December 1981

Also numbered:
AIM-323A

AL Users’ Manual

by

Shahid Mujtaba
Ron Goldman

Third Fdition

Department of Computer Science

Stanford University
Stanford, CA 94305

Report. No. STAN-CS-81-889

AL Usars Manual

Third Edition

by
Shahid Mujtaba & Ron Goldman

Stanford Artificial Intelligence Laboratory
Stanford University, California 94305.

December198 1.

ABSTRACT

AL is a high-level programming language for manipulator control useful in
industrial assembly research. This document describes the current state of the AL
system now in operation at the Stanford Artificial Intelligence Laboratory, and
teaches the reader how to use it. The system consists of the AL compiler and
runtime system and the source code interpreter, POINTY, which facilitates
specifying represent ation of parts, and interactive execution of AL statements.

This work was supported by the National Science Foundation through the
following grants: NSF-APR-74-01390-A04, NSF-DAR-78-15914 and

NSF-MEA-80-19628.

dedicated to
yarm
barm
garm

rarm

TABLE OF CONTENTS

L INTRODUCTIONo it it it it ittt et ot oo o
1.1 Howtousethismanualcov v eeenns
1.2 Other implementations of the AL system

2. THE AL SYSTEM AT SAIL e
2.1 Design philosophy of AL ittt it vt e et
2.1.1 Introduction and history v v i i i i e e
2.1.2 Plantime and runtime systems
2.1.3 Data and control structure 0 0 e
2.1.4 Motionof objects o oo,
2.1.5Sensory information e
2.1.6 Programming aidsttt
2161 AL compilerttt

2.1.6.2 Interactive model building
2.1.6.3Debuggersttt i e e e e e

22 Al systemhardware it e e e e e e e
23 Software e e e e e e e e e
24 Programming in AL i e s e e e e e e

B AL TUTORIAL . . vt it et e it e et i ettt os oo aas
31 Basicconstructs i “ e e e
Sl Datatypes e e e e
S.LLILISCALARS e
3.1.1.2VECTORS
3.1.L1.3ROTATIONS o
31.LAFRAMESo

3.1.1.6 TRANSFORMS e

3.1.2 Block structure - i.e. "what’s a program™

3. 1.3 Asimpleprogram i e e e e e e
3.2Simple MOVE statement
3.2.1 More about barmandbpark
3.3 Using the fingers: OPEN, CLOSE & CENTER
3.4 Intermediate points - VIA, APPROACH and DEPARTURE
3.5 Modelling objects - affixment & indirect moves
3.6 Sensing forces - simple condition monitors
3.7 Force and stiffnesscontrol i
3.8 Control structures: IF, FOR & WHILE statements
3.9 Control structures (cont): CASE & UNTIL statements
3.10 Simultaneous motion: COBEGIN-COEND, SIGNAL-WAIT

Sl Arrays e i e e e s e e

N =t

Pt

B2 Procedures i i i e e e e e e e e e e 45

3.13 Hints to the Programmerttt v v et oo 48
3.13.1 Upward pointing grasping positions 48
3.13.2 Initialization and programend v 48
'3.13.3 Slowing down movements et e 48

4, THE AL LANGUAGE ittt e it it e et e e 49

4.1 Basicconstructs e e e e e 49
4.1.1 Programs . . .« v i i i i e e e e e 49
41.2Variables e e e e 49
4.1.3Comments e e e e e e e e e 49

4.2 Data types and expressions 0 e e e 50
4.2.1Algebraic datatypes: SCALAR, VECTOR, ROT, FRAME, TRANS 50
4.2.2 Labels, Events and Strings 0o, 50
Q23 Arrays . . . o i i e e e e e e e .. 50
4.24DIMENSIONS . v v v v e e ve... bl
425 Declarations e e e 51
4.2.6 Arithmetic expressions v v v it i e e 52
4.2.7 Predeclared constants and variables - 54
428 Some examples i e e e e 55

4.3 Affixment: AFFIX & UNFIX . . oo 55

4.4 Motions and Device operation 56
4.4.1 The basic MOVE statement 56
4.4 2Intermediate points: Vi4, DEPARTURE & APPROACH 56
4.4.3 Force and Stiffness control v i oo . 58

4.4.3.1 Spring force application - stiffness 58
4.4.3.2 Constant force application 99
4,4.3.3 Zeroing the force wrist e 60
4.4.3.4 Collecting force components 60
4.4.4 Conditionmonitors i i e 61

4.4.4.1 Types: force, duration, event, boolean, arrival and departing 61
4.4.4.2 ENABLE and DISABLE - labelled condition monitors 63

4.4.5 User error handler -ERROR and RETRY 64
4.4.6 Other clauses: DURATION, SPEED-FACTOR,
NULLING& WOBBLE . . .« o o oo 64
4.4.7 Controlling the fingers: OPEN, CLOSE & CENTER 65
8448 STOP & ABORT e 66
849 0ther deviCes . . . v v v i i it i e e e e e e e e s 66
4.49.1The OPERATE statementcvv v 66
4492 The ADAC interface . . v v v v v v vt v v v et o v o o s o 67
4,493 The VisionModule . . . v v e v v vt vt v v v e e. 67
4.49.4 The VAL controllers« v v v i it i e et et e s 67
4.5 Non-motion statements i i it i e e e e 68

451 Assignment statement oo oo
4.5.2 Traditional control structures: |IF, FOR, WHILE, UNTIL, CASE

453 Procedures e e e e e e e e
4.5.4 Parallel control: COBEGIN-COEND, SIGNAL & WAIT
4.5.5 Statement conditionmonitors oo oo
456 PAUSE statement i e e e e e e
4571/0 e e e et e e e e
458 MaCros . . v v v it e e e e e e e e e
459 REQUIRE statemento

B, USING AL . . it e i e i i s e e e e e
5.1 Compilation of user programs v v v v v v b bt e e e es
5.1.1 Compilation with switches,
5.2 Loading and executing the AL program
5.3 Complete runtime executionsequence
5.4 Error Corrections and Recovery
5.4.1 Parsing errors e e e e e e e e
542 Compiler errors i it e e e e e
BABPALX errors . . . i i i e e e e e
5.4 Loading @rrors i i it e e e e e e
5.45Runtime errors i e e e e e e e
5.45.1 Mot ion associated errorso oo

5.45.2 Non-Motion errorsc.. o v v v v v v v o0 e e
5.4.5.3 Continuation from runtime errors

55 Hintsondebugging i e e
5.5.1 Parse time debugging aids e e
5.5.2 Runtime debugging aids e e
5.6 The GAL program module for graphing force data

B. POINTY . e e e e e e e e e
6.1 Description of POINTY e e e e e e e e
6.1.1 Introduction e e e e e
6.1.2 Pointing with a manipulator e
6.1.2.1 implicit specification of frames
6.1.22Pointer e e s e e e

6.1.3 System hierarchy e e e
6.2 Executing POINTYo .0 i i i it s it a e
6.3 POINTY instructions i i vt it ittt ettt e n o s ns
6.3.1 Basic constructs e e
6.3.2 Data types, expressions, declarat ions and dimensions
6.3.2.1 Explicit and implicit declarations

6.3.2.2 Predeclared variables and constants
6.3.2.3 Implicit datatypes o i,

6.3 2.4 EXPressionst i i e e e
6.3.3 Affixment tree operations - AFFIX & UNFIX
6.3.4 Motion and Device operations

6.3.4.1 MOVE statement

6.3.4.2 Hand motion-CENTER, OPEN, CLOSE

6.3.43 DRIE command e e e e e e

6.3.4.4 PUMA simulated joystick commands
6.3.5 Non-motion AL statements.

6.3.5.1 Assignment statements
6.3.5.2 Control structures,

6.3.5.3 Procedures and Macros

6.3.5.4 Conditionmonitors e

6355 1/0 ... e e e

6.3.5.6 REQUIRE statement
6.3.6 Deletion statement
6.3.7 Display routines e e e e e

6.3.7.1 Data Disk screen

6.3.7.2VT05 SCreen i e

6.3.73 Force Graphics i e
6.3.8 Fileinput/output,

6.3.8.1 Saving current state -WRITE

6.3.8.2 Getting a given world state - READ & QREAD
- . 6.3.8.3 Saving a terminal session - PHOTO
6.39HELP module e e e
6.3.10 Interactive debugger o oL,
6.3.10.1 Setting breakpoints,

6.3.10.2 Permanent breakpoints e

6.3.10.3 Abort execution L e e e e e

6.3.10.4 Restartingaprogram

6.3.10.5 Displaying source levelcode
6.3.10.6 Listing the existing break points
6.3.10.7 Removing a break point
6.3.10.8 Resuming executiono
6.3.11 Miscellaneous commands v v v i v i e
6.4 Hints on using POINTY, I
6.4.1 Suggested sequence for using pointer
6.4 2Hints e e e e e
6.4.3Accurate Part Relocation

APPENDICES o e e e

Appendix |. AL reserved words, predeclared constants and macros . .

Appendix Il. POINTY reservedwordsc0 v
Appendix lil. AL command summary it e e e

-V -

Appendix IV.
Appendix V.
Appendix VI.
Appendix VIl

Appendix ViIIl.

Appendix IX.
Appendix X.
Appendix XI.

POINTY command summaryo oo v v oo oo oo 124

AL executionsummary 00, 125
AL examplesttt v oo onsens 126
POINTY examples e ce e ens 135
Vision Module Routineso ... 139
Generatinganewsystem 0000 145
References e et e e e e e 153
Acknowledgements 000 ... 155
et e e e e e e e e e e e e e e e e e e e 156

- vii -

TABLE OF FIGURES

Fig. 2.1 Hardware setup for ALat SAIL v 9
Fig. 22 PUMA arm it it e ittt it e i e e e 10
Fig. 2.3 Stanford Scheinman arm it 10
Fig. 2.4 -Software organization 12
Fig. 3.1 Diagram of hand showing coordinate axes 26
Fig. 3.2 Diagram of four armsontablet eeesa 27
Fig. 5.1 Sample Output of force graphics oo 89
Fig. 6.1 Sample of display when using help command at menu node 109
Fig. 6.2 Typical path through the help module e e e e 110

- viii -

. INTRODUCTION

1.1 How to use this manual

This document attempts to gather in o n o place all the information that a
user n & & d s to program @ manipulator in the AL programming language at the
Stanford Artificial Intelligence Laboratory (SAIL). In addition to meeting the
requests made by other research organizations for detailed information 0 n the
current status @ n d configuration of the system at SAIL, it updates the original AL
document which was o design specification of the language. The AL system has
been growing and continuously evolving 8s new features were implemented and
used. This third edition of the manual includes features not present in the editions
of November 1977 @ n d January 1979. The current system is in @ stable state
while work is currently going O N towards rewriting a new system in PASCAL to
eventually supersede this system.

Chapter 2 describes the AL programming system and the related hardware
a n d software configuration at SAIL. It is @ n overview a nd description for the
general reader.

Chapter 3 and the succeeding chapters are for the AL user. Chapter 3is an
example based tutorial illustrating the use of simple AL instructions. This chapter
assumes that the ‘reader is familiar with interactive computer programming in high
level languages such @ s FORTRAN. Previous knowledge of manipulator
programming 0 ¢ programming in ALGOL is not essential. After completing this
chapter, the user should have at his command o subset of AL instructions which
will enable him to write simple programs.

Chapter 4 describes the AL language, © n d gives the complete set of
currently implemented AL instructions in a concise manner. This chapter should b o
sufficient (or an.experienced programmer to use as areference manual.

Chapter 5 describes how to execute AL programs, the errors that might
occur in the different stages of compiling and executing the AL program, and how
to cope with them.

Chapter 6 describes the interactive AL system called POINTY, which allows
the user to generate the frame tree data structure for AL programs, and to try out
segments of AL programs.

The Appendices include reserved words, brief summaries of commands @ n d
instructions, extended examples and instructions on building up systems of AL and
POINTY, references and acknowledgements.

1.2 Other implementations of the AL system

Ron Goldman is currently re-writing the AL system to produce a standalone
version on @ minicomputer. The system is being written in OMS| PASCAL and fully
resident on & PDP-11 system. User programs may b o written, compiled and
executed on o PDP-11/45, and a separate processor, 8 PDP-11/60, will bo used
for servoing the arms.

The system will b o interactive, @ n d include desirable features from the
current system in addition to other features that users have requested from time
to time.

A version of the AL system has b e e n implemented at the University of
Karisruhe in Germany by C. Blume who visited at the Stanford Artificial Intelligence
Laboratory in the summer of 1979

A high level robot language which resembles AL was designed and
implemented in LISP at the University of Tokyo in 1981.

2. THE AL SYSTEM AT SAIL

2.1 Design philosophy of AL

2.1.1 Introduction and history

The WAVE system for manipulator control was designed and implemented by
‘Lou Paul in 1973 on the Scheinman Stanford model arm and was used extensively
by him and Bob Bolles.

The experience with WAVE led to the initial specifications of AL in 1974 by
both of them and Jerry Feldman, Ray Finkel, and Russ Taylor.

The initial implementation of the compiler and runtime system for AL was
done by Finkel and Taylor, and subsequently taken over by Ron Goldman, who is
now developing a more highly interactive version of AL.

Vic Scheinman designed the two Stanford model arms in use at SAIL, while
Tom Gafford and Ted Panofsky were responsible for the computer interface to the
manipulator. Ken Salisbury, Gene Salamin, Lee Winnick and Jim Maples maintained
the hardware at various times. Later work of Vic Scheinman led to the design of
the PUMA 600 arms and the wrist force sensor currently in use. The first fingers
for our PUMA arms were designed by Ken Salisbury. Currently, Jeff Kerr is
designing hands with modular fingers suitable for interfacing to the PUMA arms
while Ken Salisbury is designing a nine degree of freedom three fingered general
purpose hand. Rick Vistnes wrote the software to interface the PUMA arms to AL.
Salisbury and Shahid Mujtaba developed the tabletop flexible fixturing for accurate
and repeatable relocation of workpieces and baseplates.

The work of Paul and Bruce Shimano was responsible for developing the
kinematics of manipulation and the arm servo code. Shimano subsequently
implemented force compliance, while Tatsuzo Ishida has done a theoretical analysis
of two arm cooperative manipulation. Salisbury maintained the arm code and
developed active force and stiffness control using the wrist force sensor and
implemented automatic wrist calibration. Goldman implemented runtime trajectory
computation. Oussama Khatib and John Craig are currently developing software for
arm control in cartesian space.

The first AL parser was written by Bill Laaser and Pitts Jarvis, and
subsequently taken over by Mujtaba.

POINTY, a related system, was conceived in 1975 by Dave Grossman and
Taylor, and initially implemented by Taylor. Maria Gini, Pina Gini and Mujtaba have

4

subsequently implemented a newer version. Enrico Pagello has also contribut ed to
it. Mujtaba has expanded it to execute AL source code interactively.

Barry Soroka has produced models of the arms and assembly station paits
using the ACRONYM system for geometric modelling.

The design of AL has continually been modified and updated on the ba sis of
new experience and information by Grossman, Shimano, Goldman, Mu jtaba,
Salisbury, Vistnes and Soroka under the overall guidance of Tom Binford.

The AL system is geared towards batch manufacturing where setup timee is a
key factor. To minimize programming time we rely on a symbolic data bas(s and
previously defined assembly primitives, and a quick and simple means of pi utting
into a program the things we want to tell the manipulator to do. By testin g out
the system on undergraduate industrial engineering students with miinimal
experience in manipulators and robotics, we have found that learning to use ti e AL
system is relatively simple, and that it is unnecessary to learn the com plete
system before putting it to use. Team programming sessions by researche :rs in
manipulation at the Workshop on Software for Assembly held in November 19 77 at
SAIL showed the possibility of learning to program AL in a short time. Thie AL
system has also been used for term projects in a Robotics course given in thi e Fall
quarters of 1978, 1979 and 1980.

2.1.2 Plantime and runtime systems

Experience with WAVE (the predecessor to AL) had shown that calculating:
trajectories for manipulators was a desirable feature. It was thus decided that
trajectory calculations, together with all other calculations which need only be:
performed once, should be done at compile time on the assumption that this
allocation of effort would reduce the computing load at execution time and:
eliminate recomputation every time a sequence of actions is executed.

This sequence of planning and execution led to the existence of two
systems - the plantime system and the runtime system in the initial implementation
of AL. The plantime system consisted of the AL compiler whose function was to
take the user written AL program, simulate it, point out errors to the user, and
output instructions to the runtime system. The compiler performed a simulation of
the program (called world modelling) to verify that it was indeed possible to do
what the user asked within the limits of what AL was capable of doing, and to
warn the user about unexpected consequences (e.g. if the user accidentally asked
that the arm be moved through the table). The runtime system took the output of
the plantime system, and proceeded to perform the motions.

This approach was changed because of subsequent developments.
Computation costs have dropped dramatically and this makes possible the future

5

use of multiple processors in distributed computation. Better arm servo software,
faster arm solution and more sophisticated path calculation algorithms tend to
reduce the computation load, thereby permitting more decisions to be made at
runtime. It was also realized that certain trajectories are best computed during
runtime (e.g. force compliant motion, moving belt, when the workplace is highly
unstructured). (See "Discussion of Trajectory Calculation Methods” by Mujtaba in
Progress Report 4.). The sophisticated control structures of AL and the increased
use of sensory information and runtime data increased the capability of AL, but at
the same time presented increased problems to the world modeller. (See
description in section 4.6 of the January 1979 edition of the AL USERS’ MANUAL.)
It was also found that computing trajectories at compile time generated very large
user program object code files, with the result that user program size was limited.
The current AL system no longer does world modelling; trajectory calculation is
now done during runtime.

2.1.3 Data and control structure

The principal mode of input to AL is textual. The use of symbolic
programming means that for parts in a pallet, for instance, there is no need to
define the position of all the parts, if the distance between parts (which is usually
constant) is known. "Once the corner of a pallet is taught and the part separation
is known, laborious record-playback programming is no longer necessary given
proper software in an associated minicomputer.” [Engelberger, JF. in “A Robotics
Prognostication”, Joint Automatic Control Conference Proceedings 1977, p 198.]
Symbolic programming simplifies the interfacing of AL with other means. of
generating world models, like interactive graphics and computer aided design. It
permits the setting up of library programs which may be called by supplying the
relevant parameters. Symbolic programming eases the job of specifying complex
motions if such motions can be parametrized or described algebraically -~ for
example, it is easier to tell the hand to move a certain distance along an arbitrary
direction than it is to move it manually when multiple joints have to be adjusted
simultaneously. Teaching by doing, on the other hand, requires the recording of a
very large number of points (tape recorder mode) unless only the end points of
motions are of interest and the nature of the paths between these end points are
unimportant.

There are levels of complexity which are much more readily transmitted
from man to machine through an interface of symbolic text. Simultaneous motions
of two arms, specifications for termination, and error conditions are more likely to
be unambiguously stated through the medium of text, since these may require
multiple logical relationships to be satisfied. Non-textual forms of input can be
very useful for defining target locations, suggesting arm trajectories designed to
avoid collisions, initial setup of a workstation, and other purposes of this nature.

AL has more data types than other conventional high level languages. In

6

addition to SCALAR numbers, it allows the specification of VECTOR, ROTATION,
FRAME, TRANS, STRING and EVENT data types. A VECTOR consists of a tripie
of three real numbers. A ROT consists of a direction vector and an angle to
indicate the amount of rotation. A FRAME describes the position and orientation
of an object coordinate system, while a TRANS describes the relationships
between FRAMES. In addition, arrays of all these data types may be defined.
Arithmetic operators are available not only for the standard scalar operations but
also for such operations as rotation and translation.

We want to write programs in a natural manner. The machine-language like
aspect of previous manipulation languages made it cumbersome to write long
programs in any structured way. We want a language which lends itself to a more
systematic and easily understood programming style. To this end, the use of
ALGOL-like control structures are an improvement over linear machine-language
code with jumps. The block structure of ALGOL is also present in AL.

Experience with languages like SAIL and WAVE has shown that text macros
are a useful feature; they reduce the amount of repetitive typing, and allow
symbolic definition of constants and variables in a way which would be otherwise
impossible. AL has a general-purpose text macro system. Procedures ere
provided, as in other languages, to reduce the amount of code when similar
computations or operations need to be done at numerous places in & program.

AL also permits the control of parallel processes by allowing the flow of
control of the program to be divided up, which allows certain operstions to be
performed simultaneously (e.g. simultaneous movement of different manipulators),
after which the various processes merge back together. Synchronization primitives
are also provided.

2.1.4 Motion of objects

AL has a mechanism to keep track of the location of a component piece of
an assembly automatically as the assembly is moved; this mechanism is called
affixment and used extensively with the concept of FRAME to describe objects.
Frames may be affixed to each other, so that after affixing an object to the
manipulator, the user can forget about the manipulator completely, and think in
terms only of where objects have to interface with other objects. Instead of
having to worry about how to move the arm, the user can specify the final
orientation and position of the object, and AL will take care of working out what
the arm has to do in order to accomplish the stated objective. The user can think
of movement of the objects rather than the movement of the manipulator. This is
significantly different from other programming schemes where the program consists
of a series of arm motions whose relationship to objects in the real world is known
only to the user, and where the user effectively has to provide explicitly the
distance and angular relationship of the object to the manipulator for each motion

statement.

2.1.5 Sensory information

AL allows alternative actions on the basis of sensory input during runtime by
checking whether certain conditions have exceeded a specified threshold, and if so
executing a predetermined action. This is called condition monitoring. When error
conditions are encountered, it is possible to set a sequence of actions into motion
that will try to allow recovery. This is not possible in the case of linear control
where program execution has to be aborted.

2.1.6 Programming aids

AL has several features that help the user during different phases of
compilation and execution of his program to ensure that errors are caught as early
as possible, and to simplify programming.

2.1.6.1 AL compiler

The AL parser takes the user-written AL program and checks that it is
syntactically correct, generating error messages where necessary. It also makes
use of the AL declarations generated by POINTY if told to do so. [t enables
programs to be input through disk files written by means of text editors, or
through the teletype.

The AL parser tries to catch and correct errors early, so that less time is
wasted on a compilation if it needs to be aborted. Also, by catching errors early,
it is possible to generate error messages in the context of the user source
program. Two main checks are used to eliminate an important class of errors.
Dimension checking across assignments and expressions is done by the parser to
ensure that units have been correctly specified by the user and are compatible
with what is expected. Type checking across assignment statements and across
the terms and factors of an expression ensure that operations are performed on
arguments of the right data type, and that assignment of an expression is done to a
variable of the same data type.

The output of the AL parser is used by the AL compiler to generate the
binary file of pcode for the runtime system.

AL allows interactive error correction by permitting the user to ask for a
standard fixup, or to change (patch) the offending source code for minor errors and
continue from there without having to resort to the system text editor and a
recompilation. Error recovery is local, and permits backing up to the beginning of
the innermost current statement. To back up any further, it is necessary to resort
to the text editor. At the user’s option, a corrected copy of the source file is

8
made.

2.1.6.2 Interactive model building

The interactive AL system or source code interpreter, POINTY, to be
described in detail in Chapter 6, allows the user to create interactively the frame
tree for AL programs with the aid of the manipulator as well as to try out AL
statements. The interactive nature of POINTY is also helpful in testing out small
segments of programs before incorporating them in a larger AL program.

2.1.6.3 Debuggers

Several debuggers are available during execution of the program to enable
the user to correct his mistakes by allowing him to patch his programs, and to let
him examine and change the values of variables.

Debugging an AL program during execution involves examining and modifying
variables, and single stepping through a program. This can be done in the
interactive AL system by means of the source level debugger.

1100T is the PDP-11 machine language symbolic debugger used by AL
wizards to debug the runtime system, and by the user to continue or restart
execution of his program.

2.2 AL system hardware

The hardware for the AL system consists basically of a PDP KL10 computer
(hereafter referred to as PDP-10) for compiling and loading the AL program, a
PDP-11/45 computer (hereafter referred to as PDP-11) for executing the AL
program, two STANFORD model Scheinman arms, two UNIMATE PUMA 600 arms, an
electric socketdriver, a Machine Intelligence Corporation VS-100 Vision Module,
and an ADAC interface with 64 A/D channels and 4 D/A channels in addition to
various peripherals such as terminals and disks.

The relationships between the various components are shown below, and
diagrams of the PUMA and STANFORD arms are included. The PDP-11 system is
interfaced to the PDP-10 system, the manipulators, ADAC interface and the vision
module. The PDP-11 controls each joint of the STANFORD arms directly. Each
joint of the PUMA arms is controlled by an individual microprocessor (a 6502)
which is in turn controlled directly by the PDP-11. (it is possible to control the
PUMAs through VAL by re-connecting the LSI-11 that comes with the PUMA
controller.) Any communication between the PDP-10 and the manipulators must go
through the PDP-11 runtime system, since there is no direct interfece between the
PDP-10 and the arms.

INTERACTIVE
TERMINALS

|

] — (£ ——— (2]

ﬂ

_

!

ADAC
INTERFACE
4 DJA 64 AD

O ———

—_—

GE-25080
CAMERA

ower
socketdriver

vS-100
VISION —ep
MOOULE
6582
. GREEN
. : PUMA
6502
6562
. RED
. PUMA
llll 6582 T.
BLUE
ARM
YELLOW
ARM

Fig. 2.1 Hardware setup for AL at SAIL

10

Fig. 2.2 PUMA arm

Fig. 2.3 Stanford Scheinman arm

AN

f—d

11 12

2.3 Software
POINTY TEXT
The software organization of the current AL system at SAIL is shown in Fig. PDP-18,POP-11, | AND/OR EDITOR AND/OR TELETYPE
2.4, Each of the blocks indicates @ module of programs that can bs in core at ona ARMS POP-18 KEYBOARD
time, and the files that each module needs and generates are written alongside the
lines connecting the modules. DECLAR. AL F00. AL TTY:FOO. AL

!

Data @ n d programs are stored in files which have names of the form

ABCDEF.XYZ where ABCDEF is © combination of one to six alphanumeric characters AL PARSER
making up the nome, and XYZ is any combination of zero (in which case the dot is POP-18
omitted) to three characters, making u p the extension. The extension serves (0
distinguish different files in a family of files of the sama name. _ FOO.TTY generated
deleted by FOO.NEW H* R4
Affixment information can b e generated in AL statement form using the ”_mau_ ler FOO. SEX F00.L0G desired
interactive AL system, POINTY and sayed in a declaration file. The program and
data can be prepared and saved on o disk file FOO.AL (where FQO is the name, and AL COMPILER
AL is the extension which serves to identify @ n AL source program) using the text POP-18
editor. it can also b e input directly to the AL compiler through the teletype.
F0O.ALS
The AL parser takes the AL program written by the user, an d checks that it ‘||l_ FOD.ALP deleted by ALSOAP
is syntactically correct, generating error messages where necessary. It generates
a n intermediate file (using S-expressions), with extension .SEX, that is passed to
the AL compiler. At the option of the user, the AL parser will generate a logging PALX (POP-11
file with extension .LOG with all the error messages, o nd o corrected copy of the CROSS-ASSEMBLER)
source file with extension .NEW. For programs input directly through the teletype, POP-10

a disk file copy of the program will be generated with extension .TTY. T
. : . —————— F00.LST
The AL compiler 1eads in the S-expression file generated by the AL parser, FOO. BIN
changes it into @ n internal form, @ n d deletes the S-expression file. It then does '

code generation, and generates a file with extension .ALP which contains v

information on the pcode and numerical constants. If information on the symbols is 117TY ————— AL.SAV[AL, HE)
required as well, o file with extension .ALS is generated. POP-18

The file with extension .ALP is used by PALX, the PDP-11 cross assembler H
to assemble o binary load module having extension .BIN for the runtime system.
The _amqam.n_mwo file with mux»m:m_o: ALP is Sﬁ_o.m__x deleted by the ALSOAP AL RUNTIME SVS GAL
program, which is run automatically after the AL compilation. 11007 Force graphics

POP-11 — module
The binary file with extension .BIN is loaded together with the AL pcode AlNS POP-18

interpreter and the run time system by a program called 11TTY. If desired, a
force graphics program, GAL, can be run on the PDP-10 to display forces

encountered by the arms. Fig. 2.4 Software organization

13
2.4 Programming in AL

In order to program an assembly in AL, an assembly plan should first be
worked out which includes a rough layout of the parts and the sequence of motions
to accomplish the assembly.

The parts and fixtures should be iaid out in the work place in the desired
physical locations. AL has to be given the information of the object layout, and
this can be done either by direct measurement using a ruler and othér measuring
equipment, or with the aid of manipulators and POINTY, the interactive AL system
using the manipulator (c.f. Chap 6). The data must be incorporated into a file
which has AL statements which specify how to move the parts to accomplish the

desired assembly.

Having obtained the program, the user gets it into the computer system by
some means (at SAIL this means through one of the interactive terminals).

The program is compiled, loaded, and executed and debugged much like any
other program.

14
3. AL TUTORIAL

3.1 Basic constructs

The purpose of this chapter is to introduce the reader to the AL language,
and through a series of examples, show its use in the programming of manipulator
motions. The basic constructs of the AL language are described in this section.
Other instructions will be described in the the following sections of this chapter.

The notation will be as follows: Within the programs and examples
reserved words will be shown in upper case, while variables and predefined
constants will be shown in lower case. In all other places, they will be
represented in upper and lower case italics respectively.

3.1.1 Data types

At the heart of each computer language are the types of data that can be
handled. For exampte, FORTRAN has INTEGER and REAL numbers; other languages
can handle strings of alphabetic characters. The data types in AL were chosen to
handle the special problems that arise in controlling manipulators, and in working
with three-dimensional objects in the real world which have directed distances,

locations and orientations.

A variable is an identifier that can take on various values. Identifiers
consist of a string of alphanumeric characters (letters and numbers) and underscore
" " Some examples: pump_base, handle, screw_hole_2, and P132. Note that all

identifiers must start with a letter (3inch_screw is no good). Upper and lower case
are equivalent, i.e. ABC, abc, and aBc all refer to the same variable. '

Variables can be given a value by means of an assignment statement, which
consists of the variable name, a left arrow ("«"), and an expression of the correct
type. When an assignment statement is executed, the expression on the right
hand side is evaluated, and the result becomes the new value of the variable on
the left hand side.

AL, like ALGOL, requires each variable to be declared, that is, one must
state what data type a variable is before it is used. AL also uses ALGOL type
block structure which means that all variables declared between a particular
BEGIN and END are accessible only to code which appears between the same
BEGIN-END pair. It is also possibte for the same variable name to be used in
different blocks without conflict. Block structure will be explained more fully later
(3.1.2). We shall now look at the data types available in the AL language.

15

3.1.1.1 SCALARS

The most elementary data type in AL is the SCALAR, which Is internally
represented s o floating-point number. Scalars can ba used for dimensionless
quantities, such a's the number of times some operation is to b s repeated, or for
dimensioned ones like the length of © n object or the angle between two parts.
The arithmetic operations available o n scalars are addition, subtraction,
multiplication, division @ n d exponentiation, represented by the normal arithmetic
operators: "+", "-", "+", "/, @ n d "f". Exponentistion has precedence over
multiplication ® n d division which in turn have precedence over addition @ n d
subtraction, as in other algebraic languages. Several commonly used functions are
also available: the square root function, SQRT; the trigonometric functions SIN,
COS, TAN, ASIN, ACOS taking one argument, and ATAN 2 taking two arguments; the

natural logarithm LOG; and the exponential function EXP.

Scalar constants are written as (base ten) numbers, possibly with o decimal
point or fractional part; for example 2, 1, 3.14159, -123.45 are all scalar

constants.

Below is an example showing the declaration and use of scalar variables. In
the examples in this section we will u s e a mnemonic scheme for naming variables
to clarify the type of each entity. Note that AL statements are separated by
semicolons. Also curly brackets "{}" aie used to enclose comments.

SCALAR sl, s2; {A declaration consists of a data type followed by
a list of variable names separated by commas, and
ending with a semicolon.}

sl « 2
52 « 3.50; {s1 has the value 2.0, and s2 is 3.50}

sl ¢ 82 + (s] - 3.2); {Now SI =-4.20}

it is often desirable to associate o physical dimensioh with a varjable. AL
provides for scalars with the dimensions of TIME, DISTANCE, ANGLE,and FORCE.
It should b e noted that ANGLE is generally considered dimensionless, but that for
our purposes, the definition has been made a little flexible to allow for an entity
which is useful for defining rotations @ n d for checking that angular quantities are
handled correctly. Dimensioned variables are just like regular scalar variables,
except that they are associated with an appropriate dimensional unit: sec, inches, deg
or ounces, which have the obvious meanings. AL can also handle cm, oz, lbs, gm, rpm

and raedians.

Dimensioned variables are used exactly in the samo way os simple variables,

except that AL checks for consistent usosse @ Dimension checking is dona for each
arithmetic operation @ n d each assignment. Addition, subtraction s n d assignment

16

require exact dimensional match, though if the match fails and one of the two
arguments is simple (dimensionless), it will b o coerced to the right type, after an
appropriate message to the user. Multiplication o n d division d o not require
dimensional match; they produce a result of o dimension different from that o0 v the
arguments which is then propagated through the expression. In this way
intermediate results can b e of dimensions not declared. This causes n o problems
unless such results are used in an assignment. The square root function may b a
used on scalars of arbitrary physical dimensions, and the dimensions of the resuit
will be the square root of that 01 the argument. The SIN, COS and TAN functions
are applied o scalars having dimensions oy ANGLE and assumed to have units of
degrees. The result is dimensionless. The inverse functions ASIN, ACOS, @ n d
ATAN 2 take dimensionless arguments; the resulting value has dimensions oy ANGLE
and units of DEGREES. The exponential @ n d logarithmic functions take
dimensionless arguments @ n d return dimensionless values. The exponentiation
operator presents o problem for the parser, since during parsing, the value oy the
power to which the b @ s e is raised is unknown. The problem is recognized by
giving an error message if either the base or index is not dimensionless.

Here is o short example using dimensioned scalars and functions.

SCALAR sl, s2;
DISTANCE SCALAR dsl;
TIME SCALAR tml, tm2;
FORCE SCALAR fsl;
ANGLE SCALAR theta, phi;

dsl « 1.0 * inch;

tml « 3 *sec;

¥S| « 2.2 % ounces;

tm2 « tml + 4.5; {The constant 4.5 will b o converted to

seconds after the relevant error message.}

theta « 90 = deg;

phi « theta * 4 + deg; {This is o mistake: the right hand side has
dimension ANGLE ¢ ANGLE.}

S| « SIN(30 * deg);

theta « ACOS(.7);

dsl « SQRT(dsl * 3 # inches);

phi « ATAN2(s1, s2); { some as arctangent(s1/s2) }

sl « LOG(33.0);

s2¢8113;

There are several predeclared scalars in A|:

SCALAR Pj; , {3.14159..}
T is also recognized as the constant 3.14159...

17

DISTANCE SCALAR bhand, yhand;
{These variables refer to the biue hand and
yellow hand openings} .
VELOCITY, ANGULAR _VELOCITY, and TORQUE are defined in terms of the
primary dimensions in the generally accepted way.

It is also possible to define new dimensions, such as acceleration, by means of
the dimension statement. New dimensional units, such as feet, can be defined with
macros {(c.f. section 4.5.8). For instance:

DEFINE feet = (12 * inches)>;
DIMENSION acceleration = VELOCITY / TIME; ‘

acceleration SCALAR asl;
asl « 6.7 * feet /(sec + sec); {= 6.5 # 12 inches/sec/sec}

The world in which AL programs operate has three dimensions, and 80 we
need more than just scalars. We will now introduce another data type: the
VECTOR. It and the other algebraic data types which follow are similar to scalars
in how they comprise arithmetic expressions and assignments.

We describe the world as a Euclidean space with three cardinal orthogonal
axes, which meet at an origin. The actual alignment of these station axes is
implementation dependent, though at SAIL and for the rest of this manual it will be
assumed that the positive Z axis points upwards.

Vectors may represent entities having both direction and magnitude, e.g.
displacement, velocity, acceleration. Like scalars, they may be dimensioned.
Vectors can be constructed from three scalar expressions by means of the function
VECTOR. The scalar expressions must all be of the same dimension, which the
resulting vector will also have.

The available operations between vectors include addition, subtraction, dot
product, and cross product. A vector may be multiplied or divided by a scalar.
The direction unit vector (dimensionless) may be extracted by the function UNIT.
Addition and subtraction are defined only on vectars of the same dimension. The
dot product, cross product and multiplication by @ scalar give results having the
dimensions which are the product of the dimensions of the two arguments. The
scalar magnitude of a vector is obtained by enclosing it within vertical bars. The
operators are defined in the normal manner; for example, if we have a scalar s and
two vectors:

18

v1 = VECToR(x , y1, z1) and v2 = VECTOR(x2, y2, 22)
then we have:

stvl=vl#* s=VECTOR(s ¢ x1,s ¢t yl, s % z1)
vl + v2 = VECTOR(x1+x2, yl+y2, z1422)

vl - v2 = VECTOR(x1-x2, y1-y2, z1-22}

vl . v2 = x1#x2 + ylsy2 + 21522
There are several predeclared vectors in AL:
VECTOR xhat, yhat, zhat, nilvect; {These have values as follows}
xhat « VECTOR(1,0,0);
yhat « VECTOR(0,1,0);
zhat « VECTOR(0,0,1);
nilvect « VECTOR(0,0,0);

Here is one more example o the uss o vectors:

VECTOR v;

DISTANCE VECTOR dvl, dv2, dv3;
SCALAR s;

DISTANCE SCALAR dsl, ds2;

dsl « 2 % inches;

dvl « VECTOR(4, 2, 6) % inches;
ds2 « dvl . yhat;

v « VECTOR(2, 1, 3);

{So ds2 = 2 # inches}

v & v - zhat; {So v = VECTOR(2, 1, 2) }
dv2 « VECTOR(3, 0, 4) ¢ inches;
dsl « |dv2}; {This assigns dsl the magnitude of

the vector dvl, which is a scalar of
the appropriate dimension. So dsl = 5.

% inches.}
dv3 « VECTOR(4+tinches, 2tinches, bsinches); {dv3 is the same as dvi}
v « UNIT(v); {So v = VECTOR(2/3, 1/3, 2/3) }

3.1.1.3 ROTATIONS

The next data type we will discuss is the rotation, or ROT, which
represents either an orientation or a rotation about an axis. Rotations can operate
on vectors and rotate them around the origin (without changing their length). They
can also operate on other rotations (by matrix multiplication). To rotate a vector
(about the station origin), muitiply the vector (on the right) by the rot (on the left).

19

To compose rots, multiply them together; the one on the right will be applied first.
The axis of rotation can be extracted by the function AXIS and the angle of
rotation by enclosing the rotation expression within vertical bars. Rotations are
dimensionless, and the user may not specify dimensions for this data type; however
the amount of rotation about the axis has units of ANGLE.

A rotation can be constructed with the function ROT, which takes two
arguments: a simple vector, which is the axis of rotation, and an angle, which is the
amount to rotate. The direction of rotation follows the right hand rule, so a
rotation of 90 degrees about the X axis moves the Y axis into the Z axis. This
representation is far easier to write and understand than raw matrices. Here is an
example showing the use of rotations:

ROT r1, r2, r3, r4;

ANGLE SCALAR alpha, beta, gamma;

VECTOR v;

r1 « ROT(xhat, 90 * deg);

v «rl % zhat; {v gets Z rotated 90 degrees about X, so v =

VECTOR(0,-1,0) }

r2 « ROT(yhat, 45 * deg);

r3er2+rl;
{Thus, r3 means first rotate 90 degrees about the X axis, then
45 degrees about the original Y axis. An alternative
interpretation is to first rotate by 45 degrees about Y, and then
to rotate by 90 degrees about the new X axis.} -

v « AXIS(r2); {This assigns v the axis of rotation of r2 = yhat.}
alpha « |r2}; {This assigns alpha the angle of rotation of r2 = 45
degrees.}

r1 « ROT(xhat, alpha);

r2 « ROT(yhat, beta);

r3 « ROT(zhat, gamma);

rd«r3+r2+rl;
{r8 is then a rotation with the following two meanings: Rotate
by alpha degrees about the X axis of the station, then by beta
degrees about the station’s Y axis, and finally by gamma
degrees about the station’s Z axis. Or alternatively, rotate by
gamma about the station’s Z axis, then by beta about the new Y
axis, and finally by alpha about the doubly new X axis. Both of
these interpretations yield the same result; use whichever one
you find most comfortable.}

There is one predeclared rot, called nilrot, defined as ROT(zhat, 0 » deg).

20
3.1.1.4 FRAMES

In working with objects in the real world we need to specify both their
position and orientation. To do this we introduce a new data type, the FRAME,
which represents a coordinate system. It has two components: the position of the
origin (a distance vector) and the orientation of the axes (a rot). Features on an
object can be specified with respect to the object’s coordinate system. The term
location, where used, will refer to the position and orientation of a frame.

There are several predeclared frames in AL Sration represents the
reference frame of the work station. Associated with each manipulator is a frame
whose value (updated at the end of each motion) is the position of that
manipulator. Currently, there are four such frames: barm, yarm, garm and rarm,
associated with the blue, yellow, green and red arms respectively. Also associated
with each arm is a rest, or park position; these are bpark, ypark, gpark and rpark
respectively.

A frame may be constructed by calling the function FRAME, which has two
arguments: a rot (for the orientation) and a distance vector (for the position). The
orientation or position of a frame can be extracted by the functions ORIENT and
POS. To transform a point specified by a distance vector in the coordinate system
of some frame into station coordinates, multiply the frame (on the left) by the
vector (on the right). To translate a frame by some amount, simply add/subtract a
distance vector to/from it. Finally, to construct a vector in station coordinates
which has the same orientation as a vector in some frame, such as xkat in say fl,
the "with respect to" operator WRT is used and one writes xhat WRT fI1. For any
vector v and frame f the following are equivalent (the dimensions of the result are
the same as those of v):

VWRT f = (f+v) - POS() & ORENT(3y

Here are a few examples using frames.

FRAME 1, 12; .
f1 « FRAME(ROT(zhat, 90 # deg), 2 *+ xhat ¢ inches);
{The frame f1 sits 2 inches from the station in the X direction.
Its coordinate system has X where the station’s 'Y axis points.}
v] « xhat WRT f1; {This evaluates to VECTOR(0,1,0).}
12 « f1 + vl £ inches; {Just like f1, but with origin at (2,1,0).}
v2 « f1 % (zhat # inch); {This evaluates to VECTOR(2,0,1).}

21

3.1.1.5 TRANSFORMS

The last of the algebraic data types is the transformation or TRANS.
Transes are used to transform frames and vectors from one coordinate system to
another. Like frames, they consist of two components: a rotation and a vector.
The application of a trans first rotates its operand about the station origin, and
then transiates the result. Transes can be composed in the same manner as
rotations, the one on the right being applied first.

A trans consists of a rotation part having units of angle and & translational
(vector) part having some other physical unit - usually distance. When
"multiplying" by a trans, one is really multiplying by the rotational part and then
adding the vector component. The matrix operation of multiplying transes together
produces a trans. The vector parts of two transes multiplied together must have
the same dimensions, and the vector part of the product will have the same resuit.
For convenience, we will refer to the dimension of a trans as being that of the
vector part. When a trans is applied to a vector, both must have the same
dimension, the one for the trans being defined above. The resulting vector Is of
the same dimension. When a trans operates on a frame, it must be a distance
trans. When transes are composed, they must agree in dimension, and the result
will have the same dimension. Unless declared otherwise, transes will be assumed
to have dimensions of distance.

One can construct a transform by use of the function TRANS, which takes
two arguments: a rot (the rotational part) and a vector (the translational part).
Another convenient way to specify a trans is by forming it from two frames. The
arithmetic operator "»" applied to two frames produces a trans which takes the
origin of the first frame across to the origin of the second, performing a rotation
first to get the axis aligned. When a frame is used in a context demanding a
transformation, it will be understood as a shorthand for the distance trans leading
to it from the station.

Here are a few examples using transes.

TRANS t1, t2, t3, t4;

t1 « TRANS(ROT(xhat, 30 * deg), 2 * zhat * inches);

vl « t1 * yhat * inches;
{t1 rotates yhat 30 degrees about the X-axis, and then
transiates it by 2 inches along Z = (0,.866,2.5).}

t2 « f1 - 2; {Thus f1 % t2 = f2.}

v2 « t2 # (xhat * inches);
{v2is {2’s x-axis as seen from f1}

t3 « t2 £ t1; {t3 means to first perform the transformation given by t1,
and then that specified by t2.}

3 « {1 12 {This expresses the position of {2 in f1’s coordinate

22

system. Equivalent to (station - f1)«f2.}
t5 « INV(t1); {This expresses the inverse transformation of t1.}

The null transformation, equivalent to TRANS(ntlrot,nilvect), is called niltrans.

The initial distinction between frames and transes has lessened as work
with AL has progressed. The current distinction is that frames may be affixed to
each other. In general a trans can appear anywhere a frame can, and vice versa.
For example to get at either of a trans’s two components the extraction operators,
ORIENT and POS, would be used. Whether or not the two data types will be
merged remains to be seen. An evolving view considers frames to be labels
associated with physical objects or locations in space and transe:s the relationship
between these physical objects. in such a case, frames would not have dimensions
associated with them, but there will be some relationship between them and other
frames.

3.1.2 Block structure - i.e. "what’s a program”

An AL program consists of a sequence of statements which will result in the
manipulator successfully performing a desired task. While the simplest AL program
consists of a single simple statement, any reasonable program will be made of
many statements S/, $2, §3, .. separated by semicolons, and surrounded by the
reserved words BEGIN and END. This composite arrangement of

BEGIN
Sl;
$2;

Sn
END

is known as a block statement. The statements (51, 52, ..) within the block may
themselves be other block statements. Indentation has no effect on the program
and serves only to make the program more readable.

In order to keep track of blocks within other blocks, they may be named
with strings within double quotes immediately following the BEGIN end the
corresponding END. The strings after a corresponding BEGIN and END pair
should be the same, or there should be no string after the END; otherwise there
will be an error message. The following is an example of block naming:

23

BEGIN "MAIN"
SI;
S2;
BEGIN INN O
S3a;
S3b;
END "INNER™;
sS4
END

Like SAIL or ALGOL, AL requires that o n identifier b o declared before it is
used. The effect of an identifier is only within the block it is declared. Qutside
the block, any reference to those identifiers will give © n error message. An error
message Will result if the s @ m e identifier is declared more than once in a given
block, unless subsequent declarations are within blocks internal to the given block.
Consider the following example:

BEGIN "BLK_1"
SCALAR i,k,m;
i*l;
BEGIN "BLK_2"
SCALAR it {denotes a new varisble "i" distinct from
the "i" declared in BLK_] above}

i*2;

meis {So me2; i refers to the second declaration of i}
END "BLK_2";
keis {So k=1 since after exiting "BLK_1" i = | again}

END "BLK_1";

In the inner block "BLK _2" the variable ¢ is © new variable distinct from the
¢ defined in "BLK _I". Had the SCALAR ' statement D © 3 n gbsent in block "BLK_2%,
the value of x and ¢ at the end of execution would have baan 2.

3.1.3 A simple program

As mentioned before, an assignment statement consists of o variable name, ©
left arrow ("«"), and an expression of the correct type. When an assignment
statement is executed, the value of the expression o n the right hand side is
computed, and the result becomes the new value of the variable o n the left hand
side. Care must b o taken to ensure that the data type of the expression is the
same os that of the variable. During compilation, AL will check for type and
dimensional consistency across opposite sides of the left arrow, @ n d complain if it
finds any incompatibility.

The print statement prints out the values of the variables @ n d the strings
during execution time. It consists of the reserved word PRINT followed by an
0 p @ n parenthesis, o list of arguments separated by commas © n d a close
parenthesis. The arguments may b o variable names or the names of predefined

24

constants, or they may be string constants which consist of characters enclosed by
double quot es.

Here is a simple AL program that will compute and print out the current arm
locations and the distance between them:

BEGIN
DISTANCE SCALAR s1;
DISTANCE VECTOR vi;
PRINT ("THE BLUE ARM S AT ", barm);
PRINT ("THE YELLOW ARM S AT ", yarm);
« | « POS(barm) = POS(yarm);
{vlisthevector osisne @ betweenthe centersof
the hands}
sl «|vl|; {s1 is the absolute distance between the hands}
PRINT ("THE DISTANCE BETWEEN THE BLUE AND YELLOW FINGERS IS ~,
sl, " INCHES");
ENO

Other statements possible within © block will b @ discussed in the following
sections.

3.2 Simple M o w gtatement

The simplest motion program is one which will move @ n arm to a known
location. When the two Stanford arms barm @ n d yarm are not in u s o they are
placed in statically balanced positions with the fingers pointing downwards so that
a power failure d 0 o s not resuit in the arms collapsing. The two PUMA arms garm
and rarm, when not in use, are placed with the arms o n d fingers pointing straight
u p so that they aie out of the way of the other arms and the user. (Since power
must bo applied to release the brakes, there is no danger of the PUMAs collapsing

during @ power failure.) The resting positions of the arms with the described

pointing directions (orientations) of the fingers are known as bpark, ypark, gpark and
rpark respectively.

For purposes of this document when we refer to an arm we shall ma an the
blue arm unless otherwise obvious from the context.

Let u s assume that the arm is in any arbitrary position, @ n d we want to
move it to the park position under computer control. The statement to d o this
would be

MOVE barm TO bpark;

During execution, AL works out a trajectory (the position of each of the
joints from the initial value to the final value @ s o function of time) from the
current location to the park location so that the motion is accomplished gracefully
subject to the constraints of maximum acceleration and torque imposed by the

25
-motors.

it is also possible to specify differential motions. The grinch sign, "o", is
used to represent the current position of the arm. The following statement would
cause the arm to move down 2 inches.
MOVE barm TO @ - 2 * zhat # inches;

3.2.1 More about barm and bbark

Let us now consider bpark and barm for a moment. Bpark specifies
completely the way the arm is to be parked. It specifies the center of the hand by
giving the cartesian coordinates, and in addition it indicates that the hand is
pointing downwards. Since there are six joints, specifying only the cartesian
coordinates of the hand is insufficient since it is possible to have an infinite
number of different hand orientations with the center of the finger tips in the same
position.

Barm is the name of a coordinate system whose origin lies centrally between
the fingers of the hand, and whose z-axis points in the same direction as the
fingers, the y-axis passes through the centers of the fingers, and the x-axis is
determined from these two axes by use of the right hand rule {fig. 3.1). The value
of barm depends on the position and orientation of the hand, and consists of a
vector which defines the position of the center of the hand in the world coordinate
system, and a rot which defines how the arm coordinate system is rotated in terms
of the coordinate system of the station. Station is the frame which is the reference
coordinate system, and the vector part is set at (0,0,0). Our station coordinate
system has the z-axis pointing upwards, the y-axis horizontal and parallel to the
short side of the table and pointing towards the window (i.e in a direction pointing
from the pedestal of the yellow arm to the pedestal of the blue arm). The x-axis
is horizontal and parallel to the long side of the work table, and points towards the
far wall (fig. 3.2).

in the park position the hand points downward with the center of the hand
at coordinates (43.53, 56.86, 9.96) * inches. The coordinate system is rotated
180 degrees about the y-axis. Thus the value of bpark is as follows:

FRAME(ROT(YHAT, 180«degrees), VECTOR(43.53, 56.86, 9.96)¢inches)

The instruction MOVE barm TO bpark has the effect of moving the
coordinate system whose name is barm to the new position and orientation
described by bpark.

Fig. 3.1 Diagram of hand showing coordinate axes

garm
rarm

Fig. 3.2 Diagram of four arms on table

27

28
3.3 Using the fingers: OPEN, CLOSE & CENTER

Our manipulator end effector (hand) consists of two fingers which can move
together or apart when instructed to do so by the OPEN or CLOSE command,
which specifies the width to which the hand opening must go. An example of this
particular instruction is

OPEN BHAND TO 2.5¢inches
The general form of the instruction is

OPEN <hand> TO <scalar_exp>
CLOSE <hand> TO <scalar_exp>

where <hand> is either of the reserved words bkand or yhand, and <scalar_exp>
consists of a scalar expression of dimension distance, i.e. its units should ultimately
be reducible to inches or cm or some such unit of measure of distance. For the
PUMA arms it is not possible to specify a specific opening width since they are
currently binary devices: either fully open or closed. Therefore, for ghand and
rhand the TO <scalar_exp> is not needed, e.g.

OPEN ghand
CLOSE rhand

The OPEN or CLOSE instruction moves both fingers simultaneously at the
same speed. The OPEN command will open the hand to the desired size. The
CLOSE instruction will keep on moving the finger until the touch sensors trigger,
and signal an error if the hand opening is smaller than the desired opening. (The
CLOSE instruction will be implemented in the near future) If there is a heavy
object between the fingers, the fingers or motors might get damaged, while a light
object may get moved by the fingers. The CENTER command prevents these
undesirable results by causing the fingers to move toward each other slowly until
one of the touch sensors triggers to let the system know that contact has been
made with the object. At this point the whole arm will shift to maintain the
position of the_finger which is in contact with the object, and the cycle of moving
fingers and arm will continue until both touch sensors trigger. When this happens,
the new position of the arm can be read to determine the position of the object.
Note that the CENTER command does not "center" the object between the
fingers, but rather ensures that the hand grasps the object without moving the
object. The OPEN and CLOSE commands are used when the position of the object
to be grasped is known precisely or when the object is to be moved to a precise
spot. The CENTER command takes an arm as its argument as follows.

’ CENTER <arm>

29
Note that CENTER does not currently work for the PUMA arms.

The u s e of these statements will b o iliustrated in the following example
used to grab @ 2-inch cube, move it over 10 inches in the X direction, @ n d then

release it.

BEGIN

FRAME cube, new_place;
cube + FRAME(ROT(XHAT,180%deg), VECTOR(20,30,1)xinch);

{ defines position of cube center }
new_place + cube ¢ 10%xxhatxinches;
OPEN bhand TO 3xinches; {open the hand }
MOVE barm TO cube; { get arm fo cube }
CENTER barm; { grasp cube without moving it }
MOVE barm TO new_place; { put the cube where we want it }
OPEN bhand TO 3.0 inches; { open the hand, releasing the block
MOVE barm TO bpark; { all done, park the arm }

END

3.4 Intermediate points - Vi4, APPROACH and DEPAR TURE

Many objects have shapes which necessitate care o s the arm approaches or
departs from them. The motion clause WITH APPROACH = appr will cause the
arm to approach its destination after having passed through the paint determined
by vector appr in the coordinate system of the destination. In station coordinates
this point would b ®© dest+ appr WRT dest. The motion clause WITH DEPARTURE
. = depr similarly specifies © departure point. Section 4.4.2 indicates the effect of
appr or depr taking on non-vector values.

If no approach point is given, a default approach of 3 inches along the Z axis
of the station will b e used. If n o departure point is specified, the approach point
from the last motion, if any, will b e used. Approach points relate to the destination
of the current move command, while departure points relate to the starting
position of the @ 1 m for the current command. To move the arm directly from the
frame position at the beginning of the motion, the clause WITH DEPARTURE =
NILDEPROACH should be used. To move the arm directly towards the desired
frame position indicated in the current statement, the clause WITH APPROACH =
NILDEPR OACH should be used.

If the destination is a frame constant or expression then NILDEPR OACH will
be the default approach point.

The predeclared macro DIRECTLY will accomplish the sema puipose as the
two clauses

WITH APPROACH = NILDEPROACH
WITH DEPARTURE = NILDEPROACH

30

The A PPR ON\ CH and DEPARTURE clauses allow the user to specify at most
o three segment motion - from the current position to the departure point, from
the departure point to the approach point, and from the approach point to the
destination. Usually these intermediate points are in terms of the coordinate

system of either the current position or the destination.

Sometimes it is necessary to move an object through additional locations in
space, or to have more than the three segment motions described above.
Examples are cases where objects in the way of the moving manipulator have to
be avoided, or the arm has to pass through an opening. |n such situations the vi4
clause may be used to specify the frames through which the arm must pass.

In this example, the arm picks up o brick on the ground and places it on the
floor of the oven, which is atthe samo level as the ground, but the arm has to
pass through the oyen door which is above ground level.

BEGIN "Put brick into oven™
[RAME brick, oven, oven_door;
brick-FRAME(ROT (yhat,90%degrees) ,VECTOR(10,30,3)xinches);
{ define initial posAon of brick }
oven+-FRAME(ROT (yhat,90xdegrees),VECTOR(10,40,3)xinches);
{ define final posAon of brick)
oven_door+FRAME(ROT (yhat,90xdegrees),VECTOR(15,40,4)xinches);
{ define position of oven door }

OPEN bhand T0 3xinches;
{make sure hand openingisJors @ enough}
MOVE barm T0 brick
WITH APPROACH = 3xzhatxinches;
{ SO (Or brick with hand in horizontal position,
note that brick z-axis is parallel to station x=
CLOSE bhand TO ' .7 xinches;
(grasp the brick }
MOVE barm TO oven VIA oven_door
WITH DEPARTURE = -3%xhatxinches;
{ move brick into oven through oven door after lifting vertically }
OPEN bhand TO 3.0%inches;
{ release the brick }
MOVE barm TO bpark VIA oven_door;
{ go park the srm }

END

3.5 Modelling objects - affixment & indirect moves

Since assemb|v often involves attaching one object to another, AL Aos an
automatic mechanism to A e e p track of the location of o subsidiary piece of the
assemb|y as the main assembly is moved; the mechanism is called affixment. [0
example, there might be o frame calied pump o n d another called pump_base. At

some stagein the assembly, the pump is bolted to pump_base, At this time it s
appropriate to execute the statement

31
AFFIX pump TO pump_base

This statement informs AL that motions of the pump_sase are to affect the
location of pump. Note that the AFFix statement d o & s not call any routines to
generate the code to actually perform the bolting operation. The statement merely
informs AL that at this stage in the program execution, pump is to b o considered

affixed to pump_base.

The particular case in which object frames are attached to the arm frame is
of special importance. Once pump is affixed to barm, for instance, the user can
forget about the arm, @ nd just concentrate on where and how pump has to move;
AL will take care 0 7 how to move the arm to achieve the desired result. This is an
indirect move where the user need not specify arm motion.

When affixing frames to 0 n o another, the user must specify the relative
transformation between the frames, @ nd whether the affixment is rigid or nonrigid.
The relative transformation can b o specified within the affixment statement, or if
the positions of the two frames are already defined, just stating that they are to
b o affixed will automatically compute the necessary trans.

The form of the affixment statement is as follows:

part « <frame exp>;
fixture «. <frame exp>;
AFFIX part TO fixture NONRIGIDLY;

or alternately,
AFFIX pump TO pump_base AT +2n's exp> RIGIDLY;

RIGIDLY implies that the affixment is symmetric, so that changes in value of
o ne frame imply changes in the other. A RIGID affixment is normally used when
the objects are physically joined together rigidly, e.g. the pump being bolted to the
pump_base or @ n arm grasping an object. |n the above example, movement of pump
will atfect pump_base, 5nd movement of pump_base will affect pump.

A NONRIGID affixment is used when one object is resting on another: e.g.
part resting in fixture; part moves with the fixture, but if only part is moved, fixture
stays put.

A frame could b @ affixed to more than one frame, @ n d affixments may be
chained together. The affixment relationship can bo broken by maans of the UNFIX
statement os follows:

UNFIX pump FROM barm;

32

All the frames rooted in pump (e.g. pump_base} will remain rooted in pump,
and will no longer bo affected by sarm or its motion.

The following exampies illustrate the stacking ov ona block on top oy another
with and without the use 0 affixment to illustrate its usage @ nd convenience
during programming.

BEGIN "block stacking without affixment™

FRAME blkl, bikl_grasp, bikl_top, blk2, blk2_grasp, finplace;

DISTANCE SCALAR graspheight, blkl length, bik2length, bikl width,
blk2width, bkl height;

ROT stand;

stand « ROT(XHAT,180.xdegrees);

blklwidth « 1.5xinches; blk2width « | .5%inches;

blkllength « 2.4xinches; blk2length « 2.4xinches;
blklheight « 2xinches; graspheight « 0.75x%inches;

{ define dimensions of the blocks }

bikl « FRAME(nilrot,VECTOR(1 0,30,0)xinches);
blk2 & FRAME (nilrot,VECTOR(6,30,0)xinches);
(define bottom corner of blocks)
tinplace « FRAME(nilrot,VECTOR(8,40,0)xinches);
{ define final position of bottom of block 1 }

bikl _grasp + FRAME{stand,VECTOR(bIk] langth/2,blki width/2,graspheight));
(define grasping posAon of block 1)

blkl_top + FRAME(nilrot,VECTOR(0,0,blk] height));
{ define position of top of block |)

blk2_grasp « FRAME(stand,VECTOR(blk2length/2,blk2width/2,graspheight));
{ define grasping posAon ol block 2)

OPEN bhand TO 3.6xinches;

MOVE barm 10 bikl *blk]l _grasp WITH APPROACH = 3xzhat«inches;
(arm moves to grasping position of bikl)
CENTER barm; { hand grasps blkl }
MOVE barm TO finplacexblkl_grasp WITH APPROACH = 3xzhatxinches;
{ arm moves s 0 that blkl is in final place)
OPEN bhand T0 3.6xinches; (hand opensto (9)09s @ bikl}
MOVE barm T 0 blk2*blk2_grasp WITH APPROACH = 3%zhatxinches;
(arm moves to grasping position of bik2)
CENTER barm; { hand grasps blk2 }
MOVE barm TO finplacexbikl_topxbik2_grasp WITH APPROACH = 3xzhatxinches;
{ arm moves to put bik2 on top of bikl }
OPEN bhand TO 3.6xinches; (hand opensio Jjojon @ bik2)

MOVE barm TO bpark; PRINT ("all done™);

END "block stacking without affixment™;

Note that for each motion the destination is an expression consisting 0 v a

33

local coordinate system and a point in that system (e.g. blkIsblkl_grasp). Another
way to write the same program is as follows, where AL automatically takes care of
the bookkeeping of which coordinate system to use. The same number of
declarations are still needed, but now the motion staliements are clearer. Note
that because the destination of each motion is no loriger an expression AL will
automatically use the standard approach.

BEGIN "block stacking using affixment”

FRAME bikl, blk] _grasp, bikl_top, blk2, blk2_grasp, finpslace;

DISTANCE SCALAR graspheight, bikllength, bik2length, 1>kl width,
blk2width, bikl height;

ROT stand;

stand « ROT(XHAT,180.xdegrees);

blkl width « 1 5xinches; bik2width « 1.5%inches;
bikllength « 2.4x%inches; bik2length « 2.4x%inches;
blklheight + 2xinches; graspheight « 0.75%inche s}

blkl « FRAME(nilrot,VECTOR(10,30,0)*inches);
blk2 « FRAME(nilrot,VECTOR(6,30,0)*inches);
finplace + ﬂmbzm?.:2_<mo._.ox3.ao_8*m=n:onx

AFFIX bkl _grasp TO blkl at

TRANS (stand,VECTOR(bIk1length/2,blk] width/2,gra spheight)) RIGIDLY;
AFFiX blkl_top TO blkl at

TRANS (nilrot, VECTOR(0,0,bik! height)) RIGIDLY;

{ top and grasping position of blockl are defined with respect to bottom }
AFFIX blk2_grasp TO.blk2 at .

TRANS (stand,VECTOR(blk2length/2,bik2width/2,gra spheight)) RIGIDLY;

{ grasping position of block2 defined with respect tc) bottom }

OPEN bhand TO 3.6xinches;

MOVE barm TO bikl _grasp; { arm moves over the grassping position of bikl }
CENTER barm; { hand closes over bikl }

AFFIX bik] 1o barm RIGIDLY; { blkl and all its parls aro attached to arm }

MOVE blk! TO finplace; { note that blk! is moved, not barm }

OPEN bhand TO 3.6%inches; { this physically releases the biock }

UNFIX blkl from barm; { bikl is released from the arm in the world model }

MOVE barm TO blk2_grasp;

CENTER barm; . .
AFFIX blk2 to barm RIGIDLY;

MOVE blk2 TO blk] _top; { move boltom of blk2 to the top of blkl }
OPEN bhand TO 3.6xinches;

UNFIX bik2 from barm;

MOVE barm TO bpark; PRINT ("ail done™);

END "block stacking using affixment™;

34

3.6 Sensing forces - simple 'condition moniters

When we want to use threshold value:s of sensory information to perform
certain actions, we make use of condition rnonitor clauses. The syntax is as
follows:

ON <condition> DO <action>

A simple example would be to rotate the wris;t of the arm (assumed vertical) and
stop when a torque of 50 ounce-inches is eincountered - perhaps that indicates
that we have tightened something to the requiired torque. An example of such a
statement would then be

MOVE barm TO barm+FRAME(ROT(zhat, $)0+degrees),nilvectsinches)
ON TORQUE(zhat) = 50 # ounces*i nches DO STOP barm;

The effect of this statement is obvious; the STOP command stops the motion
of the arm immediately after the force is enc ountered. Note the specification of
the direction of the detected torque, zhat, and the threshold amount (50
ounce-inches).

Assume we want to find the height of an object and that the object is
expected to be in a given location, and that it s height is expected to be between
2 and 12 inches. ; . :

BEGIN
FRAME object;
DISTANCE SCALAR height;

CLOSE bhand TO Oxinches; { bring fingers together }
MOVE barm TO object + 14xzhatxinches; { arm is vertically above the object }

MOVE barm TO ® - |3%zhatxinches
{ symbol & here mear s current position of barm }
WITH DURATION = 10%seconds
ON FORCE(ZHAT) 2 10%ounces DO STOP;
{ try to move arm down 13 inches slow, and stop when a force is
encountered; i.e. contact is made }

height « POS(barm).zhat - 0.3%inches;
{ take the z-component of the arrn's current location and sublract the
distance between the center and e dge of the fingers to give the asctual
height of the object }

PRINT("HEIGHT OF OBJECT IS ", height, * INCCHES™);
END;

At present only the blue Stanford arm can sense forces. In the near future
force sensing wrists will be mounted on the PUMA arms which will enable them to

35
sense forces also.

3.7 Force and stiffness control

In addition to sensing forces @ nd torques with the arm AL permits the user
to apply controlled forces @ n d torques to objects held in the hand. The user may
also control the apparent stiffness of objects held in the hand. These two
capabilities permit the user to perform assemblies that normally would b »
impossible with strict position control alone. Typical applications include using the
arm to follow the contour of a surface or to place a pin in a hole.

The basic philosophy behind using stiffness control in assemblies is that the
user still specifies a nominal position trajectory for the grasped object to follow.
Based u p o n the constraints of the task the user m @ x then command the arm to
behave with a particular stiffness o s it follows the trajectory. The arm follows the
nominal trajectory if n o constraint is met. However, if the grasped object makes
contact with a constraining surface the contact force applied will depend upon the
positioning error @ n d the stiffness in the direction of the error. The user max
dictate low stiffness in the direction 0 v expected constraint to prevent excessive
contact forces a nd binding. For example to place a p e S in a hole the user would
specify low stiffnesses in’ the directions perpendicular to the hole axis o n d a high
stiffness in the direction of insertion. The final stage of a peg insertion may then
be expressed ss follows: '

BEGIN "FINAL_INSERT"
{.. assume peg is held in the hand and AF [iXed to barm .. }
MOVE peg TO hole_entrance;
MOVE peg TO hole_bottom
DIRECTLY
WITH STIFFNESS = (VECTOR(10,10,90)%o0z/inch,
VECTOR(200,200,200)*0zxinch/r
WITH DURATION = 2%SECONDS;
ENCO "FINAL_INSERT";

ian)

The stiffness specification above causes the arm to b o compliant for
translations in the X and Y directions and relatively stiff in the Z direction. The
arm will also be relatively stiff for rotations in all three directions.

In addition to controlling the stiffness in the six principal axes 0 agrasped
object the user may specify the location of the controlled frame relative to the
hand s o that the center of stiffness may b e located where desired. This permits
the arm to behave. like a programable remote center compliance device or have
other stiffness properties suitable for particular tasks. Pure forces may also be
applied by making the stiffness zero in the desired direction @ n d adding s bias
force by means of the FORCE or TORQUE which looks similar to the the FORCE or
TORQUE condition monitor except that an equality sign is used for the magnitude of

36

the force or torque. In the following statement, the arm will apply a constant force
in the x-direction.

MOVE barm TO barme+1 2xzhatxinches
DIRECTLY
WITH STIFFNESS = (VECTOR(0,90,90)%0z2/inch,
VECTOR(200,200,200)%0z*inch/radian)
WITH FORCE(XHAT) = 40%ounces
WITH DURATION " 3%seconds;

A detailed exampre o force and stiffness control will ba yound in Appendix
Vi,

3.8 Control structures: IF, FOR & WHILE statements

AL has m @ n X 0 v the traditional ALGOL control structures, including
conditionals and loops. There are no jumps in AL. In this section we shall describe
the IF, FOR and WHILE statements.

The IF statement has the form:

I <condition>
THEN <statement>
ELSE <stat ement>

The ELSE part is optional. The condition is some boolean expression involving o n e
0 v the operators <, >, <, 2, =, o nd # Boolean expressions can be built u p out of
relational operators, the logical connectives A (AND), v (OR), =~ (NOC), & (XOR,
exclusive or), = (EQV, the logical equivalence) or the logical constants TRUE or
FALSE. The condition may @1s0 b o some arithmetic scalar expression. |f the
condition is true (non-zero) the statement following the THEN is executed.

Otherwise the statement following the ELSE, if present, will be executed.

The FOR loop has the form:
FOR <s var> « <s expr> STEP <s expr> UNTIL <s expr> DO <statement>

where <s var> stands for "scalar variable” and <s expr> stands for "scalar
expression O some dimension”. The initial value 0 the variable is the value of the
first expression; every time the statement is executed, its value is incremented by
the value 0 1+ the second expression, © n d the process repeats until the value
exceeds that 077 the third expression. * I the step size is negative, the right things
happen. A test is made before the first iteration, s o it is possible that the |0 o p
will not get executed at all.

37

The WHILE loop is as follows:
WHILE <condition> DO <statement>

where <condition> is the same as above. The condition is checked and if it is true
the statement is executed. The process is repeated until the condition becomes
false.

The following exxample illustrates the use of the IF, FOR and WHILE
statements in a program where the arm picks up castings from one place, puts the
good ones on a pallet in 6 rows of 4 and discards the defective ones. The
castings come in batches of 50, but it is not known ahead of time how many
batches there wili be.

BEGIN "sort castings™
FRAME pickup, zarbage_bin, pallet;
SCALAR paliet_row,pallet_column, good, bad;
DISTANCE SCALAR packing_distance;
SCALAR ok, moi-e_batches, casting_number;
packing_distance-4xinches;

pallet_rowe1; pallet_column+0; good+-0; bad+-0;
casting+ pickup;

OPEN bhand TO 3xinches;

MOVE barm TO jpickup DIRECTLY;
CENTER barm;
IF (bhand < 1.5*inches) THEN more_batches-FALSE ELSE more_batches+TRUE;
{an alternate way to state this is
more_batches « NOT (bhand < 1.5 % inches); }
WHILE more_batches DO
BEGIN “sort 50 caslings”

FOR casting_inumber+ | STEP | UNTIL 50 DO
BEGIN "sort casting in hand™
ok + FALSE;
AFFIX casiting TO barm RIGIDLY;
MOVE casting TO pickup ¢ w*u.:.*_:oro.
ON FORCE(zhat)? 20%ouncas DO ok+TRUE; {sea if it weighs o:o:n-. }

IF ok THEN
BEGIN "good casting”
good+ good+1;
IF pallet_column=4
THEN BEGIN pallet_column+0; pailet_rowepaliet_row ¢ 13 END
ELSE pallet_columnepallet_columnel;
MOVE casting TO pallet «
VECTOR(pallet_columnxpacking_distance, .
pallet_rowxpacking_distance, 0xinches)
WITH APPROACH = 3%zhatxinches;
UNFIX casting FROM barm;
OPEN Ibhand TO 3xinches;
IF (pallet_column=4) AND (pallet_rows6)
THEN BEGIN "pallet full"
pallet_column«0; palle!_row+1;

38

{ code to remave this pallet and get new pallet }
. END "pallet full™;
MOVE barm TO pickup;
END "good casting”
ELSE
BEGIN "defective casting™
badebad+1;
MOVE casting TO garbage_bin DIRECTLY;
OPEN bhand TO 3xinches;
UNFIX casting FROM barm;
MOVE barm TO pickup;
END “defeclive casting”;

casting+pickup;
CENTER barm;
END "sort casting in hand";

IF (bhand < 1.5%inches) THEN more_batches + FALSE;
END "sort 50 castings™;

MOVE barm TO bpark;
PRINT("THERE WERE ", good," GOOD CASTINGS AND ", bad,” DEFECTIVE CASTINGS™);

END "sort castings™;

3.9 Control structures (cont): CASE & UNTIL statements

Two of the other traditional >roor noz:o_ structures in AL are the CASE
and UNTIL statements.

The CASE statement comes in several forms. The regular CASE statement
has the form:

CASE <index> OF
BEGIN
<statement 0>;
<statement 1>;
<statement 2>;

- <gtatement n>
END

The scalar index expression is evaluated and depending on the integer part of its
value one of the following statements is executed If the index is zero then
statement O is chosen, if the index is one then statement 1 is chosen, and so on up
till n. If the index is negative, or greater than the number of statements, an error
is reported. Any of the statements may be null, e.g. "<statement 1>;;<statement
3>, in which case if the index were two nothing would be done.

There is also a numbered version of the CASE statement:

39

CASE <index> OF
BEGIN

[CO] <statement>;

[C1] <statement>;

[C2] <statement>;

[Cn] <statement>;
ELSE <statement>
END

where each statement has one or more non-negative scalar constants labelling it.
Again, the index expression is evaluated and if its integer part is the sama as one
of the Ci’s then the statement with that label is executed. Otherwise, if an ELSE
is present, the statement it labels is executed. If n o ELSE is present, an error
occurs if the integer part of the index is negative or greater than the largest Ci,
otherwise nothing is done. Note that the ELSE statement may appear anywhere in
the list of statements; it need not be at the end.

Here is an example using the numbered CASE statement to select the
appropriate action to perform when given one of several possible parts.

BEGIN
SCALAR part_number;
[RAME pick_up,base,base_grasp,cover,cover_grasp,side,side_grasp,..;

{Initialization code including the following macro definitions:
DEFINE base_num = ..;
DEFINE cover_num ° ..3
DEFINE side_num = .3
which will ba usad for clarity in a numbered case statement.}

{Now go get the partatpick up snd do whateveris spproprs @ withit.}

PRINT("Enter the part's number::");
part_number « INSCALAR; {INSCALAR reads in a scalar from the console keyboard }
{Have the user type in the part's number. | n the future this might
ba dona automatically using vision.}
CASE part_number OF
BEGIN
{base_num] BEGIN {Code fo handle base.)
base + pick_up;
MOVE barm TO base_grasp;
CENTER barm; {Grab it}
AFFIX base TO barm;
{Rest of code for base.}
END;

[cover_num] BEGIN
{Code to handle cover.}
END;

40

{Repeat for (ther known partis: side,etc.}

ELSE BEGIN
PRINT("Unknown part number”.crif);
{Code to recover from error}
END
END;

{Rest of program.}
END;

The UNTIL statement is os follows:
DO <statement> UNTIL <condition>

where the statement is repeatedly executed until the condition becomes true.
This is similar to the WHILE statement described in the previous section, with the
exception that the WHILE loops while the condition is true, whereas the UNTIL
loops until the condition becomes true. Note that the b o d x of an UNTIL loop is
always executed at least once.

Asan examp|e of the us e of the UNTIL statement, here is a program
excerpt that gets a good casting, discarding any bad ones it finds in the pusss ¢ It
Is similar to the example in the previous section.

BEGIN
SCALAR success;
* {Initialization code)

success + false;
casting+pickup;
MOVE barm TO casting_grasp;

0 0 BEGIN {Try to get a good casting)

CENTER barm;

AFFIX casting TO barm RIGIDLY;

MOVE casting TO pickup + 3xzhatxinches {See if il weighs enough}
O N FORCE 2 20xounces ALONG zhat OF station DO success + true;

IF ~success THEN {Getridof ddoch @ casting}
BEGIN
MOVE casting T0 garbage_bin DIRECTLY;
OPEN bhand T0 3xinches;
UNFIX casting FROM barm;
casting+pickup;
MOVE barm TO casting_grasp
END

END UNTIL success;

{Code for rest of program}
END;

a1

3.10 Simultaneous motion: COBEGIN-COEND, SIGNAL-WAIT

So far we have considered single arm moves. To perform simultaneous
movements of arms, two new concepts have to be introduced. The
COBEGIN-COEND block has the same effect as the BEGIN-END block, except that
statements within the block are executed simultaneously.

Thus the following will park all four arms at the s e m o time.

COBEGIN
MOVE barm TO bpark;
MOVE yarm TO ypark;
MOVE garm TO gpark;
MOVE rscm TOrpark;
COEND;

Simple synchronization is possible within the context of simultaneous
execution. This is achieved by means of explicit events and the SIGNAL and WAIT
statements. Every different event that the user wishes to use should be declared
in @ declaration statement os follows:

EVENT e | ,e2,e3

The EVENT is distinct from algebraic data types (e.g. scalars) @ n d cannot be
assigned @ particular value by the user in his program by m e @ n s of the regular
assignment statement. With each event is associated a count of how many times it
has b & & n signalled. Initially, the count is zero, that Is, n o signals have appeared,
and no processes are waiting. The statement

SIGNAL el

increments the count associated with event ¢/, and if the resulting count is zero or
negative, one of those processes waiting for el is released from its wait and
readied for execution. The statement

WAIT el

decrements the count associated with event e/, and if the resulting count is
negative, the process issuing the WAIT is blocked from continuing until a signal
comes along. If the count is zero or positive, there is n o waiting.

The following e xam p | e gshows the use of the SIGNAL and WAIT commands,
although it may b e done without these constructs. The blue arm picks u p an
object @ n d moves to a passing location, where it makes sure that the yellow arm
has grasped it before releasing it.

42

BEGIN
EVENT passed, caught, ready_pass;
FRAME steel_beam, pass, caich;

COBEGIN
BEGIN "blue™
MOVE barm TO steel_beam;
CENTER barm;
AFFIX steel_beam TO barm; { barm gets steel beam)

MOVE steel_beam TO pass; (takes it to passing position)
SIGNAL ready_pass; { barm says it is ready)
WAIT caught; { waits for yellow arm to catch}

OPENbhand TO 3.0%inches; { when yellow arm ready releases beam}
UNFIX steel_beam FROM barm;

SIGNAL passed; (barm ar il has rel d beam)
END "blue";

BEGIN "yellow™
OPEN yhand TO 3.0%inches; { meanwhile yellow hand is opanad }

MOVE yarm TO catch; { yellow arm goes 1o catching position)
WAIT ready_pass; {yarmwaitstill loar @ issomething to grab}
CENTER yarm; { grasps it}

SIGNAL caught; { yarm announces it caughl it)

WAIT passed; {waitsforbluearmioreleas ¢ it wm

MOVE yarm TO pallet;
END “yeliow™;
COEND;
END;

A second example illustrates the use of SIGNAL and WAIT in resource
sharing. The example in the last section where castings are sorted will be used
but @ ssume that the two arms are doing similar jobs, @ n d that a single overhead
craneis used totake away the full pallets @ n d bring in empty pallets. Blue s n d
yellow pallets are u s & d to correspond to the appropriate arms. The code for the
program will b e similar to the previous section, except that the section which
states { code to remove this pallet and get neu pallet }, in the block labeled "pailet
Sfull", will use SIGNAL and WAIT to ensure that the crane is not asked to % 0 to two
locations at the same time, @ n d that it is asked to go to a location only when it is
needed.

BEGIN
EVENT blue_pallet_full, blue_paliet_empty;
EVENT yellow_paliet_full, yellow_paliet_empty;
EVENT crane_free;
SCALAR more_blue_paliets, more_yellow_pallets;

more_blue_pallels+TRUE; more_yeliow_pallets+TRUE;
SIGNAL crane_free;

COBEGIN

BEGIN “load blue pallets”
BEGIN "sort castings™ {code from section 3.8}

iF nv-__o.ﬁoo_ss.ﬁt AND (pallet_row=6)

THEN BEGIN "pallet full”
pallet_column«0; pallet_rowe1 s
SIGNAL blue_pailel_full;

WAIT blue_pallet_empty;
ENO "pallet full";

ENO "sort castings™;

SIGNAL blue_pallet_full; {to get last pallet out of the way}

WAIT blue_patlet_empty;

more_blue_pallets-FALSE; {to stop crane waiting for blue paliet,
otherwise crane program will get stuck in
“change blue pallet” block.}

END;

BEGIN "load yellow pallets™
BEGIN "sort castings™ {similar to bjus pallet ptus o y
arm and yellow pallet}

IF (pallet_column=4) AND (paliet_row=6)
THEN BEGIN “pallet full”
pallet_column«0; patief_rowe | i
SIGNAL yellow_paliet_full;
WAIT yellow_pallet_empty;
END “pallet full™;

END "sort castings";

SIGNAL yellow_pallet_full;

WAIT yellow_paliet_empty;

more_yellow_pallets+F ALSE;
END;

WHILE more_blue_paliets

DO BEGIN "change blue pallet”
WAIT blue_pallet_full;
WAIT crane_free; (waitforcranefobe 00 o }

{codetousecraneto “bond @ biue paliet}
SIGNAL blue_pallet_empty;
SIGNAL crane_free;
END;

WHILE more_yellow_pallets

DO BEGIN "change yellow pailet”
WAIT yellow_pallet_full;
WAIT crane_free; { for crane lo be (0 o)

{codetousecranefoehsy @ yellow pallet}
SIGNAL yellow_paliet_empty;
SIGNAL crane_free;
END;

COEND;
END;

44
3.11 Arrays

Sometimes we would like a variable to refer to more than o n s value. As an
example consider a b @ se plate with three screw holes in it. During the assembly,
code to insert o screw into each hole will be written. Rather than repeatediy
writing the same code for each screw hole, it would be preferable to write it once
a2 nd somehow use a FOR loop (0 repeat it for all the holes. An array will allow u o

to do this.

An array is @ variable that can have multiple values. In the above example
we had three frames: first_hole, second_hole @ n d third_hole. We can define a
frame array: hole[1:3] which allows us to reference the three screw holes o s
hole[1], hole[2] @nd hole[3] More formally an array definition is of the form:

<type> ARRAY <name 1 >[bounds}, <name2>[bounds]

where type specifies the array’s data type, and b o unds indicates the size of the
array @ n d how the elements of it are referenced. Our example above used a one
dimensional array. An example of a two dimensional array is:

SCALAR ARRAY foo[1:3,1:4}

which would look like:

foo[1,1] foo[1,2] foo[1,3] foo[1,4]
foo[2,1] foo[2,2] foo[2,3] foo[2,4]
foo[3,1] foo[3,2] foo[3,3] foo[3,4]

There is no upper limit on the number of dimensions an array may have. The array
bound pairs may be either scalar constants, variables or expressions. The bounds
may have positive or negative values, as long os the lower bound is smaller than
the upper bound For example:

VECTOR ARRAY u[-3:3], v[n:n+5], w[0:3, 1 :m}
where n and m are scalar variables. Space is allocated for arrays upon entry of
the block in which they are defined, S O the sizes of v and w will depend on the
values of n and m when the definition occurs.
Arrays are used in programs just like regular variables. For example:

FOR i « | STEP 1 UNTIL 4 oo foo[1,i] « foo[2,i] # foo[3,i]

At runtime a check is m 2 d's that each subscript falls within the lower a n d
upper bounds given for the dimension it specifies. Subscripts outside the bounds

45

cause an error message to be printed. Only the integer part of the subscript is
used.

Here is an example to d 0 the screw insertion task mentioned at the
beginning of this section.

BEGIN
FRAME ARRAY hole[1 :3);
FRAME base_plate;
SCALAR i;

{Initialization and start of the program including definition of the locations of
the base_plate and the screw holes:

base_plate «+ [RAME(....);

AFFIX hole[1] TO base_plate RIGIDLY /! TRANS(...);

AFFIX hole[2]) TO base_plate RIGIDLY AT TRANS(....);

AFFIX hole[3] TO base_plate RIGIDLY /! TRANS(...);

Screws will be defined with the z-axis pointing downward.

Code togetthescrew driverinto b @ hand is alsoincluded.)

{Now insert the three screws}

FOR i « | STEP | UNTIL 3 DO
BEGIN
screw + screw_dispenser; {Define location of new screw}
MOVE driver_tip TO screw; {Get a screw = not really this easy}
AF F X screw TO driver _tip;
MOVE screw_tip TO hote[i); {Screwis justabov @ screw hole}

COBEGIN
MOVE screw TO @ - 0.75 % zhat % inches {Push down with arm}
WITH FORCE = 20 x ounces ALONG zhat OF screw
WITH DURATION = 2.5 seconds;
OPERATE driver {Drive in the screw}
WITH ANGULAR_VELOCITY = Z00 * rpm ’
WITH DURATION = 3 % seconds;
COEND;

UNFIX screw FROM driver_tip; {Release thescrew}
END;
ENO

3.12 Procedures

There are times when we wish to do the same operation at several places
in the program. Rather than place the entire sequence at each of these points it is
often desirable to code it up once as the bodx of a procedure or subroutine, and
at each point in the program where the operation is required have a call o n the
procedure. As an example during an assembly there may be a numb s r of screws
that need to be inserted. A procedure to do this insertion will ba shown after the
syntax for procedures has been explained.

Procedures are defined as follows:

46

<type> PROCEDURE <name> (parameter list);
<statement>

where the statement is executed each time the procedure is called. A simple
procedure (0 park the arm and open the fingers could ba written as:

PROCEDURE park;
BEGIN
MOVE barm TO bpark;
OPEN bhand TO 3 x inches;
END;

Any time in the program the user wants to move the arm to the park position and
open the hand all she need type is the statement:

park

which will call the procedure. Sometimes a procedure will be used toreturn
result needed for computation (i.e., the procedure will bo used ss a function). This
is done by using the RETURN statement:

RETURN (value)

which returns value as the result of the procedure. For example © procedure to
determine the height of the blue arm might be written:

DISTANCE SCALAR PROCEDURE height_barm;
RETURN(POS (barm) . zhat);

Any time the height of the blue armis needed ona would call the procedure. Note
the declaration of the data type that the procedure returns. We can generalize
this procedure s o that for o y frame it returns the height of the frame. To d o this
we introduce the use of parameters te psss a value to the proeadwa @ The
generalized procedure and a sample of it in use is as follows:

DISTANCE SCALAR PROCEDURE height (FRAME f);
RETURN(POS(f) . zhat);

PRINT("The height of the pallet is:", height(pallet_top));

when the procedure is calied the parameter fis bound to the value of pallet_top,
3 n d every reference to f in the body of the procedure will refer to pallet_top.
Parameters can be passed by reference, which is the default for variables and
arrays, or by value, the only way expressions are passed, If a variable is passed
by reference then its value can be modified by the procedure. For example a
procedure to refine the location of a frame by grasping it with the arm o n d then
reading the position of the arm might bo written:

47

PROCEDURE refine (REFERENCE FRAME obj);
BEGIN
OPEN bhand TO 3xinches;
MOVE barm T0 obj;
CENTER barm; {This will sense the object’s position}
obj + barm
END;

When the procedure returns, the frame passed as its argument will have a new
value. : '

A traditional example of a procedure used in most programming tutorials is
the factorial function: fact(1) = 1, fact(2) = 2+¢1, fact(3) = 3+2¢1, etc. Here are
two ways of writing factorial in AL; the first is iterative, while the second is
recursive (i.e. it calls itself).

SCALAR PROCEDURE ifact (SCALAR n);
BEGIN
SCALAR i, prod;
prod « 13
FOR i « 2 STEP | UNTIL n DO prod + prod # i3
RETURN(prod);
END;

SCALAR PROCEDURE rfact {SCALAR n);
IF n> 1 THEN RETURN(n % rfact(n-1))
ELSE RETURN(I);

A procedure to do the screw insertion operation is as follows:

PROCEDURE insert_screw (FRAME hole_location);
BEGIN
screw+screw_dispenser;
MOVE driver_tip TO screw;
AFFIX screw TO driver;
MOVE screw_tip TO hole_location;

{Get a screw = not really this easy}

{Screw is just above screw hole}

COBEGIN
MOVE screw TO @ = 0.75 x zhat % inches {Push down with arm}
WITH FORCE = 20 x ounces ALONG zhat OF screw ;
WITH DURATION = 2.5 seconds;
OPERATE driver {Drive in the screw}
WITH ANGULAR_VELOCITY = 200 * rpm
WITH DURATION = 3 x seconds;
COEND;
UNFIX screw FROM driver {Release the screw)
END;

Now the loop to insert three screws in the example in the previous section
would be:

FOR i « 1 STEP 1 UNTIL 3 DO insert_screw(hole[i]);

48

3.13 Hints to the Programmer

3.13.1 Upward pointing grasping positions

The AL user will quickly realize that under normal usage, the frame barm
usually has its Z axis pointing downwards in station coordinates. Since we are
used to thinking in terms of an upward positive Z direction, it is sometimes
convenient to define another frame affixed rigidly to barm but with the Z-axis
pointing upwards, and the Y axis either paraliel or anti-parallel to the station Y
axis. With such a frame, the user can define grasping frames with the station
orientation if the hand points downwards. The following statements will set up a
frame called bgrasp to accomplish what we want.

FRAME bgrasp;
AFFIX bgrasp TO barm AT TRANS(ROT(xhat,180+deg), nilvectsinches) RIGIDLY;

3.13.2 Initialization and program end

Initialization of the arm and hand to known positions before starting is a
good idea to ensure that the first movement from an unknown position does not
result in the arm accidentally hitting objects in the way. The user should get the
arm to a known location and the hand to an appropriate opening so that the first
motion does not hit an object in the workplace.

it is good policy to park the arm at the end of the program by using:

MOVE barm TO bpark;

This leaves the arm in a statically balanced location.

3.13.3 Slowing down movements

When trying out a program for the first time when it is not known how the
arm will behave, the use of a speed_factor greater than two will slow down all
motions in the program (c.f. section 4.4.6 for details). The user should assign a
value to speed_factor at the beginning of the program as follows:

speed_factor « 4.0

For convenience, three predeclared macros SLOW, CAUTIOUS, and QUICK,
assigning values of 4.0, 6.0 and 1.0 respectively to speed_factor, may be used
instead of the assignment statement described above. The "normal® default speed
factor is 2.0. Setting the speed factor to 1.0 speeds up the motion; however, it
should be be noted that trying to make the motion too fast requires high motor
torques which result in AL shutting down the motors during motion as an error.

a9
4. THE AL LANGUAGE

AL is an ALGOL-like source language extended to handle the problems of
manipulator control. This chapter describes the features of the AL language. It is
presumed that the reader has read the previous chapter which introduces the AL
language in a tutorial fashion.

4.1 Basic constructs

4.1.1 Programs

AL programs are organized in the traditional block structure of ALGOL. A
program in AL consists of either a single statement or a block statement, which is a
sequence of statements, separated by semicolons, and surrounded by the reserved
words BEGIN and END (or COBEGIN and COEND). Blocks may be named by
placing a string constant immediately after the BEGIN (or COBEGIN). This name
will be checked against the string (if any) that follows the matching END Ao.‘
COEND), and if the two strings do not match, an error will be reported.

BEGIN "block name™ S; S; S; S END "block name”
4.1.2 Variables

A variable name is a string of alphanumeric characters and underscore, "_",
starting with a letter. Variables must be declared before being used. AL follows
normal variable scoping rules: variables may only be referenced within the block
they are declared in, or in blocks nested within that block. The same variable
name may be declared in several blocks, in which case any references to it refer
to the innermost declaration enclosing the reference.

4,1.3 Comments

Comments are text inserted into the program to make it more readable.
Comments can be written in two forms. The compiler will ignore all text between
the reserved word COMMENT and the next semicolon encountered. Comments
may also be enclosed by curly brackets "{}".

50
4.2 Data types and expressions

4.2.1 Algebraic data types: SCALAR, VECTOR, ROT, FRAME, TRANS

The basic data types in AL were chosen to facilitate working in the three
dimensions of the real world. Scalars are floating point numbers like reals in other
computer languages. Vectors are 3-tuples specifying (X, Y, Z) values, which
represent quantities like translations, velocities, and locations with respect to
some coordinate system. Rotations are 3x3 matrices representing either an
orientation or a rotation about an axis. A rotation, or rot, is constructed from a
vector, specifying the axis of rotation, and a scalar, giving the angle of rotation.
Frames are used to represent local coordinate systems. They consist of a vector
specifying the location of the origin, and a rotation specifying the orientation of the
axes. Transes are used to transform frames and vectors from one coordinate
system to another. Like frames they consist of a vector and a rotation

4.2.2 Labels, Events and Strings

Labels, events, and strings are data types that are declared in the same
manner as the algebraic data types. There are two kinds of labels: statement
labels and condition monitor labels. Condition monitors are labelled for reference
by the ENABLE and DISABLE statements (c.f. section 4.4.4.2). Statements are
labelled for use in debugging. A label consists of an identifier followed by a colon.
Labels must be declared before being used.

Events are used in conjunction with the SIGNAL and WAIT statements (c.f.
section 4.5.4) used to synchronize parallel processes.

Strings consist of characters enclosed within & pair of double quotes. String
variables are provided primarily to pass strings to procedures. The only operation
currently defined on strings is assignment.

4.2.3 Arrays .

Multi-dimensional arrays are available in AL. They may be of any algebraic
data type or of type event. Array bounds may be scalar constants, variables, or
expressions; they may be positive or negative integers. The only constraint is that
the lower bound be smaller than the upper bound. At runtime a check is made
that each subscript falls within the lower and upper bounds given for the
dimension it specifies. Subscripts outside the bounds cause an error message to
be printed.

Arrays are allocated upon entry of the block in which they are defined, and
deallocated upon block exit.

51
4.2.4 Dimensions

AL allows physical dimensions to b e associated with variables. The Ano wn
dimensions are: TIME, DISTANCE, ANGLE, FORCE, TORQUE, VELOCITY,
ANGULAR _VELOCITY & DIMENSIONLESS. New dimensions may b o defined if
desired by means of the DIMENSION statement:

DIMENSION <new dimension> = <dimension expression>

where the operators defined in <dimension expression> are (,),+,/ and INV, which
takes the inverse of its argument, e.g. INV(TIME) = 1 /TIME.

Dimensioned quantities are just like regular ones, except that they are
multiplied by the appropriate reserved word: SEC, CM, DEG, GM, INCHES, RPM,
0Z, LB, and LBS (also SECOND, SECONDS, INCH, OUNCES, DEGREES, RADIAN

and RADIANS). For example:

VELOCITY VECTOR v;
v « xhat % inches / sec

Other units may be defined using macros (c.f. section 4.5.8), e.g.:
DEFINE feet = (12 # inches)>

AL checks for consistent ‘usage of dimensioned quantities: addition and
subtraction, along with frame, trans © n d rot operations require exact dimension
match, while scalar and vector multiplication and division produce a quantity of new

dimension.
4.2.5 Declarations

The declaration statement is used to define the data type and dimension of
each variable used in s program. Il has the form:

<dimension> <data type> <list of variables>

where <dimension> is 0 n e of the predefined dimensions in AL (TIME, DISTANCE,
ANGLE, FORCE, TORQUE, VELOCITY & ANGULAR_VELOCITY), or a user defined
dimension. <Data type> is one of the foliowing: SCALAR, VECTOR, ROT, FRAME,
TRANS, STRING, EVENT & LABEL. Only the algebraic data types: SCALAR,
VECTOR @ n d TRANS may have o dimension associated with them. Unless
otherwise specified, scalars © n d vectors are considered dimensionless, while
transes are considered to be of dimension distance (c.f. section 3.1.1.5).

Array declarations are of the form:

52

<dimension> <data type> ARRAY <list of array segments>
where each array segment in the list consists of one or more variable names
followed by @ list of lower-upper bounds pairs enclosed in square brackets “[]",

e.g. "namel,name2,.[L1:U}, L2:U2,.]".

4.2.6 Arithmetic expressions

Here is a summary of the arithmetic operators available. They are grouped
by the data type of their resulting value. These abbreviations are used: ‘s’ =
scalar, ‘v’ = vector, ‘r’ = rotation, ‘f’ = frame, ‘t’ = trans.

Scalar operators

S+S scalar addition

s -0 scalar subtraction

s%s scalar multiplication

s/s scalar division

sTs scalar raised to o scalar power

s MAX s maxi mum

S MiNs minimum

s DIV s integer quotient after applying INT to each argument
s MOD s integer remainder after applying INT to each argument
V.V dot product of two vectors

Isl absolute value of a scalar

ivl magnitude of vector (vector norm)

Il extracts angle of rotation

Scalar functions

INT(s) integer part of s

SQRT(s) squase root

SIN(s) sine (all trigonometric functions are in degrees)
COS(s) cosine

TAN(s) tangent

ASIN(s) arc-sine

ACOS(s) arc-cosine

ATAN2(s,s) arc-tangent of s/s

LOG(s) natural logarithm

EXP(s) e raised to the s power

RUNTIME current system time in seconds (i.e. time of starting AL system)
RUNT! M E(s) current system time in seconds minus s
INSCALAR reads o scalar from the console

53

Boolean operators

s <rel>s returns true if relation is satisfied, else returns false
possible relations are: <,<,=22#
s Ns,sANDs logical and

svs,sORs logical or
s®S,SXORs logical exclusive or
s=s5,8EQV g logical equivalence
- s, NOT s logical not
QUERY reads © boolean from the console (c.f. section 4.5.7)

Vector operators

VECTOR(s,s,s) construct vector given (x,y,2) components

(s,s.8) same effect s VECTOR(s,s,s)

SSV dilation of o vector

v/s contraction of g vector

vV+yv vector addition

v -V vector subtraction

ViV vector cross product

rxv rotation of s vector

txv transformation of o vector

fxv transformation of a vector ~ shorthand for (station 1 f) + v
v WRT { o vector in station coordinates pointing the same way a s

Vv points in f’s coordinate system. v WRT f = ORIENT(f)sv
= (f+v) - POS(f)

UNIT(v) vector of unit length pointing in the same direction gg v
POS(f) vector position of frame o trans
AXIS(r) axis of rotation

Rotation operators

ROT(v,s) constructs rotation of s degrees about v

(v,s) some effect as ROT(v,s)

ORIENT(f) orientation of g frame or trans

r&r composition of twa rotations (the ono on the right is applied
first)

Frame operators
FRAME(r,v) constructs frame of orientation at position v
CONSTRUCT(v,v,v) makes o frame: first vector gives the position, second a
point on the x-axis, third is 8 point in the xy-plane

f+v translation of o frame

f-v translation of a frame

t+f transformation of a frame

f*t transformation of 8 frame - shorthand for (station = f) * §

54
Transform operators

TRANS(r,v) constructs trans which will cause a rotation of r followed by
a translation of v

(r,v) some effect os TRANS(r,v)

fof transformation which maps from the first frame to the second

txt composition of two transes (the one on the right is applied
first)

INV(t) take the inverse of t

The operators in AL generally follow “"normal” precedence rules, ie,
functions are evaluated first, followed by exponentiations before multiplications or
divisions, which in turn are performed before additions © n d subtractions. The
order of operation can be changed by including parentheses at appropriate points.
In @ n expression where several operators of the s @ m e precedence occur at the
same level, the operations are performed from left to right.

TABLE OF PRECEDENCE
functions, (), | |, NOT, unary operations
-1
% /. MAX MIN DIV MOD
WRT
.-
=F<><2
A
ve

=

4.2.7 Predeclared constants and variables

Pl =3.14159.. (can 9|so0 be written as n)
STATION is @ frame which has standard station coordinates
BARM, YARM, GARM, RARM
are the locations of the blue, yellow, green and red arms respectively
BHAND, YHAND, GHAND, RHAND
are the distances between the fingers of the blue, yellow, green o n d
red arms respectively
BARM_ERROR, YARM_ERROR, GARM_ERROR, RARM_ERROR
are errors associated with the blue, yellow, green and red arms for the
last motion of the appropriate arm.
BHAND_ERROR, YHAND_ERROR, GHAND_ERROR, RHAND_ERROR
are errors associated with the blue, yellow, green and sed hands for the
last motion of the appropriate hand
DRIVER_ERROR is the error associated with the last motion of the socketdriver
BPARK, YPARK, GPARK, RPARK
are the rest posi ions for the blue, yellow,green s n d 1 e d arms

55

respectively and the values are as follows:
BPARK « FRAME(ROT(yhat,180+degrees), VECTOR(43.53,56.86,9.96)*inches);
YPARK « FRAME(ROT(yhat,180+degrees),VECTOR(40,14,9)¢inches);
GPARK « FRAME(ROT(zhat,]1 80+degrees),VECTOR(83.2,46.13,67.7)xinches);
RPARK « FRAME(ROT(zhat,180+degrees),VECTOR(84.8,12.87,67.7)*inches);
DRIVER_GRASP, DRIVER_TIP
are coordinate frames for the grasping location and the tip of the socket
driver respectively
DRIVER_TURNS is a scalar which keeps count of the number of turns of the driver
TRUE and FALSE have. the obvious meanings (TRUE = 1, FALSE = 0)
XHAT is VECTOR(1,0,0)
YHAT is VECTOR(0,1,0)
ZHAT is VECTOR(0,0,1)
NILVECT is VECTOR(0,0,0)
NILROT is ROT(zhat, O + DEG)
NILTRANS is TRANS(nilrot,nilvectsinches)
CRLF is a string constant that prints as a carriage return followed by a line feed
NULL is the null string of zero length
n when included within double quotes in a printing statement, sends a
beep to the VTO5 terminal.

4,2.8 Some examples

DISTANCE VECTOR v1,v2; {some declarations}
ANGLE SCALAR theta;

SCALAR ARRAY sl1,s2[1:5), s3[-3:3,1:2};
FRAME f1,12;

EVENT ready;

{v1 rotated 90 degrees about
the station’s Z axis}

ROT(zhat,90xdeg) # vl

vl . yhat {the Y component of v1} A
f1 * xhat {t1’s X axis in station coordinates} -
3+ s1[2] {the second element of the

array s1 multiplied by 3}

4.3 Affixment: AFFIX & UNFIX

The relationships between the various features of an object, and between
different objects, may be modelled by use of the AFFIX statement. The general
form for the AFFIX statement is:

AFFIX {1 TO f2 BY t AT <expr> <affix type>

The effect of the above is to establish a trans that expresses the relationship

56

between fI and f2.
the variable ¢ maki
internal variable wi
<AT expr> part of tl
f2 are used to cre
affixment possible,
RIGIDLY or NONR
given a new value
them. Non-rigid af
updated, whereas
between fI and f2
An example of non
with the tray, but
will be assumed.

-An affixment

4.4.1 The basic MO

If <BY 1> is present the resulting trans wiill be associated with
ng the affixment relation modifiable by the user, otherwise an
Il be created. The initial value of the trans is specified by the
se statement. If none is given then the current values of f1 and
ate a trans taking 2 to f1 (f2 » fi). There are two flavors of
and <affix type> specifies whether the affixment is to be done
‘1GIDLY. Rigid affixment is symmetric; wehen either frame is

the other is updated to preserve the relationship between
fixment is asymmetric; when f2 is change:d, the value of fI is
when 71 is modified, the trans describing the relationship
is recomputed to express the new relaticnship between them.
-rigid affixment would be a plate on a tiray; the plate moves
"« vice versa. If <affix type> is not spercified, rigid affixment

relation can be broken by use of the UNF/IX statement:
UNFIX f1 FROM f2

4.4 Motions and Device operation

VE statement

The basic M(
MOVE -

which will cause th
orientation as the ¢
used in <dest> to r
motion is executed.
or yarm) or a frame
the physical relati
affixment chain con
being moved to <de:
the use of the varic

4.4.2 Intermediate

WE statement is of the form:

<controllable frame> TO <dest> <modifying clauses>

ie specified arm to be moved so it has the same position and
Jestination frame expression <dest>. A grinch sign, "e", can be
epresent the current position of <controllizble frame> when the

<Controllable frame> may be either an act ual manipulator (barm
which has been affixed to one of the arms. In the latter case,
onship between the frame and the arnn, described by the
necting them, will be used so the motion results in the frame
it>. The motion may be modified in many different ways through
yus <modifying clauses> described below.

yoints: V4, DEPARTURE & APPROACH

In the case v
(to avoid obstacles
means of a ViA clau

vhere a motion must go through a series of intermediate vo:..a
i for instance), the intermediate frames may be specified by
ise, such as:

! VIA 1,£2,¢3,4,{5

57

where fl,.f5 are frame expressions. The motion will pass through the points in
the order they are specified. It is also possible to specify the arm’s velocity at a
via point, and the duration of the motion from the last given point to the via point.
This full Vi4 clause looks as follows:

VIA f WHERE VELOCITY = <v>, DURATION <rel> <n> THEN <st= ement-

where v is a velocity vector, n is a time scalar and <rel> can be <, = or 2. Note
that unlike the first mentioned form, only one frame f may be given in this format.
One or both modifying clauses of velocity and duration may be present, in either
order. If the THEN part is included, the <statement> will begin execution when
the motion reaches the VIA point f. The user is responsible for ensuring that
<statement> can in fact be executed during motion. (An example of an
inconsistency is for <statement> to ask the current arm to move to another
location without first stopping the arm) To execute a statement at the beginning
or end of motion, make use of the DEPARTING or ARRIVAL condition monitor
described in section 4.4.4.1.

it is also possible to specify deproach points, which are points associated
with departure of the arm from its current location, or its approach to the
destination location. Unlike via points, deproach points are expressed with respect
to the initial or destination coordinate systems. The clauses are as follows:

WITH DEPARTURE = <exp> THEN <statement>

and
WITH APPROACH = <exp> THEN <statement>

where <exp> may be as follows. Depending on whether the APPROACH .or
DEPARTURE clause is used, <fr> represents either the destination frame or the
current location.

type of <exp>: deproach point in station coordinates:
frame <fr> & <exp>
vector <fr> + <exp> WRT <fr>
scalar - <fr> + (<exp> % zhat) WRT <fr>

It is also possible to indicate that no deproach point is to be used by specifying
<exp> as NILDEPROACH.

The AL predeclared macro DIRECTLY expands into the two clauses:

WITH DEPARTURE = NILDEPROACH
WITH APPROACH = NILDEPROACH

58
4.4.3 Force and Stiffness control

The blue arm has a force sensing wrist with eight semiconductor strain
gages mounted just above the fingers. (It is the silverly looking disk between the
hand and the wrist) This force sensing wrist makes it possible to have the blue
arm sense and apply specified forces and moments. (Sensing forces is discussed in
Section 4.4.4 below.) The following clauses currently are only valid for motions of
the blue arm. In the near future, force wrists will be mounted on the PUMA arms.

At the moment, force application (section 4.4.3.2), sensing (section 4.4.1)
and stiffness (4.4.3.1) can be done with respect to a coordinate frame that is
moving with the hand. It is expected that additional code will be added in the
future to allow specification in a fixed coordinate system.

For the sake of completeness of description, the syntax will be given for
specifying the coordinate system of reference to be either HAND or WORLD.
However, AL will currently ignore the coordinate frame of reference if one is given
and act as if it were in the hand coordinate system.

4.4.3.1 Spring force application - stiffness

The stiffness clause specifies the apparent stiffness of the object in the
hand while following the specified trajectory. The object follows the nominal
trajectory specified in the MOVE statement if no constraint is encountered during
the motion. If the object encounters a constraining surface, then the contact force
applied will depend on the stiffness coefficient along the direction of contact. The
modifying clause that permits this takes one of the following two forms:

WITH STIFFNESS = (v,v) ABOUT <frame> IN <coord sys>
WITH STIFFNESS = (s,5,5,5,5,5) ABOUT <frame> IN <coord sys>

The first v (or the first three s's) has dimensions of FORCE/DISTANCE and the
second v (or the next three s’s) has dimensions of TORQUEIANGLE. The
components of the first » represent the force spring constants in the X, Y, and Z
directions, while the components of the second v represent the torque spring
constants about the X, Y, and Z directions. (In the second form, the first three
scalars represent the force spring constants in the X, Y, and Z directions, while the
next three scalars represent the torque spring constants about the X, Y, and Z
directions.) The ABOUT part defines the center of compliance about which the arm
complies, and if it is left out, has a default of NILTRANS. <Coord sys> can be
either HAND or WORLD. This permits the arm to behave as a programmable
center of compliance. Note again that currently control is possible only in the hand
coordinate frame. A stiffness component of magnitude zero means that the arm
will be compliant, i.e. move away from any external force in that direction.

59

4.4 3.2 Constant force application

In addition to the apparent spring forces and moments that specification of
the STIFFNESS clause permits, constant forces and moments can be applied using
the FORCE and TORQUE clauses. To avoid incompatible requests the force
components must always be orthogonal. To insure this, a force frame must be
specified, and the directions of the applied forces and moments must be aligned
with one of the cardinal axes of this current force coordinate system. Also
specified is whether the orientation of the axes changes as the hand moves, i.e. is
the force frame defined relative to the hand or the table (world) coordinate
system. The clauses to do all this are as follows: R

WITH FORCE = <sval> ALONG <axis-vector> OF <frame>
IN <coord sys>

WITH TORQUE = <sval> ABOUT <axis-vector> OF <frame>
IN <coord sys>

WITH FORCE_FRAME = <frame> IN <coord sys>

WITH FORCE = <sval> ALONG <axis-vector>

WITH TORQUE = <sval> ABOUT <axis-vector>
or

WITH FORCE_FRAME = <frame> IN <coord sys>

WITH FORCE(<axis-vector>) = <sval>

WITH TORQUE(<axis-vector>) = <sval>

where: <axis-vector> = xhat, yhat or zhat.
<coord sys> = HAND or WORLD (WORLD is currently ignored)
<sval> = the magnitude of the force
<frame> = the orientation of the axes of the force frame

In the first form the specified force frame in all of the clauses must be the
same. [f IN <coord sys> is not specified, HAND is assumed, while if OF <frame> is
omitted, STATION is assumed. Note that only one force frame may be specified
per move.

A short form is also available for those motions which only need to apply or

sense one force, but not both It looks like either:

WITH FORCE = <sval> ALONG <vect> OF <frame> IN <coord sys> *

or
WITH FORCE(<vect>) = <sval>

This generalizes in the obvious way for TORQUE and for force sensing. If no
<frame> and <coord sys> are specified then a force frame in hand coordinates is
automatically created with it’s x-axis aligned along <vect>. Otherwise the specified

60

coordinate system is used and a force frame is created with it’s x-axis along <vect>
WRT <frame>.

Note again that the description of the worid coordinate frame is given only
tor completeness, and that AL currently does force sensing in hand coordinates
only.

4.4.3.3 Zeroing the force wrist

Since the force wrist readings are very sensitive, the readings will change
with changing hand orientation even when there is no load, since the weight of the
hand will be measured by the force wrist. Thus, it is necessary to take the
readings with respect to the base readings. The base readings may be set or not
set by means of the FORCE_WRIST clause as follows:

WITH FORCE_WRIST ZEROED
WITH FORCE_WRIST NOT ZEROED

In the first case, the wrist is read before the motion, and subsequent
readings are with respect to this base reading. In the second case, the
force_wrist is not read and the readings are given with respect to the last time
base readings were obtained. The default case is WITH FORCE _WRIST ZEROED.

Thé wrist can also be zeroed by means of the SETBASE command as
follows: .

SETBASE;

4.4.3.4 Collecting force components

The force and torque vectors acting at the blue hand at any time
(regardless of whether the arm is moving or at rest) can be obtained by means of
the WRIST command which takes two arguments, vl (a force vector variable), and
v2 (a torque vector variable). The components of the resultant force and torque
acting on the blue hand are returned in the variables vl and v2. The syntax is as
follows:

WRIST(v1,v2);

The GATHER clause permits specified components of force and torque
acting at the blue hand to be collected during the motion for later graphic display
on the PDP-10. The syntax is as follows:

* WITH GATHER = (p1,p2,.,pn)

6T

where each D represents one component to be collected, @ n d is 0 n o of the
following: FX, FY, [Z. M X, MY, MZ, T1,T2, 13, T4, TS5, T6, TBL. The meaning of

each of these is oS follows:

FX force component in X-direction

FY force component in Y-direction

F2 force component in Z-direction

MmX torque component about X-direction

MY torque component about Y-direction

Mz torque component about Z-direction

T1-16 joint torques at Joints 1 through 6

18T data in table coordinates (rather than hand coordinates)

The force and/or torque plots can ba seen if the GAL module is active when
the program is executed (c.f. Section 5.6).

4.4.4 Condition monitors

4.4.4.1 Types: force, duration, event, boolean, arrival and departing

During the course ‘of @ n arm motion it may b o desired to monitor some
condition, or set of conditions, @ n d to execute @ n action if the condition has
occurred. The condition monitor clause is u s e d for this purpose. It has the
following general form:

ON <condition> DO <action>

Currently the conditions that can b e monitored include force sensing, duration,
events, a nd various boolean expressions of variables. <4ction> may be any valid
AL statement o r block. The only restriction is that if o motion statement is the
only statement in <action> then it must b e surrounded by BEGIN and END to
prevent ambiguity.

The monitoring will begin with the start of the motion and continue until the
motion terminates. If the monitor triggers, then after it finishes its action, it will
become dormant and cease checking its condition. It is possible to modify this by
use of the ENABLE and DISABLE statements described below (section 4.4.5.2).

When sensing forces and moments the following clauses are used:

ON FORCE <rel> <sval> ALONG <axis-vector> OF <frame>
IN <co-ord sys> DO <action>
ON TORQUE <rel> <sval> ABOUT <axis-vector> OF <frame>
IN <co-ord sys> DO <action>

or

62
WITH FORCE_FRAME = <frame> IN <co-ord sys>
ON FORCE <rel> <sval> ALONG <axis-vector> DO <action>
ON TORQUE <rel> <sval> ABOUT <axis-vector> DO <action>
or

WITH FORCE_FRAME = <frame> IN <co-ord sys>
ON FORCE(<axis-vector>) <rel> <sval> DO <action>
ON TORQUE(<axis-vector>) <rel> <sval> DO <action>

where: <axis-vector>, <co-ord 595>, <sval> and <frame> are the sama ss in section 4.4.4
above and <rel> is either 2 or <, the condition monitor triggering when the force or
moment exceeds or goes below the specified magnitude respectively. As in
applying forces there is o short form when only o ne force is being sansad or
applied:

ON FORCE <rel> <sval> ALONG <vect> OF <frame>

IN <co-ord sys> DO <action>

or

ON FORCE(<vect>) <rel> <sval> DO <action>

If o n| X the absolute magnitude of o force is important, © n d not which
direction along an axis, then the following may be used instead of the previous two
clauses:

O N |FORCE] <rel> <sval> ALONG <vect> OF <frame>
IN <co~ord sys> DO <action>
or
ON [FORCE(<vect>)| <rel> <sval> DO <action>
This generalizes to TORQUE in the obvious way.

Note again that the description of force sensing in world coordinates is
given for completeness. Currently AL does force sensing in hand coordinates only.

The condition monitor:
ON DURATION 2 n * seconds DO <action>
will trigger its action n seconds after being enabled at the start of the motion.
ON <event> DO <action>

meons do the action if <evens> is signalled (by another condition monitor o r some
other parallel processes).

ON <boolean expression> DO <action>

63

has the effect of evaluating the boo|ean expression, mada up of algebraic
variables, and if it is true (non-ze.io) performing the desired action. |1 the
expression is false the condition monitor goes to s|jeap for o short while (currently
100 milliseconds) before evaluating and checking the expression again.

Two other special condition monitors are u s & d to synchronize statement
execution with the beginning and end of © motion statement.

ON ARRIVAL DO <action>

has the effect of performing the desired action when the MOVE st at ement has
been successfully performed.

ON DEPARTING DO <action>

causes <action> to commence when the MOVE starts up. Actually this has the
same effect s O N DURATION = <n> B O <qction> where <n>is @ snd) time
duration.

4.4.4.2 ENABLE and DISABLE - labelled condition monitors

A condition monitor has two states: enabjed and disabled. |n the enab|ad
state it will trigger its conclusion if the condition it is checking for occurs. | n the
disabled state the condition monitor is inactive. As mentioned aboye s condition
monitor is enabjed when the motion is started, and disabled upon the conclusion of
the motion. Once & condition monitor triggers it will become disabled, un|ass itis
explicitly reenabled. This reenabling is done by means of an ENABLE statement
placed in the conclusion of the condition monitor.

With the ENABLE and DISABLE statements it is possible to change the
state of an arbitrary condition monitor that has boen named by putting a label
immediately before the reserved word ON. The syntax of these statements is:

ENABLE <condition monitor>

and
DISABLE <condition monitor>

Prefacing o condition monitor with the reserved word DEFER will cause it
to be initially disabled. It can then be explicitly ensbjed later. Here is an example
where o condition monitor is initially disabled, and then after three seconds is
enabled:

MOVE barm TO dest
test: DEFER ON FORCE(zhat)2 | O * 0z DO STOP
ON DURATION 2 3 ¢ sec DO ENABLE test

64

4.4.5 User error handler - ERROR and RETRY

When there is @ n error during ® motion, AL aborts the motion and, normally,
awaits o user reponse. This brings the program to o temporary halt, and the user
has to type at the terminal to resume execution. Some errors can b o anticipated
by the user @ n d dealt with by the program by u s e of the ERROR clause. The
syntax is like that of the condition monitor; however, the error code is checked
after the motion, unlike other condition monitors where the condition is checked
during the motion.

ON ERROR = <n> DO <statement>

The error code is indicated by the appropriate bits in the value of <n> being
on. Currently, <n>can be the sum of any numbe. of the following quantities:
PANIC_BUTTON, EXCESSIVE_FORCE @ N d TIME_OUT. These quantities actually
represent error codes whose numerical values are predefined in AL. A
PANIC_BUTTON error occurs when the user hits the panic button. An
EXCESSIVE_FORCE error occurs if the arm tries to move too fast, o cif it hits
something, @ n d the motor output torque required to continue moving becomes too
high. The TIME_QUT error occurs when the motion time is too long (this sometimes
happens when the NO_NULLING clause causes the arm to try to reach its
destination precisely, but the error is not large enough to generate enough torque
to bring it within limits).

One’ of the actions that can occur in <statement> (the body of the error
handler) is the RETRY statement that will cause the aborted motion to b o retried.
If this instruction is present, it must not be inside ® FOR loop.

Note @ | s 0 the error codes are recorded in the appropriate variable (i.e.
barm_error for the b | u o arm, yhand_error for the yellow hand, etc.), each time the
device is used, s o that the error code may b o referred to at o later point in the

program if desired.

4.4.6 Other clauses: DURATION, SPEED _FACTOR, NULLING & WOBBLE

Here are some other clauses that can be used to medify motions.
WITH DURATION <rel> <sval>

causes the resulting motion to take the amount of time specified by <sval>, which
should ba of dimension TIME. <rel> can be <, =Qr 2.

WITH SPEED_FACTOR = <gval>

describes the speed of motion. The nominal time for the motion computed by AL

65
will be multiplied by <sval> which should be 2 1, and this product will be used as
the time for the motion. There are four predefined macros: QUICKLY, NORMALLY,

SLOWLY, and CAUTIOUSLY which will set the speed factor for the motion to 1, 2,
4 and 6 respectively.

The default speed factor for motions is 2, so the arm moves at a reasonable
speed. This can be changed by assigning the desired default multiplier to the
predeclared variable SPEED_FACTOR with a regular assignment statement:

SPEED_FACTOR « <new default speed factor>

There are also three predefined macros: QUICK, SLOW and CAUTIOUS, which set
the default speed factor to 1, 4 and 6 respectively.

WITH NULLING

informs the runtime system to null out errors at the end of this motion. There is
also a WITH NO_NULLING clause which is the current default. There are two
macros PRECISELY and APPROXIMATELY which achieve the same results.

WITH WOBBLE = <sval>

adds a small sinusoidal motion to the outer three joints causing them to shake a
bit. It is useful for breaking small friction forces and for seating parts. <Sval> is a
small constant of dimension ANGLE that is usually about 2 or 3 degrees.

The fingers can be controlled in several ways.

OPEN <hand> TO <sval>

and
CLOSE <hand> TO <sval>

causes the fingers to open or close so that they are a distance <sval> apart. <Sval>
is any scalar expression of dimension DISTANCE. Currently there is no difference
between the OPEN and the CLOSE statement. Eventually CLOSE will stop the
motion of the fingers if both touch sensors are triggered. For binary hands (e.g.
the current hands on the PUMA arms) the TO clause is omitted.

CENTER <arm>
closes the fingers of the specified arm until both touch sensors indicate contact

has been made. Furthermore if one finger makes contact before the other,
CENTER causes the arm itself to move so that the object being grasped is not

66

pushed by the finger. OPEN and CLOSE only move the fingers, and if the object
being grasped is not centrally located between the fingers, the object will be
moved or, if it is fixed in place, excessive force might be exerted by the fingers,
thereby aborting the motion.

4.4.8 STOP & ABORT

There are two ways of terminating motions before they finish:

STOP <device>
and
ABORT(<print list>)

The STOP statement causes the indicated device to stop. <Device> may be a
physical manipulator or a frame affixed to an arm. If <device> is not specified, and
the staop statement appears in the scope of a move statement, then the arm used
for the motion will be the one stopped. The ABORT statement is used for more
drastic occasions. It will stop the motion of all devices, print out the elements of
the <print list> (see the description of the PRINT statement, section 4.5.7, below),
and transfer control to 11DDT. The user may continue the program execution by
typing <alt>P to 11DDT. Usually these statements appear in the body of condition
monitors, though they may be appear at any point in the program.

4.4.9 Other devices

4.49.1 The OPERATE statement

The OPERATE statement is provided to control devices interfaced to the AL
system. Its syntax is similar to that of the MOVE statement:

OPERATE <device> <modifying clauses>

where <device> is the device being controlled, and the <modifying clauses> describe
what action the device shall perform. Currently only the socketdriver is available,
so only its syntax will be given.

OPERATE driver WITH ANGULAR_VELQOCITY = n * rpm <direction> ;
OPERATE driver WITH TORQUE = n # oz # inches <direction> ;
OPERATE driver WITH DURATION = n+seconds;

The first two clauses are mutually exclusive since we can only consistently specify
either the angular velocity or torque. <direction> is either CLOCKWISE or
COUNTER_CLOCKWISE and specifies the direction of rotation. CLOCKWISE and
COUNTER_CLOCKWISE can be abbreviated as CW or CCW respectively. The
default direction is clockwise. The DURATION clause, similar to that in the MOVE

67
statement, specifies the duration of the motion.

Event, expression 8 n d duration condition monitors can b o applied to the
OPERATE statement o s in the MOVE statement. 0 n © variable that is of interest in
expression condition monitors for the OPERATE statement for the driver is
DRIVER_TURNS, which Aeeps track of the numbe. of rotations of the driver since
the beginning of the current statement. Additional condition monitors that check
angular velocity and torque acting on the driver will ba added inthe future.

4.4.9.2 The ADAC interface

There is @ n ADAC interface interface with64 A /O channels and 4 0/ A
channels. The AL system can v " ® 2 d the y a | u e s of the voltages o n the A/D
convertor by means of the function ADC which takes as argument 3 channel number
between 0 o n d 63. Output from the program is possible 0 n channels 1 through 4
of the O / A convertor, The syntax of the statements is shown below:

x « ADC(i) {assigns to x the value in voits o n channel i where
0 <i<63}
DAC(j,v) {this statement outputs v volts 0 n channel j
where -1 0sv<+1 0 and 1 <j<4}

4.4,9.3 The Vision Module

A .Machine Intelligence Corporation VS-100 Vision Module is interfaced to
the AL system @ n d can b e accessedby m & @ n s of o number of auxiliary AL
procedures. These procedures are defined in the file VISION.AL[AL,HE] which must
b ® included in the user program by the statement

REQUIRE SOURCE_FILE "VISION.AL[ALHET";

The text of this file is included in Appendix VIll 8 n d further documentation is
available in the files VM.DOC and COMM.TXT O N [DOCHE]), and in the
manufacturers’ literature. (The actual communication between AL 5 n d the Vision
Module is achieved by m e 8 n s of the ¥M command, which is of interest only to AL
wizards.)

4.4.9.4 The VAL controllers

The PUMA arms are directly controllable under AL. Sometimesit m 2 X b o
necessary to communicate with them directly through VAL which lives 0 n the
LSI-11i N the PUMA controller. A string can b € sent to VAL by the following AL
command:

68

VAL("string") ;
VAL("string",WAIT);
VAL("string",NOWAIT);

Once the string has b € & n sent over to VAL, AL will either wait for VAL to
finish the command (default), or immediately proceed to the next AL statement.
Note that the hardware configuration to drive the PUMAs using AL directly and
through VAL are different, and the user should ensuJe that the hardware is set up

appropriately.

4.5 Non-motion statements

4.5.1 Assignment statement

The assignment statement:
<variable> « <expression>
causes the value represented by <expression> to b e assigned to the variable
appearing to the left of the assignment symbol. The data type @ n d physical
dimension of the expression 0 n the right Ao n d side of the assignment symbol must
bethe same as the datatype and dimension of the variable on the left hand side.

Assignments are valid for scalars, vectors, rots, transes, frames and strings.

4.5.2 Traditional control structures: IF, FOR, WHILE, UNTIL, CASE

AL has many of the traditional ALGOL control structures.
The IF statement has the form:
| [<boolean expression> THEN <statement> ELSE <statement>

The ELSE part is optional. If <boolean expression> is true (non-zero) the statement
following the THEN is executed. Otherwise the statement following the ELSE, if
present, will be executed.

The FOR |00p has the form;

FOR <s var> « <s expr> STEP <s expr> UNTIL <s expr> DO <statement>
where <s var> is 9 scalar variable a n d the <s expr>’s o 1 scalar expressions of the
S 8 M e dimension. The initial value of the variable is the value of the first

expression; every time the statement is executed, its value is incremented by the
value of the second expression, 8 n d the process repeats until the value exceeds

69

that of the third expression. If the ,m»mv size is negative, the right .:”:au happen.
The test is made before the first iteration, so it is possible that the loop will not
be executed at all.

The WHILE loop is as follows:
WHILE <boolean expression> DO <statement>

The boolean expression is checked and if it is true the statement is executed. This
process is repeated until the condition becomes false.

The UNTIL statement is as follows:
DO <statement> UNTIL <boolean expression>

where the statement is repeatedly executed until the condition becomes true.
This is similar to the WHILE statement described above, with the exception that
the WHILE loops while the condition is true, whereas the UNTIL loops until the
condition is true.

There are two forms that the CASE statement may take. The regular CASE
statement has the form:

CASE index OF BEGIN S0; S1; S2; ... Sn END;

The index is evaluated and depending on the integer part of its value one of the
statements will be executed. If the index is zero then SO is chosen, if the index is
one then S1 is chosen, and so on up till n. If the index is negative, or greater than
the number of statements, an error is reported. Any of the statements may be
null, e.g. "Sl; S3" in which case if the index were two no statement would be
executed.

There is also a numbered version of the CASE statement:
CASE index OF BEGIN [CO] S; [C1][C2] S; ... [Cn] S; ELSE S END

where each statement has one or more non-negative scalar constants labelling it.
The index expression is again evaluated and if it is the same as one of the Ci’s
then the statement with that label is executed. If no constant matches the index
then nothing is done, unless an ELSE is present in which case the statement it
labels is executed. If the index is negative or greater than the largest Ci an error
occurs, unless there is an ELSE present. Note that the ELSE statement may
appear anywhere in the list of statements, not necessarily at the end.

70
4.5.3 Procedures

Procedures are defined as follows:

<type> PROCEDURE <name> (parameters);
<statement>;

where the statement is executed each time the procedure is called. Only those
procedures that return a result need their type specified. The data types of the
parameters may be modified by the reserved words: VALUE and REFERENCE.
Reference is the default. It is necessary when defining a procedure to specify the
dimensions of any arrays that are to be used as a parameter so that the number of
dimensions associated with the array in the procedure body can be checked. For
example:

PROCEDURE foo(FRAME ARRAY pnts[1:4,1:3]);

Procedures can return a result by means of the RETURN statement which
has the form:

RETURN (value)

which returns value as the result of the procedure. The RETURN statement may
not appear inside condition monitors or COBEGIN-COEND blocks.

Procedure calls take the normal form of the procedure name followed by the
list of arguments: name(arglist). They may appear anywhere an expression might,
or alone by themselves as a procedure statement. If a typed procedure appears
in a procedure statement then the result it returns will be discarded.

4.5.4 Parallel control: COBEGIN-COEND, SIGNAL & WAIT

In addition to the normal sequential execution of statements within a
BEGIN-END pair, AL allows blocks of code to be executed in parallel by placing
them in-a COBEGIN-COEND block. Upon entering the COBEGIN block control is
divided among the various processes to be executed simultaneously. Upon the
termination of all of these processes control will be passed to the part of the
program following the COEND. It is the user’s responsibility to ensure that the
code being executed in parallel is sufficiently independent (e.g. two processes
don’t try to use the same arm at the same time), and that no deadlock situations
occur.

The purpose of the COBEGIN construct is to allow simultaneous
independent manipulator control. it is not particularly useful to execute purely
computational code in parallel, though doing computation while an arm is moving can

71

save time. The scheduling algorithm used is to start up one process and execute
it until it is blocked, and at that point another process will be run. A process. can
be blocked by waiting for an event, by pausing, doing 1/0, or by initiating a motion.

Parallel processes may be synchronized by means of explicit events and
SIGNAL and WAIT statements. With each event is associated a count of how many
times it has been signalled. Initially, the count is zero, that is, no signals have
appeared, and no processes are waiting. The statement:

SIGNAL el

increments the count associated with event el, and if the resulting count is zero or
negative, one of those processes waiting for el is released from its wait and
readied for execution. The statement:

WAIT el
mmn.\mamam the count associated with event e/, and if the resulting count is
negative, the process issuing the WAIT is blocked from continuing until another

process signals el. If the count is zero or positive, there is no waiting.

4.5.5 Statement condition monitors

Condition monitors, besides modifying motions, may also appear as
statements. The description in section 4.4.5 also applies to statement condition
monitors. When its defining statement is executed the statement condition monitor
will become enabled. It will become disabled when it triggers, is explicitly disabled
(it must be labelled for this to occur), or its local block is exited. The reserved
word DEFER still causes a condition monitor to be defined in an initially disabled

state.

Scope rules come into play regarding when condition monitors may be
enabled or disabled. An enable or disable statement may only refer to a condition
monitor that is defined in the same block as itself or in a block containing it.

4.5.6 PAUSE statement

The statement:

PAUSE <sval>

will result in the program going to sleep for the time specified by <sval>, which
should be of dimension TIME.

72
4.5.71/0

At runtime strings and variable values may be typed out using the PRINT
statement:

PRINT(<argl><arg2>,.,<argn>)

where the <arg>’s are either algebraic expressions or variables, or string
constants. Strings are delimited by double quotes. CRLF is a predefined string
which prints as a carriage return followed by a line feed.

The statement:
PROMPT(<print list>)

is' syntactically like the PRINT and ABORT statements. Upon encountering a
PROMPT statement the AL runtime system prints out all the items in the print list
and then prints the message:

"Type P to proceed”

and waits for a P to be typed. Unlike the ABORT statement control does not pass
to 11DDT and hence any paraliel processes (e.g. COBEGIN) will continue to be
executed. As an example: :

PROMPT("Move barm to work station origin); org « barm;

There are two arithmetic operators to read in a value from the VTOS5
console. INSCALAR reads in a scalar, prompting the user with: "SCALAR, please: ".
QUERY reads in a baolean. It is like PROMPT in that it can have a print list. After
typing the print list the user is asked to "Type Y or N: ™. For example:

PRINT("How tali is .Swzsﬁ._r height « INSCALAR;
WHILE QUERY("More to do?") DO ...

4.5.8 Macros

AL possesses a general purpose text macro facility. The syntax for a macro
definition is:

DEFINE <macro id> <parameters> = c<macro body>>
where <macro id> is the name of the macro, <macro body> is the text to be

substituted whenever emacro id> is encountered in the program, <parameters> if
present is a list of arguments for the macro, separated by commas and enclosed by

73

parenthesis. Only undeclared identifiers may be used as macro parameters. When
the macrois expanded the actual arguments will b e substituted into the macro
body wherever the parameters appear. [f this value is anything other than a
simple token it must b ® surrounded by the delimiters co. The <macro body> is also
delimited by <>.

Here are two examples of the use of macros:

DEF INE feet = c1 2 * inches>;
DEFINE grasp(frob) = cMOVE barm TO frob;
CENTER barm;
AFFIX frob TO barm RIGIDLY>;

size « 10.4 = feet; {Expands to 10.4 + 12 % inches}
grasp(handle); {Expands to:

MOVE barm TO handle;

CENTER barm;

AFFIX handle TO barm RIGIDLY;}

4.5.9 REQUIRE statement

REQUIRE statements allow the user or his program to communicate with
the AL compiler. NO code is generated as o result of @ REQUIRE statement, 3 n d
the effect of the REQUIRE statement is global 8 n d persists after exiting the block
in which it was invoked. Another REQUIRE statement or some other termination
conditionis necessary to undo or stop the effect.

REQUIRE SOURCE_FILE "<file_name>"

The file n @ m & d will b e the source of future input untit an and of file is
encountered, at which time the ¢ 0 d e following the require will b e 123 3 d The
source file will be assumed to be a disk file, unless specified as o teletype file by
"TTY:" in front of its name.

A teletype file does not need 8 name, but if it has one, the teletype input
will b e saved o n o disk file with the given name o n d default extension TTY.
Parsing action 0 n teletype inputs will begin each time o carriage return is hit. The
file is closed by typing o <control><meta><linefeed>. The current operating system
allows onjx one teletype file to be opan at a time.

The file name gan be one of:

"NAME"
"NAME.EXT"

74

"NAME[P,PN]"
‘NA ME.EXT[P,PN]"

where P and PN represent the project ond programmer nomes respectively.
REQUIRE MESSAGE "<message>"

Anything appearing within the double quotes will be printed out at the
user’s terminal.

REQUIRE ERROR_MODES "<mode flags>"

While the AL parser may o s A for user responses to errors during program
compilation, it is possible to predefine the standard treatment of errors by setting
certain flags with the REQUIRE ERROR_MODES statement. The flags are set by
including the relevant letter within the quotes, o n d reset by including o minus sign
in front of the ¢ 0 d e letter. The following flags are available:

L ~ errors, if any, will b e logged in 3 file with extension LOG

A - compilation will continue automatically after each error message
is printed.

M - the system will prompt the user only for modifiable errors

F - strict dimension checking will not b e carried out across
assignment statements, condition monitors, etc. Undimensioned
variables will b © coerced according to the context in which
t hey appear. Error messages will b e generated only for
inconsistent usage.

REQUIRE COMPILER_SWITCHES "<compile switches>"
Allthe switches that a1e used inthe command line (sea Chap5) gan be

specified here. This is 8 n alternative to specifying the switches in the command
line. Only letters (without the slash) should b e within quotes.

75
- 5. USING AL

This chapter describes the steps invoived in compiling and executing an AL
program and what to do in the event of errors. In the following description where
commands are typed by both the user and by the system, the system response will
be shown in italics. :

5.1 Compilation of user programs

To compile and prepare the binary load module for the PDP-11 do the
following:

1. Create a file called "FOO.AL" with your program in it, where "FOO" may be
any name you wish.

2. Get your job to monitor level and type "COMPILE FOO".

2a. The system program SNAIL which handles requests like COMPILE will give
the message

Swapping to SYS: AL. DMP
‘and then start AL at the parser. The parser will then say
L,N_:. FOO

When the parser hits a page boundary in your file, it will type "I" or whatever the
number of the page that it is starting to read.

2b. When the parsing is complete, the parser swaps to the AL compiler, which
types "ALC".

2c. When the compiler completes and code emission, it deletes the
S-expression file and swaps to the cross-assembler PALX for the PDP-11. "PALX
n", where n is the version number of the PALX compiler, is typed out at the user
terminal.

2d. The PALX compiler swaps to ALSOAP, which cleans up the user area by
deleting the intermediate file with extension .ALP, that is crested during the
compilation of the AL program.

2e. The job gets back to monitor level.

If you misspell the name of your file then SNAIL will complain

76
File not found: FOO

where "FOQ" is your misspelling.

At any time during steps 2a through 2e above, you could get an error
message from the parser, compiler or PALX. See section 5.4 about these.

5.1.1 Compilation with switches

Compilation may be done with switches if desired by including the desired
switches within parentheses as "COMPILE FOO.AL(KS)". Switches are relevant only
if you are modifying or debugging the AL system. Effects of the different switches
are shown below:

Keep the intermediate .ALP file

Generate a symbol file (.ALS)

Generate a PALX assembly listing

Keep the .SEX file

extra switch for new trial compilations (to generate a
binary file compatible with ALX.SAV)

swap to new AL compiler ALCNEW instead of ALC

run BAIL immediately after scanning the command line;

X —rromX

o Z

5.2 Loading and executing the AL program

_ When your program "FOO.AL" has got through to ALSOAP without grief, you
are ready to execute the program on the PDP-11.

1. Type "DO AL[ALHE]" followed by carriage return. This initiates a series of
instructions which are described later (5.3). When you see

.\l

type "FOO", the name of your program, followed by carriage return. You will then
see a number of lines printed out. The last line will be

DDT STARTED AT 130000

2. Locate the brake control box(es) for the blue and/or yellow arm(s), and the
position(s) of the panic button(s), and check that all the brake switches are
pointing away from the RELEASE position. Keep your finger poised over the panic
button of the appropriate arm at all times while the AL program is being executed
(procedure for starting it is in step 3), and be prepared to press it immediately if
it should appear that something unpredictable or disastrous is about to happen.
Pulling the yellow cord that runs around the table will turn off power to the arms,

77

and can also be used in the event of an emergency. Take care not to lean on the
cord accidentally. If you are using the green and/or red PUMA arm(s), note that
they do not have control boxes if you are using them under AL. In that case, pull
on the yellow emergency cord to cut off power to the arms.

Locate the red button on the underside of the short end of the hand-eye
table closest to the Stanford arms. Press it to turn on power for the arms.

If you are using either or both PUMA arms, locate the appropriate controller
box(es) (under the hand-eye table), and turn the controller on by flipping the
toggle switch if it is not already on. Make sure the black rotary switch is in the
RUN position.

3. Now go to the VTO5 which is a white colored terminal with a dark screen in
the area of the hand-eye table, and on it, you should see an asterisk "+" and a
flashing cursor. Make sure you have the panic button under your thumb and then

type
» START <alt><alt> G

to begin execution of your program. Note that just <alt>G will also work. AL will
print out at the VTO0b: .

AL RUNTIME .SYSTEM

4. If you are using either of the PUMA arms, AL will ask you to turn on the
PUMA arm power as follows:

ARM POWER FOR PUMA(S) ENABLED. TURN ARM POWER ON NOW.
(TYPE <CR> TO CONTINUE)..

This is done by pushing on the black button below the light and the the "ARM
POWER ON" label on the front of the PUMA controller. The red light above the

“ARM POWER ON" label should then come on. Then type <CR> at the VT05. AL
may then type the following:

GREE~ ARM CRUDELY INITIALIZED..
This indicates that the green arm is not accurately calibrated. AL then asks:
DO YOU WANT TO CALIBRATE THE GREEN PUMA?
Type Y or N followed by <CR> depending on whether or not you want the arm to

be recalibrated. Generally it is a good idea to calibrate the arm. if you type Y,
each of the joints will move a short distance, and after that, AL will type the

78

following:
GREEN PUMA 1S CALIBRATED.

The GREEN above would read RED if the RED arm is used in the program. If both
PUMA arms are used in the program, AL will ask questions for both of them.

5. The VTO5 will beep just before the start of each motion by the arm.
Messages or values will be printed where appropriate. When program execution
is complete, the following message will appear:

ALL DONE NOW. SEE YOU AROUND!
ELAPSED TIME = 24.928 SECONDS

NO ACTIVE PROCESSES LEFT. YOU'RE IN DDT.
BE; SRFADL+50>>BPT
Type "<alt>G" to re-execute the program from the beginning.

6. When you have finished using the AL system you should ALWAYS turn off
power to the arms by pulling on the yellow cord that runs around the table. Then
it does not matter if somebody hits <alt>G, and it also makes it impossible for
somecine not at the' hand-eye table to accidentally run a program that tries to
move the arm. So make a habit of pulling the yellow cord on your way out. Also,
type "X" or <CALL> to 11TTY to terminate execution of that program. Finally type
"D ARM" to deassign the arms.

5.3 Complete runtime execution sequence

The following is the complete sequence of operations required to load and
execute an AL program once a binary file has been prepared. It is given in case
some error occurs when the user types a DO AL[ALHE]

1. Type "A ARM" to have the arms assigned to your job.

2. Type "R 11TTY" to execute the program that loads your program into the
PDP-1.1. 11TTY will respond with

CORE SIZE = 28K
VERSION USING <device>
TYPE ? FOR HELP

* Al

where: device is either VTO5 or TERMINAL. The asterisk is 11TTY’s way of

79
prompting for user input.

The way ta change (toggle) between the two devices is to type “V"
immediately after the asterisk, and 11TTY will fill in the rest of the line and ask
for the next prompt as follows:

«VERSION USING <other device>
*

An alternate way to get the device of your choice is to u s e an extended
command by typing "A" followed by "VT0S" or "TERM" to select the desired
device.

*AN EXTENDED COMMAND VTO05
*

It is desirable to u s v the device VT05 s o that once execution starts, y ou
can D ® independent of the PDP-10.

3. Type "Z" to zero out the core, followed by the memory size, currently
500000, then e carriage return to confirm the instruction. 1 1TTY will respond as
follows:

*ZERO CORE [CONFIRM|] 500000<cr>
*

4, The AL interpreter and the runtime system is then |0aded by typing "G" for
getting the core image binary file, followed by the name of the file AL[ALHE] and a
carriage return. *

«GET SA V FILE - AL[ALHE}<cr>

*

5. The wuser’s AL program binary file is then loaded by means of typing "0" for
overlay, followed by the name of the file and acarriage return.

*QVERLAY BIN FILE - FOQ<cr>

¥

6. The next step is to get the program started by typing "S" then "D" followed
by a carriage return.

*STAR T AT (1000) (D FOR DDT) - D<cr>
DDT STARTED AT 130000
*

80

7. Now go to the VT05 o n d after making sure you are ready to push the panic
button type

*START <alt><alt>G
AL will print out at the VT0S5:
AL R UNTIME SYSTEM
Any other input o output will be typed at the VTOS5.

When program execution is done, the following message will be printed out
at the VTO5.

ALL DONE NOW. SEE YOU AROUNDI/
ELAPSED TIME = 24928 SECONDS

N O ACTIVE PROCESSES LEFT.YOU'RE IN DDT.
0€. SRFADL+50>>BPT
Typing <alt>G will re-execute the program from the beginning.

5.4 Error Corrections and Recovery

Errors can occur at various stages during program compilation o n d execution,
a n ditisimportant to b e able to continue from the error point 3 s gracefully 3 s
possible. Some errors may b © patched u p according to the wishes of the user,
while others may be fixed up by the AL system, with the user having no say other
than whether to continue with the execution o to abort it. This section attempts
to describe the kinds of errors encountered during program compilation @ n d
execution, end what action the user can take when such errors do occur.

5.4. 1 Parsing errors

Errors detected in the parsing phase are easiest to correct 5 n d patch. For
minor errors it is possible to proceed after correction without going back to the

source file.

_The parser outputs error messages, end gives the user the option of
(a) editing the source file
(b) aborting the compilation
(c) taking the standard fixup
(d) backing u p to @ n d changing the source code from the

81

beginning of the innermost statement.

The last feature is particularly advantageous when the compilation is a long one,
and the error is a minor one which can be easily corrected - e.g. errors which are
due to misspellings, missing operators, and even some simple cases of syntactically
incorrect statements.

Error messages are generated whenever the parser comes across something
it does not like. Some messages are warning messages which tell the user what
he should not do in the future. An example of this is the case where identifiers
are declared in a block but never referenced, resulting in carrying more variables
than necessary.

The most common errors are dimension and type incompatibility. Dimension
checking is done across assignment statements and force, torque, and duration
expressions and conditions. Whenever there is inconsistency, an error message is
generated. While dimensional inconsistency may not cause any grief during
execution of the program, checks for it enabie certain errors (e.g. wrong variables
being used) to be pinpointed early during the compilation phase. A more serious
error occurs when the -data types are incompatible (e.g. assigning a vector
expression to a scalar variable), and needs to be corrected, as otherwise the error
will cause trouble in the compilation and execution phases.

_ Dimension checking can be made less stringent by including the F switeh in
the REQUIRE ERROR_MODES statement. in this case, dimensionless variables will

be coerced to the type that makes them compatible with the other terms in the
expression or statement.

TYPICAL ERROR MESSAGES:
TYPE MISMATCH

This message is printed when an identifier, factor or term is o a different
type than that expected in the context of the expression.

DISTANCE DIMENSIONS DON'T MATCH ON ASSIGNMENT STATEMENT

The meaning is obvious, but the error is not serious and AL will allow the
code to continue compiling, since dimension checking is not done during execution
of the program.

BLOCK NAME AT END DOES NOT AGREE WITH THAT AT TH.E BEGINNING

This error occurs when there is a misspelling in the names within strings at
the corresponding places, or if the BEGINs and ENDs are mismatchied.

B2

TRYING TO ASSIGN VALUE TO ARM™R DEVICE

The user is trying to assign a value to an arm or a hand. This is disallowed
in a program because the values reflect the state of the real world during
execution, and cannot be changed by the user.

<wariable> NOT DEFINED, WILL DEFINE IT.

The user has put an undeclared variable on the left hand side of an
assignment statement. This message could be due to a misspelling.

An error message, followed by CONTINUE WILL FLUSH STATEMENT

This means that the parser will be unable to do any form of fixup, and that
it will just flush the statement by ignoring any further text until the next
semi-colon is read.

ERROR CORRECTION

Wheriever the parser detects an error, It prompts the user with a "§".. The
user should respond with a single character as follows:

Cor<cr> continue with standard fixup

<|f> continue automatically for non modifiable errors.

A continue automatically with standard fixup for future
errors.

edit source file at the place the error occurs

restart the program - type in the command line

terse information giving only the different options
available

\" verbose information giving characters and their effects

X exit from program

_. _onm:‘o;msm_ommsnzo
Z
w

—“2om

modify source code - user will be presented the
offending line

invoke BAIL for debugging the AL parser (useful only if
debugging AL and BAIL is loaded in the system)

Any other character will cause either a list of the above information to be
printed out, or just a list of the possible options.

The most useful response for the user is "M", "C" or "E". The first is
particularly useful when a minor error (e.g. spelling error) occurs towards the end
of & long compilation, and the user does not want to have to start from the

83

beginning again. "C" is useful when the error can b e corrected by a standard
fixup, while "E" is u s e d to correct more serious problems by going back to the
source file,

Note that the "M" option is not always available. There are situations
where interactive error recovery is impossible - e.g. when in the middle of a
macro expansion, 9 n d so the user is not allowed to make any changes.

If any errors have been corrected interactively, at the end of the parsing
phase AL will ask the user if an updated copy of his source file is to be saved.

5.4.2 Compiler errors

You should not get any error messages from the compiler. If you do get anx
messages, it is probably due to abugin the compiler and should be reported.

5.4.3 PALX errors

The principal PALX error occurs when the program is very long. PALX then
gives the message that there might not b e enough space, in which case, the
program should b e broken down into smaller subprograms. If any other error
message is given by PALX, itis an AL bug, and the userisrequestedtoreportj o

5.4.4 Loading errors

| 1TTY i S the program that loads the POP-1 | with the core image of the AL
interpreter and runtime system. The instruction "DO AL[ALHE]" Aes the effect of ©
numb e of instructions which includes assigning the PDP-1 | to your job, zeroing
the memory of the PDP-11, loading the AL interpreter and runtime system,
overlaying it with the user program | 0 o d module and starting | 10DT 0 n the
PDP-1 1. Further details are given in section 5.3.

There are several things that could o, o wrong during this sequence of
event s. The message will b e printed out at the terminal of the user.

Already assigned to job 33
?
Arm is busy. Will you wait?

This messageis printed when some other job has the arms assignedto|(o

When this happens, you may type Y @ n d wait until the ARM becomes
available, or you can find out who is using it by getting back to the operating
system by hitting <CALL> and then typing

84

PJ ARM
to which the system will reply that the ARM is not is use, 0 r indicate which job has
the ARM assigned to it. If the job is not using the ARM, you should request that

the ARM b e deassigned, @ n d then try the "DO" instruction again. If the job is using
the ARM, you should try again later.

PDP-11 STOPPED, RESTART

Restarting the entire sequence from Zeroing the core should take care of
this problem. If it does not, it should b e repeated.

NO RESPONSE WHEN YOU TYPE ANYTHING ON THE VTOS.
If there is N 0 response 0 n the VTO5 when you expect some output e.g.
when you d 0 not get the asterisk @ n d the flashing cursor, 1 ITTY may b e in

"TERMINAL" rather than "VT05" mode. Type Y several times on the terminal and
let the mode toggle from one to the other until "VTO5" mode is obtained.

5.4.5 Runtime errors

During the execution of the user program, several things can cause the
program to stop. The following are the common error messages that are printed
0 n the VTO5 by the runtime interpreter.

5.4.5.1Motion associated ercors

Hereare e O S associated with the arms o n d other devices that occur
during motions. The device n o m e at the beginning tells which device ran into
trouble. For armsthe numb e atthe e nd tells which joint ran into problems.
Joints 2 1 © numbered outwards from the shoulder. Joint 7 is the hand.

PANIC BUTTON PUSHED

This error occurs when the panic button is pushed, or someone has leaned
0 n the edge of the table, thereby pulling 0 n the yellow cord, 3 n d shutting off the
power supply. RETRY<alt>G will try the current motion again if the panic button
was pushed, but it will give the next message if the yellow cord was pulled.

ARM INTERFACE POWER SUPPLY TURNED OFF
(CHECK JOINT BRAKE SWITCHES)

When this error message appears, check all the brake switches 0 n the panic
button box, © n d make slre that all the brakes are applied. if any of the brakes
are in the released position, toggle them to the set position, © n d then try again by

85

typing RETRY<alt>G. if you get the s @ m @ error again, press the large 1e d button
0 n the underside of the short side of the table nearest the wall to turn 0 n the arm
power, @ n d try again. If you get the error again, it may b e that the arm interface
power really is off at the source, in which case you should get help from one of
the personnel in the lab.

RARM - EXCESSIVE FORCE ENCOUNTERED BY JOINT n
to retry the move, RETRY3$G
to move arm directly to destination, FINISH$G

This error occurs when the movement to be made requires too high a force.
It could occur when:

(1) the arm encounters a n object during the course of the motion
(get it out of the way)
Of (20 the time specified for the motion is too short
(make it longer next time)

BAR M - TIME OUT FOR JOINT n

This occurs usually at the e n d of a motion when the arm is prevented from
going to its final destination but the error is insufficient to cause o high enough
motor torque requirement (0 give a joint force error.

YARM - STOP LIMIT EXCEEDED FOR JOINT n

There is a software joint operating range which is lower than the hardware
joint operating range for safety purposes, @ n d when the limits are exceeded, this
error message is generated. Usually this message occurs if continuation of
compilation had b e e n allowed in the compilation phase when a "destination location
not accessible” message was generated. Again the offending joint number is
indicated.

OTHER ERRORS

The following are internal 0 [hardware errors over which the user has little
control. They are given for the sake of completeness. Such error messages
should be reported.

BACKGROUND JOB TOOK TOO LONG TO EXECUTE
SERVO DEAD
AID ERROR
NO ARM SOLUTION WHTLE SERVOING
SERVO ERROR = n
where n represents the following:

86

1 COULD NOT ATTACH TO REQUESTED JOINT(S)

2 INCORRECT NUMBER OF JOINTS REQUESTED TO BE DRIVEN

3 WIPERS COULD NOT BE READ WITHIN THEIR OPERATING !'}ANEE
4 ARM SOLUTION DOES NOT EXIST

5 UNKNOWN TOUCH SENSOR REQUESTED

6 N O MORE FREE SLOTS IN TOUCH SENSOR EVENT LIST
11 ZERO VELOCITY TACHOMETER READING OUT O [RANGE
12 ATTEMPTED TO SWITCH ARMS WHIIE FORCE SERVOING
13 N O MORE FREE sLoTS N FORCE SENSOR EVENT LIST -
14 NEED ALL 6 ARM JOINTS !N ORDER TO DO FORCE SENSING/COMPLIANCE
15 CAN'T FORCE SERVO MOTION WITHOUT POLYNOMIAL
20 JOINT STARTED OUTSIDE OF PERMITTED OPERATING RANGE

400 JOINT IS DOWN, INOPERABLE

I 000 CATASTROPHIC A® ERROR HAS OCCURRED

40000 N O ARM SOLUTION WHIIE DOING FORCE COMPLIANCE

5.4.5.2 Non-Motion errors

INCOMPA TIBLE PCODE VERSION. PROCEED A TYOUR O NN RISK

This means that the binary file @ s s e m b | e d for the user program is
incompatible with the current runtime system. The solution is to recompile the
user AL program.

FREE STORAGE EXHAUSTED

Only very large programs will cause this error. It has been largely
eliminated with the addition of more memory.

N O VALUE FOR VARIABLE - USING DEFAULT.

This error is caused by attempting to access a variable before ithas b e & n
assigned e value. Proceeding will use o value of zero, nilvect, nilrot, 0 [niltrans,
depending on the data type of the variable.

USER PDL O U

This is a fatal error caused by a bug in Dilher the hardware o r the runtime
system. Sometimes restarting the program will cause this error to 940 away.

CAN'T INITIALIZE ARM. REFERENCE POWER SUPPLY OUT OF RANGE.

The arm initialization routine ran into trouble d u e to the arm reference

87

power supply drifting. The program may be continued by typing <alt>P, but this
should be done with extreme caution, and the user should be extremely alert with
a finger over the panic button to cause an immediate stop if the arm does
something unexpected. The arm will be offset from the place it would go if the
reference power supply were not out of range. Please report this error.

5.4.5.3 Continuation from runtime errors

To continue from a runtime error there are several possi
indicated on the VTO5.

<alt>G will cause execution to begin from the start of the
program.

<alt>P will cause execution to continue from the next statement.

RETRY<alt>G will attempt to retry the aborted move.

FINISH<alt>G will move the arm directly to its destination in the
aborted move very slowly.

PARK<alt>G will move the blue and yellow arms to their respective

park positions.

Note that RETRY -and FINISH are only applicable after getting a motion
associated error.

5.5 Hints on debugging

There are several instructions that are m<u=ozo. for the user to determine
which part of his program is giving him problems.

5.5.1 Parse time debugging aids

REQUIRE MESSAGE COMMAND (c.f. section 4.5.9)

The message can be used to inform the user where he is in the program,
but since the user is normally familiar with his program, it would be used where
there are long compilations of several source files, and the user wants some
description of the contents of some source file. Another use is to output a
message to set parameters during compilation, and follow it directly with a
REQUIRE SOURCE_FILE "“TTY:FOO.AL". The user can then make the required
assignments from the teletype.

REQUIRE ERROR_MODES "LA" (c.f. section 4.5.9)

This message is particularly useful if the compilation is to be done
non-interactively. Errors (if any) will automatically be collected in a file with
extension LOG, and the parser will try to continue from errors the best it can.

88

5.5.2 Runtime debugging aids

One way to help debug the program during execution is to output values
and messages during the execution by means of the PRINT command (c.f.. section
4.5.7). It is useful for printing out actual values of variables at execution.

11DDT is an assembly-language symbolic debugger for the PDP-11, and its
use is outside the scope of this document. It is primarily used by AL wi zards to
debug the runtime system. The user is exposed to 110DT to the extent that he
uses it to start or continue execution of his program using the <alt>G,
RETRY<alt>G, and <alt>P commands.

5.6 The GAL program module for graphing force data

The GAL module has been developed for graphing data collected b y means
of the GATHER clause (c.f. section 4.4.3.4). GAL is a program run on the PDP-10
that communicates with the AL runtime system. To invoke GAL, instead of using
the command DO AL[AL,HE], use the command

R GAL
GAL will respond with
AL Force Data Gathering Module

and prompt with an asterisk to which you need to type your responses. Flere is a
summary of the valid responses and their effects.

FX, FY, FZ display force data along specified axis

MX, MY, MZ display torque data about specified axis

T1,T2, 73,74, 75 T6 display torque data about specified joint

graph mode select - toggles between continuous or discrete

scaling for force axis of graphs - toggles between fixed & aut omatic
produces plot file for XGP (via PLOT) - asks for file name

continue with next gathering move

wait after each gathering move - toggled (cleared by Auto-coontinue)
Auto-continue, if on AL won’t stop between gathering moves - - toggled
start 110DT

zero memory of PDP-11

reload AL runtime system

reload experimental AL system

load new AL program - asks for file name

load and run 11TTY

exit

m»—-i-XJUND)iO‘UmC)

89

Q quit (same as exit)
H help (to print out all this information)
? same as help

You should type R to reload the AL runtime system, which will ask for the
name of your AL program, and Dto start 11DDT, and then type <alt>G st the VT05
terminal.

To produce o hardcopy plot of the currently displayed force graph o n e uses
the P command which will asA for o file to store the plotin, along with atitleforit ¢
Later the PLOT program can be J1un toreadin the file, re-display the force graph,
3 n d write out o copy to the XGP (Xerox Graphics Printer). To invoke PLOT use
the command:

RU PLOT[ALHE]

and answer its prompts.

_FZ DbZ ,
75
Y7/
25
[

- 1]

INW.I” t

; _
—-50
~75-3

L ,_._,_ ———Samples
25 5@ 75
Duration = 1,6 Seconds

FIRST CONTACT

Fig. 5.1 Sample Output of force graphics

90
6 o PONTY

6.1 Description of POINTY

6.1.1 Introduction

The concept of FRAMES 3 S a data structure in AL 3 n d their affixment to
form 8 n object model should be ciear to the reader by now. The generation of
such affixments of frames is a non-trivial task, especially if the frames tob o
affixed to each other have different orientations. If the object is physically
available, the user would need to measure distances, angles, and positions, and by
doing some rotation of frames would b ¢ able to determine the relationships
between the frames. Such 3 procedure is tedious 8 n d error-prone in all but the
simplest cases.

Given the object,a M 2 8 n s of generating the affixment structure is needed.
The ideal case would b e to present the physical object or its design drawing to
the computer by utilizing vision, etc, 3 n d let the system build the affixment
structure. However, the features of interest 0 n the object are dependent 0 n the
nature of the assembly procedure, and may not bear any relationship to the sAape
of the parts. 0 n e way of generating o n affixment structure is touse A u m a n
assistance. The A U m 8 n operator will point out the features of interest o n the
object, 8 n d the system will take care of the book-keeping involved in keeping
straight the relationships between the various features.

The interactive construction of world model descriptions for AL programs
has been achieved using POINTY, o system developed and implemented at SAIL. It
makes U s o of the ability to read arm positions to define points of interest 0 n the
object.

By moving the manipulator around manually © n d reading the location, the
user is able to record various positions 0 n the object. He then tells the system
how the various locations are related to each other so that an object model can b o
generated such that all the required features 0 n the object are known once the
position end orientation of one point is known.

POINTY provides the ability to execute AL statements. This allows the user
to try out various move statements before putting them into @ n AL program,
permits the arm to be reoriented, @ n d allows differential moves with the s a m a
orientation.

91

6.1.2 Pointing with a manipulator

6.1.2.1 Implicit specification of frames

The Scheinman arm has 6 degrees of freedom, which allows it to be
positioned at an arbitrary position and in an arbitrary orientation. Frames also
have 6 degrees of freedom, corresponding to 3 components of translation and 3
angles of rotation. It follows that if a single pointing of the manipulator is to imply
a unique frame explicitly, there are no spare degrees of freedom. The absence of
spare degrees of freedom makes it quite difficult to position the manipulator
accurately, since all motions fine or gross require the movement of the same
members, and also limits obstacle avoidance.

it is not difficult to guide the arm manually to a good grasping position to
pick a part out of a fixture or pallet. It can be quite difficult to guide it manually
to a good orientation such that when the manipulator attempts to remove the part,
there is no binding. The need for orientation accuracy becomes more crucial when
it is being used to define a world model, since any angular error may be multiplied
by some long moment arm in the AL program.

To avoid this difficulty, it is sometimes convenient to use muitiple pointings
to define each frame implicitly. The first pointing may define the origin of the
frame, the second may define one axis of the frame, and the third may define one
plane of the frame. In this manner, each pointing determines position only, and
there is no need to have orientation precision. :

A simplification is possible when the orientation is parallel to that of some
“other known frame, e.g. station or some other predefined frame, in which case, the
orientation frame can be specified from the known frame, and the location
determined by means of a single pointing. Another possibility is to move the arm
to the desired location manually, and then use sensing to obtain a more precise
estimate.

6.1.2.2 Pointer

The manipulator extremity must be provided with some sort of sharp
pointer so that it can be used as a precise measuring tool. The pointer must have
a shape suitable for reaching into awkward places such as the inside of a screw
hole, the interior of a box, and so forth. In order to make the pointer shape
compatible with all kinds of unforeseen obstructions, it is desirable to design a
pointer which may be bent by the user into an arbitrary shape. Such a special
device will be referred to as a bendy pointer.

Whenever the user wishes, he may deform the bendy pointer into any new
configuration which appears to be convenient for the next operation Having

92

deformed the pointer, the user must calibrate its new end position by using the
pointer to point to a standard fiducial mark at a known location in the laboratory.
From the frame of the fiducial and the frame of the gripper, the system can infer
the translation which takes the gripper frame into the bendy pointer. An
alternative to the bendy pointer would be a tool set consisting of an assortment of
rigid pointers of commonly useful shapes which could be quickly attached or
detached. Whatever type of pointer is used, it must be reasonably rigid under
gravity to prevent it deforming accidentally while being positioned.

6.1.3 System hierarchy

The POINTY system resides on two computers during execution - the
PDP-10 where the parsing and of source code is performed, and the PDP-11 which
is responsible for executing pcode and moving the manipulators.

AL statements and expressions are accepted by POINTY. The command line
scanner (parser) prompts the user for input of a new statement by an asterisk "+".
If it is waiting for the continuation of a statement or expression, it prompts with
"+3+3>>>" Parsing of the current input line begins when the user hits a carriage
return. The first token of the input line is compared with entries in the symbol
table. If there is a match, a fixed sequence of parsing will be followed, depending
on the token. If no match is found, the parser checks to see if it is a variable that
is on the left hand side of an assignment statement by checking to see if the next

symbol is a back arrow "«".

The user interface communicates with the user by giving out error messages
when the parser does not recognize something, or if the user wants to edit values
of variables (e.g. orientation of frames) etc. without using an assignment statement.

Display routines update the screen of the user’s terminal to reflect the
current state of the affixments, values of variables, procedures and macro
definitions, or shut off the display altogether if necessary.

The file input/output facility contains routines for saving and restoring
variables and values in and from a text file of AL declarations. These AL
declarations and assignments may be used directly by an AL program, or they may
be read in by POINTY if the user needs them for re-initialization to a known world
state. In addition, the terminal session may be saved.

The PDP-11 part of the POINTY system consists of an extended AL runtime
system with code to handle the interaction with the PDP-10 and to display the
joint angles and arm positions.

93
6.2 Executing POINTY

To execute POINTY type the instruction from the menitor.
R POINTY

followed by a carriage return. This instruction first loads the PDP-11 with the
POINTY runtime system and starts it up so that it is continuously reading the arm
joints and printing it out on the VTO5 screen. POINTY may then generate a display
on the screen which is continuously updated as more instructions are executed. (In
some versions of POINTY, the display is left out to allow faster initialization) The
following shows the state of the display after several instructions.

STATION (NILROT,NILVECT) BHAND 1.20
-BASE (NILROT, (15.90,12.8, .588}) YHAND .008
-HANDLE (NILROT, (35.8,32.8,.580}) OFFSET 3.88

*xHANDLE_TOP ((Y,188.)1%(Z,98.0), (2.18,.348,5.85))
*HANDLE _REF (NILROT, (1.18,2.38,.188))

+YARM (NILROT,NILVECT),

+BARM ((Y,188.)%{Z,.8082), (43.5,56.8,18.3))
*BGRASP ((Y,188.)%(Z,-188.) ,NILVECT)

MOVE
BARM

%0 DECLAR. AL NILROT (Z,.008) NILVECT (. 808, .208, .8080)
RT_AP(Y,188.)%x(Z,-98.8) | APPR (3.08,.888,.880)

SAVED. TTY

94

The boxes will be referred to later by the following letters:

A: affixment tree,
frames and transes

8 B: scalars

A C: default moves

D: output files

C E: rotations

F: vectors

POINTY is now ready to accept instructions, prompting with an asterisk, as it
does each time it awaits a new command. Single instructions may terminate with a
carriage return or with a semi-colon and a carriage return, and POINTY will then
try to execute the instruction. Multiple instructions on the same line must be
separated by semi-colons, and the last instruction followed by a carriage return.
On seeing a carriage return, POINTY tries to execute the instruction if it is
meaningful, otherwise it will await more input and the next carriage return by
prompting with #+££>>>,

e.g. al « 3 <cr> {POINTY will assign value 3 to variable al}
al « 3 + <cer> {POINTY will wait for more input}

In the initial state of the display, Box A indicates the frames known to
POINTY: station, barm, yarm, garm, and rarm. Box B has values of bkand, yhand, ghand,
and rhand corresponding to the hand opening of the blue, yellow, green and red
arms respectively. Boxes E and F initially contain the definitions of the predefined
rotation nilrot and the predetined vector nitvect.

6.3 POINTY instructions

POINTY will now accept AL instructions, and execute them. In addition,
there are additional instructions that facilitate interaction with the user. In this
section we will look at the instructions that POINTY is capable of handling and
classify them according to basic constructs, data types and expressions, affix and
unfix, motions and device operation, non-motion statements, and POINTY specific
statements.

95

6.3.1 Basic constructs

When POINTY sees o complete statement, it executes it immediately. The
definition of statement is recursive, a's in AL, a n d it may be a single statement or a
block statement. A whole program may thus b e treated o s a statement.

Variable na me s are exactly the same as in AL, consisting of a string of
alphanumeric characters and the underscore following a letter.

Both forms of the AL comment statement may be used, 5 n d the COMMENT
statement is allowed in POINTY to keep AL programs compatible with POINTY. In
addition, the user can type comments o n d opinions interactively, o n d they will be
saved in @ logging file.

6.3.2 Data types, expressions, declarations and dimensions

6.3.2.1 Explicit and implicit declarations

Explicit declarations of SCALAR, VECTOR, ROT, FRAME, TRANS, STRING,
EVENT, and LABEL data types may be made 9 s in AL. Array declarations for the
first seven data types can also be made as in AL.

In the POINTY assignment statement, 3 s in AL, the expression 0 n the right
Aand sideis evaluated and assigned to the variable on the left Aand side. If the
variable o n the left A3 nd side has not been declared, the assignment statement
implicitly declares the variable 8 s having the type of the evaluated expression. An
error message will be generated if the variable Aes been previously declared, and
theright Aand side expression type is different from the left Aand side.

Examples:
s4 « 243; { declares s4 as o scalar, will appearin box B}
v4 « zhat + yhat; {declaresv4 as o vector, wili appea. in box F }
r5 « nilrot; { declares r5 as arot, will appear in box E} '
5 « bpark; { declares {5 as a frame, will appearin box A}

6.3.2.2 Predeclared variables and constants

The following AL predeclared varigbles 8 n d constants are recognized by
POINTY - scalars: bhand, yhand, ghand, rhand, vectors: nilvect, xhat, yhat, zhat,
rotation: nilrot, frames: station, barm, yarm, garm, rarm, bpark, ypark, gpark, rpark,
trans: niltrans, strings: null, crlf, and dimensional constants: inch, inches, deg, degree,
degrees. Where barm, yarm, garm, rarm, or 8 frame attachedto on armis used inan
expression, the current value computed from the present arm position will be
used.

96

6.3.2.3 Implicit data types

POINTY allows implicit specification of data types. |n particular, since the
number 3 n d data types of arguments are different for the various data types
(except between FRAME 9 nd TRANS), they may be declared without the qualifier.
If POINTY is unsure whether o declaration is for a frame or a trans, it will assume
itis atrans, o n d will change it to o frame type when the variable associated with
itis usedin o n affixment statement. Note that in the display the reserved words
VECTOR , R OT, TRANS, FRAME are left out to save space, and that xAat, yhat, and
zhat are abbreviated x, y, z, where it is obvious.

vectors: VECTOR(<scalar> , <scalar> , <scalar>) or
(<scalar> , <scalar> , <scalar>)

rotations: ROT(<vector>, <scalar>) or
(<vector>, <scalar>)

frames: FRAME(<rot>, <vector>) or
(<rot>,<vector>)

transes: TRANS(<rot>, <vector>) or
(<rot>,<vector>)

strings: “<any list of characters except doubje qubte>”

6.3.2.4 Expressions

POINTY accepts all the algebraic expressions that the AL parser is capable
of handling. The following summarizes the valid opejsijons @ Where they have the
soame meaning 8s in AL, they are not described in detail.

SCALAR s+s, S-G, s*s,s/s, sTs, vv, |s}, [v|, |rl, s MAX 5,5 MIN s,
s DIV s, s MOD s, INT(s), INSCALAR,SIN(s),COS(s),TAN(s),
SQRT(s),ASIN(s),ACOS(s),ATAN2(s,s),LOG(s),EXP(s),
RUNTIM E,RUNTIM E(s),XCOORD(v),YCOORD(v),ZCOORD(v),XCOORDK),
YCOORD(t),ZCOORD(t) {XCOORD,YCOORD,ZCOORD return the X,Y,2
components of vector v or of vector part of t}

800TEAN s <rel> s, sAs, svs, ses, s=s, s, QUERY
ARMREACH(arm,f) {Returns TRUE if arm can reach
destination location f}
ISAFFIXED(f,f) ‘{returns TRUE if the two frames are
affixed to each other}

VECTOR 8V, V¥s, V/8, V4V, V-V, v&V, rty, POS(f), fsv, v WRT f, UNIT(v),

97

AXIS(r), tsv,

v REL f = f&v { v is a vector expressed in the coordinate
frame f. The expression represents the
coordinates of the vector in station
coordinates.}

ROTATION ORIENT(f), rsr

FRAME (+v, f-v, t+f, f&t

f1 REL f2 = f2«f1 {s7 is a frame expressed in the coordinate
frame f2. The expression determines the
frame expressed in station coordinates.}

CONSTRUCT(v,v,v),CONSTRUCT(1,f,f)

{constructs = frame using the location part
of the three frames, or the three vectors:
the first position defines the origin, the
second the x-axis @ n d the third the x - v
plane of the desired frame. This avoids
having to guide the manipulator to a desired
orientation precisely.}

T, 4f, 8f, af {returns = frame having the location part = s
that of f but with different orientations. T
gives the vertical component of orientation,
i.e. if ORIENT(f) = rot(zhat,a) * rot(yhat,b) *
rot(zhat,c) then Tf = FRAME(rot(zhat,c),
POS(f)); ¢ gives the orientation of bpark
position, i.e. rot(yhat,180); 8 gives the
station orientation, i.e. nilrot, = n d o gives the
orientation of bgrasp when the arm is in the
park position, i.e. rot(zhat,1 80)}

TRANS f-f, tst, INV(t)

6.3.3 Affixment tree operations - AFFIX & UNFIX

The AFFIX instruction is similar to the AL AFFIX instruction, but allows
RIGIDLY and NONRIGIDLY to be abbreviated as “+" and "+" respectively:

AFFIXf1 TO 2

AFFIX f1 TO {2 RIGIDLY;
AFFIX 1 TO f2 NONRIGIDLY;
AFFIX f1 T0 f2

AFFIXf1 T0 2 +;

Frame f1 is affixed to the f2. Unless specified otherwise, the affixment is RIGID.’

98

Every newly defined frame is shown with respect to the station frame (indicated
with a “-" o n the display). The affixment trees eppeas on box A of the display @ s
they @ 1 ® constructed. Frames may also be affixed with the relative transform
between them being specified = s follows:

AFFIX <identifier> TO {3 AT (<rot>,<vector>) ;

AFFIX <identifier> T0 |13 AT (<rot>,<vector>) RIGIDLY ;
AFFIX <identifier> TO |3 AT TRANS (<rot>,<vector>) NONRIGIDLY ;

If <identifier> is not a frame, ° new frame is defined before it is affixed. This
instruction is U s ® d mainly for reading in AL instructions generated during a
previous POINTY session.

TheUNF1X instruction is written s in AL. Frame_1 is unfixed from frame_2
and affixed independently to station.

UNFIX frame_1 FROM frame_2;

6.3.4 Mation and Device operations

6.3.4. | MOVE statement

The current arm position is u s = d whenever the arm is referred to directly,
@ n dto compute the values of any affixed frames. The user may not assign values
to the frames barm, yarm, rarm and garm.

The MOVE command in A | is applicable to POINTY with all the clauses and
condition monitors that AL is capable of handling. Thus POINTY will recognize Vi4,
DEPARTURE, APPROACH, DURATION, SPEED_FACTOR, NULLING, WOBBLE,
FORCE_WRIST, GATHER, STIFFNESS, and ERROR clauses, FORCE, TORQUE,
DURATION, event and boolean condition monitors, ® " d can ENABLE and DISABLE
them. POINTY will try to execute ° motion when a complete mation command is
specified. | n addition to the absolute positions that can b e specified in AL, POINTY
allows the specification of differential motions (possible in AL by defining a macro
which expands tocTO ® +°by using o BY instead of TO and a vector instead of a
frame expression, @ s follows:

MOVE |l 8V <vector>
MOVE f1 8V <vector> WRT 2

These instructions are equivalent to:

MOVE {1 TO ® + <vector>
' MOVEfl TO ® + <vector> WRT {2

99

Differential moves parallel to the x, y or z axes of the station may be
specified by the following instructions.

MOVEX {1 BY <scalar>;
MOVEY f1 BY <scalar>;
MOQVEZ 1 BY <scalar>;

These instructions are equivalent to the AL instruction
MOVE f1 TO @ + <scalar>+<axis>

To reduce repetitive typing, a move instruction similar to the last executed
move instruction (shown in box C of the display) may be given by merely typing
the last part of the instruction. Hence it is possible to state

T0 f1;

TO f1 + <vector>;

TO f1 + <vector> WRT f2;
BY <vector>;

BY <vector> WRT {2;

BY <scalar>;

The last form may be used only after a differential movement instruction along a
principal axis xhAat, yhat, or zhat.

6.3.4.2 Hand motion - CENTER, OPEN, CLOSE

The syntax and use of CENTER is similar to that in AL.
CENTER <arm>; { <arm> may be left out }

closes the fingers slowly, moving the <arm> to accomodate to the _on.n:os of any
object positioned between the fingers. If <arm> is left out, the last arm moved
will be used.

The syntax for hand motions are similar to those in AL except that
differential movements may also be specified.

OPEN <hand> TO <scalar>;
CLOSE <hand> TO <scalar>;
OPEN <hand> BY <scalar>;
CLOSE <hand> BY <scalar>;

{ absolute opening or closing }
{ differential opening or closing }

If the next motion statement is to open or close the same hand, the instruction may
be abbreviated as follows:

100

TO <scalar>;
or BY <scalar>;

6.3.4. IVE command

PQINTY permits the movement of individual joints (which is not permitted by
AL). The syntax is as follows:

DRIVE BJT(<jeint number>) TO <scalar>;
DRIVE YJT(<jont number>) TO <scalar>;
DRIVE BJT(<jeint number>) BY <scalar>;
DRIVE YJT(<jcint number>) BY <scalar>;

The indicated joint of barm or yarm is moved to <scalar> or by <scalar>. <Joint
number> is an integer which represents the joint and can take a value of 1 through
6. The dimension of <scalar> must be angles for joints 1,2,4,5,6 and distance for
the prismatic joint 3.

Short forms exist as for the other motion instructions.

TO <scalar>;
or BY <scalar>;

Currently thé PUMA arm joints cannot be moved individually the same way. (They
may be moved under simulated joystick control as described in section 6.3.4.4)
When the PUMA arm joints are movable under the DRIVE command, they will be
referred to as GJT and R /T for the green and red arms respectively, and the joint
angle or change in joint angle will be in degrees for joints 1 through 6.

6.3.4.4 PUMA simulated joystick commands

POINTY permits the PUMA arms to be controlled directly by the keyboard of
the VTO5 where the keys on the VT05 keyboard act as buttons on a joystick
controller or a control box. (Actually the keyboard is used here as a simulated
joystick.) The instructions take as argument the name of the arm, put the arm in
the appropriate control mode, and await future input from the VT05. In the
following description, <arm> is either GARM or RARM.

CALIB(<arm>)

enables the arm power to be turned on for the appropriate PUMA arm and
to do a preliminary calibration of the joint potentiometer if desired. The power to
the PUMA arm is turned,on by pressing the black button on the right hand part on
the front of the PUMA controller. The "ARM POWER ON" light should go on when

101

you press the button, and remain on when you release it, otherwise it means that
the main power is is not on, in which case you have to turn that on by pressing the
large red button on the underside of the short end of the hand-eye table closest
to the Scheinman arms.

PFREE(<arm>

allows the user to select the joint to be freed up by typing an integer from
1 through 6 on the VTOS5 console. The joint can be be moved manually. To stop
the freedom of the joint, type any character on the VT05 console.

PGRAV(<arm>

computes the gravity model of the arm and keeps the arm in static balance
by putting out the compensating torque on the motors, permitting the user to move
the arm manually to any position and orientation. Typing any character on the
VTOS5 console gets you out of this mode.

PJOINT(<arm>)

enables single joint motion under keyboard control. Typing the joint number
from 1 through 6 selects the joint. With the hands in the home position on the
VTO5 keyboard (i.e. left hand on keys ASDF and right hand on keys JKL;)
depressing the first finger of the right hand gives rise to motion in the positive
direction, while the first finger of the left hand gives rise to motion in the negative
direction; the little finger on the right hand speeds up the motion, and the little
finger on the left hand slows down motion. In terms of actual characters, the keys
are as follows:

A slow down motion

; speed up motion

F move in negative direction

J move in positive direction i

The keyboard is scanned continuously, so that the direction, speed and joint
number can be changed during motion. A character not understood will cause the
arm to stop while Q for quit will end the mode and return control to the PDP-10.

PTABLE(<arm>)
PTOOL(<arm>)

enable the mode for Cartesian motion in table (station) and tool (hand)
coordinates. Again, the keys on the VTO5 conscle control the direction and speed
of the motion. In the home position, the first three fingers indicate X, Y, Z axes
respectively, the right and left hands indicate positive and negative direction, and

102

the little fingers indicate fast or slow. The character codes are as follows:

>

slow down motion
speed up motion
negative X direction
negative Y direction
negative Z direction
positive X direction
positive Y direction
positive Z direction

rxXccnmnom=™

6.3.5 Non-motion AL statements

6.3.5.1 Assignment statements

The assignment statement in AL is recognized by POINTY, and may be used
for implicit declarations. In addition, POINTY permits the changing of various
components of variables rather than the whole variable by using POS, ORIENT,
XCOORD, YCOORD and ZCOORD.

ORIENT(f)« <rot expression>; { changes the orientation part of
f, where f is a frame or trans variable}
POS(f) « <vector expression>; { changes the vector part of f,
: . where f is a frame or trans variable}
XCOORD(v) « <scalar expression>;
{ if v is a vector, changes the x-component;
if v is a frame or trans, changes the
x-component of POS(v)}

YCOORD and ZCOORD have the same effect as XCOORD except that the Y
and Z components are changed instead of the X component.

6.3.5.2 Control structures

The control structures IF, FOR, WHILE, UNTIL, CASE, COGEBIN-COEND,
and the synchronization commands SIGNAL and WAIT are all applicable in POINTY.
The statement will not be executed unless POINTY recognizes that it is complete.
Any errors occurring during parsing will return control to the top level.

6.3.5.3 Procedures and Macros

Procedures and macros can be defined as in AL. The macro definition is
completed when POINTY sees a matched c> pair, and procedure definitions are
complete after POINTY sees a complete statement after the procedure declaration.

103

POINTY permits the use of default arguments in procedures and macros. The -

value of the default argument is given during declaration by including the value in
parentheses immediately after the argument. The following is an example.

PROCEDURE MOVE2(FRAME f1,2(bpark -3+zhatsinches),i3(bpark));
MOVE 1l TOf3 VIA {2

The procedure call MOVE 2(yarmypark-3xzhatsinchesypark) will move the
yellow arm to ypark via ypark-3szhattinches; the procedure call
MOVE 2(yarmypark-3xzhatxinches) will cause it to try to go to bpark via
ypark~3#zhatsinches, while the procedure call MOVE 2(yarm) will cause it to try to
go o bpark via bpark-3xzharsinches. Notice that if we gave a default value to fI as
well by making the declaration

PROCEDURE MOVE2(FRAME f1(barm),f2(bpark-3szhatsinches),f3(bpark));
MOVE Il TO3 VIA {2

we could make a procedure call MOVE2 without arguments that moved the blue
arm to bpark via bpark-3xzhatxinches.

Text substitution by macros is also possible in POINTY. The syntax i$
similar to thatin AL, 8 n d default arguments to macros are defined the same way o s
for procedures, i.e. the value of the default argument follows the parameter in

parentheses.

DEFINE ARM = cbarms;
DEFINE V1(A,B,C)=cVECTOR (A,B,C)>;

Note the delimiters U s e d around the b 0 d X of the macro definition. In the
macro definition, the parameter names must be hitherto undeclared variable names.
Using those names for some other purpose in the future will not affect the macro
definition.

The macro name can be used just about anywhere where the body gives a
valid statement or statements. Thus the following are valid:

MOVE ARM T 0 BPARK;
VECT 1« VI(0,0,1);
VECT2¢ V1(c2¢35,1,4);

Note also the use of the delimiters when the parameter substituted is not a
single token but an expressionora sefies of tokens.

A macro definition may be changed by means of the REDEFINE command.
Thus if we wish to change the definition of V1 which has been defined above, we

104

could do so as follows:
REDEFINE V1(D,E,F)=cVECTOR(D,E,F)+4>;

Note that the EDIT command (section 6.3.11) when used with macros
actually utilizes the REDEFINE command.

6.3.5.4 Condition monitors

Condition monitor statements are executed @ S in AL. When POINTY comes
across o condition monitor statement, the appropriate condition statement is set up
and enabled unless it is a deferred condition monitor. Condition monitors can be
ENABLEd and DISABLEd as in AL.

The PRINT, PROMPT and QUERY statements of AL are also applicable in
POINTY and have the same format.

6.3.5.6 RE QUIRE statement

POINTY accepts the REQUIRE statement of AL, and only ERROR_MODE "F"
and SOURCE_FILE are applicable. The other possibilities of the REQUIRE statement
are ignored.

6.3.6 Deletion statement

Variables may be deleted by means of the delete statement. if the deleted
variable is a frame identifier any subtrees rooted in it are also deleted. Examples
of the delete statement are

DELETE s1,52,s3,v1,v2,f1,2;
QDELETE s1,52,s3,v1,v2,1,f2;
DELETE ALL;
QDELETE ALL;

The use of ALL deletes all the user declared variables. If n 0 argument is given, it
is assumed to be ALL, but in the case of DELETE, the user is asked to confirm
that he d 0 e s in fact want to delete all the variables. The variables will disappear
from the relevant boxes in the display. If a variable name is given that POINTY
does not understand, POINTY will assume a spelling error, 3 n d let the user correct
the name. If the user does not want POINTY to inform him that the variable does
not exist, he should use QDELETE instead of DELETE. The QDELETE command is
useful when macros or identifiers are to be read in from o file whose names may
be the same as those already defined in the symbol table.

6.3.7 Display routines

6.3.7.1 Data Disk screen

The standard display has been described in section 6.2.1, and it shows as
much useful information as possible by omitting the use of reserved words like
VECTOR, TRANS, etc, and by abbreviating XHAT, YHAT, ZHAT to X, 7, 2, and not
displaying the values of POINTY defined constants.

There are now four display modes available. In the table display mode,
scalars, vectors, transes, frames, rots, the default move statement, and the files
used in the current session are shown. Owing to lack of space on the display,
macros and function expression definitions are not displayed in this mode. The
REDISPLAY command gets to this mode from other modes.

The type display mode allows the user to see all the current definitions of
the specified data type.

DISPLAY <data type> { where <data type> is SCALAR, VECTOR,
ROT,TRANS,FRAME,MACRO,STRING,PROCEDURE,EVENT}

This display mode permits the display of more variables of a data type than
is possible in the standard display, and the display of macros and procedures.
When the user is more interested in seeing what he has typed so far, the display
mode most useful is the no display mode, invoked by the command

NODISPLAY
This eliminates the display altogether, and just prints out the series of commands

typed by the user. Finally, the variable display mode, invoked by the SHOW
command, allows the user to display selected variables. The syntax is as follows:

SHOW <variable list>
where <variable list> is a list of var able names separated by commas.

The command NOUPDATE causes the values of variables on display not to
be updated, while the command UPDATE undoes effect of NOUPDATE.

106
6.3.7.2 VTOS5 screen

The VTOS screen shows values of the blue arm joints and A/D readings of
each of the potentiometers, and is updated continuously. Here are the commands
for various modes of control of the VTOS display.

COMMAND explanation

VTO5_ON Continuously displays arm joints and A/D readings
VTOS_OFF Shuts of display of arm joints and A/D readings
VTOS_YELLOW Displays yellow arm data

VTOS5_BLUE Displays blue arm data

VTO5_RED Displays red arm data (not currently implemented)
VTO5_GREEN Displays green arm data (not currently implemented)

6.3.7.3 Force Graphics

The GRAPH command in POINTY displays the force components that were
gathered for the last motion command that had the GATHER components specified.
This command plots the force information graphically, and permits the plot files of
graphs to be saved on the disk. (Programs running directly under the AL runtime
system make use of the GAL program module for displaying force data as
described in section 5.6.)

6.3.8 File input/output

File input and output is necessary to generate the affixment trees for AL
instructions, as well as to save the results of a POINTY session and to make use of
the results of previous sessions.

6.3.8.1 Saving current stale - WRITE

The WRITE instruction is used to write on the indicated file the AL
instructions required (declarations, assignments, and affixments) to define variables
and preserve the current state of the world. The syntax is as follows:

WRITE; { into file last written }
WRITE <id>; { into file last written }
WRITE INTO <fi o { write everything into <file> }
WRITE <id> INTO <file>;

If the <id> part is omitted, all the variables (except station, fiducial, pointer, yarm and
barm and other predeclared variables) are output, otherwise only the indicated
frame and the subtrees rooted in it, or the identifier is output. Since frames are
affixed to other frames.in terms of their relative transes, any frame to be saved
should be affixed independently to sazion in order to obtain its absolute location.

107

POINTY permits output to different files. If the file named does not exist, it
is created, and the current time and date written out before the required
information specified by the user. |If it exists and was used during the current
session, the output is appended. If it exists but no input has been done to it
during the current session, the current time and date are put on a fresh page,
followed by the desired output. If no output has been done so far, and no file
name is specified, output will be directed to a file DECLAR.AL on the area of the
current user.

The fact that POINTY appends to existing files rather than overwrites them
may be inconvenient, since it may result in multiple declarations of the same
variable. However, this inconvenience is small compared to the disastrous resuits
that may occur if overwriting were allowed and the user accidentally asked that an
important data file be overwritten. Asking for confirmation before overwriting is
one solution, but not a suitable one in the cases where only certain variable values
need to be updated, while those of others need to be preserved.

6.3.8.2 Getting a given world state - READ & QREAD

The READ and QREAD commands will read the specified file of AL
instructions to bring the state of POINTY’s world to a known state, or to a state
that was saved at the end of the previous terminal session, so that in addition to
being input files to AL, POINTY generated files may be used to store instructions
to build the necessary frame tree structure and assign values to variables.:

READ; { reads from DECLARAL }
READ <file>;

QREAD;

QREAD <file>;

Since movement commands may also be given in the input file, the user
should be careful that the commands do not cause disastrous motions to occur.
The READ command will print out the input file as it is being read. The QREAD
command will execute faster since it does not print out the input file.

Printing can also be controlied from within the file by means of the ECHOON
and ECHOOFF commands which are used as follows:

ECHOON;
ECHOOFF;

The file contents will be printed on the terminal after an ECHOON, and will
continue until an ECHOOFF is encountered. These commands may be used for
selective printing of the input file.

108

6.3.8.3 Saving a terminal session - PHOTO

The POINTY system saves what the user types and error messages in the
disk file POINTY.PHT[PNT,HE] with the time, date and name of the user. This
permits » n examination of the circumstances under which errors occurred.

The user may wish to direct a copy of the terminal input and output to a file
of his own choosing. The command to do this is as follows:

PHOTO <filename>

This will cause a copy of terminal input and output to be saved in the file
called <filename>. Calling PHOTO again with a different filename will change the
destination. Currently there is no provision for shutting off the recording on the
user file except by ending the session.

6.3.9 HELP module

POINTY has a help module which provides interactive help by displaying
information on the screen. Entry to the help module or helper can be invoked by
the command HELP. Once in this mode, reserved words lose their meaning and are
treated as keywords, and there is access to an on-line data base, which is
organized as a directed graph of nodes. Each node has a keyword and
corresponding message, and terminal nodes have null keywords associated with
them. At any time, the user selects a keyword; if the keyword is valid, the
keywords and messages of all the successor nodes -are displayed. Since there is
no matching of the null string keyword, the user cannot go past a terminal node.
The user thus steps through successive nodes in the graph structure or is able to
back up along the path he has t aken to get to the current node. At any point, the
user can trace through the path taken to get to the current node, and access any
of its ancestors, immediate descendants and sibling nodes, or get back to the
starting node. Since data for the helper is stored on a random access disk file,
being read only when needed, the messages can be as detailed and informative as
possible without occupying too much memory during program execution.

If the message is too long to fit on the screen, the <formfeed> and <vert
tab> keys may be used to scroll the information up and down the screen.

The ? node corresponds to the node that prints out help messages, and
directions on the use of the helper. The ménu node corresponds to a list of classes
of keywords corresponding to instructions and description of the hardware,
software, and the AL system.

KXRRARRRRRAARARRRARARRARRAARA H E L P

109

MO DE RRERRRARARNRARNKKRARRARRAARANR

RES gives a list of reserved words

RESH gives one line descriptions of the reserved words
DISP describes display commands

POW describes turning on and off the power to the arms
PUMA describes use of PUMA arms with POINTY

PDP-11 gives information on the PDP-11 interface

VT05 describes V105

OPER shows available operators and functions

EXP valid expressions

FILE Gives the file management commands

ESC_I ESCAPE I command

STATE classes of statements

'ERROR talks about how to handle errors

SYNTAX syntax of statements

DEBUG details of the high level debugger

SYSTEM building up a new POINTY system

BAIL describes the SAIL debugger and how to get at it
ANCESTORS : MENU ?

BRETHREN: HELP BUGS MENU 77

‘»b*n»#n&%?n&ntwnn»n.n»t»ﬁ»»»»»»»nwt»n*n»n#»»tt..:».n.tb'Q'.Q.OD.D&.'.D'QD.’.”"O

Fig. 6.1 Sample of display when using heip command at menu node

110

?
select one of
the keywords

HELP BUGS MENU ww
information on hou to handle hou to give

use of helper bug reporting suggestions for
other help info

RES DI POWER PUMA . wqwqm
list of how to get hou to information on classes of
reserved various mcnu_« initializing AL statements
words displays power to vcz» arms

arms
_w MOT DECL CONT _z*mz m<hnx

assignment motion declaration control interactive synchronization
statement statements statements statements statements statements

OMmz nrwmm MOVE cm_<m nm2+mm m>*1 nmhvx
opening closing moving drivin adaptive ather in plotting
a hand a hand an arm a join grasping orce data force data

Fig. 6.2 Typical path through the help module

The above diagram shows part of the HELP module data structure and how a
user would step through it. On entering the help module he is told to select one
of the keywords "HELP", "BUGS", "MENU", "7?". Suppose he chooses "MENU".
Then he is told the various categories of information available to him (e.g "RES”
will get him information on reserved words, "DISP" on display, "POWER" on turning
on the power, "STATE" on classes of statements, and so on). Suppose he selects
"STATE". Then he is told about assignment, motion, declaration, control, interactive
and synchronization statements. If he selects "MOT", he is told that information on
the various motion statements may be obtained by typing “OPEN", "CLOSE",
"MOQVE", “DRIVE", "CENTER", "GATHER" and "GRAPH".

At any time within the HELP module, the user gets to the ancestor node by
typing "UP", to the top by typing "7, out of the module by typing "DONE", or he
may choose to type a rmv‘io_d at the same level, one along the path he chose to
get to the current node, or a keyword corresponding to one of the descendant

111

nodes. For example, at "MOT", the legitimate keywords are "STATE", "MENU",
"OPEN", "CLOSE", "MOVE", "DRIVE", "CENTER", “GATH", “GRAPH", "?", "UP", "DONE".

6.3.10 Interactive debugger

An interactive high-level debugger has been implemented in POINTY. Its
syntax is similar to that of BAIL[Reiser 75], the source level debugger for the
programming language SAIL[Reiser 76). In order to activate the debugger, the
debug mode must be set by means of the DEBUGON command. To leave the debug
mode and resume normal mode, the instruction DEBUGOFF must be given.

When in debug mode, simple statements are executed immediately, while
there is a pause at the beginning of compound statements and control is returned
to the user. In the debug mode, the user is prompted by the symbol ":#:". Input
can be edited in the standard line editor to allow correction of mistyping. The
activation character is the semicolon or the carriage return, whichever comes first.

While in debug mode, AL expressions typed by the user are evaluated in
the context of the program where execution was suspended. The evaluation is
performed just as if the user had inserted an extra statement into the original
program at the point where execution was suspended. The AL expression must be
legitimate at this point.

AL statements are numbered starting from 1, and each time there is a new
statement, the numbering count is incremented by 1. Thus if a BEGIN-END block is
being executed, the first "BEGIN" takes the number 1, the first statement in the
block takes the number 2, and so on. In addition, if procedures are declared in the
debug mode, the statements in the body are numbered starting from 1. Reference
tao an instruction can be made through its statement number, or “coordinate”, as
described in BAIL[Reiser 75] Reference to a statement in a procedure requires
both the name of the procedure and the statement number, which begins with “1"
for the first statement in the block.

6.3.10.1 Setting breakpaints

As in BAIL, break points can be set by means of the BREAK command as
follows:

BREAK(STMNT#);
BREAK("PROCEDURE_NAME", STMNT#);

Here STMNT# refers to the statement number of the statement, and
PROCEDURE_NAME refers to the name of the procedure if the break point is to be
inside the procedure. The break point is inserted just before the statement, and
when execution reaches this point in the program, control returns to the user in

112
DEBUG mode.

6.3.1 0.2 Permanent breakpoints

The statement HALT puts a permanent breakpoint in the program and
returns control to the user in DEBUG mode when program execution reaches this
point. This instruction is inserted in the text of the program being debugged,
unlike the BREAK instruction that is used interactively in the process of debugging @
Proceeding past the breakpoint can be done as described in the section "Resuming

Execution".

6.3.10.3 Abort execution

The QUIT command abandons execution of the current program and gets
control back to top level. This command is currently valid only outside the body of

a procedure.

6.3.10.4 Restarting a program

The RESTART instruction begins re-executing the current user statement or
program. It can be called only from outside the body of a procedure.

6.3.10.5 Displaying source level code

The source code at specified statements can be displayed by means of the
TEXT command. Here is a set of legitimate calls to the TEXT command.

TEXT;

TEXT(MIN#);

TEXT(MIN#,MAX#);
TEXT("PROCEDURE_NAME"MIN#);
TEXT("PROCEDURE_NAME" MIN#,MAX#);

MIN# and MAX# are integers. The source text is shown from MIN# to MAX#
when MAX# is greater than MINs. If MAX# is less than MIN#, then the text shown
is from MIN# to MIN#+MAX#, If MAX# is omitted, then only the text at MIN# is
shown. If both numbers are omitted, the next instruction to be executed is

displayed.

6.3.10.6 Listing the existing break points

The command TRAPS shows the existing break points in the program, and is
used to keep track of where the current break points are.

113

6.3.10.7 Removing a break point

A break point set by the BREAK command can be removed by’ :..a UNBREAK
command. The syntax of the command is as follows:

UNBREAK(STMNT#)
UNBREAK("PROCEDURE_NAME", STMNT#)

The debugger complains if there is no break point at the corresponding
statement.

6.3.10.8 Resuming execution

The command NGO or <CONTROL>G resumes execution of the: program from
the point of suspension until another break point or the end of the program is
encountered.

The command MSTEP or <CONTROL>S resumes executing the current
statement until a new statement is encountered, at which point exiecution of the
‘statement is suspended. This command allows single stepping into procedures or
compound statements.

.:.m command "GSTEP or <CONTROL>X continues execution until the end of
the current statement. it considers a compound statement or a procedure call to
be a single statement, and stops after execution of that statement.

As an example, consider the following routine called ACQUIRE and the calling
program. '

PROCEDURE ACQUIRE(FRAME object);

Al. BEGIN

A2 OPEN bhand TO 3.8«inches;

A3. MOVE barm TO object WITH APPROACH=-3+zhattinches;;
A4. CENTER barm;

A5. END;

1. BEGIN

2 FRAME f1;

3. {1 «<FRAME(ROT(YHAT,180+degrees),VECTOR(30,40,5)#irches);
4, ACQUIRE(f1);

5. IF bhand<0.2¢inches THEN PRINT("Could not get it");

6. HALT;

7. END; '

Now suppose that there is a break point at statement 4 is the mai

©

114

program. !GO or <control>G will cause execution and return control at statement
6 which is HALT NGSTEP or <control>X will execute the procedure ACQUIRE and
return control to the user at the beginning of statement 5. USTEP or <control>S
will step through the procedure ACQUIRE and return control to the user at
statement Al which is the first statement in the procedure ACQUIRE.

.

6.3.11 Miscellaneous commands

EDIT <variable>;

loads the line editor with the value of the variable and allows the user to edit it.
This is particularly useful when the user wants to change the rotation part of a
transformation without changing the vector part. <variable> can be a scalar,
vector, rot, trans, frame or macro. When it is a macro name, the macro definition is
displayed line by line so that the appropriate modifications can be made.

RENAME <variable>;
allows the user to change the name of the variable.

DUMP_VARIABLES(<filename>);
and LOAD_VARIABLES(<filename>);

dump the currently declared variables and their values in the disk file <filename>
and restores variables from the POINTY written file <filename> respectively. Note
that this works with simple variables only at the moment, and that the data is
stored in a compact POINTY readable form which cannot be read by text editors.
This facility is provided for fast saving and restoration of a state of the world.

READMESSAGE

tells POINTY to look for future input from its job mailbox. This command permits
another job on the PDP-10 to send POINTY and AL instructions format through the
interjob mailbox system. Any messages received are printed out at the terminal.
The instruction STOPMESSAGE tells POINTY to accept future input from the
terminal.

EXIT;

exits from POINTY.

Some error recovery procedures are available. Whenever an undeclared
identifier is used where, POINTY expects a known variable or its value, POINTY will
keep asking for a corrected name until it is given something it can work with, or

115

the user hits <control>C to get out of the query loop.
<ESCAPE>|

typed on the terminal will cause termination of program execution at the end of
the current input line or statement, whichever comes first. All typeahead will be
flushed, and if POINTY is reading from an input file, it will stop. The next input
accepted will be from the keyboard. This command is used to get out of runaway
executions when instructions are being executed from a file through the READ
command, or out of infinite loops.

6.4 Hints on using POINTY

6.4.1 Suggested sequence for using pointer

The following is a suggested sequence of steps for using POINTY after
initializing if you are using the pointing tool.

1) Use the arm to grasp the fiducial point and type the instruction
FIDUCIAL « BARM;

2) Put the pointer in the hand of the arm and grasp it tightly. Point the tip of
the pointer to the fiducial point and type the instruction

POINTER « FIDUCIAL;

3) Now affix the pointer to the arm frame
AFFIX POINTER TO BARM;

4) For any object, it is desirable to find a reference point for the reference
frame. In order to be able to locate the object quickly for future. use, it is
desirable to have the orientation parallel to the station orientation. Thus the
pointer should be used to point at the reference frame, and the following

instruction typed
origin « 8§ POINTER;

5) The frames for other features of interest are found by using barm,pointer,
CONSTRUCT. Let us call these new frames fl, f2, f3;

6) These frames should be affixed to the origin by the instructions

AFFiIX f1 TO origin RIGIDLY;

116

AFFIX 2 TO origin RIGIDLY;
AFFIX £3 TO origin RIGIOLY;

7) Before exiting from POINTY, do not forget to save the frame tree you are
interested in.

6.4.2 Hints

1) It is possible to record the values of variables during a session by asking to
edit those variables. The values will be saved within the file collecting the

terminal output.

2) If the POINTER is physically removed from the arm, the user need not bother
to UNFIX it. So far as POINTY is concerned, there is an imaginary pointer in the
hand. If the user can put back the pointer in the same position later, the values
will still be valid. For access to difficult places, the bendy pointer (6.1.2.2) can be
used; however, it must be redefined each time it is bent.

3) Certain positions may be read more easily by moving the arm there and
-grasping, rather than using the pointer. In that case the value of barm should be
used.

4) It is a good idea to save the current value of a frame within another

variable before moving it, so that if you iater decide to backup, the value will be
available.

5) While objects may be in any arbitrary orientation, it is generally easier to
use POINTY if the principal axes of frames are parallel or orthogonal to the station
axes.

6) Remember that if you want to recall what you did during a POINTY session,
a record is kept in the file POINTY.PHT[PNT,HE].

6.4.3 Accurate Part Relocation

Once the part or part fixture locations are taught accurately, future use of
the data involves relocating the parts at the same spot with a high degree of
accuracy. One way would be to outline the part or fixture on the tabletop with a
pencil. A second way would be to tape it to the tabletop. Neither way is
desirable, since the first way relies on the outlines not being deleted accidentally,
and the second precludes setting up any other objects or parts. Judicious use of
the tabletop flexible fixturing system allows the part or part locations to be
located quickly and accurately at a subsequent time. The flexible fixturing system
consists of the aluminum:table top plate with holes, clamps, bolts, locating pins and
wingnuts. Parts or part holders can be located by pushing them against the

117

locating pins, and held securely by the bolts, clamps and wingnuts. The holes are

identified by means of grid coordinates, s
location of the fixtures on the tabletop.

o that a record can be kept of the

118

Appendix |. AL RESERVED WORDS, PREDECLARED CONSTANTS AND MACROS

Reserved Words

ABORT
ABOUT

ACOS

ADC

AFFIX

ALONG

AND

ANGLE
ANGULAR_VELOCITY
APPROACH
ARRAY
ARRIVAL

ASIN

AT

ATAN2

AXIS

BEGIN

BY

CASE

CENTER
CLOCKWISE
CLOSE
COBEGIN
COEND
COMMENT
COMPILER_SWITCHES
CONSTRUCT
COUNTER_CLOCKWISE
€0s

DAC

DEFER

DEFINE
DEPARTURE
DEPARTING
DIMENSION
DIMENSIONLESS
DISABLE
DISTANCE

Div

DO

DURATION
ELSE

ENABLE

END

EQV

ERROR
ERROR_MODES
EVENT

eXp

FOR

FORCE
FORCE_FRAME
FORCE_WRIST
FRAME

FROM
GATHER
HAND

IF

IN

INT

INVY
INSCALAR
LABEL

T0E

MAX
MESSAGE
MIN

moe

MOVE
NO_NULLING
NONRIGIDLY
NOT
NOWAIT
NULLING
OF

ON

OPEN
OPERATE
OR

ORIENT
PAUSE

POS

PRINT
PROCEDURE
PROMPT
QUERY
REFERENCE
REQUIRE
RETURN
RETRY
RIGIDLY
ROT
RUNTIME
SCALAR
SETBASE
SIGNAL

SIN
SOURCE_FILE
SPEED_FACTOR
SQRT

STEP
STIFFNESS
STRING
STOP

TAN

THEN

TIME

T0

TORQUE
TRANS

UNFIX
UNIT
UNTIL
VAL
VALUE
VECTOR
YELOCITY
VIA

M
WAIT
WHERE
WHILE
WITH
WOBBLE
WORLD
WRIST
WRT
XOR
ZEROED

Predefined const ant s

n

BPARK

cM

CRLF

DEG

DEGREE
DEGREES
EXCESSIVE_FORCE
FALSE

6M

GPARK

INCH

INCHES

LB

LBS

NULL

OUNCE
OUNCES

0oz
NILDEPROACH
NILROT
NILTRANS
NILVECT
PANIC_BUTTON

RADIAN
RADIANS
RPARK
RPM

SEC
SECOND
SECONDS
STATION
TIME_OUT

TRUE MZ

XHAT Ti

YHAT T2

YPARK 13

ZHAT T4
15

Predefined identifiers 16
TBL

BARM

BARM_ERROR

BHAND

BHAND_ERROR

DRIVER

DRIVER_ERROR
DRIVER_GRASP
DRIVER_TIP
DRIVER_TURNS
FIXED_JAW
GARM
GARM_ERROR
GHAND
GHAND_ERROR
MOVING_JAW
RARM
RARM_ERROR
RHAND
RHAND_ERROR
VISE
VISE_ERROR
YARM
YARM_ERROR
YHAND
YHAND_ERROR

Predefined macros

APPROXIMATELY
CAUTIOUS
CAUTIOUSLY
cw

ccw
DIRECTLY
NORMALLY
PRECISELY
QUICK
QUICKLY
SLOW
SLOWLY

Words used with gather

FX
FY
FZ
MX
MY

119

120

Appendix Il. POINTY RESERVED WORDS & PREDEFINED CONSTANTS

In addition to the words recognized from AL, POINTY recognizes the

following:
Reserved words

ALL
ALPRIN
ARMREACH
BAIL

BJT
BREAK

BY

CALIB

DOT
DEBUGOFF
DEBUGON
DELETE
DISPLAY
DRIVE
DUMP_VARIABLES
ECHOOFF
ECHOON
EDIT

EXIT
GRAPH
HALT
HELP

INTO
ISAFFIXED
LINE
LOAD_VARIABLES
MOVEX
MOVEY
MOVEZ
NODISPLAY
NOELF
NOFOLD
NOUPDATE
PFREE
PGRAV
PHOTO
PJOINT
PPCODE
PRTIME
PTABLE
PTOOL
PWCODE
QBAIL
QDELETE
QREAD
QuIT

READ
READMESSAGE
READWRIST
REDEFINE
REDISPLAY

REL

RENAME
RESETSTATUS
RESTART
RESUME_MESSAGE
SAVECOREIMAGE
SETSTATUS
SHOW
STOPMESSAGE
TeXT
TIME_OUT
TRAPS
UNBREAK
UPDATE

V705
VT05_BLUE
VT05_GREEN
VTO5_OFF
VTO5_ON
VTO5_RED
VTO5_YELLOW
XCOORD
YCOORD

A A1)

ZCOORD

Predefined Ildentifiers

BGRASP
POINTER

121
Appendix lll. AL COMMAND SUMMARY

BLOCKS : BEGIN §; 53 S; ... S END
COBEGIN S; S; S; .. S COEND)

LABEL [1,i2;
STRING st st2;

o »LARATIONS: TIME SCALAR tsl, ts2;
DISTANCE VECTOR dvl,dv2;
ROT rl,r2; FRAME f1,12;
TRANS 11,125 EVENT ol ,02;
FRAME ARRAY {1 [s1:52),42[s3:54,55:56,..);

PROCEDURES: _...zOOmocmm ply S
SCALAR _uxOOmocmm spl A<>_.Cm SCALAR <¢_.<u~n
REFERENCE ROT rrl;
SCALAR ARRAY as1[2:3]); S;
OPERATIONS:
scalar &t $45,5-5,5%5,5/5,5Ts,\v],IrlIslv.v,s MAX ¢, s MIN ¢, s MOD s, s DIV s,

vector v: <mn._.0m? 5,6),(5,5,5),5%v,vXs,v [5,vev,v=v,vRv,rav tav fxv,y WRT {,
' UNIT{v),POS(f),AXIS{r)
rot r: ROT(v,s),(v,s),rkr ORIENT(f)
frame f: FRAME (r,v),fev,f=v,f%t,CONSTRUCT(v,v,v}
trans t: TRANS(r,v),(r,v), Tx 1, INV(T)
boolean b: =b, NOT b, bab, b AND b, bvb, b OR b, bsb, b EQV b, b®b, b XOR b,
mﬁ.mmu.nnn.w\n.nvn s
dimension d: dxd,d/d,INV{d)

FUNCTIONS:

scalar INT(s),5QRT(s),SIN(s),COS(s), TAN(s),ASIN(s),ACOS(s),ATAN2(s,8),LOG(s),
EXP(s),INSCALAR,RUNTIME,RUNTIME(s)

boolean QUERY (print list)

AL s: n,P1,BHAND,YHAND,GHAND,RHAND,DRIVER_TURNS
CONSTANTS v: XHAT,YHAT,ZHAT NILVECT
AND rs NILROT

VARIABLES f: STATION,BPARK,YPARK,GPARK,RPARK,®(valid only in MOVE)
BARM,YARM,GARM,RARM,DRIVER_GRASP,DRIVER_TIP
t: NILTRANS
b: TRUE, FALSE
strings: CRLF,NULL
units: CM,INCH,INCHES,0UNCES,0Z,GM,LBS,SEC,
SECONDS,DEG,DEGREES,RADIANS,RPM
dimensions: DISTANCE,TIME,FORCE,ANGLE,TORQUE,ANGULAR_VELOCITY,VELOCITY,

DIMENSIONLESS

STATEMENTS:
comment COMMENT <any text without semicolond;
{ <Cany text> }

control FOR s « <scalar> STEP <scalar> UNTIL <scalar> DO <statoment>;
IF <condition> THEN <statement> ELSE (statement;
IF <condition> THEN <¢statement);
WHILE <condition> DQ ¢statement;
DO <statement> UNTIL <condition>;
CASE <scalar> OF BEGIN §;S;.. S END;
CASE <scalar> OF BEGIN [il] S; [i2] S; ...ELSE je0; [i3](i4] S END;

affix AFFIX f1 TO f2 AT t]1 RIGIDLY;
AFFIX 3 TO 4 BY t2 NONRIGIDLY;
AFFIX 13 TO 14 BY 2 AT t1 NONRIGIDLY;

122

unfix

condition
monitor
statement
and
clauses

with
clauses

enable
disable

motion

print

abort
prompt
pause
wrist
signal

wait
assignment

return

UNFIX (5 FROM t6;

ON FORCE({<vector>) <rel> <forca scalar> DO <statement>;
ON TORQUE <rel> clorque scalar> ABOUT <vector> DO <statement>;
ON |FORCE] <rel> ¢force scalar> ALONG <axis vect> OF {1 DO .;
ON. TORQUE <rel> <torque scalar> ABOUT <axis vect> OF 1 IN HAND DO .
ON DURATION 2 <time scalar> DO <statemend>;
ON ARRIVAL DO ¢statement>;
ON DEPARTING DO ¢statement>;
ON ERROR = ¢scalar> DO ¢statement;
<label>: DEFER ON <event> DO (statement>;
<rel> is 2 or <

FORCE, TORQUE, DURATION similar to condition monitor
WITH FORCE_FRAME = <frame> IN <co-ord sys>

WITH SPEED_FACTOR = <scalar>

WITH APPROACH = <distance scalar> or (distance vector> or <frame>
WITH DEPARTURE = ...

WITH WOBBLE = <scalar>

WITH NULLING or NO_NULLING

WITH FORCE_WRIST ZEROED or NOT ZEROED

WITH STIFFNESS = (v,v) ABOUT f

WITH STIFFNESS = (s,5,5,5,5,5) ABOUT f IN WORLD

WITH GATHER = (FX,FY,FZ,MX,MY MZ,T1,72,73,T4,75,T6,TBL)

ENABLE <label>
DISABLE <label>

MOVE {1 TO <fvab>;
MOVE {1 TO <frame> VIA (frame>(framed frame>;
MOVE {1 TO <ival>
VIA <frame> WHERE DURATIGN = ctime scalar>,
VELOCITY = ¢velocity vector>
THEN <statement>
<more clauses);
MOVE {1 TO <fval> <more clauses>;
OPEN <¢hand> TO <distance scalar>;
CLOSE <hand> TO <distance scalard;
CENTER <arm>;
OPERATE <device> <clauses>
STOP <device>;
RETRY;

>) e is an expression, variable or string constant
<e>) similar to print

.,<@>) similar to print

ar>;

PRINT (<e>,<e>,
ABORT(<e>,<e>

WRIST(fv,tv);
SETBASE;

SIGNAL el;
WAIT el;

<var> « <expression> .

RETURN
RETURN{<expression>)

123 124

require REQUIRE SOURCE_FILE "DSK:FILE.EXT"; .
REQUIRE COMPILER_SWITCHES "LSK"; Appendix IV, POINTY COMMAND SUMMARY
REQUIRE ERROR_MODES "LAMF";
REQUIRE MESSAGE "(message>™;

PROCEDURES: PROCEDURE p2{VALUE SCALAR vsl,vs2(23)); S3

macro DEFINE <macro_name> = c <macro_body> 33
DEFINE <macro_name>(mi,m2,..) = € (macro_body> i § OPERATIONS:
vector v: VRELF
MACROS: DIRECTLY WITH APPROACH=NILDEPROACH frame f: CONSTRUCT(f,f,),fl REL f2
WITH DEPARTURE=NILDEPROACH
CAUTIOUS SPEED_FACTOR « 6.0 FUNCTIONS:
SLOW SPEED_FACTOR + 4.0 boolean ARMREACH(arm,f),ISAFFIXED(f,f)
QUICK SPEED_FACTOR + 1.0
CAUTIOUSLY WITH SPEED_FACTOR = 6.0 STATEMENTS:
SLOWLY WITH SPEED_FACTOR = 4.0
NORMALLY WITH SPEED_FACTOR = 2.0 affix AFFIX 13 TO f4 +;
QUICKLY WITH SPEED_FACTOR « 1.0 AFFIX 3 TO $4 AT Il x;
PRECISELY WITH NULLING
APPROXIMATEIY WITH NO_NULLING motion MOVE f1 BY <vector exp>;

MOVEX or MOVEY or MOVEZ /| BY <scalar>;
OPEN <hand> BY <scalar>;

CLOSE <hand> BY <scalar>;

DRIVE BJT(<jt no>) TO <scalar;

DRIVE YJT(<jt no>) 8V <scalar;

assignment POS(<var>) + <vect expression>;
ORIENT(<var>) « <rot expressiond;
XCOORD(<var>) « <scalar expression;

input/output READ; READ <filed; QREAD «<file>;

(tile) WRITE; WRITE INTO <file>; WRITE <id_list;
WRITE ALL INTO <filed>; WRITE <id_Jist> INTO <filed;
PHOTO <file>;

edit RENAME <var>;

rename EDIT <var>;

display DISPLAY SCALAR;
(terminal) REDISPLAY; NODISPLAY;
SHOW varl ,var2,var3,..varn;

{vt05) VTO5_ON; VT05_BLUE; VT05_GREEN;
VTO05_OFF; VTO5_YELLOW; VTOS_RED;

deletion DELETE sl,82,v1,v2,.3
DELETE;
00ETETE ALL;
macro DEFINE m2(mml,mm2,..,mmx{mdx),mmy(mdy),mmz(mdz))= € <macro_body> o;

help HELP; HELP <keyword>;

2a.

2b.

2c.

2d.

DEVICE

Terminal

V105

or

ARM
POWER

125

Appendix V. AL EXECUTION SUMMARY

USER RESPONSE

AL RESPONSES

Create file FOO.AL

COMPILE FOO.AL

DO AL[ALHE]

FOO

START <alt><alt> G
<alt>G

Swapping to SYS: AL. DMP
AL:FOO 12 3 ..

ALC
PALX 246

ALSOAP

.\.l

CORE SIZE = 28K

VERSION USING VTO05

GET SAV FILE - AL[ALHE]

OVERLAY BIN FILE - FOO

AN EXTENDED COMMAND - VTos
START AT (1000) (D FOR DDT) - D °
DDT STARTED AT 130000

AL RUNTIME SYSTEM

<any output from your program>

ALL DONE NOW. SEE YOU AROUND/
ELAPSED TIME = 24.928 SECONDS

NO ACTIVE PROCESSES LEFT. YOURE IN DDT.
BE ;SRFADL+50>>BPT

<alt>G {for re-execution}

pull on the yellow cord
around table to kill arm power

126
‘Appendix VI. AL examples

Here are several sample AL programs. A brief description is given for each
of the programs given.

ENGINE ASSEMBLY

This program causes the arm to pick up a crankshaft assembly and lower it
into the body of the engine. it then picks up the top of the engine and places it
over the crankshaft, thereby completing the assembly.

BEGIN "assemble engine”™
{ program to place the crankshaft assembly and the engine top on
the engine body}

FRAME o:nm:o...ov__w3&:0u.cvr:s-_.n.‘-:rnr-:_n::rnzuzuz..._u
FRAME bgrasp;

engine_top « FRAME .xo:~:>q.8.ooo*omnxmmm..<mn32m_.o.ﬁ.n.u‘_s*_znzmmx
engine_top_final « FRAME (ROT(ZHAT,45.000¥DEGREES),VECTOR(57.3,49.3,10.2)%INCHES);
crankshaft_final « FRAME (ROT(ZHAT, 45 000XDEGREES),VECTOR(57.3,49.2,8.48)%INCHES);
crankshatt « FRAME (ROT(ZHAT,90.000*DEGREES),VECTOR(51.3,40.3,4.09)#INCHES);

AFFIX bgrasp TO barm AT ._.m>2m=~oixrn.._wo*aon.,o-:.:f.zt:o_‘-v RIGIDLY;
PRINT("ASSEMBLING ENGINE™);
OPEN bhand TO 3.0kinches;

MOVE bgrasp TO crankshaft;
CENTER barm;

{ open hand }

{ grab the 2.:_61-: }
crankshaft « bgrasp;
AFFIX crankshaft TO bgrasp RIGIDLY;

MOVE crankshaft TO crankshaft_final ¢ 3x%zhatxinches
WITH DURATION=2%seconds; { take crankshaft above engine }

MOVE crankshaft TO crankshaft_final - 0. 3xzhatxinches
WITH WOBBLE = 0.1 xDEGREES
WITH DURATION = 5xseconds; { insert piston }
UNFIX crankshafit FROM barm;

OPEN bhand TO 3.7 xinches; { rolease crankshaft }

'MOVE bgrasp TO engine_top siowly;

CENTER barm;
engine_top+bgrasp;

AFFIX engine_top—O barm RIGIDLY;
MOVE engine_top<O engine_top_final + 1 .8xzhatxinches;
MOVE engine_top~Q engine_top_final + 1.0xzhatxinches;
{ by trial and error it was found
that doing this reduced oscillation
' of crankshaft assembly }
MOVE engine_top TO engine_top_final - 0.3%zhatxinches

127

WITH FORCE_FRAME = STATION iN FIXED

WITH WOBBLE = 0.1 *DEGREES

WITH DURATION = 5xseconds

ON FORCE(zhat)>80%ounces DO STOP engine_top;

UNF IX engine_top FROM barm;
OPEN bhand TO 3.8xinches;

MOVEbgrasp T(Q bgrasp * VECTOR(-4,-4,0)xINCHES;
(ean't move out siraight because elbow joint

(joint 5) will ba at limit, so we nwa the
band sideways)

MOVE barm T(Q bpark; { all done now }

END "assemble engine”

SHIFTING CASTINGS

This program causes the arm to shift a row of three castings back and forth
between two positions.

BEGIN "casting shifter”
{program to shift a row of three castings back a n d forth between two positions}

[RAME casting, casting_grasp, pick_up, set_down, line_l, line_2;
DISTANCE VECTOR dpick, dset;
SCALAR i,j,k;

DEFINE TIL= <STEP | UNTIL ;

line_l + FRAME(ROT(zhat,90 % degrees),VECTOR(28,30,0) ¥ inches);
line_2 + FRAME (nilrot, VECTOR(32,24,0) ~ inches);

AF [1X casting_grasp TO casting {describe casting}
AT TRANS(ROT(xhat,i80 « degrees),VECTOR(1.2,1.5,1.87) % inches) RIGIDLY;

OPEN bhand TO 3.5 % inches;

FORKk« ! TT. Z DO {do it all twice}
BEGIN "outer loop”
pick_up ¢ line_1 |
set_down + line_2 = 0.8 % zhat * inches; (ifGen @ easting position)

dpick + =4 x yhat % inches;
dset « +4 x xhat x inches;
FOR i« ITIL Z €O {move the castings)nc @ ond back again}
BEGIN "inner loop"

casting « pick_up;

MOVE barm TO casting_grasp; 060 got firstone)

FOR i« | TIL 3 DO 0401 onCU o culing)

BEGIN

CENTER barm;

casling_grasp « barm; {erab ona}

AFFIX casting TO barm RIGIDLY;

MOVE casting TO set_down * 2 x zhat % inches {shift it over}
WITH APPROACH = Z # inches;

128

MOVE casling TQ set_downDIRECTLY {& place i' on the table}
ON FORCE(zhat) 2 TOO * 0z DO STOP;

OPEN bhand TO 3.5 * inches; {release it}

UNFIX casting FROM barm;

pick_up « pick_up ¢ dpick; {wde ODUC o nod oY i)

set_down ¢ set_down ¢ dset; {&wbai @ nexl goes)

casting « pick_up;

IF i <3 THEN MOVE barm T O casting_grasp {go get next one}

WITH DEPARTURE = -3 « inches;

END;

pick_up « line_2; {getreadyto mov e {hemback)
set_down « line_l = 0.8 . zhat . inches;
dpick + +4 % xhat x inches;
dset « -4 . yhat % inches;
END “inner loop";
END “outar loop";

MOVE barm TO bpark WITH DEPARTURE = -4 % inches; {when dono put the arm away}

END;

CASTING INSPECTOR

BEGIN “casting inspector”

{The arm is moved to = pick up point where il grabs = casting.
Depending © n the weight of the casling it is either rejected o « accepted.
Rejected castings are dropped in garbage bin, while accepted onas
arelined up in © row. The program terminates after finding tbre ¢
good caslings.}

[RAME pick_up, set_down, garbage, casting, casting_grasp;

DISTANCE VECTOR dset;

SCALAR good_castings, heavy;

set_down + FRAME(nilrot,VECTOR(1 5,40,-0.8) * inches); {initiallocations}
pick_up « FRAME(ROT(zhat,90 * degrees),VECTOR(4,44,0) * inches);
garbage « FRAME(ROT(zhat,90 * degrees),VECTOR(18,45,7) % inches);
dset « =4 x xhat * inches;

AF [IX casting_grasp TO casting {describe casting}
AT TRANS(ROT (xhat,180 * degrees),VECTOR(1 .2,1.5,1.87) % inches) RIGIDLY;

OPENbhand TO 3.5 * inches;
good_castings « 0;

o (10o0p fo find 3 good castings}
BEGIN

casting + pick_up;
MOVE barmTO casting_grasp; {go gol o casting}
CENTER barm;
casting_grasp + barm;
AFFIX casting TO barm RIGIDLY;
heavy + false; {sed if it weighs enough)
MOVE casting TO @ + Z x zhat % inches DIRECTLY
ON FORCE(=zhat) 2 85 % oz DO heavy *+ firue;

IF heavy THEN

129

BEGIN “good casling”
MOVE casting TO set_down * 2 = zhat * inches DIRECTLY;
MOVE casling TO set_down DIRECTLY

ON FORCE(zhat) 2 90 % 02 DO STOP; [place it on table with others}
OPENbhand T(35 * inches;
UNFIX casting FROM barm;
good_castings + good_castings ¢ 1;
set_down + sel_down + dset;
MOVE barm TO @ + 3 x zhat % inches;
END "good ceasting”

ELSE

BEGIN "bad casting™
MOVE casting TO garbage DIRECTLY;
OPEN bhand TO 35 x inches; {trash bad one}
PRINT("defeclive casting!”crif);
UNFIX casting FROM barm;
EN® "bad casting™;

{update e good onas)
{& where next goes}

END

UNTIL good_castings 2 3; {repeat until we find 3 good castings}

MOVE barm T(Q bpark DIRECTLY; {put arm away when done}

END;

FORCE DEMONSTRATIONS

This program demonstrates the use of force sensing and compliance over a
series of short examples.

BEGIN “force demo”
REQUIRE ERROR_MODES “F"; {coerce dimensionless quantities}

SCALAR thresh,dum,ybias,zbias,dur;
[RAME scr,hole,cup;
ROT stand;

scr + FRAME(ROT(zhat,66 0%deg)%ROT(zhat,! 78.9%deg)xROT(zhat,~1 13.4%deg),
VECTOR(8.161,39.062,5.092)*inches);

stand + ROT(xhat,180.0 x degrees);

hole + FRAME(stand, VECTOR(17.7,27.5,1.625)xinches);

cup « FRAME(stand, VECTOR(7.1 64,32.803,3.1 25)xinches);

MOVE barm TO scr WITH DURATION = 2xseconds;

WHILE QUERY("DO TRIGGER DEMO? ") do

BEGIN {this demo prinis out whenihe threshold corz @ specified
is exceeded in the principal directions}

PRINT("trigger level? - "); thresh « INSCALAR;

PRINT("duration? - "); dur + INSCALAR;

MOVE barm TO S.C DIRECTLY
WITH GATHER=(fx,fy,fz,mx,my,mz) {gather all six components }
WITH FORCE_FRAME = station

{n on the next three lines mean basp the terminal }
ON [FORCE|2 thresh x ounces ALONG xhatDO print("xtriggern ™)

ON |FORCE] 2 thresh x ounces ALONG yhat 2O print(“ytriggern “)
ON |FORCE] 2 thresh % ounces ALONG zhat DO print(“ztriggern *)

130

WITH DURATION = dur x seconds;
END;

WHILE QUERY("DO COMPLIANCE DEMO? ") DO
BEGIN (maAas arm compliant in various directions ind planes}

PRINT("FREE IN X DIRECTIONn",crif);
MOVE barm TO scr DIRECTLY WITH DURATION °'.5 % seconds;
OPEN bhand TO Z % inches; PAUSE(] % second);
CENTER BARM;
MOVE barm T0 ser DIRECTLY
(ror next | 5 seconds arm will ba compliant to external forces
in X direction, i.e. pushing in X direction causes armto Moy e
along X direction, while the arm resists forces in other directions }
WITH DURATION = 15 % seconds
WITH FORCE_FRAME = station
WITH STIFFNESS = (0,40,40,4000,400,400) ABOUT niltrans;

PRINT("FREE IN X-V PLANER",CRLF);
MOVEbarm T(Q scrDIRECTLY WIiTHDURATION#1.5 % seconds;

MOVEbarm T(Q scr DIRECTLY
{ for next 15 seconds arm will b @ compliant to external forces
in X=Y direction, i.e. it will comply to forces in the horizontal
plane while resisting verticai forces }
WITH DURATION = TV % seconds
WITH FORCE_FRAME = station
WITH STIFFNESS = (0,0,40,2000,2000,400) ABOUT niltrans;

PRINT(“CENTER OF COMPLIANCE AT ~4 INCHES",CRLF);
MOVE barm TO scr DIRECTLY WITH DURATION = | .5 % seconds;
MOVE barm T(Q scr DIRECTLY
{ roc next 10 seconds forces the arm will try to comply to
about a point 4 inches above initial hand location {remember
that compliance is specified in hand coordinates) }
WITH DURATION= 10 x seconds
WITH FORCE_FRAME = station
WITH STIFFNESS= (20,20,20,30,30,30)
ABOUT FRAME (nilrot,~4 * zhat x inches);

PRINT("CENTER OF COMPLIANCE AT 6 INCHES™,CRLF);

MOVE barm TO scr DIRECTLY WITH DURATION = 1.5% seconds;
MOVE barm TO0 S.[DIRECTLY

(corc next10 seconds forces the arm will try to comply to
about @ point 6 inches along the fingers o ¢ the initial
hand location (r ber that pli is specified in hand
coordinates) }

WITH DURATION = TO % seconds
WITH FORCE_FRAME = station

WITH STIFFNESS = (I 5,1 5,1 5,20,20,20)

ABOUT FRAME(nilrot,6 x zhat x inches);

END;

WHILE QUERY("DO PUSH DEMO? ") €O
BEGIN [pushes arectangular blockintoaraclangularbd ¢ s
FRAME here;
PROMPT("PUT BLOCK | N HAND n"); .
MOVEbarm TQ hole * 4 zhat x inches DIRECTLY WITHDURATION=2 % saconds;
MOVE barm TO hole - zhat % inches DIRECTLY
WITH DURATION = Z x seconds
WITH FORCE_FRAME = station IN world

131

ON JFORCE(zhat)] L 1 S + ounces DO STOP barm;
PRINT("OK =~ TOUCHED"); { block in place }

here+barms;
MOVE barm VIA here-2 x zhal x inches

{ now push down on the block }

TO here DIRECTLY

WITH DURATION = 4 % seconds

WITH FORCE_WRIST NOT ZEROED

WITH FORCE_FRAME = station

WITH STIFFNESS = (30,30,30,30,30,30) ABOUT NILTRANS;
END;

WHILE QUERY("DO €0EE FOLLOW 0EMOT ") DO

BEGIN { this follows an edge }
ybias+10; zbias+1 5; { suggesting possible values for ybias and zbias)
PRINT("ybias force is: {",ybias,”)"); ybias-INSCALAR;
PRINT("zbias force is: (",zbias,”)"); zbias~INSCALAR;
PRINT("PUT BLOCK IN HAND n",CRLF);dum+QUERY("READY? *);
[RAME here,side,hole;
hole + FRAME (STAND, VECTOR(1 7.7,27.5,1.625)%INCHES);
side-hole+4 % yhat . inches;
MOVE barm TO side ¢ Z * zhat % inches WITH DURATION=2 x geconds;
MOVE barm TO side - zhat inches DIRECTLY
WITH FORCE_WRIST ZEROED
WITH DURATION = Z % inches
WITH FORCE_FRAME = station
ON |FORCE(zhat)| 2 | 5 ~ ounces DO STOP barm;
STOP barm;
PRINT("OK = TOUCHED");

_here+barm;
MOVE barm TO here * 8 % xhat * inches
VIA here * 4 x xhat WHERE VELOCITY = 4 » xhat % inches/second
WITH DURATION = 4 x seconds
DIRECTLY
WITHFORCE_WRIST NOT ZEROED
WITH FORCE_FRAME = station
WITH STIFFNESS = (60,5,5,800,2000,30) ABOUT FRAME(NILROT, | ZHAT)
WITH FORCE(YHAT) = ybias » ounces
WITH FORCE(ZHAT) = zbias » ounces
with force(xhat) = Sxsqrt(zbiast2+ybiast2); {friction compensation)
PAUSE(1 xsec);
MOVE barm TO barm ¢ Z % zhat % inches DIRECTLY WITH DURATION * 1 x second;
END;

WHILE QUERY("DO COFFEE DEMO?™) B0

BEGIN {picks Up @ coffee cup ond waves it back and forth |
releases the coffee cup when someone has grabbed it }

SCALAR got;

cup ¢« FRAME (stand, VECTOR(7.164,32.803,3.1 25)*INCHES);
OPEN bhand TO 35 x inches; .
MOVE barm TO cup WITH DURATION = 3 * seconds;
CENTER barm;
MOVE barm TO @ + Z x zhat x inches DIRECTLY WITH DURATION = | x second;
{arm has the coffee cup}
got-FALSE;
WHILE -got DO BEGIN
{ waves arm back @ n d forth until someone has grabbed the cup }
MOVE barm VIA cup * YECTOR(=3,0,4) *inches

132

VIA cup * VECTOR(-5,8,4) * inches
VIA cup + VECTOR(-6,16,4) % inches
TO cup * VECTOR(-5,8,4) * inches
DIRECTLY
WITH DURATION = 7 * seconds
WITH FORCE_FRAME = station
ON [FORCE(xhat)]220 x ounces DO
BEGIN
STOP barm;
got+~TRUE;
ENO
ON JFORCE(yhat)220 * ounces DO
BEGIN
STOP barm;
goteTRUE;
END
ON JFORCE(zhat)]220 * ounces DO
BEGIN
STOP barm;
got+TRUE;
END;

IF got THEN OPEN 1and TO 3.5 % inches;
END:
N

MOVEbarm VIA ¢up * VECTOR(10,0,4) x inches T(Q bpark
WITH DURATION = 7 . seconds;

ENO "force demo";
VISION MODULE

This program illustrates the use of the Vision module to do an
task.

BEGIN "inspet”
REQUIRE SOURCE_FILE "VISION.AL{ALHE]";
REQUIRE ERROR_MODES "F";

[RAME view_point, set_down, set_down_bad, blob;
[RAME camera_park, camera_deploy, camera_show, caml, cam2;

SCALAR x0,y0,xp,yp,do_it,i,j,parked,th,th0,nb,ng,prototype,distance,dd2,good;

InitVision;

parked « FALSE;

x0 ¢ 0; yO « 0; nb « 0; ng+0;

speed_factor + 2.5;

view_point « FRAME(ROT(zhat,=11 Oxdeg)%ROT(yhat,] 80%deg},
VECTOR(48.810,25.510,7.00)xinches);

set_down « FRAME(ROT(zhat,90%deg)*ROT(yhat,| 80xdeg),
VECTOR(32.0,34.0,5.00)%inches);

set_down_bad « FRAME(ROT(zhat,90*deg)*ROT(yhat,1 80xdeg),
VECTQR(32.0,24.0,5.00)xinches);

camera_deploy + FRAME(ROT (zhat,~23xdeg)%ROT(yhat,-85xdeg),
VECTOR(45.884,26.826,32.0)xinches);

133

MOVE rarm TO camera_deploy DIRECTLY WITH SPEED_FACTOR = 3.0;

camera_show mﬁ)?_mAwo...#_z....oo*aonv.,.oao_‘Gw.mm.nw.o_.mm.um-ii.‘nv“
caml « ﬂm>zm:~o.:u7-..n-wo*a_onv.<mn,_.o_:ww.mw.~w,o#.wm.wuu&:o_‘&u
cam2 + mz>§m=~oqEz_.wo*acnv.<mn._.o£mw.mm.~w.o_.wm.wmz.sronx

MOVE barm TO bpark DIRECTLY;
OPEN bhand TO 2.0 % inches;

IF QUERY("Show camera?") THEN

BEGIN {Pan crowd watching demo}

MOVE rarm TO camera_show DIRECTLY WITH SPEED_FACTOR = 6;

PAUSE 1%sec; PROMPT("Ready to go on?");

MOVE rarm TO camera_show DIRECTLY WITH SPEED_FACTOR = 9
VIA caml, camera_show, cam2;

MOVE rarm TO camera_deploy DIRECTLY WITH SPEED_FACTOR = 4;

END;

MOVE barm TO view_point VIA view_paint ¢ VECTOR(-7,5,4) DIRECTLY;

PROMPT{"Put body between the fingers");

CENTER barm;

view_point « barm;

OPEN bhand TO 3.2xinches;

MOVE barm TO ® + VECTOR(-10,0,3)xinches WITH DEPARTURE = -3%inches;
{Get arm out of way}

Erase; .

Picture(j); {Get transformation from vision coordinates 1o arm coordinates}

GeltFeature(l,xcent,x0);

GetFeature(l,ycent,y0);

GetFeature(l,THETA,th0); th0 « tho * (180.0] pi);

PRINT("OK - here we go..."crif);

DO BEGIN {Go grab assemblies}
do_it « TRUE;
good + 0;

WHILE do_it DO
BEGIN
L H
DO BEGIN {Get a.blob or time out after a minute}
Erase;
IF Picture(j) THEN PRINT("VM error: " VM_Status,crif);
IF j=1 THEN RECOGNIZE(1 prototype,distance,dd2) ELSE distance « 99;
IF distance > 4xinches THEN
BEGIN
ieiel;
IF i<3 v parked THEN PAUSE 2 * sec
ELSE
BEGIN {Park arm if nothing going on}
MOVE barm TO bpark WITH DURATION 2 2 ¥ sec;
parked « TRUE
END;
END;
END UNTIL distance < 4 v i > 10;

IF distance < 4 THEN
BEGIN
GetFeature(l xcent,xp);
GetFeature{l,ycentyp);

{Looks like we got onel}

134

GotFeature{l , THETA,TH); th « th x (180.0 / pi);
biob « ﬂ_~>§m:~04#7...=1=6v.<m04o§xv|xo.§.<o.osn
IF parked A prototype ¢ 3 THEN MOVE barm TO bpark = 20%yhatsinches;
{F good > 7 THEN do_it « FALSE ELSE good « good ¢ 13
CASE prototype OF BEGIN
[1] BEGIN { gside ~ good assembly on its side }
MOVE barm TO view_point * blob = 1.8xzhat
WITH APPROACH = =13
CENTER barm;
MOVE barm TO set_down;
ng - ngel;
END;
[2] BEGIN { gup - good assembly with the stem up }
MOVE barm TO view_point x blob
WITH APPROACH = ~1;
CENTER barm;
MOVE barm TO set_down;
ng e ng ¢l
END;
[3] BEGIN { bad - not a good assembly }
MOVE barm TO view_point % blob - 2.3xzhat
WITH APPROACH = -1
ON [FORCE(zhat)| 2 30 DO STOP;
CENTER barm;
MOVE barm TO sel_down_bad;
nb « nb e I3
END;
ELSE PRINT("unrecognized object” crif)
END;
OPEN bhand TO 3.2;
parked « FALSE;
END :
ELSE IF i > 10 THEN do_it « FALSE;

END;

END UNTIL ~QUERY("nKeep going?");
COBEGIN

MOVE barm TO bpark;

MOVE rarm TO camera_park DIRECTLY WITH SPEED_FACTOR = 3.0;
COEND;

END

135
Appendix Vil. POINTY examples

LOCATE_ZUP

LOCATE_ZUP is used to determine the x and y coordinates of the axis of an
upright cylinder. The macro tells the user to move the arm to the approximate
location of the object, and then it does a center, reads the hand position, opens
the hand, rotates it 90 degrees, closes it again and takes a second reading, and
then produces a frame with station orientation. A similar macro which rotates the
wrist 60 degrees is used for hexagonal cylinders.

DEFINE LOCATE_ZUP(ACTUAL_POS)=c
PROMPT (" MOVE ARM TO APPROX POSITION OF ACTUAL_POS ");
{ lets user prompt when he is ready }
CENTER BARM; { use sensing to get position }
OPEN BHAND TO BHAND_MAX;
{ BHAND_MAX has been defined elsewhere as 3.8 inchos }
MOVE BGRASP TO FRAME(ORIENT(f BARM)*ROT(ZHAT,90%DEGREE$),POS(BGRASP));
{ so now we move the arm so that the wrist is rotated
90 degrees but the hand points vertically downwards }
OENTER BARM;
aCTUAL_POS+FRAME(NILROT,POS(BGRASP));
{ and we determine the final position of the object
but give it station orientation }
OPEN BHAND TO BHAND_MAX;
MOVEZ BGRASP BY 3xinches; { open hand and get the arm out of the way }

23

MOVE_AND_READ

This macro is used to ask the user to move the arm to a certain location
The position is then recorded.

DEFINE MOVE_AND_READ(POSITION) =
<

{ simple macro that asks user 1o move arm to a position and records it }
PROMPT("MOVE ARM TO POSITION");
POSITION « BARM;

=

MOVEMACRO3

This macro is used to define three positions and a new macro that will make
the arm go through these positions. It illustrates the use of the MOVE_AND_READ
macro, and may be used to teach motion through a series of three frames that will
avoid obstacles in its path.

136
DEFINE MOVEMACRO3(MACNAME,P1,P2,P3) =

[~
MOVE_AND_READ(P1);
MOVE_AND_READ(P2);
MOVE_AND_READ(P3);
DEFINE MACNAME =

<
MOVE BARM VIA P1,P2 TO P3;

2

WRIST calibration routines

This is a set of macros and definitions used for the calibration of the wrist
force sensor by POINTY. The source file is WRIST.LIB[1,JKS] or
WRIST.LIB[TMP,MSM]. To do automatic calibration, do 8 READ WRIST.LIB or QREAD
WRIST.LIB command.

{HAND LOCATIONS FOR CALIBRATION ROUTINE}

FRAME P32;

P32 « FRAME (ROT(ZHAT,179.8%xDEG)*ROT(YHAT,90.1 xDEG)*ROT(ZHAT,90.4*DEG),
VECTOR(4.050,44.876,20.234)xINCHES);

FRAME P31;

P31 « FRAME (ROT(ZHAT,-180.00%DEG)%ROT(YHAT,30.067 xDEG)*ROT(ZHAT,-90.0004DEG),
VECTOR(4.11,44.8,20.2)xINCHES);

FRAME P22;

P22 « FRAME (ROT(ZHAT,~180.004DEG)%ROT(YHAT,90.067 xDEG)*ROT(ZHAT,-179.96 %DEG),
VECTOR(4.11,44.8,20.2)#INCHES);

FRAME P21;

P21 « FRAME (ROT(ZHAT,179.91 xDEG)%ROT(YHAT,90.201 xDEG)*ROT(ZHAT,-6477 4%DEG),
VECTOR(4.14,44.8,20.2)XINCHES);

FRAME P12;

P12 « FRAME (ROT{ZHAT,56.937%DEG)%ROT(YHAT, 24644 %DEG)*ROT(ZHAT,1 22.47 *DEG),
VECTOR(14.4,44.8,30.5)%INCHES);

FRAME P11;

Pli « FRAME (ROT(ZHAT,-90.086%DEG)*ROT(YHAT,179.79%DEG)*ROT(ZHAT,89.659xDEG),
VECTOR(14.4,44.7,9.94)xINCHES);

FRAME WEIGHTSTORE;

WEIGHTSTORE « FRAME (ROT(ZHAT,-42.3%DEG)*ROT(YHAT,179.7%DEG)*ROT(ZHAT,~132.7 %DEG),
VECTOR(4.248,47.293,1.600)%INCHES);

FRAME TORQUESTORE;

TORQUESTORE « FRAME (ROT(ZHAT,161.0%DEG)*ROT(YHAT,178.9#DEG)*ROT(ZHAT,159.5%DEG),
VECTOR(12.007,43.654,1.335)%INCHES);

FRAME TORQUESTOREZ2;

TORQUESTORE2 « FRAME (ROT(ZHAT,161.0%DEG)*ROT(YHAT,178.9%DEG)*ROT(ZHAT,=16.9%DEG),
VECTOR(12.007,43.654,1.335)%INCHES);

{MACROS TO DRIVE ARM AND APPLY LOADS FOR WRIST SENSOR CALIBRATION}

{This group of macros makes use of the READWRIST(nnn) command in POINTY to
process wrist sensor readings. nnn may be replaced by the following arguments:

INIT = initialize !

137

READ - 12ad force sensors

BASE - baso readings

RESOLVE ~ resolve forces oand moments

CALIB - calibrate

SAVECALIB - save calibration data set on disk file
SAVECALIBPAL-save palx version of transposed calibration data
SAVERAWDATA - save wrist readings

COMPILEPALFILE - compile FORCAL.PAL on current ppn
COMPILEPALFILEONTOALHE - compile FORCAL.PAL onto ALHE
DISPRAWDATA - display wrist raw data

RENAMEFILE - change force calibration data file}

{The following macro applies G linearly independent loads lo the wrist sensor and derives the
calibration matrix necessary to convert sensor readings into forces © n d moments. This is achieved
by moving the hand to three different orientations @ n d recording the strain gage readings resulting
from the (known) hand weight. The hand is then directed to pick u p © 500 gm weight @ n d repeat
the measurements in two different orientations. Finally the hand is directed to pick up e long bau
which applies a known torque to the sensor. Further information 0 n this calibration method may be
found in "The Kinematic Design @ n d Force Control of Computer Controlied Manipulstors™, Stanford

A.l.Memo=-313 bv Bruce E. Shimano}

DEFINE WRISTCALIB =
[
NODISPLAY;
OPENBHAND T(Q 35;

138

PRINT ("MOVING TO FI™CRLF);
MOVEBARM TO Fi ;
READWRIST(READ);
READWRIST(BASE);

PRINT ("MOVING 10 F2 ",CRLF);
MOVEBARM TO F2;
READWRIST(READ);
READWRIST(CALIB,N);

23
{This macro takes strain gage readings with the torque device in the hand}
DEFINE READWITHTORQUE(F1,F2,N) =

c

MOVE BARM TQ FI;
MOVEBARM TO FI ;

PRINT ("APPLY NEGATIVE Z TORQUE *,CRLF);
READWRIST(READ);

READWRIST(BASE);

MOVE BARM TO F2;
REPLACE(TORQUESTORE2);
GETTORQUER(TORQUESTORE);

MOVEBARM TO FI ;

PRINT ("APPLY POSITIVE Z TORQUE",CRLF);
MOVEBARM TO F | ;

READWRIST(READ);

READNOLOAD(P11,P12,1);
READNOLOAD(P21,P22,2);
READNOLOAD(P3 | P32,3);
GETWEIGHT(WEIGHTSTORE);
READWITHLOAD(P21,P22,4);
READWITHLOAD(P31,P32,5);
REPLACE (WEIGHTSTORE);
GETTORQUER(TORQUESTORE);
READWITHTORQUE(P22,P21,6);
REPLACE(TORQUESTORE2);
MOVEBARM TQP1;
READWRIST(COMPUTE);
READWRIST(SAVECALIBPAL);}
READWRIST(SAVECALIB);}
REDISPLAY;

iy

DEFINE READNOLOAD(F1,F2,N) =
c
PRINT ("MOVING TO F1",CRLF);

MOVE BARM TO F1;
READWRIST(READ);
READWRIST(BASE);

PRINT ("MOVING TO F2 ",CRLF);

MOVEBARM T(F2;
READWRIST(READ);
READWRIST(CALIB,N);

]

{Read waight of hand with z-axis vertical}

{Read weight of hand with x-axis vertical}

{Read weight of hand with y~axis vertical}

{Pick up a 500 gm weight}

{Read hand weight+500gm with x-axis vertical}
{Read hand weight+s500gm with y-axis vertical}
{Place 500 gm weight on table}

{Pick UP 3.17 kg~cm torque device}

{Apply torque aboutz-axisandT°A @ readings}
{Place torque device on fabie}

{Move arm out of the way}

{Compute 6x8 calibration matrix}

{Save assembly code version @t calibration lable}
{Save SAIL readable version of calibration table}

{This macro takes strain gage readings with onix the weight of the Aend acting upon the sensor}

{This macro takes strain gage readings with the 500 gm weight in the hand}

DEFINE READWITHLOAD(F1 ,F2,N) =

[

READWRIST(CALIB,N);
MOVEBARM TO F2;

2

DEFINEGETWEIGHT(F1) =

CENTER

<

MOVE BARM VIA F|+2%ZHAT Y0 Fl;
BARM;

OPEN BHAND 8V 1.0%INCH;

DRIVE BJT(6) 8V ~90%xDEGREES;

CENTER BARM;

2

DEFINE GETTORQUER(F1) =
c

MOVE BARM VIA F1+3%ZHATXINCHES 1O Fi;
CENTER BARM;
MOVEBARM T(O BARMsA%ZHAT*INCHES;

-
7

DEFINE REPLACE(F !) =

c
MOVE BARM Y\ F | +3#ZHAT®INCHES TO Fl;
OPEN BHAND BY 1.0%INCH;

MOVEBARM T0O F1+3%xZHAT¥INCHES;

N
2

{macros for convenience}
DEFINE RR = c READWRIST (READ) ; READWRIST (RESOLVE) ; 34
DEFINE RB = « READWRIST (READ) ; READWRIST (BASE) ; o

139

Appendix VIil. Vision Module Routines

The following is a listing of the source code file VISION.AL[AL,HE]

{Routines to cail the Vision Module and haveit do it's thing.
For more details see YM.DOC & COMM.TXT ON [DOC,HE]}

SCALAR VM_STATUS;

{Definitions of status values:)

DEFINE OK =c0>; {Successful}

DEFINE NYI = cl2; {"Not Yet implemented”}

DEFINE BadCmnd = €33; {CmnNum out of range}

DEFINE OutOfRange = c52; {Argument too low © © too high}

DEFINE ReservedCommand = €753 {Command numbor reserved for future use}
DEFINE NotFound = €923 {Blob is not on active blobs list}

DEFINE BadBlob = cll>; {Blob specification is illegal}

DEFINE NoBlob = €] 323 {Active blobs list is empty}

DEFINE BadFeatNum = c]1 523 {Hlegai feature numbar)

DEFINE BadName = €172; {Name not recognized from table}

DEFINE Duplicate = €192; {New name sema s old name (prolotypes)}
DEFINE BadRestartOption = €21 o; {Option NEQ QO or 8 for Restart}

DEFINE RestartAbort = €233; {Vision System restarted during command}

SCALAR PROCEDURE InitVision;
{Initialize communications sottware. This routine must b called bijor ¢
anx other routines can bs invoked.}
BEGIN
PROMPT("is Vision Module running & is external-computer-control on? ");
VM_STATUS + VM(0,1,0,0,0);
RETURN(VM_STATUS);
END;

SCALAR PROCEDURE Restart (VALUE SCALAR how);
{Restart the Vision System. Either hard o r soft restart can be selected.}
BEGIN {hows O forhard restart, 4 O for soft restart}
IF how THEN how + 8.0;
VM_STATUS « VM(1,1,0,how,0);
RETURN(VM_STATUS);
END;

SCALAR PROCEDURE Picture (REFERENCE SCALAR numblobs);
{Read a camera image into the image buffer @ n d process it according to the
currently set parameters.}
BEGIN
VM_STATUS « YM(2,1 .0.0.T ,0,numblobs);
RETURN(VM_STATUS);
END;

SCALAR PROCEDURE RePicture (REFERENCE SCALAR numblobs);
{Reprocess the current image buffer using the currently set parameters.}
BEGIN
VM_STATUS « VM(3,1 :0.0.T ,0,numblobs);

RETURN(VM_STATUS);
END;

SCALAR PROCEDURE GetFeature (VALUE SCALAR biobnum, idnum; REFERENCE SCALAR valu);
{Returnthe value of ono or moreblob features.so @ nextpsr ¢ for list of

140

selectable features.}
BEGIN
VM_STATUS « VM(4,2,0,blobnum,0,idnum,1,6,vaiu);
RETURN(VM_STATUS);
END;

SCALAR PROCEDURE Blink (VALUE SCALAR blobnum, color);

{"Blink" the specified blob (Draw ° line around the perimeter).
The outline can ba either bright o dark.}

BEGIN
IF color THEN colore =l;
VM_STATUS « VM(5,2,0,blobnum,0,color,0);
RETURN(VM_STATUS);
END;

SCALAR PROCEDURE DelBlob (VALUE SCALAR biobnum);

{Delete @ blob from the blob list. This removes the blob descriptor from
free storage. If the biob was previously “blinked", it is “unblinked”™
by drawing @ dark line over its outline.}

BEGIN

VM_STATUS « VM(6,1,0,blobnum,0);

RETURN(VM_STATUS);
END;

SCALAR PROCEDURE Calibrate (VALUE SCALAR blobnum);

{Calibrate the various scale factors in the Vision System. The specified
blobis usad (0 calculate the size of pixels and the origin of the
Vision System coordinate system. The calibration blob must be round
and its size must have baan previously specified os the value of the
variable "CALIBRATION SIZE™.}

BEGIN

VM_STATUS ¢ VM(7,1,0,blobnum,0);

RETURN(VM_STATUS);

END;

SCALAR PROCEDURE Remember (VALUE SCALAR proid; VALUE STRING name);
{Create an empty protolype descriptor in the Vision System and oplionally
give it @ name.}
BEGIN
VM_STATUS + VM(8,2,0,proid,4,name,0);
RETURN(VM_STATUS);
END;

SCALARPROCEDURE Train(VALUE SCALAR blobnum, proid);

{Add the features of a specified blob into the specified prototype. Both the
maan and the variance about the maan are calculated for bos @ features
which can be used for recognilion.}

BEGIN

VM_STATUS + VM(9,2,0,blobnum,0,proid,0);

RETURN(VM_STATUS);

END;

SCALAR PROCEDURE Recognize (VALUE SCALAR blobnum; REFERENCE SCALAR proid, di, d2);
{Identify which prototype is closest to the specified blob. All prototypes
Anown to the system are compared to the spacified blob ind the closest
one is identified @ n d its "distance” from the blob is calculated.}
BEGIN
VM_STATUS « VM(1 0,1,0,blohnum,3,0,proid,2,d1,2,d2);
RETURN(VM_STATUS);
END;

141

SCALAR PROCEDURE WhereAre (VALUE SCALAR proid, matches, newpic;
SCALAR ARRAY vals[1:5,1 :5));
{identify all blobs which are acceptably close {0 the specified prototype.
A list of their identities 1n d information about them is returned.}
BEGIN
SCALAR bl,b2,b3,b4,b5; {Temporary storage}
SCALAR dl,d2,d3,d4,d5;
SCALAR x1,x2,x3,x4,x5;
SCALAR yl,y2,y3,y4,y5;
SCALAR o01,02,03,04,05;

IF newpic > 0 THEN newpic « | ELSE IF newpic < 0 THEN newpic « 255; {«'377}

CASE matches OF BEGIN
[0] BEGIN
PRINT(crif,"WhereAre: max number of matches mus! be at least 1" crif);
VM_STATUS ¢ QutOfRange;
RETURN(VM_STATUS);
END;
[1] VYMSTATUS « yM(11,3,0,pr0id,0,1,0,newpic,5,0,b1,2,d1,2,x1,2,y1,2,01);
[2] VMUSTATUS « VM(I 13,0proid,0,2,0,newpic,10,0,b1,2,d1 ,2,x1,2,y1,2,01,
0,b2,2,02,2,x2,2,y2,2,02);
[3) VMUSTATUS « VM(i 1,3,0,proid,0,3,0,newpic,1 5,0,b1,2,d1,2,x1,2,y1,2,01,
0,b2,2,d2,2,x2,2,y2,2,02,0,63,2,d3,2,x3,2,y3,2,03)i
[4] VM_STATUS « VM(I [,3,0,proid,0,4,0,newpic,20,0,b1,2,d1,2x1,2y1,2,01,
0,b2,2,d2,2,x2,2,y2,2,02,0,b3,2,d3,2,x3,2,y3,2,03,
« 0,b4,2,d4,2,x4,2,y4,2,04);
ELSE VM_STATUS + VM(11,3,0,proid,0,5,0,newpic,25,0,b1,2,d1,2,x1,2,yl,2,01,
0,b2,2,d2,2,x2,2,y2,2,02,0,b3,2,d3,2,x3,2,y3,2,03,
0,b4,2,d4,2,x4,2,y4,2,04,0,b5,2,d5,2,x5,2,y5,2,05)
END; .

vals[1,1]+bl; vais[1,2]-d1; vals[1 3)ex1; vals[1,4]-y1; vais[1,5)+0l;
IF matches > T THEN

BEGIN
vals[2,1]+b2; vals[2,2]d2; vals[2,3)-x2; vals[2,4]-y2; vals[2,5)-02;
END;

IF matches >Z THEN
BEGIN
vais[3,1 J~b3; vals[3,2)-d3; vals[3,3]~x3; vals[3,4]-y3; vals[3,5)~03;
END;

IF matches > 3 THEN
BEGIN
vals[4,1 J~b4; vals[4,2)~d4; vals[4,3]-x4; vals[4,4]-y4; vais[4,5]04;
END;

IF matches > 4 THEN
BEGIN
vals[5,1 J«b5; vals[5,2)¢d5; vals[5,3)+x5; vals[5,4)-y5; vals[5,5]}~05;
END;

IF malches > S THEN
PRINT (crlf,"WhereAre: max number of maiches can'tbe > 5 crif);

RETURN(VM_STATUS);
END;

SCALAR PROCEDURE Wherels (VALUE SCALAR proid, newpic;
REFERENCE SCALAR blobnum, dis, x, y, ori);
{Special case of WhereAre. identifies one bjob whichis acceptably dos ¢
1o the specified prototype. Information about it is returned.}

142

BEGIN

IF newpic > 0 THEN newpic+ | ELSE IF newpic< O THEN newpic + 255;{2'377 « =1}
VM_STATUS « VM(1 1,3,0,proid,0,1 ,0,newpic,5,0,blobnum,2,dis,2,x,2,y,2,0ri);
RETURN(VM_STATUS);

END;

SCALAR PROCEDURE Forgel (VALUE SCALAR proid);
{Delete o prototype descriptor from the Vision System.}
BEGIN
VM_STATUS « VM(12,1,0,proid,0);
RETURN(VM_STATUS);

END;

SCALAR PROCEDURE SRead (STRING name; REFERENCE SCALAR valu);
{Return the value of @ switch. The value will be 0 if the switch is off,
1nd «]if the switch is on.}
BEGIN
VM_STATUS « VM(13,1,4,name,l 0, valu);
RETURN(VM_STATUS);
END;

SCALAR PROCEDURE SWrite (STRING name; SCALAR valu);

{Write the Ua|ua of @ switch. The value should be 0 to turn the switch off,
and -| toturniton.}

BEGIN

IF valu THEN valu « -l3

VM_STATUS « VM(!4,2,0,valu,4,name,0);

RETURN(VM_STATUS);

END;

SCALAR PROCEDURE VRead (STRING name; REFERENCE SCALAR valu);
{Read the value of & variable.} '
BEGIN
VM_STATUS ¢ VM(15,1,4,name,1,2,valu);
RETURN(VM_STATUS);
END;

SCALAR PROCEDURE VWrite (STRING name; SCALAR valu);
{Writethe valueof) variable.}
BEGIN
VM_STATUS « VM(16,2,2,vslu,4,name,0);
RETURN(VM_STATUS);
END;

SCALAR PROCEDURE Erase;
{Erase graphics overlay.}
BEGIN
VM_STATUS « VM(24,1,0,0,0);
RETURN(VM_STATUS);

END;

SCALARPROCEDURE ClearW (VALUE SCALAR x, y, dx, dy, color);
{Clear @ rectanguler area in graphics overlay.}
BEGIN
IF color THEN color« =1 4
VM_STATUS « <?:~m,m.o.x.ok.o.%.o.aSo.«o.oJSM
RETURN(VM_STATUS);
END;

SCALAR PROCEDURE Draw (VALUE SCALAR X Y, dx, dy, color);

143

{Draw a vector O n the display. The vector can be either bright o dark.}
BEGIN

IF color THEN color « =13

VM_STATUS « VM(26,6,0,x,0,y,0,dx,0,dy,0,color,0;0,0);
RETURN(VM_STATUS);

END;

SCALAR PROCEDURE DText (VALUE SCALAR x, y; VALUE STRING text;
REFERENCE SCALAR nx, ny);

{Display a tex siring 0 n the display. The characters will always b bright.}

BEGIN

VM_STATUS « YM(27,3,0,x,0,y,4,text,2,0,nx,0,ny);

RETURN(VM_STATUS);

END;

SCALAR PROCEDURE ProRead (VALUE SCALAR proid; SCALAR ARRAY des[1:144]);
{Read the contents of a prototype descriptor from the Vision System.
This is currently a core image of the prototype. [0 now, it is
intended for saving end restoring the prototypes only.}
BEGIN
PRINT(crlf,"Read Prototype not implemented”,crif);
VM_STATUS + NYI; {Not Yet iImplemented}
RETURN(VM_STATUS);
END;

SCALAR PROCEDURE ProWrite (SCALAR ARRAY des{]:144));

{Write a prototype descriptor 10 the Vision System. The format should be
identical 1o that previously read from the Vision System by ProRead.}

BEGIN

PRINT(crlf,"Write Prototype not implemented”,crit);

VYM_STATUS « NYI; {Not Yet implemented}

RETURN(VM_STATUS);

END;

SCALAR PROCEDURE PicRead (VALUE SCALAR rasnum; SCALAR ARRAY data[1:16]);
{Read the contents of one row of the currently selected image buffer.}

BEGIN rasnum«1; {lo avoid parser warning}

PRINT {erif,"Picture Read not implemented" crif);

VM_STATUS « NYI; {Not Yet Implemented}

RETURN{VM_STATUS);

END;

SCALAR PROCEDURE PicWrite (VALUE SCALAR rasnum; SCALAR ARRAY data[1:16]);
{This writes ona row in the currently selected image buffer.
The format is the soma as that returned by PicRead.}
BEGIN rasnume«1 ; {to avoid parser warning}
PRINT (crif,"Picture Write not implemented” crif);
VYM_STATUS « NYI; {Not Yet Implemented}
RETURN(VM_STATUS);
END;

{Definitions of feature numbers: }

DEFINE NEXT = €03; {Link of ail active blobs}

DEFINE PARENT = <223 {Address of parent blob}

DEFINE BCOLOR = c4>o; {0 if black, -!if white}

DEFINE NCELLS = c8>; {Area in pixels}

DEFINE PerimOn = c102; {Perimeter list intensified on displsy}
DEFINE TOTALCELLS = c122; {Area in pixels, including holes}
DEFINE EBOUNDARY = c} 42; {Pointer (0 @nd of boundary list}

144

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

NHOLES = <l 62
BOUNDARY = c] 82;
XMIN = €202
NBSEG = c22>3;
XMAX & €242
NBCELLS = €262;
YMIN = c282;
MODEL = c30>;
VMAX £€322;
EXLINK = €343;
XPERIM = =36>;
RMINI = c382;
YPERIM = c402;
RMAXI = €42>;

SIGX = c44>;
SIGY = c482;
SIGXX = 5223
SIGXY = c562;
SIGYY = c60>;

AREA = c64o;
XCENT = c682;
YCENT = €723
MAJOR = €762;
MINOR = <8023
THETA = c84>;
PERIMETER = c882;
TOTALAREA = €92>;
RMIN = €962;

RMAX = c1002;
RMINANG = c104>;
RMAXANG = c1082;
AVRAD = c] ! 233
LENGTH = c1 162;
WIDTH = c] 20o;
ORIENTATION = c] 24>

HOLEAREA = c| 283;
HOLERATIO = €1 322
AXRATIO =] 362;
PSQUARED = c140>;
PPeA = c1443;
RADRATIO = c | 4853
LENRATIO = c] 523;
YDIFF1 = <1563;
YDIFF = c1602;
XDIFF| = c164>;
XDIFF = c168>;
BOXAREA = c] 7233
BXARATIO = c1762;
XCENT2 = c] 80>;
YCENT2 = c]1842;
CGDIST = 188>,
PERQUI = €]192>;
PEROUND = c] 962;
ANGMOD = 20025

{Number of holes in the blob}
{Pointer to sfart of boundary list}
{Minimum X (relative to XBASE)}
{Number of boundary segments}
{Maximum X (relative to XBASE)}
{Total perimeter length = XPERIM+YPERIM}
{Minimum V (relative lo YBASE)}
{Pointer to matching prototype}
{Maximum V (relative to YBASE)}
{Extra word for list links}
{Perimeter length in X-direction}
{Index of minimum radius point}
{Perimeter length in Y-direction}
{Index of maximum radius point}

{Sigma X forthablob (2I0IY @ o XBASE)}
{Ditto V (relative to YBASE)}

{Sigma X squared, limes | 2}

{Sigma X times Y, times 2}

{Sigma Y squared}

{Area in calibrated units}

{X centroid (relative to calibrated center)}
{Ycentroid (relative to calibrated center)}
{Length of major axis of best ellipse}
{Length of minor axis of best ellipse}
{Angle of major axis of best ellipse}
{Perimeter length}

{Area + hole area}

{Min (perim-cg)xx2}

{Max of sama}

{Angle of minimum radius vector}

{Angle of maximum radius vector}

{Avg (perim=cg)¥%2 for all perim points}
{Dimensions of a bounding box}

{ aligned with theta}

{Orientation of object (unambiguous)}

{Area of holes (end their holes, etc)}
{Ratio of hole area to total area}
{MINOR / MAJOR}

{PERIMETER squared}

{PSQUARED / AREA}

{RMIN / RMAX}

{WIDTH / LENTH}

{Y-Height}

{X-Width}

{XDIFF = YDIFF}

{BOXAREA / TOTALAREA}
{XCENT squared * YCENT squared}

{4 = Pl x AREA / PSQUARED}
{RMAXANG - RMINANG (=PI range)}

145

Appendix [X. Generating a new system

Introduction

This appendix is given for reference of system hackers and those who want
to put up a new AL or POINTY system. It assumes familiarity with the WAITS
operating system of the Stanford Artificial Intelligence Laboratory, and the use of
the programs associated with it.

AL system

AL parser and compiler

These are the files that make up the AL parser and compiler.

AL parser PARSE .SAI[AL,HE]

AL compiler ALC.SAI[AL,HE]
GOBBLE.SAI[AL,HE]
PASS3.SAI[AL,HE]
ALPRIN.SAI{AL,HE]
ARITH.SAI[AL,HE]
INTDEF.SAI[AL,HE]
ALREC.SAI[AL,HE]

To generate anew A | parser, d o the following (comments after semicolons
are by way of explanation; the period at the front of the line is prompt of the

WAITS system.

AL ALHE ;alias to [ALHE] area
.COMP PARSE.SAI[ALHEXR) ;compile the source file with R switch

.LOAD/SAV PARSE ;load PARSE with the SAIL runtime system
;save the core image in PARSE.DMP

.REN ALOLD.DMP+AL.OMP[AL,HE]
;renames old AL parser incasewen e e d

;it tater

.RENAME AL.DMP « PARSE.DMP ;renames PARSE.DMP to AL.DMP S O that
icalls to the A | system will get the
inew system

Here is how to create a new A | compiler.

AL ALHE ;alias to [ALHE] area

1486
.REN ALCOLD.DMP«ALC.DMP ;save old compiler
.R LOADER i 4 un loader which willprompt witha ¢
*ALC<alt> ;note the use of the <alt> key

When the loader Is done, do the following:

.SETUWP
.SSAVE ALC

If you name the new compiler ALCNEW instead of ALC, then you can get
that compiler instead of ALC by using the /N switch i N the COMPILE FOO.AL

statement.

The following instruction will take care of assembling all the files 8 n d making
u p the AL compiler in batch mode. The date and time indicate when the

compilation is to begin.

.BATCH /DATE=5-may-78/TIME=1 200/DO @BAT[ALHE]

AL runtime system

These are the source files that make up the AL runtime system.

. AL pcode interpreter AL.PALLAL,HE]
INTERP.PAL[AL,HE]
ALIO.PAL[AL,HE]
LARGEB . PAL{ AL, HE]
SMALLB.PALLAL,HE]
FLOAT.PALLAL,HE]
GRAPHS .PAL[AL, HE]
VISIO.PAL[AL,HE]
VALIO.PAL[AL,HE]

AL arm code ALARM.PAL[AL,HE]
ARM.PAL[AL,HE]
ARMSOL . PAL[AL,HE]
BEJCZY.PAL[AL,HE]
ARMSOL . PAL[AL,HE]
ARITH.PALLAL,HE]

kernel K1.PAL[11,SYS]
The file AL.SAV is made up of the above files 5S shown:

AL.SAV[AL,HE] = AL.BIN[AL,HE] + ALARM.BIN[ALHE] + K1.BiN[1 1,SYS]

The way to generate a new runtime system is:

AL ALHE

REN ALOLD.SAV<AL.SAV

R 1ITTY

+Zero S00000

tLoad - ALBIN
*0Overiay - ALARMBIN

*Qverlay - K1.BIN[1 1,5YS]

jalias to [ALHE]

;in case we need tosaveold

jruntime system

+An extended command - TOP SO0000

+Version using VT05
*Dump sav file - AL
*

POINTY system

147

; this creates a new ALSAV[ALHE]

These source files make u p the POINTY runtime system.

AL source code interpreter

POINTY.SAI[PNT,HE]
MAINPR.SAI[PNT,HE]
FILES.SAI[PNT,HE]
DISPLY .SAI[PNT, HE)
FORMAT .SAI[PNT,HE]
OUTPUT.SAI{PNT,HE]
TALK11.SAI[PNT,HE]
HELP.SAI[PNT,HE]
EXPR.SAI[PNT,HE]
EXEC.SAI[PNT, HE]
SCANNR.SAI[PNT,HE]
PARSE .SAI[PNT,HE]
INIT.SAI[PNT,HE]
WRIST.SAI[PNT,HE)
GRAPH.SAI[PNT,HE]
PPCODE.SAI[PNT,HE]
UTIL.SAI[PNT,HE]
PCODE.SAI[PNT, HE]
PPROC2.SAI[PNT, HE]
PPROC.SAI{PNT,HE]
PCALL.SAI[PNT,HE]
SYMBOL .SAI[PNT,HE]
PNEW.SAI[PNT,HE]
DEBUG.SAI[PNT,HE]
OUTDPW.FAI[PNT,HE]

148

POINTY.PAL[PNT,HE]
AL.PAL[AL,HE]
PINTRP.PAL[AL,HE]
INTERP.PAL[AL,HE]
ALIO2.PAL[PNT,HE]
LARGEB.PAL[AL,HE]
SMALLB.PAL[AL,HE]
FLOAT.PAL[AL,HE]
GRAPHS . PAL[AL, HE]
VISIO.PAL[AL,HE]
VALIO.PAL[AL,HE]
TALK10.PALLPNT,HE]
PINTRP.PAL[PNT,HE]

POINTY pcode interpreter

PNTARM.PALL PNT, HE]
ALARM.PAL[AL,HE]
ARM.PAL[AL,HE]
ARMSOL .PAL[AL, HE]
BEJCZY.PAL[AL,HE]
ARMSOL . PAL[AL,HE]
ARITH.PAL[AL,HE]
PARM.PAL[AL, HE]
EULER.PAL[AL, HE]

POINTY arm code

kernel K1.PAL[11,8YS]
AL file for POINTY PNTY.AL[PNT,HE]
data structure

USERS .DAT[PNT,HE]
PNTMSG.INI[PNT,HE]
POINTY.INI[PNT,HE]

PPN and name of users
Initialization message
Initialization of PONTYO

The intermediate files are made up as follows:

POINTY.SAV[PNTHE] = POINTY.BIN[PNTHE] + PNTARM.BIN[PNTHE] +
K1.BIN[1 1,5YS] + PNTY.BIN[PNTHE]

PONTYO.DMP[PNT,HE] = POINTY.REL[PNT, ,HE] + SAIL runtime system
(POINTY.REL .11l take care of loading the other
.REL files)

POINTY.DMP[PNT,HE] = PONTYO.DMP[PNT,HE] + POINTY.SAV[PNTHE}
1 other initialization files

149

Creating the POINTY runtime system is a bit more involved than creating the
AL system. However, since the instructions to compile all the files necessary for
the PDP-10 part of POINTY is kept in a DO file, all you need to do is type:

.00 PCOMP[PNT,HE]

This results in the appropriate files getting compiled, and
POINTY.REL[PNT,HE] is loaded with them and the SAIL runtime system. The core
image is then saved in PONTYO.DMP[PNT,HE]. We next build up the runtime
system.

AL PNT,HE ;alias to [PNT,HE]
RIITTY
+Zero 500000
+Load - POINTY.BIN
+Overlay - PNTARM.BIN
+QOverlay - K1.BIN[11,5Y§]
+QOverlay - PNTY.BIN
+An extended command - top 500000
+Version using vt05
+Write loc = 160000 ; this is to let the runtime system
Set to - 1 ; know it is POINTY
; otherwise it thinks it is AL
+Dump sav file - POINTY ; this creates POINTY.SAV[PNT,HE]
+Gtart at (D for DOT) - D
DDT started at 130000

<type <alt>G on the VTO05 and wait for printing of values>

X
Exit

The PDP-11 part is now running. We now need to get the interpreter
started as follows:

.R PONTYO

This loads and executes the file PONTYO. The runtime system on the
PDP-11 is restarted. (If for some reason you do not want PONTYO to restart the
program on the PDP-11, write the value 1 into location 160036 with 11TTY
before running PONTYO) The system is then initialized and POINTY instructions
can be typed in.

We can use this configuration of loading the PDP-11 and then the PDP-10

150

each time we want to use POINTY. However, since initialization takes a long time
especially if the system is busy, saving the core images of the PDP-10 and
PDP-11 saves the state of the world, so that in future calls to POINTY, the
initialization can be bypassed. 4 :

Before saving the core image, we may want to have put in a message that
is printed out when POINTY in reinvoked at a future time. We can do this by
means of the RESUME_MESSAGE command which takes a string constant as
argument as follows:

*mmmcz,mlzmmm>0mAAm string message>)
Finally, the instruction to actually save the core image is as follows:
+SAVECOREIMAGE <filename>

<filname> can take any name except POINTY, and the extension is ignored;
the extension .OMP will be used. POINTY is disallowed as <filename> to prevent
inadvertently writing over an existing POINTY file. This instruction suspends
execution of the program on the PDP-11, and causes POINTY (interactive source
code interpreter) to read the core image of the PDP-11 and save the data within
its own core image in the PDP-10. The whole core image is then written out onto
a disk file. Typically, the names chosen are PO, P1,... Let us assume that it is PO.
The interpreter then restarts execution of the runtime system on the PDP-11, and
then resumes execution.

The next thing to do is to get out of the interpreter by means of the EXIT
command, and to test that PO in fact does the right thing. To do so, type:

.RU PO
and the PDP-11 will be reloaded and the interpreter restarted on the PDP-10. If
you are happy and satisfied that the new system works, rename it to POINTY.DMP
as follows:

.REN PQINTY.DMP«P0.DMP

Debugging POINTY

For debugging the PDP-10 part, compile POINTY.SAI and the source file
which needs to be debugged with BAIL, the SAIL debugger. Then to get access to
BAIL during runtime, type the instruction:

#BAILL

151

If you want to include a string that could be subsequently typed into BAIL, it
may be included in parentheses after the word BAIL as shown below:

*BAIL(BREAK("GTOKEN");!GO;);

The above will get into BAIL, place a break point at GTOKEN and resume
execution. An alternate form permits you to type in your instructions into a text
file (without the table of contents page - unformatted file in the editor E) called
QUERY.TXT. The 0BAIL instruction will get you into BAIL and act as if you had
typed the contents of QUERY.TXT to BAIL.

+QBAIL

To get access to 11DDT during execution, type the instruction DDT as
follows to POINTY:

+D0T

This causes the runtime system to give control to 11DDT so that it is
possible to step through the code on the POP-11.

Other debugging aids can be utilized by means of the SETSTATUS and
RESETSTATUS commands as shown:

+SETSTATUS(<parameter>,<value>);
*RESETSTATUS(<parameter>,<value>);

where <value> is an integer constant. If <value> is left out, the default is 1 for
SETSTATUS and O for RESETSTATUS. <parameter> is one of the following
reserved words, and the given effects when the values are non-zero.

NOELF no output to the POP-11 (instructions are only parsed and not
executed)

NOFOLD no constant folding and evaluation of constant scalars and reals
(usually POINTY will try to evaluate constant expressions during
parsing)

LINE prints out the expanded version of the last statement on the

terminal (useful for checking macro expansion)
PPCODE the pcode form of the statement being parsed is printed out at

the terminal ,

PWCODE the pcode of the statement being parsed is appended to the file
PPCODE.FOO

ALPRIN subsequent printout of variables is in AL format rather than

POINTY format
PRTIME prints the execution time on the PDP-10 for the current

152

instruction

Force wrist calibration

If it is found that the calibration of the force wrist has drifted, automatic
calibration of the force wrist can be done by using the READWRIST instructions
described in Appendix V.

153
Appendix X. REFERENCES

Binford,T.0.,, GrossmanD.D, LiuCR, BollesRC, [inkel,R.A, MujtabaM.S.,
Roderick,M.D., Shimano,B.E, Taylor,R.H., GoldmanRH, Jarvis,J.P., ScheinmanV.D,
Gafford,T.A;; EXPLORATORY STUDY OF COMPUTER INTEGRATED - ASSEMBLY
SYSTEMS; Progress report 3 covering period from December 1, 1975 (o July 31,
1976. Stanford Artificial Intelligence Laboratory MEMO AIM-285, Computer
Science Department Report STAN-CS-76-568 Stanford University. August 1 976.

Binford,T.0., Liu,C.R, Gini,G, GiniM., Glaser,|., IshidaT., MujtabaM.S., Nakano,E.,
NabaviH., Panofsky,E, Shimano,B.E, GoldmanR., ScheinmanV.D, Schmelling,D.,
Gafford,T; EXPLORA TORY STUDY OF COMPUTER INTEGRA 1~ € © ASSEMBLY
SYSTEMS; Progress report 4 covering period from August 1, 1976 to March 31,
1977. Stanford Artificial Intelligence Laboratory MEMQO AIM-285.4, Computer
Science Department Report STAN-CS-76-568 Stanford University. June 1 977.

[inkel,R.,, Taylor,R, Bolles,R,, Paul,R, F eldman,J.; AL, A PR OGRA M\ M ING SYSTEM
FOR N UTOMA TION; Stanford Artificial Intelligence Laboratory MEMO AIM-243
Computer Science Department Report STAN-CS-74-456 Stanford University .
November 1974.

Finkel,R.A; CONSTRUCTING AND DEBUGGING MANIPULATOR PROGRAMS;
Stanford Artificial Intelligence Laboratory MEMO AIM-284, Stanford Computer
Science Department Report STAN-CS-76-567 Stanford University. August 1976.

Goldman,R; RECENT WORK WITH | " H € A L SYSTEM; Proceedings of the 5th
International Joint Conference 0 n Artificial Intelligence, Massachusetts Institute of
Technology, Boston, August 1977.

Grossman,D.D,, Taylor,RH; | N TERACTIVE GENERA TION OF OBJECT MODELS
WITH N MANIPULA TOR; Stanford Artificial Intelligence Laboratory Memo
AIM-274, Stanford Computer Science Report STAN-CS-75-536 Stanford
University. December 1875.

MujtabaM.S, GoldmanR; AL USERS’ MANUAL; Stanford Artificial Intelligence
Laboratory, Stanford University. First Edition November 1 977. Second Edition
January 1979 (Stanford Artificial Intelligence Laboratory Memo AIM-323, Computer
Science Department Report STAN-CS-79-718).

Mujtaba,M.S.; POINTY, A N INTERACTIVE SYSTEM FOR ASSEMBLY; 16 mm color
with sound, 1 O Minutes, Stanford Artificial Intelligence [aboratory, Stanford
University, December 1977.

MujtabaM.S,, Salisbury,JK; FLASHLIGH T FACTOR Y; Ten minute film showing
flashlight assembly under AL. Stanford Artificial Intelligence Laboratory, Computer

154

Science Department, Stanford University. September 1979,

Mujtaba,M.S; Current Status of the AL Manipulator programming system; Proceedings
of the Tenth International Symposium 0 n Industrial Robotics, Milan, Italy March 5-7,
1980,

Paul,L; MODELLING, TRAJECTORY CALCULATION AND SERVOING OF N
COMPUTER CONTROLLED ARM; PhD. Dissertation, Stanford Artificial Intelligence
t aboratory Memo AIM-177, Computer Science Department Report
STAN-CS-72-3 1 | Stanford University. March 1 973.

Shimano,B.E.; THE KINEMATIC DESIGN AND FORCE CONTROL OF COMPUTER
CON |X 0TTE® MANIPULA TORS; Stanford Artificial intelligence Laboratory MEMO
AIM-31 3, Stanford Computer Science Department Report STAN-CS-78-660
Stanford University. March 1978 '

Taylor,RH; A SYNTHESIS OF MANIPULATOR CONTROL PROGRAMS FROM
TASK-LE VEL SPECIFICA TIONS; Stanford Artificial Intelligence Laboratory MEMQ
AIM-282, Computer Science Department Report STAN-CS-76-560 Stanford
University. July 1976.

1SS

Appendix XI. ACKNOWLEDGEMENTS

We wish to acknowledge the following contributors who have brought the
AL system to its current state of development: Tom Binford, Bob Bolles, John
Craig,Ray [inkel, Jerry Feldman, Ron Goldman, Tom Gafford, Maria Gini, Pina Gini,
Dave Grossman, Norman Haas, Tatsuzo Ishida, Pitts Jarvis, Oussama Khatib, Jeff
Kerr, Bill Laaser, Dick Liu, Jim Maples, Hamid Nabavi, Lou Paul, Enrico Pagello, Ted
Panofsky, Mike Roderick, Gene Salamin, Ken Salisbury, Vic Scheinman, Bruce
Shimano, Barry Soroka, Russ Taylor, Rick Vistnes, Lee Winnick.

This work was supported by the National Science Foundation through the
following grants: NSF-APR-74-01390-A04, NSF-DAR-/8-15914 and

NSF-MEA-80-19628.

156

11GO 113
GSTEP | | 3
USTEP | 13

11DDT 8, 1 2,66,72,16-77,83,
88-89, 151
11V 11-1¢ 18- 79,83-84, 88

ABORT 66

ADAC interface 8, 67

ADC &7

affixment 6 , | 1, 30-33, 55-56,

66, 90, 92,97

i\
command summary 120
execution summary 1 24
software 1 1
system hardware g

ACC 104
ALPRIN | 51
ALSOAP | I, 75
ANGLE 15, 51

ANGULAR_VELOCITY | 7, SI, 66
APPROACH 29, 57
APPROXIMATELY 65
arithmetic operators

AL 52-54

POINTY 96-9 7
ARMREACH 9 6
arrays S, 44,46, SO, 52, J0, 95
ARRIVAL 57, 63
assignment statement 7, 14-15,

23, 68, 74,92,95, 10¢

AXIS 18-19

BAIL 76,82,111,1S0
BEGIN 14,22, 41,49,69- 10
bendy pointer 91

bgrasp 97

B8JT 100

block 22-23, 41 ,

INDEX

naming 22, 49
statement 22, 49, 95
structure 6, 14, 49

bpark 25, S S

BREAK T 12-113

8V SS, 98, T00

calibration

pointer 9 |

PUMA 77, T00

vision system1 40

wrist 136-138
CASE 38, 6 9
CAUTIOUS 48,65
CAUTIOUSLY 64
CCW 6 6
CENTER 28, 65, 99
CLOCKWISE 6 6
CLOSE 28, 65, 9 9
COBEGIN 41, 49, 4 O
€0ENO 41,49, 10
command summary

AC 120

POINTY 123
comments 15, 49, 95
compilation 74-76
condition monitors 7, 34, 0,

57,61-63,67, 10-41, 98,
104

CONSTRUCT 53, 97
COUNTER_CLOCKWISE 66
crif S S
CW 6 6

DAC 67

data types 14
EVENT SO
FRAME 20, SO, 90
LABEL 50
ROT 18, SO
SCALAR 1S, 80

STRING 50

TRANS 21, 50

VECTOR 1 7,50
DEBUG 111-112
debugger TTT
debugging aids 87
DEBUGOFF 111
DEBUGON ! I |
declaration 23, 51, 95
DEFER 63,71
DEFINE 51, 73,103
DELETE 104
DEPARTING 57,63
DEPARTURE 29,5 7
deproach points 29, 57
design philosophy 3
dimension checking 15
dimensions 1 5, 51
DIRECTLY 29,57
DISABLE 50, 6. 63
display |1 1, 60. 88-89, 92-94,

97, 105-106
DISTANCE 15, 51
©0 AL[ALHE] 76 .

DRIVE TOO
DUMP_VARIABLES 114
DURATION 57,62, 64, 66

ECHOOFF 107
ECHOON 1071
EDIT 104, 114
ENABLE 50, 61, 63
ENe 14,77 41, 49, 69J0
ERROR_MODES 74, 81,87
ERROR clause 64
errors 80-88
correction 80
loading 83
messages 80-8 1
PALX 83
parsing 80
recovery 7, 80
response 81

runtime 84
events 41, 50-51, 10
EXCESSIVE_FORCE 64
execution 76
EXIT 114
expressions 52, 96

FALSE 36, 55
fiducial 9T
files 1 1
ALP 11, 75
ALS 11
BIN 11
L0G TT. 87
NEW 11
AV 1
extension 1 1
input/output 1 06
logging 11
name 11
S-expression 11
FINISH 8 7
flexible fixturing 1 T6
FOR 36, 64, 68
force 35
FORCE 15, 51, 59, 61-62
FORCE_FRAME 59, 61-62
FORCE_WRIST 60
force application 35, 58-59
force sensing 34, 58-59, 61-62,
129
FRAME 6. 20, SI, S3, 90

GAL TT.6T.88
GATHER 60.88. T06
GJT 100

gpark SS

GRAPH TO6

grinch ZS, S6

HALT 113
HAND 58-59
HELP module TO8

157

158

1/0 72
identifier 14

IF 36, 68
initialization 48
INSCALAR 52,72
ISAFFIXED 96

KL10O 8

LABEL SO-SI
LINE 151
LOAD_VARIABLES 114

macros 6, 1 7,12,102-103
MESSAGE 74, 87

MOVE 24-25, 28-30, 56, 98
MOVEX 9 9

MOVEY 9 9

MOVEZ 9 9

NILDEPROACH 28, 57
nilrot 19

niltrans ZZ

nilvect T8

NO_NULLING 64-65

NODISPLAY 105
NOELF 151

NOFOLD 151
NONRIGIDLY 31, SS, 9 7
NORMALLY 64
NOUPDATE TOS
NOWAIT 68

NULL SS

NULLING 65

ON 61-63
OPEN 28, 65, 99
OPERATE 66
ORIENT 20, 97,102

PALX 11-12,4S, 8T
panic button 64, 16- 77, 80, 84,

86
parallel processes 0, 41,50,
62, 10
PARK 87
PAUSE } |
pcode 11
POP-10 8.88
pep-11 8, 83
cross assembler 11
load module 75
PFREE TOT
PGRAV 101
PHOTO TO8
PJOINT TOT
plantime system 4
PLOT 89
pointer 91
POINTY command summary 123
POINTY sequence 115
POS Z0, 102
PPCODE 151
precedence relations 54
PRECISELY 65
predeclared variables 54, 95
PRINT 23,72
procedures 0 , 45, 70,102
program 22, 49
PROMPT 72
PRTIME TST
PTABLE TOT
PTOOL TOT
PUMA 8
calibration TOO
talking to VAL 67
PWCODE 151

QBAIL 151
QDELETE 104
QREAD 10}
QUERY S3. 72, 96
QUICK 48,65
QUICKLY 64
QuIT 112

SLOWLY

READ 107
READMESSAGE 114
READWRIST 136-137, 152
REDEFINE 103-104
REDISPLAY 105
REFERENCE 30

REL §7

RENAME 114

REQUIRE 67, 73-74, 8T. 87
RESETSTATUS 151
RESTART 112
RESUME_MESSAGE 149
RETRY 64, 87

RETURN 30

RIGIDLY ®1. 55, 97

RJT TOO

ROT 18, 51, 53

rpark 55

RUNTIME 52, 96

runtime system 4, 146

SAVECOREIMAGE 150
SCALAR 15,51.
Scheinman arm 8, 91"
SETBASE 60
SETSTATUS 151
SHOWN 105
SIGNAL 41, 50, 70
SLOW 48,65

64
software organization 11
SOURCE_FILE 67, T3
SPEED_FACTOR 48, 64
station Z0, 25, 54
stiffness 35, 58
STOP 34, 66
STOPMESSAGE 114
strings 22, 50-51, 72
synchronization 41

TEXT 112
TIME 15, 51

159

TIME_OUT 64

TORQUE 17, 51, 59, 61-6Z. 66
TRANS 21, 51, 54

TRAPS 112

TRUE 36, 55

type incompatibility 81

UNBREAK 117%
UNFIX ®1. 55,98
UNIT 17-18
UNTIL 40, 69
UupeAale 105

VAL 67

VALUE 710

variable 14, 49
VECTOR 17, 51, S3
VELOCITY 17, 51, 57
VIA 29-30,56-57
Vision Module 8, 67
vM 67

VT05 72,77,79, 84, 83,100-101
VT05_BLUE T06
VTO5_GREEN TO06
VTO5_OFF T06
VTO5_ON 1 06
VTO5_RED TO6
VTO5_YELLOW 106

WAIT 41, SO, 68. 30

WHILE 36, 68

WOBBLE 65

WORLD 58-59 ,
WRIST 60

WRITE T06

WRT 20

XCOORD 96, TO0¢
XGP 8 9
xhat T 8

YCOORD 96. 102
yhat 18

160

YJT 100
ypark 25, 55

ZCOORD 96. 102
ZEROED 60
zhat 18

