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Abstract
.

This paper describes the student modeler of the GUIDON2 tutor, which understands plans by a

dual search strategy. It first produces multiple predictions  of student behavior by a model-driven

simulation of the expert. Focused, data-driven searches then explain incongruities. By supplementing

each other, these methods lead to an efficient and robust plan understander for a complex domain.

1. Basic problem: Modeling strategic problem solving

Diagnostic problem-solving requires domain knowledge and a plan for applying that knowledge to

the problem. A hypothesis-directed diagnostic plan is a rationale for focusing on diagnoses (partial

solutions) and for gathering data to solve the problem. The plan is thus a strategy for selecting and

ordering the application of domain knowledge.

Teaching diagnosis involves recognizing the intent behind a student’s behavior, so that missing

knowledge can be distinguished from inappropriate strategies. The teacher interprets behavior, critiques

it, and provides advice  about other approaches. To do this successfully and efficiently in a complex.
domain, the teacher benefits from multiple, complementary modeling strategies.

GUIDON2 is a tutoring program that uses the case method approach to teach medical diagnosis [5].

The system divides this task among three components: an “expert,”  a student modeler, and an

instructional manager (see Figure l-l). Its expert  component, NEOMYCIN [4], separately  and explicitly

represents knowlcdgc about the medical domain and the domain-independent strategies of diagnostis. The

student modeler, a subprogram called IMAGE, interprets the student’s  behavior by using NEOMYCIN’s

knowledge,  evalu;ltcs  the student’s skill, and produces alternatives. The instructional module of

GUIDON2 will then apply discourse and teaching strategies in deciding whether to interrogate  or advise

the student.

. A model of student strategies in medical diagnosis must disambiguate the possible purposes and

knowlcdgc underlying the student’s actions. ‘1’1~~  approaches  followed by other plan recognizcrs and

student modclcrs arc not suffcicnt hcrc because:

(1) the complex domain makes thorough searches impractical, whether top-down or bottom-up;
(2) we are not modeling only facts and rules used in isolation, but also the procedures for applying them;
(3) every one of the student’s actions must be monitored in case the teaching module decides to interrupt;
(4) his behavior must be cvaluatcd and not just explained; and
(5) WC might not have any explicit goal statcmcnts  from the student,  so WC expect to rely only on his

qucrics  for problem  data as cvidcncc for his thinking.
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Figure l-l: Components of the GUIDON2 teaching System

A top-down, model-driven search works well in an area where the number of plausible solutions is

small, and the cost of computing them is manageable. In the SPADE-O advisor for designing simple

programs [9], Miller could use a narrow-branching, context-free “problem-solving grammar” to recognize

next steps. Medical diagnosis does not generally  fit this requirement. Tracking down a single solution can

be very expensive, and many possible answers may exist. However, if the model of expertise offers a way

to rank-order strategic decisions, then it can be used by a top-do\vn starch to suggest some range of

solutions. Problems include: how to apply the model, how far to go in tracing a possible answer, and how

many such solutions to generate.

A bottom-up, data-driven search is best in domains where it is easy to recognize the reasons

underlying  a solution. But in medical diagnosis, an “upward” search often leads to excessive

combinatorics. If the student asks how long the patient’s headache has lasted, NEOMYCIN links could

show that hc is testing a hypothesis of viral or bacterial meningitis, or hemorrhage, hematoma, migraine,

etc. Or his diagnosis might bc more inclusive (meningitis or vascular disorders in general). He might not

be testing any specific diagnoses, but routinely following up recent data, or exploring for new hypotheses.

Even if his focus can be spccificd,  we would still have to surmise his overall purposes  by searching for

patterns in his previous  actions: we must account for his plnmit~g -- not only his knowledge  -- if we are

going to teach proccdurcs of diagnosis.

Other student modclcrs and plan recognizers  have offcrcd  useful tools and have also shown why

particular fcaturcs  prcvcnt their direct application for teaching strategies of medical diagnosis. If a student

modclcr  is infrequently invoked (say wlm the user explicitly asks for help) then a thorough multi-

tcchniquc, multi-pass starch is practical. Gcncscrcth’s  MACSYMA advisor [G] takes this approach; it also



has the uscis explicit  statement of his goal as a guide in the search. The BELIEVER program lo] predicts

the subject’s current plan and updates the plan’s details after observations, but dots not judge the

appropriateness of his behavior. Its single predicted plan, plus data-driven completion of details and

repairs, is appropriate in its domain of common-sense actions whcrc there are few probable interpretations

of any given action; since the predicted plan is unlikely to be far off, the need for repairs is relatively

minor. Another ICAI program, BUGGY [l], succeeds in a forward, data-driven search of a “procedural

net” because the domain (children’s subtraction) was completely described by about 200 rules. The

student’s skills could thus be mapped or “ovcrlayed” onto the procedural net. Goldstein and Cads

WUMPUS coach [2] [7], and the student modeler for the first version of GUIDON [3], also “overlay”

estimates of the student’s performance onto semi-independent rules of problem knowledge, in a primarily’

data-driven way.

The IMAGE student modeler uses two separate but complementary  apporaches to infer and

evaluate the student’s plan, under our rcquircments  as listed above. It first forms a model-driven range of

predictions, then data-driven descripfiotrs  about the student’s behavior. (IMAGE also takes two further

steps: describing the student’s level of domain knowledge, and evaluating the success of the student

model itself;  these are discussed elsewhere [8].)
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Figure 1-2: Phases of the modeler

2. Understanding strategies: An example

In a test case, the tutor presented a patient  who complained of headaches, vomiting, and bouts of

irrationality and apathy. The student then asked scvcral  questions about the patient’s headache, and

whether he had been irritable or dcpresscd (both negative). At this point IMAGE, using NEOMYCIN’s

knowledge,  infers that the student’s a&e hypotheses are brain pressure and tension headache;  and that his

current fask  (purpose) is trying to set up a group of hypotheses to consider. (Refer to Figure 4-1 for

IMAGE’s resolution of these actions into a global plan.)

Since IMAGE bclicves  the student is not yet focusing on any one diagnosis, it predicts that hc will



continue to ask questions which follow up previous data, rather than focus on hypotheses.  (We will see

below how the predictions are generated.) At this point, the data expectancies  are:

Stiff neck; Fever; Precipitating factors of headaches; Abruptness of headache onset; Apathetic; Confused;
Amnesiac; Dysphasic; Aphasic

i -

I These represent the choices NEOMYCIN would favor, in the partial order given. However, the

student’s next query is: “Does the patient show focal neurological signs?” This does not match the

expectancies: the model-driven phase has not explained the student’s thinking here. So IMAGE begins a

rule-based, bottom-up search strategy to understand his behavior. One focused starch is guided by the rule

shown in Figure 2-l. This search succeeds in finding a new diagnosis (brain mass-lesion) which is a

refinement of an active hypothesis (brain pressure) and is also related to the query (focal signs). Thus

IMAGE assumes the student is “refining” (specifying) his diagnosis.

- - - - - - -  - - - - -  - - - - - - - - - - - - - - - - - - -  - -  - -  -
Rule-20: Refined hypothesis
IF some untested hypotheses that are closely relevant to S’s data query

are related as causal or "taxonomic" descendents  of any members
of his set of active hypotheses,.

THEN assume S is "Refining" one of the active hypotheses;
if it can be pinpointed to one hypothesis, then consider
"refining" that node in the student model

--------------------__^_____________

Figure 2- 1: Example of a rule for Descriptive phase

Explaining the student’s action leads to updating the student model in several ways. Since he seems

to be testing a diagnosis, IMAGE infers that the student is no longer gathering initial data (“Identify-

problem” node in Figue 4-l); now he is trying to focus on a few diagnoses (“Establish-hypothesis-space”

node). (Further modeling here includes “overlaying” domain knowledge, and student evaluation [8].)

IMAGE now predicts the student’s behavior by a model-driven generation of multiple expectations,

since the student has entered a new stage in his problem solving. By simulating NEOMYCIN, IMAGE

finds that the expert model’s preferred plan would be to pursue the current focus (brain pressure). Its

secondary choice is to pursue the other active hypothesis. These prcfcrrcd plans lead to the following data

expcctancics  (in order of cvidcntial  strength):

For hypothesis brain pressure: Papilledema; Enlarged head; Diplopia; Seizures
For hypothesis tension headache: Headaches sensitive to emotional disturbances; Headache pressure;

Headache throbbing?; Fever (disconfirmatory)

As it turns out, the student asks whether the patient has a fever.  IMAGE confirms its prediction: it

believes that one part of the student’s  plan is to test (by mildly disconfinning evidcncc) the diagnosis of



tension headache. The top-down prediction produces an immediate, likely explanation:  (This step is

incorporated into the global plan as the “Test-hypothesis” node in Figure 4-l. It would have been very

difficult to pin down the student’s thinking with a bottom-up starch starting with “fever” bccausc of the

multiple purposes  such a datum could serve.)

3. Prediction and description: Discussion

IMAGE’s predictions arc termed “prcscriptivc” because  they represent the range of plans that the

student SHOULD bc doing, because they are what the NEOMYCIN cxpcrt  WOULD do. They pin down the

most likely possibilities of student behavior immediately. If the student’s actions violate the predictions,

then slower data-driven processing is required to explain the data. But when the observations match the

predictions, student  behavior is quickly explained.

IMAGE generates its predictions by siudating  the expert at key points: applying the domain-

independent tasks and strategic m&a-rules  to the inferred context of student thinking. However, it makes

several adjustments  to increase (1) likelihood of successful recognition and evaluation of student behavior,

(2) depth of detail, and (3) computational efficiency. Also, WC want (4) a robust model: it should perform

reasonably  well even if the student acts in unusual ways, and it should be able to recover from its own

errors. (See [8] for discussion of latter two issues.)

To gain the most benefit from its predictions in terms of understanding and evaluating student

behavior, IMAGE genetatcs multiple expectntiom. It does not stop at the first action that NEOMYCIN

would take; it finds both the set of near-cquivalcnt favorite actions and a range of secondary  alternatives.

This increases the chance of matching the student’s  observed action, and provides a spectrum of behaviors

against which his behavior can be judged.

Of what value to the teaching module is a confirmed prediction? IMAGE has not simply generated

data expectancies  in each prediction, but has kept a trace of the strategies and domain rules used in the

simulation of NEOMYCIN along the way. For example, the prediction  leading to the expected query of

“fcvcr” also records the following:

Task:
Strategy:

Test the focused hypothesis
Strategy-rulcO63:  If “trigger” and “enabling” data has already been tried, then consider
any other evidence  available.

Focus: Tension headache
Domain rule: Rulc156: if patient has a fever, then his headache is not a tension-headache [.2 bcliefl

This information about the student’s behavior is passed to the instructional executive, alo/zg  with



.

analogms  infonnatiorl  about the other predictions, many of which could bc judged more appropriate at the

moment. The generation of multiple predictions, with their traces of strategical decisions, thus add a

nonnative element to the understanding of student plans. Since we can often identify one strategical

choice as preferable to another, WC can group behavioral predictions by their desirability. This provides a

ready basis for advising the student.

Recall the example in Section 2: the student apparently considered brain pressure in his first query,

then moved to a new hypothesis. IMAGE’s predictions show that the expert  would have continued to

pursue the more likely hypothesis of brain pressure; and if it did pursue tension headache, stronger

evidence could have been chosen (such as the role of emotional factors). The teaching module could use,

one of thcsc alternatives as a basis for advising or testing.

The rule-based, bottom-up searches are a valuable complement to the top-down predictive phase.

But they have a disadvantage: since the bottom-up searches arc only practical under tightly focusing

heuristics, we cannot get alternative answers. So they give no ready basis for comparison of possibilities, as

do the top-down predictions. The only way to evaluate  the appropriateness of our bottom-up explanation

is by incorporating explicit “buggy” links [l] [ll]. Buggy rules have not yet been added to the

NEOMYCIN expert model.

4. Conclusion and current status

Preliminary tests of the IMAGE student modclcr have indicated that the complementary search

strategies of model-driven predictions and data-driven descriptions yield highly plausible analyses of

students’ strategical behavior. The cficicncy,  detail, and robustness of the modeling have also satisfied

initial demands. Even with occasional unusual queries, IMAGE almost never yields implausible

explanations: this is because the (1) bottom-up searches are highly focused, and (2) if an explanation is

not confidently believed, only partial results are saved in order to help disambiguatc the next observation.

We are now arranging to run controlled experiments with medical students  and experts, in which WC will

test built-in methods of localizing inconsistencies to cithcr the student,  the student model,  or the expert

model [$I.

A few plan understanding programs include a predictive phase (such as BELIEVER, for common-

sense plans [lo]). Very few plan understanders generate multiple predictions; for many applications this

would be ineffcicnt. Multiple predictions arc useful in domains where (I) either the number and cost of

likely solution paths (from high-level strategies down to result) are not very large, or else the paths can be

ranked by appropriatcncss  (so that gcncration of predictions can bc sclcctivc), and (2) recognizing solution



paths by observing  final data is often combinatorially impractical. Medical diagnosis fits this description.

Bottom-up searches are not ruled out; in fact, they complement  the model-driven predictions by often

explaining observations that violate expectations.

WC have shown how the multiple prediction strategy can aid plan recognition  for teaching medical

diagnosis in several ways: depth of detail in plan recognition;  student evaluation (using ranked groups of

“prescribed” behaviors as a standard); and complete alternatives ready to serve as advice or as a basis for

testing the student. With the student’s behavior explained as strengths and weaknesses in problem-solving

strategy (ordered tasks and methods, hypothesis management and focus) as well as in domain-specific

knowledge (hypotheses, rules, and relations), the tutor is then in a position to pinpoint its instruction to the

areas in most need of attention.
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