Academie \downarrow l＇Académie
2.188 ine.2 62014170
I'Acadinlt \nsim lAcacienit
2.193 last Ine beforcre execictos 1/12/81 $\quad 171$
roman $\quad \boldsymbol{\zeta}^{\boldsymbol{r}}$ R oman
2.195 bast line of exercise 23 $4 / 2 / 81 \quad 172$zero. \downarrow zero, if $0 \in D$. Show that this conclusion need not be true if $0 \notin \mathbf{D}$.
2.198 Planck's constant replaces Dirac :- 1/10/81 173
line 21: $\hbar=1.0545 \quad$ đ $\quad \mathbf{h}=\mathbf{6 . 6 2 5 6}$ line $-3: \hbar=(24,+.10545000)$. $\downarrow \mathbf{h}=(24,+.66256000)$.
6. 201 step N5 1/12/81 174
choose the ... odd. $\mathcal{\sim}$ change f to the nearest multiple f^{\prime} of b^{-p} such that $b^{p} f^{\prime}+\frac{1}{2} b$ is odd.
2.210 une - 4 $1 / 12 / 81$ 175
computer System, $\quad \downarrow$ Computer System,
2.213 1/12/81 176
move the two quotations down between exercise 19 and the beginning of 4.2 .2
2.216 new (18) $1 / 12 / 81$ 177
$|\delta(x)|=\frac{|\rho(x)|}{x} \leq \frac{|\rho(x)|}{j \cdots-\cdots+|\rho(x)|} \leq \frac{1}{2} b^{e-p} /\left(b^{e-1}+\frac{1}{2} b^{e-p}\right)<\frac{1}{2} b^{1-p}$.
$2.218 \operatorname{line} .2$ 4/27/81 178
$\left(\epsilon_{1}+\epsilon_{2}\right) ; \downarrow \quad\left(\min \left(\epsilon_{1}, \epsilon_{2}\right)\right) ;$
2.222 lines ${ }^{23.26}$ 179
line 23: but if $\xrightarrow{\boldsymbol{u}}$ ifIine 24: occur. [Roy $\boldsymbol{\gamma} \boldsymbol{\sim}$ occur, although repeated rounding of a numberlike 2.5454 will lead to almost as much error. [Cf. Roy
line 25: On the other hand, since $\boldsymbol{\gamma} \rightarrow$ Someline 26: remainder $\boldsymbol{\gamma}$ least significant digitline 26 : often. $\boldsymbol{\sim}^{\boldsymbol{u}}$ often. Exercise 23 demonstrates this advantage ofround-to-even.
2.223 Planck's constant replaces Dirac h 1/10/81 180
line - 17: (-23, +.00010545) \downarrow ($-23,+.00066256)$ line-16: (-26, +.10545000) \downarrow ($-26,+.66256000)$ line - 10: $(0,+.00063507)$ 內 $(1,+.00039903)$
\qquad
2.225 replacemerit io- botom line 181
$h=\left\lfloor(-26,-160252000),\left(-26,+.0626100^{\circ}\right)\right\rfloor ;$
2.226 replacement for line 3 1/10/81 182$\mathbf{N} \otimes \mathbf{h}=\left[(-2,+.39898544),\left(\mathbf{- 2},+.39907670_{1}^{\prime}\right]\right.$.(also change h to \mathbf{h} on line 2)
2.227 corrections to bad German 4/22/81 183
line 24: Begrund- \downarrow Begrün-
line 25: ung der Rechenarithmetik \downarrow dung der Rechnerarithmetik
2.227 last line before exercises6/16/81 184
1980 か 1981
2.259 line 9 4/13/81 185

2.268 exercise 36 1/15/81 186
Appendix B $\quad \nmid$ Appendix A
2.268 last line of exercise 36 4/28/81 1871974.] $\downarrow 1973.1$
2.27611 no 21 4/30/81 188
Informaci $3 \boldsymbol{~} \boldsymbol{\sim}$ Informaci (Information Processing Machines) 3
2.305 rine- 5 1/18/81 189
$q ; ~ ฟ ~ 9 ;$
2.307 last line of Example 1 1/27/81 190
$(14198757)_{10} . \Downarrow \quad(1419857)_{10}$.
2.314 new display for line 7 1/20/81 191
$\frac{201}{3} /\left(\frac{66}{6} \cdot \frac{12}{3}\right)=67 / 44$.
2.353 ine 4 $2 / 4 / 81$ 192
partial fractions \nrightarrow continued fractions
$2.369 \operatorname{lines} 1$ and 2 2/23/81 193
4th ed. (Oxford, 1960) \downarrow 5th ed. (Oxford, 1979)
2.371 line 7 6/16/81 194
$+1 . \mathcal{\sim}^{+}+1$. [Math. Comp. 36 (1981), 627-630.]

$2.37 \frac{1}{-}$ line ε 413： 195

2.377 top line of（16） 1／26／81 196
$\mathrm{x}^{n_{1}-1}$ 内 $x^{n_{4}-1}$
2.377 line 5 $2 / 1 / 81 \quad 197$
this， $\boldsymbol{\gamma}$ this：
2.384 Ines $-7,5,5,4$ 1／11／81 198
$N \xrightarrow{\boldsymbol{\rightharpoonup}} \quad V \quad$（thrice）
2.384 last throe Itros 6／16／81 199
D．R．Hickerson ．．．224．
H．C．Williams，Math．Comp． 36 （1981），593－601．
2.385 Ine 25 3／25／81 $\quad 200$
Dixon＇s method $\widehat{\downarrow}$ Dixon＇s method［Math．Comp． 36 （1981），255－260］
2.386 mine－ 11 $2 / 17 / 81 \quad 201$
1979 か 1978
2.388 inne 12 202$\frac{1}{6} \ln p_{1} p_{2} \approx 45 \quad$ 人 $\quad \frac{1}{3} \ln p_{1} p_{2} \approx 90$
2.388 line－ 16 4／22／81 203
651 ฟ 654
2.380 hine 20 $3,218 . \mathrm{OO}_{4}$
$\operatorname{gcd}(x, y) \quad \forall \quad \operatorname{gcd}(x-\mathrm{Y}, N)$
2.391 tirst line of（23） 1／27／81 205
22032281，\downarrow 2203，2281，
2.391 ine 4 atter（23） 1／27／81 206
CRAY－I \downarrow CRAY－1
see J． $\boldsymbol{\downarrow} \boldsymbol{\sim}$ see $\mathbf{M a t h}$ ．Comp． 35 （1980），1387－1390，and J．
2.396 ine2 $3 / 31 / 81$ 207
all primes $\boldsymbol{\checkmark}$ all odd primes
2.396 exerise 24 ine 2 1／17／81 208
$x=n \quad \nleftarrow \quad x \bmod n=0$
\qquad
2.998 new exercise $\because \because$
7. [HM90] (L. Adleman.) Let p be a rather large prime number and let a be a primitive root modulo p; thus, all integers b in the range $1 \leq b<p$ can be written $b=a^{n} \bmod p$, for some unique n with $1 \leq n<\mathrm{p}$.
Design an algorithm that almost always finds n , given \mathbf{b}, in $O\left(p^{\epsilon}\right)$ steps for all $\epsilon>0$, using ideas similar to those of Dixon's facioring algorithm. [Hint: Start by building a repertoire of numbers n_{i} such that $a^{n_{i}}$ modp has only small prime factors.]
2.402 line 15 2/15/81 210
$r_{1}(x)=0 . \quad \forall \rightarrow r_{1}(x)=r_{2}(x)$.
2.402 line 2 of step D1 2/3/81 $\quad 211$$\leftarrow$ か $=$
2.407 ine - 2 3/3/81 212
$\operatorname{gcd}(v(x), \operatorname{pp}((r(x))) \underset{\sim}{\operatorname{scd}}(v(x), \operatorname{pp}(r(x)))$
2.409 fractions in (13) and (14) 4/28/81 213(the numerators-and denominators will be moved a bit further from the fractionlines)
2.414 ine - -4. 6/5/81 214
(25) \downarrow (26)
2.415 line 7 6/5/81 215
(16) and (17) \downarrow (17) and (18)
2.429 line -5 2/2/81 216
$c<d \quad \wedge \rightarrow \quad 1 \leq c<d$
2.430 line - 10 2/22/81 217
$\operatorname{gcd}\left(g_{d}(x), t(x)^{\left(p^{d}-1\right) / 2}\right) \quad \aleph \quad \operatorname{gcd}\left(g_{d}(x), t(x)^{\left(p^{d}-1\right) / 2}-1\right)$
2.430 line -4 $6 / 16 / 81$ 218
Comp., to appear.] \downarrow Comp. 36 (1981), 587-592.]
2.432 line -9 6/11/81 219
$\left(x^{2}-13-7\right) \leadsto\left(x^{2}-13 x-7\right)$
2.432 line - 8 3/3/81 220
are factors \downarrow could be a factor
2.433 bottom line 5/21/81 221
$d>\frac{1}{2} r . \nprec d \leq \frac{1}{2} r$.

2． 4.31 line $: 1$ のの2
$2^{i-i} \quad{ }^{\prime} \sim 2^{-\infty}-i$
2.438 line 3 of exercise 18 4／27／81 223
$\cdots u_{0} u_{n}^{n-1}$ ．内 $\quad \cdots+u_{0} u_{n}^{n-1}$ ．
2.439 Ine 14 3／3／81 224
m od $2 \boldsymbol{\downarrow}$ modulo 2
2.442 three lines before Algorithm A 6／18／81 225
5 ฟ .5
2.482 ine 16 1／10／81 226
Math．，to appear． $\mathcal{\sim}$ Math． 7 （1981），73－125．］
2.484 bottom line 227
$2 n^{2}+2$ 内 $2 n^{2}+2 n$
2.487 the display atter（46） 1／27／81 228
$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \xrightarrow{\downarrow} \cdot\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
2.496 line 26 1／10／81 229
462．\downarrow 462；JACM 27 （1980），822－830．See also his interesting discussion of commutative bilinear forms in SLAM J．Computing 9 （1980），713－728．
2.506 ines 4.5 4／29／81 230their quotient，etc．，$\downarrow \boldsymbol{~}$ au d sometimes their quotiert，
$2.517_{\text {IIne }-12}$ 2／2／81 231$X_{0}=a \quad \leadsto \quad X_{1}=a$
2.519 line 2 5／5／81 232
$6 \sqrt{\pi / 2 m}$ ฟ $\sqrt{\pi / 2 m}$
2.520 exerise 15 2／1／81 233$(m-1)^{m} / m$, 人 $\quad(m-1)^{m} / m^{m}$,
2.523 lines 8 and 9 2／2／81 234so．．．result．\downarrow ，so $\left(a^{2^{2-1}}-1\right) /(a-1) \equiv 0\left(\right.$ modulo $\left.2^{2}\right)$ iff $\left(a^{2^{-1}}-1\right) / 2 \equiv \mathbf{0}$（modulo $2^{e+1} / 2$ ），which is true．
2.523 line 4 of exericis 11 2/2/81 235
$\begin{array}{lll}(\pm x)^{2 e-f-1} & \underset{x^{2 e}-f}{\text { 亿. }} & x^{2^{e-f}}\end{array}(\pm x)^{2^{e-f-1}}$$(\pm x)^{2 c-1} \leadsto(\pm x)^{2^{e-1}}$
2.531 line - 2
$F_{n}(x)-F_{n}(y), \not{\downarrow} \quad F_{n}(y)-F_{n}(x)$,2/2/81 $\quad 236$
2.536 exercise 15 :/2/81 237
and S has \uparrow and X has
2.536 line - 5 2/2/81 238
$\binom{U_{1}^{\prime} U_{2}^{\prime} \ldots U_{n-1}^{\prime}}{V_{1}^{\prime} V_{2}^{\prime} \ldots . V_{n-1}^{\prime}} \quad \downarrow \quad\binom{U_{0}^{\prime} U_{1}^{\prime} \ldots U_{n-1}^{\prime}}{V_{0}^{\prime} V_{1}^{\prime} \ldots . V_{n-1}^{\prime}}$
2.540 line 3 2/2/81 239
$\left(\left(\frac{a\left(x+c_{0} / d\right.}{m / d}\right)\right) \leadsto\left(\left(\frac{a\left(x+c_{0} / d\right)}{m / d}\right)\right)$
2.543 line 5 of exercise 5 2/2/81 240
$\left(\mathbf{h}^{\prime}-q h\right)^{2} \quad$ 人 $\quad . \quad\left(\mathbf{h}^{\prime}-q^{\prime} h\right)^{2}$
2.546 line 2 of exercise 24 2/2/81 241
$m o d n \nmid \bmod m$
2.547 line 10 of exercise 27 2/2/81 242
$r_{t} \downarrow \quad u^{2}$
2.550 line -2 of answer 10 4/4/81 $\quad 243$
$b_{1}, \AA^{(} b_{1}$,
2.550 first line of answer 11 4/9/81 244
$\int_{0}^{x} \not \downarrow \int_{3}^{x}$
2.554 lines 2 and 3 $\begin{array}{ll}5 / 4 / 81 & 245\end{array}$[ACM ...appear.] \downarrow [This technique was apparently introduced in the 1960sby David Seneschol; cf. Amer. Statistician 26,4 (October 1972), 56-57. The alternativeof generating n uniform numbers and sorting them is probably faster unless n is ratherlarge, but this method is particularly valuable if only a few of the largest or smallestX 's are desired. Note that $\left(F^{-1}(\mathrm{Xl}), \ldots, F^{-1}\left(X_{n}\right)\right)$ will be sorted deviates havingdistribution F.]
2.561 bottom line of answer 37
3/20/81 246
334.] \downarrow 334; see also the Ph.D. thesis of Thomas N. Herzog, Univ. of Maryland(1975).]
2.565 ansuer 23 3/21/81 247line 4: zero since it is \checkmark zero if $0 \in D$, since T isline 5: $\quad 10^{k} \mathcal{\sim} \rightarrow b^{k}$line 6: zero. $\widehat{\boldsymbol{u}}$ zero. On the other hand, as pointed out by K. A. Brakke,every real number has infinitely many representations in the number system ofexercise 21.
line 9: less $\boldsymbol{~} \boldsymbol{\rightarrow}$ fewer
2.5681 Ino 14 6/15/81 248
$k_{T}(z) . \quad \downarrow \quad k_{T}(z)$.[Cf. J. Algorithms 2 (1981),31-43.]
2.568 replacement for previous answer 1/10/81 2491. $\mathrm{N}=(62,+.60225200) ; h=(37,+.66256000)$. Note that $10 h$ would be$(38,+.06625600)$.
2.570 ines $1 / 15 / 81$ 250
after this instruction 'ENT2 0', insert a new one 'JXNZ * +3 ' on a new line
2.570 line 2 of answer 19 $1 / 15 / 81$ 251
2.573 new aṇswer 23 252
8. If $u \geq 0$ or $u \leq-1$ we have $u \bmod 1=\operatorname{umod} 1$, so the identity holds. If $-1<$ $\mathrm{u}<0$, then u (mod $1=u \oplus 1=u+1+r$ where $|r| \leq \frac{1}{2} b^{-p}$; the identity holds iff round $(1+r)=1$, so it always holds if we round to even. With the text's rounding rule the identity fails iff b is a multiple of 4 and $-1<u<0$ and $\operatorname{umod} 2 b^{-p}=\frac{3}{2} b^{-p}$ (e.g., $\mathrm{p}=3, b=8, u=-(.0124)_{8}$).
2.589 line 7 11/1/1so 253
to appear. \quad (1980), 490-508.
2.596 answer 20 5/21/81 254
$p(\ldots)$ $\downarrow(\ldots) p$ (thrice)
2.608 ine - 1 11/11/80 255
2.4771 is chosen "optimally" as the root of $\left(p^{2}-1\right) \ln p=p^{2}-p+1$. See BIT 20 (1980), 176-184.]
$\mathbf{2 . 6 1 3}$ exercise 24 $1 / 17 / 81$ 256
line 3: passes \downarrow fails

lines 4 and 5: at most $\frac{1}{4} q n+\ldots<\frac{1}{2} N \quad$ 人

 at most \(-1+q\left(b_{n}+1\right)+\min \left(b_{n}+1, r\right) \leq\)

 \(q\left(\frac{1}{4}(n-1)+1\right)+\min \left(\frac{1}{4}(n-1), r-1\right)<\)

 \(\frac{1}{3} q n+\min \left(\frac{1}{4} n, r\right)=\frac{1}{3} N+\min \left(\frac{1}{4} n-\frac{1}{3} r, \frac{2}{3} r\right) \leq \frac{1}{3} N+\frac{1}{6} n \leq \frac{1}{2} N\)
 —The Art of Computer Programming: ERRATA E'T ADDENDA

\qquad
2.614 last three lines of exercise 2712/12/80257$\mathrm{n}=1,3,7,13,15,25,39,55,75,85,127,1947,3313,4687,5947$. See R. M. Robinson,Proc. Amer. Math. Soc.9(1958), 673-681; G. V. Cormack and H. C. Williams, Math.Comp. 35 (1980), 1419-1421.]
2.616 new answer $4 / 5 / 81$ 258
39. After finding $a^{n_{i}} \bmod p=\prod_{i \leq i \leq m} p_{j}^{e_{i j}}$ for enough n_{i}, we can solve $\sum_{i} x_{i j k} e_{i j}+$$(p-1) t_{j k}=\delta_{j k}$ in integers $x_{i j k}, t_{j k}$ for $1 \leq \mathrm{j}, k \leq \mathrm{m}$ (e.g., as in 4.5.2-23), therebyknowing the solutions $N_{j}=\left(\sum_{i} x_{i j k} e_{j k}\right) \bmod (p-1)$ to $a^{N_{j}} \operatorname{modp}=\mathrm{p}$,. Then if$b a^{n^{\prime}} \bmod p=\prod_{1 \leq j \leq m} p_{j}^{e_{j}^{\prime}}$, we have $n+n^{\prime} \equiv \sum, \leq j \leq m e_{j}^{\prime} N_{j}$ (modulo p). [Cf. Proc.IEEE Symp. Foundations of Comp. Sci. 20 (1979),55-60.]
2.619 last line of exercise 12 1/10/81 259
[JACM, to appear.] \downarrow [Cf. JACM 27 (1980),701-717.]
[JACM, to appear.] \downarrow [Cf. JACM 27 (1980),701-717.]
2.626 last line of exercise 19 4/27/81 260
$u_{0} . ~ \circlearrowleft ~ u_{0}$. [The idea of this proof actually goes back to T. Schönemann, J.fürdie reine . . . Math. 32 (1846), 100.]
$2.637 \mathrm{Ine-14}$ 12/1/80 261
D. J. S. Brown \leftrightarrow D. J. Spencer Brown
2.637 end of answer 26 5/21/81 262$190.1 \rtimes$ 190.1 In fact, as Richard Brent has observed, the number of operationscan be reduced to $O\left(d^{2} \operatorname{logn}\right)$, or even to $O(d \log$ d $\log n)$ using exercise 4.7-6, if we firstcompute $x^{n} \bmod \left(x^{d}-a_{1} x^{d-1}-\ldots-a_{d}\right)$ and then replace x^{3} by x_{j}.
2.639 line 8 of answer 39 6/15/81 263
arcs. \downarrow arcs. [Cf. J. Algorithms 2 (1981), 13-21.]
2.639 exercise 41 $1 / 27^{7 / 81}$ 264
NP hard \downarrow NP- hardNP complete \downarrow NP-complete (twice)
2.647 line 6 of exercise 41 2/0/81 265
(1960), \downarrow (1971),
2.653 line 8 266
$x_{2 m-1} \not x_{2 m-1} u^{m-1}$
2.653 first ine of step N_{2} 3/7/81 267
$x_{m j+i} \quad Y_{i j} \quad \lcm{\longrightarrow} x_{m j+i}, \quad Y_{i j}$
2.657 last two lines of exercise 13 12/13/80 268
Fred ... (1979). \downarrow Richard P. Brent, Fred G. Gustavson, and David Y. Y. YunJ. Algorithms 1 (1980), 259-295.
2.666 line -4 3/3/81 269
$\sum 内 4 \sum$
2.668R 4/5/81 $\quad 270$
Adleman, Leonard Max, 380, 386, 396, 398.
$2.669_{\text {R }}$ 1/2/81 $\quad 271$
Balanced decimal number system, 195, 565.
2.670 ${ }^{\text {L }}$ 5/1/81 $\quad 272$
delete the entry for Jon Bentley
$2.670_{\text {L }}$ Berlekamp entry 3/3/81 2732.670~4/2/81 $\quad 274$Brakke, Kenneth Allen, 565.
2.670_{R} Richard Brent entry 5/21/81 275
add p. 637
2.670~ 3/2/81 276
Brooks, Frederick Phillips, Jr., 210.
2.670~ 12/1/80 277
delete ‘Brown, D. J. Spencer, 637.'
2.671~ near the Congruential sequence entry 1/12/81 278
delete the spurious comma in the right margin
2.672~ $12 / 12 / 80$ 279
Cormack, Gordon Villy, 614.
2.672~ 1/27/81 280
CRAY-1, 391.
2.672~ 12/20/80 281
DECsystem 20, 14 .
2.673~ 1/5/81 282
Dixon, John Douglas, 356, 385, 395, 397, 398.
2.675~ $4 / 13 / 81$ 283
Galois, Evariste, \downarrow Galois, Evariste,
2.676 L GRH entry $3 / 12 / 81$ 284
Reimann \downarrow Riemann
\qquad
2.676~ 3/20/81 285
Herzog, Thomas Nelson, 166, 558, 561.
2.676~ 6/16/81 286
delete the entry for D. R. Hickerson
2.676~ 5/4/81 287
Hilferty, Margaret M., 129.
2.677~ entry for Knuth, Donald 3/2/81 288
vi- vii, \quad $\rightarrow \quad i v$, vi-vii,
2.678 L Leibniz entry 289
freiherr \downarrow Freiherr
2.678~ new subentry under Logarithm $4 / 5 / 81 \quad 290$ modulo p, 398.
2.678~ 2/2/81 291
Mandelbrot, Benoit Baruch, 564.
$2.680 R \quad$ line -24 4/2/81 292
balanced decimal, 195, 565.
2.680~ $1 / 27 / 81 \quad 293$NP-complete problem, 480, 550, 639.
2.682~ 3/3/81 294
Pippenger, Nicholas John, 461, 639.
2.682~ 12/12/80 295
delete 'Plass, Michael Frederick, 614.'
2.683 entry for Primitive root 4/5/81 296
add p. 398
2.684~ entry for Rounding 2/2/81 297
364. $\rightarrow 364,573$.
2.684~ 5/4/81 298
delete the entry for James Saxe
2.685~ 4/27/81 299Schönemann, Theodor, 626.
2.685~ $5 / 4 / 81 \quad 300$Scneschol, David, 554.
——The Art of Computer Programming ERRATA ET ADDENDA ___ July 13, 198:___
$2.685_{\text {L }}$ Shanks entry 6/16/81 301
384, 385, 內 385 ,
2.685~ $3 / 25 / 81 \quad 3 \quad 0 \quad 2$
Sobol', Il'ra Meerovich, 519.
2.685~ 12/1/80 $3 \quad 0 \quad 3$
Spencer Brown, David John, 637.
2.687 ~ von Mises entry 5/22/81 304
edler $\boldsymbol{\gamma}^{\rightarrow}$ Edler
2.688~ 6/16/81 305
Williams, Hugh Cowie, 378, 384, 397, 614.
2.688~ 5/4/81 306
Wilson, Edwin Bidwell, 129.
2.688~ 12/1/80 307
Wynn-Williams, Charles Eryl, 186.
2.688R Zaremba entry 308
Slanislaw \nrightarrow Stanislaw
3.9 exercise 17 1/31/79 309
How \checkmark^{\rightarrow} (This n is called the index of b modulo p , with respect to a.) How
3.10 Ine -9 $7 / 4 / 81$ 310
less $\boldsymbol{\gamma} \rightarrow$ fewer
3. 19 second line of exercise 9 4/13/81 311
its own inverse $\xrightarrow{\boldsymbol{~}}$ an involution (i.e., its own inverse)
3.23 lines 17 and 22 10/18/79 312
Anuyogadvarā \downarrow Anuyogadvāra (twice)
3.76 line - 7 10/18/79 313$p(n) \quad$ ه $\quad p(N)$
3.90 c $a \quad p \quad i \quad o \quad n$ 10/18/79 314
Fig. $12 \nmid$ Fig. 12.
3.108 line . 14 2/7/79 315
betweeen $\boldsymbol{\gamma} \boldsymbol{\rightarrow}$ between
\qquad

This proof ．．．6．）$\downarrow \rightarrow$ The reader may have noticed a pattern in the three formulas just proved；Paul Stockmeyer and Frances Yao have shown that the pattern holds in general，i．e．，that the lower bounds derived by the strategy above suffice to establish the values $M(m, \mathbf{m}+d)=\mathbf{2 m}+d-1$ for $m \geq 2 d-2$ ． ［SIAM J ．Computing 9 （1980），85－90．］
$\mathbf{3 . 3 1 7}$ correction to step $\mathbf{B 1}$ 11／14／79 317
transpose the two sentences＇Then write \ldots ．\leftrightarrow＇Set $A[0,0] \ldots$＇
3.321 line 4 10／5／79 318
individual \downarrow individually
3.378 new exercise 10／10／80 319

19．［HM25］（R．W．Floyd．）Show that the lower bound of Theorem F can be improved to

$$
\frac{(\mathrm{k}+1) n b \lg b+n b / \ln 2}{b+c}\left(1+O\left(\frac{\log b}{b}\right)\right)
$$

when $\mathrm{n}=b^{k}$ ，for fixed \mathbf{k} as $b \rightarrow \infty$ ，and also to $\mathbf{n b}+O(n / \log \mathrm{n})$ for fixed b as $\mathrm{n} \rightarrow \mathrm{co}$ ，in the sense that some initial configuration must require at least this many stops．［Hint：Count the configurations that can be sorted after s stops．］
$\mathbf{3 . 3 8 1}$ the line for＂Diminishting increments＂ $3 / 17 / 81$ 320
$15 N^{1.25} \not{\downarrow} \quad 15 N^{125}+10 \log _{3}(N / 3)$
3.384 ine 15 $3 / 15 / 81$ 321
is an incidental remark which appears in an article $\widehat{\checkmark} \quad$ is in a book byRobert Fcindler，Das Hollerith－Lochkarten－Verfahren（Berlin：Reimar Hobbing，1929），126130；it was also mentioned at about the same time in an article
3.389 line－11（also make this change throughout the book） $3 / 25 / 81$ 322
data base \quad か database
3.392 lines -12 and -11 323
Cincinnati Redlegs \downarrow Chicago White Sox
3．405 line 3 of exercise 19 $6 / 1 / 81$ 324
i, j ？ 内 $i \neq j$ ？
3.412 line－ 6 325$\left\lfloor\frac{N+2^{j-1}}{2^{j}}\right\rfloor=\left(\frac{N}{2^{j}}\right)$ rounded，$\quad \leadsto \quad\left\lfloor\frac{N+2^{j-1}}{2^{j}}\right\rfloor$,
—_The Art of Computer Programming: ERRATA ET ADDENDA

\qquad

\qquad
3.419 ine 226/2/80326
but ...23). \downarrow b but a successful search will require about one more iteration,on the average, because of (2). Since the inner loop is performed only about$\lg \mathrm{N}$ times, this tradeoff between an extra iteration and a faster loop does notsave time unless N is extremely large. (See exercise 23.) On the other handBottenbruch's algorithm will find the rightmost occurrence of a given key whenthe table contains duplicates, and this property is occasionally important.
3.420 tine -9 3/2/81 327
11 人 11.
3.422 Ine 6/2/80 328
necessary!) $\downarrow \rightarrow$ necessary on a successful search!)
3.422 exercise 27 lne 6 1/24/79 329
n 人
3.439 update to 1979 change \#240 2/28/81 330
the Hu-
3.448 last line of execrise 6 4/13/81 331
o f C_{n-1}^{\prime} ? ${ }^{\rightarrow}$ of this distribution?
3.449 exercise 23 (cf. 1979 change \#311) 332
$p_{1}=5 \quad \leadsto \quad p_{1}=9$
3.451 Ino - 3 3/20/81 333
Akademiia $\boldsymbol{\forall} \boldsymbol{\rightarrow}$ Akademii
3.471 insert quotation before Section 6.2.4 3/15/81 334Samuel considered the nation of Israel, tribe by tribe,and the tribe of Benjamin was picked by lot.Then he considered the tribe of Benjamin, family by family,and the family of Matri was picked by lot.Then he considered the family of Matri, man by man,and Saul son of Kish was picked by lot.But when they looked for Saul he could not be found.
-1 Samuel 10:20-21
3.472 Inen 11 1/31/79 335
$\log _{2} \uparrow \quad \lg$

3.476 clarifications
line -14: new node $\widehat{\boldsymbol{~}}$ new keyline -11: nodes $\boldsymbol{\wedge} \boldsymbol{\rightarrow}$ internal nodesline - 10: nodes $\widehat{\leftrightarrow}$ internal nodesline -8: a node $\widehat{\longleftrightarrow}$ a node while building a tree of N keys1/31/70336
3.480 erectise 5 2/23/79 337

Bowing.") \downarrow flowing"; pass up the key that makes the remaining two parts most nearly equal in size.)
3.491 figure 33 2/23/79 338
(It would be desirable to show the 5-bit binary codes in fine print under the TEXT line; to make room, "TEXT:" should be brought up to a line by itself. Furthermore, this figure needs to be redrawn; the word in node 7 should be changed to (THE), and the word in node ϵ should be changed to (THAT) ; also, the dotted line at the lower left of node ϵ should become a circular dotted line that points right back to node ϵ (cf. β and ς), while the dotted line at the lower right of ϵ should point tip to 7 .)
3.491 IIne - 12 2/23/79 339 contains the number 24 (the $\mathcal{\rightarrow}$ would contain the number 24 (which indicates the
3.491 line - 10 2/23/79 340
$\log _{2} \leadsto \lg$
3.492 replacement for lines 2 through 11 $12 / 27 / 79$ 341

A search in Patricia's tree is carried out as follows: Suppose we are looking up the word THE (bit pattern 101110100000101). We start by looking at the SKIP field of the root node α, which tells us to examine the first bit of the argument. It is 1 , so we move to the right. The SKIP field in the next node, 7, tells us to look at the $1+11=12$ th bit of the argument. It is 0 , so we move to the left. The SKIP field of the next node, ϵ, tells us to look at the $(12+1)$ st bit, which is 1 ; now we find RTAG $=1$, so we go back to node 7, which refers us to the TEXT. The search path we have taken would occur for any argument whose bit pattern is lxxxx xxxxx x0 $1 \ldots$, and we must check to see if it matches the unique key beginning with that pattern.
3.506 line \& 124170
Section \downarrow Sections
3.507 update to 1979 change \#259 3/1/79 343
850 か 850, 22 (1979), 104,
\qquad

3.518 corrected analysis

line 9, a new equation: $C_{N}^{\prime}=1+\frac{\mathrm{N}(\mathrm{N}-1)}{2 M^{2}} \approx 1+\frac{1}{2} \alpha^{2}$
line 6 after (19): The method introduces a tag bit in each entry; the average number of probes needed in an unsuccessful search therefore decreases slightly, from (18) to

$$
\left(1-\frac{1}{M}\right)^{\mathrm{N}}+\frac{N}{M} \approx e^{-\alpha}+\mathrm{a}
$$

line 8 after (19): delete the sentence 'If separate $. . \alpha>1$.'
line 11 after (19): $\frac{1}{2}$. \quad ↔ $\frac{1}{2}$. However, it is usually preferable to use an alternative scheme that puts the first colliding elements into an auxiliary storage area, allowing lists to coalesce only when this auxiliary area has filled up; see exercise 43 .
3.519 bottom tine 6/6/80 345$9 u \leadsto 8 u$
3.522 last Ine ot (24) 4/4/80 346
ORR \downarrow OR
3.524 several $^{\prime}$ retinemens 1,108080 347
line 1 of (30): -M-1, $1 \quad \nprec 1-\mathrm{M}, 1$
line 1 just after (30): In this $\boldsymbol{\sim}$Program D takes a total of $8 C+19 A+B+26-13 S-17 S 1$ unitsof time; modification (30) saves about $15(A-S 1) \approx 7.5 \alpha$ of these in asuccessful search. In this
furthermore, Fig. 42 needs to be more accurately redrawn using the followingdata:
$\alpha=\begin{array}{lllllllllll}0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 0.9 & 0.92 & 0.94 & 0.96 & 0.98 & 0.99\end{array}$
L = 24.024 .926 .329 .338 .055 .564 .3

$D_{\text {mod }}=\begin{array}{lllllllllllll}23.0 & 24.2 & 26.0 & 28.8 & 34.1 & 39.6 & 41.5 & 43.9 & 47.2 & 53.1 & 58.9\end{array}$
3.526 new paragraph atter line 19 $1 / 1 / 81$ 348E. G. Mallach [Comp. J. 20 (1977), 137-140] has experimented with refine-ments of Brent's variation, and further results have been obtained by Gaston H.Gonnet and J. Ian Munro [SLAM J. Computing 8 (1979), 463-478].
3.539 change to curves s and $s 0$ in Figure 44(a)
$\alpha=\begin{array}{ccccccccccc}\alpha .0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0\end{array}$ $\mathrm{SO}=1.0 \quad 1.0031 .0131 .0291 .051 \quad 1.0791 .112 \begin{array}{lllllllll}1.151 & 1.195 & 1.244 & 1.299\end{array}$1/10/80349
3.543 new rating for exercise 10 3/1/79 350
$[$ M43 $] ~ \Downarrow ~[M 38] ~$

3.544 exercise 14 (repalacement tor thes 3 and tolowing)

2/23/79
2-bit TAG field and two link fields called LINK and AUX, with the following interpretation:
$\operatorname{TAG}(\mathrm{P})=0$ indicates a word in the list of available space; $\operatorname{LINK}(\mathrm{P})$ points to the next entry in this list, and $A \cup X(P)$ is unused.
TAG $(P)=1$ indicates any word in use where P is not the hash address of any key in the scatter table; the other fields of the word in location P may have any desired format.
$\operatorname{TAG}(P)=2$ indicates that P is the hash address of at least one key; AUX (P) points to a linked list specifying all such keys, and $\operatorname{LINK}(\mathrm{P})$ points to another word in the list memory. Whenever a word with $\operatorname{TAG}(\mathrm{P})=2$ is accessed during the processing of any list, it is necessary to set $\mathrm{P} \leftarrow \operatorname{LINK}(\mathrm{P})$ repeatedly until reaching a word with $\mathrm{TAG}(\mathrm{P}) \leq 1$. (For efficiency we might also then change prior links so that it will not be necessary to skip over the same scatter table entries again and again.)

Show how to define suitable algorithms for inserting and retrieving keys in a combined table of this sort.

3.544 exercise 23
 ${ }^{2 / 23 / 79}$
 $[23] \leadsto$ [35]
 3.546 replacements for exercises $34(\mathrm{c}), 35,36$
 1/10/80

(c) Express the average number of probes for a successful search in terms of this generating function. (d) Deduce the average number of probes in an unsuccessful search, considering variants of the data structure in which the following conventions are used: (i) hashing is always to a list head (cf. Fig. 38); (ii) hashing is to a table position (cf. Fig. 40), but all keys except the first of a list go into a separate overflow area; (iii) hashing is to a table position and all entries appear in the hash table.
35. [M24] continuing exercise 34, what is the average number of probes in an unsuccessful search when the individual lists are kept in order by their key values? Consider data structures (i), (ii), and (iii).
36. M29] Continuing exercise $34(\mathrm{~d})$, find the variance of the number of probes when the search is unsuccessful, using data structures (i) and (ii).

3.546
 new wording of exercises 37 and 40
 1/10/80
 - 37. [M29] Eq. (19) gives the average number of probes in separate chaining when the search is successful; what is the variance of this quantity?
 40. [M99] Eq. (15) gives the average number of probes used by Algorithm C in an unsuccessful search; what is the variance of this quantity?

3.546 new wording tor exercise 39 (keep the old last line)
 6/1/80 $\quad 355$

39. [M27] Let $c_{N}(k)$ be the total number of lists of length k formed when Algorithm C is applied to all M^{N} hash sequences (35). Find a recurrence relation on the numbers $c_{N}(k)$ that makes it possible to determine a simple formula for the sum

$$
S_{N}=\sum_{k}{ }_{2}^{k} \mathrm{w}(\mathrm{k}) .
$$

\qquad
3.546 New rating tor execrise 43 8/8/80 356
[M42] $九$ [HM44]
3.563 une 12 $6 / 10 / 80$ 357
\{NEEDLE, NODDLE, NOODLE\} \downarrow (NEEDLE,NIDDLE, NODDLE, NOODLE, NUDDLE\}
3.576 addendum to 1976 change \#324 4/5/81 358
John M. Pollard [Math. Comp. 32 (1978), 918--924] has discovered an elegant way to solve this problem with very little memory in about $O(\sqrt{p})$ steps, based on th.? theory of random mappings. See also the asymptotically faster method of exercise 4.5.4-39.
3.593 dispopy in ansuer 25 2/26/80 359
$z^{n} / n!~ \nleftarrow z^{n}$
3.608 line - 8 2/15/79 360
$z^{N+1-\delta \cdot 1} \quad \not \quad z^{N+1}$
3. 609 answers 24 and 27 3/1/79 361
line 3 of answer 24: replace by lines 8 and 9 of answer 27lines 8 and 9 of answer 27 should be:$\alpha \neq \beta ; \mathrm{g}(\mathrm{z})=x^{\beta}(\ln x+\mathrm{C})$ for $\mathrm{a}=\beta$. We have $p_{t}(-t-2)=0$; so the generalsolution to our differential equation is
3.614 line - 6 of answer 55 1/29/80 362
$r A \quad$ ه $\quad \mathrm{rA}$
3.617 Ine - 6 12/14/79 363(exercise 4.5.4-8) is a $\mathrm{O}(\mathrm{N}) \xrightarrow{\boldsymbol{\gamma}}$(as implemented in exercise 4.5.4-8) is a $O(N \log \log N)$
3.619 answer 313/16/81364lines 1 and 2: Let $\ldots B[i]$ for \downarrow (Solution by J. Edighoffer.) Let A be an arrayof 2 n elements such that $A[2[i / 2]] \leq A[2 i]$ and $A[2[i / 2]-1] \geq A[2 i-1]$ for$1<i \leq \mathrm{n}$; furthermore we require that $A[2 i-1] \geq A[2 i]$ for
line 4: twin-heap $\boldsymbol{\gamma}_{\boldsymbol{~}}$ twin heap
3.624 line - 5 5/1/79 365
$g_{M, N}^{n+1}$ $(z) ~ \leadsto g_{M, N}^{(n+1)}(z)$
3.633 nee answer 11/11/80 36614. [SIAM J. Computing 9 (1980), 298-320.]
3.665 new answer 10/10/80 367
19. There are at least $(n b)!/ b!^{2 n}$ configurations, and the number that can be obtained from a given one after s stops is at most $\left((\mathrm{n}-1)\binom{b+c}{b}\right)^{s}$, which is less than $n^{s} 2^{(b+c) s}$. Hence $s>(\ln (n b)!-2 n \ln b!) /(\ln n+(b+c) \ln 2)$ and the stated results follow.
\qquad
3.667 answer 19 6/1/81 368
line 1: We \downarrow Assuming that $d(i, i)=0$, we line 3: is due $\widehat{\checkmark}$ for $i \neq j$ is due
3.672 line 3/15/81 369[From excrcisc 6.2.1-25b we can therefore $\downarrow^{\boldsymbol{p}}$. [By exercise 6.2.1-25(b) we can usethe mean and variance of C_{n}^{\prime} to
3.672 line 1 of answer 15 10/23/79 370
$a_{i} \nprec a_{j}$
3.675 answer 11 (improvement to 1979 change \#312) 1/31/79 371
produces \downarrow results in (twice)
[To be published.] $\widehat{\boldsymbol{~}}$ [SIAM J. Computing 8 (1979), 33-41.]
3.680 addendum to 1976 change \#\#59 3/25/81 372suffice.] \downarrow suffice. In general, if we want to compress n sparse tables containingrespectively x_{1}, \ldots, x_{n} nonzero entries, a 'first-fit' method that offsets the jth tableby the minimum amount r_{j} that will not conflict with the previously placed tables willhave $r_{j} \leq\left(x_{1}+\cdots+x_{j-1}\right) x_{j}$, since each previous nonzero entry can block at most x_{j}offsets. This worst-case estimate gives $r_{3} \leq 93$ for the data in Table 1, guaranteeingthat any twelve tables of length 30 containing respectively $10,5,4,3,3,3,3,3,2,2$,2 , 2 nonzero entries can be packed into $93+30$ consecutive locations regardless of thepattern of the nonzeros. Further refinements of this method have bcen developed byR. E. Tarjan and A. C. Yao, CACM 22 (1979), 606-611.]
3.683 answer 14 tho 4 1/31/79 373
T A G \downarrow TAG
3.688 new answer 10 3/1/79 374
10. See F. M. Liang's elegant proof in Discrete Math. 28 (1979), 325-326.
3.689 line 2 375lists, \downarrow lists, following a suggestion of Allen Newell,
3.689 new paragraph inserted at beginning of answer 14 2/23/79 37614. According to the stated conventions, the notation "X AVAIL" of 2.2.3-6 nowstands for the following operations: "Set $\mathrm{X} \leftarrow \mathrm{AVAIL}$; then set X t $\operatorname{LINK}(\mathrm{X})$ zero ormore times until either $\mathrm{X}=0$ (an OVERFLOW error) or TAG $(\mathrm{X})=0$; finally set AVAIL \leftarrowLINK (X)."
3.689 new paragraph appended at end of answer 14 2/23/79 377
Another way to place a hash table "on top of" a large linked memory, using coalescing lists instead of separate chaining, has been suggested by J. S. Vitter [Ph.D. thesis, Stanford Univ. (1980), 72-73].
\qquad
23. J. S. Vitter [Ph.D. thesis, Stanford Univ. (1980),61-68] has introduced a deletion method for coalesced chaining that preserves the distribution of search times.
$1 / 10 / 80$
lines 4 and 5: $C_{N}^{\prime} \ldots$ all keys. \checkmark Consider the total number of probes to find all keys, not counting the fetching of the pointer in the list head table of Fig. 38 if such a table is used.
line -1 : Thus we obtain (18), (19). $\quad \checkmark \quad$ (d) In case (i) a list of length k requires k probes (not counting the list-head fetch), while in case (ii) it requires $i+\delta_{k 0}$. Thus in case (ii) we get $C_{N}^{\prime}=\sum\left(k+\delta_{k 0}\right) P_{N k}=P_{N}^{\prime}(1)+P_{N}(0)=N / M+$ $(1-1 / \mathrm{M}) " \approx \alpha-e^{-\alpha}$, while case (i) has simply $C_{N}^{\prime}=\mathrm{N} / \mathrm{M}=\alpha$. The formula $M C_{N}^{\prime}=M-\mathrm{N}+N C_{N}$ applies in case (iii), since $M-\mathrm{N}$ hash addresses will discover an empty table position while N will cause searching to the end of some list; this yields (18).

3.693
 new answer 35
 1/10/80
 35. (i) $\sum\left(1+\frac{1}{2} k-(k+1)^{-1}\right) P_{N k}=1+N / 2 M-M\left(1-(1-1 / M)^{N+1}\right) /(N-j-1) \approx$ $1+\frac{1}{2} \alpha-\left(1-\mathrm{e}^{-\alpha}\right) / \alpha$. (ii) Add $\sum \delta_{k 0} P_{N k}=(1-1 / M)^{N} \approx e^{-\alpha}$ to the result of (i). (iii) Assume that when an unsuccessful search begins at the j th element of a list of length k, the given key has random order with respect to the other k elements, so the expected length of search is $(j \cdot 1+2+\ldots+(k+1-j)+(k+1-j)) /(k+1)$. Summing on j now gives MC', $=M-N+M \sum\left(k^{3}+9 k^{2}+2 k\right) P_{N k} / 6(k+1)=$ $M-N+M\left(\frac{1}{6} N(N-1) / M^{2}+\frac{3}{2} N / M-1+(M /(N+1))\left(1-(1-1 / M)^{N+1}\right)\right) ;$ hence $C_{N}^{\prime} \approx \frac{1}{2} \alpha+\frac{1}{6} \alpha^{2}+\left(1-e^{-\alpha}\right) / \alpha$.

3.693
 answer 36
 line 1, replace first sentence by: (i) $N / M-N / M^{2}$. (ii) $\sum\left(\delta_{k 0}+k\right)^{2} P_{N k}=$ $\sum\left(\delta_{k 0}+k^{2}\right) P_{N k}=P_{N}(0)+P_{N}^{\prime \prime}(1)+P_{N}^{\prime}(1)$.

6/6/80
381
line -1 , add new remark: [For data structure (iii), a more complicated analysis like that in exercise 37 would be necessary.]

3.694 replacement for lines $1-3$ and big display of answer 39
 6/1/80
 39. (This approach to the analysis of Algorithm C was suggested by J. S. Vitter.) We have $c_{N+1}(k)=(M-k) c_{N}(k)+(k-1) c_{N}(k-1)$ for $k \geq 2$, and furthermore $\sum k c_{N}(k)=\mathrm{N} \mathrm{M}$ ". Hence $S_{N+1}=\sum_{k \geq 2}\binom{k}{2} c_{N+1}(k)=\sum_{k \geq 2}\binom{k}{2}\left((M-k) c_{N}(k)+\right.$ $\left.(k-1) c_{N}(k-1)\right)=\sum_{k_{-}>1}\left((M+2)\binom{k}{2}+k\right) c_{N}(k)=(M+2) S_{N}+N M^{N}$.

3.694 line 1 of answer 40
$\binom{j}{2}$ replaced by $\binom{j+1}{3} . \quad \leadsto \quad\binom{k}{2}$ replaced by $\binom{k+1}{3}$.

3.694 new answer
 6/6/80

43. Let $\mathrm{N}=\alpha M^{\prime}$ and $M=\beta M^{\prime}$, and let $e^{-\lambda}+\lambda=1 / \beta, p=\alpha / \beta$. Then $C_{N} \approx$ $1+\frac{1}{2} \rho$ and $C_{N}^{\prime} \approx p+e^{-\rho}$, if $p \leq \lambda ; \quad C_{N} \approx \frac{1}{8 \rho}\left(e^{2(\rho-\lambda)}-1-2(\rho-\lambda)\right)(3-2 / \beta+$ $2 \lambda)+\frac{1}{4}(\rho+\lambda)+\frac{1}{4} \lambda(1-\lambda / \rho)$ and $C_{N}^{\prime} \approx 1 / \beta+\frac{1}{4}\left(e^{2(\rho-\lambda)}-1\right)(3-2 / \beta+2 \lambda)-\frac{1}{2}(\rho-\lambda)$, if $p \geq \lambda$. For $\alpha=1 \mathrm{wc}$ get the smallest $C_{N} \approx 1.69$ when $\beta \approx .853$; the smallest $C_{N}^{\prime} \approx 1.79$ occurs when $\beta \approx .782$. So it pays to put the first collisions into an area that doesn't conflict with hash addresses, even though a smaller range of hash addresses causes more collisions to occur. These results arc due to Jeffrey S. Vitter [Ph.D. thesis, Stanford Univ. (1980); Proc.Symp. Foundations Comp. Sci. 21 (1980), 238-247].
\qquad
3.710r $10 / 18 / 79$ 385
Anuyogadvarā \downarrow Anuyogadvāra
$3.712_{\text {L }}$ delete 1979 change $\not \approx 334$ 3/1/79 386
(Fan Chung no longer mentioned on page 688)
3.713s $3 / 16 / 81$ 387Edighoffer, Judy Lynn Harkness, 619.
$3.713_{\text {R }}$ 3/15/81 $\quad 388$
Feindler, Robert, 384.
3.714 L 3/25/81 $\quad 389$
First-fit allocation, 471, 680.
3.715 L $4 / 5 / 81$ 390
Index modulo $p, 9$.
3.716 R $3 / 1 / 79$ 391
Liang, Franklin Märk, 688.
3.718~ $3 / 15 / 81$ 392
Newell, Allen, 689.
3.718 R (this entry now moves to the preceding column) 4/4/80 393
ORR 人 OR
3.719 L Vaughan Pratt entry $1 / 24 / 79$ 394
add p. 450
3.720~ 3/15/81 $\quad 395$
Samuel, 471.
3.720~ $3 / 25 / 81$ 396
Sparse array, 680.
3.721 L update to 1979 change $\# 384$ 397
Sprugnoli, Renzo, 507.
'3.721~ 6/24/80 398
Stockmeyer, Paul Kelly, 204.
3.721~ 3/25/81 399
Tarjan, Robert Endre, 216, 624, 680.
3.722~ 3/i6/81 $\quad 400$
Twin heap, 619.
$3.722_{\text {R }}$1/10181 401Vitter, Jeffrey Scott, 639, 690, 694.
3.722 R von Mises entry 5/22/81 402
cdier \downarrow Edler
$3.722_{\text {R }}$3/25/81 403
Yao, Andrew Chi-Chih, 232, 235, 422, 479, 549, 639, 678, 680 Yao, Foong Frances, 204, 232, 422.
