May 1982 Report No. STAN-CS-82-9 12

The Implication and Finite implication Problems
for Typed Template Dependencies

by

Moshe Y. Varde

Department of Computer Science

Stanford University
Stanford, CA 94305

THE IMPLICATION AND FINITE IMPLICATION PROBLEMS FOR TYPED TEMPLATE DEPENDENCIES

Moshe Y. VardiJr

Department of Computer Science
Stanford University

Stanford, California 94305
May 1982

ABSTRACIT

The class of typed template dependencies is a class of data dependencies that includes
embedded multivalued and join dependencies. We show that the implication and the finite
implication problems for this class are unsolvable. An immediate corollary is that this class has
no formal system for finite implication. We also show how to construct a finite set of typed

template dependencies whose implication and finite implication problems arc unsolvable.

The class of projected join dcpendencics is a proper subclass of the above class, and it
generalizes dightly embedded join dependencics. It is shown that the implication and the finite
implication problems for this class are aso unsolvable. An immediate corollary is that this

class has no universe-bounded formal system for either implication or finite implication.

T Rescarch supported by @ Weizmann Post-doctoral Fellowship, Tullbright Award, and NSF grant MCS-80-
12907.

1. Introduction

In the relational model one views the database as a collection of relations, each of which
being a set of tuples over some domain of values [Coddl]. One notable feature of this mode is
its being ailmost devoid of semantics. A tuple in a relation represents a relationship between
certain values, but from the mere syntactic definition of the relation one knows nothing about

the nature of thisrelationship, not even if it is a one-to-one or one-to-many relationship.

Two approaches have been taken to remedy this deficiency. The first approach is to
extend the relational model to capture more semantics [Codd3]. The second approach, which is
the basis for this paper, is to devise means to specify the missing semantics. These semantic
specifications arc often called semantic or integrity constraints, since they specify which date-
bases are meaningful for the application and which are mcaninglcss. Thus, the database
schemais conceived'as a syntactic specification accompanied by a semantic specification.

Several approaches have becn taken with regard to integrity constraints. Of particular
interest are the constraints called data dependencies, or depcndencics for short. Essentialy,
dependencies are sentences in first-order logic stating that if some tuples, fulfilling certain
equalities, exist in the database then either some other hiples must also exist in the database or
some values in the given tuples must be equal. The study of depcndencics began with the
Sunctional dependencies of [Codd2]. After the introduction of multivalued dependencies by
[Fagl, Zan] the field became chaotic for a few years in which rescarchers introduced many new
classes of dependencies. Recently, two unifying formalisms have been suggested and turned
out to be cquivalent. The class of wuple and equality generating dependencies [BV2, Fag2T],
which is cquivalent to the class of algebraic dependencies [YP], scems to contain most cases of

interest.

Most of the papers in dcpendency theory deal exclusively with various aspects of the

implication problem, i.e., the problem of deciding for a given sct of clcpcndencics 2 and a

T These dependcencices arc called embedded implicational dependencies in[Fag2].

dependency o whether X logicaly implies . The reason for the prominence of this problem
is that an agorithm for deciding implication of dependencies enables us to decide whether two
given sets of dependencies are equivalent or whether a given set of dependencies is redundant.
A solution for the last two problems seems a significant step towards automated database
schema design [Bern, BMSU,BR], which some researchers sce as the ultimate goa for rescarch
in dependency theory [BBG]. Real life databases are inherently finite. When we restrict our
attention to finite databases we face the jinite implication problem, which is independent of the

implication problem.

The class of tuple and equality generating dependencies is quite expressive, in fact,
expressive cnough to rendet the implication and the finite implication problems for this class
unsolvable [BV2, CLM2, Vall. A proper subclass is the class of template dependencies [SU],
which is genera enough to contain embedded multivalued dependencies [Fagl), embedded join

dependencies [MMS], and projected join dependencies [YP].

Usually, we require that no valuc appears in two different columns of a relation. Such
relations are called typed relations, and dcpendencies dealing with such relations arc called
typed depcndencies. If we give up this restriction then we get untyped relations and dependen-
cies. Untyped template dependencies are much more cxprcssive then typed template dcpen-
dencies, and their implication and finite implication problems arc unsolvable [BV1, CLM1].
However, the status of the implication and finite implication problem for typed template dcpen-

dencies was left open by the above mentioned papers.

A possible way to prove solvability is to show that implication is equivalent to finite
implication. The refutation of this possibility for typed template dependencices in [FMUY]

indicated that the problems are more likcly to be unsolvable.

Our ultimate result in the paper is that the implication and the finite implication prob-
lems for projected join dependencies are unsolvable. The proof goes in two essential steps.

First, wc reduce the problems for untyped template dependencics to the corresponding prob-

lems for typed template dependencies, and then we reduce them further to the corresponding

problems for projected join dependencies.

The outline of the paper is as follows. In Section 2 we give the basic definitions. In Sec-
tion 3 we show how to trandate untyped tuples and relations to typed ones. This tranglation is
used in Section 4 to reduce the problems for untyped td's to the corresponding problems for
typed td's in a very elegant way. Since we view a template dependency as a pair consisting of
atuple and a relation, we use the trandation to trandate untyped dependencies to typed ones,
and we also use it to trandate untyped countcrexamplc relations to typed ones. In Section 5 we
show some consequences of the results in Section 4. Mainly, wc show that there is a finite set
of typed template dependencies whose implication and finite implication problems in the class
of typed template dependencies are unsolvable. Findly, in Section 6 we usc the reduction
technique of [YP] to reduce the problems for typed template dependencies to the correspond-
ing problems for projected join dependencies. Wc end that section with a discussion of formal
systems for projected join dependencies. We distinguish between systems that are universe-
bounded and those that are not, and show that the class of projected join dependencics can not
have a sound and complete formal system of the first kind, but it does have such a system of
the second kind. Wc conclude in Section 7 with some remark on the implication problem for

embedded multivalued dcpcndencies.

A preliminary version of this paper appcared in[Va3]. Unsolvability of the implication
and the finite implication problem for projected join dependencies was shown independently by
Gurevich and Lewis [GL1]. Howcever, our results for template dcpendencies are stronger, since

wc show a specific set of dcpendencics for which the problems arc unsolvable.

2. Basic Definitions

2.1. Attributes, Tuples and Relations

Attributes are symbols taken from a given finite set called the universe. All sets of attri-
butes are subset of the universe. We use the letters A ,B,C,.. . to denote attributes and
X.,Y, .- to denote sets of attributes. We do not distinguish between the attribute 4 and the
set {A). The union of X and Y is denoted by XY, and the complement of X isin the

universe is denoted by X.

Let U be a universe. With each attribute A is associated an infinite set called its domain,

derioted DOM(A). The domain of a set of attributes X is DOM(X)=|J DOM(A4). An X-
A€X

value is amapping w:X = DOM (X), such that w(A)EDOM(A) for al A €X. An X-relation
isanonempty set (not necessarily finite) of X-values. If X =U then we may omit it for simpli-
city. A tuple is a U-value. We use a,b,c, ... to denote elements of the domains, s, ¢,u, . ..

to denote tuples, and | ,J, .. . to "denote relations.

For atuple w and a set YC U we denote the restriction of w to Y by w] Y]. We do not
distinguish betweenw[A], which is an A -value, and w(A), which is an clement of DOM(A).
Let 7 bc an X-relation, and let YC X. Then the projection of I on Y, denoted I[Y], isaY-
relation I[Y}={w[Y] : w€Tl}. The sct of all attribute values in an X-relation I is

VAL(I):&JI[A]. For an X-value w,VAL (w) stands for VAL({w}).
€x

2.2. Mappings and Valuations

We often use mappings whose domain is a subsct of DOM (U).Let w be an X-value,
and let a bc a mapping defined on VAL (w). Then we define a{w) as aow (i.€., a composed
with w). Thus, a(w) is a mapping from the domain of w to the range of a. A valuation is a
partial mapping a:DOM (U)—DOM(U) such that if a(a) isdefined then a(a)€DOM (A) for
al A €U and a € DOM(A). Wc say that a is a vauation on a tuple w (a relation 7) if ais
dcfined cxactly on VAL (w) (VAL(I)). Let be a valuation on a relation |, and let w bc a

tuple. An extension of atow is a valuation on /U{w} that agrees with a on VAL (7).

2.3. Dependencies and Implication

For any given.application only a subset of all possible relations is of interest. This subset
is defined by constraints that are to be satisfied by the relations of interest. A class of con-

straints that was intensively studied is the class of the so caled data dependencies.

A template dependency (abbr. td) [SU] saysthat if some tuples, fulfilling certain equalities,
exist in the relation, then necessarily another tuple (possibly with some components
unspecified) exists in the relation. Formaly, atd is a pair <w,I> of atuplew and a finite rda
tion 1. It is satisfied by a relation J, denoted J =<w,I>, if every valuation « on/ such that
a(I)CJ can be extended to w so that a(w)€J. Let ¥ be the maximal set such that

VAL(W[VNCVAL(I).<w,I> is called V-total.

A functional dependency (abbr. fd) [Codd2] says that if two tuples agree on some of their
atributes, then necessarily they agree also on other attributes. Formally, an fd is a statement
X— Y for some scts of attributes X and Y. It is satisfied by a relation J, denoted JEX— Y,

if for any two tuplesu,v€J, if u[X]=v[X]thenu[Y] = V[Y].

From now on let 2 dcnotc a finite sct of dependencies and let ¢ and 8 dcnotc individual
dependencies. When we want to specify explicitly the universe U we'll talk about U-
dependencies. Wc say that = implies o, denoted 2 ko, if TEZ entails 7 |=o for every rela-

tion I. Z finitely implies o, denoted 2 ;o, if 1 |2 entails I |= o for every finite relation |.

Let ¥ be a class of depcndencics. The implication problem for ¥ isto decide, given
ZCV¥ and 6 € ¥, whether 2 | 0. The finite implication problem for ¥ isto decide, given ZC W
and g€¥, whether X ;6. The two problems arc indcpendent cach of the other, because one
can have 2 o but ZF o. In fact, if =0 entails 2= othen not only arc the two prob-

lems equivalent but they arc also solvable.

2.4. Untyped and Typed Dependencies

Until now we have not said anything about the relationship between domains of different
attributes. We now present the two extremes. |f we assume that all attributes have the same

domain, i.e., if the universe isU=A ;-..A, and
DOM(U)=DOM(A))=-..= DOM(A4,),
then the universe, tuples, relations and dependencies arc called untyped. If, on the other hand,

we assume that different attributes have disjoint domains, i.e., A #B entails

DOM (AN DOM(B)=g, then the universe, tuples, relations and dependencies are called

typed.
Let us now fix auniverseU'=A'B ‘C for the untyped case, and let
DOM'=DOM(U"Y=DOM(A")=DOM (B"Y=DOM(C").

Wc denote an untyped tuplew by <w[A'l,w[B'l,w [C'P. Bccri and Vardi [BV1] have shown
that the implication and the finite implication problems for untyped td’s arc unsolvable. In fact

their result is even stronger.

Theorem 1.[BV1] ‘The implication and the finite implication problems for untyped td's arc

unsolvable even for those T and o that satisfy the following conditions:
(1) o isU'-total.

(2 AlltdsinZareA’'B " -total.

@) If 2o then SU{A' B = C }Hyo.

Furthermore, there iscven afixed o that satisfics the above conditions, for which the problems

are sill unsolvable. O

3. Translating Untyped Tuples and Relations to Typed Ones

W c usc atyped universe U = ABCDIF. ‘Po every clement « €DOM ' there correspond

three distinct clements a'€ DOM(A), a?€DOM(B) and a*€EDOM(C). DOM(A), DOM (B)

and DOM (C) have also special elements a 0, b0 and c O, correspondingly. Thus

DOM (A)={a0}U{a} : a€EDOM '}, DOM (B)={b0}U{b? : bEDOM '}, and
DOM(C)={c0}U{c?: c€EDOM'}. The other domains are:
DOM(D)={d0}U{w : w is an untyped tuple), DOM(E)={e0}UDOM' and

DOM(F)={f0,f1, ..}

We denote a typed tuplew by <w[A], ..., w[lD.

We use mappings between DOM ' and DOM = DOM(A)U.--UDOM(F). Three such
mappings are the one-to-one mappings 1% and * defined earlier. The inverse mapping is
¢ pla)=glad)=¢p(a*)=a.

The basic idea is to represent an untyped tuple w = <a ,b,c> by a typed tuple
T(w)=<al,b%c3 w,e0,£1>. Note that (T (w)ABC])=w. To represent an untyped relation
by a typed one we have to convey the message that a', a2 and a* are just three names for the
same element. For this we use the typed tuple N (a)=<a',a%a3,d0,a,f 1>. We aso use a typed
tuple s =<a0,60,c0,d0,e0,£0>. Now we represent an untyped relation I by replacing every

tuple w€7 by T(w), by adding N(a) for every a € VAL(I) and by adding s, that is,

T(l):(U T(w)]U[U N(a)]U{s}

w€l a€VAL(I)

Example 1.

Let / be the untyped relation:

A B
Wy a b c
Wor b a c

T(I) is the typed relation:

A B C D E F

s: a0 b0 0 do e0 SO

T(w]): d S w ;e ST

T(wz): o 23 wy €0 fl

N(a): d o a s
N(b): ol w2 w0 b g

N(c): c1 c2 c3 a c fl

We now make a few observations on T. First, T is a monotone operator on relations,
i.e, ICJ entails T(I)CT(J). Secondly, T preserve finiteness, i.e., if I is finite then T(l) is
aso finite. Furthermore, if wc restrict our attention to finite relations, then T can bc viewed as
an cffective trandation. Finally, T(Z) has a very specific structure. In particular, it satisfies cer-

tain functional dependencies.

Lemmal. Let | be an untyped relation. Then

T(HE{AD—U,BD—>U,CD—>U,ABCE—U}.
Proof. Let us show that T(l) E AD — U (the proof for BD = U and CD — U is analogous.)
Letuve€T(I) and u[dD]=v[4D]) If u#v then u[D]=v[D]=d0. If u=s thenv=s
because a0+# ¢! for al a €DOM ', and if u = N(a) for some a €V AL (1) then v = N(a) because
lis one-to-one. So u[AD]=v[AD]impliesu =v.
Let us now show that 7(/)E ABCE—U . letu,v€ET(I) and u[ABCIE]=v[ABCE]. If

u#yv then u[F]=v[£]=¢e0. If u=sthen v =s and vice versa, because a0#q! for all

a€DOM’. 1t follows that u =T(p) and v =T(q) for some p,g€I. But u[ABC]=v[4BC]

entails p = ¢, because !, 2, and > arc one-to-one. Necessarily, u = v. O

4. The Reduction

Our god is to reduce the (finite) implication problem for untyped td's to the (finite)
implication problem for typed td's via a many-to-one reduction. So far we have shown how to
trandate untyped tuples and relations to typed ones. To trandate an untyped td 6 =<w,J>toa

typed td, we translate both the antecedent 7 and the consequent w, i.c., 7(o)=<T(w), T(I).

Fxample 2.

Let o be the untyped td <w,I>, Z=(u):

T(a) is the typed td <T'(w),T(I)>:

T(w): b1 a2 d3 w el fl
a0 b0 0 do e0 1O
o b2 c3 u e fl
T(): d @3 d a f
ol w v op

We'll aso define later the translation function T on sets of untyped td's so that given
untyped = and 6,2 o iff T(2)T(o) and 2,0 iff T(2)[,T(s). Thus, given an
untyped relation | such that 1 =2 but Ildch, we' |l show that 7(/) | T(C) but T(/)ET (o).
We'll aso dcfinc 77 !the "inverse” of T that translates typed relations into untyped ones, so

that given a typed relation I such that 7 T(C) but / #T(a), we'll show that 7~ X(/) = but

1 such arelationis called a counterexample relation for the implication X = (yyo.

10

T-YI)He. Both T and -1 preserve finiteness, which makes the reduction conservative.
That means that both the finite implication problem and the implication problem arc reduced

simultaneoudly.

Our first candidate for T(C) is (T(8) : §€ Z}. Indeed, as the next lemma shows, that
works fine in one direction, from /X and I o to T(1) ET(Z) and T(1) 7 (o). Because
of Theorem 1, we don't have to ded with arbitrary untyped td's but only with A 'B’-total

untyped td's, i.e., untyped td's <w,I> where VAL(w[A'B'NVCVAL(I).

Lemma 2. Let / be an untyped relation and let 8 be an A 'B’-total untyped td. Then 1 4 if
and only if 7(1) = T(0).

Proof. Let 8 be<w,J>, w=<a,b,c>.

If: Suppose that T(l) = T(8). Let a be a valuation on J such that a(J)C /. Define a valuation
B on T(J) as follows: B is the identity on {a0,60,c0,d0,e0,/0,£1}, B(d")=a(d) and
P(d) =a(d) for all d€EVAL(I), and B(1)=a(r) for all ¢t€J. Let t=<d,e,f>€J. Then

T(1)=<d"e? f3,1,e0,f1> and
BT (D)) =<ald) ale) alf),alt),e0,f 1>=T(al2)).
Let d €VAL (J). Then N(d) =<d',d%d*,d0,d,f1> and
BN(d)=<a(d),ald),a(d)’,d0,a(d),f 1>= N(a(d)).

Also, B(s) = s,sowe get (T (/) =T(a(/)C T(1). By assumption, 8 can be extended to T'(w)
so that B(T(w)ET(I). But B(a?) = al(a)'#a0, so B(T(w))#s. That is, there is a tuple u €71

such that B(7T(w))=T(u),because B(e0)=¢0. If c €VAL(J) then
a(w)=<ala),a(b),alc)>=p(KB(a") B(1?) B3P =
= p(B(TWNABC)=p(T(W[ABC)=u€l

Otherwise, wc define alc)=@(B(c*) and get a(w)=u.
Only if: Suppose that /|=8. Let a bc a valuation on T(J) such that a(7()CT(I). If

la(T()] =1 wten a(T(./)):{iz} for some u ET(l). It is easy to sce that « can be cxtcnded

11

to T(w) so that a(T(w))=u€T(I), so we can assume that |a(T(/))|>1. What we'll now

show is that a maps T(J) to 7({} in a{'cry specific way.

Claim 1. o(T())— {sHDCTU)-{s}.

Assume to the contrary that there is a tuple u ET(J)-(s) such that a(u)=s. Then
a(f1)=,0. But £0 has a unique occurrence in T(Z), so it follows that a(7(J)—{s}PD={s}.
Thus, a(d0)=d0 and a(e0)=e0. But for every u€T(I)—{s} either u[D]=£d0 or u[E]+#e0,

so necessarily a(s) = sand| (T(J)) |=1- contradiction.

Claim 2. a(s)=s.

Assume to the contrary that there is a tuple u €7 such that a(s)= T(u). Then a(d0) =4 . But u
has a unique occurrence in T(I), so it follows that for al d €VAL(J), a(N(d))= T(u). Let
y=<e,f.g>€J. Then aN(E)=aN(N=aN(E)=Tw). le, ale)=Tw)A4],
a(f)=Tw)B] and a(g)=Tw)C]. Also, a(e0)=e0=T(u)[E], and consequently,
(TN ABCED=Tu)[ABCE]. By Lemma 1, T(l) EABCE—U, so a(T(v))= T(u). It fol-

lows that | a(7(J))| = 1- contradiction.

If a(s)# s, then the only other possibility is that there is a value d € VAL(I) such that
a(s) = N(d). Then a(e0) = d. But d has a unique occurrence in T(l), o it follows that for all
u€J,a(T(W))=N(d). If e€EVAL(J), then there is a tuplc v€J such that citherv[4]=e, or
v[B']=e, or v[C']=e; so either T(v)[A]=e, or T(W)[B]=¢€% or T()[C]=€. But
a(T(»)= N(d), so either a(eD)=N(d)[A4], or a(e?)= N(d)[B], or ale’)= N(D[C]. aso,
a(d0)=d0=N(d[D], so either a(N(eNAD]=N@)NAD]), or a(N(e))[BD]= N(d)[BD], or
a(N(EeNCD]=N([CD].By Lemma 1, T()E{AD—>U,BD—>U,CD—U}, 0 in cither

casca(N(e))=N(d). It follows that |a(T'(J))|=1- contradiction.

Claim 3. For every tuplc u €J there is a tuple v€ such that a(T(u))= T(v).
Assume to the contrary that a(7(1))= N(d) for some d€VAL(I). Then, a(e0)=d. But d

has a unique occurrence in T(1), so a(s)= N(d) - contradicting Claim 2.

12

Claim 4. For each value d€VAL(J) there is avalue e € VAL(I) such that a(N(d))= N(e).
Assume to the contrary that a(N(d))= T(u) for some u€/. Then a(d0)=u. But u has a

unique occurrence in T(l), so a(s)= T(u) - contradicting Claim 2.

Claim 5. a can be extended to T(w) so that a(T'(w))ET(I).
Define a valuation B on J by B(d)= p(al(d’)). B is well-defined, because, by Claim 4,
a(d)=e' for some e€VAL(I). Let u=<d,e,f>€J. Then, by Clam 3, a(T(u))=T(v) for

somev €/7. But now

Bu)=pKald),ale?),a(f*») = pla(T(u)[ABC]) =

=p(T()[ABCY=vEL
That is, B(J)CI. It follows that B can be extended to w so that B(w)€/. Either c€ VAL (1)

and a(c?)=pB(c)? or we can define alc?) to be B(c)’. Also, we can define at(w) to be B(w) ,

and get a(T(wW)=T(BW)ET(I). =

Things arc more complicated when, given a counterexample relation to the implication
T(C) (/)T (o), we try to find a countcrexample relation to the implication X }=(s)o. The rea-
son for that is that the counterexample relation I', I'ET(2) and I’ ¥T (o), is not necessarily a
translation T(I) of some untyped relation 7. Thus, it is not sufficient to define 77! in the
obvious way on the collection (T(J): J is an untyped relation}. On the other hand, it is not

clear how to define 7~ on the collection (I' : I is a typed relation}.

The solution is to ensure that the typed countercxample relations have some structure to
them. For example, we require that they satisfy the fd's that are satisfied by 7(/) asin Lemma
1. But that is not enough. T(1) also has the property that if 7(<a,b,c>)€T(])then also
N(a),N(b),N(c)ET(I).Unfortunatcly, we can not express this property by atd, so we'll have
to do with a weaker statcment, saying that if 7(<a,b,c>)ET(I) and also N(a),N(b)ET(I),
then also N(c)ET(I). The rcason that this weaker statement suffices is that wc are dealing
with 4'B’-total dcpendcncics. The weaker statement can be expressed by a typed td

oo=<wg,Ip>, o= {s,wy,wy,w3}:

13

A B C D E F
s: a0 bo co do e0 JO
wy! al b2 c3 dl el f
wao al a2 a3 do el f1
w3! bl b2 b3 do e2 A

wy! cl c2 c3 do e3 j

N

Let 3¢ be the set {6¢,AD—>U,BD—U,CD—>U,ABCE—U}. Wc are now in position to
define our inversc mapping 7.

Lemma 3. Let o bc a U'-total untyped td, and let I’ be a typed relation such that 7' ET (o)
and I' 2o Then we can construct an untyped relation 7-%(/") = I such that /¥ o, and for
every A'B’-total untyped td § such that I’ | T(8) we have I 6.

Proof.

Let o be<w,J>,w=Xa,b,c>,{a,b,cYCVALU).I'"ELT(w),T(J), i.e, therc is a vaua
tion' a such that «(7(J))CI' but a can not bc extended to 7(w) so that a(7(w))EI’. Assume,
without loss of gencrality, that a(s)=s (we can aways rename values to assure that), in partic-
ular a(d0)=d0, and a(e0)=e0. Wc define an cquivalence relation = onVAL(I") as follows:
d=eif d = e or if there is a tuplc ¥ €' such that u[D]:'dO and {d,e}CVALu[ABC)).
Clearly, = isreflexive and symmetric. To show that it is transitive, suppose that d=e, e=f,
d#*e, and e*xf. l.e, there are tuplcs u,v€El such that
u[D}=v[D]=d0,{d,e}CVAL(u[ABC)) and {e.fYCVAL([ABCY. Since 1 is typed, either
u[dl=v[Al=e, u[Bl=v[B]l=e, or u[C]=v[C]=e; that is, either u[AD]=v[A4AD],
u[BD1=v[BD] or u[CD]=v[CD]. But I'E{AD— U.BD—U,CD— U}, s0 in cither case
u =v and d=f.Note that, since I’ is typed, for al u,v €', u[d]=v[A] iff u[d]=v[A],

u[B=v[B]iff u[B]=v[B], and u[C=v[C]iff u[C]=vIC].

Let p:VAL(I")—DOM' bc a mapping such that p(d)=p(e) iff d=e. Wcdefine / by:

14

| ={pu[ABCY)) : u€l' ulE]l=e0,u[Fl=a(f1)
and there are tuples ul,uz,uJGIT such that
w[D]=u)[D]=u3[D]=d0, us[Fl=us[Fl=u3[F]=a(f 1),

u[A]=ulA), uy[B]=u[B], and u3[C]=u[C]}

(The intuition is that u looks like T(Ke,f ,g>) and u1, uy, and u3 look like N(a), N(b), and

N(c), respectively.) Observe that if I” is finite then sois|.

Clam 1. /He

We want to define a valuation B such that B(J)CI but B(w)€I. If dEVAL(J), then
a(N(@)EI' and a(N(d)[DP])=a(d0)=d0, It follows that a(d)=a(d)=a(d®). We define a
valuation B on Jby: j?(d)= p(a(d@"))=pla(d?))=plal(d®). Letv=<def >E€J. Thenitiseasy
to verify that a(7(v)), a(N(d)), a(N(e)), and a(N(f)) satisfy the conditions for u, uj, u,, and

u3 in the definition of I'. It follows that
B =<p(al@)),plale?)).p(a(f)> =p(a(T(NABC)HEL
Consequently, B(J)C 1.

Suppose now that B(w)=<B(a),B(b).B(cDEI. l.e, there is a tuple u€/' such that
ulEl=e0, u[F]=a(f1) and Bw)=pu[ABC]). Now a€VAL(J), so a(N(a))€I'. Conse-
quently, B(a)=plala))=pla(N(@NAD=pu[A]),s0 a(N(a))f4]=ul[4], and consequently
ala)=ulA]. Similarly, a(b®)=u[B] and a(c®)=u[C]; that is a(T(wW)[ABCEF])=u[ABCEF).

Defining a(w)=u [D] wc get a(T(w))=u €I’ - contradiction.

Clam 2. I'ET(6) entails [6.

Let 8 be<u,K>, and let 8 be a valuation on K such that B(K)C 7. We want to define a valua-
tiony such. that y(T(K))C I Then y can bc cxtended to T(u) so that y(7'(u))€1’, and from
this we'll be able to cxtcnded B to v so that B(w)E]. Let v =<d,e,f >EK, then B(v)E L. That

is, there arc tuples 7,11,65,.3€1" such that ([F]l= (,[F]= [F]= 6[F]=a(f), ([E]= €0,

15

n[D]=0,[D]=t3[D]=d0, ([A]= t;[A]), {[B]= to[B, t[C]=£5[C] and B(v)=p(¢[4BC]). Furth-

ermore, we claim that 1, t4,t,, and ¢3 arc unique.

Suppose that x satisfies the same condition as ¢ In particular,
BO)=p(t[ABC)=p(x[4BCY)), that is, {[4]=x[A4], {[A]=x[B], and {[C]=x[C], and there-
fore {[ABC]=x[ABC]. But dso ([E]=x[E]=e0 and I'E ABCE—U, so x = .

Suppose that x; satisfies the same conditions as ¢;. In particular, x,[4]= ,[A]= 1,{4] and
x1[D]=4[D]=d0. But I'EAD—U, so x,=1;. Similarly, because I’ E {BD = U,CD— U},
1, and 3 are unique.

We define now a valuation y on T(v), N(d), N(e) and N(f) by: y(T(w)=¢,
Y(N@)= 1, Y(N(e))= 15, and y(N(f))=1;. Obscrvc that y(d0O)=dO, y(e0)=¢0, and
y(fD=alf1). We have to show that in a similar manner we can define y on al tuples in K.
Thus, suppose for example that x = <d,g,h >€ K, then there exist tuplcs y,y1,y2.y3€ 1" satisfying
conditions analogous to the conditions above for 1,¢, ¢ and (. But then,
B(d)=p([AD=p([AD so y[Al=y[d]=t[A]=0[4]. Also, »[D]=1[D]=d0, so
nh[AD]=y)[4D] and, since I'EAD—U, y1=1,. It follows that defining y(7T(x))=y and
Y(N(d))=y, is consistent with the definition y(7'(v))=r and y(N(d))=t,. Defining y(s)=s
we get that y(T(K)CI' Letu=<d,e.f>. Since I' E<T(u),T(K)> wc can cxtend y to T(u)

sothat y(T(u))=z€I'.

Our aim is now to show that p(z[4ABC)EI. Recall that {d,e}CVAL(K), so let
z21=y(N(d))EI’ and z,=y(N(e))EI'. We want to have some z; that looks like y(N(f)), but
if f&VAL(K)then we don't know whether y(N(f))€1'. Now we have to usc the fact that
I'"Eaq. Define a valuation § on I so that 8§(s)=s, 8(w) =z, 8(wy)=2z; and 8(w3)=z2,.8 is
well-defined because 8(aD)=z[A]=z,[A], 8(b2)=z[B]=1z,[B], 8(d0)=d0, 8(c0)=¢0 a n d
8(fD=al(f1). Since I'Eag we can cxtend 8 to wy so that z3 = 8(wg)€ I'. (Clearly, if

fEVAL(K)then zyisjust Y(N(f)). In particular, z;[C]=z[C1=8(c3), S0 p(z[4ABC)EI.

16

To complete the proof of the claim we show how to get that B(u) is p(z[ABC]). Now

d€VAL(K), sov =y(N(d))EI'. But
p([AD=p(v[BD=p(v[CD=B(d),

and v[4]=y(d)=z[4], so p(z[4A]=B(d). Similarly, p(z[BD=B(e). If f EVAL(K) then
p(z[CD=B(f). Otherwise, wc can define B(f) = p(z[C]). In either case, B(u)=p(z[ABC]). O
Following Lemma 3, we are inclined to define T(C) as {T(B): #€ Z}U Z,. But now we
see that Lemma 2 does not yet prove the correctness of the first direction of the reduction.
That is, given an untyped relation / such that /X and / ¥ o, Lemma 2 ensurcs that
T ET(c) and T(1) E{T(8):0€X}. Also, Lemma 1 ensures that T(l) satisfies the fd's in
3o But does T(I) satisfys,? Let a be a valuation such that a(Z/g)C T(1) and | a(/y)|>0. If
a(s) = s, then, as in the proof of Lemma 2, we can show that for some <d,e,f >€I we have
that a(w))=T(d,e.f >), alwy)= N(d), and a(w3)=N(e). So we can extend a to wy to get
a(wy) = N(f)E T(1). But, unlike in the proof of Lemma 2, -we can not show that necessarily
a(s)= s, so we can not prove that T(1) Fag. However, given an additional constraint on 1,

specifically, 7 A ‘B'— C', wc can prove that T(l) [oy.

Lemma 4. Let I be an untyped relation. If 7= A ‘B'—C"’ then T(l) [a.
Proof. Preliminary to showing that 7(I)[E o, let us show that T(1) F ABE-W. Let
uv€T(I) and u[ABE)=v[ABL]. If ufv then u[E}=v[FE]=€0. If u=s then v =5 and vice
versa, because a0=a' for all a €DOM' . It follows that u = T(p) and v = T(q) for some p,g€1.
But u[AB]=v[AB] entails p[A'B']=q[A'B'], becausec ! and ? arc one-to-one, and
plA'B | =q[A'B'] entails p = q because I |z A'B"—C". Necessarily, u = v.

Let us show that T(Z) k= o¢. Suppose that a is a valuation on 7, such that a(/g)CT(I).1f
a maps either wy, wy, or wy to s then a(f1)=f 0 so a(/g)= {s), and a can be extended to wy
so that a(wg) = s. Consequently, we can assume that a(/y— {s})C T(1) — {s). Supposc that

a(s)=s. Then ale0)=e0, so alw))=T(1) for some =<d,e,f>€Il. Also a(d0)=d0, so

17

a(wy)= N(d) and a(w3)=N(e). Wc can extend a to wy so that a(wg)=N(/)ET(I).

Suppose that a(s)= T(t) for some (€1. Then a(d0)=1, so a(wy)=a(w3)= T(t). Thus,
a(wi[4D=a(wy[4)=T(1)[4], a(wi[B) = alwsy[B)=T()[B] and
a(m[ED=a(e0)=e0=T()[E}; that is, a(w)[4ABE]=T([ABL]. But T(1) E ABE = U, so
a(w)=T(1). We have shown that a(/g)={T(¢)}, consequently, a can be extended to wqy SO
that a(wg)= T(r).

Findly, suppose that a(s)= N(a) for some a€VAL(I). Then a(e0)=a, so

a(w)= N(a). Now a(wo[D])=a(w:i[D])=d0= N(a)[D], a(wy[4)=a(wi[4])=N(a)[4] and
a(ws[BD=a(wi[B])= N(a)[B]; that is a(w)[AD]= N(a)[4D] and a(w;)[BD]= N(a)[BD].
But 7(I) e {AD —U,BD —U}, so a{wy)=a(w3)= N(a). Wc have shown that a(/¢)={N(a)},
consequently, a can be extended to wy so that a(wg)= N(a). =1

There is another problem with our proposed 7(X). It is not a set of td's! Fortunately,
we know how to replace fd’s by td's. First, observe that an fd X — Y is equivalent to the set of
fds{X—>4:A€Y —X}. Thus, wc can assume that all fd'sin = arc of the form X — A with

A€X. We now dcfine 8y, as a U-total td <u,{uy,usu3}>, where
(1) uy[X]=uy[X] and uy[B1#uy[B] for B €X,
) us[A)=us[A] and u[A]Fus[B]Fus[A] for BEA, and
(3 uld]=uslA] and u[4]= us[4]
Example 3.

0 4p —p is <u{uyuyus}:

A B C D I F

u: a3 bl ¢3 d3 e3 3

u;al bl cl dl el fl
uy al b2 ¢2 di e2 j2

ug _a3 b2 ¢3 d3 e3 f3

18

Lemma 5. [BV3]T Let > be aset of typed td's and fd's. Let =’ be the set obtained by replac-
ing each fd X—> AinZ by §x-,4. Then 2k C, and for all typed td's e, 2o if and only if

2'EocandZE oifandonly if 2 0. ol

Thus, wec define T(Z) as ({T(B): €EZIU), with ' defined as in the lemma. We are

now in position to prove the main result.

Theorem 2. The implication and the finite implication problem for typed td's are unsolvable.
Proof. Let T and o be as in Theorem 1. We claim that Z (s iff T(2) () T(0). Since T

is an effective trandation, the claim follows.

Supposc first that 2 F o, then by condition (3) of Theorem 1, ZU{4'B'=C'} K ()o.
Thus, there is an untyped (finite) relation / such that I1EX,/EA'B'=C' and [¥ ¢. By
Lemmas 1 and 4, T(l) E =g, and by Lemma 2, T() E{7(8) : 0€Z} and T(I)¥T (o). Itfol-

lows by Lemma 5 that T(I) = T(E), so T(C) KT (o).

Suppose now that7T(Z)FET(e).B y Lemma 5 we have that
{T(8): 0€Z}UZ (/)T (o). Thus, there is atyped (finite) relation I, such that
I'E{T(0):0€%}, I'= =, and I'E#T(s). Note that by condition (1) in Theorem 1 we can
assume that o isU'"-total. Let / = T~Y(7’) as in Lemma 3. By that lemma we know that

1}:23[1(11#0’,3)2#([)0'.[1

Let us make two observations. First, by Theorem 1, there is a fixed untyped ¢ such that
deciding whether 2 |=(7T(0) is unsolvable. Secondly, it is easy to see that the set
{(Z,0) : ZF 0} is recursively enumcrablc. It follows that the finite implication problem for
typed td's is not even partialy solvable. Thus, there is no sound and complete formal system
for finite implication of typed td's. In contrast, see [BV4, SU] for sound and complete systems

for implication of typed td's.

T The same result was also shown in [SU] for unrestricted implication.

13

5. Some Consequences

Let ¥ be a class of dependencies and ZC . The (finite) implication problem for X in

¥ is to decide, given o€ ¥, whether Z}=(,)o Note that the unsolvability results of Theorems 1
and 2 does not say anything about the solvability of the (finite) implication problem for specific
C's. For example, it is known that the (finitc) implication problem for @ in the class of
(typed) td's is solvable [BV1, SU]. Also, in [FMUYT] it is shown there is a typed td o that
implies all typed td's. Thus, the (finite) implication problem for {o} in the class of typed td's
is trivially solvable, It is conceivable that for every fixed 2 its (finite) implication problem in
the class of (typed) td's is solvable, yet there is no effective way to find, when given a specific
%, the decision procedure for that =. In[BV1] afixed set =; of untyped td's is presented,
whose implication problem in the class of untyped td's is unsolvable. Using a result from
[GL2] wc can get a much stronger result involving recursive inscparability. Recall ([Ro]) that
two sets X and Y are recursively inseparable if there is no recursive set containing X and dis-

joint from Y.

Theorem 3. Thereis a set =, of untyped A ‘B ‘-total td’s such that the set

(a:oisalU’'— total untyped td and 2, = @)
and the set

{o:0isalU’'— tota untyped td and Z,U{A'B'=>C'} ¥ 0}
arc recursively inseparable.
Proof. An equational implication for semigroups (abbr.) is a sentence of the form
Wy Vylsi=0/\ - AN\sg = 4> S =l 1),
where k,n>0 and the s;’s and ¢;’sarc terms built from the y;’s by means of the semigroup mul-
tiplication symbol. In [GL2] it is shown that the sct

{¢p @ isanei that holdsin al scmigroups)
and the set

20

{¢: @ isan e that failsin some finite semigroup)
are recursvely inseparable. Using the technique of [BV1] to reduce questions about e’sin

groupoids to implication of untyped td’s, we can prove the claim, where 2, expresses the
axioms for semigroups. O

Corollary 1. The implication and the finite implication problem for X, in the class of untyped
td's are unsolvable.

Proof. Observe first that the theorem entails that the set

{o:0isan untyped td and Z, = a)
and the set

(a: o isan untyped td and Z, 0}
are aso recursively inseparable. The claim then follows because by dcfinition a set that is

recursively inseparable from some other set can not be recursive. el

We now note that the td’'s in the statement of Theorem 3 satisfy the conditions of
Theorem 1, so by applying the reduction of the previous section we get inseparability results

for typed td's.

Theorem 4. There is a set 25 of typed td's such that the set

{a:gisatyped td and ;= 0}
and the set

{o:0isatyped td and 23, 0}
are recursively inseparable. O
Corollary 2. The implication and the finite implication problem for 35 in the class of typed

td' sare unsolvable. O

An interesting question is whether wc can decide, given a set = of (typed) td's, if its
(finite) implication problem in the class of (typed) td's is solvable or not. In{Va?] it is shown
that for set Z of untyped td’s and equality gencrating dependcencics this problem isunsolvable,

By techniques similar to thosc employed in proving [.emma 5, it can be shown that the prob-

21

Icm is unsolvable also for sets Z of untyped td's. However, the proof method does not extend
to the typed case.
Corollary 2 has an interesting consequencc. Let ¥ be a class of dependencics and ZCW.

A finite relation | such that for all s€¥, we have that I = o if and only if Sk aiscalled a

Sinite Armstrong relation for 2 in ¥ [Fag2].

Theorem 5. 35 does not have afinite Armstrong relation in the class of typed td's.

Proof. Supposc to the contrary that | is afinite Armstrong relation for Z; inthe class of typed
td's. Let o be a typed td. Now 23} o iff I|=0. But the sct {o : I |= @) is recursive, which
means that the finite implication problem for 24 in the class typed td's is solvable - contradic-

tion. Cl

We mention that in [FMUY] a set of two typed td's is defined, which does not have a

finite Armstrong relation in the class of typed td’s.

6. Projected Join Dependencies

In this section we are dealing exclusively with the typed casc. Let U be a universe, and

k
let R=(R,, ..., Ry) be a sequence without repetition of subsets of U, with | JR, =R CU.

The project-join mapping niy maps U-relations to R -relations as follows:

mg(l)={t:1isan R —values.t. ([R;JEI[R;] for i =1, ..., k).

Let YC R . A projected join dependency (abbr. pjd) [YP] is a statement *[R]y. It is
satisfied by a relation 7 if (mg(I)[X]=1[X]. The interest in pjd's comes from the question
whether we can compute 7[X] when given the projections I [R4, . . ., I[Rx].

Several specia cases of pjd's have been investigated in the literature. If X = R, then we
drop the subscript X and cal *[R] a join dependency [ABU, Ri]. If R = U, then *[R] is called
total otherwise it is caled embedded [MMS]. If we have above R=(Ry,R thenthe join

dcpendency is also called a multivalued dependency (abbr. mvd) [IFagl]. A total mvd *[R ,R ;]

22

is adso denoted by R;MNR,~R;—R,. According the definition of satisfaction for pjd's,
| EX—=>Y exactlly when, 4.r all u,v€l, if u[X]=v[X], then there is a w€I with

wlXY]=u[XY] and w[XY]=#fXY]. Clealy, if | EX—Y, then dso | EX—>7.

Even though pjd’'s and td’s look on the surface completely different, we can in fact view
pid's as specia td's. A td <w,I> is called shallow [YP], if whenever uand v are two distinct
tuplesin/ andu[A]=v[4], then
(1) if sand ¢ are two digtinct tuples in [and s[A]=1t[A] then s[A]=([A]l=uld]}=v[A4],

and

@) either wid]=ulA]=v[A] or w[A)EVAL().

Lemma 6. For every shallow td ¢ there exist a pjd 8, and for every pjd 8 there exists a shal-
low td o, such that for all rclations |, | o if and only if 1 6.
Proof. The claim follows from the conncction between relational expressions and tableaux as
described in [ASU]. O

Thus, instead of talking about pjd’'s we can talk about shallow td's. Our aim in this sec-
tion is to show that the implication and the finitc implication problem for td’s are reducible to
the corresponding problems for shallow td's. The reduction is cssentially due to Yannakakis
and Papadimitriou [YP]. However, they have dealt only with the implication problem, and
their proof-theoretic technique does not extend to finite implication. In contrast, our proof,
which is model-theoretic, shows that the reduction is conservative (i.e., preserve finiteness of
relations), and therefore proves simultaneoudly the correctness of the reduction for both impli-

cation and finite implication.

We note that for afixed universe U there are only finitely many U-pjd's, so the (finite)
implication problem is solvable. Thus, unlike the case with arbitrary td's, we have to deal here
with arbitrary universes. In fact, the basic idea of the reduction is that given 2, o over a

universe U, wc translate them to shallow 3,5 over a bigger universe U, whose size depends

23

on the size of the td's in ZU{&}.
More specificaly, let
m=max{k :<w,I>€XU{o} and | I | =k},
andletn =m (m —1)/2. Then we take
U={4;: A€V and 0<i<n}.

The intended interpretation is that the 4g-.. A,,-values in the new universe encode the A -
values in the old universe. For domain we takc DOM (A4;) ={A;} X N (N isthe sct of natural
numbers). However, when describing 4;-values we'll usually omit the first component of the
pair; i.e., we write w[4;]= 1 instead of the more precise w[4,;]=<4;,1>. We assume without
loss of generality that DOM(U)CN.

A U-td 8 is trandated to a shallow U-td § as follows. Let § be <w,I>. We can assume
without loss of generdlity that | = {wy,...,w,}. Let us fix some enumeration of the set
{{i.j}:1£i,j<m and i Sj). By 4;; we mean A4, where k is the ordinal number of {/,;} in
that enumeration. 8 is<u,I> I ={uy, .. ., u,}.1 isconstructed so that wl4; j1=u;l4; ;] iff
w;[A] =w;[4], so that the cqualities between A -values in | arc spread over Ay, ..., 4,in I,
which makes @ shallow.

More precisely, / isdefined as follows.

(1) For A€U,1<k<m:u[Agl=k.

(2) For A€U,1<Li,j,k<m,i+#j: For k different from i and j, let w4, ;]=k. If
ui[A1#u [A thenw[A; j)=1iand uj[A; j]=j. Othcrwisc, w;[4; j1=u;[A; j]=min{i,j}.
uisdefined as follows.

(1) For A €U: |f wldl€VAL(I) then w[d]=w[A]f orsome 1<k<m,s o

ll[Ao]: k = le[/l()]. Otherwise, u[AO]:m -I-1.

24

(20 For AEI, 1<i<n: Let u[4;]=m+1.
We leave it to the reader to show that § is indeed shallow.
Example 4. Let U = ABC, and let 8 bc atd over U, § =<w,I>, | = {wy,w,,ws3}:

A B C
wr a b c3

(va bl ¢l
Wyl al b cl

W al bl ¢2

Now U—“—‘Ao" L A3Bg - .. BgCg’ .. C}. Let Al,2: Al’Al,Z}: 4,, and A2_3= A3b

iS(ll,]), 1 :{ul,uz,uﬁ'z

Ay A, Ay Ay By B B, By C, C; C, C
w1 4 4 4 2 4 4 4 4 4 4 4
we I 1 1 1 1 1 1 1 1 I
uy 22 2 2 2 2 2 2 2 1 2 2
ugy 3 3 3 2 3 3 1 3 3 3 3 3

The following lemma describes the relationship between U-relations and U relations on
one hand and 6 and & on the other hand. We use U, -to denotetheset {4y : A€ U}

Lemma 7. Let | be a U -relation, and lct/ be a c-relation such that
(1) There is a one-to-one mapping y : DOM (U)—>DOM (U,) such that y(I)=I[Uy).
2 TkA—4;fordl A€EU and0<i,j<n.

Then for al td's 8 over U. I =4 if and only if | 8.

Proof. Wcfirst show that for every s €1 there is aunique (€ 7 such that y(s)= ([Uy]. Clearly,
there is at Icast one such ¢ because y(s)€7[Ugl. Suppose that y(s)= ([Uq] = v[Ugl. Now for
adl A€Uad1<i<n wchavet[dgl=v[4,] and I'le Ag=>4;, s o t[A;]=v[;. 1t follows

that 1 = v. Wc say that ¢ comes from s. Obscrve that if ¢;,4, come from s,,s,, rcspectively, then

25

foradl ACU and 0<i<n, we have si[A] = s;[Al iff (] 4;]1 = 65 4;].

Let @=<wJ>, J={wy, ..., wu}t and 0=<uJ>,J={uy ..., un}.

If: Suppose that]| 8. Let B be a valuation on J such that BU)C I. Let ¢y, . .., 1, €] come
from B(wy), ..., B(w,), respectively. Now if u[4; ;1=u;[4; ;], then w;[4]=w;[4], and
Bw)A]=B(w;)4]. Consequently [4;;]1=1][4;;]. Thus, we can define a vauation « on J
0 that aug)=£. Since we assumed that 7 = 8, « can be extended to u so that a(u)€ 1. Let
afu) come froms€/7. We extend B tow so that B(w)=s. If w[A]€VAL(I), then we define
B(w[A])=s[A4]. Otherwise, w[A]=wi[4] for some l<k<m. But in that case,
u[Aol=ug[Agl, S0 alu)[Agl=1,[40]) and Bw[AD=B(w)[A]=s[4]. So we have that B(w)=s

as desired.

Only if: Suppose that 7/ 8. Let a be a vauation on J such that a(J)CI'. The tuples
aluy),. .. alu,) come from some tuples sy, . . ., s, €7, respectively. We claim that if
wil4]=w;[4], then 5[A]=5;[4]. Indeed, if w[A]=w;[4]then u;[4; ;]=u;[4; ;], so neces-
sarily a(u;)[4; ;1= alu;)[4; ;], and consequently s;[4]=s;[4]. ‘Thus, we can define a valuation
B on J so that B(w;)=s; for 1<k <m. Since wc assume that /8, B can be cxtended tow
so that B(w)El. Let t€]" comec from B(w). W e extend a to u so that a(u)=¢. If
ulA;8VAL(I"), then we define a(u[4;])=1[4;]. Otherwise, u[dg]=ui[4,] for some
1<k <m. But in that case w[d]l=wi[d], so Bw)A]l=s[4] and

alu[Ag)=alu)[Agl = t[Ag]. So wc have a(u)=1 as desired. Cl
By means of Lemma 7 wc can show that the (finitc) implication problem for td's is redu-
cible to the (finitc) implication problem for fd’s and pjd's. L.t = be
{8:0€33U{4, > A;: A€U and 0<Li,j<n}.

Lemma8. T|o if and only if S & and ZE o if and only if 51}:/&.
Proof. As is Section 4, we show that 2 (/)0 iff SH (/)@ by constructing countercxample rela-

tions.

26

Suppose that ZF (s)o. Then there is a (finite) U-relation | such that 72 and I ¥ o.

We construct a e-relation 7 by duplicating | n + 1 times. That is,

I={s:sisalU —value and there is 1€/ st. for all AE€U and 0<i <n, s[4;]1=<A;,1{AP}
Observe that of 1 is finite then so is 7. Also, it is easy to verify that for al A€U and
0<i,j<n,whave I E4;—>4;. By Lemma 7, [EZ and T &. It follows that S H /6.

Suppose that 2 H(;)5. Then there is a (finite) U-relation I such that 7= 3 and 7 ¥ 6.
Let 7 be a U-relation that is isomorphic to 7[Ugl. That is, there is a one-to-one mapping
y 1 DOM(U)~>DOM(Ug) such that y(I) = I[Ug]. Clearly, if I is finite then so is I. By
Lemma 7, /=2 and / # o. It follows that 2 ()e.0

It seems now that wc only need to apply Lemma 5 to get rid of the fd'sin 3. Alasl A
brief inspection reveds that 4 4,4 is not shalow. Fortunately, in our case it suffices to
replace A;—>A; by 4;—>4;.

Lemma 9. Assume 3<n,0<i,j,k<n,i#j,j#k, and i #k. Then
{Ap—k)Aq :paqe{i,j’k}}’:BAi—’Aj

Proof. Let us describe a o-value w as (w[A,-],w[Aj],w[Ak‘],w[A,- A,-Ak]). Then 0,,1_,,1], is

<{u,v,wid:

A A A A A A

t a2 bl ¢3 X3
u: al bl cl X1
v al b2 ¢2 X2
w: a2 b2 c¢3 X3

Suppose that
TE{A,~> A, p,q€4i,j.k}}.

Leta be a valuation such that .alu),a(y),a(w)ETl. a(u), alv), and a(w) took like u, v and

27

w, except that we have additional equalities likc a(a1)=a(a?2). Since additional equalities do
not bother us we can assume that u ,\;,wéf. We now use the fact that / satisfies the mvd's
above to infer that / must contain certain tuples. E.g., from v and w we can infer by

Aj—=> Ay that (al,62,¢3,x2)€I. The following figure shows a chain of such inferences.

A A A A A A

u: al bl o x|
Vi al b2 c¢2 x2
w: a2 b2 3 x3
s1 a2 b2 c2 X3 (From w and v by A; = A;)
s al b2 ¢2 x3 (From s; and v by 4, —>4;)
s3 al bl c2 X3 (From s, and u by A4; = Ay)

s4 a2 bl c2 X3 (From s3 and s, by A, = 4;)

t a2 bl .c3 X3 (From s4 and w by 4;—>A,)

Thus, (€l and =6 4 _>,1I,.(Essentially, what we have done here is proving the implication by

the chase proof procedure of [ABU, BV3, MMS, SU].) el

Corollary. Assuming 3<,
{044, 07 j<n} b = {4, 4 0<i j <.

Proof. The lemma gives us one direction of the implication. The second direction follows

from Lemma 5 together with thefactthat Y > AEX——>4.0

Since there is no loss of generality in assuming that 3< n, wc get the desired reduction.
Theorem 6. The implication and finite implication problems for pjd's arc unsolvable.

Proof. Let %,0 over U be given. By Lemma 8, X = (yo iff
{0:0€3YU{4;—=4;: 0<i,j<n}E (6.

By Lemma5, the last implication holds iff

28

{0:0€23U{0,4,—4,:0<i,j<n}F (5.
By Lemma 9, thisimplication holds iff
{0:0€5 U{A;—>4;: 0<i,j<n} e

Since {4: 0E€ZIU{4,—>4;:0<i,j<n}isaset of shalow td's and pjd’'s, and it can be con-

structed effectively, the claim follows. O

Analogoudly to the observation in Section 4, unsolvability of the finite implication prob-
Icm for pjd’s entails that the problem is not even partially solvable, and consequently there is
no sound and complete forma system for finite implication of pjd's. In this observation, the
only thing we assume about formal systems is that having a formal system for a problem

renders it partialy solvable.

We now make our notion of a formal system more precise. Most generally, what we
mean by having a formal system for implication is that having an effective way of checking
proofs. There is however a subtle point here. Unlike the case with td's where the universe is

clear from the syntax, this is not the casc with pjd’s. In fact, pjd's are oblivious to the universe

k
in a much stronger way. Let § be the pjd *[R,, . . ., R¢lx. We definc attr(8)=|J R;, and
i=1
for asct 2 of pjd’'s we definc artr(Z2)=1J atr(§). Now given asct = of pjd's and a pjd o,
gex

the only thing we know about the universe is that it contains a/r(ZU{s}). It follows that we
can have different notions of implication, depending on the universe. That is, = (finitely) U-
implies o, denoted 2(U) = (po, if for al (finite) U-relations I wc have that /=% entails
I Eo. Fortunately, al these “diffcrent” notions of implication turn out to bc the same. We

leave the casy proof of the following lemmato the rcadcr.

Lemma 10. Let XU {o} be aset of pjd's. Then for al U such that at#(Z U {c})C U we have

that E(U)I:U)O‘ iff Z(aNr(EU{o}))}:(f,o.]

29

Thus, we can go on using the notation X k= o without specifying the universe. However,
when it comes to formal system the question pops up again. Do we want our formal system to
handle proofs within fixed universes or not? We call a forma system of the first kind

universe- bounded.

More precisely, a forma system for implication of pjd's is a recursive set TT whose ele-
ments are pairs (2,£oy, . . ., 64>), where X is a set of pjd's, and o), ..., 64 iS a sequence
without repetition of pjd's. The intended interpretation for IT is that (2 <oy, . . ., o4>)EII
when o1,...,0, is a proof that Zfoy. Thus, we say that ITissound if
(2 Loy, ... o)EM entails that 2 oy, and we say that ITis complete if whenever 2 is a set
of pjd's and o is a pjd such that = = o then therc is a pair (£.<oy, . . ., 0, >)EIT with o4 = 0.
If the forma system IT is universe-bounded then instead of pairs it consists of triples
(U,ZKL0y, ..., 0,>), where U is a universe, Zis aset of U-pjd's, and oy, ...,0iSa
sequence without repetition of U-pjd’'s. We say that TTis sound if (U,Z<0y, . .., ox>)EIT
entails that oy, and we say that IT is complete if whenever 2 is a set of U-pjdsand g isa

U-pjd such that = = o then there is atriple (U, 2 <oy, . . ., o 2)EIT with o = 0.

Theorem 7. There is no sound and complete universe-bounded formal system for pjd’s.

Proof. The argument is essentially that of [BV3]. Suppose that TT is a sound and complete for-
mal system for implication of pjd’'s. Let 2 be a set of pjd’'s, and let o be a pjd. Take
U = aur(ZU{o}). There arc only finitely many U-pjd’'s, and therefore there arc only finitely
many triples (U,Z <oy, ..., 0.>), where oy, . . ., 0% iS a sequence without repetition of U-
pjd's with g, =06. Wc can enumerate al these triples, and 2 |= o iff onc of them isin IT. It

follows that the implication problem for pjd's is solvable - contradiction. O

The crucial point in the proof, and the only property of pjd’'s used, is that there are only
finitcly many U-pjd's for any fixed U. Thus, theareument applies as well to any class of

dcpendencics with that property.

30

Let § =<w,I> bc a U-td. For any A€U, we define REP(8,4) is the set of repeating

A -valuesin 8. That is,
REP(A)={u[A]:u€l and either u[A]=w[A] or u[A]=v[A] for some vEl,v #u}.

We say that 8 is k-simple if for all A €U we have that |REP(6, A)| <k . Thus, the class of
shallow td's is exactly the class of I-simple td's. The generalized join dependencies of [Sc] are

equivaent to 2-simple td's.

Sciore [Sc] has argued heuristically that one can not prove implication of k-simple td's
without using k + 1-simple td’'s, and conjecturced that this is really the case. Since for every
fixed U and k there are only finitely many k-simple U-td's, the argument in the proof of
Theorem 7 shows that Sciore is right and there can be no sound and complete universe-

bounded formal system for k-simple td's.

Two qualifications should be made. First, the proof of Theorem 7 relics on the unsolva-
bility of the implication problem, and therefore does not apply to classes of dependencies for
which the implication problem is solvable. Indeed, Sciore' s conjecture that no class of td's that
contain the class of total join dependencies but is properly contained in the class of td's has a
sound and complctc forma system is false. In[BVS] a universe-bounded formal system for
total join dependencics is shown to be sound and complctc. Secondly, the proof of Theorem 7
applies only to universe-bounded formal systems. Furthermore, since the reduction in this sec-
tion shows us how to transform arbitrary td’s to pjd’s, it is not difficult to take a formal system
for td's (see [BV4, SU]) and to transform it to a forma system for pjd’'s. The rcsulting system

is of course not universe-bounded.
Theorem 8. There is a sound and complcte formal system for pjd's. O

Question. Is there a sound and complete forma systcin for embedded join dependencics? For

embedded multivalucd dependcencics?

31

7. Concluding Remarks

The solvahility of the (finite) implication problem for embedded multivalued dependen-
cies is one of the outstanding open question in dependency theory. One of the motivation to
studying larger and larger classes of dependencies was the hope the the regularity of the more
general classes, which in some senscs are more natural then the narrower classes, would enable

us to discover the elusive algorithm for deciding implication.

Unfortunately, a series of negative rcsults shattered, more or less, that hope. First, in
{BV1,CI.M1] it was shown that the (finite) implication problem for untyped td’s is unsolvable.
Then in [BV2, C1.M2, Val] unsolvahility was shown aso for typed tuplc generating dependen-
cies. Finaly, herc and in {GI.2] unsolvability was extended to projected join dcpcndencies.
Projected join dependencies seem to be a very dight generalization of embedded join depen-
dencies, and wc believe that the unsolvability screw can be tightened that further. What about

embedded multivalued dependencies? That question still haunts and baffles us.

REFERENCES
[ABU] Aho, A.V., Bcceri, C., Ullman, J.D.: The theory of joins in relationa databases. ACM

Trans. on Database Systemns 4(1979), pp. 297-314.
[ASU] Aho, A.V., Sagiv, Y., Ullman, J.D.: Equivadence among relational expressions.
STAM J. on Computing 8(1979), pp. 2 18-246.

{Bern] Berngtein, P.A.: Synthesizing third normal form reations from functional dependen-

cics. ACM Trans. on Database Systems 1(1976), pp. 277-298.

[BMSU] Bceri, C., Mcndclzon, A.O., Sagiv, Y, Ullman, J.D.: Equivalence of relational data-

basc schemes. SIAM J. on Comput. 10(1981), pp. 647-656.

[BR] Beeri, C., Rissancn, J.. Faithful rcprcscntation of relational database shcemes. IBM

Research Report, San Jose, 1980.

[BBG]

[BV1]

[BV2]

[BV3]

[BV4]

[BV5]

32

Beeri, C., Bernstein, ‘P.A., Goodman, N.: A sophisticates introduction to database

normalization theory. Proc. Int’l Conf. on VLDB, Berlin, 1978, pp.113-124.

Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. Proc. XP1
Workshop on Relational Database Theory, Stony Brook, June 1980. Also, Technica
Report, Department of Computer Science, The Hebrew University of Jerusalem, May
1980.

Beeri, C., Vardi, M.Y.: The implication problem for data dcpendcncies. Proc. 8th
ICALP, Acre, Isragl, 1981, in Lecture Notes in Computer Science 115, Springer-

Verlag, 1981, pp. 73-85.

Beeri, C., Vardi, M.Y.: A proof procedure for data dependcncics. Technical Report,

Department of Computer Scicnec, The Hebrew University of Jerusalem, Dec. 1980.

Beeri, C., Vardi, M.Y.: Forma systems for tuple and equality generating dependen-
cies. Technica Report, Department of Computer Science, The Hebrew University of
Jerusalem, April 1981.

Beeri, C., Vardi, M.Y.: Forma systems for join dependencies. Technical Report,

Department of Computer Scicnec, The Hebrew University of Jerusalem, April 1981.

[CLM1] Chandra, A.K., Lewis, H.R., Makowsky, JA.: Embedded implicationa dependencies

and their inference problem. Proc. XP1 Workshop on Relational Database Theory,

Stony Brook, June 1980.

[CLM2] Chandra, A K., Lewis, H.R., Makowsky, JA.: Embcddcd implicational dcpendcncies

and their infcrcnee problem. Proc. 13th ACM Ann. Symp. on Theory of Computing,

1981, pp. 342-354.

[Coddl] Codd, E.F.: A relational model for large shared data bases. Comm. of ACM

13(1970), pp. 377-387.

33

[Codd2] Codd, E.F.: Further normalization of the database relational model. In Data Base

Systems (R. Rustin, ed.), Prentice-Hall, 1972, pp. 33-64.

[Codd3] Codd, E.F.: Extending the database relational model to capture more meaning. ACM

[Fagl]

[Fag2]

Trans. on Database Systems 48(1980), pp. 397-434.

Fagin, R.: Multivalued dependencies and a new normal form for relational databases.

ACM Trans. on Database Systems 2(1977), pp. 262-278.

Fagin, R.: Horn clauses and database depcndencics. Proc. 12th ACM Ann. Symp. on
Theory of Computing, 1980, pp. 123-134. To appear in JACM.

[FMUY] Fagin, R., Maier, D., Ullman, J.D., Yannakakis, M. Tools for template dependencies.

[GL1]

[GL2]

[MMS]

[Ri]

[Ro]

IBM Research Report RJ3033, May 1981. To appear in SIAM J. on Computing.

Gurcvich, Y., Lewis, H.R.: The inference problem for template dcpendcncics. Proc.

ACM Symp. on Principles of Database Systems, Los Angeles, 1982, pp. 221-229.

Gurevich, Y., Lewis, H.R.: The word problem for cancellation scmigroups with zcro.
Technical Report TR-08-82, Aiken Computation Lab, Harvard University, 1982.
Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dcpcndencies.

ACM Trans. on Database Systems 2(1977), pp. 201-222.

Rissanen, J.: Theory of relations for databases - a tutorial survey. Proc. 7th Symp. on

Math. Found. of Computer Science, 1978, pp. 537-551.

Rogers, H.: Theory of recursive functions and effective computability. McGraw-Hill,

1967.

Sciorc, E.. A complete axiomatization for full join dcpendcncics. J. of ACM

29(1982), pp. 373-393,

Sadri, F., Ullman, JD.: Template Depcndencies - A large class of dependencies in
relational databases and its complete axiomatization. J. of ACM 29(1982), pp. 363-

372.

[Val]

[Va2]

[Va3]

[YP]

[Zan]

34

Vardi, M.Y.: The implication problem for data dependencies in relational databases.

Ph.D. Thesis (in Hebrew), The Hebrew University of Jerusalem, Sep. 1981.

Vardi, M.Y.: Global decision problems for relational databases. Proc. 22nd |EEE

Symp. on Foundation of Computer Science, Nashville, 1981, pp. 198-202.

Vardi, M.Y.: The implication and the finite implication problems for typed template
dependencies. Proc. ACM Symp. on Principles of Database Systems, Los Angeles,
1982, pp. 230-238.

Yannakakis, M., Papadimitriou, C.: algebraic dependencies. 21st IEEE Ann. Symp.
on Found. of Computer Scicnce, 1980, pp. 328-332. To appear in JCSS.

Zaniolo, C.: Analysis and design of relational schemata for database systems. Techni-

ca Report UCLA-ENG-7769, UCLA, 1976.

