August 1981 Report. No. STAN-CS-81-871

Good Layouts for Pattern Recognizers

by

Howard W. ‘I'rickey

Rescarch sponsored by
Nationa Scicncc Foundation

and
Defense Advanced Rescarch Projects Agency

Department of Computer Science

Stanford University
Stanford, CA 94305

Good Layouts for Pattern Recognizers

by
Howard W. Trickeyt

Computer Science Department

Stanford University

Al)stract

A system to lay out custom circuits that recognize regular languages
can be a useful vLSI design autornation tool. This paper describes the
algorithms used in an implementation of a regular expression compiler.’
Layouts that use a network of prograrnmable logic arrays (PLA’s) have
smaler areas than those of some other methods, but there are the prob-
lems of partitioning the circuit and then placing the individua PLA'’s.
Regular expressions have a structure which allows a novel solution to
these problems. dynamic programming can bc used to find layouts which
arc in some sense optimal. Various search pruning heuristics have been
used to increase thespeed of the compiler, and the experience with these
is reported in the conclusions.

Index Terms: vis layout, silicon compilers, string pattern recognition, control logic
design, regular cxprcssions, dynamic programming, programmable
logic arrays, partitioning.

t Work supported by an NSERC scholarship, NSIF grant MCS-80-12907, and DARPA grant MDA 903-80-
c-0107.

2 . Regular Expressions as Patterns 1

§1 Introduction

The design of vi.si circuits is currently a very time-consuming operation. Some of the
recent work to help aleviate this problem has taken its lead from programming language
compiler technology, where great strides have becen made by using prograrns to convert
high level descriptions into lower level programs. The idea of a silicon compiler to convert
highlevel descriptions of circuits into layouts has arisen [1,4,5,10,11,12].

A problem with silicon compilers is the definition of a suitable circuit description
language. Some languages arc basically descriptions of the upper levels of a hierarchical
design. These become “high level” descriptions when the lower levels of the hierarchy can
be derived from libraries and/or a farniliarity with the class of circuits being described,
The “Bristle Blocks” [5]system is an example of this type of system: it can be used to
describe a data path chip (registers, shifters, ALU’s, etc., built around a data bus).

A second approach is to use a notation which gives the external behavior required.
One method of doing this is to give a sort of program which runs on a machine specified
at the register transfer level (10,121. This technique ismeant to be used for designing
computer-like chips. Another notation, which can be used for specifying the controlling
logic portion of any chip, is that of regular expressions. A regular expression can be used
to describe a pattern: a sequence of states in which certain inputs must be seen. One can
require that various outputs be given whenever certain patterns have bcenscen. Some
of the many uses of pattern detectors can be found in [7]. This paper discusses a silicon
compiler whose input is a regular expression and whose output is a layout for the pattern
recognition circuit defined by that expression.

In particular, a way of laying out a circuit for a pattern recognizer in a small area
will be described. It is fairly casy to give a programmable logic array (PLA) to implement
a pattern recognizer, but a single PLA can be rather large. At the other extreme, one can
have logic to recognize each basic syrnbol of the pattern, joining them up with other logic.
Such a method can be proved to yicld a layout with an area which is linear in the length of
the cxpression 2], but in practice the resulting layouts have been found to be large. The
regular expresson compiler uses a network of PLA’s, and it gives layouts better than either
of the extremes.

The next section will explain how regular expressions represent patterns. Then
the implementation of recognizcrs using networks of PLA’s will be described. Numerous
networks are possible, so a big part of finding a good layout involves searching for a the
best (or at least, near-best) division of the expression. The fourth section will discuss
how dynamic prograrnrning andsome judicious heuristics can be used to effect this search.
Finally, the last section will give some conclusions, based on experience, about what the
various search heuristics can accompiish and how much they cost.

§2 chu]ar Expressions as Patterns

A regular cxprcssion is a notation for representing a set of strings of symbols. It is
defined recursively as follows:

2 2. Regular Expressions s Patterns

s The symbolis the most basic kind of regular expression. In the application to circuits,
the occurrence of a symbolmeans that the input wires must bc zero or one, according
to the symboldefinition, within the “current state”.

O If ' and [arc regular expressions, then the union /£ + F is a regular expression which
means: either £ or I

olf £ and I arc regular cxprcssions, then the concatenation E.F (or simply EF')is a
regular esprcssion which means: E followed by F.

0 If £ is a regular expression, then the closure E” is a regular expression which means:
zero OF more occurrences of E.

o If I is a regular cxpression, then the positive closure E -t-t is a regular expression which
means. one or more occurrences of E.

. If I7 is a regular expression, then the optional occurrence E? is aregular expression which
means.’” zero or one occurrence of E.

o If £ is arcgular expression, then () isarcgular expression (used for grouping). Unless
parcntheses are used, the unary operators have prcccdence over the binary operators,
and concatenation has precederice over union.

The usc of regular cxprcssions to describe pattern recognizers is perhaps best seen
by mcans of an cxarriple. The following is the complete input file required by the regular
expression compiler for a .srnall example:

line data [2]

symbol zero(data[1],-data[2]), one(-data[1],data[2]), any()
any (one any* zero + zero any* one) +

(one any* zero + zero any* one) any

The line declaration gives the wires that are input to the circuit. A line name can be
subscripted (with [..]), as data is, to represent more than one wire. One can declare any
number of lines. The symbol declaration gives thenames of the symbols that will occur in
the regular expression, with the values of the input wires which identify a symbol given in
parcntheses after its name. Here there arc three symbols. zero, recognized when data(1]
is a logical “1” and data[2] is a logical “0” (indicated by the“~” in front of data[2]);
one, rccognizetl when the data wires arc reversed; and any, which doesn’t specify either
“1” or “0” for the data wires, so it is a “don’t care.” Notc that any will bc recognized
at the same time as zero or one: there is NO requirement that Lhe wire combinations for
dilferent symbols be digoint..

The regular expression itscll follows the declaration. This one gives all strings of
symbols where cither (a) the first symbol differs from the second last symbol, or (b) the
second symbol diflers from the last symbol. This expression will bc rcferred to as PR2.

The patternrecognizer isa synchronous machine. Thesuccessive symbols of a string
must appear in successive clock cycles (states) for the pattern Lo be recognized. Whenever
the symbolsseen in the preceding states form one of thecomplete strings specified by an

3. Lavout o f Regular Expression Recognizers 3

(a) (b)

Figure |. (a) Expression Tree (b) Compressed Expression Trce
expression, an output signal is given.

The notion of an expression tree for a regular expression will be useful later on. The
expression tree has symbols as leaves and regular expression operators as internal nodes. It
is formed in the sarne recursive manner that expressions arc: the tree for 7 + I'is a node
containing “+” with the expression trees for £ and F' as children; similarly for the other

operators. Figure I(a) gives the expression tree for ((a + b)++)*-c (d?)".

A unary operator can be combined with the symbol or operator node beneath it. A
cascade of unary operators can be reduced to a single one using obvious rules. This yields

acompressed expression tree, such as the one shown in Figure I(b) for ((a +b)++)i~c-(d?)*.

An NFA (nondeterministic finite automaton) can easily be given to implement a
regular cxpressionrecognizer. InItigure 2, an NFA to recognize PR2 is shown. Initially
the start state is made active. At any time there may be a number of active states. In
cach successive clock cycle, any active states with transitions marked by a symbol seen in
that cycle will make the successors of those transitions active. States only remain active
for one cycle unless explicitly reactivated. Whenever the final state is active, an output
signal is given. If desired, the machine can keep operating so that it can detect overlapping
occurrences of patterns.

The derivation of an NFA to recognize a pattern is straightforward. I'or details, sce

2.

§3 Layout of Regular Exprcssion Recognizcrs

An easy way toimplement a regular expression recognizer isto use aPLA Lo simulate
theNFA corresponding to it. Bachstate can be represented by a dynamic register whose
valueis calculated by the PLA using the inputs and the current state vaues (which are fed

4 3. Layout of Regular Expression Recognizers

any

A FINAL

Zero

zero
any any

Figure 2. NFFA to recognize PR2
back from the registers). Details of this method are given in [2].

The prohlern‘is that thearca used by such a layout will tend to grow quadratically
with expression size. A method that leads to a linear growth of the required area is to
implement cach symbol as a dynamic register, together with logic which tests whether or
not the symbol is on the input wires. The “symbol modules” have an enable input and
arecognized output. By using appropriate connecting logic, it can be arranged that the
symbol modules act like the states of theNFA, where a state is activated by asserting its
cnable input. (Actualy, the circuit is not exactly like the NFA, because the state memory
is distributed over the transition edges) It was shown in (2] that as long as the expressions
are compressed by combining cascades of unary operators, this method can yield a linear
layout. A divide and conquer technique is used to decide where to place the symbol modules
and connecting logic. A similar layout would be obtained using the systolic recoenizers of

3],

Using individua logic for each symbol gives reasonable layouts, but experience with
an implementation of this method has shown that for small expressions, the pLA mcthod
is better. This is perhaps to be expected, since the regularity of PLA’s dlows one to pack
small numbers of gates more closely than is possible with an ad hoc circuit. Thus, the
idea of using a combination of the two methods arose. The current implementation of
the regular cxpression compiler usesPLA’s for low level subexpressions, connected together
with logic to take care of the operators near the root of the expression tree.

Suppose that one has laid out modules to recognize expressions E and F'. It is assumed
that thesemodules are rectangles, and that they have enable wires coming in a the left and
recognized wires leaving at the right. Any input wires required to recognize the symbols in
themodule’s expression must also enter at the left. Then the expressions £+ F and E - F
can be laid out as shown in I'igures 3(a) and 3(b), repcctively. Operators which have been
combined withunary operators can beimplemented similarly, as illustrated in the layout
for (££- /7)*F in I'igure 3(c). This type of layout is called an operator split. Note that no
matler what operator is involved, the two subparts can be laid out either side by side (a

3. Layout of Regular Expression Recognizers 5

E

enable recognized L]
— [

N

(@) (®)
o

{c)

Figure 9.Operator splits: (@) £+ IF (b) E-F (c) (E-F)*t

dummy dummy
enable D —j rgcognized
enable p— — recognized
E

Figure 4. Substitution split
horizontal split) or one on top of the other (a vertical split).

The use of operator splits might be cnough to accomplish a layout, but there is the
problem that thelayouts for the two operand expressions might have very different sizes.
This would leadtoa lot of while space whenarcctangle surrounding the whole layout is
delined. The solution to this is to do a substitution split. In a substitution split for an
expression 7, some node D deep inthe expression tree for £ isreplaced by a dummy node.
Then the expression rooted at D is laid out (the dummy tree), as well as the now smaller
expression FE (the father tree). I will have an enable dummy output wire and a dummy
recognized in put wire. The former is attached to the enable input of D, and the latter is
fed by the recognized wire of D, as shown in Figure 4.

The method for laying out a regular expression, given A compressed expressiontree is
to cither (i) use asinglePLA, or (ii) do an operator split or substitution split at the root
and recursively lay out thesubparts. This accomplishes the goa of using logic to form a

6 3. Layout of Regular lixpression Recognizers

network of’ PLA’s for recognizing the regular expression. What remains is to specify how
Lo choose among the various layout strategies. At each stage of the recursion, the following
choices must be made:

Cl. Should asingle PLA, an operator split, or a substitution split be used?
C2. If agplit isused, should it be a horizontal or a vertica split?

C3. If a substitution split is used, which descendant expression should become the dummy
tree?

Onec option of the regular expression compiler is to make the above choices guided by
the principles thatPLA’s should be neither too small nor too large, and that when splits
are used the subparts should be approximately equal in size. In this method, splits are
performed by looking for a split, which yields subparts closest in size, and the recursion
continues until the expressions are under some prcspecificd size. The “size” in terms of
area is approximated by the weight — the number of lcaves inthe expression tree.

This heuristic method produces fairly good layouts quite quickly (in approximately 7
seconds on a vAX /780 for al50-lcal’ expression). However, it usualy requires some playing
around with the parameters of the method to find the best layout possible with this scheme.
Even then, a better layout is usually possible. There arc several reasons why the heuristic
method can be improved upon:

« The idea Lhat two subparts should have the same arca isn't strictly correct. What really
is wanted is for the heights or widths Lo be about the same. Now, the PLA’s generhted
from regular expressions all tend to have similar aspect ratios (height/width), so that
if the subparts are simple PLA’sthen the “equal area’ principle should hold. It scems
plausible that if the subparts are thermnsclves split, then there arc some approximately
square layouts for them, and so again the cqualarea principle should yield a reasonable
layout. Ilowever, an uncqual-arca layout could be cven better, and in practice there arc
many cascs where one is better. -

« The weight of an expression is only a rough indication of thzarcanecdedio lay it cut.
If the layout involves splits then the shape of the expression tree affects the economy of
the layout.

« The area of a layout depends somewhat on the number of input wires needed. Thus,
even if tv.« subparts have equal weights, the layout for one subpart might be taller if it
uscs More inputs.

o 'inally,somcoptimizations are performed when laying out a PL.A (having an cffect similar
to factoring thecexpression). This is another reason why the weight of an expression only
roughly predicts the arca of the resulting layout.

To overcome some of these problems, the regular expression compiler has another
" option: search systematically through a specified collection of layout strategies, looking for
the best one.

4. Finding Optimal Layouts 7

§4 Finding Opl,imal Layouts

An exhaustivesearchcan find the best layout for an cxprcssion, given that one is
using the generalscheme of operator and substitution splits with PLA’s at the lowest level.
All possible combinations of choices clI, C2, and C3 can be tried, using al possible layouts
for the subparts in the case of gplits.

Clearly, such an cshaustive search would be very time consuming, even for for quite
small expressions. One way to avoid a lot of the work is to note that the dimensions
of a layout for an cxprcssion remain about the same when the layout is rnade part of a
layout for a containing expression. There is of-ten some hcight increase when a module is
incorporated as a subpart in a split, because the input wires to the other subpart may have
to run through the module. This effect can be calculated, however, so the conclusion is
that the strategics for laying out 3 given subcxprcssion necd be calculated only once. The
significance of this is that a sort of dynamic programming can be used to cffect the search.

Dynamic programming can be used to find optimum strategies for problems that can
be broken up as follows. starting out at a first “stage”, some choices are made leading
to a collection of smaller, similar problems — the second stage; this continues until some
final stage is rcached where there are no more choices to be made. If the problem is such
that aknowledge of al the optimal solutions at stage i issuflicient to find al the optimal
strategies for stagei — 1, then dynamic programming can be used. The layout scheme
satisfies this condition(approximately), where the problems of stage i 31-c finding the best
lavouts for subcxprcssions whose roots arc at depth i in the expression tree.

One problem in applying dynamic programming to layout is that one needs more
than just the minimum arca layouts for the subexpressions: a dightly larger layout may be
betler to use as a subpart, in a split if its height (or width) is closer to that of the other
subpart. What isrcally nceded is the best area for all possible heights and widths. In
practice this would probably meankeeping 311 layouts tricd, which would eliminate most
of the savings that are cntailed by the use of dynamic programming.

The solution to this problem isto use an approximation: divide up the continuum
of possible aspect ratios into a small number of intervals, and for each subcxpression keep
only the srnalest-area layout in each aspect ratio interval.

If the only splits allowed were operator splits, then the search for a layout could
follow the standard dynamic programming procedure: start at the last stage (the lowest
leaves) and find layout stratcgics there; thenmove up the expression tree, trying single
PLA's and operator splits. Trying an operator split is a relatively quick operation, where
the dimensions of the children arc added to the logic dimensions to give the resulting layout
dimensions. (There is also an adjustment for input wires, as mentioned above.)

It isthe substitution split which greatly increases the work required to find an optimal
layout. After adescendant expression is replaced by a dummy node, optimal layouts have
to be found for the father tree. Only some of the layouts found so far can be used: those
for subcxprcssions not involving the dummy trec. Thus, a somewhat indcpcndent layout
problem must be solved for cach possible father tree, and cach of those will involve sill
more [ather tree lavout problems. The work requiredincreases dramatically as the root is
approached because there arc many more possible father trees (one for cach descendant,

8 4. I"inding Optimal Layouts

not including the subproblcm father trees).

In fact., by the time all the subproblems have been solved for an expression, layouts
willhave been found for all possible prefiz trees. A prefix tree is what is left attached to
the root after any combination of descendants have been replaced by dummy nodecs.

To get some idea of how many prefix trees there can be, consider 7., the complete
binary tree of n levels. Let §,, be the set of prefix trees of T,,, and N,, be the number of
trees in S,. Any binary tree with <= levels is a prefix tree of 7,,. A binary tree of < n
levels can only be formed by having a root with a member of S, ; or the empty tree as
left. child, and a member of S,_; or the cinpty tree as right child. Therefore,

Np = (Na_y + 1)2<227

T, has m = 2" — 1 nodes, so N,, <2™/2. This calculation shows that just enumerating
the possible father trees for a balanced expression of 30 leaves (i.e., about 60 nodes) is out
of the question.

An obvious partial solution to this is to havesome minimum expression size — say 6
leaves — below which an expression will not be considered as a subpart of a split. This has
the effect of chopping off some number, I, of the most populous levels from consideration
as dummy tree roots. This changes the above calculation so that now N, _; < gm/2*
With this improvement, one could perhaps handle expressions of 30-50 leaves, but it might
takc a long time, considering that at the very least a PLLA has to be considered out for each
father trec tried.

To bc able to handle expressions with up to, say, 300 leaves, the search needs further
pruning. The “equal ared’ principle mentioned above suggests that splits where one subpart
is much bigger than the other arc likely to waste space. The regular expression compiler
has a split-ratio parameter, S. Splits will only be considered when the wcight ratio of one
subpart to the other is in the range [I/S, S]. It has been found that in practice S ~ 2
yiclds layouts as good as S = oo.

When al splits are not considered, there turn out to be a large number of subexpres-
sions whose layouts couldn’'t possibly be used in the layout for the whole expression. This
means that the dynamic programming paradigm of working on the expression tree bottom-
up wastes a lot of calculation. It is better to work top-down, looking for subpart layouts
whenever required.

To retain the advantages of dynamic programming, a dictionary of layouts is kept
so0 that layouts ncednever be found twice for the same subcxpression. The dictionary can
contain layouts for each of the possible prefix trees of cach subcxpression. This is allowed
by having the dictionary indexed by (e, (), where e is an expression node and { is an excision
list: nodes that have been replaced by dummies.

Here is the final algorithm for finding layout strategies. There are three tuning
. parameters, to alow trading off search thoroughness for execution tirne: S, the split-ratio;
L, the lowest weight alowed for a PLA; and Il, the highest weight alowed for a PLA.

FindSt rategies(x:ExpressionTree, 1:lixcisionlList):
{ Find strategies for luyout of the expression z,

5.Performance of the Regular Expression Compiler 9

where the expression nodes on ! have been replaced by dummies }
if LookupStrategics(x,])# INIT then return
{ already found strategies for (z,{)}
if x.weight e[L..II] then
TryPLA(x,))
if x.lchild.weight/x.rchild.weight ¢ [I/S ... S] then begin
FindStrategies(x.lchild,l)
FindStrategies(x.rchild,l)
TryOperatorSplit(x,l)
end
for all descendants y of x such that
(x.weight—y.weight+1)/x.weight e [I/S . . . S] do begin
ExciseDummy(x,y) { replace y by DUMMY in x }
FindStrategics(x,Append(l,y))
FFindStrategies(y,l)
: TrySubstitutionSplit(x,l,y)
end
end IFindStrategies

TryPLA, TryOperatorSplit, TrySubstitutionSplit:

{ These procedures calculate the dimensions of the layouts
implied by their arguments. For the splits, all possible layouts
resulting from combinations of strategies for the subparts are tried.
The best strategies in various aspect ratio ranges are entered
into the dictionary. }

LookupStrategy(e,l):

{ This function looks up in the dictionary the layout strategies
for expression e with excisions list 1. Any members of | which are not
descendants of e, or are descendants of other members of [, are ignored.
INIT is returnec if no strategies have yet beer; sought for (e,l).}

85 Perlormance of the Regulnr Exprcss;on Compilcr

The regular expression compiler has been implemented in C on a vAX/780. It can
produce layouts using cither the heuristic method or the dynamic programming method.
By appropriately setting the parameters for the heuristic method, one can aso [ind the
layout as a single PLA or as a network of logic connecting individual symbol recognizers.
This section will report how the compiler performs on somc sample expressions.

The first scries of expressions is the PR series. ThePR2 expression was given in
Section 2. Theothers in theseries have the same line and symbol declarations, and the
following definitions (any™ is used as shorthand for n occurrences of any):

10 5. Performance of the Regular Expression Compiler
p

Expression Weight Depth Layout L H S Area Time
| Name Mecthod (MX?) (sces)
PRS 72 14 sngle PLA 97 2.8

al logic .85 6.7
heuristic 4 17 .58 2.8
dyn. prog. 6 60 15 .56 14.0
dyn. prog. 6 60 2.0 .55 24.0
dyn. prog. 6 30 3.0 .55 55.7
PR16 160 23 single PLA 4.43 115
al logic 2.28 15.3
heuristic 4 17 1.69 6.9
dyn. prog. 6 40 15 147 34.4
dyn. prog. 6 30 2.0 1.23 159.6
PR32 352 40 sngle PLA 21.00 130.3
al logic 8.88 35.9
heuristic 4 17 3.87 17.3
dyn. prog. 6 40 17 3.55 267.1
dyn. prog. 7 25 2.0 3.19 1482.5

Table 1. Data for PR expressions

PR4 = any?(PR2) 4+ PR2 any?

PR8 = any’(PR4)+(PR4)any*
PR16 = any®(Pr8) + (PR8)any®
PR32 = any!®(PR16) + (PR16)any!®

PRn is recognized wh~never the last n inputs fail to match the first n. The results of
running the regular expression compiler on the PR series is given in Table 1. The times
given in the last column are CPU seconds on the VAX. Areas are in A2 X108, where \
is the minimum feature size. The “heuristic” results were the best that could be found
by varying the parameters (there is another parameter, not shown, which indicates the
desired shape of the final layout). It can be seen that both the heuristic method and
the dynamic programming method are quite a bit better than the single-PLA or all-logic
methods. Dynamic programming beats the heuristic method by an amount which incresses
with the expressionsize. Scveraldynamic programming results arc shown to give some idea
of the tradeoff betweenscarch thoroughness and execution time that occurs. Skectches of
the layouts found by the compiler for PrR16 arc shown in Figures 5(a)(hcuristic) and 5(b)
(dynamic programming). The boxes arc the individual PLA’s.

The next series of expressions to be tried were the SEQ expressions, whereSEQn has
the form:

line 1[n]
symbol a1 (1[11), b1(-1[1]), a2(1(2]), v2(-1[2]), ..., an(1[n]), bn(-1{n])
symbol any ()

D

Performance of the Regular Expression Compiler 11

(a)

(b)
Figure 5. Layout sketches for PR16: (a) heuristic (b) dynamic programming

bl+any*x (d b2+ a2 b3 +...+an any++)

These expressions signal if the input wires are not turned on in sequence. The SEQ
expressions are different from the PRoncs in that they have a large number of input wires,
so that the heuristic strategy (which doesn't pay attention to how many inputsa module
nceds) might bc expected to do poorly. Another fact about these expressions is that the
expression trees arc tall and sparse. The 'R expressions had rather bushy trees. Table 2
aives the results of using theregular expresson compiler on the SEQ expressions.

12 5. Performance of the Regular Expression Compiler

Isxpression Weight Depth Layout . L I S Area Time
Name Method (MA%)|(w c 9
” .30 15
al logic .01 4.0
.28 2.1
SEQIL6 34 19 e . tardc g LA) 11y 17 .24 5.0
T SEQ32 66 35 single PLA .97 35
al logic 1.23 9.3
heuristic 4 28 .64 3.4
dyn. prog 6 70 17 .61 27.5
SEQ64 130 67 single PLA 3.48 9.2
al logic 3.33 20.7
heuristic 4 35 1.76 7.9
dyn. prog. 6 30 17 1.62 186.0
BSEEQL6 32 5 single PLA .27 14
al logic .34 3.2
heuristic 4 20 .23 16
dyn. prog. 6 40 17 .23 2.7
BSEQ32 64 6 single PLA .92 3.0
al logic 74 6.8
heuristic 4 25 .59 3.6
dyn. prog. 6 65 17 .59 8.9
BSEQG4 128 7 single PLA 3.39 9.8
dl logic 2.28 18.4
heuristic 4 35 1.91 7.6
dyn. prog. 6 30 17 1.53 - 15.9

Table 2. Data for’ SEQ and BSEQ expressions

The final group of expressions is a dlight modification of the SEQ group. To sce what
cffect the depth of the trec has on the execution time, the BSEQ expressions were formed:
they arc just copics of the SEQ expressions without the bi+any++ at the beginning, factored
so that they form completely balanced binary trees. For example, BSEQ4 is:

((al b2 + a2 b3) + (a3 b4 + a4 any++))

The results of compiling these expressions arc aso given in Table 2. It can be scen that
the compiler works faster on the bushy BSEQ expressions than it did on the corresponding
S1Q expressions. This is becausc there arc a smaller number of possible dummy nodes
which satisly the split-ratio requirement in the bushy trees.

6. Evaluation and Conclusions 18

56 Evaluation and Conclusions

It has beenshown that regular expressions have a structure which makes them quite
amenableto a“divide-and-conquer” partitioning and placement procedure which runs fairly
quickly. Clearly, the nctwork-of-PLA’s approach is superior to thesingle PLA or al-logic
methods.

The program could certainly run a lot faster if substitution splits weren’t tried, but it
has been found that these arc definitely required. Perhaps the expressions could be parsed
in such a way that the children would always be about thesame weight: there is some
frecedom allowed because concatenation and union are associative operators. However, the
closure operators form barriers to arbitrary rcparsing, so in general one cannot balance the
children.

The scarchover arange of possible dummy tree roots is another aspect which dows the
compiler. If one tries only that node which yields the best weight ratio between the father
and dummy trees, the resulting areas are somewhere between those found by the heuristic
method and dynamic programming. For example, this modification led to thesame layout
as full dynamic programrning for SEQ16, but for SEQ32 it only did as well as the heuristic
method. It was found that. one had to try the five best dummy tree roots before the full
dynamic programming layout would be found for sEQ32. The execution times using the
best-dummy-only modification were quite close to those of the heuristic method, so perhaps
this is the most uscful method of al, for small to medium sized expressions.

The dynamic programming method rcquires keeping anumber of “best” layouts for
expressions, in cach of a number of different aspect ratio ranges. Varying the number of
these ranges has some effect on the ability of the compiler to find good layouts. Originaly,
three ranges were used. This scemed to work, but when the compiler was changed to
keep layouts for six ranges, the results were quite a lot better — at least for the larger
expressions.

To sum up, cach of the capabilities of the regular expression compiler adds incremen-
tally to the quality of the layout, at a cost of extra execution sime. However, even the most,
expensive dynamic programming searches are still quite fast compared to other aspects of
VLSt design — such as check plotting — so it is not unreasonable to usc dynamic program-
ming aways.

The work described in this paper has some resemblence to previous work on graph
theoretic approaches to partitioning [9], but the problem is somewhat more tractable when
trees arc involved. Also, theidea of doing the placement by recursively splitting the plane
into halves has been used before [6]. Not much h a s been done on automatically choosing
a network of PLA’s to irnplement a sequential circuit, though there has beensome work
done on optimizing single PLA’s(8]. A circuit redlization using a network of PLA’s is given
in [1], but the user must specify the splits with a hierarchical circuit definition.

The regular expression compiler is still undergoing improvements. Currently, the
ability to have numerous “output signals’ cmbedded in the expression is being incorporated.
Also, more PLLA optimizatlions arc going to bc donc. In particular, non-overlapping NI'A
states will bc delected and a group of such states can bc assigned binary-encoded state
identifiers. This should reduce the current tendeney for the PLA’s to bc fairly sparse.

i

References

There are plans to use the compiler to gencrate much of the control logic for a viLss chip
being designed.

Acknowled gcrnents

The regular expression compiler was originally designed and implemented by Jeff

Ullman at Standford University. The author has added the dynamic programming feature
and made various other improvements.

RCFCYCHCQS

1]

- 2]

(3]

(10]

[11]

[12)

R. Ayres. “Silicon Compilation — A Hierarchical Use of PLAs.” 16th Design
Automation Conf. Proceedings, pp. 314-326, June 1979.

R.W. Floyd, and J.D. Ullman. “The Compilation of Regular Expressions into
Inegrated Circuits.” Tech. Rep. STAN- CS- 80- 798, Stanford Cornputcr Science
Dept., April 1980.

M.J. Foster, and M.T. Kung. “PRA: Programmable Building Blocks for Recognizing
Regular L.anguages in VLSI.” Unpublished memorandum, Dept. of Cornputer Science,
Carnegie-Mellon, 1981.

JP. Gray. “Introduction to Silicon Compilation.” 16" Design Automation Conf.
Proceedings, pp. 305-306, June 1979.

D. Johannsen. “Bristle Blocks, A Silicon Compiler.” 16" Design Automation
Conf. Proceedings, pp. 310-313, Junc 1979.

U. Lauther. “A Min-Cut Placement Algorithm for General Cell Assemblies Based
on a Graph Representation.” 16*™ Design Automation Conf. Proceedings, pp. 1-10,
June 19729

A. Mukhopadhyay. ‘(Hardware Algorithms for Non-numeric Computation.” IEEE
Transactions on Computers, C-28, No. 6, pp. 384-393, June 1979.

J.P. Roth. “Programmed Logic Array Optimization.” IEEE Transactions on
Computers, C-27, No. 2, pp. 174--176, February 1978.

D.G. Schweikert, B.W.Kernighan. “A Proper Modd for the Partitioning of Electric
Circuits.” 8" Design Automation Workshop Proceedings, pp. 56-62, June 1972.

D.P. Sicwiorck, M.R. Barbacci. “The CMU W-CAD System — An Innovative
Approach to Computer Aided Design.” AFKPS Fall Joint Computer Conference,
Vol. 45, 1976.

J.D. Williams. “STICKS — A Graphica Compiler for High Lcvel LSl Design.”
National Computer Cenf. Proceedings, pp. 289-295, 1978.

G. Zimmerman. “Cost Performance Analysis and Optimization of Ilighly Parallel
Computer Structures. First Results of a Structured Top-Down Design Method.” 4th

International Symposium on Computer Hardware Description Languages, October
1979.

