
Scptcmbcr 1981 Report. No. STAN-CS-8 l-875

Computation of Matrix Chain Products,
Part I, Part II

bY

T. C. Hu and ICI. ‘I‘. Shirig

Department of Computer Science

Stanford University
Stanford, CA 94.305

Computation of Matrix Chain l’ro(l\tcts, I’art [

‘I’. C. 1-1~ a n d M . T . S h i n g

University of California, San Diego

L a J o l l a , CA 9 2 0 9 3 .

Abstract:

This’ paper considers the computation of matrix chain products

o f t h e f o r m M l x M2 X l l l X &f
n - l l

If the matrices are of different

dimensions, the order in which the product is computed affects the

number of operations. An optimum drder is an order which minimizes

the total number of operations. We present some theorems about

an optimum order of computing the matrices. Based on these

theorems, an O(n log n) algorithm for finding an optimum order is

presented in part II.

This research was supported in part by National Science Foundation

g r a n t MCS-77-23738 a n d U . S . A r m y Re-search Office grant:

DAAG2940-C,OO29.

1 .

1. Jnt reduction- - _--

M =M1 XM2X l **e X M
n - l (1)

w h e r e M
i

is a \v, x w
i+ 1

matrix,
1

Since matrix multiplication satisfies
w

the associative law, the final result M in (1) is the same for all orders

of multiplying the matrices. However, the order of multiplication

greatly affects the total number of operations to evaluate M . The

problem is to find an optimum order of multiplying the matrices such

that the total number of operations is minimized. Here, we assume that

the number of operations to multiply a pxq matrix by a q x r matrix

is pqr.

In c11171 l a dynamic programming algorithm is used to find an

3
optimum order. The algorithm needs O(n) time and O(n’) space. In 121,

Chandra proposed a heuristic algorithm to find an order of computation which

requires no more than 2T operations where To
0

is the total number of opera-

tions to evaluate (1) in an optimum order. This heuristic algorithm needs

only O(n) time. Chin 131 proposed an improved heuristic algorithm to give an

order of computation which requires no more than 1, 25 T
0 ’

Thi

heuristic algorithm also needs only O(n) time.

s improved

In this paper we first transform the matrix chain product problem into

a problem in graph theory - the problem of partitioning a convex polygon into

non-intersecting triangles, see [9][lO][ll][lZ], then we state several theo-

rems about the optimum partitioning problem. Based on these theorems, an

O(n log n) algorithm for finding an optimum partition is developed.

2

.

2. I’artitioning a convex polygot~- - - ---..--me--- - -

C;ivell an n- siclcd convex polygon, SUC~I a~ tllc? hexagon S~OWII i n

Fig. I, the nutnbcr of ways to partition the polygon into (n-2) triangles

by non-intersecting diagonals is the Catalan nurpbers (see for example,

Gould 181). Thus, there are 2 ways to partition a convex quadrilateral,w

5 ways to partition a convex pentagon, and 14 ways to partition a c o n v e x

hexagon.

Let every vertex V.
1

of the polygon have a positive weight w.. We
1

can define the cost of a given partition as foll(>ws: The cost of a triangle

is the product of the weights of the three vertices, and the cost of parti-

tioning a polygon is the sum of the costs of all its triangles. For example,

the cost of the partition of the hexagon in Fig. I is

w1w2w3 + w1w3ur6
-I- W3W4W6 i- W4W5W6. (2)

F i g . 1

3

If WC crasc t h e diaKona1 f r o m V3 t o VG ant1 rc!pl.ace it 1)~ the d i a g o n a l.

from VI to V4 P then the cost of the new partition will be

w1w2w3 t w w w1 3 4fwww
1 4 6

t w w w
456 l

(3)

We will prove that an order of-multiplying (n- 1) matrices corre -

sponds to a partition of a convex polygon with n sides. The cost of the

partition is the total number of operations needed in multiplying the

matrices . For brevity, we shall use n-gon to mean a convex polygon

with n sides, and the partition of an n-gon to mean the partitioning of an

n-gon into (n-2) non-intersecting triangles.

For any n-gon, one side of the n-gon will be considered to be

its base, and will usually be drawn horizontally at the bottom such as

the side VI-V
6

in Fig. 1. This side will be called the base, all other

sides are considered in a clockwise way. T h u s , V 1-V2 is the first

side, V2-V3 the second side,. . . , and V5-V6 the fifth side.

The first side represents the first matrix in the matrix chain and

the base represents the final result M in (1). The dimensions of a matrix

are the two weights associated with the two end vertices of the side. Since

the adjacent matrices are compatible, the dimensions w1 yw2, w2xw3,

#W X W can be written inside the vertices as w , w1 2’...‘Wn l The. . .
n- 1 n

diagonals arc the partial prodncts. A partition of nn n-Eon corresponds

to an alphabetic tree of n-l leaves or the parenthesis problem of n-l

symbols (see, for example, Gardner [6]) . It is easy to see the one-to-

one correspondence between the multiplication of n-l matrices to either

4

the alphabetic binary tree or the parenthesis problem of n- ; sytrhl s.

Here, we establish the correspondence between the matrix-chain product

and the partition of a convex polygon directly.

Lemma 1. Any order of multiplying n-l matrices corresponds to a
s

partition of an n-gon.

Proof. We shall use induction on the number of matrices. For two

matrices of dimensions w Xw
1 w x w2’ 2 3’

there is only one way of multi -

plication, this corresponds to a triangle where no further partition is

required. The total number of operations in multiplication is w, w2w3t

the product of the three weights of the vertices. The resulting matrix h a s

d i m e n s i o n w1 X w3 . For three matrices, the two orclers of multiplication

W1xM2) X M3 and Mlx(M2XM3) correspond to the two ways of parti-

tioning a 4-gon. Assume that this lemma is true for k matrices where

k <n-Z, and we now consider n-l matrices. The n-gon is shown in

Fig. 2 .

Fig. 2

5

Let the order of multiplication be represented by

M = (M1XM2X”’ xMp $x(M
P

x***XMn I) .

i.e., the final matrix is obtained by multiplying a matrix of dimension

(w 1X wp) and a matrix of dimension (wpXwn). Then in the partition of the

n-gon, we let the triangle with vertices VA and Vn have the third vertex V .
P

The polygon VI-V2- l l 9 -V is a convex polygon of p sides with base V
P IVP

and its partition corresponds to an order of multiplying matrices M 1 9**** Mp-19

giving a matrix of dimension wlX w .
P

Similarly, the partition of the polygon

vP-vP+l- . l l

- V withbase V -V corresponds to an order of multiplying
n P n

matrices M
P
,...,Mn 1, giving a matrix of dimension w Xw . Hence the

P n

t r i a n g l e V V V with base V
1 P”

1 - V
n

represents the multiplication of the two

partial products, giving the final matrix of dimension w1 Xw . n
n

Lemtna 2. The minimum number of operations to evaluate the following

matrix chain products are identical,

M1XM2x-xMn 2XMn 1

Mn XMIX-.XM
n-3

XM
n - 2

.

.

.

M2YM3x-•X Mn]Xbl
11

whcrc M, 11as dirtlellsion wi Y xvi+, ant1 wnWtl z w , . Note? that i n tl~(t
1

first matrix chain, the resulting matrix is of dimension w, by wn , In

the last matrix chain, the resulting matrix is of dimension w2 by w1 .

nut in all the cases, the total number of operations in the optimum orders

o f m u l t i p l i c a t i o n i s the sarilc.

6

t

Proof.-_I_ The cyclic permutations of the n-l matrices all correspond to.

tile s a m e n - g o n alld 111\1s have I hc s;tI11c optitl1\lm p a r t i t i o n s . I

(This Lemma was obtained independently in [lr] with a long proof,)

From now on, we shall concentrate only on the partitioning

problem. s

The diagonals inside the polygon are called arcs. Thus, one

easily verifies inductively that every partition consists of n-2 triangles

formed by n-3 arcs and n sides.

In a partition of an n-gon, the degree of ;\ vcrtcx i s the ni.unber

of arcs incident on the vertex plus two (since there are two sides

incident on every vertex).

Lemma 3. In any partition of an n-gon, n 2 4, there are at least two

triangles, each having a vertex of degree two. (For example, in Fig. 1, the

triangle V V V
1 2 3

has vertex V2 with degree 2 and the triangle V4V5V6 has

vertex V 5 with degree 2.) (See also [5] .)

Proof. In any partition of an n-gon, there are n- 2 non-intersecting

triangles formed by n-3 arcs and n sides . And for any n 2 4, no

triangle can be formed by 3 sides. Let x be the number of triangles

wi!h two sides and one arc, y b e tllc n u m b e r o f triangles will1 017~ sjclc,

and t w o arc9, and z l)c the n~lml>cr o f trinllglcs wiI t1 fl~r(~c arv.9.

Since an arc is’used in two triangles, we have

x t 2y t 32 = 2(n-3) .

7

A

3

Since the polygon has n sides, we have

2xty=n .

From (4) and (5), we get
w

3x = 37,+-G .

Since z 2 0, we have x 2 2 . m

L e m m a 4 . Let P and P’ both be n-gons where the corresponding

weights of the vertices satisfy w
i

< w.’ ,
1

then the cost of an optimum parti-

tion of P is less than or equal to the cost of an optimum partition of P’ .

Proof. Omitted. n--I_

If we u s e C(wl, w2, w3, . l . * wk) to mean the minimum cost of

partitioning the k-gon with weights wi optimally, Lemma 4 can be

stated as

C(wl, Wz’. . . ,W,) 5 C(w,‘,w2/1.. . ,wi) i f wi 5 WI .

We say that two vertices arc connected in an optimum partition

if the two vertices are connected by an arc or if the two vertices are

adjacent to the same side.

In the rest of the paper, we shall use VI, V2, . . . , Vn to denote

vertices which are ordered according to their weights, i. e. w 5 w <, l , < w
1 2 n’

To facilitate the presentation, we introduce a tie-breaking rule for vertices

of equal weights,

If there are two or more vertices with weights equal to the smallest

weight w
1 ’

we can arbitrarily choose one of these vertices to be the vertex

V
1.

Once the vertex V1 is chosen, further ties in equal weights are resolved

by regarding the vertex which is closer to V1 in the clockwise direction to be

of less weight. With.this tie-breaking rule, we can unambiguously label the

vertices V l’vz, . . . , Vn for each choice of V 1. A vertex Vi is said to be

smaller than another vertex V, , denoted by V, < V, , either if w, C w. or if
3 1 J 1 3

W. = w. a n d i< j. We say that V
1 3

i is the smallest vertex in a subpolygon

if it is smaller than any other vertices in the subpolygon.

After the vertices are labeled, we define an arc V
i
-Vj to be less than

another arc V -V
P q

if min(i, j) < min(p, q)

or I min(i, j) = midp, q)

max(i, j) C max(p, q) .

(For example, the arc V3-V is less than the arc V4-VS.) Every partition of
9

an n-gon has n-3 arcs which can be sorted from the smallest to the largest

into an ordered sequence of arcs, i.e., each partition is associated with a

unique ordered sequence of arcs. We define a partition P to be lexicographi-

tally less than a partition Q if the ordered sequence of arcs associated with

P is lexicographically less than that associated with Q.

When there is more than one optimum partition, we use the,

1 -optimum partition (i. e., lexicographically-optirnum partition) to mean

the lexicographically smallest optimum partition, and use an optimum parti-

tion to mean some partition of minimum cost.

We shall use V , V
a b,.*’

to denote vertices which are unordered

in weights, and T
ijk

to denote the product of the weights of any three

v e r t i c e s Vi, Vj a n d Vk.

Theorem 1. For every way of choosing V1, V2, l . . (as prescribed), there

is always an optimum partition containing Vl -V2 and V1 -V3. (H e r e , VI-V2

and Vl-V3 may be either arcs or sides.)

Proof: The proof is by induction. For the optimum partitions of a triangle
*-

and a 4-gon, the theorem is true. Assume that the theorem is true for all

k-gons (3 5 k 5 n- 1) and consider the optimum partitions of an n-gon,

From Lemma 3, in any optimum partition, we can find at least two

vertices having degree two. Call these two vertices Vi and V. . We can
3

divide this into two cases.

(i) One of the two vertices Vi (or V.) is not V
3

1t V20r Vg in some optimum

partition of the n-gon. In this case, we can remove the vertex Vi with

its two sides and obtain an (n-l)-gon. In this (n-1)-gon, V
1’

V2, V3

are the three vertices with smallest weights. By the induction assump-

tion, V1 is connected to both V 2 and V3 in an optimum partition.

10

(ii) Consider the complementary case of (i), in all the optimum partitions of

the n-gon, all the vertices with degree two are from the set [V pp31*

(In this case, there will be at most three vertices with degree two in every

optimum partition.) We have the following three subcascs:

(a) V.
1

= V2 and V.
3

= V3 in some optimum partition of the n-gon,

i . e . , both V2 and V3 have degree two simultaneously, In this

case, we first remove V2 with its two sides and form an (n-l)-gon.

By the induction assumption, Vl, V3 must be connected in some opti-

mum partition, If Vl-V3 appears as an arc, it reduces to (i). So

Vl-V3 must appear as a side of the (n-1)-gon, and reattaching V2 to

the (n-1)-gon shows that either V 1, V2 and V3 are mutually adjacent

or Vl-V3 is a side of the n-gon. In the former case, the proof is

complete, so we assume that V l-V3 is a side of the n-gon. Simi-

larly, we can remove V3 with its two sides and show that V V
1’ 2

are connected by a side of the n-gon.

04 V.1
= V l and V .

3
= V2 in some optimum partition of the n-gon,

i.e., Vl and V2 both have degree two simultaneously. In this

case, we can first remove V
1

and form an (n-l)-gon where V 2’ v3’

V4 are the three vertices with smallest weights. By the induction

assumption, V2 is connected to both V3 and V4 in an optimum

partition. If V2-V3 or V2-V4 appears as an arc, it reduces to (i).

Hence, V2-V3 and V2-V4 must both be sides of the n-gon. Simi-

larly, we can remove V2 with its two sides and form an (n-1)-gon

where V V
1’ 3’

V4 are the three vertices with smallest weights.

11

Again, Vl must be connected to V3 and V4 by sides of the n-gon.

But for any n-gon with n z 5, it is impossible to have V3 and V4

both adjacent to Vl and V at the same time, i .e . , V and V2 1 2

cannot both have degree two in an optimum partition of any n-gon

with n 2 5.

(c) v = V1’ v . = v3 in some optimum partition of the n-gon. By
i 3

argument similar to (b), we can show that V2 must be adjacent

to Vl and V3 in the n-gon. The situation is as shown in Fig. 3(a).

Then the partition in Fig. 3(b) is cheaper because

T
123’ T12q

qwl,w , w ,WtrWx~wp9W3) 1s C(w2’wq’wyPwt’wx’Wp
3,)

and
q Y

according to Lemma 4. n

(0) 0))
Fig. 3

Corollary 1. For every way of choosing Vl, V2,. . . (as prescribed), the

I -optimum partition always contains Vl-V2 and V -V3,
1

Proof: It follows from Theorem 1 and the definition of the 1 -optimum

partition. n

12

.

Once we know V 1 -V2 and Vl -V3 always exist in the 1 -optimum parti-

tion, we can use this fact recursively. Hence, in finding the P -optimum L

partition of a given polygon, we can decompose it into subpolygons by joining

the smallest vertex with the second smallest and third smallest vertices

repeatedly, until each of these subpolygons has the property that its smallest

vertex is adjacent to both its second smallest and the third smallest vertices.

A polygon having Vl adjacent to V2 and V3 by sides will be called

a basic polygon.

Theorem 2. A necessary but not sufficient condition for V2-V3 to exist in an

optimum partition of a basic polygon is

1 1 1 1
-t-5z---t-
w1 w4 w2 w3

Furthermore, if V2-V3 is not present in the I -optimum partition,

then Vl, V4 are always connected in the 1 -optimum partition.

Proof. If V2, V3 are not connected in the B -optimum partition of a basic

polygon, the degree of V
1

is greater than or equal to 3. Let VP be a vertex

in the polygon and V 1, VP are connected in the 1 -optimum partition. V4 is

either in the subpolygon containing V 1, V2 and VP or in the subpolygon con-

ta in ing Vl , V3 and V . In either case, V4 will be the third smallest vertex
P

in the subpolygon. From Corollary 1 , Vl , V4 are connected in the P -optimum

partition of the subpolygon and it also follows that Vl, V4 are connected in the

1 -optimum partition of the basic polygon.

13

If V2, V3 are connected in an optimum partition, then we haGe an

(n-1)-gon where V
Ih

2 is the smallest vertex and V4 is the third smallest

vertex. By Theorem 1, there exists an optimum partition of the (n-1)-gon

in which V 2, V4 are connected. Thus by induction on n, we can assume

that V4 is adjacent to V 2 in the basic polygon as shown in Fig. 4(a).

Fig. 4

The cost of the partition in Fig. 4(a) is

T
123

t C(w2,w4 ,..a, Wt�...�W3)
l

And the cost of the partition in Fig. 4(b) is

(7 1

T
124

tc(wl�w4 ,..., Wt�...�W3) l (8)

14

According to Lemma 4, .

C(Wl’ w4, . . .) Wt,. . .) w,) *z Cb2,W4’ l l l ,wt,. l l ‘W3) l (7)

Since the weights of the vertices between V4 and V in the clockwise direction
3

are all greater than or equal to w 4, the difference between RHS and LHS

of (9) is at least -

T
243 - T143 l

SO the necessary condition for (7) to be no greater than (8) is

or

T123 + T243
ST

124
4-T

134

5 l5 l+ l- - - - . n
w1 w4 w2 w3

(10)

Lemma 5. In an optimum partition of an n-gon, let V
X ’

Vy, V , and V be
Z W

four vertices of an inscribed quadrilateral (V and Vz are not adjacent inX

the quadrilateral). A n e c e s s a r y c o n d i t i o n f o r Vx-Vz t o e x i s t i s

l+l l+ l-2- - .
W W W W

X Z Y w

Proof : The cost of partitioning the quadrilateral by the arc Vx-Vz is

T -l-T
XYZ xzw

and the cost of partitioning the quadrilateral by the arc V -V is
Y w

T tT
Xyw yzw l

For optimality, we have (11) s (12) which is (10). n

(11)

(12)

15

L

Note that if strict inequality holds in (lo), the necessary condition is

also sufficient. If equality holds in (lo), the condition is sufficient for Vx-V
Z

to exist in the 1 -optimum partition provided min(x, z) < min(y, w), This lemma

is a generalization of Lemma 1 of Chin [3] where V is the vertex with the
Y

smallest weight and Vx, V , Vz are three consecutive vertices with ww
W

-

greater than both w and w
X Z.

A partition is called stable if every quadrilateral in the partition

satisfies (10).

Corollary 2, A n optimum partition is stable but a stable partition may not

be optimum,

Proof . The fact that optimum partition has to be stable follows from Lemma 5.

Figure 5 gives an example that a stable partition may not be optimum. n

. r

(a) a stable partition (b) the optimum partition

F i g . 5

In any partition of an n-gon, every arc dissects a unique quadri-

l a t e r a l . L e t V V V V be the four vertices of an inscribed quadri-
x’ y’ z* w

lateral and V -V be the arc which dissects the quadrilateral. We define
x z

V -V to bc a vertical arc if (13) or (14) is satisf ied.
x z

16

min(w
X

,wz) = min(wy, w)
\V

I
m a x (w , w) 5 max(w , w

x z Y w) I

We define V
X

-Vz to be a horizontal arc if (15) is satisfied

min(w xI w7)) min(w , w)4 Y w

max(w , W) < max(w , w)
x z’ Y w

1%
05)

I

and v-arcs to denote horizontal arcsFor brevity, we shall use h-arcs

and vertical arcs from now on.

Corollary 3. All arcs in an optimum partition m~lst bc cithc r vertical

arcs or horizontal arcs.

P r o o f : L e t V - V be an arc which is neither vertical nor horizontal.
x z

There are’two cases:

Case 1.

and

min(w
x9 wz’

= min(w , ww)
Y

max(w ,
X

wz) Y m a x (w , w)
Y w

Case 2. min(w
x’ 8

WY) > m i n (w #W)
Y w

and max(w , w7)2 mnx(w’,w) .
x J Y w

In both cases, the inequality (10) in Lemma 5 cannot be satisfied.

This implies that the partition is not stably anrl llcnrct canno I)(% opfim~~rn. U

17

Thcorcm 3. TJct V and Vz be two arbitrary vcrticcs which arc ndt adjacent
X

in a polygon, and VW be the smallest vertex from Vx to v in the clockwise
z

manner (V # Vx, VW # VI), a n d V be the smallest vertex from V
Y

7 to v
1 X

W ,

in the clockwise manner W # V v # Vz). This is shown in Fig. 6 where
Y x’ Y -

without loss of generality , we assume that Vx < Vz and Vy < VW. A

necessary condition for V -
X

Vz to exist as an h-arc in the I -optimum

partition is that

w cw SW <w
y x z w*

(Note that the necessary condition still holds when the positions of V and V
Y W

are interchanged.)

Proof, The proof is by contradiction. I f wx I: w , wx must be equal to
Y

the smallest weight w
1

a n d V - V can never satisfy (15). IIence, i n
x z

order that V
X

-Vz exists as an h-arc in the J! -optimum partition, we must

have w < w c w . Since V is the smallest vertex from V to V in
Y x z Y Z X

the clockwise manner and V < V we must have V = v
X WS Y 1’

18

Assume for the moment that V 3 C Vx < Vz . From Corollary 1,

both Vl -V2 and Vl-V3 exist in the ! -optimum partition, and the two arcs
.

would divide the polygon into subpolygons. If Vx and V are in different
Z

subpolygons, then they cannot be connected in the I -optimum partition.-

Without loss of generality, we can assume that the polygon is a basic polygon.
-

In this basic polygon, either V2-V3 or V1 -V4 exists in the 1 -optimum

partition (Theorem 2).

If V2’ V3 are connected, then Vx and Vz are both in a smaller polygon

in which we can treat V 2
as the smallest vertex and repeat the argument. If

V1’ V4 are connected, the basic polygon is again divided into two subpolygons

and Vx and Vz both have to be in one of the subpolygons and the subpolygon has

at most n-l sides, (Otherwise V
X

-Vz can never exist in the I -optimum

partition.) The successive reduction in the size of the polygon will either

make the connection V -Vz impossible, or force Vx and Vz to become the
X

second smallest and the third smallest vertices in a basic subpolygon. Let Vm

be the smallest vertex in this basic subpolygon. In order that Vx-Vz appear

as an h-arc, we must have wx> w
m*

From Theorem 2, the necessary condi-

tion for Vx-Vz (i.e. V2-V3) to exist in an optimum partition of the subpolygon

is
1 1

5 l- t - - 2 - - .
W W W W

X Z m W

Since wx > w the inequality is valid only if wz < ww . q
m ’

Corollary 4. A weaker necessary condition for Vx-Vz to exist as an h-arc

in the 1 -optimum partition is that

vy<vx<v <v
Z w l

Proof. This follows from Theorem 3. m

19

We call any arc which satisfies this weaker necessary condition a.

potential h-arc. Let P be the set of potential h-arcs in the n-gon and Ii

be the set of h-arcs in the 1 -optimum partition, we have P 2 H where the

inclusion could be proper.

Corollary 5. Let VW be the largest vertex in the polygon and V and V
X Z

be its two neighboring vertices. If there exists a vertex V such that
Y

vY < vx and v < v ’Y z
then Vx-Vz is a potential h-arc.

Proof. This follows directly from Corollary 4 where there is only one vertex

between V and V m
X z l

Two arcs are called compatible if both arcs can exist simultaneously

in a partition. Assume that all weights of the vertices are distinct, then there

are (n-l)! distinct permutations of the weights around an n-gon, F o r

example, the weights 10, 11, 25, 40, 12 in Fig. 5(a) correspond to the

permutation wl, w2, w4, w5, w3 (w h e r e w1 < w2 < w3 < w4 < w5). There

are infinitely many values of the weights which correspond to the same per-

mutation. For example, 1, 16, 34, 77, 29 also corresponds to wl,w2,w4,w5,w3

but its optimum partition is different from that of 10, 11, 25, 40, 12. However,

all the potential h-arcs in all the n-gons with the same permutation of weights

are compatible, We state this remarkable fact as Theorem 4.

Theorem 4, All potential h-arcs are compatible.

Proof. The proof is by contradiction. Let V V , V and V
x’ y z

be the four
W

vertices described in Theorem 3. Hence, we have V < V < Vz < V
Y x W

20

and V - V i s a potential h - a r c . L e t V -V be a potential h--arc which is not
x z P q

compatible to V -V , as shown in Fig. 7.
x z

Without loss of generality, we

can assume V < V . (The proof for the case V < Vm is similar to that
P

which follows.)

Since V
W

manner, we have

Fig. 7

is the smallest vertex between V and V in the clockwise
X Z

v <v cv
Z W 9’

H e n c e , w e h a v e e i t h e r V < VP < V < V
Y Z q

Or v +=v<vP<v l

Both cases violate Corollary 4 and V - V cannot
Y z q P q

be a potential h-arc. l

Note that the potential h-arc V
X

-Vz always dissects the n-gon into two

subpolygons and one of these subpolygons has the property that all its vertices

except Vx and Vz have weights no smaller than max(wx, w). WC shall call this
Z

subpolygon the upper subpolygon of Vx-Vz . For example, the subpolygon

V - . . . - V - . . . - V - . . . -
X W q

Vz in Fig. 7 is the upper subpolygon of V -V .
x z

21

Using Corollary 4 and Theorem 4, we can generate all the potential

h-arcs of a polygon.

L e t Vx-Vz be the arc defined in Corollary 5 , i. e. Vl < Vx < Vz < VW .

The arc V -V
x z

is a potential h-arc compatible to all other potential h-arcs in

the n-gon. Furthermore, there is no other potential h-arc in its upper subpoly-

gon. Now consider the (n- 1)-gon obtained by cutting out VW. In this (n- l)-

gon, let Vw, be the largest vertex and Vx , and Vz , be the two neighbors of

V ThenV ,-V , is again a potential h-arc
W

I where V1 c Vx,< V ,< V
Z w� l X Z

compatible to all other potential h-arcs in the n-gon and there is no other

potential h-arc in its upper subpolygon which has not been generated. This

is true even if Vw is in the upper subpolygon of Vx, -Vz I. If we repeat the

process of cutting out the largest vertex, we get a set P of arcs, all arcs

satisfy Corollary 4. The h-arcs of the J! -optimum partition must be a

subset of these arcs.

The process of cutting out the largest vertex can be made into an

algorithm which is O(n). We shall call this algorithm the one-sweep

algorithm. The output of the one-sweep algorithm is a set S of n-3 arcs.

S is empty initially.

The one - sweep algorithm:

Starting from the smallest vertex, say V1, we travel in the clockwise direc-

tion around the polygon and push the weights of the vertices successively onto

the stack as follows (wl will be at the bottom of the stack).

(a) Let Vt be the top element on the stack, Vt 1 be the element immedi-

ately below V
t ’

and Vc be the element to be pushed onto the stack.

22

If there are two or more vertices on the stack and wt > w , add
C

V t 1 -Vc to S, pop Vt off the stack; if there is only one vertex o n

the stack or wt 5 w , push wc onto the stack. Repeat this step
C

until the n
th

vertex has been pushed onto the stack.

(b) If there are more than three vertices on the stack, add Vt 1-V
C

to S, pop Vt off the stack and repeat this step, else stop.

Since we do not check for the existence of a smallest vertex whose

weight is strictly no larger than those of the two neighbors of the largest ver-

tex, i. e. the existence of the vertex V in Corollary 4, not all the n-3 arcs gen-
Y

erated by the algorithm are potential h-arcs. However , it is not difficult to

verify that the one-sweep algorithm always generates a set S of n-3 arcs

which contains the set P of all potential h-arcs which contains the set H of

all h-arcs in the 1 -optimum partition of the n-gon, i.e.,

where each inclusion could be proper. For example, if the weights of the

vertices around the n-gon in the clockwise direction are w , wl 2’...‘Wn

where w SW I**# IW
1 2 n’

none of the arcs in the n-gon can satisfy

Corollary 4 and hence there are no potential h-arcs in the n-gon. The one-

sweep algorithm would still generate n-3 arcs for then-gon but no.ne of the

arcs generated is a potential h-arc.

23

3. Conclusion .

In this paper, we have presented several theorems on the Polygon

Partitioning Problem. Some of these theorems are characterizations of the

optimum partitions of any n-sided convex polygon, while the others apply

to the unique lexicographically smallest opZimum partition. Based on these

theorems, an O(n) algorithm for finding a near-optimum partition can be

developed [121. Th e cost of the partition produced by the heuristic algorithm

never exceeds 1, 155 Copt, where Copt is the optimum cost of partitioning

the polygon. An O(n log n) algorithm for finding the unique lexicographically

smallest optimum partition will be presented in part II.

4. Acknowledgment

The authors would like to thank the referees for their helpful

comments in revising the manuscript.

24

References .

1. A . V . Aho, J . E . IIopcroft ,and J . D. Ullman, “The TIesign a11d

Analysis of Computer Algorithms, ” Addison-Wesley, 1974,

2. A. I<. C h a n d r a , “Computing Matrix Chain Product in Near Optimum

3.

4.

5.

6,

7.

8.

v

Time, ” IBM Res. Report RC5626 (#24393), IBM Thomas J. Watson

Research Center, Yorktown Heights, NY, 1975.

F. Y. C h i n , “An O(n) Algorithm for Determining a Near Optimal

Computation Order of Matrix Chain Product, ” Communication

of ACM, Vol . 21 , No. 7 , July 1978, pp. 544-549.

L. E. Deimel , Jr , and T. A. Lampe, “An Invariance Theorem

Concerning Optimal Computation of Matrix Chain Products, ”

North Carolina State Univ. Report TR79- 14.

G , A . Dirac , “On rigid circuit graphs, ” Abh. Math. Sem., Univ.

Hamburg, 25, pp. 71-76 (1961).

M. Gardner, “Catalan numbers, ” Scientific American, June 1976,

pp. 120- 124.

S . S . Godbole, “An Efficient Computation of Matrix Chain Products, ”

IEEE Trans. C o m p u t e r s C - 2 2 , 9 Sept. 1973, pp. 864-866.

H. W. Gould, “Bell and Catalan Numbers, ‘I Combinatorial Research

Institute, Morgantown, W. Va., June 1977.

T, C, Hu and M. T. Shing, “Computation of Matrix Chain Product, ”

Abstract . A m . Math. Sot., Vol. 1, No. 3, p. 336, April 1980.

25

10 . T, C, Hu and M. T. Shing, “Some Theorems about Matrix Multiplica-

tions, ” Proceedings of the 21st Annual IEEE Symposium on the

Foundation of Computer Science, Oct. 1980, pp. 28-35.

11. ‘I’. C, Hu and M. T. Shing, ,“Computation of Matrix Chain Products, ‘I

Proceedings of 1981 Army Numerical Analysis & Computations

Conference, August 1981, pp. 615-628.

12. T. C. HU and M. T. S h i n g , “An O(n) Algorithm to Find a Near-Optimum

Partition of a Convex Polygon, I’ to appear in the Journal of Algorithms.

26

Rev. August 10, 1981

Computation of Matrix Chain Products, Part II

T. C. Hu and M. T. Shing

University of California, San Diego

La Jolla, CA 92093

Abstract:

This paper considers the computation of matrix chain products

of the form Ml x M2 X . . . X M
n - l ’

If the matrices are of different

dimensions, the.order in which the matrices are computed affects the

number of operations. An optimum order is an order which minimizes

the total number of operations. Some theorems about an optimum order

of computing the matrices have been presented in part I. Based on

those theorems, an G(n log n) algorithm for finding the optimum order

is presented here.

This research was supported in part by National Science Foundation

g r a n t MCS-77-23738 and U.S. Army Research Office grant

DAAG29-80-C-0029.

1. Introduction
.

In Part I of this paper, we have transformed the matrix chain

product problem into the optimum partitioning problem and have stated

several theorems about the optimum partitions of an n-sided convex polygon.

Based on these theorems, we now present algorithms for finding the unique

1 -optimum (lexicographically smallest optimum) partition.

Using the same notation as in Part I of this paper, we can assume

that we have uniquely labelled all vertices of the n-gon. A partition is

called a fan if it consists of only v-arcs joining the smallest vertex to all

other vertices in the polygon. We shall denote the fan of a polygon_-

vl-vb-v - l **

C

-Vn by Fan(wl Iwb, WC,. . . y w). The smallest vertex Vl
n

is called the center of the fan.

We define a vertex as a local maximum vertex if it is larger than its

two neighbors and define a vertex as a local minimum vertex if it is smaller

than its two neighbors. A polygon is called a monotone polygon if there

exists only one local maximum and one local minimum vertex. We shall

first give an O(n) algorithm for finding the 1 -optimum partition of a mono-

tone polygon and then give an O(n log n) algorithm for finding the 1 -optimum

partition of a general convex polygon.

2. Monotone Basic Polveon

In this section, let us consider the optimum partition of a monotone

polygon, i. e. a polygon with only one local minimum vertex and one local

maximum ve r tex. It follows from Corollary 1 of Part I that we can

2

consider a monotone basic polygon only. The understanding of this special case

is necessary in finding the optimum partition of a general convex polygon.

Consider a monotone basic n-gon Vl-V 2-Vc- l l l -V3, the fan of the

polygon is denoted by

Fan(wl /w2, wc9. l . , w,)

where the smallest vertex V
1

is the center of the fan.

The definition of a fan can also be applied to subpolygons as well. For

example, if V
2’ v 3

are connected in the basic n-gon and V 2 becomes the

smallest vertex in the (n- 1)-sided subpolygon, the partition formed by con-

necting V2 to all vertices in the (n- 1)-gon is denoted by

Fan(w21w ,...,w3) .
C

Lemma 1. If none of the potential h-arcs appears in the 1 -optimum parti-

tion of the n-gon, the 1 -optimum partition must be the fan of the n-gon.

Proof. From Theorem 3 of Part I, we know that any arc which exists as

an h-arc in the 1 -optimum partition must be a potential h-arc. Hence, if

the 1 -optimum partition does not contain any potential h-arc, the I -optimum

partition must be made up of v-arcs only. Hence, we have to show that

among all partitions which are made up of v-arcs only, the fan is (i) the

lexicographically smallest and (ii) one of the cheapest partitions in the n-gon.

(9 Since the fan consists of only v-arcs joining Vl to all other vertices

in the n-gon, it is by definition the lexicographically smallest- partition.

(ii) Suppose the 1 -optimum partition contains v-arcs only but is not the

fan. There must exist three vertices V., Vk, Vj such that the triangles
1

3

VIViVj and V.YVk are present in the 1 -optimum partition. Since, V -V
1 3 i j

is a v-arc (by assumption) and V
1

is the smallest vertex in the n-gon, we

I h a v e w l = min(w.,w,) and max(wi,wj) 5 wk. I f w e r e p l a c e t h e v - a r c
1 J

V - V b y t h e v - a r c Vl-Vk,
i j

we can get a partition whose cost is less than or

equal to that of the I -optimum partition but is lexcographically smaller

than the 1 -optimum partition, and results in a contradiction. n

L e t Vi-V. a n d V - V be two potential h-arcs of any n-gon. We
J P q

say that V. -V, is above V -V (and V
13 - P q

-V is below Vi-Vj) i f the upper
Pq -

subpolygon of V - V
P q

contains the upper subpolygon of V.-V. .
1 3

Let P be the set of all potential h-arcs in a monotone basic n-gon.
__. .- __

P can have at most (n-3) arcs.

Lemma 2. For any two arcs in P, say Vi-Vj and VP-V , we must have
q

either V.-V. above V
1 3

- V o r VP-Vq a b o v e V . - V . .
P q 1 3

Proof. By contradiction. Let Vi-V. and V -V be two arcs in P which
3 P q

do not satisfy this lemma. Then the intersection of the upper subpolygons

of Vi-V. and V - V must either be empty or consists of part of each upper
J P q

subpolygon only.

Since the vertices other than V,, V, in the upper subpolygon of
1 3

Vi-Vj must have weights larger than max(w., w.), the local maximum vertex
1 3

of the monotone basic polygon must be present in the upper subpolygon of

V.-V. .
1 3

Similarly, the local maximum vertex of the monotone basic polygon

must also be present in the upper subpolygon of V -V . Hence, the inter-
P q

sections of the upper subpolygons of V.-V. and V -V cannot be empty.
1 3 P q

4

.

From Theorem 4 of Part I, W C know that Vi-V. and V -V cannot
J P CI

cross each other and hence the intersection of their upper subpolygons

cannot consist of part of each upper subpolygons only. 6

We can actually show this ordering of potential h-arcs pictorially

by drawing a monotone basic polygon in such a way that the local maximum

vertex is always at the top and the local minimurn vertex is at the bottom.

Then a potential h-arc V.-V.
1 J

is physically above another potential h-arc

V,p-Vq if the upper subpolygon of V -V
P cl

contains the upper subpolygon of

V . - V . . From the definition of the upper subpolygon, we can see that
1 3

m i n (w . , w .) > m a x (w ,w) if Vi-V. is‘above V - V .
1 J P q 3 P q

Consider the monotone basic n-gon which is shown symbolically in

Figure 1. Vn is the local maximum vertex and Vi-V. , VP-Vq are potential
3

h-arcs of the monotone basic n-gon. The subpolygon V - l l l - Vi-V.-. l . -V
P 3 q

which is formed by two potential h-arcs V -V
P q

and Vi-V. and the sides of
J

the n-gon from V
P

to Vi and from Vj to Vq in the clockwise direction is said

to be bounded above by the potential h-arc V.
1
-Vj and bounded below by the

potential h-arc V -V ,
P q

5

Figure 1

Lemma 3. Any subpolygon which is bounded by two potential h-arcs of the

monotone basic n-gon is itself a monotone polygon.

Proof, Consider the subpolygon V - l l l -Vi-V.-. l . -V
P J q

in Figure 1.

Without loss of generality , we can assume Vi < V. and VP < V . Since
3 9

V
n

is the only local maximum vertex in the monotone basic n-gon, we must

have Vl < V <. 9 l < V. (V and V iV.>=.a>V >V
P 1 n n J q 1’

I-Icnce, V
P

is the unique local minimum vertex and V.
J

is the unique local maximum

v e r t e x i n t h e s u b p o l y g o n V - l l . - Vi-V. - l 0 l - V . By definition,
P J q

V _ . . . -V.-V.-. . . -v
P 1 3 q

is a monotone polygon. n

Lemma 4. Any potential h-arc of a subpolygon bounded aboye and below

by two potential h-arcs of the monotone basic n-gon is also a potential

h-arc of the monotone basic n-gon.

Proof. Consider the subpolygon V - l 9 l -Vi-V.- l l l -V Let
P 3 q

in Figure 1.

Vx-Vz be a potential h-arc in this subpolygon and VW is the smallest vertex

between

out loss

V
X

and Vz in the clockwise direction around the

of generality, we can assume V
i

<V. , VP <V
3 9

subpolygon. With-

and Vx < V .
Z

Since V is in the upper subpolygon of the potential h-arc V -V , we have
X P q

w1 < wp I wq < wx 5 wz . Since Vj < any vertex in the upper subpolygon

o f V . - V . a n d V -c v. < v. , VW is the smallest vertex between V and V in
1 J w.. 1 3 X Z

clockwise direction around the monotone basic n-gon. Hence, we have

“l<“x z w
<w <w a n d V - V

x z
is a potential h-arc of the monotone basic

n - g o n . b

We can now summarize what we have discussed. If there

is no h-arc in the l-optimum partition of a monotone basic

n-gon, the 1 -optimum partition must be a fan. Otherwise, the h-arcs in tne

P -optimum partition are all layered, one above another. If we consider the

local maximum vertex V and the local minimum vertex V
n 1

as two degen-

erated h-arcs , then the 1 -optimum partition of a monotone basic n-gon will

contain one or more monotone subpolygons, each bounded above and below

by two h-arcs and the 1 -optimum partition of each of these monotone sub-

polygons is a fan.

7

k

.

Then, in finding the I -optimum partition of a monotone basic polygon, we

have only to consider those partitions which contain one or more subpoly-

gons bounded above and below by potential h-arcs and each of these sub-

polygons is partitioned by a fan. Since there are at most (n-3) non-

degenerated potential h-arcs in a monotone basic n-gon, there will be at

most 2
n - 3

such partitions and we can divide all these partitions into

(n-2) classes by the number of non-degenerated potential h-arcs a partit ion

contains. These classes are denoted by HO,Hl,. . , , EIn 3 where the sub-

script indicates the number of non-degenerated potential h-arcs in each

partition of that class.

There is no potential h-arc in the partitions in the class H .
0

Hence the class consists of only one partition, namely the fan

Fan(wlI w2,. l l 9 w3)’

In the class H
1’

each partition has one non-degenerated potential

h-arc. Once the potential h-arc is known, the rest of the arcs must all be

vertical arcs forming two fans, one in each subpolygon.

Two typical partitions in Hl of a monotone basic polygon are shown

in Fig. 2. In Fig. 2a, there is one non-degenerated potential h-arc,

vc-v. w < V.).
1c 1

The upper subpolygon is a fan

Fan(wclwd,. . . ,w.)
1

and the lower subpolygon is a fan

Fan(wl Iw,, w 9 wi, w3) .
C

8

(a) cb)

Fig. 2 . Two typical partitions in IH
1

of a monoton
- lo-gon.

In Fig. 2b, there is one potential h-arc, V2-V
3 ’

and the upper

subpolygon is a fan

Fan(w2/w
C

, . . . , w3)

and the lower subpolygon is a degenerated fan, a triangle.

Assume that V
2-‘3

is the only h-arc, then the cost is (see Fig. 2b)

WlW2W3 ‘W2(WcWd ’ WdWe ‘W,Wf ‘W W ‘W W ’ whwi twiw3’

fg 60

= T123
t w2(wc : w3)) (1)

where w :w
c 3

is the shorthand notation of the sum of adjacent products from

wc to w3 in the clockwise direction.

Note that the cost of Ho of the polygon shown in Fig. 2 is

9

Fan(wl 1 wzy . . . p w3)

= w1(w2: w,)

.

(2)

The condition of (1) to be less than (2) is

w2 l (wc:w3)

(w :w) -w2*w
<W

2 3 3
1

Similarly, the condition for the partition in Fig. 2a to be less

than Ho is

w l (wd:w.)

C 1

b l w.
C
:w$-w

C 1

-=W
1 ’ (3)

We say that a partition is said to be 1 -optimal among the partitions

in a certain class (or several classes) if it is the lexicographically smallest

partition among all the partitions with minimum cost in that class (or

several classes). Hence, the I -optimum partition is I -optimal among all

partitions in the classes Ho, H , . . . , and Hn 3 .
1

Now, assume that the P-optimal partition among all the partitions in

H1,H 2 , . . . , H
n - 3

contains only one potential h-arc V -V only, as shown
i k

in Fig. 3. (Note that V.-Vk will exist in this partition as an h-arc.) This
1

partition will be the A’ -optimum partition of the monotone basic n-gon if it

costs less than that of the fan in H
0’

The condition that the partition with

Vi-Vk as the single h-arc costs less than Ho is

wi l (w. : Wk)

3
bV i: Wk) - w . * Wk

CM
1

if w. s w
1 k

1

or

10

Fig, 3 . A monotone polygon with a single h-arc.

w -
k (

w.:w)
1 g <w < w

(XV . : Wk) - wi l Wk 1
if w

k i
1

Combining the two inequalities above, we have

C(W.,...,Wk) -
1

<W (4)
(XV . : Wk) - wi l Wk

1
1

where C(w., . . . ,
1

w,) denotes the cost of the optimum partition of the

s u b p o l y g o n W . - W . - l l l - W -Wk and is equal to the cost of the fan in this
1 3 g

case.

An h-arc Vi-Vk which divides a polygon into two subpolygons is

called a positive arc with respect to the polygon if (4) is satisfied, i. e., the

partition with the arc as the only h-arc and a fan in each of the two subpoly-

gons costs less than the fan in the same polygon. Otherwise, it is called a

negative arc with respect to the polygon.

11

When an n-gon is divided into subpolygons, an h-arc is defined

as Positive in a subpolygon if the cost of partition of the s&polygon with

the h-arc as the only h-arc is less than the fan in the subpolygon.

Let us consider a partition with two h-arcs as shown in Fig. 4,

and assume that this partition is I -optimal among all partitions in the

classes H 2yH 9 l **9 H
3 n- 3 ’

Fig. 4. A m o n o t o n e 8-gon w i t h t w o h - a r c s .

I f vi-vk is positive with respect to the sllbpolygon

vl-v*-vP-vCv1 k’
then the condition analogous to (4) is

qw., w , w , w)
l-.-- -.-. -- ___-__

c(wi:w,,-[(w
P9---.------ < w

:w)-w * wql] - Wi’ Wk 1
P9 P

If Vi-Vk is positive with respect to the whole polygon

VI - Vi - l . l - Vn - . l l - Vk , then the condition is

12

(54

cbJ.,w ,w ,w ,w ,W Wk)
1 p r n s q ’
(wi:wk) - wi l Wk

<W
1 .

(5b)

Note that (5b) implies (5a).

The condition for the arc V -V to be positive with respect to
P q

the subpolygon V -V -V -V -V -V -V is
i p r n s q k

C(w,w,w,w w)
p r n s’ q

(w :w) - w -w
< min(wi, wk) .

Pq Pq
@a)

If the arc V
P

- Vq is positive with respect to the whole polygon

VI-V.-V - V - V - V -Vq-Vk, i t m u s t s a t i s f y (6b).
1 p r n s

aw ,w ,w ,w uJ 1
p r n s’4<w
b :w)-w -w 1 *

Pq Pq
(6b 1

S i n c e w1 < min(w., w k) ,
1

condition (6b) implies (6a).

Ilere, the presence of Vi -Vk will divide the original polygon

into two subpolygons where VP-Vq appears in the upper subpolygon.

If VP-Vq is a positive arc with respect to the original polygon, then

v -v is certainly positive in the upper subpolygon. But if V -V is
P q P 9

positive in the subpolygon, the arc V -V may become negative i f
P q

V.-Vk i s removed, i , e .
1

VP-Vq becomes negative with respect to the

original polygon.

Similarly, if the arc V
i
-Vk is positive with respect to a sub-

polygon, the arc V.-V
1 k

may become negative if the arc V -V is
P q

removed,

The preceding discussions can be summarized as Theorem 1.

13

Theorem 1 . If an h-arc is positive with rcspcct to a polygon then the------d

arc is positive with respect to any subpolygon containing that arc. If an h-a

is positive with respect to a subpolygon, it may or may not be positive with

respect to a larger polygon which contains the subpolygon. m

There are two intuitive approaches to the ! -optimum partition of

a monotone basic polygon. The first approach is to put in the potential

h-arcs one by one. Each additional potential h-arc will improve the cost

until the correct number of h-arcs is reached. Any further increase in

the number of h-arcs will increase the cost. To introduce an h-arc into

the polygon, we can test each potential h-arc (at most n-3) to see if it

is positive with respect to the whole polygon. If yes, that positive

arc must exist in the P-optimum partition, and the polygon will be

divided into two subpolygons, each being a monotone polygon. We can

repeat the whole process of testing positiveness of the h-arcs, The

trouble is that all these arcs may be negative individually with respect to

the whole polygon and yet HO may not-be the optimum. For example, two

arcs V.-V. and V
1 J

-V may be negative individually with respect to the
P q

whole polygon but the partition with both V.-V ., VP-Vq present at the
1 J

same time may cost less than H as shown in Fig. 5a.
0

This shows that

we cannot guarantee an optimum partition simply because no more

potential h-arcs can be added one at a time.

The second approach is to put all the potential h-arcs in first

and then take out the potential h-arcs one-by-one, where each deletion

rc

14

will dccrcasc the cost until the correct number of h-arcs is rcachcd.

Any further deletions w i l l increase the c o s t . Unfortunate3 y, even il

all h-arcs are positive with respect to their subpolygon, the parti-

tion may not bc optimum. I n F i g . 5b, each h-arc is positive

with respect to its local subpolygon but the partition is not optimum.

(Note that positiveness of an h-arc in a quadrilateral is the same as

stability, But the idea of stability applied to vertical arcs as well.)

This means that we cannot guarantee an optimum partition simply

because no h-arc can be deleted one at a time.

V
‘b

F i g . 5. Counter examples for the intuitive approaches.

15

Let us outline the idea of an O(n) algorithm for finding the I -optimum

partition of a monotone basic polygon. First, we get all the potential

h-arcs by the one-sweep algorithm. Then, we start from the highest

potential h-arc and process each potential h-arc from the highest to the

lowe st. For each potential h-arc, we try to get the 1 -optimum partition

of the upper subpolygon of that arc (i. e. the 1 -optimum partition of the

subpolygon bounded below by that h-arc). The I -optimum partition in

the subpol.ygon is obtained by comparing the cost of the B-optimal partition

among .the partitions of the upper subpolygon which contain one or more

potential h-arcs with that of the fan in the upper subpolygon.

If we try all possible combinations of the potential h-arcs as

3
candidates for the B -optimal partitions, we need O(n) operations to

find the B -optimum partition. Fortunately, there are some dependence-

relationships among these potential h-arcs. Hence, certain subsets of

the potential h-arcs will either all exist or all disappear in the I -

optimum partition of the monotone polygon. We shall be dealing with

potential h-arcs most of the time, so we shall use “arcs” instead of

potential h-arcs for brevity.

Consider the monotone basic polygon shown symbolically in

Fig. 6. There are three potential h-arcs, denoted by hk, hj, and h. .
1

V is the local maximum vertex and V is the local minimum vertex.
n 1

Without loss of generality, we can assume wa 5: w ’ for a = i, j and k.
a

Since we shall deal with subpolygons bounded by two potential h-arcs,

l e t U S u s e hn f o r V
n

and hl for Vl (i. e. we consider these vertices as

16

degenerated arcs). From Lemmas 1 and 3, the I-optimum partitions of

the subpolygons bounded by two potential h-arcs (i. c. the white area of the

polygon in Fig. 6) are all fans.

A s s u m e (i) $ is positive in the subpolygon bounded by h and h.
n J

but \ is negative in the subpolygon bounded by hn and hi ,

(ii) h.
J

is positive in the subpolygon bounded by \ and hi but h.
J

is negative in the subpolygon bounded by $ and hl , and

(iii) h
i

is positive in the _ subpolygon bounded by h. and hl only.
J

Then either the three arcs %
, h., h. all exist or no h-arcs exists in the

J 1

optimum partition.

This shows that the existence of an h-arc depends on the rxistence

of another h-arc.

We shall use the notations

to denote the cost of the 1 -optimum partition of the

subpolygon bounded above by h. and bounded below
J

by h. , and
1

11.
H ’00 h

to denote the cost of the fan in the subpolygon bounded
i

above by h. and bounded below by h. .
J 1

17

Fig. 6. An octagon with three potential h-arcs.

In Fig. 6, the condition for h k to be positive with respect to the

whole polygon is (combare (5a))

(7)

The LIE of (7) is denoted by

and is called the supporting weight of hk with h as the ceiling (the
11

definition of ceiling will be given formally later). Note that the LIIS of

(‘7) depends only on the weights of vertices in the upper subpolygon of hk.

In terms of the supporting weights, we can write the three

conditions (i), (ii) and (iii) as follows:

18

6)

(ii)

(i i i)

h
n

%

hk
w1

< s
h.

J

An arc h. is a son of t
3 -

<W
i

le a r c hi (o r hi is the father of hj)

if the following conditions are satisfied:

(9 hj is above h, (the son is above the father)
1 .-

(i i) In any subpolygon containing hi and h. , the arc h. will exist
1 3

in the 1 -optimum pa.rtition of the subpolygon if and only if h.
1

exists in the 1 -optimum partition.

(iii) h.1 is the highest arc that satisfies (i) and (ii).

It is easy to see that every arc can have at most one father but an arc

can have many sons. Also the ancestor-descendant relationship is a

transitive relationship. If an arc exists in the f! -optimum partition, all

its descendants will also exist.

A n a r c
hk

is a ceiling of an arc hi if the following conditions

are satisfied:

(i) hk is above h
i

(ii) hk is not a descendant of h
i

(i i i) hk is the lowest arc which satisfies (i) and (ii).

19

.
Consider two partitions of a subpolygon as shown in Fig. 7 o

F i g . 7. A subpolygon of the octagon shown in Fig. 6
(The shaded areas are optimally partitioned
and the blank areas are partitioned by a fan.
The h-arcs in the shaded area are all
descendants of h. .)

J

The cost of partition of Fig, 7a is

where the cost of partition in Fig. 7b is

H

The condition for the partition in Fig. 7a to be cheaper than that in Fig. 7~

is (similar to (5a))

S <W
i l

20

In order to give an intuitive meaning of the supporting weight S
hk

i 1
h ,

j
let us regard \ and h. in Fig. 7 as fixed while the position of h, can be

J 1

moved up or down by increasing or decreasing the values of w. and w ‘.
1 i

If h. moves up and coincides with h., i. e., w. = w., the partition in Fig. 7a
1 J 1 J

costs less than or equal to the partition in Fig. 7b. If the position of hi

moves down gradually from h., there will be a position for which the cost
3

of the partition in Fig. 7a is equal to the cost of the partition in Fig. 7b.

We can consider this position as a fictitious arc f. , i. e.
J

(8)

the 1 -optimum partition of the subpolygon bounded by hk and hi becomes

a fan. The arc fj is called the floor of h, . Note that the minimum of the
3

two weights associated with f, is the supporting weight of h. .
J 3

We now give two examples to illustrate the concepts, notations

and the algorithms. Then a formal description of the algorithm will be

given.

Consider a monotone basic polygon with five Potential h-arcs,

h6’hg’. . . , h 2 where h
6

is the highest arc as shown symbolically in

F i g . 8 . Let w. < w.’ for i = a,b,. . . , e. The maximum vertex,
1 1

which l ies above h 6, has the weight wf and the minimum vertex,

which lies below h 2, has the weight wl . We can regard wf (and wl)

as a dcgcrlcratcd arc and use h w a nd h
7

to represent
f (1

to repre-

sent w
1).

21

a‘ 7

Fig. 8 . A 12-gon with 5 h-arcs,

Example 1

Let US write down the comparisons made in the algorithms.

First , we compare

22

Fig. 9 . 111ustrations for Example 1.
9a. To find f6 .

In the equation, f6 is the only unknown. In computation, we do

not use the equation but use the supporting weight of h6 instead (h
7

is

the ceiling of h6). If the h-arc 1~5 is below or coincides with f
6

, which

means that h is negative with respect to the smallest subpolygon,
6

h
6

should be deleted and never appear in the k’ -optimum partition, For

simplicity, we shall assume all arcs and floors have distinct positions

in the example.

Let us assume that f6 is below h
5’

or symbolically we write

h5/f6 .

Fig. 9b. * ‘Jlhe posit ion of fl .

23

Then we do the next comparison.

V’S

W --FL 6-Q.

B

%i

5s------a ---me

F i g . 9~. To find f5 .

A s s u m e t h a t f6/f5, i.e. h6 is a son of h5, and h4/f5\,, the next

comparison is

F i g . 9d. Condense h6 to h5 and find fb5.

24

Note that fl s is in a sense the combined floor of h
0

and. h
) 5

and h
-7

becomes the ceiling of h5. The equation can also be written as

If h4/fb5, the next comparison will be

Fig. 9e. T o filld fg .

A s s u m e t h a t fb5/f4, i.e. h5 is a son of h4, and h3/f4, w e h a v e

25

f 654-----------a-

Fig., 9f . To find fb54.

with h
7

as the .c&iling of h
4 ’

Moving to h3, we compare

F i g . 9g. To find f3 .

26

Assume that fcs4/f3, i.e. h4 is a son of h3 and h2/f3, we c o m p a r e

---B-e --

F i g . 9h. ‘I’o find f6543.

as the ceiling of h3 . Moving to h2, we compare

F i g . 9i. To find f2.

27

A s s u m e t h a t f6543/f2, i.e. h3 is a son of h2,and hl/f2, w e h a v e

F i g . 9j. To find f65432.

and h is the ceiling of h 2 l

N o w 11

7

the partition consisting of

is the 1 -optimum partition.

28

Fig. 9k. The 1 -optimum partition.

z w1 , then Ho
h

7
h

will he the .4! -optimum partition.
1

Exam pie 2. The successive compar i s o ns are

29

w 0

Assuming that f4/f5, i.e. h5 becomes the ceiling of hq,and h3/f4 , we.

V’5

Fig. 10d. To find f3.

Asslune that f3/f4 and f3/hz, then arc hj should be deleted. Next ,

we assume that f4/hz, then arc h4 should also be deleted, Suppose

h2/f5 t we shall then compare

F i g . 1Oe. To f i n d f2.

31

Assutne f5/f2, i . e . h5 is a son of hZ. and hl /fz , we then dctcrmine

f
5 2 ’ ,

Y’S

Fig. IOf, T o f i n d fs2.

Assume f6 /f52~ i.e. h6 is a s o n O f h2,and hl/f52, our next; corn--

p r i s o n i s

F i g . l o g . T o find f652.

32

and h
7

bccolncs the ceiling of h2 . .

A s s u m e hl /f652, the the partition C (zi) t I-Io(~~) i s t h e

E -optimum partition.

F i g . 10h. The 1 -optimum partition.

IHad we assumed f
5 2jf6

a n d f52/hl then both h
5

and h
2

should also be removed and we are left with

f6 a g a i n s t hl .

I f h&t then we have the E -optimum partition

F r o m the above two examples , WC can see that hk is the ceil-

ing of h. if hk is the l o w e s t a r c nhovc h
1 i

SllCh that the :;~1pporting

weight of 1
k

is smaller than or equal 1.0 ihat of 11
i ’

33

Let us outline the algorithm for finding the P -optimum partition

of a monotone basic polygon.

1. Get all the potential h-arcs of the polygon by the one-sweep

algorithm. (All the h-arcs form a list with the arc Vb-Vb, at

the bottom.)

2. Process the potential h-arcs one by one, from the top to the bottom.

(We try to find the B -optimum partition of the subpolygon bounded

below by the arc being processed,)

2a. Let hR be the arc currently being examined, hG be the arc

immediately above h
R ’

and hN be the arc immediately below

hR in the list. If hR is negative with respect to the subpoly-

gon bounded above by hG and below by hN, delete hR, other-

wise go to Step 2c.

2b. Once hR and its descendants are deleted, we backtrack to hG

and compare the cost of the partition with h
C

and its descend-

ants against the cost of the fan in the subpolygon bounded above

by the ceiling of hG and below by hN. If the fan is 1 -optimum

in the subpolygon, we will delete h
C

and repeat this step until

no further deletion is possible. Then we move to examine hN.

(The actual comparisons are done in terms of the supporting

weights.)

2c. Mere, hR is positive in the smallest subpolygon bounded by

potential h-arcs. We will backtrack to condense all its

descendants to hR as follows. Let h& be the ceiling of hG. If

34

S(Lz) < S(tf) , hC b e c o m e s a s o n o f hR. ‘Wo w i l l

combine hC
as well as all its descendants to h

R
and

recalculate the combined supporting weight S .

Replace hC by hi and compare the cost of the partition

with h
R

and its descendants against that of the fan in the sub-

polygon bounded above by the new hC , i. e. hi , and below

bY fyq l
If the fan is 1 -optimum in the subpolygon, we

delete hR as well as its descendants, and go to Step 2b to

see. if we can delete more arcs. Otherwise, we repeat this

step to see if we can condense more arcs.

supporting weight of hR . We move and process hN.

Before a formal description of the algorithm is given, a procedure

to process the list of potential h-arcs in a monotone polygon is presented.

35

Procedure MONO-PAKTITION (1~)- . ._._ -. __ ._-. - .

Input: consists of a list of potential h-arcs, passed to the procedure

via the argument L. L e t hl be the lowest arc in L, the

one immediately above h
1

be h2 , and h
P+I

be the highest

arc in L. (Note that hl and hptl a r e d e g e n e r a t e d a r c s w i t h

the minimum vertex and the maximum vertex of the polygon.)

out put:__-_--- consists of all the potential h-arcs that exist in the P-optimum

partition of the polygon.

Step0__- - hC : = h
p t l ;

. hR:= h ;
P

hN:= h
p - l ;

MIN-WEIGHT : = minimum of the two vertices of h
N

;

Comment : h
R

is the arc to be processed and h C is the ceiling

of the subpolygon. h
N

is the arc immediately below h
R

i n L .

Step 1 Calculate S ;

2 MIN-WEIGI-IT

then go to Step 2

else go to Step 3 .- -

36

k,’

Step 2 W h i l e (hR f h) And
_ ----..- __- pt.1 - .

(the supporting weight of hR 2 M1N-WE=ICHT) Do

Begin

R e m o v e h
R

and all its descendants from L;

hR : = hC ;

hC : = the ceiling of the new hR

End;

Go to Step 4._----

Step 3--.--- If (hC # h-) and (the supporting weight of hR < the
p t l -

supporting weight of hC)

then- -

Begin_- - -

Condense hC and all its descendants into h
R

;

hC : = the ceiling of hC;

go to Step 1;

End- - -

else- -

Begin- -

the ceiling of hR;

go to step 4;

End.- -

37

step 4- If hN # h1

then-- -.-

13egin

hG : = hR;

hR : = hN ;

hN
: = the arc immediately below the new hR ;

MIN-WEIGHT : = minimum of the two vertices of

the new h
N

;

go to Step 1;

End

else go to Step 5 ; -.
- - ~

step 5 Exit procedure and return L to caller.

Now we can give the algorithm for finding the 1 -optimum parti-

tion of a monotone basic polygon.

Algorithm I

In put consists of n positive integers, which are the weights of the

n vertices of the monotone n-gon. W[l] is the weight of the

minimum vertex and W[itl] is the neighbor of W[i] of the

n-gon going in the clockwise direction. Let the weight of the

maximum vertex be W[t].

out put consists of a list of potential h-arcs which will exist. in the- -

l-optimum partition of the n-gon, the partitions in the sub-

polygons bounded by every two consecutive arcs in the list

are fans.

38

3

Step 0- - For i : = 2 step 1 until N do- - - -__-

l - l
CP[i] := 1 W [j] l W[jtl]:

j=l

CP[l] : = 0 ;

Comment: The sum of adjacent Prodllcts W [il: W [j] can be

o b t a i n e d f r o m CP[j] - CP[i] for 1 I i < j 5 N a n d h e n c e

we can calculate the supporting weights easily.

step 1 Apply the one - sweep algorithrn to obtain a list of arcs.

Txt this list be L.

Comment: L contains (n-3) arcs which includes all potential

h-arcs in the monotone n-gon, and these arcs are layered,

one above another.

Step 2 From L, remove those arcs which are not potential h-arcs;

I f L i s e m p t y-

then go to Step 6

else go to Step 3.- -

Step 3 Let the lowest arc in L be h2, the one immediately above

h2 be h3 , and so on:

Let the highest arc in 1, bc h ;
P

I n s e r t hl with weight W [l] below h2;

Insert h
p t- 1

w i t h wrcight W [t] aljove h .
P

C omlnc nt: h- - -
P+l

is the ceiling of h .
P

39

Step 4 MONO- PARTITION (L); .

Comment: when returned from MONO- I’AK’I’l’I’10N, L will

contain all the ceiling arcs with their descendants in the d-opti-

mum partition.

Step 5 R e m o v e h
1

and h
Pf 1

f r o m L ;

Step 6 Output L and stop.

This algorithm has been implemented in Pascal and the listing of

the computer program is given in Appendix I.

Lemma 5. Any arc which is deleted from the arc-list L in Step 2 of

the procedure MONO-PARTITION cannot be present in the I -optimum

partition of the polygon.

Proof. There are two cases in which an arc is deleted from L:

(1) Its ancestors are deleted. It follows from the definition of the

ancestor -descendant relationship that it cannot be present in the

B -optimum partition of the polygon.

(2) It is the hR which satisfies the logical condition of Step 2 of the

procedure. Hence, in the subpolygon bounded below by hN and above by

hC’
the partition with hR and its descendants costs more than or equal to

that of t.he fan. IIcncc, the partition with h
12

and its descendants is not

1 -optimum in the subpolygon and hR as well as its descendants should not

appear in the 1 -optimum partition of the whole polygon. m

40

Lemma 6. After an arc hi has been processed, the subpolygon be-
.

twccn 1~. and its ceiling is optimally partitioned.
1

Proof. The h-arcs remaining in the partition of the subpolygon are all

descendants

the partition

L e m m a 7 .

of h . .
1

By definition of the ancestor-descendant relationship,

of the subpolygon is optimum. n

IJet Vt be the maximum vertex, and hk, hk l,. . . , h,
J+l

be

a set of h-arcs in the partition such that

hk/hk l/ l . . /l⌧,J -1’1
1. ,

.I

and
hk

is the ceiling of h k-l ’
.

h
j t l

is the ceiling of h, ,
J

then the supporting weights of these h-arcs satisfy

(9)

Proof. Assume that one of the inequalities is not satisfied, say

T h e n i f h . exists h
j 4-l

wil l a l so (exist, h
j i-1

l)cco~ncs a son o f h
j ’

‘Ihi s
3

contradicts the assumption that h.
J+l

is a ceiling of II. .
J

111

41

Lemma 8. Any arc which remains in L at the end of the procedure must

bc present in the 1 -optimum partition of the polygon.

Proof. We can divide the h-arcs in L at the end of the procedure into two

groups:

(i) those which are descendant of some other arcs in the output, and

(ii) those which have no ancestor in the output.

By the definition of the descendant-ancestor relationship, the arcs in

group (i) must be present in the 1 -optimum partition whenever their cor-

responding ancestors in group (ii) is present in the I -optimum partition.

Hence, we have only to show that all arcs in group (ii) must be present

in the I -optimum partition.

Let Vt be the maximum vertex and the set of arcs in group (ii)

be hk’hk l,...,h.
J+1’ j

h such that hk/hk 1/ . . . /h. /h,
J+l 3

. Since none

of these arcs has an ancestor, we must have

hk
as the ceiling of h

k - l ’

.

and h
jtl

as the ceiling of h, .
3

From the logical condition in Step 1 of the procedure, we have

F r o m Lemma 7 and (lo), W C have

(
h

i -1 1
1;

.i

(10)

42

= the cost of the 1 -optimum partition of the polygon.

In other words, for any arc h, in group (ii) of L, i = k, k-1,. . . , jtl, j ,
1

all the arcs above h, in L must be present in 1 -optimum partition of the
1

upper subpolygon of h, . Since H
1

o(i:) > C(;) + Ho(ti) p they all

should be present in the 1 -optimum partition of the monotone basic

polygon . I

Theorem 2. The partition obtained by the algorithm is 1 -optimum.

Proof, From Theorems 3 and 4 of Part I, we know that all the h-arcs

present in the 1 -optimum partition are potential h-arcs and hence are

included in the arc -list L obtained by the one-sweep algorithm, It follows

from Lemmas 5 and 8 that all the arcs which are deleted from L cannot be

present in the 1 -optimum partition and all the arcs which remain in L must

be present in the 1 -optimum partition. Further, from Lemma 1, the

43

E -optimum partition in any subpolygon bounded by two adjacent potential

h-arcs in L must be a fan. Hence, the partition consisting of the h-arcs

output by the algorithm and with fans in every subpolygons bounded by

two adjacent arcs in L must be B -optimum. n

Let us examine how much time we spend in executing the

algorithm,

Step 0 and Step 1 each scans the polygon once, and hence takes

O(n) time. Since there are at most n-3 arcs in L, Step 2 also takes

O(n) time. There are three nested loops in the procedure. The inner-

most one is in Step 6 , the middle one spans from Step 1 to Step 3, while_

the outermost one spans from Step 1 to Step 5. Whenever the innermost

loop is executed once, a potential h-arc is deleted from L. Whenever

the middle loop is executed once (i.e. the “then” part of Step 3 is exe-

cuted once), a potential h- arc is condensed into its father. Once an arc

is deleted or condensed, it will never be examined again. ,Since there

are at most n-3 potential h-arcs in L, the total number of executions in

Step 2 and Step 3 is O(n). The outermost loop will also be executed at

most (n-3) times. IIence the whole algorithm will finish its work in O(n)

time.

44

.
I

3. The Convex Polygon

‘Cl~crc ~n;ly be several local maxill1u1n vcrticcs in a general c o n -

vex polygon. Let us still draw the polygon in such a way that the global

minimum vertex is at the bottom. From Theorem 4 of part I, we know that

all potential h-arcs are still compatible in a general convex polygon. How-

.

ever , unlike those in a monotone polygon, the potential h-arcs no longer

form a linear list. Instead, they form a tree, called an arc-tree. In Fig. lla,

there is a 12-gon with 6 potential h-arcs and they are labellcd as h2, h 3 ’ h4’ h5’

h6’
and h

7 ’
(Note that we also obtain V4-V3, VT-V6 and V6-V8 from

the one- sweep algorithm. In order to have a simpler example, let us

assume that all these three arcs are unstable and hence are not shown

in Fig. lla.) To get a better feeling of the arc-tree, we can redraw the

12-gon as shown in Fig. lib. Again, we regard VI as a degenerated

arch V
1’ 12

as a degenerated arc h
8 ’

and V
11

as a degenerated

a r c h
9 ’

The father-son relationship still holds for the h-arcs in a gen-

eral polygon, and we can also define supporting weights of the arcs in a

similar way. The only difference is that the ceiling of a subpolygon may

consist of more than one arc. I3efore we can calculate the supporting

weight of any arc, w e must process all tlic ;~rcs above it, j. c. all the arcs

in its upper subpolygon. Hence, we can do a post-order traversal through

the arc tree. Let US consider the following two examples. Again, for

simplicity, we assume that all arcs have distinct positions in the cxamplcs.

45

,
v6L nV9

VS

Fig. 1 1 . A general 12-gon.

46

Example 3.- - -

We first compare

Fig. 12 . Ulllstrations for Example 3.
12a. To find f5.

A s s u m e h4/f5, we compare

Fig. 13). TO fi rlcl fiI .

47

Assllme h3/f4 a n d f5/f4, W C condcnsc h5 i n t o hq ,

or

Fig. 12c. To fi

Before we can process h3, we have to process h7 a n d h6 f i r s t . Hence,

the next comparison is:

48

V’S

F i g . 12d. T o f i n d f7 .

A s s u m e h6/f7 , we compare

V’S

Fig, 12e. ‘To f i n d f6 .

W e h a v e h3/f6 a n d f7/f6 , we condcn’se h7 i n t o hG ,

or

49

F i g . 12f. T o f i n d fT6 .

A s s u m e h3/fT6 and next we process the arc h
3 ’

using both h4 and h6

as the ceilings of h3 ,

Ho(h4;;6) t Ho(;:) = HO(h;;6)

F i g . 12g. ‘l’o f i n d f3.

50

S u p p o s e h2/f3 a n d f54/f76/f3, we f irst condense h5 a n d h4 into h3

and W C get

c(“8;:“) t Ho (f5?,, = Ho(h;;4y)

F i g . 12h. TO f i n d f543.

Nsw, h2/f543 a n d f76/f543, SO w e c o n d e n s e h7 a n d h6 i n t o h3 a n d

obtain

Fig. 12i. To find f 54763’

51

A s s u m e h /f
2 S4.763

nnd we compare

F i g . IZj. 'I'o f i n d f2,

\suppose - hl/f2 and f54763/f2, we condense h
3

and its descendants into

h2 and get

f-54x32
J

I $547632
--m-w------ .-- - c----e --

F i g . 12k. T o f i n d f547632.

52

of all six h-arcs h 2, h3, h4, h5, h6, a n d h7 . Tf f5a47632/111 , a l l s i x

h - a r c s w i l l bc YCIIIOVC~ and ttle j -opt;imm partition is a fan.

Example 4- -

WC first compare

F i g . 1 3 . IHustrations f o r Ex
13a. To find f5 .

am ple 4.

A s s u m e h4/f5 and we compare

F i g . 13b, ‘IO f i n d f4.

53

T,ct h3/f4 and f4/f5, so we compare

Fig. 13~. To find f
7 l

h6 lh7 and we compare

F i g . 13d. To find f6 .

WC have h3/f6 and is/f7 , so our next coInprison will be

54

Assurnc h2/f43, f43/fs, a n d f43/fsp WC p r o c e e d t o p r o c e s s h2 ,,

v’5

L f 2----------
F i g . 13g. TO f i n d f2.

A s s u m e hl/f2 and fd3/fz, w e c o n d e n s e h3 into h2 ,

I- f432-a.--w--e- J
F i g . 13h. T o f i n d fdj2.

56

Suppose f432/hl, W C rcmovc h2 AS \vcll as i t s dcsccnclan~s h
3

and h
- A 4 *

A s s u m e f6/f5

have f7 /f5 and

we have h /f
1 5’

h - a r c h5.

%3

a n d f6/hl , W C rcmovc hh frown t h e p o l y g o n , Now, we

f7 /hl 9 so we remove h7 from the polygon. Finally,

and the 1 -optimum partition of the polygon consists of one

Fig. 13i. The optimum partition.

From the above two examples, we have the following observa-

tions.

(1) Before we can process a potential h-arc, W C have to process all

the arcs above it. Hence, W C should do a post-order traversal, starting

at the root of the arc tree, i. e. the degcncratecl arc h
1 l

(2) Wl _.~(~ncvcr W C do a ctrnclcns;~tioII or dclction, W C a l w a y s p i c k the

ceiling arc which has tllc highest floor first, i. c. tile one writ11 the

largest supporting weight. Hence, W C should kcc p track of the order

of the ceiling arcs.

57

(3) Once a cei l ing arc h.
J

of hi is removed or condensed, the ceiling

a r c s o f h,
.I

L~corx1~: tllc cei l ing arcs of 11. and W C h a v e t o upclaLc the
1

order of all the ceiling arcs of h. .
1

One way of keeping track of the order of the ceiling arcs is to

keep them in a priority queue.

Now, let us outline the algorithm for finding the optimum parti-

tion of a general convex polygon.

1. Get all the potential h-arcs of the polygon by the one-sweep

algorithm. (All the h-arcs form a tree, with the root at the

bottom. Let the arc-tree be T.)

2. Process the h-arcs, one by one, from the leaves to the root. (W e

always process the children before we process the father, and we

always obtain the optimum partition of the subpolygon bounded below

by the arc being processed.)

3.

4.

L e t hK be the arc currently being examined, UK be the set of arcs

immediately above h
K’

and hN be the arc immediately below hR

in T. If h
K

is negative in the subpolygon bounded above by the

arcs in U K and below by hN , delete hR , else go to step 5.

Once hR and its descendants are deleted, we exarnine the arcs in

UK to see if WC c a n c1c1ct.c more a r c s . I f yes , W C dclcte thca a r c

with the largest slIpporting wciglli-; iIl(~n we -inclutlo its ccling a r c s

into U R and rcpcat this step. Otherwise, we move to process the

next arc.

58

5. Now, hR is positive in the smallest subpolygon. If there exists

some arc in U
R ’

say h . , such that
3

< the supporting weight of h. ,
J

we will pick the arc with the largest supporting weight in

uR’
condense it with its descendants into hR and include all

its ceiling arcs into UR. Then we compare the cost of the partition

with hR and its descendants against that of the fan in the subpolygon

bounded above by the arcs in UR and below by hN. If the fan is

1 -optimum in the subpolygon, we remove hR as well as all its

descendants from T, and we exarnine the arcs in U K to see if we

can delete any more arcs. Otherwi se, we examine the arcs in U
K

to see if we can condense any more arcs.

6. N o w , S
% U The

hR
2 the supporting weight of every arc in K’

arcs in U R
are the ceiling arcs of h R

and S is the supporting

weight of h T, l
We move to process the next arc.

K

59

Bcforc prcscnting tllc algoritlim, let us describe a rc!curs”ivc

proceclure to process the potential h-arcs of any subpolygon.

Procedure PARTITION (ROOT)

Input: consists of a set of potential h-arcs of a subpolygon. The SC

arcs are arranged in the form of an arc tree, like the one

shown in Fig. llb. The root of the tree is passed to the

procedure via the argument ROOT.

out put: consists of a set of the potential h-arcs which appear in the- -

1 -optimum partition of the subpolygon. We can divide that

arcs into two types: (i) those arcs which are descendants of

some other arcs in the set and (ii) those arcs which have

no ancestor in the set, The arcs in type (i) are con-

densed into their ancestors and can be traced out from the

arcs in type (ii). The arcs in type (ii) are called ceiling

arcs and are kept in a reduced arc tree. The root of the arc

tree is passed back to the caller via the parameter ROOT.

60

stt! [’ 0- - - -

Step 1

Step la

Step l b

Step lc

L,et the a r c a t tllc r o o t o f tht: iril)tlt arc tree: b(: F1
N

;

MIN-W~:IGII’l’ : = tllc weight of the minimuln of the two

vertices o f h ;
N

T : = an arc tree with only one arc, h
N

;

For each arc immediately above hN in the input arc-tree Do

Begin

Let the arc to be processed be hR;

If there exists a non-degenerated arc above hR-

then go to Step lb- - - -

else go to Step If;

Comment : hR h- - - is immediately above
N’

PARTITION (hR) ;

Let the subtrcc rcturnccl bc T’ ;

Comment: B e f o r e processing h _
K’

the subtrccs o f h
K

are f irst processed rccursivclly.

L e t UR b e t h e sc>t o f a r c s i~~~mecliately abo\-c hR i n T ’ ;

ca1cu1atc s
tJli()h ; ’

K

If s z MIi’T-WE:l<;f I’1

then go to Step Id-e

else go to Step le .

61

Step Id RCI~~OVC hR f r o m T ’ ; .

while (tllere e x i s t s a notl-dcgc,nr:ratccl a r c , h, , in U-.-_) allcl
3 R-

(the supporting weight of hj 2 MIN-WEICC;fIT) DO

Begin

R e m o v e hj from UR ;

R e m o v e h . f r o m T ’ ;
3

Include all ceiling arcs of h, into U
3 R

;

end;

Insert the forest T ’ into T such that all arcs in U
1-t

are

immcdiatcly above h
N

in T.

Go to Step li.

Step le If (there exists a non-dcgcncratcd arc in UR) and (its sup-
- -

porting weight > the supporting weight of hR)

then

Begin

Among all the arcs in UK, pick the one with maximum

supporting weight;

Let it be h. ;
3

C o n d e n s e h . i n t o hR
3

a n d remove it from T’ ;

immediately above h
R

in T’ ;

go to sto 1’ lc;

end

62

ClSC

J5cgin- -. - . - -

R e c o r d S
uR

()
h as the supporting

R

arcs in U
R

as the ccil.ing arcs of

so that h
R

is immediately above

go to Step li ;

end.

weight of h
R

and all

h
R

; insert T ’ into T

hN
i n T ;

step If L e t hC be the degencxrated arc above hR ;

Calculate S ;

2 MIN- WEIGHT

then go to Step lg-.._.- - -

else go to Step lh .-.- P

step lg R e m o v e hR ;

Insert hC immediately above h
N

in T.

go to Step li .

l hStep as the supporting weight of h
K

and h
C

as

the ceiling arc of h
R

; insert the subtrec with hR a n d h
c

i n t o T s o t h a t hR is immediately above h
N

i n T .

Step li End.

Step 2. Return T with root stored in ROOT to caller.

63

Now, the details of the algorithm to find an optimum pa$ition of

a convex polygon is presented. .

Algorithm U.

Input consists of n positive integers, which are the weights of the

n vcrticcs of an n -gon. w[ll is the wcigllt of the mininlum

vertex and W[itl] is the neighbor of W [i] of the n-gon going

in the clockwise direction.

out put consists of a tree of potential h-arcs which exist in the

1 -optimum partition of the n-gaon.

Step 0 F o r i : = 2 step 1 until N do- - - -

.
l- 1

CP[i] : = c W [jl l
W[jt-1] ;

j =I

crq l] : = 0 ;

Comment:-. - __-- The sum of adjacent procl~lcts W [i] : W [j] can b e

o b t a i n e d f r o m CP[j] - CP[i] for 1 < i <j < N .

step 1___-_-_A Apply the one-sweep algorithm to obtain a tree of arcs. Let

this arc tree be T.

C on-tint llt: T contains al l potential h-arcs in the n - g o n .

Step 2- - F r o m T , remove those arcs wliich arc not potential

h - a r c s ;

I f T i s e m p t y-

the11 g o t o Step 6.
- - - -

else go to Step 3.

64

4Step

Step 5-

step-- -

PARTITION (hl);

Comrllcnt: h 1 is the root of 1’; when returned from

PARTITION, T will contain all the ceiling arcs with their

descendants in the 1 -optimum partition.

Remove all degenerated arc s.

Output T and stop.

This algorithnl has been implc:Illc:nted in Pascal and the list-

ing of the computer program is givcll in Appendix II,

Theorem 3. The partition of the general convex n-gon obtained by the

algorithm is 1 -optimum.

Proof. Using arguments similar to those in Theorem 2, we can first

prove that all the potential h-arcs which are deleted from the arc-tree

cannot be present in the 1 -optimum partition, then we prove that any arc

which is left in the arc-tree at the end of the algorithm must be present

in the k’ -optimum partition. Hence, the partition consisting of the h-arcs

output by the algorithm and with fans in the subpolygons bounctcd by a

potential h-arc and the arcs immediately above it in the output arc-

tree must be I-optimum. m
65

Let us cxaminc how much tirnc wc spcncl in executing the algorithm.

Steps 0 and 1 each scans the polygon once, and hence takes O(n)

time. Since there arc at most n-3 arcs in T, S t e p 2 also takcts O(n) tinlc;

There will be a recursive procedure call for each arc in T (except the

leaf nodes). Inside each procedure call, there are two nested loops. The

innermost loop is the “while” loop in Step id and the outer one spans from

Steps lc to le. Whenever the innermost loop is executed once, a potential

h-arc is deleted from T. Whenever the outer loop is executed once (i.e.

the ‘-‘then” part of Step le), a potential h- arc is condensed into its father.

Once an arc is deleted or condensed, it will never bc examined again. I n

order to carry out the deletion and condensation efficiently, we ca.nnot

examine all the arcs in U
R

each time we go through the loop. Hence, we

need to order the arcs in U R in a priority queue and it takes O(log n) to

update the queue each time. Hence, it takes O(n log n) time in executing

Step 4 of the algorithm. Steps 5 and 6 each takes O(n) time. Hence, the

whole algorithm takes O(n log n) time to find the 1 -optimum partition.

66

3

4. A closer look at the optimum partitions

W C now present some tllcorcms which cnablc tllc algorithm to

divide the polygon into several subpolygons and hence can improve the

average performance of the algorithm. These theorems have also been

mentioned in [4] without detailed proofs.

Let us consider the polygons where there are two or more

vertices with equal weights w
1 l

Lemma 9 . For every choice of Vl, V2,. . . (as prescribed in Part I), if

‘the weights of the vertices satisfy the condition

= w <ww1 2 31”‘I wn ,

then V
1
-V2 exists in every optimum partition of the n-gon.

Proof. The lemma is true if Vl-V2 is a side of the n-g-on. Hencei w e

can assume that V 1, V2 are not adjacent to the same side of the n-gon.

The proof is by induction on the size of the n-gon. The lemma is

true for a triangle and a quadrilateral. Assume that the lemma is true for

all k-gons (3 2 k 5 n-l) and consider the optimum partitions of an n-gon.

By Lemma 3 of Part I, we know that there are at least two vertices

with degree two in each optimum partition of the n-gon. We have the

following two cases,

(i) In an optimum partition of an n-gon, one of the vcrticcs with degree

two, say Vi, has weights larger than wl. In this case, we can form an

(n-1)-gon by removing V. with its two sides.
1

I3y induction assumption,

Yv2 is present in every optimum partition of the (n-1)-gon.

(ii) Consider the complementary cast of (i), i. c. all vcrticcs with

degree two have weights equal to wl in an optimum partition of the n-gon.

In other words, Vl and V2 arc the only two vertices with degree two in

that optimum partition, as shown symbolically in Fig. 14a. Note that

every arc in the optimum partition must dissect the n-gon into two sub-

polygons in such a way that Vl, V2 can never appear in any subpolygon

together, else there will be more than two vertices with degree two in

the optimum partition. In Fig. 14b, we show a partition of the n-gon in

which Vl and V2 are connected. Let us denote the n-2 triangles in Fig, 14a

by-Pl,P2’...,Pn 2. Except Pl and P
n- 2’

all the other n-4 triangles are

made up of one side and two arcs each. For each of these n-4 triangles,

we can find a unique triangle in Fig. 14b such that they both consist of

the same side. We use P[to denote the image of Pi in Fig. 14b. The

only two triangles left unmatched in Fig. 14b are V V V
1 a 2

and V V V
12i

and they are the images of Pl and P
n- 2’

respectively. Let the cost of P
i

be Ci and the cost of P.’ be C.’ , Since Cl < Ci for 1 c i 5 n-2, the
1 1

partition in Fig, 14b is cheaper than that in Fig. 14a and we have

contradiction. m

68

e

Fig. 14

Theorem 4. For every choice of Vl, V2,. . . (as prescribed in Part I), if

the weights of the vertices satisfy the condition

w1
=w2<w SW s--*sw ,

3 4 n

then every optimum partition of the n-gon must contain a triangle V V V
12P

for some vertex VP with weight equal to w3. Note that if w = w2 <
1

w
3

<w s...sw
4 n ’

then every optimum partition must contain the triangle

VlV2V3 since there is a unique choice of V3 .

Proof. Similar to Lemma 9, wc can prove this thcorcm by incluclion on the

size of the n-gon. The theorem is true for any triangle or quadrilateral

satisfying the above condition. Assume the theorem is true for all k-gons

(3 2 k < n-l) and consider the optimum partitions of an n-gon.

69

From Lemma 9, we know that Vl, V2 are always connected in every

optimum partition. Hence, without loss of generality, we can assume Vl, V2

to be adjacent to the same side of the n-gon. Again, we have the following

two cases.

(i) In an optimum partition, one of the vertices with degree two, say V, ,1

has weight larger than w3. In this case, we can remove V. with its sides and
1

form an (n-1)-gon. By induction assumption, every optimum partition of the

(n- 1)-gon contains a triangle V V V for some vertex V where w
l 2 P

=w .
P P 3

(ii) Consider the complementary case of (i), in an optimum partition of

the n- gon, all vertices with degree two have weights less than or equal to w 3 l

Since Vl-V2 is a side of the n-gon, for n 2 4, either Vl or V2 (but not both)

can have degree two, We have the following two subcases:

(a) If there are more than one vertex whose weight equals w 3’
we

can form an (n-1)-gon by removing one of those degree two vertices whose

weight equals w
3’

By induction assumption, every optimum partition of the

(n-1)-gon contains a triangle V V V
12P

for some vertex VP with w = w3 ,
P

(b) There exists only one vertex of weight w
3’

In this case, there

must be only two vertices with degree two in the optimum partition of the

n-gon. These two vertices are Vg and either Vl or V2. Without loss of

generality, we can assume Vl has degree 2. The situation is shown symboli-

cally in Fig. 15a. Again, every arc in the optimum partition must dissect the

n-gon in such a way that V
1

and V3 can never appear in any subpolygon to-

gether, In Fig. 15b, we show a partition containing the triangle V V V
1 2 3.

Using arguments similar to those in the proof of Lemma 9, we can show that

the partition in Fig, 15b is cheaper and we obtain a contradiction. m

70

3

F i g . 15

Theorem 5. For every choice of Vl, V2,. . . (as prescribed in Part I), if the

weights of the vertices of the n-gon satisfy the following condition,

=w =...= w
w1 2 k

< w
k+l � �* l � wn

for some k, 3 5 k 5 n, then every optimum partition of the n-gon contains

the k-gon V -V - l . . -V
1 2 k’

Proof. The proof is by induction on the size of the n-gon. The theorem is

true for any triangle and quadrilateral. Suppose the theorem is true for all

polygons with (n-l) sides or less and consider the optimum partitions of an

n-gon.

From Lemma 3 of Part I, there exist at least two vertices having

degree two in every optimum partition. We have the following two cases.

71

(i) In an optimum partition of the n-gon, one of the vertices with degree

two, say Vi 9 has weight larger than w
1.

In this case, we can remove the

vertex Vi with its two sides and obtain an (n-1)-gon. By induction assumption,

every optimum partition of the (n-1)-gon contains the k-gon V 1-v2-. . . -vk l

(ii) Con*sider the complementary case of (i), i. e. , all the vertices with

degree two have weights equal to w, in an optimum partition. Let two of

these vertices be V.,V..
l 3

We have the following two subcases:

(a) k> 3 . We first form an (n- 1)-gon by removing V. and
1

its two sides.

There are (k- 1) vertices with weights equal to wl in the (n- 1)-gon. By induc-

tion assumption, every optimum partition of the (n-1)-gon contains the (k-l)-

gon which includes Vj as one of its vertices. Since Vj has degree two in the

optimum partition, its two neighboring vertices, say V and V , must also
X Y

have weights equal to wl and the arc V
X

-Vy exists in the optimum partition

(Fig. 16). Similarly, we can remove the vertex V. with its two sides V.-V
3 3 x

and Vj-Vy and form an (n-1)-gon. By induction assumption, every optimum

partition of the (n- 1)-gon contains the (k- 1)-gon formed by the (k- 1) vertices

with weights equal to w
1

in the (n-l)-gon and V. is one of the vertices in the
1

(k- l)-gon. Now, by pasting the triangle VxVjVy and the (k-l)-gon together,

we form a k-gon which includes all the vertices with weight equal to w
1

in

the n-gon and this k-gon is contained in the optimum partition of the n-go”.

7 2

V
d

F i g . 16

(b) k = 3. I n t h i s c a s e , w e h a v e wl = w2 = w3 < w4 g l l l s wn .

Without loss of generality, we can assume Vl and V both have degree two in
2

an optimum partition. Again, we can form an (n-1)-gon by removing V and1

its two sides. By Lemma 9, V2 and V3 are connected in every optimum

partition of the (n- l)-gon. Since V2 has degree two, V2-V3 must be a side

of the n-gon. Next, we can remove V2 with its two sides and form an (n-l)-

gon. By Lemma 9, Vl, V3 are connected by a side of the n-gon. The situa-

tion is shown in Fig. 17a. Then, the partition in Fig. 17b is cheaper because

T
123 + T12y

<T
13x

tT
23y l

and C(Wl�W⌧ ,..., WY) 5 C(W3�W⌧,...,Wy) . n

73

Fig. 17

Now, whenever we have three or more vertices with weights equal

to w
1

in the n-gon, we can decompose the n-gon into subpolygons by forming

the k-gon in Theorem 5. The partition of the k-gon can be arbitrary, since

all vertices of the k-gon are of equal weight. For any subpolygon with two

vertices of weights equal to w
1’

we can always apply Theorem 4 and decom-

pose the subpolygon into smaller subpolygons. Hence, we have only to

consider the polygons with a unique choice of V ’1s i.e., each polygon has

only one vertex with weight equal to w
1’

Because of Theorems 4 and 5, Theorems 1 and 3 of Part I can be

generalized as follows.

Theorem 6. For every choice of Vl, V2,. . . (as prescribed in Part I), if the

weights of the vertices satisfy the condition

w1<w2sw S-*~Sw*
3 n

then V
1
-V2 and V1-V3 exist in every optimum partition of the n-gon.m

7 4

.

Theorem 7.______ --_---- Let V and Vz be two arbitrary vertices which arc not adjacent
X

in a polygon, and VW be the smallest vertex from V to Vz in the clockwise
X

manner (V # V , V f V), and V be the smallest vertex from V
W X W Z Y z to vx

i n t h e c l o c k w i s e m a n n e r (V # Vx, Vy # Vz). This is shown in Fig . 18
Y

w h e r e w e a s s u m e t h a t V < Vz and Vy< VW. The necessary condition
X

f o r V - V to exist as an h-arc in any optimum partition is
x z

w cw sw<w . a
y x z w

Fig. 18

From Theorem 7, we know that any arc which exists as an h-arc in

some optimum partition must bc a potential h-arc. In other words, the

h-arcs in every optimum partition will bc gcncratcd by the one-sweep

algorithm. Hence, by modifying the condition in steps lc and Id of the

procedure Partition to favor partitions with more h-arcs, WC can obtain

other optimum partitions which consist of more h-arcs than the P-optimum

partition.
75

.

_ , Conclusion5 _---

The problem to find the optimum order of computing a chain of

matrices has been around for several years [Z]. It has been used as a

typical example to illustrate the dynamic programming technique in many

textbooks [l][33. In this paper, a new approach is used to solve the

problem. Instead of tackling the matrix chain product problem directly,

it is transformed into the problem of partitioning a convex polygon and a

tailor-made algorithm for finding the optimum partition is developed.

The algorithm takes O(n log n) time and O(n) space. For those who want

to trade optimum solution for shorter execution time, an O(n) heuristic

algorithm has been presented in [5]. This heuristic algorithm is very

simple to implement and its error bound given explicitly as a function

of the number of sides of the convex polygon and the ratio of the

weights of the largest vertex to that of the smallest vertex. The

worst error ratio is less than 15%.

76

3

References
.

1. A. V. Aho, J. E. Hopcroft and J. D. U l l m a n , “ T h e D e s i g n a n d

Analysis of Computer Algorithms, ” Addison-Wesley, 197 4.

2 . S . S . Godbole, “An Efficient Computation of Matrix Chain Products, ”

IEEE Trans. C o m p u t e r s C - 2 2 , 9 Sept. 1973, pp. 864-866 .

3. H. Horowitz and S. Sahni, “Fundamentals of Computer Algorithms, ”

Computer Science Press, 1978, pp. 242-243.

4. T. C. Hu and M. T. Shing, “Computation of Matrix Chain Products, ”

1981 Army Numerical Analysis and ComputerConferences,

February 1981.

5. T. C. Hu and M. T. Shing, “An O(n) Algorithm to Find a Near-

.Optimum Partition of a Convex Polygon, ” to appear in the

Journal of Algorithms.

77

.

CONS'L' MAX SIZE: = 127;-

TYPE POS INTEGER = 0 . . 32767; { 1 imi ted by the Ward-
size of the c~~mputer)

LI S'I' P'I'R = A LIST EItl~:bll:NT ;
LIST-ELEMENT = PACKED RECORD-

HEAD, TAIL : POS INTEGER;
HEAD SMALL : B001j;EAN;
sup WE IGH T,
COST,
BASE PRODUCT,
SIDE-PRODUCT
DESCENDANT, NEXT

: INTEGER;
: LIST PTK

END;

VAR w, CP : ARRAY [l ..MAX-SIZE] OF IN'I'EGEH;
LIST, LEAF': LIST PTH;
N : POSTNTEGER;

SEGMENT PROCEDURE INITIALIZ1NG;
(*****~f**************~~****~*******************~~****~****)
(* Handles the inputs and initializing all the global "1
t* variables. "1
(******************************~*~*******~**~*~*****~******)
VAR I : INTEGER;

BEGIN
WRI'I'ELN ('a linear algrlrithm to find all the h-arcs in',

' the fJptimurn') ;
WRITELN (' partition of a rnonot~~~ne basic p~-~l.ygr.~n' ,

1 G’/‘2/W '1 ;
WRITELN;

{obtain the inputs)
WRITE ('Please enter the size of the pQlyg,zn (between 3',

' and ’ ,biflX SI Z16:--l , ') : ') ;--
READI,N (N);
WH l'l'KI,N ;
WHITELN ('NQw, starting from the smallest vo:'tex and in',

' tzht\ ') ;
WRI'I'ELN (' clockwise direction, entc;: the weights of' ,

' the vertices:');
FOR I .= 1 1'0 N DO READ (W[I]);
READLN;
WHI'L'ELN;

78

{calculate the cumulative adjacent
pr 4 UC ts a~-nund thcl p4 ygw)

CP[.l] :-- 0;
FGR I := 2 TO N DO CP[I] := CP[I-l] + W[I-l] * W[I];

(initialize the psuedo arc)
NEvJ (LEAF);
WITFI LEAF^ DO

BEGIN
BASE PRODUCT := 0;
SIDELPRODUCT := 0;

END;

{set up the output headings}
WRITELN (’ the potential h-arcs in the partitions are : ‘);

END; {initializing)

SEGMENT PROCF:DURE ONE-SWEE:P (VAR L : LIST--PTR);
(******k**k*t********~~~~*************~********************)
(* Sweep the polygon once, collects all potential h-arcs, *)
t* puts them in a list. The address of the head of the *)
(* list is stn:ed in L. *‘)
(*****k*k***k****~fk**~******************~*****************)
VAR STACK : ARRAY [I ..MAX SIZE] OF

Pk-INTEGER;
TOP ELEMENT,
CURk:NT, TOS

SECOND-ELEME:NT,
: POS IN'J.'F:GER;

p, ARC-LIST : LIS'i-P'I'R;

PROCEDURE PUS11 (C : INTEGER) ;
(*********************k****************************~~*****~)
(* Pushes the index C ontc.) the stack and updates the *k)
(” var iabl es TOS, TOP El,EW:NT, and SECOND-EIXMENT. *‘)
(**~******************Xt*************************~****~~**)
BEGIN

STACK[TOS] := C;
SECOND-ELEMENT := TOP-ELEMENT;
TOP EI,ENENT := C;
TOS-:- 'IWS - 1;

END; {push}

79

PROCEDURE POP STACK;
(*fk*kk***k**-~k~kk****~*********~k.kk*kkkkk*k**kk*k*~kkkk*k

)

(* I’qJ!; ttlc tnp elcmcnt n:,f- ttw st ;lck and upc’l;\t~~; the *)
t* var iahl es TOS , ‘IOE) FX~:lWNrl’, and SKOND E: LEMKN’I’ . *k)
(*fk**k***~~****~*****~*~***~*************-~******kk***~** >
BEGIN

TOS := TOS + 1;
TOP ELEMENT := SECOND ELEMENT;
SECoND ELEMENT := Sl'A~K[TOS t 21;

END; (pc,z stack}

(****k***)

(* One-sweep begins here. *t)
(*****************t**~****~********************************)
BEGIN

(initialize the local variables}
TOP ELEMENT := 0;
SEiCGND ELEMENT := 0;
STACK[bl] := 0;
TOS := N;
ARC LIST := NIL:
PUSfl (1);
PUSH (2);
CURRENT := 3;

{scan through the prrlygon in the clockwise direction)
WHILIE CURRENT < N DO

IF (W[SECOND-ELEMENT] <= W[TOP ELEMENT]) AND

(W[?;OP-ELEMENT] > W[CUKRE:NT])
T H E N

BEGIN
NEW(P);
wml PA DO

BEGIN
HEAD := SECOND ELEMEN'L';
TAII, := CURRENT;
HEAD SMALL l = W[HEAD] <= W[TAIL];
BASE-PRODUCT := W[HEAD] * W[TAIL] ;
SIDE-PRODUCT :" CP[TAIL] - CP[HEAD];
DESCENDANT := NIL;
NEXT := ARC LIST;--

END;
ARC L,IS'I' := P;

POE' STACK;
n’ Tos >= (N-l) (the;re arc less tI\nn 2

elcmcmts c.ln the stack)

80

THEN
13 11: (1 T N

FUSII (CUlIRHN'l.') ;
CURRENT := CURRENT t 1;

END;
EN r)

ELSE
BEGIN

PUSH (CURRENT);
CURRENT := CURRENT t 1;

END;

WHILE (TOS <= (N-3))
AND (W[SECOND-ELEMENT] <= W[TOP-ELEMENT])

AND (W[TOP-ELEMEINT] > W[N]) DO
BEGIN

NEW(P);
WITH PA DO

BEGIN
HEAD := SECOND-ELEMENT;
TAIL := N;

_ HEAD SMALL := W[HEAD] <= W[TAIL];
BASE-PRODUCT := W[HEAD] * WITAIL];
SIDE-PRODUCT := CP[TAIL] - CP[HEAD];
DESCENDANT := NIL;
NEXT := ARC LIST;-

END;
ARC LIST := P;
POPISTACK;

END;

l = ARC LIST-
ENi;.(~ne xW&

81

SEGMENT PROCKDURE MONO PARTITION (VAR L : LIST P'l'K);
(*****~*kk*******k~~**~***tk*****~kk**kk~~k***)

i* Old di n:; sl I the, h-a:-c:; ir1 ttlt? ol)t imlti\ [);I;- t i t iof1 r)T tllct k)
t* p4ygm and returns them in a list. kc add 1: es:; of *)
t* the head of the list is sto:‘ed in L. *I
(*t*******~***kk~tk*~*~****~*~**k*********~**~k************)

FUNCTION FAN COST (HR, HC : LIST PTR) : INTEGER;
(**********f~*k*kk***~**k*k***kk~~***************k****k**)
(* Calculates the cost of the fan of the subpnlygan *t)
t* bounded above by HC and below by HR. *')
(**********k******f**~****~***~***************k**~*******)
VAR TEMPl, TEMP2 : INTEGER;

BEGIN
TEMPl := HR^.SIDE-PRODUCT - HC^.SIDE-PRODUCT

+ HC^. _BASE PRODUCT;
wI7m HRA ~0

IF HEAD-SMALL
THEN

BEGIN
IF HEAD = HC^ .HEAD
THEN TEMP2 := HC-,BASE PRODUCT
ELSE TEMP3. := CP[HEADti] - CP[HE:AD] ;
FAN COST := (TEMPl - TEMP2) * W(HEAD] ;

END -
ELSE

BEGIN
IF TAIL = HC?TAIL
THEN TEFlP2 := HC^.BASE-PRODUCT
EISE TENE'2 := CP[TAIL] - CP[TAIL-1);
FAN-COST := (TE:MPl - TEElP2) * Ei'TAII,] ;

END;
END; {fan cost)-

FUNCTION SUPPORTING Wk: TGN’I’ (HK, HC : L,I S'I'J?'l'ti) : INTEGER;
(**kkt**fk*******f*~******kf***k*k*kkk********)

(* Find the supporting weight of the subpolygnn bounded *)
t* abc.Jve by MC and below by HR. *')
(**********~***k*******~******~*****************~**~*****)
VAR Y : IN'I'EGER;

BEGIN
{~alculatc t h e dcnnrllinator)
Y := (HK- .SIDE-PRODUCT - HH^ .RA:;E-PRO[)UC'l')

- (IIC^ _.s 1 III' 1'1~01~11C'I' - 11c- . IIASK I'l:oI)urI') ;--

(calculate the SUPPOK'l'lNG WEI.GlI'I')
SUPPORTING WEIGHT := (HR^:COST + Y - 1) DIV Y;

(ceil ir-q function)

82

PROCJ+:DURE;: RE~IOVI: (VAR S : J,l$'J' P'l'fi; M TN : IN’I’IK;t.;I{) ;
(*kkkkkkk*kkk*kkkkk***k~kkkk~k-~kkkk*kkkhkkkhk&A.kk.kkk*kAk*)

(* l~c~lll~~vc:; all thtt a:cs ill S wl~osc SUJ)-W.KlC;lJ'l'S ;II'o oy1L;L.l to *)
(*orlaryer than MIN f ;:om the 1 is t . “1
(fkk**kkkfk**k*f**kkk*k******kkkkk~****************kkkkk*)

VAR NOT DONE : BOOLEAN;-

BEGIN
NOT DONE := TRUE;-

WHILE NOT DONE DO
IF S 2 NIL
THEN NOT DONE := FALSE
ELSE -

IF S^.SUP WEIGHT < MIN
THEN NOT DONE l = FALSE
ELSE S :r S?NEXT;

END; { remme }

PROCEDURE SUB PARTITION (VAR S : LIST PTR; MIN : INTEGER);
(****k**~*f**~f*******************k**~***********~~******)
(* Finds the optimum pa:-titian nf the subp.~lygonbounded *)
t* belnw by the ptential h-arc at the head (-If S. The *>
(* h-arcs in the optimum partition of the subpolygnn *)
t* is kept in a list with S pointing to the head of *I
t* the list. *k)
(**k***k*********************k****k****k*k***************)
VAR TEMP : INTEGER;

TEMP PTR : LIST-PTR;
NOT Ij'ONE : BOOLEAN;-

BEGlN
IF SA.NEXT <> NIL
THEN

BEGIN
IF S^ .HEAD SMAJ,L
THEN TEMP := W[S^.HEAD]
ELSE TEMP := W[S^.TAIL];
SUB-PARTITION (S^.NEXT,TEMP); (Sn .NEX’I’ may becmnc

NlJ, when return
fr~~rn SUB-PARTITON)

END;

IF SA.NE:XT = NJJ,
THEN TEMP-PTK := LEAF (S is the last ax in the list)

(IlKAl is a ps~t>~if~ a;-~: wi tt~
b/lth Lk:A\ h .RASK PRODUCT and
LEAF-.

ELSE TEMP PTK := S^.NEXT;--

83

S^ . COST := FAN COST(SJ'k3lP PTR);
N()'I' I)ON I: : = 'l'I<%: ;
WI1 I ih: NV1 DON I*: LX)

.

BKGLN -
S^ .SUP-WE IGIIT := SUP~'OI~TING_TJEIGtl'I'(S ,TEMP-P'l'K) ;
IF S^ .SU~-WEIGW~ > = MIN {to SW if the partition is

optimum in the subpnlyganj

THEN
BEGIN

REMOVE (S,MIN); {delete all h-arcs not in the
optimum partiticln of the
subpolygon]

NOT DONE := FALSE;
END -

ELSE
BEGIN

IF S^.NEXT <> NIL
THEN

IF S^ .NEXT* .SUP-WEIGHT <= S^.SUP-WEIGHT
THEN NOT-DONE := FALSE
ELSE

BEGIN (cnndcnsc S^ .NE:XT into S}
TEMP PTR := SA.NEXT;
SA . NEXT := TEMP PTR^ .NEXT;
S^ .COS'I' := s^ .c?kr t TEMP PTR^ .cosI';
TEMP P'I'R^.NEXT := SA.DF:SC~NDANl';
SA .D%CF;NDANT l = TEMP-PTH;
IF S^.NEX'L' = N;L,
THEN TEMP PTR := LEAF
ELSE TEMPTPTR := Sn.NEXT;

END
ELSE NOT DONE := FALSE;-

END;
END;

END; {sub partitiw}

BEGIN
SUB PARTITION (L,W[l]);

END; Tmnnn-partitinn)

84

Pl:OCk:DUI:E WRITE L,IST (L : I,lS'I' P'l'K; MIN , 1NDI;:N'l : IN’l’F:GF:K) ;
(**kk*.k*~f***kkX****kk***k***~-~k~**~*kkk**~k*~~~*~k*~*kk~*k)

(* Ui spl ay:; the h-arcs in ttr lid p~Gnt.d by r,. *k)
(*~*****kk*~k*k****k**********~******************k**~**k*~* 1
VAR TEMP : _POS 1N'i'E:GEH;

BEGIN
WHILE L <> NIL DO

BEGIN
IF L^ .HEAD SMALL
THEN TEMP T= L^.HEAD
ELSE TEMP := LI.TAIL;
IF TEMP <> MIN
THEN WRITELN (' ':INDENT,L^.HEAD,' ':3,L-.TAIL);
WRITE LIST (L-. DESCENDANT,TEMP,INDENT+3);
L := z^.NEXT;

END;
END; {write list)

BEGIN {main program begins here}
INITIALIZING;
ONE SWEEP (LIST);
MONG PARTITION (LIST);
IF LIST <> NIL
THEN WRITE-LIST (LIST, 1,3)
ELSE WKITELN (' ':3,'NIL');

END. {main program)

85

CONS'J' MAX-SIZE = 127; (the maximum number of vertices in
a p4.y~~~~ is 126)

MAX INT = 32767; {the largest integer in the machine)-

TYPE POS INTEGER = 0 . . MAX IN'L';
LIST P'I'R = A LIST Er,EMF:NT ;
LIST-ELEMENT = PACKED RECORD

HEAD : FOS INTEGER;
STAY : BOOT;f-ZAN;
TAIL : POS 1NTEGE:R;
HEAD SMALL : BOOLEAN;
NEXT- : LIST PTR-

END;
TREE PTR = ?r'HEE ELEMENT;
TREE-ELEMEN'I = PACK6 RECORD-

HEAD , TAI L : POS INTEGER;
HEAD SMAIIL : BOO&AN;
sup WE IGH T,
TREE COST,
TREE-BASE PRODUCT,
TRJI:E-SIr)~;-PRODUCT,
LOCAi; COST,
L,OCAL-BASE PRODUCT,
LOCAL-SIDE-PRODUCT: INTEGER;
DESCENDANT, NEXT,
H ARC, V ARC : TREE PTR;
LIST LINK : LIST-PTK;
DEP'I'ti : IN'I'E&R

END:

(V ARC and H ARC arc used in two
dTffercnt whys : (1) they are
used tc-, link the unprocessed arcs
tog c t he:: to f 0:-m an ar c- tr ee ; and
(2) they are used as the left
1 ink anti the right 1 ink of the
processed arcs in the leftist
tree for the pr ior ity queue. 1

VAR w, CP : ARRAY [.l . .MAX SIZF:] OF IN'l'EGEJi;
r, IST 1. , ~15x2 : rnx Pm; -
V 'l'RE:F: , H THEE : TJ3: f-P'I'K ;-
N : POS~N?'L'Gb:R;

86

SEGMENT PROCEDURE INITIALIZING; .

(*k*k*kk~*f*k****k*f********k****~********k**k***kk**k*~**~~

(* ~landlcts the inputs and initAa1izir-q all the! gl~~t+~l *)
t* variables . *I
(***kf***********k*kk~***k***~***~******k**********k******* 1
VAR I : INTEGER;

BEGIN
WRI'l.%LN (’ a linear algo: i thm to find all the h-arcs in’);
WRITELN (' the optimum partition of a convex p~.~lyg(.~n’,

I U/16/80) '1 ;
WRITELN;

{obtain the inputs]
WRITE ('Please enter the size of the pMyglzn (between 3’,

’ and ',MAX_SIZE-1,'): ');
READLN (N);
WRITELN;
WRITELN ('Now, starting from the smallest’,

’ vertex and in the ‘) ;
WRITELN (' clockwise direction, ‘,

‘enter the weights of the vertices:') ;
FOR I := 1 'I-0 N DO READ (W[I]);
READLN;
WRITELN;

(calculate the cumulative adjacent
products arvund the polygon)

CP[l] := 0;
FOR I := 2 TO N DO CP[I] := CP[I-l] + ~V[I-l] * w[I];

{set up the output headings)
WRITELN (’ the pMentia1 h-arcs in the partitions are : I) ;

END; {initializing]

87

,C,l*:C;a?ll*:N’I’ 1’1~0C1~:1)~11\1l~: ONI-: S~~I~:l~:IJ (VAll 1, : r,l S'l' E"l'It) ;
(*kkkkki~k~~~kkkkkk~k-~k*~kk~k~~kkkkkkk~kk-~.k*k.kk~~Ak**k~kk*k)

(* sweep the p~lygw once, c~~llects all potential h-arcs, *)
t* puts them in a 1 ist . The address of the head of the *)
t* list is stw::cd in L,. *)
(k*****kk**~kf*k*t*k************k****k***k**********k******
VAR Sl'ACK : ARRAY [1 ..MAX SIZE] OF '

P-6S INTEGER;-
TOP ErJmENT,
CUK%:NT, TOS

SECOND-ELF:MEN'l',
: POS I N'l'EGE: R ;

p, ARC LISl : LIST PTR;- -

PROCEDURE PUSH (C : INTEGER);
(**k*************)

(* Pushes the index C onto the stack and updates the *)
i* variables TOS, TOP-ELEMENT, and SECOND-ELEMENT. *')
(**********~*******k***********~*************************)
BEGJN

STACK[TOS] := C;
SECOND ELEMENT := TOP-ELEPIENT;

TOP ELkdENT := C;
TOSI:= 10s - 1;

END; (push)

PROCEDURE POP S’I’AC
(**-;r*********%-***Jr

(* Pops the tczp el
t* va:.- iables TOS,
(****f***********k
BEGIN

TOS := TOS + 1;
TOP ErJ3WNT := S
SEC8ND ELEidENT :

END; {p@ stack)-

GIN {one sweep beg
{ initialyze the 10
TOP E:LF:MI;:N'l' l = 0;
SlXTjNI> t:LF:Mil�l� l =

Sl'ACK[h] := 0;
TOS := N;
ARC LIS'I' := NIL;
PusTi (1);
PUS11 (2):
CUIIIIb:N'l' : = 3 ;

K:

ement off
TOP E Lb:?4 I-:

jl***T**L+**

ECOND ELF:El
= STA-CK [TO

ins here)
cal var iab

the
NT ,

EN?
s +

les

s t a c k and
ad S ECON

*Jr**** ****

;
21;

I

**** ****************)

updates the *)
D ELE:MENrl' . *)
*T**************)

88

(scan through the pdygon in the clrxkwisc direction)
WI1 lInf< CURRENT < N DO .

lb’ (W [!;I~:C’ONI)__I~:I,f~;MEN’l’] <--- W [‘1’01’ I,: I~I34l%J’J’~) Ar\Jll
(W ['fOP_EL&M~:N'I'] > W [CURRENT])

THEN
BEGIN

NEW(P);
WITH P^ DO

BEGIN
HEAD := SECOND ELEMENT;
TAIL := CURRENT;
STAY := FALSE;
HEAD SMALL := W[HEAD] <= W[TAIL];
NEXT--:= ARC-LIST;

END;
ARC LIST := P;-

POP STACK;
IF 10s >= (N-l) {there ax less than

2 elements on the stack)
THEN

BEGIN
PUSH (CURRENT);
CURRENT := CURRENT + 1;

END;
END

ErSE
BEGIN

PUSH (CURRENT);
CURRENT := CURRENT + 1;

END;

WHILE (TOS <= (N-3))
AND (W[SECOND_Er,f,;~l~:N'l'] <= \J ['I'OP_E1,f;i.lEN'I'])

AND (W['l'OP'_ELEMENT] > W[N]) DO
BEGIN

NEFt(P);
W.ITH Ph DO

BEGIN
HEAD := SECOND-ELEMENT;
TAIL := N;
STAY := FALSE;
HEAD SMAT,Tt := w[w:nf~] =e r~pf.xfr,] ;
NEXT- : = ARC LIS'I' ;_

END;
ARC LIST := P;
POP~STAC K;

ENI) ;

L := ARC LIST;
END; _L{one -Sweep]

89

SI~:C;f~lI~:~J'1‘ PllOC~:DUKK BUILD-TRKf.: (VAR 1, : LIS'l' PTR;
VA!< VT, H'I' : THCE PTR; Fl liS'l', r,AS'.L', M-h : PO:; INYt:Gt%) ;

(*kkki.kkkkAf.k*k~k~~~k*~***.Akhkk~.k~.k~~~~~k*k.kkk***k-~,~k~kk.kkk
1

(* T ;- a c e s all the arcs in the list pointed by L, and *‘)
(* build an ax-tree with the rmt pointed by T. *')
(kk*~kkkkkf~*kkk~k~kk~*~**k~**k~***~k*****k***************~)

VAR NOT DONE- : BOOLEAN;
: THEE P'L'k;
: LIST-PTH;-

BEGIN
NOT DONE l = TRUE;
VT T= NIL;
HT := NIL;
WHI-I'E NOT DONE DO

IF L = NIL
THEN NOT DONE := FALSE
ELSE -

IF (LA .HEAD < FIRST) OR (LA.TAIL > LAST)
THEN NOT DONE := FALSE
EL'SE -

BEGIN
Q := L^.NEXT;
IF LA .HEAD <> 1
TH EN

BEGlN
NEW (P);
WITH P^ DO

BEGIN
HEAD := L^.HEAD;
TAIL := L^.TAIL;
HEAD SEiALL := LA .HEAD SMALL;
DESCENDANT := NIL; -
DEPTH := 1;
LIST LINK := L';
(LOcnL COST, LX)CAI' BASE PROI,UCT,
LOCAL-SlDE PRODUC'I', TREE COST,
TREk: SASr: PRODUCT, TREE SIDE PRODUCT,
H AR?, an'5 V ARC are unaefinzd at this
point

--
I

IF (HE AD swm AND (HEAD = MIN)) OR
-(NOT HEAD SMALL AND (TAIL = NIN))-

TiItalN
L-3 I,:(; 1 N

N I.:X’j’ : =- V’l’ ;

VT := P;
END

ElSE
. BEGLN

N F: X 7 := WI';
HT := P;

END;

90

3

IF HEAD SMAi,I,
'1'IlI*:N Iwi-III) 'I'Rk:II (0 ,v zwc', t1 ARC, *-_ --

-11 I*:nlj ,'JYu I, , lII9w)
EISE BUII,D-TREE: (Q,V ARC,H-ARC,-

HEAD,TAIL,TAIL);
{note that there will be at most one XL
in the V ARC list but may be several arcs
in the H-ARC list 1-

END;
END;

L I= Q;
END:

END; {build tree}

SEGMENT PROCEDURE POLY PARTITION (VAR T : TREE PTR);
(*********************~***f*tk*******~*****)
(* To find all the h-arcs that are present in the <lptimum *)
c* partition of the pnlygc.jn and returns them in the arc- *)
t* tree pcG.nted by T. *')
(**************************~**k*****~*~*~*********~*~****~**)

PROCEDURE FAN-COST (T : TREE-PTR) ;
(***************************kk~****************)
(* To find the cost of the fan of the subpc.llycjQn bounded*)
t* below by the arc pointed by ‘I’ and above by the arcs *)
t* pinted by I'^ .H ARCS and T^ .V axs. *k)
(**k***************~**~*~********-~*~**~***~*~*~~*********)
VAR x : FOS 1NTF:GKR;

Y, Sl, 5-2 : INWGlSR;

BEGIN
WI ?'I1 TA DO

BEGIN
IF HEAD SMAI,L,
THEN -

BEGIN
IF V ARC = NIL,
THEN-

BEGIN
X := HEAD t 1;
sl := CEqX] - cP[lIE:Ar1] ;

END
E LS I-:

BEGIN
X :- v AKCA .l'Al 1,;
Sl := _i? ARCA . 'l'REl<-E3AS E YKODUC'I ;-

END;

91

s2 :=
Y :- w

END
ELSE

BKGIN

CP[TAJL] - CE'[X]);
rIr*:nD] ;

IF V ARC = NIL
THEN-

BEGIN
X := TAIL - 1;
Sl := CP[TAIL] - CP[X];

END
ELSE

BEGIN
x := V ARC^ .HEAD;
Sl := V_ARC^ .TREE BASE PRODUCT;-

END;
s2 := KP[Xl - CP[HEAD]);
Y := W[TAIL];

END;

IF H ARC <> NIL
THEN-S2 := S2 - H ARC^.TREE SIDE PRODUCl-

+ ii ARC-. TREE BASE: PRODUCT;
(all the SIDE PRODUCTS and the BASE PRODUCTs are
added tngethe:: and stored in the r<nt of the
leftist tree pointed by H-ARC I

LOCAL COS'I' := S2 * Y;
LOCAL-SIDE PRODUCT := Sl -I- S2;
LO CA L- B A S E- P RO DUCT := W[HEAD] * W[TAII,];

END; - -
END; (f an-cost}

PROCk:I)UHE SUPPORTING WEIGHT (T : TREE: PTH) ;
(**~~**~**********t**-*********~**~***~~-*******************)
(* To find the suppo:tiny might of the arc pointed by T*)
(* with respect to the suhp~~lyg~m bounded below by the *)
(* arc painted by T and above by the arcs pintcd by *)
i* the TA. H ARC and T*.V ARC *I
(***********~*******~~~~~~~*~~~~~************~**~~*******)
VAR D : INTEGER;

D := (LOCAL-S IDE-PKODUC'I - I,OCAII_UASF:_~r~ODUCrl') ;
SUE' WEIGFlT :=- (LOCAL-COW + D - 1) DIV D;

{ceiling function
ENI);

END; {supporting weight-

92

FUNC'L'ION MERGE (Tl , T2 : TREI.' PTR) : TKEE:~~P'I'H;
(k*kk*kk*kkkkkfk*k~*kkk*k****~**k**kkkkk*k*~kkkk*k**k***k)

(* MC!::cps tw.~ 1efYist. two:; into mc LIIHI rcAu;:n!; it in *)
t* M E RG E . *k)
(***************************kk***********k*k**k**********)

VAK n:w f>nt : TRp:E P'l'R;
TEMP-COST,

-
TEMP BASE-PRODUCT,

'IEiVlP-ST DE: PRODUCT : INTEGER;-

BEGIN
IF T2 = NIL
THEN MERGE := Tl
ELSE

IF T1 = NIL
THEN MERGE := T2
ELSE

BEGIN
TEEIP COS'I' := Tl^.TREE COST t T2^.TRf!;E COST;
TEMPISIDE PRODUCT := ;I;l^.TREE SIDE-PRGDUCT-

+ T-Z? TREE-SIDE_PKODUCT;
Tk:[*ll?-BASE PRODUCT := Tl^.T;E;E$ASE_PRODUC1- I TREE BASE-PRODUCT;
IF Tl^ .SUP-WEIGHT < T2n.SUP-WEI;;II'l' -
THEN

BEGIN
TEMP PTR := TI;
Tl := T2;
T2:= ITEMP PTK;

END;

WITH l'1^ DO
BEGIN
H ARC := MERGE (H ARC , ‘1’2) ;
{ii ARC never eqush NIL at this point]
IF-V ARC = NIL
THEN

BEGIN
V ARC := H ARC;
H-ARC := NIL

END-
ELSE

BEGIN
IF V ARCA . Dk:P'I'II < f-1 ARCA . D~:l"l'lI
TEI EN-

--

BEGlN
TEXP P'I'R := V ARC;
v ART : = El ARTS;
H-ARC --': =I: fr 01 1) ~f'17~ ;

END?
--

DEPTH := H ARC* . DEP'I'II t 1;-
END;

TREE cow : =- TEMP COS'I' ;

93

TREE SIDE PRODUCT := TEMP SIDE PRODUCT;
T~iI~:~~:-nnSE-Pnor,nC~r : = Tl:MP--13AS Jn?IIoI1uc'I' ;

ENL); -- -
-- -- .

MERGE := T1;
END;

END; {merge}

FUNCTION CONDfZNSE: (T : 'l'Rk:K Pl'R; MIN : INWXXR) : BOOLEAN;
(***************k**~*****~*~****************~************)
(* CONDENSE is set to false if T = NIL or T^.SUP CvEIGHT *)
(* <= MIN

-
*t)

(****k*kf*~~*********~****~*~****************************
BEGIN

)

IF T = NIL
THk:fJ CONDENSE := FALSE
ELSE CONDENSE := Tn.SUP WEIGHT > MIN;-

END; {cnndense)

PROCEDURE COMBINE: (VAR T : TKEE: PTR; v FLAG : BOOLEAN);
(*****k************************~******~******************)
(* If V--FLAG, it combines the arc pointed by T^.V ARC *)
t* into the arc pointed by T, else it combines tEe arc *)
(* pointed by Tn. H ARC into the arc pointed by T. In *)
t* either case, the ax tc., be combined is deleted from *)
t* the cw: L- esp/jnd ing leftist tree and put into the *')
t* DESCENDANT list of the parent. *k)
(***)
VAR TEME PTR : TREE PTR;- -

BEGIN
IF V FLAG
THKN-

BEGIN
TEPllP PTR := T^.V ARC;
Tn. V-ARC :=

END -
MERGE (TKMP P'l'K- .V ARCJ'EMP PTR^.H ARC) ;- -

ELSE
BEGIN

TEblP PTR := T^.H ARC;
T^. H-ARC :=

E;ND; -
MERGF (TEMP P'I'R^.V ARC,TEMP PTR^.H ARC&- - -

1' KM E' P'I' f .V ARC := NIL;
TEPIP-P'l'Kr‘.H--ARC l = NlL;
TEMP-PTR- .NEXT :i T^ DESCENDAN’I’;
T^ . D?SCfa:NI)ANry := Tb;bii f)‘l’li;
T^. I,OCAJ, COS'I' := T^ . LocAL COS'i' -I l'E,I-IP P'l'Rh . LOCAr, COST;
T^ l LOCAr,-SIDE PROUUC'1' := T^.LocAr, S.rDi? PRODUC'I --

t TEMP PTR^. LOCAI, SI IX--PROD'tjCT-
- Tik' P;i;R^ . LOCAL, BASE PKODUC'I

END; { combine }
- -

94

PROCI-:DUI:t;: REKOVI; (VAR T : TRI;:E-PTR; MIN : INTEGKR) ;
(*******************~******~~*~*****************~~~~*~*~*)
(* H~III,IV~ s al 1 the 2;~c.c; in the lf7fList tr(3? ~v’inti!d by ‘I’*)
t* whose SUP WEIC31Ts are larger than or eq\lal to MIN. *k)
(*k*~***k*tt~~kkkk********~~~~~~*~~**k~~~~k****~**~~*****)

VAR NOT DONE : BOOLEAN;

BEGIN
NOT DONE := TRUK;
W1LIxE NOT DONE DO

IF T = NIL
THEN NOT-DONE := FALSE
ELSE

IF TA.SUP WEIGHT < MIN
TH EN ~0'~ 60~~ l = FALSE
ELSE T :z MERGi (Tn .V ARC/f .E-l ARC);-

END; (remove)

PROCEDURE: SUB PAR']' I'ION (VAR TREK : TREE-PTR;-
MIN : 1NTE:GER);

(****k************************~**t**********~******)
(* To find the optimum par ti tinn of the subpolyqc~n
(* bounded belt.lw by the root of the arc-tree pointed z,’

t* by T. *I
(*********~***********k************k*~****************)
VAR T, R, P, TEMP-PTR : 'IWE-PTK;

TEME' : INTEGER;
NO'I' DONE, FLAG : BOOLEAN;

BEGIkJ
T := TRKE;
R := NIL';
WIIILE T <> NIL DO

BE?.? IN
P : z T^ . N F: X T ;
TA .NE:XT := NIL;
IF T^ .HEAr) ~MALI'
THh;N TEL-if T= W [TA . E1EAD]
ELSE TEMP := W[T^.TAIL];
IF T^ .H ARC <> NIL
THEN SUE-PARTITION ('I'^ .H-ARC,'l'EW) ;

{when return, all the h-s::c:; in the subpI ygon
will be put in a priority qucuc 1

IF T^.V ARC <> NIL
THEN SUis PAR'I'TTION ('l'^ .V ARC ,'H+lP) ;

{the?% should be at most 1 v-ax, i.e.
T^ . v ARCA .NF:X’I L- NH,, when rctum, all the
h-arzs in the subp4 yyon will bc put in a
pr ior i ty queue 1

95

NOT DONE := TRUE;
FLAG := TRUE;
WHILE NOT DONE DO

BEGIN -
(calculate the supporting weight

of the arc pointed by T:)
SUPPORTING-WEIGHT (T);

IF T^ .SUP WEIGHT >=MIN {to see if the partition
is optimum in the
subpolygon 1

THEN
BEGIN
REMOVE (T,MIN) ; {delete all h-arcs not

in the optimum par ti tion
of the subpolygon 1

NOT DONE := FALSE;
FLAG := FALSE;

END
ELSE

IF' CONDENSE ('f.V ARC,T^.SUP WEIGEIT)
THEN COMBINE (T, TRUE)

-

ELSE
IF CONDENSE ('I'-.H ARC,T^.SUP CI;TEIGHT)
THEN COMBINE (T, FALSE) -
ELSE; NOT-DONF: := FALSE;

END;

{maintain the leftist tree structure)
IF FLAG
THEN

BEGlN
T^. TREE COST := T^.LOCAL' COST;
T^. TREE-SIDE PRODUCT := ?.LOCAL SIDE PRODUC'I';
T^ .TREE;-BASE-PRODUCT := l'A.LOCAL-BASE-PIiODUC'I';
IF T^.V-ARC T> NII'

-

THEN -
BEGIN

T^ .TREK COS'I' := l'^ .'l'fiKl: COS'J'-
t-y . v AliC^ . 1'RK i-: COS'll ;

T^ .TREE SIDE: PRODIJC'I' :- l'^ .TkX SI Ilk: P-i?OUUC'l'
-+ 'f-.-V Ar:c'- .'I1 HI' 1.: s 1 DK E'iTOlJ u CT-

- T^ .V ARC-. THE-i? BASE 'PROLXJC'I';- -
END;

96

IF TA .I1 ARC <> NIIa
TEIF:N - .

131,X; I N
r IA1 l I�KKI*: CO.s;�l� : = Tn * �I�KI~:I*: COS�I

+--ry+-

.I1 A R C � . �l�lii~: 1� COS�I� ;

r 1l^ .'l'HEE Sll>K PiWI~IJC'l. :- 1'^ .TITt:E SlI)E P~OUUCT
-+ T^-;-H ARC^ .TREE SIDE PEODUC;i;

'z: TA .H-ARC-. TREE-BASE-PRODUCT;
END;

IF T^.V-ARC <> NIL
THEN

IF T^ d-ARC <> NIL
THEN

BEGIN
IFT^ I.V ARC- .DEPTEI < T^ .H-ARCI.DEPTE1
THEN

BEGIN
TEPIP PTK := T^.V ARC;
T^ .V-ARC := T-i-ARC;
T^ .H-ARC := TEMP-PTR;

END;
T^ .DEPTH := Tn.H-ARC-.DEPTIi + 1;

END
ELSE

ELSE
IF Tn.H-ARC <> NIL
THEN

BEGIN
T^ .V ARC := T?H-ARC;
TA .H-ARC := NIL;

END; -
END;

R := ElERGE (R,'I') ;
T := P;

END;
TREE := R;

E ND; {sub partition)

B E G I N {p.d.y px’titim begins hex)
SUf3 PAR'l'l;I;ION (1 , W[1]) ;

END; -rpdy p;l~~ti.tim)

97

(kkk*kkk*k*kkf~~tt********~*kk****~*~.k~**kkk*kk*k*k.~k**~~k~-~

k(. ‘I’;- svc;- SC!; the tree pG.nt.cd b y ‘1’ p~:c~:,r:dc~-ly, fin&; out *)
(" all the potential h-arcs which are present in the *)
t* opt imum par tit ion of the polygon and m a r k s t h e *‘)
t* wrrcspand ing elements i n the l i s t p{Cntcd b y LIS'I'l. *)
(********k******k***~******~k****~*k~k*********************)

BEGIN
WHILE T <> NIL DO

BEGIN
Tn. LIST-LINK".STAY := TRUE;
MARK-LIST (T^.DESCENDANT);
MARK LIST (T^.V ARC);
MARK-LIST (T?HIARC);
T . -T^.NEXT;l =

END;
END; {mark-list}

PR~~F:IIUW; WITEJJST (VAR 1, : LIST-PTR;
FIRST, LAST, MIN, INDENT : INTEGER);

(***************~*f***********~****~***k~~*****k***********)
(* Displays the h-arcs in the list pointed by L. *')(**********k****k*k************~***********************~***)
VAR 'I'EMP : POS INTEGER;

NOT DONE : BOOZEAN;-

BEGIN
NOT DONE := TRUE;
WHI& NOT DONE DO

IF L = NIIL
THEN NOT-DONE := FALSE
ELSE

IF (LA .HEAD < FIRST) OR (L^.TAIL > LAST)
THEN NOT DONE := FALSE
ELSE -

BEGTN
IF L^ .S'l'AY
THEN

BEGIN
IF LL.HEAD SMALL
THEN TEMP -?= L^.HEAD
ELSE 'I'EMP := i,^ .TAIl,;
IF TEMP <> MIN
THEN

BEGIN
WRITELN (' ':INLJEN'I',

LA .HEAD,' ':3,L,".TAIL,);

98

3

WRITE-LIST (L-.NI;:XT,L- .HF:AD,
L^.TAJL,T~:~1~',INr,~:Nll't~);

E: N D ;
.

END ;
L := L?NEXT;

END;
END; {write-list)

(******************************~k**kkkk**k*****************)

t* main prQg!:am begins here. *k)
(********k********************k**~k******k*****************)

BEGIN
INITIALIZING;
ONE SWEEP (LISTl);
LIST2 := LISTl;
BUILD TREE (LIST2,V TREE,H-TREE,l,N,l);
POLY E>ARTITION (H-TF;EE);
IF H-TREE = NIL
THEN-WRITEL,N (' ':3,'NIL')
ELSE

BEGIN
MARK L,IST (II-TREE);
WRIT:-LIST (LISTl,l,N,1,3);

END ;
END. {main program)

99

{V TREE = NIL)

