
August 1981 Report.  No. STAN-CS-81-871

Good Layouts for Pattern Recognizers

bY

Howard W. ‘I’rickey

Rcscarch sponsored  by

National Scicncc Foundation
and

Dcfcnsc  Advanced Rcscarch  Projects Agency

Department of Computer  Science

Stanford University
Stanford, CA 94305





Good Layouts for Pattern Recognizers

bY

Howard W. Trickeyt

Computer Science Department

Stanford University

Alstract
A system to lay out custom circuits that recognize regular languages

can be a useful VLSI design autornation tool. This paper describes the
algorithms used in an implementation of a’~egufar  expression compiler.’
Layouts that use a network of prograrnmable logic arrays (~1,~‘s)  have
smaller areas than those of some other methods, but there are the prob-
lems of partitioning the circuit and then placing the individual PLA'S.

Regular expressions have a structure which allows a novel solution to
these problems: dynamic programming can bc used to find layouts which
arc in some sense optimal. Various search pruning heuristics have been
used to increase the speed of the compiler, and the experience with these
is reported in the conclusions.

Index Terms:  VLSI layout, silicon compilers, string pattern recognition, control logic
design, regular cxprcssions, dynamic programming, programmable
logic arrays, partitioning.

t IVork  s u p p o r t e d  b y  a n  NSERC  scholarsllip, NSF grant  MCS-80-12907,  a n d  DARPA  g r a n t  MDA  ‘30%SO-

c -0107 .





2 .  Rcgulw Expressions ‘as I’attcrns 1

.

$1 1ntroduct;on

The design of VI,!31 circuits is currently a very time-consuming operation. Some of the
rccc~~t  \vork to help alleviate this problem has taken its lead from prograrnrning language
compiler technology, where great strides have been made by using prograrns to convert
high lcvcl descriptions into lower level programs. The idea of a silicon compiler to convert
lligh !cvel descriptions of circuits into layouts has arisen [1,4,5,10,11,12].

A problem \vith silicon compilers is the definition of a suitable circuit description
language. Some languages arc basically descriptions of the upper levels of a hierarchical
design.  Thcsc become “high level” descriptions when the lower levels of the hierarchy can
be dcrivcd  from libraries and/or a farniliarity with the class of circuits being described,
The “Bristle Blocks” [5] system is an example of this type of system: it can be used to
describe a data path chip (registers, shifters, ALU’s, etc., built around a data bus).

A second approach is to use a notation which gives the external behavior required.
One method of doing this is to give a sort of program which runs on a machine specified
at the register transfer level (10,121. Tllis technique is rncant to be used for designing
computer-like chips. Another notation, which can be used for specifying the controlling
logic portion of any chip, is that of regzllar ezpressions.  A regular expression can be used
to describe a p-attcrn: a sequence of states in which certain inputs must be seen. One can
require that various outputs be given whenever certain patterns have been seen. Some
of the many uses of pattern detectors can be found in [7].  This paper discusses a silicon
conlpiler whose input is a regular expression and whose output is a layout for the pattern
recognition circuit defined  by that expression.

In particular, a way of laying out a circuit for a pattern recognizer in a small area
\vill be described. It is fairly easy to give a programmable logic array (PLA)  to implement
a pattern rccognizcr, but a single PLA can hc rather large. At the other extreme, one can
have logic to recognize each basic syrnbol of the pattern, joining them up with other logic.
Such a method can be proved to yield a layout with an area which is linear in the length of
the cxprcssion [a], but in practice the resulting layouts have been found to be largl?. The
regular expression compiler uses a network of I’LA’s,  and it gives layouts better than either
of the extremes.

The next section will explain how regular expressions represent patterns. Then
the implementation of recognizcrs using networks of PLA’S will be described. Numerous
networks are possible, so a big part of finding a good layout involves searching for a the
best (or at least, near-best) division of the expression. The fourth section will discuss
how dynamic prograrnrning and  some judicious llcuristics  can be used to cfTcct  this search.
Finally, the last section will give sornc conclusions, based on experience, about what the
various search heuristics can accompiish and how much they cost.

$2 Regular  lLprcss;ons as Patterns

A rcguhlr cxprcssion is a notation for representing a set of strings of symbols.  It is
dcfincd  recursively as follows:



2 2. Regular Expressions AS T’altcrns
_----~
.

e Tllc s>vmt’ol  is t.hc most basic kind of regular expression. In the application to circuits,
the occurrcncc of a sj.rllbol rncans that the input wires  must bc zero or one, according
to L!le s;!fnrbol  definition, within the “current state”.

0 If I;,’ and F arc regular expressions, then the union I3 + F is a regular expression which
means: either E or F.

o If E and 17 arc regular cxprcssions, then the concatenation ..?3 . F (or simply EF) is a
regular esprcssion which means:  E followed by F.

0 If E is a regular expression, then the closure E* is a regular expression which means:
zero or more occurrences of E .

l If E is a regular expression,  then the positive clo*sure E -t-t is a regular expression which
means: one or more occurrences of E.

l If E is a regular expression, then the optional occurrence E? is a regular expression which
means:’ zero or one occurrence of E.

i If E is a regular expression, then (E) is a regular expression (used for grouping). Unless
parcnthcses  are used, the unary operators have prcccdcnce over the binary operators,
and concatenation  has precederice over union.

The USC of regular cxprcssions to describe pattern rccognizers is perhaps best seen
by means of an cxarriple. The following is the complctc input file rcquircd by the regular
csprcssion cornpilcr  for a .srnall example:

l i n e  d a t a  [2]

s y m b o l  zero(data[l]  ,-data[2]>, one(-data[l]  ,data[2]), any0
.t

a n y  ( o n e  a n y *  z e r o  +  z e r o  a n y *  o n e )  +

(one any* zero +  z e r o  a n y *  o n e )  a n y

,

The line declaration gives the wires that are ir.put to the circuit. A line name can be
subscripted (with [..I ), as data is, to represent rnorc than one wire. One can declare any
number of lines. The symbol declaration gives the names of the symbols that will occur in
the regular expression,  with tbc values of the input wires which identify a symbol given in
parcnthcscs  after its nanrc. ITcre  there arc three symbols: zero, recognized when data[l]
is a logical “1” and data[ZJ  is a logical “0” (indicated by the “-” in front of data[2]);
one, rccognizetl when the data wires arc reversed; and any, which doesn’t specify eiLher
“I” or “0“  for the data wires, so iL is a “don’t care.” Nolo that any will bc recognized
at the sarnc tirnc as zero or one: thcrc is no rcquircrncnt  LhaL Lhc wire combinations for
c!i!rcrcnt.  symbo!s  be disjoint..

The regular expression itself follows t,hc declaration. This one gives all strings of
s>rmbols where either (a) the first symbol differs  from the second last symbol, or (b) the
second symbol difl’crs from the last symbol. This expression will bc referred to as PR2.

‘The p;r,tLcrn rccognizcr is a synchronous machine. The successive  symbols of a,string
must ;rpL)car  in succcssivc  clock cycles (states)  for the pattern Lo be rccognizcd. Wbcncvcr
Lhc syrnbo!s  SCCJI  in the prcccding states form one of tbc conrplctc  strings specified by an

.



3. I,ayout  o f  12cgul;w  llxprcssion  Ikcogriizcrs

(b)

Figure I. (a) &prcssion  Tree (b) Compressed Expression Tree

expression, an output signal is given.

The notion of an expression tree for a regular expression will be useful later on. The
expression tree has symbols as leaves and regular expression operators as internal nodes. It
is formed in the sarne recursive manner that expressions arc: the tree for 13 + F.is a node
containing “+” with the expression trees for E and F as children; similarly for the other

operators. Figure l(a) gives the expression tree for ((a + b)++)*-c. (d?)‘.

A unary operator can be combined with the symbol or operator node beneath it. A
cascade of unary operators can be reduced to a single one using obvious rules. This yields

a compressed expression tree, such as the one shown in Figure l(b) for ((a + b)++)*-c.  (c1?)*.

An NFA  (nondeterministic finite automaton) can easily be given to implement a
regular cxprcssion  recognizer. in Figure 2, an NFA  to recognize PR2 is shown. Initially
the start state is made active. At any time there may be a number of active states. In
each successive clock cycle, any active states with transitions marked by a symbol seen in
that cycle will make the successors of those transitions active. States only remain active
for one cycle unless explicitly reactivated. Whenever the final state is active, an output
signal is given. II’ desired, the machine can keep operating so that it can detect overlapping
occurrences of patterns.

The derivation of an NFA  to recognize a pattern is straightforward. For details, see

121 .

$3 Layout ol Regular ExprGon Recognizcrs

An easy w:ly to implcmcnt  a regular expression rccognizcr  is to use a PI,A Lo simulate
the NI:A corrcsr,orrtfing  to it. Ihch state c;trl.bc  represented by a dynamic register whose
17;tlue  is calculated by the PI,A using the inputs and the current state values (which are fed



4 3 .  L a y o u t  o f  Rcplar Exprcsbion  Rccognizcrs

one

, -

Figure 2. NFA to recognize PR2

back from the registers). Details of this method are given in [2].

The prohlern‘is that the arca used by such a layout will tend to grow quadratically
with expression size. A method that leads to a linear growth of the required area is to
implement each symbol as a dynamic register, together with logic wlrich tests whether or
not the symbol is on the input wires. The “symbol modules” have an enable input and
a recognized output. By using appropriate connecting logic, it can be arranged that the
symbol modules act like the states of the NFA, wllcrc a state is activated by asserting its
crlable input. (Actually, the circuit is not exactly like the NE‘A, bccausc the state memory
is distributed over the transition edges.) It was shown in [2] that as long as the expressions

. are compressed by combining cascades of unary operators, this method can yield a linear
layout. A divide and conquer technique is used to decide where to place the symbol modules
and connecting logic. A similar layout would be obtained using the systolic rccoenizcrs of

PI .

Using individual logic for each symbol gives reasonable layouts, but experience with
an implementation of this method has shown that for small expressions, the PLA method
is better. This is perhaps to be expected, since the regularity of PLA’S  allows one to pack
small numbers of gates more closely than is possible with an ad hoc circuit. Thus, the
idea of using a combination  of the two methods arose. The current implementation of
the regular cxprcssion  compiler uses ~1,~‘s  for low level subexpressions, connected togct.her
with logic to take care of the operators near the root of the expression tree.

Suppose that one has laid out modules to recognize expressions E and I;‘. It is assumed
that these rnodulcs  are rectangles, and that they have enable wires coming in at the left and
recognized wires leaving at the right. Any input wires required to recognize the symbols in
the rnodulc’s expression must also enter at the left. Then the expressions E + F and E - 1;‘
can be laid out as shown in I’igures 3(a) and 3(b), rc cc ively.p 1, Operators which have been
combined wiLh unary operators can be implcmcnLed  similarly,  as illustrated in the layout
for (13 - F)++ in l~‘igure  3(c). ‘l’his type of layout is callctl an operator split. Note that no
matter what operator is involved, the two subparts can be laid out either side by side (a



-E-

enable recognized

b

(a) (b)

- F.
-

Figure 3. Operator  splits: (a) It= + I;‘ (b) E - 3’ (c) (E - F)++

enable

dummy
r

dummy

e n a b l e  - D - r e c o g n i z e d
4

b + recognized l

E
4

Figure 4. Substitution split

horizontal split) or one on top of the other (a vertical split).

The use of operator splits might be enough  to accomplish a layout, but there is the
problem that that I;l.youts for the two operand expressions might have very different sizes.
This would lca(l to n lot gf white space when a rcct:lnglc surrounding the whole layout is
dclincd. The solution to ihis is to cio a substitution split. In a substitution split for an
expression E, some node D deep in Lhc cxprcssion  tree for f3 is replaced by a dummy node.
Then the expression rooted at D is laid out (the dummy tree), as well as the now smaller
expression E (the father tree). I3 will have an enable dummy output wire and a d u m m y
recognized in put wire. The former is attached to the enable input of II, and the latter is
fed by the recognized wire of D, as shown in Figure 4.

The mcl,hod for laying out a regular expression, given A cornprcsscd  expresSion tree is
to cifhcr ( i )  use ;I singlo I’LA, o r (ii) do an operator split or substitution split at the root
311~1  recursively lay out ttlc subpark. This accorrlplishes  the goal of using logic to form a



6 3 .  1,nyoul  of 11 cgular ICxprcssion  Rccognizers

nctv,.ork of’ I'LA'S for recognizing the regular expression. \Yhat  remains is to specify how
Lo choose arnor~g  the various layout strategies. flt each stage of the recursion, the following
choices must be made:

Cl. Should  a single PLA, an operator split, or a substitution split be used?

CL If a split is used,  should it be a horizontal or a vertical split?

C3. If a substitution split is used, which descendant expression should become the dummy
tree?

One option of the regular expression compiler is to rnakc the above choices guided by
the principles Lhat PLA'S should be neither too small nor too large, and that when splits
are used the subparts should be approximately equal in size. In this method, splits are
performed by looking for a split, which yields subparts closest in size, and the recursion
conLinues until the expressions  are under some prcspecificd size. The “size” in terms of
area is approximated by the weight - the number of leaves in the expression tree.-

* This heuristic method produces fairly good layouts quite quickly (in approximately 7
seconds on a VAX/780 for a 150-leaf expression). )Iowevcr,  it usually requires sornc playing
around with the parameters of the method to find the best  layout possible with this scheme.
Even then, a better layout is usually possible. There arc several reasons why the heuristic
method can be improved upon:

l The-idea Lhat two subparts should have the same area isn’t strictly correct. What rfally
is ~var~tal is for the h’cights  or widths Lo be about the same.  Now, the PLA's generated
from regular expressions all tend to have similar aspect ratios (height/width), so that
if the subparts are simple PLA'S then the “equal area” principle should hold. It seems
plausible that if the subparts are thcrnsclves  split, then there arc some approxirnatcly
square layouts for them, and so again the equal area principle should yield a reasonable
layout. IIowcver, an unequal-area  layout could be even better, and in practice there arc
many casts where one is better. -

l The weight of an expression is only a rough indication of th.z area needed  Lo lay it cut.
If the layout involves splits then the shape of the expression tree affects the economy of
Lhe layout.

l The area of a layout depends somewhat on the number of input wires needed. Thus,
even if tv, i .<ubparts  have equal weights, the layout for one subpart might be taller if it
uses  more irrputs.

0 Finally,:  sornc optirnizatioris  nrc performed when laying out a PI,A (having an cffcct similar
to factoring Lhc cxprcssion). This is another reason why the weight of an expression only
rcug!:!y  predicts the arca of the rcsu!ting  !ayout.

To overcome some of these problems, the regular expression compiler has another
- option: search systematically through a specified collection of layout strategies, looking for

the best one.



An cslraustive  starch c3n find the best  layout for an cxprcssion, given that one is
using the gtncral schcmc  of optsrator and substitution splits with 1’1,~‘s  at the lowest level.
;lil possible combinations of choices Cl, C2, and C3 can be tried, using all possible layouts
for the subparts in the cast of splits.

Clearly,  such an cshaustivc search would be very time consuming, even for for quite
small expressions. One way to avoid a lot of the work is to note that the dimensions
oi’ a layout for an cxprcssion remain about the same when the layout is rnade part of a
layout for a cont3ining  expression. There is of-ten some height  increase when a module is
incorporated as a subpart in a split, because the input wires to the other subpart may have
to run through the module. This effect can be calculated,  however,  so the conclusion is
tlrat the stratcgics  for 13ying out 3 given subcxprcssion need bc calculated only once. The
significance of this is that a sort of dynamic prograrnrning can be used to effect  the search.

Dynamic programmin g can be used to find optimum strategies for problems that can
be l;rokcn up as follows: starting out at a first “stage”, some choices are made leading
to a collection 01’  smaller, similar problems - the second stage; this continues until some
final stage is reached where there are no more choices to be made. If the problem is such
that a knolvledge  of all the optimal solutions at stage i is suflicicnt to find all the optimal
strategies  for stage  i - 1, then dynamic programming can be used. The layout scheme
satisfies this condilion (approximately),  where the problems oT stage  i 31-c finding the best
laiouts  for subcxprcssions whose roots arc at tlcpth i in the expression tree.

One problem in applying dynamic programming to layout is that one needs more
than just the minimum arca layouts for the subexpressions: a slightly larger layout may be
better to use as a subpart, in a split if its height (or width) is closer to that of the other
subpart .  1Vhat  is really nccdcd is the best area for 311  possible heights and widths. In
practice tllis would probably mean keeping 311 layouts tried, which would eliminate most
of the savings that are entailed by the use of dynamic programming.

The solution to this problem  is to use an approximation: divide up the continuum
of possible aspect ratios into a small number of intervals, and for each subcxpression keep
only the srnallest-area layout in each aspect ratio interval.

If the only splits allo\vcd wcrc operator splits, then the search for a layout could
follow the standard dynamic programming procedure: start at the last stage (the lowest
leaves) and find layout strategies  there; then move up the expression tree, trying single
PLA’s and operator splits. Trying an operator  split is a rclativcly  quick operation,  where
tlrc dimensions of the children ;trc ;~ddcd to tlrc logic dimensions to give the resulting layout
dimcnsinns. (‘l’htrr  is 371~0  an 3djustrnent  t’or input wires, as mentioned above.)

It is the substitution split which greatly incrc;lses the work required to find an optimal
Isyout. After a dcsccndant  expression is replaced by a dummy node, optimal layouts have
to bc found for the father  tree. Only some of the layouts found so far can be used: those
for subcxprcssions not involving the dummy tree. Thus, a somewhat indcpcndcnt layout
problcrn  must bc solved  l’or each p o s s i b l e  Tathcr tree, a n d cnch of those will involve still
more I’atticr  tree layout problcrns. The work required  increases dramatically as the root is
nl~pronchcd l~~~r~sc thcrc arc many more possible f;lthcr  trees (one for each descendant,



8 4. lTirlding  O p t i m a l  L a y o u t s
- - - -

not including the subproblcm father trees).

In fact., by the time all the subproblems have been solved for an expression, layouts
\j.ill  hat\rc been found for all possible prefiz  trees. A prefix tree is what is left attached to
the root after any combination of descendants have been replaced by dummy nodes.

To get some idea of how many prefix trees there can be, consider T,,, the complete
binary. tree of 7~ levels. Let S, be the set of prefix trees of Tn, and N, be the number of
trees in S,. Any binary tree with 2 n levels is a prefix tree of Tn. A binary tree of < n-
levels can only be formed  by having a root with a member of S,-1 or the empty tree as
left child, and a member of $,-I or the crnpty tree as right child. Therefore,

hT,, = (Nn-l + 1)2 < Z’,-’

Tn Ius m = 2” - 1 nodes, so Nn < 2”/2. This calculation shows that just enumerating
the possible father trees for a balanced expression of 30 leaves (i.e., about 60 nodes)  is out
of the question.

.
An obvious partial solut*ion to this is to havt: some minimum expression size - say 6

leaves - below which an expression will not be considered as a subpart of a split. This has
the effect of chopping off some number, I, of the most populous levels from consideration
as dummy tree roots. This changes the above calculation so that now Nn.-l < 2”j2’+‘.
197th this improvement, one could perhaps handle expressions of 30.-50  leaves, but it might
take a long time, considering that at the very least a PLA has to be considered out for each
father tree tried.

To bc able to handle expressions with up to, say, 300 leaves, the search needs further
pruning. The “equal area” principle mentioned above sllggcsts  that splits where one subpart
is much bigger than the other arc likely to waste space. The regular expression cornpilcr
has a split-ratio parameter, S. Splits will only be considered when the weight ratio of one
subpart to the other is in the range [l/S, S]. It has been found that in practice S E 2
yicalds  layou!s as good as S = 00.

When all splits are not considered, there turn out to be a large number of subexprcs-
sions whose layouts couldn’t possibly be used in the layout for the wllole expression. This
means that the dynamic programming  paradigm of working on the expression tree bottom-
up wastes a lot of calculation. It is better to work top-down, looking for subpart layouts
ivhcnever required.

To retain the advantages  of dynamic programming, a dictionary of layouts is kept
so .that layouts need never bc found twice for the same subcxprcssion. ‘I’hc dictionary can
contain layouts for each of tllc possible prefix  trees of each subcxprcssion. This is allowed
by having the dictionary indexed by (e, 1), where e is an expression node and 1 is an excision
list: nodes that have been replaced by dummies.

IIcre is the final algorithm for finding layout strategies. There are three tuning
* parameters, to allow trading off search thoroughness for execution tirne: S, the split-ratio;

L, the lo\vcst  weight allowed for a PLA; and II, the highest weight allowed for a PI,A.‘

FindSl r:~tc!~icls(s:~xprcssionl‘rcc, l:lSxcisionT,ist):
{ Find  s t r a t eg i e s  jar luyout  o f  t h e  expr e s s i on  z,



5. I’crfnrmancc of Lhc R e g u l a r  Expression C o m p i l e r 9

.

where  the  express ion nodes  on 1 have been replaced by dummies >
if I,ookupStratcgics(x,l)  # INIT  then return

{ a l r e ady  f ound  s t r a t eg i e s  f o r  (z,l)  }
if s.\vci~ht E [L..IJ]  t h e n

Tryl’LA(x,l)
if x.lchild.wcight/x.rchild.weight c [l/S . S] then begin

FindStrategics(x.lchild,l)
FindSt,ratcgies(x.rchild,l)
TryOperatorSplit(x,l)
end

for all descendants y of x such that
(x.weight-y.weight+l)/x.wcight  E [l/S . . . S] do begin

ExciseDummy(x,y) { r ep l a c e  y  by  DUMMY in  x  }
I’indStratcgics(x,Append(l,y))
I”indStrategics(y,l)

& TrySubstitutionSplit(x,l,y)
end

end FindStrategies

TryPLA,  TryOperatorSplit,  TrySubstitutionSplit:
( These  procedures  calculate  the  dimensions of  the  layouts

implied by their arguments. For the splits, all possible layouts
result ing from combinations of strategies for the subparts are tried.
The best strategies in various aspect ratio ranges are entered
i n t o  t h e  d i c t i o n a r y .  )

LookupStratcgy(c,l):
{ This  function looks  up in the  dict ionary the  layout strategies

for expression e with excisions list 1. Any members  of  1 which are not
descendants  of  e ,  or  are  descendants  of  other  members  of  1, are  ignored.
INIT is returnee!  i f  no strategies  have yet  beer ;  sought for  (e,l).  }

The regular expression coinpilcr has been implcmentcd in C on a VAX/~~O.  It can

produce layouts using either  the heuristic method or the dynamic programming method.
I3y appropriately setting the parameters for the heuristic method, one can also find the
layout as a single PLA or as a network of logic connecting individual symbol recognizers.
l’his section will report how the compiler performs on some sample expressions.

The first series of expressions is the PJt series. Tl~e  PR:! expression was given in
Section 2. The others in the series have the same line and symbol declarations, and the
following definitions ( anyn is used as shorthand for rt occurrences of any):



10 5 .  I’crformi~ncc o f  t h e  Rcgtllar 13xprcssion  Corrlpiler

Expression b!‘cight  Depth Layout L 13 S Area Time
/ xarnc Method (MX2) (sees)

I I’ ~8 72 14 single PLA .97 2.8

all logic .85 6.7

heuristic 4 17 .58 2.8

dyn. prog. 6 60 1.5 .56 14.0

dyn. prog. 6 60 2.0 .55 24.0

dyn. prog. 6 30 3.0 .55 55.7

PRl6 160 23 single P L A 4.43 11.5

all logic 2.28 15.3

heuristic 4 17 1.69 6.9

dyn. prog. 6 40 1.5 1.47 34.4

dyn. prog. 6 30 2.0 1.23 159.6

J’R32 352 40 single PLA 21.00 130.3

all logic 8.88 35.9

heuristic 4 17 3.87 17.3

dyn. prog. 6 40 1.7 3.55 267.1

dyn. prog. 7 25 2.0 3.19 1482.5

Table I. Data for PR expressions

PR4 = any2(PR2)  + PR2 any2

PR8 = any”(PR4)  + (PR4)any4

~~16 = any8(J’Ji8) + (PR8)any’

PJI32 = any’“(J>RlG)  + (J>JiJ6)any”

PRn is recognized whn,ncver the last n inputs fail to match the first n. The rcs*Jlts  of
running the regular expression cornpilcr  on the PR series is given in Table 1. The times
given in the last column are CPU seconds on the VAX. Areas are in X2 X lo”, where X
is the minimum feature size. The ‘Lheuristic” results were the best that could be found
by varying the parameters (there is another parameter, not shown, which indicates the
desired  shape of the final layout). It can be seen that both the heuristic method and
the dynamic programming method are quite a bit better than the single-PLA or all-logic
methods. Dynamic programming beats the heuristic method by an amount which increases
with the expression  size. Several dynarrric prograrnnring results arc shown to give some idea
of the tradeoff between  search thoroughness and execution time that occurs. Sketches of
the layouts found by tire compiler for ~~16  arc shown in Figures 5(a)(hcuristic) and 5(b)
(dynamic programming). The boxes arc the individual PLA's.

The next series of expressions to be tried were the SEQ expressions, where SEQn  has
the form:

symbolal(l[l]),  bl(-l[l]),  a2(1[2]>, b2(-1[2]),  ..,,  an(l[n]),  bn(-l[n])

symbol any0



(4

tb)

Figure 5. 1,ayout sketches for ~~16: (a) h euristic  (b) dynamic programming

bl + my* (al b2 + a2 b3 + . . . + a72 a n y + + )

These expressions signal if the input wires are not turned on in sequence. The SEQ

expressions are different from the PR ones in that they have a large number of input wires,
so that the heuristic strategy (which doesn’t pay attention to how many in.puts  a module
uccds) might bc expected to do poorly. Another  fact about these expressions is that the
cxprcssion  trees arc tall and sparse. The 1’11  expressions had rather  bushy trees. Table 2
wives the results of using the regular expression compiler on the SEQ  expressions.0



12 5 .  Pcrforrnarlcc  of the Regular Expression C o m p i l e r

Ibpression \\‘cight  Depth Layout . L II S
Karne Method

[ s~c>16 34 19

all logic

single dyn. heuristic prog. PL,A 4 6 17  17 1.7

I . ~~~32 66 35 single PLA

all logic

heuristic 4 28

dyn. prog 6 70 1.7

SEQ64 130 67 single PLA

all logic

heuristic 4 35-
dyn. prog. 6 30 1.7.

usix~16 32 5 single PLA

all logic

heuristic 4 20

dyn. prog. 6 40 1.7

rs EC232 64 6 single PLA

all logic

heuristic 4 25

dyn. prog. 6 65 1.7

128 7 single PLA

all logic

heuristic 4 35

dyn. prog. 6 30 1.7

Table 2. Data for’ SEQ and I3SEQ  expressions

.

Area Time

(MA’) (W C S)

.30 1.5

.51 4.0

.28 2.1

.24 5.0

.97 3.5

1.23 9.3

.64 3.4

.61 27.5

3.48 9.2

3.33 20.7

1.76 7.9

1.62 186.0

.27 1.4

.34 3.2

.23 1.6

.23 2.7

.92 3.0

-74 6-.8

.59 3.6

.59 8.9

The final group of expressions is a slight modification of the SEQ  group. To see what
effect the depth of the tree has on the execution time, the USEQ expressions were formed:
they arc just topics of the SEQ  expressions without the bl+any++  at the beginning, factored
so that they form complctcly balanced binary trees. For example, USEQ4 is:

( ( al b2 + a2 b3) + (a3 b4 + a4 any++))

The results of compiling these expressions arc also given in Table 2. It can be seen that
the compiler works f’askr on the bushy LlSI;:Q  expressions than it did on the corresponding
SICQ cxprc3sions. This is because  there arc a srnallcr number of possible dummy nodes
Lvhich satisry the split-ratio requirement in the bushy trees.



56 lZv~Juat.~on a n d  Condlus;ons

It has been sho\vn  that regular expressions have a structure which makes them quite
:mlcn;lblc  Lo a “divi(~c-and-conc~~lcr” partilioning and placement  procedure which runs fairly
quickly. Clearly, the network-of-PLA’s  approach is superior to the single PI,A or all-logic
methods.

The program could certainly run a lot faster if substitution splits weren’t tried, but it
has been found thatt these  arc definitely  required. Perhaps the expressions could be parsed
in such a lvay that the children would always be about the same weight:  there is some
freedom  alloivcd because concatenation and union are associative operators. However, the
(-losure operators form barriers to arbitrary rcparsing, so in general one cannot balance the
children.

The search over a range of possible dummy tree roots is another aspect which slows the
compiler. If one tries only Lhat node which yields the best weight ratio between the father
and dLmmy  trees,  the resulting areas are somewhere between those found by the heuristic
r:lcthod and dynamic programming. For example, this modification led to the same layout
as full dynamic programrning for ~~~216,  but for SEQ~~  it only did as well as the heuristic
method. Tt was found that. one had to try the five best dummy tree roots before the full
dynamic programming layout would be found for s~Q32. The execution times using the
best,-tl~lmrrly-only  modification were quite close to those of the heuristic method, so perhaps
this is the most useful method of all, for small to mcdiurn  sized expressions.

The dynamic programming method rcquircs keeping a number of “best” layouts for
expressions, in each of a number of dincrcnt aspect ratio ranges. Varying the number of
these ranges has some cffcct on the ability of t.hc compiler to find good layouts. Originally,
three ranges were u s e d . This seemed  to work, but when the compiler was changed to
keep layouts for six ranges, the results were quite a lot better - at least for the larger
expressions.

To sum up, each of the capabilities of the regular expression compiler adds incremen-
tally to the quality of the layout, at a cost of extra execution simc. Howcvcr,  even the most,
cxpcnsive  dynamic programming  searches are still quite fast compared to other aspects of
VLSI  design - such as check plotting - so it is not unreasonable to USC dynamic program-
ming always.

The work described in this paper has some rescntblcnce to previous work on graph
theoretic approaches to partitioning [!I], but the problem is somewhat more tractable when
trees arc involved.  Also, the idea of doing the placcmcnt  by rccursivcly splitlAng the plane
int.0  h;tlvcs  llas been used bcforc  [G]. Not much h a s  bwn dorlc or\ au t,om;llic:ally  choosing
a network of I)L,I’s to irnplcmcnt a scqucntinl  circuit, though there has been some work
done on optimizing single PLA’S 181. ;I circuit realization using a network of PLA’s is given
in [I], but the user must specify  the splits with a hierarchical circuit definition.

The regular expression compiler is still undergoing improvements. Currently, the
ability to have numerous “output signals” cmbcddcd in the expression is being incorporated.
I\lso, more  PI,A optimiz:\tions  arc going to bc done. In particular,  non-overlapping NFA
st:~tcs  will bc dctcctzd and a group of such states call bc assigned binary-cncodcd  state
idcn tificrs. This should rcducc the current tendency for the PLA’s to bc fairly sparse.



1-i Refcrcnccs
.

Tl~cfe ;~rc plans to use the compiler to genc~ate  much of tile control logic for a VI,SI chip
being designed.

,!\cI;now cI d gcrncnts

The regular expression compiler was originally designed and implemented by Jeff .
Vliman  at Standford University. The author has added the dynamic programming feature
and made various other improvements.

Rcfcrences

R. Ayres. “Silicon Compilation - A Hierarchical Use of PLAs.”  16th Design
Automation Conf.  Proceedings, pp. 3L4-326, June 1979.

R.W. Floyd, and J.D. Ullman. “The Compilation of Regular Expressions into
Inegratcd Circuits.” Tech. Rep. STAN- CS- 80-  798, Stanford Cornputcr Science
Dept., April 1980.

M.J. Foster, and M.T. Kung. “PRA: Programmable Building Blocks for Recognizing
Regular I,anguages  in VLSI.” Unpublished memorandum, Dept. of Cornputer Science,
Carncgic-hlellon,  1981. .

J.P. Gray. “Introduction to Silicon Compilation.” 16th Design Automation Conf.
Proceedings, pp. 305-306, June 1979.

D. Johannscn. “13ristle  Blocks, A Silicon Compiler.” 16th Design Automation
Conf. Proceedings, pp. 310-313, June 1979.

U. Lauther. “A Min-Cut Placement Algorithm for General Cell Assemblies Based
on a Graph Reprcspntation.” 16th Design Automation Conf. Proceedings, pp. I-10,
J u n e  1 9 7 9 .

A. Mukhopadhyay. ‘(Hardware Algorithms for Non-numeric Computation.” IEEE
Transactions on Computers, C-28, No. 6, pp. 384-393, June 1979.

J.P. Roth. “Programmed Logic Array Optimization.”  IEEE Transactions on
Computers, C-27, No. 2, pp. 174--176, February 1978.

D.G. Schwcikert, I3.W. Kcrnighan. “A Proper Model for the Partitioning of Electric
Circuits.” gh D esign Automation Workshop Proceedings, pp. 56-62,  June 1972.

D.P. Sicwiorck, M.R. narbacci. “The CMU W-CAD System - An Innovative
Approach to Computer Aided Design.” AFKPS Fall Joint Computer Conference,
Vol. 45, 1976.

,J.D. Williams. “STICKS - A Graphical Compiler for High Level LSI Design.”
National Computer Conf,  Proceedings, pp. 289-295, 1978.

G. Zimmcrrnan. “Cost I’crformance Anilysis and OpOimizatiori  of Ilighly Parallel
Conlputcr Structures: First Results of n Structured Top-Down Design Method.” dth

hter?diod  Symposium on Computer Hardware Description Languages, October
1979.


