Computation of Matrix Chain Products, Part I, Part II

by

T. C. Hu and M. T. Shing

Department of Computer Science
Stanford University
Stanford, CA 94305

Computation of Matrix Chain 1'ocducts, PartI
 T. C. Hu and M. T. Shing University of California, San Diego

 La Jolla, CA 92093 .
Abstract

:

This' paper considers the computation of matrix chain products of the form Mlx $M_{2} \times \ldots M_{n-1}$. If the matrices are of different dimensions, the order in which the product is computed affects the number of operations. An optimum drder is an order which minimizes the total number of operations. We present some theorems about an optimum order of computing the matrices. Based on these theorems, an $O(n \log n)$ algorithm for finding an optimum order is presented in part II.

This research was supported in part by National Science Foundation grant MCS-77-23738 and U.S. Army Research Office grant DAAG29-80-C-0029.

1. Introduction

Consider the evaluation of the product of $n-1$ matrices

$$
\begin{equation*}
\mathbf{M}=M_{1} \times M_{2} \times \cdot{ }^{* *} \mathbf{e} \times \mathbf{M}_{\mathbf{n - 1}} \tag{1}
\end{equation*}
$$

where M_{i} is a $w_{i} \times w_{i+1}$ matrix, Since matrix multiplication satisfies the associative law, the final result M in (1) is the same for all orders of multiplying the matrices. However, the order of multiplication greatly affects the total number of operations to evaluate M. The problem is to find an optimum order of multiplying the matrices such that the total number of operations is minimized. Here, we assume that the number of operations to multiply a $p \times q$ matrix by a $q \times r$ matrix is pqr.

In [1][7], a dynamic programming algorithm is used to find an optimum order. The algorithm needs $O\left(\mathbf{n}^{3}\right)$ time and $O\left(n^{2}\right)$ space. In [2], Chandra proposed a heuristic algorithm to find an order of computation which requires no more than $2 \mathrm{~T}_{0}$ operations where T_{o} is the total number of operations to evaluate (1) in an optimum order. This heuristic algorithm needs only O (n) time. Chin [3] proposed an improved heuristic algorithm to give an order of computation which requires no more than $1.25 \mathrm{~T}_{0}$, This improved heuristic algorithm also needs only $O(n)$ time.

In this paper we first transform the matrix chain product problem into a problem in graph theory - the problem of partitioning a convex polygon into non-intersecting triangles, see $[9][10][11][12]$, then we state several theorems about the optimum partitioning problem. Based on these theorems, an $O(n \log n)$ algorithm for finding an optimum partition is developed.
2. Partitioning a convex polygon

Given an n- sided convex polygon, such as the hexagon shownin Fig. 1 , the number of ways to partition the polygon into (n-2) triangles by non-intersecting diagonals is the Catalan numbers (see for example, Gould [8]). Thus, there are 2 ways to partition a convex quadrilateral, 5 ways to partition a convex pentagon, and 14 ways to partition a convex hexagon.

Let every vertex V_{i} of the polygon have a positive weight $\underset{1}{w . .}$ We can define the cost of a given partition as follows: The cost of a triangle is the product of the weights of the three vertices, and the cost of partitioning a polygon is the sum of the costs of all its triangles. For example, the cost of the partition of the hexagon in Fig. I is

$$
\begin{equation*}
w_{1} w_{2} w_{3}+w_{1} w_{3} w_{6}+w_{3} w_{4} w_{6}+w_{4} w_{5} w_{6} . \tag{2}
\end{equation*}
$$

Fig. 1

If wc crascthediagonal from V_{3} to V_{6} andreplace it by the diagonal from $\quad V_{1}$ to V_{4}, then the cost of the new partition will be

$$
\begin{equation*}
w_{1} w_{2} w_{3}{ }^{t} w_{1} w_{3} w_{4}+w_{1} w_{44} w_{6}{ }^{\mathrm{w}}{ }_{45} 5_{6}{ }^{w} . \tag{3}
\end{equation*}
$$

We will prove that an order of-multiplying (n- 1) matrices corresponds to a partition of a convex polygon with n sides. The cost of the partition is the total number of operations needed in multiplying the matrices. For brevity, we shall use n-gon to mean a convex polygon with n sides, and the partition of an n-gon to mean the partitioning of an n-gon into (n-2) non-intersecting triangles.

For any n-gon, one side of the n-gon will be considered to be its base, and will usually be drawn horizontally at the bottom such as the side $V_{1}-V_{6}$ in Fig. 1. This side will be called the base, all other sides are considered in a clockwise way. Thus, $V_{1}-V_{2}$ is the first side, $V_{2}-V_{3}$ the second side,. .., and $V_{5}-V_{6}$ the fifth side.

The first side represents the first matrix in the matrix chain and the base represents the final result M in (1). The dimensions of a matrix are the two weights associated with the two end vertices of the side. Since the adjacent matrices are compatible, the dimensions $w_{1} \times w_{2}, w_{2} \times w_{3}$, $\ldots, w_{n-1} \times w_{n}$ can be written inside the vertices as $w_{1}{ }_{2}, \ldots, w_{n}$. The diagonals arc the partial products. A partition of ann-goncorresponds to an alphabetic tree of n-l leaves or the parenthesis problem of n-1 symbols (see, for example, Gardner [6]). It is easy to see the one-toone correspondence between the multiplication of n-l matrices to either
the alphabetic binary tree or the parenthesis problem of n - ; symbols. Here, we establish the correspondence between the matrix-chain product and the partition of a convex polygon directly.

Lemma 1. Any order of multiplying n-l matrices corresponds to a partition of an n-gon.

Proof. We shall use induction on the number of matrices. For two matrices of dimensions $w_{1} X^{w_{2}}, w_{2} x_{3} w_{3}$ there is only one way of multi plication, this corresponds to a triangle where no further partition is required. The total number of operations in multiplication is $w_{1} w_{2} w_{3}$, the product of the three weights of the vertices. The resulting matrix has dimension $w_{1} X w_{3}$. For three matrices, the two orders of multiplication $\left(M_{1} \times M_{2}\right) \times M_{3}$ and $M_{1} \times\left(M_{2} \times M_{3}\right)$ correspond to the two ways of partitioning a 4-gon. Assume that this lemma is true for k matrices where $k \leq n-2$, and we now consider n-l matrices. The n-gon is shown in Fig. 2.

Fig. 2

Let the order of multiplication be represented by

$$
\mathbf{M}=\left(M_{1} \times M_{2} \times \cdots \times M_{p 1}\right) \times\left(M_{p} \times \cdots \times M_{n 1}\right)
$$

i. e., the final matrix is obtained by multiplying a matrix of dimension ($w_{1} \times w_{p}$) and a matrix of dimension ($w_{p} \times w_{n}$). Then in the partition of the n-gon, we let the triangle with vertices V_{1} and V_{n} have the third vertex V_{p}. The polygon $V_{1}-V_{2}-\ldots-V_{P}$ is a convex polygon of p sides with base $V_{1}-V_{P}$ and its partition corresponds to an order of multiplying matrices M_{1}, \ldots, M_{p-1}, giving a matrix of dimension $w_{1} \times w_{p}$. Similarly, the partition of the polygon $\mathrm{V}_{\mathrm{p}}-\mathrm{V}_{\mathrm{p}+1^{-}} \ldots \mathrm{V}_{\mathbf{n}}$ with base $\mathbf{V}_{\mathbf{P}}-\mathbf{V}_{\mathbf{n}}$ corresponds to an order of multiplying matrices $M_{P}, \ldots, M_{n} 1$, giving a matrix of dimension $w_{p} X_{n}$. Hence the triangle $V_{l} V_{p} V_{n}$ with base $V \mathbf{1 -} V_{n}$ represents the multiplication of the two partial products, giving the final matrix of dimension $w_{1} \times{ }_{\mathbf{n}}$.

Lemtna 2. The minimum number of operations to evaluate the following matrix chain products are identical,

$$
\begin{gathered}
M_{1} \times M_{2} \times \cdots \times M_{n-2} \times M_{n-1} \\
M_{n} \times M_{1} \times \cdots \times M_{n-3} \times M_{n-2} \\
\vdots \\
M_{2} \times M_{3} \times \cdots \times M_{n 1} \times M_{n}
\end{gathered}
$$

where M. has dimension $w_{i} \times{ }^{w_{i+1}}$ and $w_{n+1} \equiv w$, Note thati n the first matrix chain, the resulting matrix is of dimension $w, b y w_{n}$, In the last matrix chain, the resulting matrix is of dimension w_{2} by w_{1}. But in all the cases, the total number of operations in the optimum orders of multiplication is the same.

Proof. The cyclic permutations of the $n-1$ matrices all correspond to the same n-gon and thushave I hesame optimum partitions.
(This Lemma was obtained independently in [4] with a long proof,)

From now on, we shall concentrate only on the partitioning problem.

The diagonals inside the polygon are called arcs. Thus, one easily verifies inductively that every partition consists of n-2 triangles formed by $n-3$ arcs and n sides.

In a partition of an non, the degree of a vertexis the number of arcs incident on the vertex plus two (since there are two sides incident on every vertex).

Lemma 3. In any partition of an n-gon, $n \geq 4$, there are at least two triangles, each having a vertex of degree two. (For example, in Fig. 1, the triangle $V_{1} V_{2} V_{3}$ has vertex V_{2} with degree 2 and the triangle $V_{4} V_{5} V_{6}$ has vertex V_{5} with degree 2.) (See also [5].)

Proof. In any partition of an n-gon, there are n- 2 non-intersecting triangles formed by $n-3$ arcs and n sides. And for any $n \geq 4$, no triangle can be formed by 3 sides. Let \mathbf{x} be the number of triangles with two sides and one arc, y be the number of triangleswithoneside and two ares, and zo be the numbero ftriangles withthree ares.

Since an arc is'used in two triangles, we have

$$
\begin{equation*}
\mathbf{x} \mathbf{t} 2 \mathrm{y} \text { t } 3 \mathrm{z}=2(\mathrm{n}-3) . \tag{4}
\end{equation*}
$$

Since the polygon has n sides, we have

$$
\begin{equation*}
2 x+y=n \tag{5}
\end{equation*}
$$

From (4) and (5), we get

$$
3 \mathbf{x}=3 z+6
$$

Since $\quad z \geq 0$, we have $x \geq 2$.

Lemma 4. Let P and P^{\prime} both be n-gons where the corresponding weights of the vertices satisfy $w_{i} \leqslant w_{i}^{\prime}$, then the cost of an optimum partition of P is less than or equal to the cost of an optimum partition of P^{\prime}.

Proof. Omitted.

If we use $C\left(w_{1}, w_{2}, w_{3}, \ldots, w k\right)$ to mean the minimum cost of partitioning the k-gon with weights w_{i} optimally, Lemma 4 can be stated as

$$
C\left(w_{1}, w_{2}, \ldots, w_{k}\right)<C\left(w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{k}^{\prime}\right) \text { i f } w_{i} \leq w_{i}^{\prime}
$$

We say that two vertices arc connected in an optimum partition if the two vertices are connected by an arc or if the two vertices are adjacent to the same side.

In the rest of the paper, we shall use $V_{1}, V_{2}, \ldots, V_{n}$ to denote vertices which are ordcred according to their weights, i. e. $w_{1} \leq w_{2} \leq \cdot, \leq w_{n}$, To facilitate the presentation, we introduce a tie-breaking rule for vertices of equal weights,

If there are two or more vertices with weights equal to the smallest weight w_{1}, we can arbitrarily choose one of these vertices to be the vertex V_{1}. Once the vertex V_{1} is chosen, further ties in equal weights are resolved by regarding the vertex which is closer to V_{1} in the clockwise direction to be of less weight. With this tie-breaking rule, we can unambiguously label the vertices $V_{1}, V_{2}, \ldots, V_{n}$ for each choice of V_{1}. A vertex V_{i} is said to be
 $w_{i}=w_{3}$, and $i<j$. We say that V_{i} is the smallest vertex in a subpolygon if it is smaller than any other vertices in the subpolygon.

After the vertices are labeled, we define an arc $V_{i}-V_{j}$ to be less than $\operatorname{another} \operatorname{arc} \mathbf{V}_{\mathbf{P}}-\mathbf{V}_{\mathbf{q}}$
if

$$
\min (i, j)<\min (p, q)
$$

or $\quad\left\{\begin{array}{l}\min (i, j)=\min (p, q) \\ \max (i, j)<\max (p, q) .\end{array}\right.$
(For example, the arc $\mathrm{V}_{3}-\mathrm{V}_{9}$ is less than the arc $\mathrm{V}_{4}-\mathrm{V}_{5}$.) Every partition of an n-gon has $n-3$ arcs which can be sorted from the smallest to the largest into an ordered sequence of arcs, i.e., each partition is associated with a unique ordered sequence of arcs. We define a partition P to be lexicographically less than a partition Q if the ordered sequence of arcs associated with P is lexicographically less than that associated with Q.

When there is more than one optimum partition, we use the,
ℓ-optimum partition (i. e., lexicographically-optirnum partition) to mean the lexicographically smallest optimum partition, and use an optimum partition to mean some partition of minimum cost.

We shall use V_{a}, V_{b}, \ldots to denote vertices which are unordered in weights, and $T_{i j k}$ to denote the product of the weights of any three vertices V_{i}, V_{j} and V_{k}.

Theorem 1. For every way of choosing V_{1}, V_{2}, \ldots (as prescribed), there is always an optimum partition containing $V 1-V_{2}$ and $V_{1}-V_{3}$. (Here, $V_{1}-V_{2}$ and $V_{1}-V_{3}$ may be either arcs or sides.)

Proof: The proof is by induction. For the optimum partitions of a triangle and a 4-gon, the theorem is true. Assume that the theorem is true for all k-gons ($3 \leq k \leq n-1$) and consider the optimum partitions of an n-gon,

From Lemma 3, in any optimum partition, we can find at least two vertices having degree two. Call these two vertices V_{i} and V_{j}. We can divide this into two cases.
(i) One of the two vertices V_{i} (or V_{j}) is not $\mathrm{V}_{1}, \mathrm{~V}_{2}$ or V_{3} in some optimum partition of the n-gon. In this case, we can remove the vertex V_{i} with its two sides and obtain an (n-1)-gon. In this (n-1)-gon, V_{1}, V_{2}, V_{3} are the three vertices with smallest weights. By the induction assumption, V_{1} is connected to both V_{2} and V_{3} in an optimum partition.
(ii) Consider the complementary case of (i), in all the optimum partitions of the n-gon, all the vertices with degree two are from the set $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right\}$. (In this case, there will be at most three vertices with degree two in every optimum partition.) We have the following three subcascs:
(a) $V_{i}=V_{2}$ and $V_{j}=V_{3}$ in some optimum partition of the n-gon, i.e., both V_{2} and V_{3} have degree two simultaneously, In this case, we first remove V_{2} with its two sides and form an ($\mathrm{n}-1$)-gon. By the induction assumption, $V 1, V_{3}$ must be connected in some optimum partition, If $\mathrm{V}_{1}-\mathrm{V}_{3}$ appears as an arc, it reduces to (i). So $V_{1}-V_{3}$ must appear as a side of the ($n-1$)-gon, and reattaching V_{2} to the ($\mathrm{n}-1$)-gon shows that either $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3} are mutually adjacent or $V_{1}-V_{3}$ is a side of the n-gon. In the former case, the proof is complete, so we assume that V1-V3 is a side of the n-gon. Similarly, we can remove V_{3} with its two sides and show that $\mathrm{V}_{1}, \mathrm{~V}_{2}$ are connected by a side of the n-gon.
(b) $V_{1}=V 1$ and $V_{j}=V_{2}$ in some optimum partition of the n-gon, i.e., $V 1$ and V_{2} both have degree two simultaneously. In this case, we can first remove V_{1} and form an (n-1)-gon where V_{2}, V_{3}, V_{4} are the three vertices with smallest weights. By the induction assumption, V_{2} is connected to both V_{3} and V_{4} in an optimum partition. If $\mathrm{V}_{2}-\mathrm{V}_{3}$ or $\mathrm{V}_{2}-\mathrm{V}_{4}$ appears as an arc, it reduces to (i). Hence, $V_{2}-V_{3}$ and $V_{2}-V_{4}$ must both be sides of the n-gon. Similarly, we can remove V_{2} with its two sides and form an (n-1)-gon where V_{1}, V_{3}, V_{4} are the three vertices with smallest weights.

Again, Vl must be connected to V_{3} and V_{4} by sides of the n -gon. But for any n-gon with $n \geq 5$, it is impossible to have $V_{.3}$ and V_{4} both adjacent to $V 1$ and V_{2} at the same time, i.e., V_{1} and V_{2} cannot both have degree two in an optimum partition of any n-gon with $\mathbf{n} \geq 5$.
(c) $v_{i}=V_{1}, v_{j}=V_{3}$ in some optimum partition of the n-gon. By argument similar to (b), we can show that V_{2} must be adjacent to Vl and V_{3} in the n-gon. The situation is as shown in Fig. 3(a).

Then the partition in Fig. 3(b) is cheaper because

$$
\mathrm{T}_{123} \leqslant \mathrm{~T}_{12 \mathrm{q}}
$$

and $\mathrm{C}\left(\mathrm{w}_{1}, \mathrm{w}_{\mathrm{q}}, \underset{\mathbf{Y}}{\mathbf{w}}, \mathrm{w}_{\mathrm{t}}, \mathrm{w}_{\mathrm{x}}, \mathrm{w}_{\mathrm{p}}, \mathrm{w}_{3}\right) \leq \mathrm{C}\left(\mathrm{w}_{2}, \mathrm{w}_{\mathrm{q}}, \mathrm{w}_{\mathrm{y}}, \mathrm{w}_{\mathrm{t}}, \mathrm{w}_{\mathrm{x}}, \mathrm{w}_{\mathrm{p}}, \mathrm{w}_{3}\right)$
according to Lemma 4.

(a)

(b)

Fig. 3

Corollary 1. For every way of choosing $V 1, V_{2}, \ldots$ (as prescribed), the ℓ-optimum partition always contains $V_{1}-V_{2}$ and $V_{1}-V_{3}$.

Proof: It follows from Theorem 1 and the definition of the ℓ-optimum partition.

Once we know $V_{1}-V_{2}$ and $V 1-V_{3}$ always cxist in the ℓ-optimum partition, we can use this fact recursively. Hence, in finding the ℓ-optimum partition of a given polygon, we can decompose it into subpolygons by joining the smallest vertex with the second smallest and third smallest vertices repeatedly, until each of these subpolygons has the property that its smallest vertex is adjacent to both its second smallest and the third smallest vertices.

A polygon having Vl adjacent to V_{2} and V_{3} by sides will be called a basic polygon.

Theorem 2. A necessary but not sufficient condition for $V_{2}-V_{3}$ to exist in an optimum partition of a basic polygon is

$$
\frac{1}{\mathrm{w}_{1}}+\frac{1}{\mathrm{w}_{4}} \leq \frac{1}{\mathrm{w}_{2}}+\frac{1}{\mathrm{w}_{3}}
$$

Furthermore, if $V_{2}-V_{3}$ is not present in the ℓ-optimum partition, then V_{1}, V_{4} are always connected in the ℓ-optimum partition.

Proof. If $\mathrm{V}_{2}, \mathrm{~V}_{3}$ are not connected in the ℓ-optimum partition of a basic polygon, the degree of V_{1} is greater than or equal to 3. Let V_{p} be a vertex in the polygon and $\mathrm{V} 1, \mathrm{~V}_{\mathrm{p}}$ are connected in the ℓ-optimum partition. V_{4} is either in the subpolygon containing $\mathrm{V} 1, \mathrm{~V}_{2}$ and V_{p} or in the subpolygon containing $V 1, V_{3}$ and $\underset{P}{V}$. In either case, V_{4} will be the third smallest vertex in the subpolygon. From Corollary 1, V1, V_{4} are connected in the ℓ-optimum partition of the subpolygon and it also follows that $\mathrm{V}_{1}, \mathrm{~V}_{4}$ are connected in the ℓ-optimum partition of the basic polygon.

If V_{2}, V_{3} are connected in an optimum partition, then we have an ($\mathrm{n}-1$)-gon where V_{2} is the smallest vertex and V_{4} is the third smallest vertex. By Theorem 1, there exists an optimum partition of the (n-1)-gon in which V_{2}, V_{4} are connected. Thus by induction on n, we can assume that V_{4} is adjacent to V_{2} in the basic polygon as shown in Fig. 4(a).

Fig. 4

The cost of the partition in Fig. 4(a) is

$$
\begin{equation*}
\mathbf{T}_{123} \cdot \mathrm{C}\left(\mathrm{w}_{2}, \mathrm{w}_{4}, \ldots, \mathrm{w}_{\mathrm{t}}, \ldots, \mathrm{w}_{3}\right) \tag{7}
\end{equation*}
$$

And the cost of the partition in Fig. 4(b) is

$$
\begin{equation*}
\mathbf{T}_{124}+\mathrm{C}\left(\mathrm{w}_{1}, \mathrm{w}_{4}, \ldots, \mathrm{w}_{\mathrm{t}}, \ldots, \mathrm{w}_{3}\right) \tag{8}
\end{equation*}
$$

According to Lemma 4,

$$
\begin{equation*}
C\left(w_{1}, w_{4}, \infty, w_{t}, \ldots, w_{3}\right)<C\left(w_{2}, w_{4}, \ldots, w_{t}, \ldots, w_{3}\right) . \tag{9}
\end{equation*}
$$

Since the weights of the vertices between V_{4} and V_{3} in the clockwise direction are all greater than or equal to w_{4}, the difference between RHS and LHS of (9) is at least

$$
\mathbf{T}_{243}-\mathrm{T}_{143}
$$

. the necessary condition for (7) to be no greater than (8) is

$$
\mathrm{T}_{123}+\mathrm{T}_{243} \leq \mathrm{T}_{124}+\mathrm{T}_{\mathbf{1 3 4}}
$$

or

$$
-\frac{1}{w_{1}}+\frac{1}{w_{4}} \leq \frac{1}{w_{2}}+\frac{1}{w_{3}}
$$

Lemma 5. In an optimum partition of an n-gon, let V_{x}, V_{y}, V_{z}, and V_{w} be four vertices of an inscribed quadrilateral $\left(V_{x}\right.$ and V_{z} are not adjacent in the quadrilateral). A necessary condition for $\mathrm{V}_{\mathrm{x}}-\mathrm{V}_{\mathrm{Z}}$ to exist is

$$
\begin{equation*}
\frac{1}{w_{x}}+\frac{1}{w_{z}} \geq \frac{1}{w_{y}}+\frac{1}{w_{w}} \tag{10}
\end{equation*}
$$

Proof: The cost of partitioning the quadrilateral by the arc $V_{x}-V_{z}$ is

$$
\begin{equation*}
\mathbf{T}_{\mathbf{x y z}}+\mathrm{T}_{\mathbf{x z w}} \tag{11}
\end{equation*}
$$

and the cost of partitioning the quadrilateral by the arc $\mathbf{V}_{Y}-V_{W}$ is

$$
\begin{equation*}
\mathbf{T}_{\mathbf{x y w}}+\mathrm{T}_{\mathbf{y z w}} \tag{12}
\end{equation*}
$$

For optimality, we have (11) $\leq(12)$ which is (10).

Note that if strict inequality holds in (10), the necessary condition is also sufficient. If equality holds in (10), the condition is sufficient for $V_{x}-V_{z}$ to exist in the ℓ-optimum partition provided $\min (x, z)<\min (y, w)$, This lemma is a generalization of Lemma 1 of Chin [3] where V_{Y} is the vertex with the smallest weight and $\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{w}}, \mathrm{Vz}$ are three consecutive vertices with w_{w} greater than both $\underset{X}{w}$ and w_{z}.

A partition is called stable if every quadrilateral in the partition satisfies (10).

Corollary 2, An optimum partition is stable but a stable partition may not be optimum,

Proof. The fact that optimum partition has to be stable follows from Lemma 5 .
Figure 5 gives an example that a stable partition may not be optimum.

Fig. 5

In any partition of an n-gon, every arc dissects a unique quadri-
lateral. Let $V_{x}, V_{y}, V_{z}, V_{w}$ be the four vertices of an inscribed quadrilateral and $V_{x}-V_{z}$ be the arc which dissects the quadrilateral. We define $V_{x}-V_{z}^{\text {to }}$ be a vertical arc if (13) or (14) is satisfied.

$$
\left.\begin{array}{l}
\min \left(w_{x}, w_{7}\right)<\min _{7}\left(w_{y}, w_{w}\right) \\
\left.\min \left(w_{x}, w_{z}\right)=\min _{w^{\prime}}, w_{y}\right) \tag{14}\\
\max \left(w_{x}, \underset{z}{w_{w}}\right) \leq \max \left(w_{Y}, w_{w}\right)
\end{array}\right\}
$$

We define $V_{x}-V_{z}$ to be a horizontal arc if (15) is satisfied

$$
\begin{align*}
& \min \left(w_{x}, w_{z}\right)>\min \left(w_{Y}, w_{w}\right) \\
& \max \left(w_{x}, w_{z}\right)<\max \left(w_{Y}, w_{w}\right) \tag{15}
\end{align*}
$$

For brevity, we shall use h-arcs and v-arcs to denote horizontal arcs and vertical arcs from now on.

Corollary 3. All arcs in an optimum partition must becithervertical

 arcs or horizontal arcs.Proof: Let $V_{x}-V_{z}$ be an arc which is neither vertical nor horizontal.
There are'two cases:

Case 1. $\quad \min \left(w_{x}, w_{z}\right)=\min \left(w_{Y}, w_{w}\right)$
and $\quad \max \left(w_{x}, w_{z}\right)>\max \left(w_{Y}, w_{w}\right)$

Case 2. $\quad \min \left(w_{x}, w_{z}\right)>\min \left(\underset{Y}{w}, w_{w}\right)$
and $\quad \max \left(w_{x}, w_{z}\right) \geq \max \left(w_{Y}, w_{w}\right)$.

In both cases, the inequality (10) in Lemma 5 cannot be satisfied.

This implies that the partition is not stableandhenrecannofbeoplimum.

Theorem 3. Let V_{x} and V_{z} be two arbitrary vertices which arc nd adjacent in a polygon, and V_{w} be the smallest vertex from V_{x} to V_{z} in the clockwise $\operatorname{manner}\left(\mathrm{V}_{\mathrm{w}} \neq \mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{w}} \neq \mathrm{V}_{\mathrm{z}}\right)$, and V_{Y} be the smallest vertex from V_{z} to V_{x} in the clockwise manner $\left(\mathrm{V}_{\mathrm{Y}} \neq \mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{Y}}^{\neq \mathrm{V}_{\mathrm{Z}}}\right)$. This is shown in Fig. 6 where without loss of generality, we assume that $\mathrm{V}_{\mathrm{x}}<\mathrm{V}_{\mathrm{z}}$ and $\mathrm{V}_{\mathrm{y}}<\mathrm{V}_{\mathrm{w}}$. A necessary condition for $V_{X}-V_{z}$ to exist as an h-arc in the ℓ-optimum partition is that

$$
w_{y}<w_{x} \leq w_{z}<w_{w} .
$$

(Note that the necessary condition still holds when the positions of $\mathbf{V}_{\mathbf{Y}}$ and $\mathbf{V}_{\mathbf{W}}$ are interchanged.)

Fig. 6

Proof, The proof is by contradiction. If $w_{x} \leq \underset{Y}{w}, w_{x}$ must be equal to the smallest weight w_{1} and $V_{x}-V_{z}$ can never satisfy (15). Hence, in order that $V_{X}-V_{z}$ exists as an h-arc in the ℓ-optimum partition, we must
 the clockwise manner and $\underset{X}{ }<V_{W}$, we must have $V_{Y}=v_{1}$.

Assume for the moment that $V=V_{x}<V z$. From Corollary 1, both $\mathrm{VI}-\mathrm{V}_{2}$ and $\mathrm{V}_{1}-\mathrm{V}_{3}$ exist in the ℓ-optimum partition, and the two arcs would divide the polygon into subpolygons. If V_{x} and V_{z} are in different subpolygons, then they cannot be connected in the ℓ-optimum partition. Without loss of generality, we can assume that the polygon is a basic polygon. In this basic polygon, either $\mathrm{V}_{2}-\mathrm{V}_{3}$ or $\mathrm{V}_{1}-\mathrm{V}_{4}$ exists in the ℓ-optimum partition (Theorem 2).

If $\mathrm{V}_{2}, \mathrm{~V}_{3}$ are connected, then V_{x} and V_{z} are both in a smaller polygon in which we can treat V_{2} as the smallest vertex and repeat the argument. If $\mathrm{V}_{1}, \mathrm{~V}_{4}$ are connected, the basic polygon is again divided into two subpolygons and V_{x} and V_{z} both have to be in one of the subpolygons and the subpolygon has at most $n-1$ sides, (Otherwise $V_{X}-V_{z}$ can never exist in the ℓ-optimum partition.) The successive reduction in the size of the polygon will either make the connection $X_{X}-V_{z}$ impossible, or force V_{x} and V_{z} to become the second smallest and the third smallest vertices in a basic subpolygon. Let V_{m} be the smallest vertex in this basic subpolygon. In order that $V_{x}-V_{z}$ appear as an h-arc, we must have $w_{x}>w_{m}$. From Theorem 2, the necessary condition for $V_{x}-V_{z}$ (i.e. $V_{2}-V_{3}$) to exist in an optimum partition of the subpolygon is

Since $w_{x}>w_{m}$, the inequality is valid only if $w_{z}<w_{w}$
Corollary 4. A weaker necessary condition for $V_{x}-V_{z}$ to exist as an h-arc
in the $\boldsymbol{\ell}$-optimum partition is that

$$
\mathrm{V}_{\mathrm{y}}<\mathrm{V}_{\mathrm{x}}<\mathrm{V}_{\mathrm{z}}<\mathrm{V}
$$

Proof. This follows from Theorem 3.

We call any arc which satisfies this weaker necessary condition a potential h-arc. Let P be the set of potential h-arcs in the n-gon and H be the set of h-arcs in the ℓ-optimum partition, we have $P \supseteq H$ where the inclusion could be proper.

Corollary 5. Let V_{w} be the largest vertex in the polygon and V_{X} and V_{Z} be its two neighboring vertices. If there exists a vertex $V={ }_{Y}$ such that $V_{y}<V_{x}$ and $V_{Y}<V_{z}$, then $V_{x}-V_{z}$ is a potential h-arc.

Proof. This follows directly from Corollary 4 where there is only one vertex between V_{X} and V_{*}.

Two arcs are called compatible if both arcs can exist simultaneously in a partition. Assume that all weights of the vertices are distinct, then there are (n-1)! distinct permutations of the weights around an n-gon, For example, the weights $10,11,25,40,12$ in Fig. $5(a)$ correspond to the permutation $\quad w_{1}, w_{2}, w_{4}, w_{5}, w_{3}\left(\right.$ where $\left.w_{1}<w_{2}<w_{3}<w_{4}<w_{5}\right)$. There are infinitely many values of the weights which correspond to the same permutation. For example, 1, $16,34,77,29$ also corresponds to $w_{1}, w_{2}, w_{4}, w_{5}, w_{3}$ but its optimum partition is different from that of $10,11,25,40,12$. However, all the potential h-arcs in all the n-gons with the same permutation of weights are compatible, We state this remarkable fact as Theorem 4.

Theorem 4, All potential h-arcs are compatible.
 vertices described in Theorem 3. Hence, we have $\underset{\mathbf{Y}}{\mathbf{V}}<\underset{\mathbf{x}}{\mathbf{V}}<\mathrm{V}_{\mathrm{Z}}<\mathbf{V}_{\mathbf{W}}$
and $V_{x}-V_{z}$ is a potential $h-a r c$. Let $V_{P}-V_{q}$ be a potential h-arc which is not compatible to $V_{x}-V_{z}$, as shown in Fig. 7. Without loss of generality, we can assume $V_{P}<V_{q}$. (The proof for the case $V_{q}<V_{r}$ is similar to that which follows.)

Fig. 7

Since V_{W} is the smallest vertex between V_{X} and V_{Z} in the clockwise manner, we have $v_{z}<\mathrm{V}_{\mathrm{w}}<\mathrm{V}_{\mathrm{q}}$. Hence, we have either $\mathrm{V}_{\mathrm{V}}<\mathrm{V}_{\mathrm{p}}<\mathrm{V}_{\mathrm{Z}}<\mathrm{V}_{\mathrm{q}}$ or $\mathrm{V}_{\mathrm{Y}}<\mathrm{V}_{\mathrm{z}}<\mathrm{V}_{\mathrm{p}}<\mathrm{V}_{\mathrm{q}}$. Both cases violate Corollary 4 and $\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{q}}$ cannot be a potential h-arc.

Note that the potential $h-\operatorname{arc} V_{x}-V_{z}$ always dissects the n-gone into two subpolygons and one of these subpolygons has the property that all its vertices except V_{x} and V_{z} have weights no smaller than $\max \left(w_{x} X^{v}\right)$. Wc shall call this subpolygon the upper subpolygon of $\mathrm{V}_{\mathrm{x}}-\mathrm{V}_{\mathrm{z}}$. For example, the subpolygon $v_{x} \cdots-v_{w} \cdots-v_{q}-\cdots-v_{z}$ in Fig. 7 is the upper subpolygon of ${ }_{x}-V_{z}$.

Using Corollary 4 and Theorem 4, we can generate all the potential
h-arcs of a polygon.

Let $V_{x}-V_{Z}$ be the arc defined in Corollary 5 , i.e. $V_{1}<V_{x}<V_{z}<V_{W}$. The arc $V_{x}-V_{z}$ is a potential h-arc compatible to all other potential h-arcs in the n-gon. Furthermore, there is no other potential h-arc in its upper subpolygon. Now consider the ($n-1$)-gon obtained by cutting out V_{w}. In this (n-1)gon, let V_{W}, be the largest vertex and V_{x}, and V_{z}, be the two neighbors of $\mathbf{V}_{\mathbf{W}}$, where $\mathrm{V}_{\mathbf{l}}<\mathrm{V}_{\mathrm{x}^{\prime}}<\mathrm{V}_{\mathrm{z}^{\prime}}<\mathrm{V}_{.0}$. Then $\mathrm{V}_{*},-\mathrm{V}_{c}$, is again a potential h-arc compatible to all other potential h-arcs in the n-gon and there is no other potential h-arc in its upper subpolygon which has not been generated. This is true even if V_{w} is in the upper subpolygon of $V_{x},-V_{z}$, If we repeat the process of cutting out the largest vertex, we get a set P of arcs, all arcs satisfy Corollary 4. The h-arcs of the ℓ-optimum partition must be a subset of these arcs.

The process of cutting out the largest vertex can be made into an algorithm which is $O(n)$. We shall call this algorithm the one-sweep algorithm. The output of the one-sweep algorithm is a set S of $n-3$ arcs. S is empty initially.

The one - sweep algorithm:

Starting from the smallest vertex, say V_{1}, we travel in the clockwise direction around the polygon and push the weights of the vertices successively onto the stack as follows (w_{1} will be at the bottom of the stack).
(a) Let V_{t} be the top element on the stack, $\mathrm{V}_{\mathrm{t} 1}$ be the element immediately below V_{t}, and V_{c} be the element to be pushed onto the stack.

If there are two or more vertices on the stack and $w_{t}>w_{C}$, add $V_{t l}{ }^{-V_{c}}$ to S, pop V_{t} off the stack; if there is only one vertex on the stack or $w_{t} \leq w_{c}$, push w_{c} onto the stack. Repeat this step until the $n^{\text {th }}$ vertex has been pushed onto the stack.
(b) If there are more than three vertices on the stack, add $\mathrm{V}_{\mathrm{t}} \mathrm{l}^{-} \mathrm{V}_{\mathrm{C}}$ to S, pop V_{t} off the stack and repeat this step, else stop.

Since we do not check for the existence of a smallest vertex whose weight is strictly no larger than those of the two neighbors of the largest vertex, i. e. the existence of the vertex V_{Y} in Corollary 4, not all the $n-3$ arcs generated by the algorithm are potential h-arcs. However, it is not difficult to verify that the one-sweep algorithm always generates a set \mathbf{S} of $\mathbf{n - 3}$ arcs which contains the set P of all potential h-arcs which contains the set H of all h-arcs in the ℓ-optimum partition of the n-gon, i.e.,

$$
S \supseteq P \supseteq H
$$

where each inclusion could be proper. For example, if the weights of the vertices around the n-gon in the clockwise direction are $w_{1} w_{2}, \ldots, w_{n}$ where $w_{1} \leq w_{2} \leq \cdots \leq w_{n}$, none of the arcs in the n-gon can satisfy Corollary 4 and hence there are no potential h-arcs in the n-gon. The onesweep algorithm would still generate $n-3$ arcs for then-gon but none of the arcs generated is a potential h-arc.
3. Conclusion

In this paper, we have presented several theorems on the Polygon Partitioning Problem. Some of these theorems are characterizations of the optimum partitions of any n-sided convex polygon, while the others apply to the unique lexicographically smallest optimum partition. Based on these theorems, an $O(n)$ algorithm for finding a near-optimum partition can be developed [12]. The cost of the partition produced by the heuristic algorithm never exceeds 1 , 155 Copt, where Copt is the optimum cost of partitioning the polygon. An $O(n \log n)$ algorithm for finding the unique lexicographically smallest optimum partition will be presented in part II.
4. Acknowledgment

The authors would like to thank the referees for their helpful comments in revising the manuscript.

References

1. A. V. Nho, J. E . Hopcroft and J. D. Ullman, 'The Design and Analysis of Computer Algorithms, " Addison-Wesley, 1974,
2. A. K. Chandra, "Computing Matrix Chain Product in Near Optimum Time, " IBM Res. Report RC5626 (\#24393), IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 1975.
3. F. Y. Chin, "An $O(n)$ Algorithm for Determining a Near Optimal Computation Order of Matrix Chain Product, "Communication of ACM, Vol. 21, No. 7, July 1978, pp. 544-549.
4. L. E. Deimel, Jr, and T. A. Lampe, "An Invariance Theorem Concerning Optimal Computation of Matrix Chain Products, " North Carolina State Univ. Report TR79-14.
5. G, A. Dirac, "On rigid circuit graphs, " Abh. Math. Sem., Univ. Hamburg, 25, pp. 71-76(1961).
6. M. Gardner, "Catalan numbers, " Scientific American, June 1976, pp. 120-124.
7. S. S. Godbole, "An Efficient Computation of Matrix Chain Products," IEEE Trans. Computers C-22, 9 Sept. 1973, pp. 864-866.
8. H. W. Gould, "Bell and Catalan Numbers, " Combinatorial Research Institute, Morgantown, W. Va., June 1977.
9. T.C. Hu and M. T. Shing, "Computation of Matrix Chain Product," Abstract, Am. Math. Soc., Vol. 1, No. 3, p. 336, April 1980.
10. T, C. Hu and M. T. Shing, "Some Theorems about Matrix Multiplica-tions, " Proceedings of the 21st Annual IEEE Symposium on theFoundation of Computer Science, Oct. 1980, pp. 28-35.
11. T. C. Hu and M. T. Shing, "Computation of Matrix Chain Products,"
Proceedings of 1981 Army Numerical Analysis \& Computations
Conference, August 1981, pp. 615-628.
12. T. C. Hu and M. T. Shing, "An O(n) Algorithm to Find a Near-OptimumPartition of a Convex Polygon, " to appear in the Journal of Algorithms.

Computation of Matrix Chain Products, Part II

T. C. Hu and M. T. Shing
University of California, San Diego

La Jolla, CA 92093

Abstract

:

This paper considers the computation of matrix chain products of the form $M 1 \times M_{2} \times \ldots \times M_{n-1}$. If the matrices are of different dimensions, the order in which the matrices are computed affects the number of operations. An optimum order is an order which minimizes the total number of operations. Some theorems about an optimum order of computing the matrices have been presented in part I. Based on those theorems, an $O(n \log n)$ algorithm for finding the optimum order is presented here.

[^0]
1. Introduction

In Part I of this paper, we have transformed the matrix chain product problem into the optimum partitioning problem and have stated several theorems about the optimum partitions of an n-sided convex polygon. Based on these theorems, we now present algorithms for finding the unique ℓ-optimum (lexicographically smallest optimum) partition.

Using the same notation as in Part I of this paper, we can assume that we have uniquely labelled all vertices of the n-gon. A partition is called a fan if it consists of only v-arcs joining the smallest vertex to all other vertices in the polygon. We shall denote the fan of a polygon $V_{1}-V_{b}-V_{m}-V_{n}$ by $\operatorname{Fan}\left(w l \mid w_{b}, w_{c}, \ldots, w\right)_{i}$ The smallest vertex $V 1$ is called the center of the fan.

We define a vertex as a local maximum vertex if it is larger than its two neighbors and define a vertex as a local minimum vertex if it smaller than its two neighbors. A polygon is called a monotone polygon if there exists only one local maximum and one local minimum vertex. We shall first give an $O(n)$ algorithm for finding the ℓ-optimum partition of a monotone polygon and then give an $O(n \log n)$ algorithm for finding the ℓ-optimum partition of a general convex polygon.

2. Monotone Basic Polvgon

In this section, let us consider the optimum partition of a monotone polygon, i. e. a polygon with only one local minimum vertex and one local maximum ve r tex. It follows from Corollary 1 of Part I that we can
consider a monotone basic polygon only. The understanding of this special case is necessary in finding the optimum partition of a general convex polygon.

Consider a monotone basic n-gon $\mathrm{Vl}-\mathrm{V}_{2}-\mathrm{V}_{\mathrm{c}}-\ldots-\mathrm{V}_{3}$, the fan of the polygon is denoted by

$$
\operatorname{Fan}\left(w_{1} \mid w_{2}, w_{c}, \ldots, w_{3}\right)
$$

where the smallest vertex V_{1} is the center of the fan.
The definition of a fan can also be applied to subpolygons as well. For example, if $\mathrm{V}_{2}, \mathrm{~V}_{3}$ are connected in the basic n-gon and V_{2} becomes the smallest vertex in the (n - 1)-sided subpolygon, the partition formed by connecting V_{2} to all vertices in the ($\mathrm{n}-1$)-gon is denoted by

$$
\operatorname{Fan}\left(w_{2} \mid w_{c}, \ldots, w_{3}\right) .
$$

Lemma 1. If none of the potential h-arcs appears in the ℓ-optimum partition of the n-gon, the ℓ-optimum partition must be the fan of the n-gon.

Proof. From Theorem 3 of Part I, we know that any arc which exists as an h-arc in the ℓ-optimum partition must be a potential h-arc. Hence, if the ℓ-optimum partition does not contain any potential $h-a r c$, the ℓ-optimum partition must be made up of v-arcs only. Hence, we have to show that among all partitions which are made up of v-arcs only, the fan is (i) the lexicographically smallest and (ii) one of the cheapest partitions in the n-gon.
(i) Since the fan consists of only v-arcs joining V_{1} to all other vertices in the n-gon, it is by definition the lexicographically smallest- partition.
(ii) Suppose the ℓ-optimum partition contains v-arcs only but is not the fan. There must exist three vertices V_{i}, V_{k}, V_{j} such that the triangles
$\mathrm{V}_{1} \mathrm{~V}_{\mathrm{i}} \mathrm{V}_{\mathrm{j}}$ and $\mathrm{V}_{\mathrm{i}} \mathrm{V}_{\mathrm{j}} \mathrm{V}_{\mathrm{k}}$ are present in the ℓ-optimum partition. Since, $\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{j}}$ is a v-arc (by assumption) and V_{1} is the smallest vertex in the n-gon, we have $w l=\min \left(w_{i}, w_{j}\right)$ and $\max \left(w_{i}, w_{j}\right) \leq w_{k}$. If we replace the v-arc $V_{i}-V_{j} b y$ the v-arc $V_{l}-V_{k}$, we can get a partition whose cost is less than or equal to that of the ℓ-optimum partition but is lexcographically smaller than the ℓ-optimum partition, and results in a contradiction.

Let $V_{i}-V_{j i}$ and $V_{P}-V_{q}$ be two potential h-arcs of any n-gon. We say that $V_{1} .-V_{j}$. is above $\underset{P}{V}-V_{q}\left(\right.$ and $V_{p}-V_{q} \underset{i s}{ }$ below $V_{i}-V_{j}$) if the upper subpolygon of $V_{P}-V_{q}$ contains the upper subpolygon of $\underset{i}{ } V_{j}-V_{j}$

Let P be the set of all potential h-arcs in monotone basic n-gon. P can have at most (n-3) arcs.

Lemma 2. For any two arcs in P, say $V_{i}-V_{j}$ and $V_{p}-V_{q}$, we must have either $V_{i}-V_{j}$ above $V_{P}-V_{q}$ or $V_{p}-V_{q}$ above $V_{i}-V_{j}$.

Proof. By contradiction. Let $V_{i}-V_{j}$ and $V_{P}-V_{q}$ be two arcs in P which do not satisfy this lemma. Then the intersection of the upper subpolygons of $V_{i}-V_{j}$ and $V_{P}-V_{q}$ must either be empty or consists of part of each upper subpolygon only.

Since the vertices other than V_{i}, V_{j} in the upper subpolygon of $V_{i}-V_{j}$ must have weights larger than $\max \left(w_{i}, w_{j}\right)$, the local maximum vertex of the monotone basic polygon must be present in the upper subpolygon of $V_{i}-V_{j}$. Similarly, the local maximum vertex of the monotone basic polygon
 sections of the upper subpolygons of $\underset{1}{V} .-V_{j}$. and $V_{P}-V_{q}$ cannot be empty.

From Theorem 4 of Part I, we know that $V_{i}-V_{J}$ and $\underset{P}{V}-V_{q}$ cannot cross each other and hence the intersection of their upper subpolygons cannot consist of part of each upper subpolygons only.

We can actually show this ordering of potential h-arcs pictorially by drawing a monotone basic polygon in such a way that the local maximum vertex is always at the top and the local minimum vertex is at the bottom. Then a potential h-arc $\mathbf{V}_{1} \cdot-V_{\mathbf{J}}$ is physically above another potential h-arc $\mathrm{V}_{\mathrm{p}}-\mathrm{V}_{\mathrm{q}}$ if the upper subpolygon of $\mathbf{V}_{\mathbf{P}}-\mathrm{V}_{\mathrm{cl}}$ contains the upper subpolygon of $V_{i}-V_{\mathbf{j}}$. From the definition of the upper subpolygon, we can see that

Consider the monotone basic n-gon which is shown symbolically in Figure 1. V_{n} is the local maximum vertex and $V_{i}-V_{j i}, V_{p}-V_{q}$ are potential h-arcs of the monotone basic n-gon. The subpolygon $\underset{P}{V}-\ldots-V_{i}-V_{j i}-\ldots-V_{q}$ which is formed by two potential h-arcs $V_{P}-V_{q}$ and $V_{i}-V_{j}$ and the sides of the n-gon from V_{P} to V_{i} and from V_{j} to V_{q} in the clockwise direction is said to be bounded above by the potential h-arc $V_{i}-V_{j}$ and bounded below by the potential h-arc $\underset{\mathrm{P}}{\mathrm{V}}-\mathrm{V}_{\mathrm{q}}$,

Figure 1

Lemma 3. Any subpolygon which is bounded by two potential h-arcs of the monotone basic n-gon is itself a monotone polygon.

Proof, Consider the subpolygon $\underset{\mathbf{P}}{\mathbf{V}} \ldots \mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{Ji}}-\ldots-\mathrm{V}_{\mathrm{q}}$ in Figure 1. Without loss of generality, we can assume $\mathrm{V}_{\mathrm{i}}<\mathrm{V}$. and $\mathrm{V}_{\mathrm{p}}<\underset{\mathrm{q}}{\mathrm{V}}$. Since V_{n} is the only local maximum vertex in the monotone basic n-gone, we must have $\quad \mathbf{V I}<\underset{\mathbf{P}}{\mathbf{V}}<\ldots<\mathrm{V}_{\mathbf{r}}<\mathbf{V}_{\mathbf{n}}$ and $\mathbf{V}_{\mathbf{n}}>\mathrm{V}_{\mathrm{j}}>\ldots>\mathrm{V}_{\mathrm{q}}>\mathrm{V}_{\mathrm{l}}$. Hence, $\mathbf{V}_{\mathbf{P}}$ is the unique local minimum vertex and V_{j} is the unique local maximum vertex in the subpolygon P $V-\ldots-V_{i}-V_{i}-\ldots-V_{q}$. By definition, $V_{P}-\cdots-V_{i}-V_{j}-\cdots-V_{q}$ is a monotone polygon.

Lemma 4. Any potential h-arc of a subpolygon bounded above and below by two potential h-arcs of the monotone basic n-gon is also a potential h-arc of the monotone basic n-gon.

Proof. Consider the subpolygon $\underset{P}{V}-\ldots-V_{i}-V_{j i}-\ldots-V_{q}$ in Figure 1. Let $V_{x}-V_{z}$ be a potential h-arc in this subpolygon and V_{w} is the smallest vertex between V_{x} and V_{z} in the clockwise direction around the subpolygon. Without loss of generality, we can assume $\mathrm{V}_{\mathbf{i}}<\mathrm{V}_{\mathrm{j}}, \mathrm{V}_{\mathrm{p}}<\mathrm{V}_{\mathrm{q}}$ and $\mathrm{V}_{\mathrm{x}}<\mathrm{V}_{\mathrm{z}}$. Since V_{x} is in the upper subpolygon of the potential h-arc $V_{P}-V_{q}$, we have ${ }^{w_{1}}<\mathrm{w}_{\mathrm{p}} \leq \mathrm{w}_{\mathrm{q}}<\mathrm{w}_{\mathrm{x}} \leq \mathrm{w}_{\mathrm{z}}$. Since $\mathrm{V}_{\mathrm{j}}<$ any vertex in the upper subpolygon of $V_{i}-V_{\dot{J}}$ and $V_{w}<V_{1}<V_{j}, V_{w}$ is the smallest vertex between V_{x} and V_{z} in clockwise direction around the monotone basic n-gon. Hence, we have $\mathrm{w}_{1}<\mathrm{w}_{\mathrm{x}} \leq \mathrm{w}_{\mathrm{z}}<\mathrm{w}_{\mathrm{w}}$ and $\mathrm{V}_{\mathrm{x}}-\mathrm{V}_{\mathrm{z}}$ is a potential h-arc of the monotone basic n-gon.

We can now summarize what we have discussed. If there is no h-arc in the l-optimum partition of monotone basic n-gon, the ℓ-optimum partition must be a fan. Otherwise, the h-arcs in the ℓ-optimum partition are all layered, one above another. If we consider the local maximum vertex V_{n} and the local minimum vertex V_{1} as two degenerated h-arcs, then the ℓ-optimum partition of a monotone basic n-gon will contain one or more monotone subpolygons, each bounded above and below by two h-arcs and the ℓ-optimum partition of each of these monotone subpolygons is a fan.

Then, in finding the ℓ-optimum partition of a monotone basic polygon, we have only to consider those partitions which contain one or more subpolygons bounded above and below by potential h-arcs and each of these subpolygons is partitioned by a fan. Since there are at most (n-3) nondegenerated potential h-arcs in monotone basic n-gon, there will be at most $2^{\text {n-3 }}$ such partitions and we can divide all these partitions into (n-2) classes by the number of non-degenerated potential h-arcs a partit ion contains. These classes are denoted by $\mathrm{H}_{0}, \mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{n} 3}$ where the subscript indicates the number of non-degenerated potential h-arcs in each partition of that class.

There is no potential h-arc in the partitions in the class H_{0}. Hence the class consists of only one partition, namely the fan

$$
\operatorname{Fan}\left(w_{1} \mid w_{2}, \ldots, w_{3}\right)
$$

In the class H_{1}, each partition has one non-degenerated potential h-arc. Once the potential h-arc is known, the rest of the arcs must all be vertical arcs forming two fans, one in each subpolygon.

Two typical partitions in Hl of a monotone basic polygon are shown in Fig. 2. In Fig. 2a, there is one non-degenerated potential h-arc, $V_{c}-V_{i}\left(V_{c}<V_{i}\right)$. The upper subpolygon is a fan

$$
\operatorname{Fan}\left(w_{c} \mid w_{d}, \ldots, w_{i}\right)
$$

and the lower subpolygon is a fan

$$
\operatorname{Fan}\left(w_{1} \mid w_{2}, w_{c}, w_{i}, w_{3}\right) .
$$

(a)

(b)

Fig. 2. Two typical partitions in H_{1} of a monoton 10-gon.

In Fig. 2 b , there is one potential h -arc, $\mathrm{V}_{2}-\mathrm{V}_{3}$, and the upper subpolygon is a fan

$$
\operatorname{Fan}\left(w_{2} \mid w_{c}, \ldots, w_{3}\right)
$$

and the lower subpolygon is a degenerated fan, a triangle.
Assume that $V_{2}-V_{3}$ is the only h-arc, then the cost is (see Fig. 2b)

$$
\begin{gather*}
{ }_{w_{1}} w_{2} w_{3}+w_{2}\left(w_{c} w_{d}+w_{d} w_{e}+w_{e} w_{f}+w_{f}{\underset{g}{g}}^{w}+w_{g} \underline{w}_{h}+w_{h} w_{i}+w_{i} w_{3}\right) \\
=T_{123} t w_{2}\left(w_{c}: w_{3}\right) \tag{1}
\end{gather*}
$$

where $w_{c}: w_{3}$ is the shorthand notation of the sum of adjacent products from w_{c} to w_{3} in the clockwise direction.

Note that the cost of H_{0} of the polygon shown in Fig. 2 is

$$
\begin{gather*}
\operatorname{Fan}\left(w_{1} \mid w_{2}, \ldots, w_{3}\right) \\
=w_{1}\left(w_{2}: w_{3}\right) \tag{2}
\end{gather*}
$$

The condition of (1) to be less than (2) is

$$
\frac{w_{2} \cdot\left(w_{c}: w_{3}\right)}{\left({\underset{w}{2}}_{2}: w_{3}\right)-w_{2} \cdot w_{3}}<w_{1}
$$

Similarly, the condition for the partition in Fig. 2a to be less $\operatorname{than} \mathrm{H}_{0}$ is

$$
\begin{equation*}
\frac{\cdot\left(w_{d}: w_{i}\right)}{\left(w_{1}: w_{i}\right)-w_{0} \cdot \mathbb{1}_{1}}<w_{1} \tag{3}
\end{equation*}
$$

We say that a partition is said to be ℓ-optimal among the partitions in a certain class (or several classes) if it is the lexicographically smallest partition among all the partitions with minimum cost in that class (or several classes). Hence, the I-optimum partition is I-optimal among all partitions in the classes H_{0}, H_{1}, \ldots, and $H_{n 3}$.

Now, assume that the P-optimal partition among all the partitions in $H_{1}, H_{2}, \ldots, H_{n-3}$ contains only one potential h-arc $\underset{i}{V_{k}}-V_{k}$ only, as shown in Fig. 3. (Note that $V_{1 i}-V_{k}$ will exist in this partition as an h-arc.) This partition will be the ℓ-optimum partition of the monotone basic n-gon if it costs less than that of the fan in H_{0}, The condition that the partition with $\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{k}}$ as the single h-arc costs less than H_{0} is

$$
\frac{\left.w_{i} \cdot w_{k}\right)}{\left(w_{i}: w_{k}\right)-w_{i} \cdot w_{k}}<w_{1} \quad \text { if } w_{\cdot} \leq w_{k}
$$

or

Fig, 3. A monotone polygon with a single h-arc.

$$
\frac{w_{k} \cdot\left(w_{1}: w_{g}\right)}{\left(w_{i}: w_{k}\right)-w_{i} \cdot w_{k}}<w_{1} \quad \text { if } \quad w_{k}<w_{i}
$$

Combining the two inequalities above, we have

$$
\begin{equation*}
\frac{C\left(w_{i}, \cdots, w_{k}\right)}{\left(w_{i}-w_{k}\right)-w_{i} \cdot w_{k}}<w_{1} \tag{4}
\end{equation*}
$$

where $C\left(w_{i}, \ldots, w_{k}\right)$ denotes the cost of the optimum partition of the subpolygon ${ }_{1} w \cdot{ }_{j} \ldots \ldots \cdot{ }_{g}-w_{k}$ and is equal to the cost of the fan in this case.

An h-arc $V_{i}-V_{k}$ which divides a polygon into two subpolygons is called a positive arc with respect to the polygon if (4) is satisfied, i. e., the partition with the arc as the only h-arc and a fan in each of the two subpolygins costs less than the fan in the same polygon. Otherwise, it is called a negative arc with respect to the polygon.

When an n-gon is divided into subpolygons, an h-arc is defined as Positive in a subpolygon if the cost of partition of the subpolygon with the h-arc as the only h-arc is less than the fan in the subpolygon.

Let us consider a partition with two hares as shown in Fig. 4, and assume that this partition is ℓ-optimal among all partitions in the $\operatorname{classes} H_{2}, H_{3}, \cdots H_{n-3}$.

Fig. 4. A monotone 8-gon with two h-arcs.

If $\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{k}}$ is positive with respect to the subpolygon
$V_{1}-V_{i}-V_{p}-V_{q}-V_{k}$, then the condition analogous to (4) is

$$
\begin{equation*}
\frac{C\left(w_{i}, w_{p}, w_{q}, w_{k}\right)}{\left\{\left(w_{i}: w_{k}\right)-\left[\left(w_{p}: w_{q}\right)-w_{P} \cdot w_{q}\right]\right\}-w_{i} \cdot w_{k}}<w_{1} \tag{Fa}
\end{equation*}
$$

If $V_{i}-V_{k}$ is positive with respect to the whole polygon $\mathrm{V}_{1}-\mathrm{V}_{\mathrm{i}}-\ldots-\mathrm{V}_{\mathrm{n}}-\ldots-\mathrm{V}_{\mathrm{k}}$, then the condition is

$$
\begin{equation*}
\frac{C\left(w_{i},{\underset{p}{p}}_{\mathrm{r}^{\prime}}^{W_{n}^{\prime}}{ }^{w_{s}}, w_{q}, w, w_{k}\right)}{\left(w_{i}: w_{k}\right)-w_{i} \cdot w_{k}}<w_{l} \tag{5b}
\end{equation*}
$$

Note that (5b) implies (5a).

The condition for the $\operatorname{arc} V_{P}-V_{q}$ to be positive with respect to the subpolygon $V_{i}-V_{p}-V_{r} \quad-V_{n} \quad-V_{s} \quad-V_{q} \underset{k}{ } \quad$ is

$$
\begin{equation*}
\frac{C\left(w_{\mathbf{p}}, w_{\mathbf{r}}, w_{\mathbf{n}}, w_{\mathbf{s}}, w_{q}\right)}{\left(\mathrm{w}_{\mathrm{p}}: \mathrm{w}_{\mathrm{q}}\right)-\mathbf{w}_{\mathrm{p}} \cdot \mathrm{w}_{\mathrm{q}}}<\min \left(\mathrm{w}_{\mathrm{i}}, w_{\mathrm{k}}\right) . \tag{6a}
\end{equation*}
$$

If the arc $V_{P}-V_{q}$ is positive with respect to the whole polygon $V_{1}-V_{i}-V_{\mathbf{p}}^{-V} \underset{\mathbf{r}}{-\mathbf{V}} \underset{\mathbf{n}}{-\mathbf{V}}-\underset{\mathrm{s}}{ }-\mathrm{V}_{\mathrm{q}}-\mathrm{V}_{\mathrm{k}}$, it must satisfy (6b).

$$
\begin{equation*}
\frac{C\left(w_{p}, w_{r}, w_{n}, w_{s}, w_{q}\right)}{\left(w_{p}: w_{q}\right)-w_{p} \cdot w_{q}}<w_{1} \tag{6b}
\end{equation*}
$$

Since $w_{1}<\min \left(w_{1}, w k\right)$, condition (6b) implies (6a).
Here, the presence of $V_{i}-V_{k}$ will divide the original polygon into two subpolygons where $V_{p}-V_{q}$ appears in the upper subpolygon. If $V_{p}-V_{q}$ is a positive arc with respect to the original polygon, then $\mathrm{V}_{\mathbf{P}}-\mathrm{V}_{\mathrm{q}}$ is certainly positive in the upper subpolygon. But if $\underset{\mathbf{P}}{\mathbf{V}}-\mathrm{V}_{\mathrm{q}}$ is positive in the subpolygon, the arc $V_{P}-V_{q}$ may become negative if $V_{i}-V_{k}$ is removed, i, e. $V_{p}-V_{q}$ becomes negative with respect to the original polygon.

Similarly, if the arc $V_{i}-V_{k}$ is positive with respect to a subpolygon, the arc $V_{i} .-V_{k}$ may become negative if the arc $\underset{P}{V} \underset{\sim}{V}$ is removed,

The preceding discussions can be summarized as Theorem 1.

Theorem 1. If an h-arc is positive with respect to a polygon then the arc is positive with respect to any subpolygon containing that arc. If an h-arc is positive with respect to a subpolygon, it may or may not be positive with respect to a larger polygon which contains the subpolygon.

There are two intuitive approaches to the ℓ-optimum partition of a monotone basic polygon. The first approach is to put in the potential h-arcs one by one. Each additional potential h-arc will improve the cost until the correct number of h-arcs is reached. Any further increase in the number of h-arcs will increase the cost. To introduce an h-arc into the polygon, we can test each potential h-arc (at most $n-3$) to see if it is positive with respect to the whole polygon. If yes, that positive arc must exist in the P-optimum partition, and the polygon will be divided into two subpolygons, each being a monotone polygon. We can repeat the whole process of testing positiveness of the h-arcs, The trouble is that all these arcs may be negative individually with respect to the whole polygon and yet H_{0} may not-be the optimum. For example, two $\operatorname{arcs} V_{i}-V_{j}$ and $V_{P}-V_{q}$ may be negative individually with respect to the
 same time may cost less than H_{0} as shown in Fig. 5a. This shows that we cannot guarantee an optimum partition simply because no more potential h-arcs can be added one at a time.

The second approach is to put all the potential h-arcs in first and then take out the potential h-arcs one-by-one, where each deletion
will decrease the cost until the correct number of h-arcs is reached. Any further deletions will increasethe cost. Unfortunate3 y, even if all h-arcs are positive with respect to their subpolygon, the partition may not bc optimum. In Fig. 5b, each h-arc is positive with respect to its local subpolygon but the partition is not optimum. (Note that positiveness of an h-arc in a quadrilateral is the same as stability, But the idea of stability applied to vertical arcs as well.) This means that we cannot guarantee an optimum partition simply because no h-arc can be deleted one at a time.

Fig. 5. Counter examples for the intuitive approaches.

Let us outline the idea of an $O(n)$ algorithm for finding the ℓ-optimum partition of a monotone basic polygon. First, we get all the potential h-arcs by the one-sweep algorithm. Then, we start from the highest potential h-arc and process each potential h-arc from the highest to the lowe st. For each potential h-arc, we try to get the ℓ-optimum partition of the upper subpolygon of that arc (i. e. the ℓ-optimum partition of the subpolygon bounded below by that h-arc). The ℓ-optimum partition in the subpolygon is obtained by comparing the cost of the B-optimal partition among the partitions of the upper subpolygon which contain one or more potential h-arcs with that of the fan in the upper subpolygon.

If we try all possible combinations of the potential h-arcs as candidates for the ℓ-optimal partitions, we need $O\left(n^{3}\right)$ operations to find the ℓ-optimum partition. Fortunately, there are some dependencerelationships among these potential h-arcs. Hence, certain subsets of the potential h-arcs will either all exist or all disappear in the I optimum partition of the monotone polygon. We shall be dealing with potential h-arcs most of the time, so we shall use "arcs" instead of potential h-arcs for brevity.

Consider the monotone basic polygon shown symbolically in Fig. 6. There are three potential h-arcs, denoted by h_{k}, h_{j}, and h_{i}. \mathbf{V}_{n} is the local maximum vertex and V_{1} is the local minimum vertex. Without loss of generality, we can assume $w_{a} \leq \mathbf{w}^{\prime}$ for $a=i, j$ and k. Since we shall deal with subpolygons bounded by two potential h-arcs, let ususe h_{n} for V_{n} and $h l$ for $V l$ (i. e. we consider these vertices as
degenerated arcs). From Lemmas 1 and 3 , the ℓ-optimum partitions of the subpolygons bounded by two potential h-arcs (i.c. the white area of the polygon in Fig. 6) are all fans.

Assume (i) h_{k} is positive in the subpolygon bounded by h_{n} and h_{j} but h_{k} is negative in the subpolygon bounded by h_{n} and h_{i},
(ii) h_{j} is positive in the subpolygon bounded by h_{k} and h_{i} but h_{j} is negative in the subpolygon bounded by h_{k} and $h l$, and
(iii) h_{i} is positive in the, subpolygon bounded by ${ }_{J}$. and h_{1} only. Then either the three $\operatorname{arcs} h_{k}, h_{\boldsymbol{J}} h_{i}$ all exist or no h-arcs exists in the optimum partition.

This shows that the existence of an h-arc depends on the existence of another h-arc.

We shall use the notations
$C\binom{h_{j}}{h_{i}}$ to denote the cost of the ℓ-optimum partition of the subpolygon bounded above by h_{j} and bounded below by h_{i}, and
$H_{0}\binom{h_{j}}{h_{i}}$ to denote the cost of the fan in the subpolygon bounded above by h_{j} and bounded below by h_{1}.

Fig. 6. An octagon with three potential h-arcs.

In Fig. 6, the condition for $h k$ to be positive with respect to the whole polygon is (compare (Ea))

$$
\begin{equation*}
\frac{C\binom{h_{n}}{h_{k}}}{\left(w_{k}: w_{k}^{\prime}\right)-w_{k} \cdot w_{k}^{\prime}}<w_{1} \tag{7}
\end{equation*}
$$

The LHS of (7) is denoted by

$$
s\binom{h_{n}}{h_{k}}
$$

and is called the supporting weight of h_{k} with h_{n} as the ceiling (the definition of ceiling will be given formally later). Note that the LHS of ('7) depends only on the weights of vertices in the upper subpolygon of h_{k}.

In terms of the supporting weights, we can write the three conditions (i), (ii) and (iii) as follows:

$$
\begin{equation*}
w_{i}<S\binom{h_{\mathbf{n}}}{h_{k}}<w_{j} \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{gathered}
w_{1}<s\binom{h_{k}}{h_{j}}<w_{i} \\
s\binom{h_{j}}{h_{k}}<w_{1} .
\end{gathered}
$$

An arc h_{j} is a son of t earc $h_{i}\left(\right.$ or h_{i} is the father of $\left.h_{j}\right)$ if the following conditions are satisfied:
(i) h_{j} is above h_{1} (the son is above the father)
(ii) In any subpolygon containing h_{i} and h., the arc h_{y}. will exist in the $\boldsymbol{\ell}$-optimum partition of the subpolygon if and only if $h_{\mathbf{c}_{1}}$ exists in the ℓ-optimum partition.
(iii) h_{i} is the highest arc that satisfies (i) and (ii). It is easy to see that every arc can have at most one father but an arc can have many sons. Also the ancestor-descendant relationship is a transitive relationship. If an arc exists in the ℓ-optimum partition, all its descendants will also exist.

An arc h_{k} is a ceiling of an arc h_{i} if the following conditions are satisfied:
(i) h_{k} is above h_{i}
(ii) h_{k} is not a descendant of h_{i}
(iii) h_{k} is the lowest arc which satisfies (i) and (ii).

Fig. 7. A subpolygon of the octagon shown in Fig. 6 (The shaded areas are optimally partitioned and the blank areas are partitioned by a fan. The h-arcs in the shaded area are all descendants of h_{j}.)

The cost of partition of Fig, Fa is

$$
C\binom{h_{k}}{h_{j}}+H_{0}\binom{h_{j}}{h_{i}}
$$

where the cost of partition in Fig. Tb is

$$
\mathbf{H}_{0}\binom{h_{k}}{h_{i}}
$$

The condition for the partition in Fig. Fa to be cheaper than that in Fig. Tb is (similar to (fa))

$$
\mathbf{S}\binom{h_{k}}{h_{j}}<w_{i}
$$

In order to give an intuitive meaning of the supporting weight $S\binom{h_{k}}{h_{j}}$, let us regard h_{k} and h_{j} in Fig. 7 as fixed while the position of h_{1}. can be moved up or down by increasing or decreasing the values of w_{1} and $\mathbf{w}_{\mathbf{i}}{ }^{\prime}$.
 costs less than or equal to the partition in Fig. 7 b . If the position of h_{i} moves down gradually from h_{j}, there will be a position for which the cost of the partition in Fig. $7 a$ is equal to the cost of the partition in Fig. $7 b$. We can consider this position as aictitious arc f_{j}, i. e.

$$
\begin{equation*}
C\binom{h_{k}}{h_{j}}+H_{0}\binom{h_{j}}{f_{j}}=H_{0}\binom{h_{k}}{f_{j}} \tag{8}
\end{equation*}
$$

the ℓ-optimum partition of the subpolygon bounded by h_{k} and h_{i} becomes a fan. The arc f_{j} is called the floor of ${ }^{h}{ }_{j}$ Note that the minimum of the two weights associated with $\underset{\mathfrak{J}}{f}$. is the supporting weight of $h_{\mathfrak{y}}$.

We now give two examples to illustrate the concepts, notations and the algorithms. Then a formal description of the algorithm will be given.

Consider a monotone basic polygon with five Potential h-arcs, $h_{6}, h_{5}, \ldots, h_{2}$ where h_{6} is the highest arc as shown symbolically in Fig. 8. Let $w_{i} \leqslant w_{1}^{\prime}$ for $i=a, b,$. . , e. The maximum vertex, which lies above h_{6}, has the weight w_{f} and the minimum vertex, which lies below $h 2$, has the weight w_{1}. We can regard $w_{f}\left(\right.$ and $\left.w_{l}\right)$ as a degenerated arc and use h_{7} to represent $\mathbf{w}_{\mathbf{f}}$ (${ }^{\text {and } h_{1} \text { to repre- }}$ $\operatorname{sent} \quad w_{1}$).

Fig. 8 . A12-gon with 5 h-arcs,

Example 1
Let us write down the comparisons made in the algorithms.
First, we compare

$$
H_{0}\binom{h_{7}}{h_{6}}+H_{0}\binom{h_{6}}{f_{6}}=H_{0}\binom{h_{7}}{f_{6}}
$$

Fig. 9. Illustrations for Example 1.
qa. To find f_{6}.

In the equation, f_{6} is the only unknown. In computation, we do not use the equation but use the supporting weight of h_{6} instead (h_{7} is the ceiling of h_{6}). If the h-arc h_{5} is below or coincides with f_{6}, which means that h_{6} is negative with respect to the smallest subpolygon, h_{6} should be deleted and never appear in the ℓ-optimum partition, For simplicity, we shall assume all arcs and floors have distinct positions in the example.

Let us assume that f_{6} is below h_{5}, or symbolically we write

$$
h_{5} / f_{6} .
$$

Fig. Pb. • The posit ion of f_{6}.

Then we do the next comparison.
$H_{0}\binom{h_{6}}{h_{5}}+H_{0}\binom{h_{5}}{f_{5}}=H_{0}\binom{h_{6}}{f_{5}}$

Fig. 9 c . To find f_{5}.

Assume that f_{6} / f_{5}, ie. h_{6} is a son of h_{5}, and h_{4} / f_{5}, the next comparison is
$H_{0}\binom{h_{7}}{h_{6}}+H_{0}\binom{h_{6}}{h_{5}}+H_{0}\binom{h_{5}}{f_{65}}=H_{0}\binom{h_{7}}{f_{65}}$.

Fig. Yd. Condense h_{6} to h_{5} and find f_{65}.

Note that f_{65} is in a sense the combined floor of h_{6} and. h_{5} and h_{7} becomes the ceiling of h_{5}. The equation can also be written as
$C\binom{h_{7}}{h_{5}}+H_{0}\binom{h_{5}}{f_{65}}=H_{0}\binom{h_{7}}{f_{65}}$
If h_{4} / f_{65}, the next comparison will be
$H_{0}\binom{h_{5}}{h_{4}}+H_{0}\binom{h_{4}}{f_{4}}=H_{0}\binom{h_{5}}{f_{4}}$

Fig. Me. To find f ${ }_{4}$.

Assume that f_{65} / f_{4}, i.e. h_{5} is a son of h_{4}, and h_{3} / f_{4}, we have $C\binom{h_{7}}{h_{4}}+H_{0}\binom{h_{4}}{f_{654}}=H_{0}\binom{h_{7}}{f_{654}}$

Fig., 9f. To find f_{654}.
with h_{7} as the ceiling of h_{4}, Moving to h_{3}, we compare

$$
\mathrm{H}_{0}\binom{\mathrm{~h}_{4}}{\mathrm{~h}_{3}}+\mathrm{H}_{0}\binom{\mathrm{~h}_{3}}{\mathrm{f}_{3}}=\mathrm{H}_{0}\binom{\mathrm{~h}_{4}}{\mathrm{f}_{3}}
$$

Fig. mg. To find f_{3}.

Assume that f_{654} / f_{3}, ie. h_{4} is a son of h_{3} and h_{2} / f_{3}, we compare $C\binom{h_{7}}{h_{3}}+H_{0}\binom{h_{3}}{f_{6543}}=H_{0}\binom{h_{7}}{f_{6543}}$

Fig. 9 h. To find f_{6543}.
with h_{7} as the ceiling of h_{3}. Moving to h_{2}, we compare $\mathrm{H}_{0}\binom{\mathrm{~h}_{3}}{\mathrm{~h}_{2}}+\mathrm{H}_{0}\binom{\mathrm{~h}_{2}}{\mathrm{f}_{2}}=\mathrm{H}_{0}\binom{\mathrm{~h}_{3}}{\mathrm{f}_{2}}$

Fig. 9 i. To find f_{2}.

Assume that f_{6543} / f_{2}, ie. h_{3} is a son of h_{2}, and h_{1} / f_{2}, we have

$$
C\binom{h_{7}}{h_{2}}+H_{0}\binom{h_{2}}{f_{65432}}=H_{0}\binom{h_{7}}{f_{65432}}
$$

Fig. oj. To find f_{65432}.
and h is the ceiling of h_{2}. if

$$
S\binom{h_{7}}{h_{2}}<w_{1}
$$

the partition consisting of

$$
C\binom{h_{7}}{h_{2}}+H_{0}\binom{h_{2}}{h_{1}}
$$

is the ℓ-optimum partition.

Fig. Mk. The ℓ-optimum partition.

If $S\binom{h_{7}}{h_{2}} \geq w_{1}$, then $H_{0}\binom{h_{7}}{h_{1}}$ will he the ℓ-optimum partition.

Exam le 2. The successive comparisons are

$$
H_{0}\binom{h_{7}}{h_{6}}+H_{0}\binom{h_{6}}{f_{6}}=H_{0}\binom{h_{7}}{f_{6}}
$$

Fig. 10. Illustrations for Example 2. 10a. To find f_{6}.

Assume that h_{5} / f_{6}, we compare

$$
H_{0}\binom{h_{6}}{h_{5}}+H_{0}\binom{h_{5}}{f_{5}}=H_{0}\binom{h_{6}}{f_{5}}
$$

Fig. 10b. To find f_{5}

Assume that f_{5} / f_{6}, i. e. h_{6} becomes the ceiling of h_{5}, and h_{4} / f_{5}, we compare
$H_{0}\binom{h_{5}}{h_{4}}+H_{0}\binom{h_{4}}{f_{4}}=H_{0}\binom{h_{5}}{f_{4}}$

Fig. 10c. To find f_{4}

Assuming that f_{4} / f_{5}, i.e. h_{5} becomes the ceiling of h_{4}, and h_{3} / f_{4}, we compare
$H_{0}\binom{h_{4}}{h_{3}}+H_{0}\binom{h_{3}}{f_{3}}=H_{0}\binom{h_{4}}{f_{3}}$

Fig. 10d. To find f_{3}.

Assume that f_{3} / f_{4} and f_{3} / h_{2}, then arc h_{3} should be deleted. Next, we assume that f_{4} / h_{2}, then arc h_{4} should also be deleted, Suppose h_{2} / f_{5}, we shall then compare
$H_{0}\binom{h_{5}}{h_{2}}+H_{0}\binom{h_{2}}{f_{2}}=H_{0}\binom{h_{5}}{f_{2}}$

Fig. 10e. To find f_{2}.

Assume f_{5} / f_{2}, i. e. h_{5} is a son of h_{2} and $h l / f_{2}$, we then determine ${ }^{f} 52$,
$C\binom{h_{6}}{h_{2}}+H_{0}\binom{h_{2}}{f_{52}}=H_{0}\binom{h_{6}}{f_{52}}$

Fig. 10 . To find f_{52}.

Assume f_{6} / f_{52}, i. e. h_{6} is anon Of h_{2}, and h_{1} / f_{52}, our next comprison is

$$
C\binom{h_{7}}{h_{2}}+H_{0}\binom{h_{2}}{f_{652}}=H_{0}\binom{h_{7}}{f_{652}}
$$

Fig. log. To find f_{652}.
and h_{7} becomes the ceiling of h_{2}.
Assume h_{1} / f_{652}, the the partition $C\binom{h_{7}}{h_{2}}$ t $H_{0}\binom{h_{2}}{h_{1}}$ is the € -optimum partition.

Fig. 10 h . The ℓ-optimum partition.

Had we assumed f_{52} / f_{6} and f_{52} / h_{1} then both h_{5} and h_{2} should also be removed and we are left with

$$
\mathrm{f}_{6} \text { against } \mathrm{h}_{1} .
$$

If h_{1} / f_{6}, then we have the ℓ-optimum partition

$$
H_{0}\binom{h_{7}}{h_{6}}+H_{0}\binom{h_{6}}{h_{1}}
$$

From the above two examples, we can see that h_{k} is the ceiling of h_{i}. if h_{k} is the lowest arc above h_{i} such that the supporting weight of h_{k} is smaller than or equal to that of h_{i}.

Let us outline the algorithm for finding the ℓ-optimum partition of a monotone basic polygon.

1. Get all the potential h-arcs of the polygon by the one-sweep algorithm. (All the h-arcs form a list with the arc $V_{b}-V_{b}$, at the bottom.)
2. Process the potential $h-\operatorname{arcs}$ one by one, from the top to the bottom.
(We try to find the ℓ-optimum partition of the subpolygon bounded below by the arc being processed,)
$2 a$. Let h_{R} be the arc currently being examined, h_{C} be the arc immediately above h_{R}, and h_{N} be the arc immediately below h_{R} in the list. If h_{R} is negative with respect to the subpolygon bounded above by h_{C} and below by h_{N}, delete h_{R}, otherwise go to Step 2c.
$2 b$. Once h_{R} and its descendants are deleted, we backtrack to h_{C} and compare the cost of the partition with h_{C} and its descendants against the cost of the fan in the subpolygon bounded above by the ceiling of h_{C} and below by h_{N}. If the fan is ℓ-optimum in the subpolygon, we will delete h_{C} and repeat this step until no further deletion is possible. Then we move to examine h_{N}. (The actual comparisons are done in terms of the supporting weights.)

2c. Mere, h_{R} is positive in the smallest subpolygon bounded by potential h-arcs. We will backtrack to condense all its descendants to h_{R} as follows. Let h_{C}^{\prime} be the ceiling of h_{C}. If
$S\binom{h_{C}}{h_{R}}<S\left(\begin{array}{l}h^{\prime} \\ h_{C} \\ h_{C}\end{array}\right), h_{C}$ becomes a son of h_{R}. We will combine h_{C} as well as all its descendants to h_{R} and recalculate the combined supporting weight $S\binom{h^{\prime}}{h_{R}}$. Replace h_{C} by h_{C}^{\prime} and compare the cost of the partition with h_{R} and its descendants against that of the fan in the subpolygon bounded above by the new h_{C}, i. e. h_{C}^{\prime}, and below by h_{N}. If the fan is ℓ-optimum in the subpolygon, we delete h_{R} as well as its descendants, and go to Step $2 b$ to see if we can delete more arcs. Otherwise, we repeat this step to see if we can condense more arcs.
2d. Now we have $S\binom{h_{C}}{h_{R}} \geq S\binom{h^{\prime} C}{h_{C}}$, the supporting weight of h_{C}. The arc h_{C} is the ceiling of h_{R} and $S\binom{h_{C}}{h_{R}}$ is the supporting weight of h_{R}. We move and process h_{N}.

Before a formal description of the algorithm is given, a procedure to process the list of potential h-arcs in a monotone polygon is presented.

Procedure MONO-PAKTITION (L)

Input: consists of a list of potential h-arcs, passed to the procedure via the argument L. Let h_{1} be the lowest arc in L, the one immediately above h_{1} be h_{2}, and h_{p+1} be the highest arc in L. (Note that h_{1} and h_{p+1} are degenerated arcs with the minimum vertex and the maximum vertex of the polygon.)
out put: consists of all the potential h-arcs that exist in the P-optimum partition of the polygon.

Step 0 $\quad h_{C}:=\mathbf{h t l}_{\mathbf{p}}$;
$h_{R}:=h_{p}$;
$h_{\mathrm{N}}:=\mathbf{h}_{\mathbf{p - 1}}$;

MIN-WEIGHT : = minimum of the two vertices of h_{N};
Comment: h_{R} is the arc to be processed and $h C$ is the ceiling of the subpolygon. h_{N} is the arc immediately below h_{R} in L.

Step 1 Calculate $S\binom{h_{C}}{h_{R}}$;

If $S\binom{h^{h}}{h_{R}} \geq$ MIN-WEIGHT
then go to Step 2
else go to Step 3 .

Step 2 While ($\mathrm{h}_{\mathrm{R}} \neq \mathrm{h}_{\mathrm{p}+1}$) And (the supporting weight of $h_{R} \geq$ MIN-WEIGHT) Do

Begin

Remove h_{R} and all its descendants from L;
$h_{R}:=h_{C}$;
$h_{C}:=$ the ceiling of the new h_{R}

End;

Go to Step 4.

Step 3 If ($h_{C} \neq \mathbf{h}_{\mathbf{t}}$) ${ }_{1}$ and (the supporting weight of $h_{R}<$ the supporting weight of h_{C})
then

Begin

Condense h_{C} and all its descendants into h_{R};
$h_{C}:=$ the ceiling of h_{C};
go to Step 1;
End
else.

Begin

Record $S\binom{h_{C}}{h_{R}}$ as the supporting weight of h_{R} and h_{C} as
the ceiling of h_{R};
go to Step 4;
End.
step 4 If $\mathrm{h}_{\mathrm{N}} \neq \mathrm{h}_{1}$
then
Begin

$$
h_{C}:=h_{R} \text {; }
$$

$h_{R}:=h_{N}$;
h_{N} : = the arc immediately below the new h_{R};
MIN-WEIGHT : = minimum of the two vertices of the new h_{N};
go to Step 1;
End
else. go to Step 5 ;
step 5 Exit procedure and return L to caller.
Now we can give the algorithm for finding the ℓ-optimum parti-
tion of a monotone basic polygon.

Algorithm I

In put consists of n positive integers, which are the weights of the n vertices of the monotone n-gon. $W[1]$ is the weight of the minimum vertex and $W[i+1]$ is the neighbor of $W[i]$ of the n-gon going in the clockwise direction. Let the weight of the maximum vertex be $W[t]$.
out put consists of a list of potential h-arcs which will exist. in the l-optimum partition of the n-gon, the partitions in the subpolygons bounded by every two consecutive arcs in the list are fans.

Step 0 For_ i : = 2 step 1 until \mathbf{N} do

$$
C P[i]:=\sum_{j=1}^{l-l} \mathbf{W}[\mathbf{j}] \cdot W[j+1]:
$$

$C P[1]:=\mathbf{0}$;
Comment: The sum of adjacent products $W[i]: W[j]$ can be obtained from $C P[j]-C P[i]$ for $1 \leq i<j \leq N$ and hence we can calculate the supporting weights easily.
step 1 Apply the one - sweep algorithrn to obtain a list of arcs.
Let this list be L.

Comment: L contains ($n-3$) arcs which includes all potential
h-arcs in the monotone n-gon, and these arcs are layered, one above another.

Step 2 From L, remove those arcs which are not potential h-arcs;

If L is empty
then go to Step 6
else go to Step 3.

Step 3 Let the lowest arc in L be h_{2}, the one immediately above h_{2} be h_{3}, and so on:

Let the highest arc in L, be h_{p};
Insert h_{1} with weight $w[1]$ below h_{2};
Insert h_{p+1} with weight $\mathbf{W}[t]$ above $\mathbf{h}_{\mathbf{P}}$.
Combnent: \mathbf{h}_{p+1} is the ceiling of $\mathbf{h}_{\mathbf{p}}$.

Step 4 MONO- PARTITION (L);
Comment: when returned from MONO- PARTI'TION, L will contain all the ceiling arcs with their descendants in the d-optimum partition.

Step 5 Remove h_{1} and h_{p+1} from L;

Step 6 Output L and stop.

This algorithm has been implemented in Pascal and the listing of the computer program is given in Appendix I.

Lemma 5. Any arc which is deleted from the arc-list L in Step 2 of the procedure MONO-PARTITION cannot be present in the ℓ-optimum partition of the polygon.

Proof. There are two cases in which an arc is deleted from L:
(1) Its ancestors are deleted. It follows from the definition of the ancestor -descendant relationship that it cannot be present in the ℓ-optimum partition of the polygon.
(2) It is the h_{R} which satisfies the logical condition of Step 2 of the procedure. Hence, in the subpolygon bounded below by h_{N} and above by h_{C}, the partition with h_{R} and its descendants costs more than or equal to that of the fan. Hence, the partition with h_{R} and its descendants is not ℓ-optimum in the subpolygon and h_{R} as well as its descendants should not appear in the ℓ-optimum partition of the whole polygon.

Lemma 6. After an arc h_{i} has been processed, the subpolygon between h_{1} and its ceiling is optimally partitioned.

Proof. The h-arcs remaining in the partition of the subpolygon are all descendants of h_{1}. By definition of the ancestor-descendant relationship, the partition of the subpolygon is optimum.

Lemma 7. Let V_{t} be the maximum vertex, and $h_{k}, h_{k l}, \ldots, h_{j+1}$ be a set of h-arcs in the partition such that
and

$$
\begin{aligned}
& h_{k} \text { is the ceiling of } h_{k-l} \\
& h_{j t l} \text { is the ceiling of } h_{J} \text {, }
\end{aligned}
$$

then the supporting weights of these h-arcs satisfy

$$
\begin{equation*}
S\binom{h_{t}}{h_{k}} \leq S\binom{h_{k}}{h_{k-1}} \leq \cdots \leq s\binom{h_{j}+1}{h_{j}} \tag{9}
\end{equation*}
$$

Proof. Assume that one of the inequalities is not satisfied, say

$$
S\left(\begin{array}{l}
h_{j+2} \\
h \\
j+1
\end{array}\right)>S\binom{h_{j+1}}{h_{j}}
$$

Then if h_{j}. exists h_{j+1} will also exist, $h_{j}{ }_{i-1}$ becomesasonof h_{j}. '「his contradicts the assumption that h_{j+1} is a ceiling of h_{j}.

Lemma 8. Any arc which remains in L at the end of the procedure must be present in the ℓ-optimum partition of the polygon.

Proof. We can divide the h-arcs in L at the end of the procedure into two groups:
(i) those which are descendant of some other arcs in the output, and
(ii) those which have no ancestor in the output.

By the definition of the descendant-ancestor relationship, the arcs in group (i) must be present in the ℓ-optimum partition whenever their corresponding ancestors in group (ii) is present in the ℓ-optimum partition. Hence, we have only to show that all arcs in group (ii) must be present in the ℓ-optimum partition.

Let V_{t} be the maximum vertex and the set of arcs in group (ii) be $h_{k}, h_{k 1}, \ldots, h_{j+1}, h_{j}$ such that $h_{k} / h_{k 1} / \ldots h_{j+1} / h_{3}$. Since none of these arcs has an ancestor, we must have

$$
h_{k} \text { as the ceiling of } h_{k-1}
$$

and $\quad h_{j+1}$ as the ceiling of h_{3}.
From the logical condition in Step 1 of the procedure, we have

$$
\begin{equation*}
w_{1}>s\binom{h_{j}+1}{h_{j}} \tag{10}
\end{equation*}
$$

From Lemma 7 and (10), we have

$$
w_{1}>s\binom{h_{j}+1}{h_{j}}>\cdots>\overbrace{h_{k-1}}^{h_{k}})>s\binom{h_{t}}{h_{k}}
$$

which implies tiat

$$
\begin{aligned}
H_{0}\binom{h_{t}}{h_{1}} & >\left[C\binom{h_{t}}{h_{k}}+H_{0}\binom{h_{k}}{h_{1}}\right] \\
& >\left[C\binom{h_{t}}{h_{k}}+C\binom{h_{k}}{h_{k-1}}+H_{0}\binom{h_{k-1}}{k_{1}}\right] \\
& >\left[C\binom{h_{t}}{h_{k}}+C\binom{h_{k}}{h_{k-1}}+\cdots+C\binom{h_{j}+1}{h_{j}}+H_{0}\binom{h_{j}}{h_{1}}\right]
\end{aligned}
$$

$=$ the cost of the ℓ-optimum partition of the polygon.

In other words, for any arc h_{i} in group (ii) of L, $\mathbf{i}=k, k-1, \ldots, j+1$, j,
all the arcs above h_{1} in L must be present in ℓ-optimum partition of the upper subpolygon of h_{i}. Since $H_{0}\binom{h_{t}}{h_{1}}>C\binom{h_{t}}{h_{j}}+H_{0}\binom{h_{j}}{h_{1}}$, they all should be present in the ℓ-optimum partition of the monotone basic polygon.

Theorem 2. The partition obtained by the algorithm is ℓ-optimum.

Proof, From Theorems 3 and 4 of Part I, we know that all the h-arcs present in the ℓ-optimum partition are potential h-arcs and hence are included in the arc -list L obtained by the one-sweep algorithm, It follows from Lemmas 5 and 8 that all the arcs which are deleted from L cannot be present in the ℓ-optimum partition and all the arcs which remain in L must be present in the ℓ-optimum partition. Further, from Lemma 1, the
ℓ-optimum partition in any subpolygon bounded by two adjacent potential h-arcs in L must be a fan. Hence, the partition consisting of the h-arcs output by the algorithm and with fans in every subpolygons bounded by two adjacent arcs in L must be ℓ-optimum.

Let us examine how much time we spend in executing the algorithm,

Step 0 and Step 1 each scans the polygon once, and hence takes $O(n)$ time. Since there are at most $n-3$ arcs in L, Step 2 also takes $O(n)$ time. There are three nested loops in the procedure. The innermost one is in Step 6, the middle one spans from Step 1 to Step 3, while the outermost one spans from Step 1 to Step 5. Whenever the innermost loop is cxecuted once, a potential h-arc is deleted from L. Whenever the middle loop is executed once (i.e. the "then" part of Step 3 is executed once), a potential h-arc is condensed into its father. Once an arc is deleted or condensed, it will never be examined again. Since there are at most $n-3$ potential h-arcs in I, the total number of executions in Step 2 and Step 3 is $O(n)$. The outermost loop will also be executed at most (n-3) times. Hence the whole algorithm will finish its work in $O(n)$ time.

3. The Convex Polygon

Theremay be several local maximum vertices in general convex polygon. Let us still draw the polygon in such a way that the global minimum vertex is at the bottom. From Theorem 4 of part I, we know that all potential h-arcs are still compatible in a general convex polygon. However, unlike those in a monotone polygon, the potential h-arcs no longer form a linear list. Instead, they form a tree, called an arc-tree. In Fig. 1la, there is a 12 -gon with 6 potential $h-a r e s$ and they are labelled as $h_{2}, h_{3}, h_{4}, h_{5}$, h_{6}, and h_{7}. (Note that we also obtain $V_{4}-V_{3}, V_{7}-V_{6}$ and $V_{6}-V_{8}$ from the one- sweep algorithm. In order to have a simpler example, let us assume that all these three arcs are unstable and hence are not shown in Fig. lla.) To get a better feeling of the arc-tree, we can redraw the 12-gon as shown in Fig. 11b. Again, we regard V_{1} as a degenerated arch $1, V_{12}$ as a degenerated arc h_{8}, and V_{11} as a degenerated $\operatorname{arc} \mathbf{h}_{9}$,

The father-son relationship still holds for the h-arcs in a general polygon, and we can also define supporting weights of the arcs in a similar way. The only difference is that the ceiling of a subpolygon may consist of more than one arc. Before we can calculate the supporting weight of any arc, we must process all the arcs above it, i. c. all the arcs in its upper subpolygon. Hence, we can do a post-order traversal through the arc tree. Let us consider the following two examples. Again, for simplicity, we assume that all arcs have distinct positions in the examples.

(a)

(b)

Fig. 11. A general 12-gon.

Example. . ${ }^{\mathbf{3} .}$

We first compare

$$
H_{0}\binom{h_{8}}{h_{5}}+H_{0}\binom{h_{5}}{f_{5}}=H_{0}\binom{h_{8}}{f_{5}}
$$

Fig. 12. Illustrations for Example 3.
12a. To find f_{5}.

Assume h_{4} / f_{5}, we compare
$H_{0}\binom{h_{5}}{h_{4}}+H_{0}\binom{h_{4}}{f_{4}}=H_{0}\binom{h_{5}}{f_{4}}$

Fig. 12b. COo fir Hdf_{4}.

Assume h_{3} / f_{4} and f_{5} / f_{4}, wc condense h_{5} into h_{4},
$H_{0}\binom{h_{8}}{h_{5}}+H_{0}\binom{h_{5}}{h_{4}}+H_{0}\binom{h_{4}}{f_{54}}=H_{0}\binom{h_{8}}{f_{54}}$
or
$C\binom{h_{8}}{h_{4}}+H_{0}\binom{h_{4}}{f_{54}}=H_{0}\binom{h_{8}}{f_{54}}$

Fig. 12c. To find f_{54}.

Before we can process h_{3}, we have to process h_{7} and h_{6} first. Hence, the next comparison is:
$H_{0}\binom{h_{9}}{h_{7}}+H_{0}\binom{h_{7}}{f_{7}}=H_{0}\binom{h_{9}}{f_{7}}$

Fig. 12d. To find f_{7}.

Assume h_{6} / f_{7}, we compare

$$
H_{0}\binom{h_{7}}{h_{6}}+H_{0}\binom{h_{6}}{f_{6}}=H_{0}\binom{h_{7}}{f_{6}}
$$

Fig. 12 e . To $\mathrm{find} \mathrm{f}_{6}$.

We have h_{3} / f_{6} and f_{7} / f_{6}, we condense h_{7} into h_{6},
$H_{0}\binom{h_{9}}{h_{7}}+H_{0}\binom{h_{7}}{h_{6}}+H_{0}\binom{h_{6}}{f_{76}}=H_{0}\binom{h_{9}}{f_{76}}$
or
$C\binom{h_{9}}{h_{6}}+H_{0}\binom{h_{6}}{f_{76}}=H_{0}\binom{h_{9}}{f_{76}}$

Fig. 12 f. To find f_{76}.

Assume h_{3} / f_{76} and next we process the arc h_{3}, using both h_{4} and h_{6} as the ceilings of h_{3},

$$
H_{0}\binom{h_{4}, h_{6}}{h_{3}} \text { t } H_{0}\binom{h_{3}}{f_{3}}=H_{0}\binom{h_{4}, h_{6}}{f_{3}}
$$

Fig. 12 g. . \circ find f_{3}.

Suppose h_{2} / f_{3} and $f_{54} / f_{76} / f_{3}$, we first condense h_{5} and h_{4} into h_{3} and we get

$$
C\binom{h_{8}, h_{6}}{h_{3}}+H_{0}\binom{h_{3}}{f_{544}}=H_{0}\binom{h_{8}, h_{6}}{f_{543}}
$$

Fig. 12 h. To find f_{543}.

Now, h_{2} / f_{543} and f_{76} / f_{543}, so we condense h_{7} and h_{6} into h_{3} and obtain
$C\binom{h_{8}, h_{9}}{h_{3}}+H_{0}\binom{h_{3}}{f_{54763}}=H_{0}\binom{h_{8}, h_{9}}{f_{54763}}$

Fig. 12i. 'To find f_{54763}.

Assume h_{2} / f_{54763} nod we compare

$$
H_{0}\binom{h_{3}}{h_{2}}+H_{0}\binom{h_{2}}{f_{2}}=H_{0}\binom{h_{3}}{f_{2}}
$$

Fig. 12 j. 'To find f_{2}.

Suppose $\cdot h_{1} / f_{2}$ and f_{54763} / f_{2}, we condense h_{3} and its descendants into h_{2} and get

$$
C\binom{h_{8}, h_{9}}{h_{2}}+H_{0}\binom{h_{2}}{f_{547632}}=H_{0}\binom{h_{8}, h_{9}}{f_{547632}}
$$

Fig. 12k. To find f_{547632}.

If h_{1} / f_{5476}, , the ℓ-optimum partition of the whole polygon consists of all six $h-\operatorname{arcs} h_{2}, h_{3}, h_{4}, h_{5}, h_{6}$, and h_{7}. If f_{547632} / h_{1}, all six $h-a r e s$ will beremoved and the ℓ-optimum partition is a fan.

Example 4

We first compare
$H_{0}\binom{h_{8}}{h_{5}}+H_{0}\binom{h_{5}}{f_{5}}=H_{0}\binom{h_{8}}{f_{5}}$

Fig. 13. Illustrations for Exam ale 4. 13a. To find f_{5}.

Assume h_{4} / f_{5} and we compare

$$
\mathrm{H}_{0}\binom{\mathrm{~h}_{5}}{\mathrm{~h}_{4}}+\mathrm{H}_{0}\binom{\mathrm{~h}_{4}}{f_{4}}=\mathrm{H}_{0}\binom{\mathrm{~h}_{5}}{\mathrm{f}_{4}}
$$

Fig. 13b. To find f_{4}.

Let h_{3} / f_{4} and f_{4} / f_{5}, so we compare
$H_{0}\binom{h_{9}}{h_{7}}+H_{0}\binom{h_{7}}{f_{7}}=H_{0}\binom{h_{9}}{f_{7}}$

Fig. 13c. To find f
h_{6} / h_{7} and we compare

$$
H_{0}\binom{h_{7}}{h_{6}}+H_{0}\binom{h_{6}}{f_{6}}=H_{0}\binom{h_{7}}{f_{6}}
$$

Fig. 13 d . To find f_{6}.

We have h_{3} / f_{6} and f_{6} / f_{7}, so our next comparison will be

Assurnch $h_{2} / f_{43}, f_{43} / f_{6}$, and f_{43} / f_{5}, we proceed to process h_{2}.

$$
\mathrm{H}_{0}\binom{\mathrm{~h}_{3}}{\mathrm{~h}_{2}}+\mathrm{H}_{0}\binom{\mathrm{~h}_{2}}{\mathrm{f}_{2}}=\mathrm{H}_{0}\binom{\mathrm{~h}_{3}}{f_{2}}
$$

Fig. 13 g . To find f_{2}.

Assume h_{1} / f_{2} and f_{43} / f_{2}, we condense h_{3} into h_{2},

$$
C\binom{h_{5}, h_{6}}{h_{2}}+H_{0}\binom{h_{2}}{f_{432}}=H_{0}\binom{h_{5}, h_{6}}{f_{432}}
$$

Fig. 13 h . To find f_{43}.

Suppose $f_{432} / h_{1}, w \quad$ c remove h_{2} as well as its descendants h_{3} and h_{4}. Assume f_{6} / f_{5} and f_{6} / h_{1}, weremove h_{6} from the polygon, Now, we have f_{7} / f_{5} and f_{7} / h_{1}, so we remove h_{7} from the polygon. Finally, we have h_{1} / f_{5}, and the ℓ-optimum partition of the polygon consists of one h-arc h_{5}.

Fig. 13i. The optimum partition.

From the above two examples, we have the following observatons.
(1) Before we can process a potential h-arc, wc have to process all the arcs above it. Hence, wc should do a post-order traversal, starting at the root of the are tree, i. e. the degenerated arc h_{1}.
(2) Whenever wc do a condensation or deletion, wc always pick the ceiling arc which has the highest floor first, i. c. the one with the largest supporting weight. Hence, wc should kc p track of the order of the ceiling arcs.
(3) Once a ceiling arc h_{j} of h_{i} is removed or condensed, the ceiling arcs of h_{j} becomethe ceiling arcs of h_{i} and whave to updatethe order of all the ceiling arcs of h_{i}.

One way of keeping track of the order of the ceiling arcs is to keep them in a priority queue.

Now, let us outline the algorithm for finding the optimum partition of a general convex polygon.

1. Get all the potential h-arcs of the polygon by the one-sweep algorithm. (All the h-arcs form a tree, with the root at the bottom. Let the arc-tree be T.)
2. Process the h-arcs, one by one, from the leaves to the root. (We always process the children before we process the father, and we always obtain the optimum partition of the subpolygon bounded below by the arc being processed.)
3. Let h_{R} be the arc currently being examined, U_{R} be the set of arcs immediately above h_{R}, and h_{N} be the arc immediately below h_{R} in T. If h_{R} is negative in the subpolygon bounded above by the arcs in U_{R} and below by h_{N}, delete h_{R}, else go to step 5 .
4. Once h_{R} and its descendants are deleted, we exarnine the arcs in U_{R} to sec if we can deletemore arcs. If yes, w delete the arc with the largest supporting weight; then we include its celing ares into U_{R} and repeat this step. Otherwise, we move to process the next arc.
5. Now, h_{R} is positive in the smallest subpolygon. If there exists some arc in U_{R}, say h_{j}, such that

$$
S\binom{U_{R}}{h_{R}}<\text { the supporting weight of } h_{j}
$$

we will pick the arc with the largest supporting weight in U_{R}, condense it with its descendants into h_{R} and include all its ceiling arcs into U_{R}. Then we compare the cost of the partition with h_{R} and its descendants against that of the fan in the subpolygon bounded above by the arcs in U_{R} and below by h_{N}. If the fan is ℓ-optimum in the subpolygon, we remove h_{R} as well as all its descendants from T, and we exarnine the arcs in U_{R} to see if we can delete any more arcs. Otherwi se, we examine the arcs in U_{R} to see if we can condense any more arcs.
6. Now, $S\binom{U_{R}}{h_{R}} \geq$ the supporting weight of every arc in U_{R}. The arcs in U_{R} are the ceiling arcs of h_{R} and $S\binom{U_{R}}{h_{R}}$ is the supporting weight of h_{R}. We move to process the next arc.

Before prescnting the algorithm, let us describe a recursive procedure to process the potential h-arcs of any subpolygon.

Procedure PARTITION (ROOT)

Input: consists of a set of potential h-arcs of a subpolygon. The sc arcs are arranged in the form of an arc tree, like the one shown in Fig. llb. The root of the tree is passed to the procedure via the argument ROOT.
out put: consists of a set of the potential h-arcs which appear in the ℓ-optimum partition of the subpolygon. We can divide that arcs into two types: (i) those arcs which are descendants of some other arcs in the set and (ii) those arcs which have no ancestor in the set, The arcs in type (i) are condensed into their ancestors and can be traced out from the arcs in type (ii). The arcs in type (ii) are called ceiling arcs and are kept in a reduced arc tree. The root of the arc tree is passed back to the caller via the parameter ROOT.

Step 0 Let the arc at the root of the inputaretreebe h_{N}; MIN-WEIGII'I : = the weight of theminimum of the two vertices of h_{N};
$T:=$ an arc tree with only one arc, h_{N};

Step $1 \quad$ For each arc immediately above h_{N} in the input arc-tree Do

Begin

Step la Let the arc to be processed be h_{R};
If there exists a non-degenerated arc above h_{R}
then go to Step lb
else go to Step lf;
Comment: h_{R} is immediately above h_{N}.

Step 1b
PARTITION (h_{R});
Let the subtrce returnedbe T^{\prime};
Comment: Before processing \mathbf{h}_{R}, the subtrees of \mathbf{h}_{R} are first processedrecursively.

Step le Let U_{R} bethesctofarcs immediately above h_{R} in T^{\prime};
Calculate $S\binom{\mathrm{U}_{\mathrm{R}}}{\mathrm{h}_{\mathrm{K}}}$;
If $\mathbf{s}\binom{U_{R}}{h_{R}} \geq$ MIN-WEICIII
then go to Step ld
else go to Step le.
Step ld Remove h_{R} from T^{\prime};
while (there exists a non-degenerated arc, h_{j}, in U_{R}) and
(the supporting weight of $h_{j} \geq$ MIN-WEICiHT) Do
Begin
Remove h_{j} from UR ;
Remove $\underset{3}{ }$. from \mathbf{T}^{\prime};Include all ceiling arcs of h_{j}. into U_{R};end;
Insert the forest T^{\prime} into T such that all arcs in U_{R} areimmediatcly above $\mathbf{h}_{\mathbf{N}}$ in \mathbf{T}.
Go to Step li.
Step le If (there exists a non-degencratcd arc in U_{R}) and (its sup-porting weight $>$ the supporting weight of h_{R})
then
Begin
Among all the arcs in U_{R}, pick the one with maximum
supporting weight;
Let it be ${ }_{3}$.;
Condense $\underset{3}{ }$. into h_{R} and remove it from T^{\prime};
Include all ceiling ares of h_{j} into U_{R};
Fix up the trec T^{\prime} so that all the ceiling ares of h_{j} are
immediately above $h_{\mathbf{R}}$ in \mathbf{T}^{\prime};
go to Ste plc;
end

Begin

Record $S\binom{U_{R}}{h_{R}}$ as the supporting weight of h_{R} and all arcs in U_{R} as the ccil.ing arcs of h_{R}; insert T ' into T
so that h_{R} is immediately above h_{N} in T;
go to Step li ;
end.
step lf Let h_{C} be the degenerated arc above h_{R};
Calculate $S\binom{h_{C}}{h_{R}}$;
If $S\binom{h_{C}}{h_{R}} \geq$ MIN- WEIGHT
then.go to Step $1 g$
elsc go to Step 1 lh .
step lg Remove h_{R};
Insert h_{C} immediately above h_{N} in T.
go to Step li .
Step h Record $S\binom{h_{C}}{h_{R}}$ as the supporting weight of h_{R} and h_{C} as the ceiling arc of h_{R}; insert the subtree with h_{R} and ${ }^{h_{C}}$ into T so that h_{R} is immediately above h_{N} in T.

Step li End.

Step 2. Return T with root stored in ROOT to caller.

Now, the details of the algorithm to find an optimum partition of a convex polygon is presented.

Algorithm II
Input consists of n positive integers, which are the weights of the n vertices of an \mathbf{n}-gon. $W[1]$ is the weight of the minimum vertex and $W[i+1]$ is the neighbor of W [i] of the n-gon going in the clockwise direction.
out put consists of a tree of potential h-arcs which exist in the ℓ-optimum partition of the \mathbf{n}-gaon.

Step 0 For i : = 2 step 1 until N do

$$
C P[i]:=\sum_{j=1}^{i-1} W[j] . W[j+1] ;
$$

CP [1]: = $\mathbf{0}$;
Comment: Thesum of adjacent products \mathbf{W} [i]: $\mathbf{W}[j]$ can be obtained from $C P[j]-C P[i]$ for $\mathbf{1} \leqslant \mathbf{i}<\mathbf{j} \leqslant \mathbf{N}$.
step 1 Apply the one-sweep algorithm to obtain a trec of arcs. Let this are tree be T.

Comment: T contains all potentialh-arcsin the $n-g o n$.

Step 2 From T, remove those arcs which arc not potential
h-arcs;

If T is empty
thengo to Step 6.
else go to Step 3.
Step 3 Insert the degenerated are h_{1} with weight W|1] to thebottom of the trec, as the root of the tree;Insert a degenerated are with the local maximum weightat the tip of each corresponding branch of the arc tree.
Step PARTITION (hl);
Comment: $\mathbf{h} 1$ is the root of T; when returned fromPARTITION, T will contain all the ceiling arcs with theirdescendants in the ℓ-optimum partition.
Step 5 Remove all degenerated arc s.
Step $6 \quad$ Output T and stop.

This algorithm has beenimplemented in Pascal and the listing of the computer program is given in Appendix II.

Theorem 3. The partition of the general convex n-gon obtained by the algorithm is ℓ-optimum.

Proof. Using arguments similar to those in Theorem 2, we can first prove that all the potential h-arcs which are deleted from the arc-tree cannot be present in the ℓ-optimum partition, then we prove that any arc which is left in the arc-tree at the end of the algorithm must be present in the ℓ-optimum partition. Hence, the partition consisting of the h-arcs output by the algorithm and with fans in the subpolygons bounded by a potential h-arc and the arcs immediately above it in the output arctree must be I-optimum.

Let us examinc how much time wespend in executing the algorithm. Steps 0 and 1 each scans the polygon once, and hence takes $O(n)$ time. Since there arc at most $n-3$ arcs in T, Step 2 also takes $O(n)$ time, There will be a recursive procedure call for each arc in T (except the leaf nodes). Inside each procedure call, there are two nested loops. The innermost loop is the "while" loop in Step ld and the outer one spans from Steps le to le. Whenever the innermost loop is executed once, a potential $h-a r c$ is deleted from T. Whenever the outer loop is executed once (i.e. the '-'then" part of Step le), a potential h-arc is condensed into its father. Once an arc is deleted or condensed, it will never bc examined again. In order to carry out the deletion and condensation efficiently, we cannot examine all the arcs in U_{R} each time we go through the loop. Hence, we need to order the arcs in U_{R} in a priority queue and it takes $O(\log n)$ to update the queue each time. Hence, it takes $O(n \log n)$ time in executing Step 4 of the algorithm. Steps 5 and 6 each takes $O(n)$ time. Hence, the whole algorithm takes $O(n \log n)$ time to find the ℓ-optimum partition.

4. A closer look at the optimum partitions

Wc now present some theorems which enable the algorithm to divide the polygon into several subpolygons and hence can improve the average performance of the algorithm. These theorems have also been mentioned in [4] without detailed proofs.

Let us consider the polygons where there are two or more vertices with equal weights \mathbf{w}_{1}.

Lemma 9. For every choice of $\mathrm{Vl}, \mathrm{V}_{2}$, . . (as prescribed in Part I), if 'the weights of the vertices satisfy the condition

$$
w_{1}=w_{2}<w_{3} \leq \cdots \leq w_{n},
$$

then $V_{1}-V_{2}$ exists in every optimum partition of the n-gon.
Proof. The lemma is true if $\mathrm{V}_{1}-\mathrm{V}_{2}$ is a side of the n -g-on. Hence, we can assume that $\mathrm{V} 1, \mathrm{~V}_{2}$ are not adjacent to the same side of the n-gon.

The proof is by induction on the size of the n-gon. The lemma is true for a triangle and a quadrilateral. Assume that the lemma is true for all k-gons ($3 \leq k \leq n-1$) and consider the optimum partitions of an n-gon.

By Lemma 3 of Part I, we know that there are at least two vertices with degree two in each optimum partition of the n-gon. We have the following two cases,
(i) In an optimum partition of an n-gon, one of the vertices with degree two, say V_{i}, has weights larger than w_{1}. In this case, we can form an ($\mathrm{n}-1$)-gon by removing V_{i} with its two sides. By induction assumption, $V_{1}-V_{2}$ is present in every optimum partition of the (n-1)-gon.
(ii) Consider the complementary case of (i), i. c. all vertices with degree two have weights equal to $w l$ in an optimum partition of the n-gon. In other words, $V 1$ and V_{2} arc the only two vertices with degree two in that optimum partition, as shown symbolically in Fig. 14a. Note that every arc in the optimum partition must dissect the n-gon into two subpolygons in such a way that $\mathrm{V}, \mathrm{V}_{2}$ can never appear in any subpolygon together, else there will be more than two vertices with degree two in the optimum partition. In Fig. 14 b , we show a partition of the n-gon in which V_{1} and V_{2} are connected. Let us denote the $n-2$ triangles in Fig, 14a by $P_{1}, P_{2}, \ldots, P_{n} 2^{\text {. Except }} P_{1}$ and P_{n-2}, all the other $n-4$ triangles are made up of one side and two arcs each. For each of these n-4 triangles, we can find a unique triangle in Fig. 14b such that they both consist of the same side. We use P_{i}^{\prime} to denote the image of P_{i} in Fig. 14b. The only two triangles left unmatched in Fig. 14b are $V_{1} V_{a} V_{2}$ and $V_{1} V_{2} V_{i}$ and they are the images of $P l$ and P_{n-2}, respectively. Let the cost of P_{i} be C_{i} and the cost of P_{1}, be $C_{1} C^{\prime}$, Since $C_{i}^{\prime} \leq C_{i}$ for $1 \leq i \leq n-2$, the partition in Fig, 14b is cheaper than that in Fig. 14a and we have contradiction.

(a)

(1)

Fig. 14

Theorem 4. For every choice of V_{1}, V_{2}, \ldots (as prescribed in Part I), if the weights of the vertices satisfy the condition

$$
\mathrm{w}_{1}=\mathrm{w}_{2}<\mathrm{w}_{3} \leq \mathrm{w}_{4} \leq \cdots \leq \mathrm{w}_{\mathrm{n}}
$$

then every optimum partition of the n-gon must contain a triangle $V_{1}^{V} \mathbf{V}$ for some vertex V_{p} with weight equal to w_{3}. Note that if $w_{1}=w_{2}<w_{3}$ $<w_{4} \leq \ldots s w_{n}$, then every optimum partition must contain the triangle $\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3}$ since there is a unique choice of V_{3}.

Proof. Similar to Lemma9, we can prove this theorem by induction on the size of the n-gon. The theorem is true for any triangle or quadrilateral satisfying the above condition. Assume the theorem is true for all k-gons ($3 \leq k \leq n-1$) and consider the optimum partitions of an n-gon.

From Lemma 9, we know that $V 1, V_{2}$ are always connected in every optimum partition. Hence, without loss of generality, we can assume $\mathrm{Vl}, \mathrm{V}_{2}$ to be adjacent to the same side of the n-gon. Again, we have the following two cases.
(i) In an optimum partition, one of the vertices with degree two, say V_{1}, has weight larger than w_{3}. In this case, we can remove V_{1} with its sides and form an (n-1)-gon. By induction assumption, every optimum partition of the (n - 1)-gon contains a triangle $\mathrm{Y}_{2} V_{\mathbf{P}}^{\mathbf{V}}$ for some vertex $\mathbf{V}_{\mathbf{P}}$ where $\mathbf{w}_{\mathbf{P}}={ }_{\mathrm{w}}^{\mathbf{w}}$.
(ii) Consider the complementary case of (i), in an optimum partition of the n - gon, all vertices with degree two have weights less than or equal to w_{3}. Since $V_{1}-V_{2}$ is a side of the n-gon, for $n \geq 4$, either $V l$ or V_{2} (but not both) can have degree two, We have the following two subcases:
(a) If there are more than one vertex whose weight equals w_{3}, we can form an (n-1)-gon by removing one of those degree two vertices whose weight equals w_{3}, By induction assumption, every optimum partition of the ($\mathrm{n}-1$)-gon contains a triangle $\mathrm{V}_{1} \mathrm{~V}_{2} \mathbf{V}_{\mathrm{p}}$ for some vertex VP with $\underset{\mathrm{P}}{\mathbf{w}}=\mathrm{w}_{3}$, (b) There exists only one vertex of weight w_{3}, In this case, there must be only two vertices with degree two in the optimum partition of the n-gon. These two vertices are V_{3} and either Vl or V_{2}. Without loss of generality, we can assume Vl has degree 2. The situation is shown symbolically in Fig. 15a. Again, every arc in the optimum partition must dissect the n-gon in such a way that V_{1} and V_{3} can never appear in any subpolygon together, In Fig. $15 b$, we show a partition containing the triangle $\mathbf{V}_{1} \mathbf{V}_{\mathbf{2}} \mathbf{V}_{3}$. Using arguments similar to those in the proof of Lemma 9, we can show that the partition in Fig, $15 b$ is cheaper and we obtain a contradiction.

(a)

(b)

Fig. 15

Theorem 5. For every choice of $\mathrm{V}, \mathrm{V}_{2}, \ldots$ (as prescribed in Part I), if the weights of the vertices of the n-gon satisfy the following condition,

$$
w_{1}=w_{2}=\cdots=w_{k}<w_{k+1} \leq \cdots \leq w_{n}
$$

for some $k, 3 \leq k \leq n$, then every optimum partition of the n-gon contains the k-gon $\mathrm{V}_{1}-\mathrm{V}_{2}-\cdots-\mathrm{V}_{\mathrm{k}}$.

Proof. The proof is by induction on the size of the n-gon. The theorem is true for any triangle and quadrilateral. Suppose the theorem is true for all polygons with (n-l) sides or less and consider the optimum partitions of an n-gon.

From Lemma 3 of Part I, there exist at least two vertices having degree two in every optimum partition. We have the following two cases.
(i) In an optimum partition of the n-gon, one of the vertices with degree two, say V_{i}, has weight larger than w_{1}. In this case, we can remove the vertex V_{i} with its two sides and obtain an (n-1)-gon. By induction assumption, every optimum partition of the $(n-1)$-gon contains the $k-g o n V_{1}-V_{2^{-}} \cdots-V_{k}$.
(ii) Consider the complementary case of (i), i. e., all the vertices with degree two have weights equal to $\underset{1}{ }$, in an optimum partition. Let two of these vertices be V_{i}, V_{j}. We have the following two subcases:
(a) $k>3$. We first form an (n- 1)-gon by removing V_{1}. and its two sides.

There are (k-1) vertices with weights equal to wl in the (n-1)-gon. By induction assumption, every optimum partition of the ($n-1$)-gon contains the ($k-1$)gon which includes V_{j} as one of its vertices. Since V_{j} has degree two in the optimum partition, its two neighboring vertices, say V_{X} and V_{Y}, must also have weights equal to $w l$ and the $\operatorname{arc} V_{x}-V_{y}$ exists in the optimum partition (Fig. 16). Similarly, we can remove the vertex V_{j} with its two sides $V_{j} .-V$ and $V_{j}-V_{y}$ and form an (n-1)-gon. By induction assumption, every optimum partition of the (n - 1)-gon contains the (k-1)-gon formed by the (k-1) vertices with weights equal to w_{1} in the (n-l)-gon and V_{1} is one of the vertices in the (k- l)-gon. Now, by pasting the triangle $\mathrm{V}_{\mathrm{x}} \mathrm{V}_{\mathrm{j}} \mathrm{V}_{\mathrm{y}}$ and the (k-l)-gon together, we form a k-gon which includes all the vertices with weight equal to w_{1} in the n-gon and this k-gon is contained in the optimum partition of the n-gon.

Fig. 16
(b) $k=3$. In this case, we have $w_{1}=w_{2}=w_{3}<w_{4} \leq \ldots \leq w_{n}$.

Without loss of generality, we can assume V_{1} and V_{2} both have degree two in an optimum partition. Again, we can form an ($\mathrm{n}-1$)-gon by removing V_{1} and its two sides. By Lemma $9, \mathrm{~V}_{2}$ and V_{3} are connected in every optimum partition of the ($n-1$)-gon. Since V_{2} has degree two, $V_{2}-V_{3}$ must be a side of the n-gon. Next, we can remove V_{2} with its two sides and form an (n-1)gon. By Lemma $9, \mathrm{~V}_{1}, \mathrm{~V}_{3}$ are connected by a side of the n-gon. The situation is shown in Fig. 17a. Then, the partition in Fig. 17b is cheaper because

$$
\mathrm{T}_{123}+\mathrm{T}_{12 \mathrm{y}} \leq \mathrm{T}_{13 \mathrm{x}}+\mathrm{T}_{23 \mathrm{y}}
$$

and

$$
C\left(w_{1}, w_{x}, \ldots, w_{y}\right)=C\left(w_{3}, w_{x}, \ldots, w_{y}\right)
$$

(a)

(b)

Fig. 17

Now, whenever we have three or more vertices with weights equal to w_{1} in the n-gov, we can decompose the n-gone into subpolygons by forming the k-gown in Theorem 5. The partition of the k-gon can be arbitrary, since all vertices of the k-gon are of equal weight. For any subpolygon with two vertices of weights equal to ${ }^{1}$, we can always apply Theorem 4 and decompose the subpolygon into smaller subpolygons. Hence, we have only to consider the polygons with a unique choice of V_{1}, i. e., each polygon has only one vertex with weight equal to w_{1},

Because of Theorems 4 and 5, Theorems 1 and 3 of Part I can be generalized as follows.

Theorem 6. For every choice of V_{1}, V_{2}, \ldots (as prescribed in Part $\left.I\right)$, if the weights of the vertices satisfy the condition

$$
w_{1}<w_{2} \leq w_{3} \leq \cdots \leq w_{n}
$$

then $V_{1}-V_{2}$ and $V_{1}-V_{3}$ exist in ry optimum partition of the n-gon.

Theorem 7. Let V_{x} and V_{z} be two arbitrary vertices which arc not adjacent in a polygon, and V_{w} be the smallest vertex from V_{x} to V_{z} in the clockwise manner $\quad\left(\underset{\mathrm{W}}{\mathrm{V}} \neq \mathbf{x}, \mathbf{\mathrm { V }} \neq \mathrm{V}_{\mathrm{z}}\right)$, and V_{Y} be the smallest vertex from V_{z} to V_{x} in the clockwise manner $\left(V \neq V_{x}, V_{y} \neq V_{z}\right)$. This is shown in Fig. 18 where we assume that $\mathrm{X}_{\mathrm{x}}<\mathrm{V}_{\mathrm{z}}$ and $\mathrm{V}_{\mathrm{y}}<\mathrm{V}_{\mathrm{w}}$. The necessary condition for $V_{x}-V_{z}$ to exist as an h-arc in any optimum partition is

$$
\mathrm{w}_{\mathrm{y}}<\mathrm{w}_{\mathrm{x}} \leq \mathrm{w}_{\mathrm{z}}<\mathrm{w}_{\mathrm{w}}
$$

Fig. 18

From Theorem 7, we know that any arc which exists as an h-arc in some optimum partition must be a potential h-arc. In other words, the h-arcs in every optimum partition will be gencrated by the one-sweep algorithm. Hence, by modifying the condition in steps 1 c and ld of the procedure Partition to favor partitions with morc h-arcs, wc can obtain other optimum partitions which consist of more h-arcs than the P-optimum partition.

5, Conclusion

The problem to find the optimum order of computing a chain of matrices has been around for several years [2]. It has been used as a typical example to illustrate the dynamic programming technique in many textbooks [1][3]. In this paper, a new approach is used to solve the problem. Instead of tackling the matrix chain product problem directly, it is transformed into the problem of partitioning a convex polygon and a tailor-made algorithm for finding the optimum partition is developed. The algorithm takes $O(n \log n)$ time and $O(n)$ space. For those who want to trade optimum solution for shorter execution time, an $O(n)$ heuristic algorithm has been presented in [5]. This heuristic algorithm is very simple to implement and its error bound given explicitly as a function of the number of sides of the convex polygon and the ratio of the weights of the largest vertex to that of the smallest vertex. The worst error ratio is less than 15%.

References

1. A. V. Aho, J. E. Hopcroft and J. D. Ullman, "The Design and Analysis of Computer Algorithms, " Addison-Wesley, 1974.
2. S. S. Godbole, "An Efficient Computation of Matrix Chain Products," IEEE Trans. Computers C-22, 9 Sept. 1973, pp. 864-866.
3. H. Horowitz and S. Sahni, "Fundamentals of Computer Algorithms," Computer Science Press, 1978, pp. 242-243.
4. T. C. Hu and M. T. Shing, "Computation of Matrix Chain Products, " 1981 Army Numerical Analysis and ComputerConferences, February 1981.
5. T. C. Hu and M. T. Shing, "An O(n) Algorithm to Find a NearOptimum Partition of a Convex Polygon, " to appear in the Journal of Algorithms.

Appendix 1

```
PROGRAM OP'IIMUM_ALGORITHM_FOR_A_MONOTONE:_BASIC_POLYGON;
CONS'I' MAX_SI乍 = 127;
TYPE POS INTEGER
    LI S'I' P'RR = ^ LIST EIfMMENT ;
    LIST-ELEMENT = PACKED RECORD
        HEAD, TAIL : POS INTEGER;
        HEAD SMALL : BOOLEAN;
        SUP WeiGht,
        COST,
        BASE PRODUCT,
        SIDE-PRODUCT : INTEGER;
        DESCENDANT, NEXT : LIST PTR
    END;
VAR w, CP : ARRAY [l..MAX_SIZE] OF IN'EGGER;
        LIST, LEAF': LIST PTH;
        N : POS_INTEGER;
SEGMENT PROCEDURE INITIALIZING;
(**************************************************************)
(* Handles the inputs and initializing all the global *)
(* variables. *)
(******************************************************************)
VAR I : INTEGER;
BEGIN
    WRI'I'ELN ('a linear algorithm to find all the h-arcs in',
                                    the optimum') ;
    WRITELN (' partition of a monotone basic polygon',
                                    (7/2/80)');
    WRITELN;
        {obtain the inputs)
    WRITE ('Please enter the size of the polygon (between 3',
                                    ' and ',M^X SI ZE-1 , ') :' ) ;
    READLN (N);
    WR [TELN ;
    WRITELN('Now, starting from the smallest vertex and in',
                                    'the') ;
    WRI''ELN (' clockwise direction, ente: the weights of' ,
                                    ' the vertices:');
    FOR I := 1 TO N DO READ (W[I]);
    READLN;
    WRI'IELN;
```

```
{calculate the cumulàtive adjacent
```

 pr id UC t.s around the pol ygon \}
 CPlll: : 0 ;
FGR I := $\mathbf{2}$ TO N DO CP[I] :=CP[I-1]+W[I-1]*W[I];
(initialize the psuedn arc)
NEW (LEAF);
WI'TH LEAF ${ }^{\wedge}$ DO
BEGIN
BASE_PRODUCT := 0;
SIDE_PRODUCT : $=0$;
END;
\{set up the output headings \}
WRITELN (' the potential h-arcs in the partitions are : ');
END; \{initializing)
SEGMENT PROCEDURE ONE SWEEP (VAR L : LIST PTR);

(* Sweep the pnlygon once, collects all potential h-arcs, *)
(* puts them in a list. The address of the head of the *)
(* list is stored in L. ${ }^{*}$)
(***)
VAR STACK
: ARRAY [l..MAX_SIZE] OF PŌS_INTEGER;
TOP ELEMENT, SECOND_ELEMFNT, CURTENT, TOS : POS INIEGER; P, ARC-LIST : LIST_P'R;
PROCEDURE PUSH (C : INTEGER) ;
(**)
(* Pushes the index C onto the stack and updates the *)

BEGIN
STACK[TOS] := C;
SECOND-ELEMENT := TOP-ELEMENT;
TOP ELEMENT : = C;
$\operatorname{TOS}^{-}:=1$ IWS - 1 ;
E'NI); \{push\}

```
PROCEDURE POY STACK;
(*************「゙「********************************************)
(* pops the top element off the st ack and update:s the *)
(* var iabl cs TOS , TOP ELFMEN', and SFCOND EIFMM'N'I . *)
(*************************************************************)
BEGIN
    TOS := TOS + 1;
    TOP ELEMENT := SECOND ELEMENT;
    SECŌND ELEMENT := STA
END; {pop stack}
(* One-sweep begins here. N
BEGIN
    (initialize the local variables}
    TOP ELEMENT := 0;
    SECŌND_ELEMENT := 0;
    ST'ACK[N+1] := 0;
    TOS := N;
    ARC LIST := NIL:
    PUSM̈ (1);
    PUSH (2);
    CURRENT := 3;
    {scan through the polygon in the clockwise direction)
WHILE, CURRENT < N DO
    IF (W[SECOND_ELEMENT] <= W[TOP ELEMENT]) AND
                                    (W[TOP_ELEMENT] > W[CURRENT])
        THEN
            BEGIN
                NEW (P);
                WITH P^ DO
                    BEGIN
                        HEAD := SECOND_EIEMEN'T;
                        TAIL := CURRENT;
                        HEAD SMALL . = W[HEAD] <= W[TAIL];
                        BASE-PRODUCT := W[HEAD] * W[TAIL] ;
                    SIDE-PRODUCT := CP[TAIL]- CP[HEAD];
                    DESCENDANT := NIL;
                        NEXT := ARC__LIST;
                    END;
                ARC LIST := P;
                    POE' STACK;
                    IF TTOS > = (N-l) {tho:e are loss than 2.
                                    elements on the stack}
```

```
            THEN
                    BEGIN
                    PUS| (CURREN'I') ;
                    CURRENT := CURRENT t l;
                    END;
                EN [)
    ELSE
        BEGIN
            PUSH (CURRENT);
            CURRENT := CURRENT t l;
        END;
    WHILE (TOS <= (N-3))
                        AND (W[SECOND_ELEMENT] <= W[TOP_ELEMEN'])
                                    AND (W[TOP_ELEMENT] > W[N]) DO
    BEGIN
        NEW (P);
        WITH P^ DO
            BEGIN
                HEAD := SECOND-ELEMENT;
                TAIL := N;
                HEAD SMALL := W[HEAD]<= W[TAIL];
                BASE-PRODUCT := W[HEAD] * W[TAIL];
                SIDE-PRODUCT := CP[TAIL] - CP[HEAD];
                DESCENDANT := NIL;
                NEXT := ARC_LIST;
            END;
        ARC_LIST := P;
        POP_STACK;
    END;
    L := ARC_LISI;
END; {one swecp}
```

```
SEGMFNT PROCEDURE MONO PARTITION (VAR L : LIST P'IR);
(**********************##************************#*************)
```



```
(* polygon and returns them in a list. The address of *)
(* the head of the list is stored in L. *)
(***************************************************************)
FUNCTION FAN COST (HR, HC : LIST P'TR) : INTEGER;
(***********\overline{*}********************\overline{x}**************************)
(* Calculates the cost of the fan of the subpnlygan *)
(* bounded above by HC and below by HR. *)
(*******************************************
VAR TEMP1, TEMP2 : INTEGER;
BEGIN
```

```
TEMPI := HR^.SIDE_PRODUCT - HC^.SIDE_PRODUCT
```

TEMPI := HR^.SIDE_PRODUCT - HC^.SIDE_PRODUCT
WITH HR^ DO
IF HEAD-SMALL
THEN
BEGIN
IF HEAD = HC^. HEAD
THEN TEMP2 := HC^.BASE PRODUCT
ELSE TEMP2 := CP[HEAD+\overline{l}]-CP[HEAD];
FAN_COST := (TEMP1 - TEMP2) * W[HEAD] ;
END
ELSE
BEGIN
IF TAIL = HC^.TAIL
THEN TEMP2 := HC^. BASE PRODUCT
ELSE TEMP2 := CP[TAIL]-CP[TAIL-1];
FAN-COST := (TEMP1 - TEMP2) * W[TAIL] ;
END;
END; {fan_cost}
FUNCTION SUPPORTING_WHIGN'I (HK, HC : LII S'T P'TR) : INTEGER;
(******************\overline{\star}***********************\overline{x}*****************)
(* Find the supporting weight of the subpolygon bounded *)
(* above by HC and below by HR. *)
(***)
VAR Y : INTEGER;

```

\section*{BEGIN}
```

{calculate the denominator}

```
{calculate the denominator}
Y := (HR^.SIDE PRODUC'I - HR^.BASE PRODUC'I')
Y := (HR^.SIDE PRODUC'I - HR^.BASE PRODUC'I')
                                    (HCSS1DE_PRODUC'L - HC^ . BASESROHUC'M);
                                    (HCSS1DE_PRODUC'L - HC^ . BASESROHUC'M);
\{calculate the SUPPOR'IING WEIGH'I\}
SUPPORTING WEIGHT := (HR^.COS'T + Y - l) DIV Y;
(ceil ing function)
END; \{suppoiting_weight\}
```



```
(* Kelloves all the äcs in S whose SUP WEIGlITS are equal to *)
(*or larger than MIN f rom the 1 is t. - *)
(**************************************************************)
VAR NOT_DONE : BOOLEAN;
BEGIN
    NOT DONE := TRUE;
    WHILE NOT DONE DO
                IF S = NIL
                THEN NOT_DONE := FALSE
                ELSE
                    IF S^.SUP WEIGHT < MIN
                    THEN NOT_DONF-= FALSE
            ELSE S := S^.NEXT;
END; {remove }
PROCEDURE SUB PARTITION (VAR S : LIST PTRR; MIN : INTEGER);
(************\overline{\overline{x}}**************************\overline{*}*******************)
(* Finds the optimum partition of the subpolygonbounded *)
(* below by the potential h-arc at the head of S. The *)
(* h-arcs in the optimum partition of the subpolygon *)
(* is kept in a list with S pointing to the head of *)
(* the list.
VAR TEMP : INTEGER;
    TEMP PTR : LIST PTR;
    NOT_DONE : BOOLEAN;
```


BEGIN

```
IF S^.NEXT 〈> NIL
THEN
BEGIN
                IF S^.HEAD_SMALIL
                THEN TEMP := W[S^.HEAD]
                ELSE TEMP := W[S^.TAIL];
                SUB-PARTITION (S^.NEXT,TEMP); {S^.NEXT may become
                                    NlL, when return
                                    from SUB_PARTITON}
        END;
    IF S^.NEXT' = NIL
    THEN TEMP PITR := LEAF {S is the last a:c in the list)
                        {leAF is a psucdn are wi th
                        both L,EAE^.BASE PRODUCT and
                        LEAF^.SIDE PRODUC'T Equal to NIL}
ELSE TEMP_PTR := S^.NEXT;
```

```
    S^. COST := FAN COS'T(S,TEMP PTR);
    NO'T DON I: : = IRUWF;
    WHI ITF NO'J_DON &:LO
        BEGIN
        S^.SUP WE IGH'L := SUPPORTING WEIGHT(S ,TEMP_P'lR);
        IF S^.\overline{SUP_WEIGH'I > = MIN {ton see if the partition is}
                                    optimum in the subpolygon}
        THEN
            BEGIN
                REMOVE (S,MIN); {delete all h-arcs not in the
                                    optimum partition of the
                                    subpolygon}
            NOT_DONE := FALSE;
            END
        ELSE
            BEGIN
                IF S^.NEXT <> NIL
            THEN
                IF S^.NEXT^.SUP_WEIGH'I'<= S^.SUP_WEIGHT
                THEN NOT-DONE := FALSE
                    ELSE
                    BEGIN {condense S^.NEXT into S}
                        TEMP PTR := S^.NEXT;
                        S^. NEX'T := TEMP PTR^.NEXI;
                        S^.COST':= S^. COST t TEMP PTR^. COS'I;
                        TEMP P'IR^.NEXT := S^.DESCEMNDANT';
                        S^.DESCENDANT . = TEMP_PIR;
                        IF S^.NEXI = NIL
                        THEN TEMP PTR := LEAF
                        ELSE TEMP_PTR := S^.NEXT;
                    END
                ELSE NOT_DONE := FALSE;
            END;
    END;
END; {sub partition}
BEGIN
    SUB_PARTITION (L,W[l]);
END; {mono_partitinn}
```

```
PROCFIDURE WRITELIS'I (L : I,IS'I P'IR; MIN, INDFN'I : IN'LEGFRR);
(**************脑*************衣******************************)
(* Di splays the h-aics in the list pointed by [,. *)
(************************************************************)
VAR TEMP POS_INTEGER;
BEGIN
    WHILE L <> NIL DO
        BEGIN
            IF L^.HEAD SMALL
            THEN TEMP }\overline{:}=\mp@subsup{L}{}{\wedge}..HEA
            ELSE TEMP := L^.TAIL;
            IF TEMP <> MIN
            THEN WRITELN (' ':INDENT,L^.HEAD,' ':3,L^.TAIL);
            WRITE LIST (L^.DESCENDANT,TEMP,INDENT+3);
            L := 䛃^.NEXT;
        END;
END; {write list)
BEGIN {main program begins here}
    INITIALIZING;
    ONE SWEEP (LIST);
    MONO PARTITION (LIST);
    IF LIST< <> NIL
    THEN WRITE-LIST (LIST, l,3)
    ELSE WKITELN ('':3,'NIL');
END. {main program)
```

```
PROGRAM OP'IIMUM_PAR'IITION_OF_A_GENERAL_CONVEX_POLYGON;
CONS'J' MAX-SIZE = 127; { the maximum numbe: of vertices in
                                    a polygon is 126}
    MAX_INT = 32767; {the largest integer in the machine)
TYPE
    POS INTEGER
    LIST PTR = ^ LIST ELEMENT ;
    LIST-ELEMENT = PACKED RECORD
        HEAD : POS INTEGER;
        STAY : BOOELEAN;
        TAIL : POS INTEGER;
        HEAD SMALL : BOOLEAN;
        NEXT- : LIST_PTR
        END;
    TREE P'IR
    TREE-ELEMEN'I
= `TREE ELEMENT;
= PACK6 RECORD
        HEAD , TAI L : POS INTEGER;
        HEAD SMALI, : BOOLEAN;
        SUP WeiGht,
        TRE \overline{E COST,}
        TREE-BASE PRODUCT,
        TREESIDEPPRODUCT,
        LOCA\overline{I__COS'T},
        LOCAL BASE PRODUCT,
        LOCAL-SIDE-PRODUCT: INTEGER;
        DESCENDANT, NEXT,
        H ARC, V ARC : TREE PTR;
        LIS'T LINK : LIST-PTK;
        DEPI苗 : INI'E\overline{G}ER
        END:
        {V ARC and H ARC arc used in two
        d\overline{ifferent wäys : (1) they are}
        used to link the unprocessed arcs
        togethe: to form an ar c- tree; and
        (2) they are used as the left
        1 ink and the right 1 ink of the
        p:ocessed arcs in the leftist
        tree for the prior ity queue. }
VAR w, CP : ARRAY [l. .MAX SIZE] OF INT'EGER;
    LISTl, LIS'T2 : L.IS'I' P'IR;
    V 'IREE , H_TREE : TRFE E'P'IK;
    N : POS_INILEGER;
```

```
SEGMENT PROCEDURE INITIALIZING;
(*****************************************************************)
(* Handles the inputs and initializing all the global *)
(* variables. . *)
(*************
VAR I : INTEGER;
```


BEGIN

```
WRI'IEIN (' a linear algn: i thm to find all the h-arcs in'); WRITELN (' the optimum partition of a convex polygon', WRITELN;
\{nbtain the inputs]
WRITE ('Please enter the size of the polygon (between 3', ' and ',MAX_SIZE-1,'): ');
READLN (N);
WRITELN;
WRITELN ('Now, starting from the smallest',
' vertex and in the ') ;
WRITELN (' clockwise direction, ',
'enter the weights of the vertices:') ; FOR I := 1 TO N DO READ (W[I] );
READLN;
WRITELN;
(calculate the cumulative adjacent
products around the polygon\}
CP[1]:= 0;
FOR I := 2 TO N DO CP[I] := CP[I-l] + W[I-l] * W[I];
\{set up the output headings)
WRITELN ( ' the potential h-arcs in the partitions are:');
END; \{initializing]
```

```
SFGMFN'TPROCFDORFONFSWFPY (VAR I, : LI ST' P'PR) ;
(*********************`*****************************************)
(* Sweep the polyyon once, collects all potential h-arcs, *)
(* puts them in a 1 ist. . The address of the head of the *)
(* list is stored in L,. *)
(******************************************************************
VAR STACK : ARRAY [ 1..MAX_SIZE] OF
                                    PŌS_INTEGER;
    TOP EIFMEN'T, SECOND_ELEMENT',
    CURREN'T, TOS - POS I NTEGER;
    P, ARC_LIST : LISI'_PTR;
PROCEDURE PUSH (C : INTEGER);
(*************************************************************)
(* Pushes the index C onto the stack and updates the *)
(* variables TOS, TOP-ELEMENT, and SECOND-ELEMENT. *)
(**************************************************************)
BEGIN
    STACK[TOS] := C;
    SECOND ELEMENT := TOP_ELEMEN'1'
    TOP ELEMENT := C;
        TOS := TOS - 1;
END; (push)
PROCEDURE POP S'I'ACK;
(*************\overline{*}************************************************)
(* Pops the top el ement off the stack and updates the *)
(* va: iables TOS, TOP E LEH ENT, and SECONDELEMEN' . *)
(**************************************************************)
BEGIN
    TOS := TOS + 1;
    TOP ELIEMENT := SECOND ELEMENT';
    SECÖND_ELEMENT : = STA\overline{CK}[TOS + 2];
END; {pop_stack)
BEGIN {one sweep beg ins here)
    {initialíze the local var iables}
    TOP ELEMFN'M. = 0;
    SfCONID EITFMFiNT ..a 0;
    S'AACK[\overline{N}+]]:= 0;
    TOS := N;
    ARC LIS'I' := NIL;
    PUSĨ (1);
    PUSH (2);
    CURREN'I : = 3;
```

```
    (scan through the polygon in the clockwise direction)
    WHI IIF: CURRENT < N DO
```



```
                                    (W ['I'OP_ELEMEN'I] > W [CURRENT] )
        THEN
            BEGIN
                NEW (P);
            WITH P^ DO
                BEGIN
                        HEAD := SECOND ELEMENT;
                        TAIL := CURRENT`;
                    STAY := FALSE;
                        HEAD_SMALL := W[HEAD]<= W[TAIL];
                        NEXI':= ARC-LIST;
                END;
            ARC_LIST := P;
            POP STACK;
            IF TOS >= (N-l) {there are less than
                                    2 elements on the stack)
            THEN
                BEGIN
                        PUSH (CURRENT);
                        CURRENT := CURRENT + 1;
                END;
            END
    EISE
        BEGIN
            PUSH (CURRENT);
            CURRENT := CURRENT + 1;
        END;
    WHILE (TOS <= (N-3))
                AND (W[SECOND_ELEMENI] < = W [TOP_ELEMAENI'])
                                    AND (W['OO&_ELEMENT] > W[N] ) DO
    BEGIN
        NEW(P);
        WITH P^ DO
            BEGIN
                HEAD := SECOND-ELEMENT;
                TAIL := N;
                STAY := FALSE;
                HEAD SMAIII := W[HEAD] <= W['IAII,] ;
                NEX'I : = ARC LIS'I' ;
            END;
        ARC_LIST := P;
        POP_S'IAC K;
    ENI) ;
    L := ARC LIST;
END; {one_\overline{swcep}}
```

SEGMENT pROCEDURE BUILD TREF; (VAR I, : LIS'T PTR;
VAR V'r, HT : TREE PTR; Fl RS'l', IAS'l' MİN : POS IN'IEGFR) ;

(* Traces all the arcs in the list pointed by L and *)
(* build an arc-tree with the root pointed by T. *)
(**)

VAR NO'I_DONE	$:$ BOOLEAN;
p	$:$ THEEPTR;
Q	$:$ LIST_P'IR;

BEGIN
NOT _DONE . = TRUE;
VT := NIL;
HT := NIL;
WHILE NOT DONE DO
IF $\mathrm{L}=\mathrm{NIL}$
THEN NOT_DONE := FALSE
ELSE
IF (L^. .HEAD < FIRST) OR (L^.TAIL > LAST)
THEN NOT_DONE := FALSE
ELSE
BEGIN
$Q:=L^{\wedge}$. NEXT' $^{\prime}$
IF L^. HEAD <> 1
TH EN
BEGIN
NEW (P);
WITH P^ DO
BEGIN
HEAD := L^. HEAD;
TAIL := L^.TAIL;
HEAD SMALL := L^. HEAD_SMALL;
DESCENDANT := NIL;
DEPTH := 1;
LIST_LINK := L;
\{LOCAL_COST, LOCAI_ BASE PROUUCT', LOCAL SIDE PRODUCT, TREE COST,
 H AR?, and V__ARC are undefinēd at this point

Thein
BEG 1 N
N R:X'I: :- V'I ;
VT := P;
END
EISE
BEGIN
NEXI : = HT';
HT := P;
END;

```
                    IF HEAD SMAIL,
                    THEN BUTl,O I'RLE:(O),V ARC, H ARC, -
                        -11 &:AD, ''AI I, , IIF:AD)
                            EI,SE BUILD_TREE (Q,V_ARC,H_ARC,
                    HEAD,TAIL,TAIL);
{note that there will be at most one ar.
    in the V ARC list but may be several arcs
    in the H-ARC list
        END;
            END;
            L := Q;
        END:
END; {build tree}
SEGMENT PROCEDURE POLY PARTITION (VAR T : TREE PTR);
(************************
(* To find all the h-arcs that are present in the optimum *)
(* partition of the polygon and returns them in the arc- *)
(* tree pointed by T.
*)
(****************************************************************)
PROCEDURE FAN-COST (T : TREE PTR) ;
(*****************************\overline{********************************)}
(* To find the cost of the fan of the subpolygon bounded*)
(* below by the arc pointed by T'and above by the arcs *)
(* printed by T1^.H ARCs and T^^.V arce. *)
(******************\widetilde{#}**************\widetilde{#}************************)
VAR x : POS INTEGGR;
    Y, Sl, \overline{S}2 : INT'EGER;
BEGIN
    WI TH T` DO
        BEGIN
                IF HEAD_SMALL
                THEN
                BEGIN
                    IF V_ARC = NIL
                    THEN
                            BEGIN
                            X := HEAD t 1;
                        Sl := CP[X] - CP[HEAD] ;
                    END
                    E LSE
                    BEGIN
                            X := v ARC`^.T'AII;
                            Sl := प्र_ARC^ . TREE__BAS E_PRODUCI';
                    END;
```

```
                s2 := (CP[TAIL] - CP[X|);
                Y := w[HFAD];
            END
        ELSE
            BFGIN
                IF V ARC = NIL
                THEN
                    BEGIN
                    X := TAI[ - 1;
                        Sl := CP[TAIL] - CP[X];
                    END
                ELSE
                    BEGIN
                        x := V_ARC^.HEAD;
                        Sl := \overline{V_ARC^.TREE_BASE PRODUCT;}
                    END;
                s2 := (CP[X] - CP[HEAD]);
                Y := W[T'AIL];
        END;
    IF H ARC <> NIL
    THEN-S2 := S2 - H_ARC^.TREE_SIDE_PRODUCT
                        + \overline{H}ARC`
    (all the SIDE PRODUCTs and the BASE PRODUCT'S are
        added togeth\overline{e}: and stored in the root of the
        leftist tree pointed by H-ARC
    LOCAL COST := S2 * Y;
    LOCAL-SIDE PRODUCT := Sl + S2;
    LO CAL-bASE-PRODUCT := W[HEAD] * W[TAIL,];
    END;
END; {fan-cost}
PROCFIDURE SUPPORTING WEIGH'l (T : TREE PTH) ;
(*******************\overline{*}****************"巟*********************)
(* TO find the suppoiting weight of the arc pointed by T*)
(* with respect to the subpolygon bounded below by the *)
(* arc painted by }T\mathrm{ and above by the arcs pointed by *)
(* the T^^.H_ARC and T^.V ARR. *)
(***********\overline{`}************\overline{\nwarrow}*********************************)
VAR D : INTEGER;
BFGIN
    WI'Ill I'^ DO
        BEGIN
            D := (LOCAL-S IDE_PRODUC'\Gamma - LOCAI_BASE_PRODUCJ);
            SUE'_WEIGH'T:= (LO-OCAL-COW + D - 1- DIV D;
                                    {ceiling function
        ENI);
END; {suppnrting__weight
```

```
FUNCTION MERGE (T1 , T2 : TREF PTR) : T'REE P'IR;
(****************************灰***********\overline{x}****************)
(* Mojucs two leftist treos intn nnc and roturns it in *)
(* MERGE . *)
(**********************************************************)
VAR TEMP PI'R
    TEMP_COST, TEMP_BASE-PRODUCT,
    IEMP_SI DE PRODUC
BEGIN
    IF T2 = NIL
    THEN MERGE := Tl
    ELSE
        IF Tl= NIL
        THEN MERGE := T2
        ELSE
            BEGIN
                TEEIP COS'L := T1^.TREE COST t T2^.TREECOST;
                    TEMP-SIDE PRODUCT := 䘖^.TREESIDE PRÖDUC'I
```



```
                    TEMP BASE_PRODUCT := TI^.TREE BASE P\overline{RODUCT'}
                                    +.T`^人
                    IF T1^.SUP_WEIGHT < T2^.SUP_WEIGH'I'
                    THEN
                BEGIN
                    TEMP_PTR := Tl;
                    Tl:= T2;
                    T2 := TEMP_PTR;
                END;
                    WITH T'1^ DO
                    BEGIN
                        H ARC := MERGE (HARC , '1'2);
                        {\vec{H}}\mathrm{ ARC never equa].s NIL at this point}
                        IF-V ARC = NIL
                        THEN
                        BEGIN
                            V ARC := H_ARC;
                            H-ARC :=N NL
                            END
                        ELSE
                        BEGIN
                        IF V ARC^ . DEPTH<HARC^ . DFP'I'H
                        THEN
                            BEGIN
                            TEMP P'IR := V ARC;
                            v \RC}:=El \RC"
                            H-ARC : = I'EM E-P'LR ;
                                    END;
                                    DEPTH := H ARC* . DEP'LH t 1;
                            END;
                            TREE COST : = TEMP COS'T ;
```

```
            TREE_SIDE_PRODUCT := TEMP SIDE PRODUCT;
            TRFF'BASE-PRODUC'T : = TFMP -BAS F-PPODUC'J;
            ENL;
        MERGE := Tl;
    END;
END; {merge}
```

FUNCTION CONDENSE (T : TREEPTR; MIN : INTEGER) : BOOLEAN;

($*<=$ MIN \quad)
(**)
BEGIN
IF $\mathrm{T}=\mathrm{NIL}$
THEN CONDENSE $:=$ FALSE
ELSE CONDENSE $:=\mathrm{T}^{\wedge}$.SUP WEIGHT > MIN;
END; \{condense\}

PROCEDURE COMBINE: (VAR \quad : TREE PTR; V FIAG : BOOLeAN);

(* If V._FIAG, it combines the arc pointed by $\mathrm{T}^{\wedge} . \mathrm{V}$ ARC *)
(* int'亍 the arc pointed by T, else it combines the arc *)
(* pointed by T^{\wedge}. $\mathrm{H}_{\text {_ ARC }}$ into the arc pointed by T . In *)
(* either case, the ax to be combined is deleted from *)
(* the cor respond ing leftist tree and put into the *)
(* DESCENDANT list of the parent. *)
(***)
VAR T'EMP _PI'R : TREE _PTR;
BEGIN
IF V FLAG
THEN
BEGIN
TEMP PTR $:=\mathrm{T}^{\wedge}$. V ARC;
$\mathrm{T}^{\wedge} \cdot \mathrm{V}-A R C:=\mathrm{MERGE}(T E M P P T R \wedge . V A R C, T E M P E T R \wedge . H$ ARC) ;
END
ELSE
BEGIN
TEMP PTR $:=T^{\wedge} \cdot \mathrm{H}$ ARC;

END;
THMP P'IR ${ }^{\wedge}$. V_ARC : $=\mathrm{N} I \mathrm{I}$; ;
TEMP PIR ${ }^{-} \mathrm{H}^{-}$ARC. $=$NIL;

T^, DFSSCFNDANT : = TFPMP P'R;
T^. LOCAL COS'I : = T^ . L, OCAI, COS'I + T'FMP PIR^ . LOCAI, COST;
T^ - LOCAr, -SIDE PRODUC'I := \bar{T}^{\wedge}. LOCAL SIDEE PRODUC'I --
t TEMP_PTR^. LOCAI_SIDE PRODÜCT
- TEMP P'TR^ • LOCAL, BASE PRODUC'I
END; \{ combine \}

PROCFIURE REMOVE (VAR T : TREE PTR; MIN : INTEGER) ;

```
(**************************************************************)
    (* Removecsal 1 the arcs in the leftist tree pointed by 'l*)
(* whnse SUP WEIGHTS are larger than or equal to MIN. *)
(*************\overline{*}*********************************************)
VAR NOT DONE : BOOLEAN;
```


BEGIN

 NOT DONE := TRUF;
 WHIIEE NOT DONE DO
 IF \(\mathrm{T}=\mathrm{NIL}\)
 THEN NOT-DONE := FALSE
 ELSE
 IF T^.SUP WEIGHT < MIN
 then NOT DQNE - = FALSE
 ELSE \(T\) : \(\overline{=} \operatorname{MERGE}\left(\mathrm{T}^{\wedge} . V_{-} A R C, \mathrm{~T}^{\wedge} . \mathrm{H}\right.\) ARC);
 END; (remove)

PROCEDURE: SUB PAR'I IION (VAR TREE : TRFE_PTR;
MIN : INTEGER);
(* To find the optimum par ti tinn of the subpolygon *)
(* bounded below by the root of the arc-tree pointed *)
(* by T. *)
(***)
VAR T, R, P, TEMP_PTR : TREE PTR;
TEMP - : INTEḠER;
NO'T DONE, FLAG : BOOLEAN;

BEGIN

T : = TRFE;
R := NIL';
WHILE T < N NIL DO

BEG IN

$\mathrm{P}:=\mathrm{T}^{\wedge}$.NEXT;
T^.NEXT : = NIL;
IF T^. HEAD SMALI,
THEN TEAP $:=W\left[T^{\wedge}\right.$. HEAD]
ELSE TEMP :=W[T^.TAIL];
IF T^{\wedge}. H ARC < NIL
THEN SUE-PARTITION (T^^. H_ARC, TEMP) ;
\{when return, all the h-ares in the subpol ygon will be put in a priority qucue

IF T^{\wedge}. V ARC < NIL
THEN SUB PARTITION (T^{\wedge}. V ARC , TEMP) ; \{there should be at mosst 1 v-ax, i.e. T^{\wedge}. $\mathrm{v} A R C^{\wedge}$. NFIX'I $=$ NIL, when retu:n, all the h-ares in the subpol ygnn will be put in a prior ity queue
\{calculate the cost of the fan of the subpolygon bounded below by the are pointed by I and above by the v-ares and h-ares of 'l' FAN_COST('T);

NOT DONE := TRUE;

FLAG := TRUE;
WHILE NOT _DONE DO BEGIN
(calculate the supporting weight of the arc pointed by T$\}$ SUPPORTING-WEIGHT (T);
IF T^{\wedge}. SUP WEIGHT >=MIN $\left.\begin{array}{l}\text { \{to see if the partition } \\ \text { is optimum in the } \\ \text { subpolygon }\end{array}\right\}$

THEN
BEGIN REMOVE (T,MIN) ; $\begin{aligned} & \text { \{delete all h-arcs not } \\ & \text { in the optimum par ti tion }\end{aligned}$

NO'I DONE := FALSE; FLAG := FALSE; END
ELSE
IF' CONDENSE (T^.VARC, T^. SUP WEIGHT) THEN COMBINE (T, TRUE) ELSE

IF CONDENSE (T^. H ARC, T^. SUP_WEIGHT) THEN COMBINE (T, FALSE) ELSE NO'I'_DONE := FALSE;
END;
\{maintain the leftist tree structure)
IF FLAG
THEN
BEGIN
T^.TREE COST := T^. IOCAL COST;
T^. TREE_SIDE_PRODUCT := \bar{T}^{\wedge}. LOCAL_SIDE_PRODUCT;
T^.TREE BASE_PRODUCT $:=\mathrm{I}^{\wedge} . \mathrm{LOCAL}^{\prime}$ BASE_PRODUC'I;
IF $\mathrm{T}^{\wedge} \cdot \mathrm{V}_{\mathbf{\prime}}$ ARC $\langle>\mathrm{NIL}$
THEN
BEGIN
$\mathrm{T}^{\wedge} \cdot \mathrm{TREE} \mathrm{COS}^{\prime}:=\mathrm{T}^{\wedge} \cdot \mathrm{TREF} \mathrm{COS}^{\prime} \mathrm{T}$
$+\mathrm{T}^{\wedge} \cdot \mathrm{V} A R C^{\wedge} \cdot \mathrm{T}^{\prime} R E \mathrm{~F}_{-} \operatorname{COS}^{\prime} \mathrm{T}^{\prime} ;$ T^{\wedge}. TREE_SIDE: PRODUC'I $:=\mathrm{T}^{\wedge}$. TREESI DE PRODUC'T
 T^. ${ }^{\wedge}$ _ARC-. TREE_BASE PRODUCT; END;

```
                        IF T^.H_ARC <> NII.
                        THEN
                        BEGIN
```



```
                                    +'T^.H_...TRF&COS';
                                    T^.TREE_SIDEPPRODUC'T:= T^.TVEE_SIDE_PRODUC'I
                                    + T^.-H_ARC^.TREE_SIDE P\overline{NODUC\overline{T}}\mathbf{N}
                                    = T^.H_ARC`.
END;
    IF T^.V__ARC <> NIL
    THEN
        IF T^.H_ARC <> NIL
        THEN
            BEGIN
                IF T^.V_ARC^.DEPTH < T^.H_ARC^.DEPTH
                    THEN
                        BEGIN
                        TEMP PTK := T^.V_ARC;
                        T^.V-ARC := T^. H_ARC;
                        T^.H-ARC := TEMP P'TR;
                END;
                        T^.DEPTH := T^.H_ARC^.DEPTH + l;
            END
        ELSE
        ELSE
        IF T^.H_ARC <> NIL
        THEN
            BEGIN
                        T^}.V\mathrm{ ARC := T^. H_ARC;
                T^.H-ARC := NIL;
                    END;
                    END;
            R := MERGE (R,T');
            T := P;
            END;
        TREE := R;
    END; {Sub partition)
BEGIN_ {pnlypartitinn beginshere}
    SUB PANR'ITION(I', W[1]);
END; Tpoly partition}
```

```
(*****************************************************************)
(* ''':averses the tree printed b y 'l preorderly, finds; out *)
(* all the potential h-arcs which are present in the *)
(* opt imumpar: tit inn of the polygon and marks the *)
(* correspond ing elements i n the list pointed b y LIS'll. *)
(****************************************************************)
BEGIN
    WHILE T <> NIL DO
        BEGIN
            T^.LIST LINK^.STAY := TRUE;
            MARK-LISTST (T^.DESCENDANT);
            MARK LIST (T^.V ARC);
            MARK-LIST (T^.H-ARC);
            T : " T^.NEXT;
        END;
END; {mark-list}
PROCEDURE WRITE_LIS'T (VAR L : LIST'PTRR;
                            FIRST, LAST, MIN, INDENT : INTEGER);
(*****************************************************************)
(* Displays the h-arcs in the list pointed by L.
(*****************************************************************)
VAR T.EMP 
BEGIN
    NOT DONE := TRUE;
    WHILE NOT DONE DO
        IF L = \overline{N}IL
        THEN NOT-DONE := FALSE
        ELSE
            IF (L^.HEAD < FIRST) OR (L^.T'AIL > LAST)
            THEN NOT DONE := FALSE
            ELSE
                BEGTN
                    IF L^.S'TAY
                    THEN
                            BEGIN
                        IF L^.HEAD SMALL
                        THEN TEMP }\overline{:=
                        ELSE TEMP := L^.TAIL;
                        IF TEMP <> MIN
                        THEN
                            BEGIN
                                    WRITELN (' ':INDEN'',
                                    L^ . HEAD,' ':3,I^.T'AIL`);
```

```
                    WRITE-LIST (L^.NFXT,IA`.HEAD,
                                    L^.TAIL,TEMP, INDEN'I+3);
                END;
                    END;
            L := L^.NEXT;
        END;
END; {write-list)
(************************************************************)
(* main program begins here. *)
(**********************************************************)
BEGIN
    INITIALIZING;
    ONE_SWEEP (LISTl);
    LIS'T2 := LISTl;
    BUILD TREE (LIST 2,V TREE,H_TREE,1,N,l); (V TREE = NIL)
    POLY \overline{PARTITION (H_TरिEE);}
    IF H-TREE = NIL
    THEN-WRITEL,N ('':3,'NIL')
    ELSE
        BEGIN
            MARK I.IST (II-TREE);
            WRIT:-LIST (LISTl,l,N,1,3);
        END ;
END. {main program)
```


[^0]: This research was supported in part by National Science Foundation grant $M C S-77-23738$ and U.S. Army Research Office grant DAAG29-80-C-0029.

