
January 1982 Report. No. STAN-(X-82-892

An Algorithm for Reducing Acyclic Hypergraphs

bY

Gabriel M. Kupcr

Department of Computer Science

St;mford University
Stanford, CA 94305

‘,

. .
7

An Algorithm for Reducing Acyclic Hypergraphs

GABRIEL KUPER+
Stanford University
Stanford, Calif.

Abstract

The following is a description of an algorithm to compute efficiently the GFaham
reduction of an acyclic hypergraph with sacred nodes. To apply the algorithm we must already
have a tree representation of the hypergraphs, and therefore it is useful when we have a fixed
hypcrgraph and wish to compute Graham reductions many times, as we do in the System/U
query interpretation algorithm.

t Work supported by grant MOSR-80--2

2. Definitions 2

$1 Introduction .

In System/U (see [KU]), the database is regarded as a set of objects and a number
of collections of objects, called mazimal objects (see [Mull). These maximal objects’ can
be regarded as hypergraphs, where the nodes are the attributes of the database and the
edges are the objects. Each maximal object is assumed to be an acyclic hypergraph. The
database designer specifies the objects and maximal objects, and a tree representation for each
hypergraph is then computed. To process a query on the database, the query interpreter first
converts it into some combination of queries, each of involves only one maximal object. Each
such query is a projection applied to the join of all objects in the maximal object, and can
now be optimized using tableaux optimization (see [ASU]). [ASU] also present an optimization
algorithm for simple tableaux which includes tableaux derived from hypergraphs. As noted in
[MU2], optimization of tableaux derived from hypergraphs is equivalent to Graham reduction of
the corresponding hypergraph with a given set of sacred nodes. The following is an algorithm to
compute such a reduction, which is more efficient than applying the [ASU] algorithm mentioned
above. The algorithm requires that we already have a tree representing the hypergraph. Such
a representation can be constructed by carrying out an ordinary Graham reduction on the
hypergraph (see [BlMY]). The tree representation is constructed once and for all when defining
the database, and it is then used to guide the algorithm performing the Graham reduction with
sacred nodes.

$2 Definitions

A hypergraph G is a set of nodes N, and a set of edges E, where edges are sets of
nodes. We will be interested only in acyclic hypergraphs. These are defined in, e.g., [BFMY]. ,
We shall not repeat the definition here, as it is never used here. We shall use instead two
equivalent properties described below.

Definition: Let G be an acyclic hypergraph, and X a set of nodes in G. The Graham reduction
of G with sacred nodes X, denoted GR(G,X) (see [MU2]), is obtained by carrying out the
following steps, in any order:

(1) If A is an isolated node (i.e., is in only one edge) and is nonsacred (i.e., is not in X),
then delete A.

(2) If R, S are two edges in the hypergraph, such that R C S,, then delete R.

GR(G, X) consists of those nodes and edges that remain when no -further reductions can be
made.

Definition: Let G be an acyclic hypergraph. A tree T whose nodes are the edges of G represents
G, iff for all edges R; and Rj in G and all nodes A of G, if & is on the path in T connecting
R; and Rj and A is in both R; and Rj, then A is in &.

A

Lemma 1. The following three properties are equivalent:

(1) G is acyclic.

3. An algorithm to compute GR(G,X). 9

COVERS (S, R)

Figure 1 Deletion of S in step 1 of the algorithm.

(2)

(9)

Performing the Graham reduction on G with an empty set of sacred nodes results in
the empty set.

There exists a tree T representing the hypergraph G. 1

A proof can be found in [BFMTY].

Definition: COVERS(S, R) where S and R are edges in a hypergraph, means that R covers
S, i.e.,

(1) Every isolated node in S is nonsacred.

(2) If A is a nonisolated node in S, then A is in R.

If COVERS(S, R), then S can be deleted in a Graham reduction by first deleting all isolated
nodes in S, and then deleting S using rule (2).

$3 An algorithm to compute GR(G,X).

Description of the Algorithm.

We arc given a hypcrgraph G, a set of sacred nodes X, and a tree T representing the hypergraph
G. Apply the following two steps to T:

-1: Scan the tree from the bottom up. For each node R, examine its children from left
to right. Let the current child be S, and let its children be Yi, j = 1,. . . , m (if it
has any). Also let R’s children to the left of S be X;, i = 1,. . . , I, and those to S’s
right be Zk, k = 1,. . . , n. If COVERS(S, R), carry out the transformation in Fig. 1,
and continue comparing 12 with its children from the node marked ‘*‘, the leftmost
child of S. (If S has no children then continue from Zr.) Node R is processed either
when we compare R with its rightmost child and cannot delete the child, or when the
rightmost child is a leaf, and we delete it.

3. An algorithm to compute GR(G,X). I

CO VERS (IS, R)

A. I .
‘i

Figure 2 Deletion of R in step 2 of the algorithm.

2: Scan the tree from the top down. For each node R, examine its children from left to
right. Let the current child be S, and let X;, Yi, Zk be as in step 1. If COVERS(R, S),
carry out the transformation in Fig. 2, and continue from the node marked ‘*‘, the
leftmost child of S, with R replaced by S. (We do not compare S with the Zk’s.)
A node is processed either when we compare it with its rightmost child and cannot
delete it, or if it is a leaf and we delete its parent.

Note that in Step. 2 we do not have to test if COVERS(S, Zk) for k = 1,. . . ,n, since the
proof will show that this can never happen. Also note that the comparison of a node with
it’s children isedistinct from the top-down processing of it’s children, so that the Zk’s are all
compared with their children.

We now prove a basic lemma required for the main theorem:

Lemma 2. Let R, S, T be edges in a hypergraph, where -COVERS(R, S) and T # R, S.
If after deleting T, COVERS(R, S) holds, then: (see Fig. 3.)

(11 There is a node A in the hypergraph, such that A is in R, T and in no other edge.

(2) In any tree representing the hypergraph, one of R and T is the parent of the other..

Proof: Since -COVERS(R,S) b e oref deleting T, there must be a node A in R satisfying one
of the following: %

(1) A is isolated and sacred.

(2) A is nonisolated and not in S.

The first possibility cannot hold, since if it did A would remain isolated and sacred after deleting
T, and therefore we would have lCOVERS(R, S) after deleting T.

Therefore the second possibility must be true, which implies that after deleting T we
will still have A in R and not in S, and therefore the only way we can have COVERS(R, S)
is for A to become isolated upon deletion of T. Therefore, the first part of the Lemma must
hold. To show that R and T are adjacent in the tree, assume they are not. Let U be any
(hypergraph) cdge on the path in the tree connecting them. Then A must be in U (by the
definition of a tree representing a hypergraph), contradicting the first part of the Lemma. 1

3. An algorithm to compute GR(G,X). 5

.

Figure 3 .COVERS(R, S) after deleting T.

The main theorem to be proved is:

Theorem 3. After applying the above algorithm, we obtain a tree representing a hypergraph
that can be obtained from G by applying steps in a Graham reduction with sacred nodes X.
This hypergraph has the property that if U and V are two of its edges, neither of them covers
the other. Therefore, if we delete all the isolated nonsacred nodes from this hypergraph, we get ,
GR(G,X) .

In order to prove the theorem we will first show two lemmas about the state of the tree after
each step of the Algorithm. In their proofs we use COVERS’ for the COVERS relation before
deleting an edge, and COVERS2 afterwards.

Lemma 4. After Step 1 of the above algorithm, we obtain a tree T(l) with the following
properties

(1) The tree represents a hypergraph that can be obtained from T by a number of steps of
a Graham reduction with sacred nodes X.

(2) If U and V are nodes in I’(‘) and U is a child of V, then ?COVERS(U, V).

Proof: The proof is by induction on the nodes that have been processed. At each stage, assume
that the tree satisfies (1). Also assume that (2) holds for all K that have been processed, and
for V = R and U to the left of S, where R and S are as in Fig. 1. We show that (1) and (2)
still hold after deleting S, with the new relation COVERS2, for -@l V that have been processed
and for V = R and U to the left of ‘*‘. #

In Fig. 1, R is the node wc are interested in at this stage of the induction, and S the
child we have compared with R and found that COVERS(S, R).

3. An algorithm to compute GR(G,X). 6

CO VERS (S, R)

. . .
x i s ‘i’,

A. . .
‘i .

Figure 4 Deletion of R - F is its parent.

(1) Since a node S in the tree is deleted only if there is some R such that COVERS’(S, R),
every deletion is a step in the Graham reduction. To show that the new tree represents
its hypergraph, let U1, U2 be nodes in the new tree, A in U1 n Us, and V on a path
connecting U1 and U2. In most cases, this is also a path in the previous tree, and
therefore A is also in V. The only case when this is not true is when the path includes
one or two of the Yi’s. If it only contains one of them, it can be extended to a path in
the original tree by adding S to the path, and therefore A is again in V. If it connects
two of the Yj’s, replace R in the path by S. If V # R, then we immediately see that
A is in V. Otherwise V = R, in which case A in S and nonisolated (since A is in
both U1 and U)2 and COVERS’(S, R) together imply that A is in R .

(2) This will not hold after deleting S only in the following two cases:

(1a -COVERS1(U,V), but COVERS2(U,V), where U is a child of V .
In this case, Lemma 2 shows that U and S are adjacent. Since V is in the new
tree, V # S, and since U is a child of V the only possibility is U = R. This
implies that V is R’s father, and therefore V has not yet been processed.

(b) COVERS2(U, V) , hw ere U becomes a child of V as a result of deleting S.
This can only occur when U = Yi for some j, and V = R. This is also a pair
that has not yet been processed. u

Lemma 5. After applying Step 2 to T(l), we dbtain a tree Tt2) with the following properties:

(1) This tree represents a hypergraph that can be obtained from T by a number of steps
of a Graham reduction with sacred nodes X’.

(2) If U, V are nodes in the tree with U a child of V, then -COVERS(U, V).

(3) If U, V are nodes in the ‘tree with U a child of V, then -COVERS(V, U).

Proof: As in the previous lemma, assume the result holds where V is either a node that has
been already processed, or where V is the current node R, and U is to the left of S. We show

3. An algorithm to compute GR(G,X). 7

Figure 5 4 COVERS(Xi, S) after deleting R.

that the results hold after deleting R for the relation COVERS2, for V that has been processed
and for V = S and U to the left of ‘*‘.

In the following we shall use F to stand for R’s parent, if R has one (see Fig. 4).

(1) Obviously each deletion is a step in a Graham reduction. To show that the new tree
represents its hypergraph, let U1, UQ be nodes in the new tree, ‘A E U1 n Us, and V
on a path connecting U1 and Ug. If the path does not go through S, then the path
was also a path in the tree before deleting R, and therefore A E V. The path is also
a path in the previous tree if it connects two Yj’s, and can be extended to one if it
includes only one of the Xi’s and Zk’s. The remaining case is when the path connects
two of the Xi’s and Zk’s. If we replace S by R we get a path in the original tree.
Therefore if V # S we immediately see that A is in V. If V = S then A in R a n d
nonisolated, and COVERS’(R, S) together imply that A is in S.

(2) Let U be a child of V, and COVERS2(U, V). As in the previous lemma there are two
possibilities:

(a) U and .V were not adjacent before deleting R. Then one of the following must
hold:

0i U is one of the Xi’s or the Zk’s and V = S. Both these cases are
proved in the same way, so let us take U = Xi. From step 1 we know
that lCOVERS’(Xi, R). Tlrerefore there is a node A in Xi such that
either A is isolated and sacred, in which case A will remain isolated
and so lCOVERS2(Xi, S), or A is nonisolated and not in R (see Fig.
5). In that case, since R is on a path in the tree connecting Xi and
S, A cannot be in S. Since A is not in R, A remains nonisolated, and
therefore lCOVERS2(Xi, S).

(ii) U = S, V = F. From step 1, lCOVERS’(S, R). If this is due to S con-
taining an isolated sacred node, we immediately get -COVERP(S, F).
Otherwise there is a nonisolated A in S which is not in R. Then A will
remain nonisolated alter deleting R, and since R is on a path connecting
S and F, A cannot be in F. Therefore, lCOVERS2(S, F) .

3. An algorithm to compute GR(G,X). 8

(b) U is a child of v (before deleting R), and -COVERS’(U, V). By Lemma 1,
U must then be adjacent to R, and therefore U = (i)X; (ii) Zk (iii) S (iv) F .
The first three imply that V = R which is impossible, since R has just been
deleted. In the fourth case, U = F and V is R’s grandparent (call it G). We
have -COVERS’(F,G), from step 1. This is due either to F containing an
isolated sacred node, in which case we immediately have lCOVERS2(F, G), or
to F containing a nonisolated node A which is not in G. If COVERS2(F, G),
then A must become isolated, and therefore must be in R and F only. But
then, COVERS’(R, S) implies that A is in S, a contradiction.

(3) Let U be a child of V such that COVERS2(V, U). Th ere are then two possibilities:

(a) U and V were not adjacent before deleting R. This happens when:

0i V = S. and U is one of the Xi’s or the Zk’s. Both cases are the
same, so let us assume that U = Zk. From step 1, we know that
-COVERS’(S, R). Th’1s is due either to S containing an isolated sacred
node, in which case we immediately get lCOVERS’(S, Zk), or to S
containing a nonisolated node A which is not in R. Since A is not in R,
A remains nonisolated, and since R is on a path between S and Zk, A ’
cannot be in Zk. Therefore -COVERS2(S, Zk).

(ii) U = S, V = F. Since the algorithm is top-down, -COVERS’(F, R)
must already hold. If this is due to F containing an isolated sacred
node, we immediately get -COVERS2(F, S). Otherwise, F contains a
nonisolated node A that is not in R. Then A remains nonisolated, and
since R is on a path between F and S, A cannot be in S. This shows
that lCOVERS2(F, S).

(b) U and V were adjacent before deleting R, wi th -COVERS’(V,U) before 0
deleting R and COVERS2(V, U) afterwards. By Lemma 1, V and R m u s t
be adjacent and therefore V is one of these: (i)Xi (ii] ,Zk (iii)S (iv)F. The first
three imply that V have not yet been processed. In the fourth case, V = F
and U is a child of F other than R. If lCOVERS2(V, U), lemma 1 shows that
there is a node A such that A is only in F and R. But COVERS’(R, S) implies
that A is in S, a contradiction. 1

Proof of Theorem 3 By the two previous lemmas, after applying the algorithm we ob-
tain a tree Tc2), with the property that if U is a child of V then -COVERS(U, V) a n d
-COVERS(V,U). A..csumc that thcrc arc cdgcs U and V such that COVERS(U, V). Let W be
U’s immediate successor on a path connecting U aud V. Then one of the following occurs:

-(a)

04

W is a child of U. Take any A in U. If A is isolated, COVERS(U, V) implies that
A must be nonsacred. If A is nonisolated, then A is in V, which because the tree
represents the hypcrgraph implies that A must be in’ IV. Therefore COVERS(U, W),
contradicting Lemma 4.

:c
U is a child of W. In the same way, we get COVERS(U, W), a contradiction. 1

References 9

54 Complex;ty of the hlgor;thm.

Let n =]G] be th e number of edges in the hypergraph, k the size of the largest edge
in G. Both steps of the algorithm compare each node of the tree with its parent at most once
(the first step does so exactly once). Each such comparison consists of two parts:

(a) Test if the COVERS relation holds. This requires testing if each attribute in the edge
is isolated or not. If it is isolated, the COVERS relation does not hold if the attribute
is sacred. If the attribute is nonisolated, we then have to test if the attribute is in
the object above it in the tree. The COVERS relation will not hold if it is not. If
the objects are stored as lists of attributes this requires time proportional to k. If we
maintain a count of the number of edges an attribute is in, test for isolation requires
constant time, and therefore testing if COVERS holds requires O(k2).

P4 If the COVERS relation -holds, delete a node from the tree. If we represent the
tree using pointers to left and right children and left and right siblings, the deletion.
requires constant time. Updating the count of edges for each attribute requires O(k)
time.

The two steps above have to be carried out at most twice for each edge. Therefore the
complexity of the complete algorithm is O(nk2).

The algorithm in [ASU] for simple tableaux uses different data structures and so
cannot be compared directly with this. It requires O(r4c) where T is the number or rows (= n),
and c the number of columns (2 k) in the tableau. If we apply the reduction algorithm using
similar data structures, i.e., represent the hypergraph as an array so that testing if an attribute
is in an edge requires constant time, but every attribute in the hypergraph must be examined
when testing if COVERS holds, then (a) and (b) both require O(c) ti”me, and therefore the
algorithm takes O(W) time.

R e f e r e n c e s -

[ASU] Aho, A.V., Y.Sagiv and J.D.Ullman, “Eflicient Optimization of a Class of Relational
Expressions.“. ACM Transactions on Database Systems 1:4 (1976), pp. 277-298.

[BFMY] Beeri, C., R.Fagin, D. Maier and M.Yannakakis, “On the Desirability of Acyclic
Database Schemes.” RJSlJ.!, IBM, San Jose, 1981.

WI Korth, H.F. and J.D.Ullmant “SYSTEM/U:A Database System Based on the Universal
Relation Assumption.” Proc. XPl Conference, Stonybrook, N.Y., June, 1980.

[MUI] Maier, D. and J.D.Ullman, “Maximal Objects and the Semantics of Universal Relation
Databases.” TR-80-016, Dept. of C.S.,SUNY, Stony Brook, N.Y, 1980.

[MU21 Maier, D. and J.D.Ullman, “Connections in Acyclic Hypergraphs.” Proc. ACM
Symposium on Principles of Database Systems, 1982.

