
May 1982 Report No. S’I’AN-(X-82-9 12

The Implication and Finite implication Problems
for Typed Template Dependencies

Moshe Y. Varde

Department of Computer Science

Stanford Uriivcrsity
Stanford, CA 94305

THE IMPLICATION AND FINITE IMPLICATION PROBL,EMS FOR TYPED TEMPLATE DEPENDENCIES

Moshe Y. Vardit

Department of Computer Science

Stanford University

Stanford, California 94305

May 1982

AHSTRi\C’I

The class of typed template depcndcncies is a class of data dependencies that includes

embedded multivalued and join dependencies. We show that the implication and the finite

implication problems for this class are unsolvable. An immediate corollary is that this class has

no formal system for finite implication. We also show how to construct a finite set of typed

template dependencies whose implication and finite implication problems arc unsolvable.

The class of projected join dcpcndcncics is a proper subclass of the above class, and it

generalizes slightly embcddcd join dcpendcncics. It is shown that the implication and the finite

implication problems for this class are also unsolvable. An immcdiatc corollary is that this

class has no universe-bounded formal system for either implication or finite implication.

1’ Research supported by a Wuizmann Post-doctoral Fellowship, Fullbright Award, and NSF grant MCS-80-
12907.

Y

1

1. Introduction

In the relational model one views the database as a collection of relations, each of which

being a set of tuples over some domain of values [Coddl]. One notable feature of this model is

its being almost devoid of semantics. A tuple in a relation represents a relationship between

certain values, but from the mere syntactic definition of the relation one knows nothing about

the nature of this relationship, not even if it is a one-to-one or one-to-many relationship.

Two approaches have been taken to remedy this deficiency. The first approach is to

extend the relational model to capture more semantics [Codd3]. The second approach, which is

the basis for this paper, is to devise means to specify the missing semantics. These semantic

specifications arc often called semantic or integrity constraints, since they specify which data-

bases are meaningful for the application and which are mcaninglcss. Thus, the database
.

schema is conceived as a syntactic specification accompanied by a semantic specification.

Several approaches have been taken with regard to integrity constraints. Of particular

interest are the constraints called duta depeudencies, or depcndencics for short. Essentially,

dcpcndencies are sentences in first-order logic stating that if some tuples, fulfilling certain

equalities, exist in the database then either some other hiples must also exist in the database or

some values in the given tuples must be equal. The study of depcndencics began with the

fimctional dependencies of [Codd2]. After the introduction of multivalued dependencies by

[Fagl, Zan] the field became chaotic for a few years in which researchers introduced many new

classes of dependencies. Recently, two unifying formalisms have been suggested and turned

out to be equivalent. The class of tuplc and equality gerleratirlg depetlderxies [nV2, FagZ$,

which is equivalent to the class of algebraic dependencies [YY], seems to contain most cases of

interest.

Most of the papers in dcpcndcncy theory deal exclusively with various aspects of the

ivlplication problelf$ i.e., the problem of deciding for a given set of clcpcndcncics C and a

‘/’ These depcndcncics arc called embedded implicationcrl dependencies in [Fag2].

2

dependency (T whether X logically implies 0. The reason for the prominence of this problem

is that an algorithm for deciding implication of dependencies enables us to decide whether two

given sets of dependencies are equivalent or whether a given set of dependencies is redundant.

A solution for the last two problems seems a significant step towards automated database

schema design [Bern, BMSU,BR], which some researchers see as the ultimate goal for research

in dependency theory [BBG]. Real life databases are inherently finite. When we restrict our

attention to finite databases we face the jinite implication problem, which is independent of the

implication problem.

The class of tuple and equality generating dependencies is quite expressive, in fact,

expressive enough to render the implication and the finite implication problems for this class

unsolvable [IN2, CLM2, Val]. A proper subclass is the class of template dependencies [SU],

which is general enough to contain embedded multivalued deperldencies [Fagl], enlbedded join

dependencies [MMS], and projected join dependerxies [YP].

Usually, we require that no value appears in two different columns of a relation. Such

relations are called typed relations, and dcpcndcncies dealing with such relations arc called

typed depcndcncies. If we give up this restriction then we get luztyped relations and dependen-

cies. Untyped template dependencies are much more cxprcssivc then typed template dcpen-

dencies, and their implication and finite implication problems arc unsolvable [BVl, CLMl].

However, the status of the implication and finite implication problem for typed template dcpen-

dencies was left open by the above mentioned papers.

A possible way to prove solvability is to show that implication is equivalent to finite

implication. The refutation of this possibility for typed template dcpendcncies in [FMUY]

indicated that the problems are more likely to be unsolvable.

Our ultimate result in the paper is that the implication and the finite implication prob-

lems for projected join dcpendcncies XC unsolvable. The proof goes in two essential steps.

First, WC reduce the problems for untyped tcmplatc dcpcndcncics to the corresponding prob-

3

lems for typed template dependencies, and then we reduce them further to the corresponding

problems for projected join dependencies.

The outline of the paper is as follows. In Section 2 we give the basic definitions. In Sec-

tion 3 we show how to translate untyped tuples and relations to typed ones. This translation is

used in Section 4 to reduce the problems for untyped td’s to the corresponding problems for

typed td’s in a very elegant way. Since we view a template dependency as a pair consisting of

a tuple and a relation, we use the translation to translate untyped dependencies to typed ones,

and we also use it to translate untyped countcrexamplc relations to typed ones. In Section 5 we

show some consequences of the results in Section 4. Mainly, WC show that there is a finite set

of typed template dependencies whose implication and finite implication problems in the class

of typed template dependencies are unsolvable. Finally, in Section 6 we USC the reduction

technique of [YP] to reduce the problems for typed template dependencies to the correspond-

ing problems for projected join dependencies. WC end that section with a discussion of formal

systems for projected join dependencies. We distinguish between systems that are universe-

bounded and those that are not, and show that the class of projected join dcpendencics can not

have a sound and complete formal system of the first kind, but it dots have such a system of

the second kind. WC conclude in Section 7 with some remark on the implication problem for

embedded multivalued dcpcndencies.

A preliminary version of this paper appcarcd in [Va3]. Unsolvability of the implication

and the finite implication problem for projected join dependencies was shown independently by

Gurcvich and Lewis [GLl]. l-Iowcvcr, our results for tcmplatc dcpcndcncies are stronger, since

WC show a specific set of dcpcndcncics for which the problems arc unsolvable.

2. Basic Definitions

4

2.1. Attributes, Tuples and Relations

Attributes are symbols taken from a given finite set called the universe. All sets of attri-

butes are subset of the universe. We use the letters A ,B,C, l . . to denote attributes and

X,Y;- to denote sets of attributes. We do not distinguish between the attribute /1 and the

set {A). The union of X and Y is denoted by XY, and the complement of X is in the

universe is denoted by x.

Let U be a universe. With each attribute A is associated an infinite set called its domain,

derioted DOM(A). The domain of a set of attributes X is DOll4(X)= U DOM(rf). An X-
AEX

value is a mapping w:X +DOM(X), such that w(n)EDOM(A) for all A EX. An X-relation

is a nonempty set (not necessarily finite) of X-values. If X = U then we may omit it for simpli-

city. A tuple is a U-value. We use a,b ,c, . l l to denote elements of the domains, s, t ,u, . . l

.

to denote hiples, and I ,J, l . . to -denote relations.

For a tuple w and a set YC U we denote the restriction of tv to Y by w[Y]. We do not

distinguish between w[/i 1, which is an ri -value, and w(A), which is an clement of DOM(A).

Let 1 bc an X-relation, and let YcX. Then the projectiolz of I on Y, denoted I[Y], is a Y-

relation I[Y]={w[Y] : wEl). The set of all attribute values in an X-relation I is

ML(I)= U 1[J. For an X-value IV, V/IL(w) stands for VM,((w)).
A Ex

2.2. Mappings and Valuations

We often use mappings whose domain is a subset of Don/r(U). Let w be an X-value,

and let (x bc a mapping dcfincd on JUL, (w). Then we dcfinc a(w) as OLOW (i.e., (Y composed

with w). Thus, (II(W) is a mapping from the domain of w to the range of (Y. A valuation is a

partial mapping ar:DOM(U)-+DOM(U) such that if &) is defined then a(a)WOM(A) for

all A E U and a E DOM(/i). WC say that Q[is a valuation on a tuple IV (a relation I) if a is

dcfincd exactly on V/fL,(w) (KU,(I)). Let (Y be a valuation on a relation I, and let w bc a

tuplc. An extension of cy to w is a valuation on N(w) that agrees with. ar on V&(I).

5

2.3. Dependencies and Implication

For any given.application only a subset of all possible relations is of interest. This subset

is defined by constraints that are to be satisfied by the relations of interest. A class of con-

straints that was intensively studied is the class of the so called data dependencies.

A template dependency (abbr. td) [SU] says that if some tuples, tilfilling certain equalities,

exist in the relation, then necessarily another tuple (possibly with some components

unspecified) exists in the relation. Formally, a td is a pair <w,l> of a tuple w and a finite rela-

tion 1. It is satisfied by a relation J, denoted J b<w,l>, if cvcry valuation cy on I such that

ar(Z)CJ can be extended to w so that cr(w)EJ. Let V be the maximal set such that

VM,(w[V])C VA(I). <kvJ> is called V-total.-

A functional dependency (abbr. fd) [Codd2] says that if two tuples agree on some of their

attributes, then necessarily they agree also on other attributes. Formally, an fd is a statement

X+ Y for some sets of attributes X and Y. It is satisfied by a relation J, denoted J bX+ Y,

if for any two tuples u ,v EJ, if u [Xl= v[X] then u[Y] = v[Y].

From now on let 2 dcnotc a finite set of dependencies and let u and 8 dcnotc individual

dependencies. When we want to specify explicitly the universe U we’ll talk about U-

dependencies. WC say that ‘c inlplies (J, denoted 2 b 0, if 1 /= C entails I j= u for every rela-

tion I. Z Jinitely implies (T, denoted ‘c /=Ja, if I b C entails 1 /= (T for every finite relation I.

Let \k be a class of depcndcncics. The implication problem for \k is to decide, given

CC\k and aE\k, whether E k O. The jnite implication problem for !P is to decide, given X:C\k

and aE’k, whcthcr C I1 (T. ‘I’hc two problems arc indcpcndcnt each of the other, bccausc one

can have C /=/a but C pC (T. In fact, if C /=f[~ entails Z b CT then not only arc the two prob-

lcms equivalent but they arc also solvable.

6

2.4. Untyped and Typed Dcpcrrdcncies

Until now we have not said anything about the relationship between domains of different

attributes. We now present the two extremes. If we assume that all attributes have the same

domain, i.e., if the universe is U= A 1 * l l A, and

DOM(U)= DOM(Al)= - . l = DOM(A,),

then the universe, tuples, relations and dependencies arc called untyped. If, on the other hand,

we assume that different attributes have disjoint domains, i.e., A #cB entails

DOM(A)n DOM(B)=0, then the universe, tuples, relations and dependencies are called

typed.

Let us now fix a universe U’= A ‘B ‘C’ for the untyped case, and let

DOM’= DOM(U’)= DOM(A ‘)= DOM(U ‘)= DOA4(C’).

WC denote an untyped tuple w by <w [A ‘],w [n ‘I, w [C ‘I>. Bccri and Vardi [BVI] have shown

that the implication and the finite implication problems for untyped td’s arc unsolvable. In fact

their result is even stronger.

Theorem 1. [IM] ‘The implication and the finite implication problems for untyped td’s arc

unsolvable even for those TX and CT that satisfy the following conditions:

(1) 0 is U/-total.

(2) All td’s in 2 are A ‘B ‘-total.

(3) If C t4/-)a then DJ{A’B’-+C’) pa.

Furthermore, there is even a fixed 0 that satisfies the above conditions, for which the problems

are still unsolvable. q

3. Transhting Untyped Tuples and Relations to Typed Ones

W C use a typed universe U = /iKINk’. ‘PO every elcmcnt CL EDOM’ there correspond

three distinct clcmcnts a’EDOh/(A), u*EDOill(ir) and a3EDOM(C’). DOM(A), DO

and DOM (C) have also special elements a 0, b0 and c 0, correspondingly. Thus

Don/i(n)= {aO)U{al : a EDOM’), DOM(B)={bO}U(b2 : bEDOW}, and

DohI(c)=~co)u{c3 : CEDUM’). The other domains are:

DOM(D)=(dO)U(w : w is an untyped tuple), DOM(E)=(eO)UDOM' and

DOM(F)=CfO,fl, . l .).

We denote a typed tuple H by <w[A], . . . , w[l;]>.

We use mappings between DOM’ and DOM = DOM(l - * UDOM(F). Three such

mappings are the one-to-one mappings I, * and 3 defined earlier. The inverse mapping is

'p : tp(a')=q(a2)=tp(a3)=a.

The basic idea is to represent an untyped tuple w = <a ,b,c > by a typed tuple

T(w)=<a',b*,c',w,eO,fl>. Note that cp(T(w)[ABC])=w. To represent an untyped relation

by a typed one we have to convey the message that al, a2, and a3 are just three names for the

same element. For this WC use the typed tuple N(a)=<a1,a2,a3,d0,a,f l>. We also use a typed

tuple s = <aO,bO,cO,dO,eO,fO>. Now we rcprescnt an untyped relation I by replacing every

tuple wEl by T(w), by adding N(a) for every a E YAL(I) and by adding S, that is,

Example 1.

Let I be the untyped relation:

A’ B’ c’
wl: a b c

w* b a c2’

T(I) is the typed relation:

ABCDEF
S: a0 60 CO d0 e0 j?l

T(w$: a’ b2 c3 wl e0 fl

T(w2.k b’ a2 c3 w2 e0 fl

N(a): a’ a2 a3 d0 a fl

N(b): b’ b2 b3 d0 b j.7 .
.

N(c): cl c2 c3 d0 c jl

We now make a few observations on T. First, T is a monotone operator on relations,

i.e., 1cJ entails T(I)CT(.I). Secondly, T preserve finiteness, i.e., if 1 is finite then T(I) is

also finite. Furthermore, if WC restrict our attention to finite relations, then T can bc viewed as

an effective translation. Finally, T(Z) has a very specific structure. In particular, it satisfies cer-

tain functional dependencies.

Lemma 1. Let I be an untyped relation. Then

T(I)~{AD~U,RII~U,cDjU,AnCEjU).

Proof. Let us show that T(I) /= AD -+ U (the proof for BD + U and CD -+ U is analogous.)

Let u,vET(I) a n d u[rfD]= v[AD]. I f I&V t h e n u[D]=v[D]=dO. I f 11 =s t h e n v=s

because aO# a1 for all a ED&V’, and if u = N(a) for some CI E YAL, (I) then v = N(a) because

’ is one-to-one. So t+fD]= v[AD] implies u = v.

Let us now show that T(l#ABCB+U. Let u,vET(l) and u[MCri]=v[ABCh’]. !f

ufv t h e n ~c[l:‘]=v[E]=eO. If u =s then v =s a n d v i c e versa, bccausc aOfa’ f o r a l l

9

aEDOM’. It follows that u =T(p) and v =T(q) for some p,&I. But u[ABC]= v[ABC]

entails p = 4, because ‘, *, and 3 arc one-to-one. Necessarily, u = v. 0.

4. The Reduction

Our goal is to reduce the (finite) implication problem for untyped td’s to the (finite)

implication problem for typed td’s via a many-to-one reduction. So far we have shown how to

translate untyped tuples and relations to typed ones. To translate an untyped td CJ = <tv,J> to a

typed td, we translate both the antecedent I and the consequent w, i.c., T(a)=<T(w),T(I)>.

Example 2.

Let u be the untyped td <w,l>, Z=(u):

A B C
w: b a d

u: a b c

T(a) is the typed td <T(w),T(I)>:

ABCDEI;

T(w): b’ a2 63 w e0 Jr
a0 b0 CO d0 e0 jl

ai b2 C3 u eo fl

T(I): a’ a2 a3 d0 a jl

b’ b2 b3 d0 b jl

Cl c2 c3 do c fl

We’ll also dcfinc later the translation fknction T on sets of untyped td’s so that given

untyped E and (T, Xba iff T(E)/=T(a) and Xbs~ iff T(Z)bfT(a). Thus, given an

untyped relation I such that I k Z but I p (T ?, we’ll show that T(()b T(C) but T(l)pT(a).

We’ll also dcfinc T-’ the “inverse” of T that translates typed relations into untyped ones, so

that given a typed relation I such that I b T(C) but I pT(a), we’ll show that T-‘(I) b E but

I Such n rchtion k r:lllrd n courrftw.unmple relation for the implication IX ~=c/)cT.

10

.
T-‘(I) p (T. Both T and T-’ preserve finiteness, which makes the reduction conservative.

That means that both the finite implication problem and the implication problem arc reduced

simultaneously.

Our first candidate for T(C) is (T(8) : 8E C). Indeed, as the next lemma shows, that

works fine in one direction, from I b C. and I CTf (T to T(I) /= T(C) and T(I) PfT(o). Because

of Theorem 1, we don’t have to deal with arbitrary untyped td’s but only with A ‘B/-total

untyped td’s, i.e., untyped td’s <w,Z> where VAL(w[A’B’])C ML(I).

Lemma 2. Let I be an untyped relation and let 0 be an A ‘B/-total untyped tel. Then I b 8 if

and only if T(Z) j= T(0).

Proof. Let 8 be <w,J>, ~=<a,b,c>.

If: Suppose that T(I) b T(8). Let a! be a valuation on J such that a(J)CI. Define a valuation

/.3 on T(J) as follows: /? is the identity 011 (aO,bO,cO,dO,eO,fO,fl], P(d’)=a(d)’ a n d

P(d) = ar(d) for a l l dEVAL(Z), a n d j?(t)=a(~) for all tEJ. Let l =<d,e,f>EJ. T h e n

T(~)=<d1,e2,f3,t,e0,fl> and

B(T(t))=<ur(d)1,a(e)2,cu~)3,~(t),e0,f l>=T(ar(t)).

Let d E VAL (J). Then N(d) =<d1,d2,d3,d0,d,f1> and

~(N(d))=<~(d)‘,~(d)2,(y((i)3,d0,~(d),fl>= N(ar(d)).

Also, ,0(s) = s, SO we get P(T(J)>= T((r(J))C T(I). By assumption, /? can be extended to T(W)

SO that /WWW’(I). But P(a’>=cr(a)‘faO, so p(T(w))#s. That is, there is a tuplc z&l

such that p(T(w))= T(u), bccausc /3(eO)= e0. If c E V/IL(J) then

Cy(,v)=<a(cr),a(b),cu(c)>=~(</3(a1),p(b2),p(c3)>)=

= q@(Tbv))[MK’]>= cp(T(u)[AK])= u EI.

Otherwise, WC define ar(c)= cp(p(c’)) and get a(w)= u.

Only if: Suppose that I /= 0. Let (Y bc a valuation on T(J) such that ti(T(J))CT(I). If

1 a(T(J)) 1 = 1 th cn or(T(J))-{& for some II ET(I). It is easy to set that LY can be cxtcndcd

.
11

to T(w) so that a(T(w))= &T(I), so we can assume that 1 a(T(J)) 1X. What we’ll now
. .

show is that a maps T(J) to F(I) in a very specific way.

Claim 1. a(T(J)- {s>)CT(I)--(s).

Assume to the contrary that there is a tuple u ET(J)-(s) such that a(u)=s. Then

a~l)=fO. But f0 has a unique occurrence in T(Z), so it follows that a(T(J)-{s))=(s).

Thus, a(dO)=dO and a(eO)=eO. But for every &T(I)-(s) either u[D]SdO or u[E]‘lSeO,

so necessarily a(s) = s and I (T(J)) I = 1 - contradiction.

Claim 2. a(s)=s.

Assume to the contrary that there is a tuple u EI such that a(s)= T(u). Then a(d0) = u . But u

has a unique occurrence in T(I), so it follows that for all d E VAL(J), a(N(d))= T(u). Let

v =<e,f ,g>EJ. Then a(N(e))= a(Nu))= a(N(g))= T(u). I.e., de’)= Tb)[A],

au*) = Tb)[Bl a n d a(g3)= T(u)[C]. Also, a(eO)= eO= T(u)[E], and consequently,

a(T(v)[ABCE])= T(u)[ABCE]. By Lemma 1, T(I) j= ABCE+U, so a(T(v))= T(u). It fol-

lows that I a(T(J))I = 1 - contradiction.

If a(s)+ s, then the only other possibility is that there is a value d E VAL,(I) such that

a(s) = N(d). Then a(e0) = d. But d has a unique occurrence in T(I), so it follows that for all

ufJ, a(T(u))=N(d). If efVAL(J), then there is a tuplc vEJ such that tither v[A’]=e, or

v [B ’] = e , o r v[C’]=e; s o e i t h e r T(v)[A]=e’, o r T(v)[l?]=e*, o r T(v)[C’]=e3. B u t

a(T(v))= N(d), so ei ther a(e’)= N(d)[A], or a(e*)= N(d)[fl], or a(e3)= N(d)[C]. A l s o ,

a(dO)= no= N(LI)[D], so either a(N(e))[nD]= N(d)[AD], or a(N(e))[RD]= N(rl)[BD], or

a(N(e))[CD]=N(d)[CD]. By Lemma 1, T(Z)~(/lI)-,U,BI)-,U,CD--,U), so in tither

case a(N(e))= N(cl). It follows that I a(T(J)) I = 1 - contradiction.

Chim 3. For every tuplc u EJ thcrc is a tuple vEl such that a(T(u))= T(v).

Assume to the contrary that a(?‘(~!))= N(d) for some dEVAL(I). Then, a(eO)=d. But d

has a unique occurrcncc in T(I), so a(s)= N(d) - contradicting Claim 2.

12

Claim 4. For each value dE ML(J) there is a value eE WI,(I) such that ar(N(d))= N(e).

Assume to the contrary that &V(d))= T(u) for some u EI. Then cx(dO)=u. But u has a

unique occurrence in T(I), so a(s)= T(u) - contradicting Claim 2.

Claim 5. (;Y can be extended to T(w) so that a(T(w))ET(I).

Define a valuation j3 on J by /I(d)= &~(d’)). p is well-defined, because, by Claim 4,

a(d’)=e’ for some eE V/lL(Z). Let u =<d,e,f>EJ. Then, by Claim 3, a(T(u))=T(v) for

some v EI. But now

p(u > = cp(<a(d’),a(e2),a(f3)>) = <p(dT(u)[~~C]))=

=cp(T(v)[MC])=vEI.

That is, p(J)C 1. It follows that /I can be extended to w so that /I(w)EI. Either c E V/iZI, (I)

and a(~~)=p(c)~, or WC can define a(c3) to be Pi. Also, we can define at(w) to be P(W),

and get a(T(w))= T(j?(w))fT(I). •I

Things arc more complicated when, given a counterexample relation to the implication

T(C) j=~f,T(cr), we try to find a countcrexample relation to the implication IZ j=u)o. The rea-

son for that is that the counterexample relation I’, I’ b T(E) and I’ VT(a), is not necessarily a

translation T(I) of some untyped relation I. Thus, it is not sufFicient to define T-l in the

obvious way on the collection (T(J): J is an untyped relation}. On the other hand, it is not

clear how to define T-l on the collection (I’ : I’ is a typed relation}.

The solution is to ensure that the typed countercxample relations have some structure to

them. For example, we require that they satisfy the fd’s that are satisfied by T(l) as in Lemma

1. But that is not enough. T(I) also has the property that if T(<a,b,c>)ET(/) then also

N(n),N(b),N(c)ET(I). Unfortunately, we can not express this property by a td, so we’ll have

to do with a weaker statcmcnt, saying that if T(<a,b,c>)ET(I) and also N(a),N(b)fT(I),

then also N(c)ET(Z). The reason that thjs weaker statement suficcs is that WC are dealing

with JI ‘II’-total dcpendcncics. T h e wcakcr statement can be exprcsscd by a typed td

u()=<wo,zo>, lo= (s,w~,w*,w3):

13

A B C D E F

S.. a0 bo co d0 e0 fl
WI.’ al 62 c3 dl eO fl
w2: al a2 a3 d0 el fl
w3: bl 62 b3 d0 e2 jl

wo: Cl c2 c3 d0 e3 j2

Let & be the set j&AD +U,ZlD*U,CD4U,ABCE+U}. WC are now in position to

define our inverse mapping T-l.

Lemma 3. Let (T bc a U/-total untyped td, and let I’ be a typed relation such that I’ pT(o)

and I’ k Co Then WC can construct an untyped relation T-‘(I’) = I such that I /# 0, and for

every A/B/-total untyped td 8 such that I’ b T(8) WC have I b 8.

Proof.

Let u be <w,J>,w=<a,b,c>, (a,b,c)C VAL(J). /‘w<T(w),T(J)>, i.e., thcrc is a valua-

tion‘ (Y such that ar(T(J))C_I’ but (Y can not bc extended to T(w) so that a(T(w))EI’. Assume,

without loss of gcncrality, that (Y(s)=s (we can always rename values to assure that), in partic-

ular tx(dO)= do, and a(eO)=eO. WC define an equivalence relation z on VAL(I’) as follows:

dzze if d = e or if there is a tuplc u EZ’ such that u[D]=‘dO and {d,e)C VAL(u[ABC]).

Clearly, s is reflexive and symmetric. To show that it is transitive, suppose that d=e, erf,

d#e, and e#f. I.e., there are tuplcs U,VEI’ such that

u[D]= v[D]=dO,{d,e]c VAL,(u[/iBC]) and (e,f}c VAlJ(v[AK’]). Since I’ is typed, either

u[A]= v[A]=e, u[B]= v[B]=e, o r u[C]= v[C]=e; t h a t i s , e i t h e r u[AD]=v[AD],

u[BD]= v[BD] o r u[CD]= v[CD]. 13ut Z’b(AD -+ r/,111> -+U,CD -+ U}, so in cithcr cast

[A] iff #]=v[A],u = v and dzf. Note that, since I’ is typed, for all u ,v fr’, ~~[A]sv

u[B]s[B] iff u[B]= v[Zl], and ti[C’]~v[C] iff u[C]=v[C].

Let p: VAL(I’)--+DOlll’ bc a mapping such that p(rl)=p(e) iff dre . WC dcfinc I by:

14

I ={p(u[ABC]) : u~I’,u[E]=eO,u[F]=crCfl)

and there are tuples ~l,~2,~3EI'such that

ul[D]=u2[D]=u3[D]=d0, u1[F]=u2[F]=u3[F]=&‘l),

ul[A]=u[A], u2[B]=u[B], and u3[C]=u[C])

(The intuition is that u looks like T(<e,f ,g>) and ~1, ~2, and u3 look like N(a), N(b), and

N(c), respectively.) Observe that if I’ is finite then so is I.

Claim 1. I /+a

We want to define a valuation p such that /?(J)CI but /3(w)U. If dE VA,!,(J), then

a(N(d))EI’ and cu(N(d)[D])=a(dO)=dO, It follows that cu(d1)sx(d2)sx(d3). We define a

valuation j? on J by: j?(d)= p(cr(d’))= p(tx(d2))=p(cx(d3)). Let v =<d,e,f >EJ. Then it is easy

to verify that cu(T(v)?, ar(N(d)), ar(N(e)), and a(NCf)) satisfy the conditions for u, ul, u2, and

2.43 in the definition of I’. It follows that

Consequently, /?(J)G I.

Suppose now that P(w)=<P(a),P(b)$(c)>EI. I.e., there is a tuple uEI’ such that

u[E]=eO, u[F]=a(fl) and ~(~)=p(u[A/3C]). Now aE VAL(J), so tx(N(a))EI’. Conse-

quently, /3(a>=p(a(a’>)=p(a(N(a))[A])=p(u[~l]), s6 ar(N(a))[A]-u[A], and consequently

a(a’)= u[A]. Similarly, a(b2)= u[Z?] and a(c3)= u[C]; that is n(T(w)[AIZCEF’])= u[ABCEF].

Defining ar(w)= u [D] WC get cx(T(w))= u EI’ - contradiction.

Claim 2. I’ /= T(0) entails I b 8.

Let 8 be <u,K>, and let j? be a valuation on I< such that /?(K)CI. We want to define a valua-

tion y such. that y(T(K))c I’. Then y can bc cxtcndcd to T(u) so that y(T(u))EI’, and from

this we’ll be able to cxtcndcd p to u so that p(u)EI. Let v =<d,e,f >EK, then j?(v)EI. ‘I’h;\t

i s , thcrc a r c tuplcs I,I~,I~,I~E[’ s u c h t h a t [[I;]= tl[F]= f2[F]= t3[l”]=ar(fl), /[El= e0,

15

tl[D]= tz[D]= tJD]=dO, z[A]= rl[A], f[R]= r,[B], t[C]= fJC] and j?(v)=p(l[ABC]). Furth-

ermore, we claim that I, 11, 12, and t3 arc unique.

Suppose that x satisfies t h e s a m e condition as 1. In particular,

j?(v)=p(l[ABC])=p(x[ABC]), that is, t[A]zx[A], t[A]zx[B], and r[C]rx[C], and there-

fort t[ABC]=x[ABC]. But also #?]=x[E]=eO and Z’b ABCE-W, so x = f.

Suppose that xl satisfies the same conditions as t 1. In particular, x&4]= ,[A]= r&f] and

xl[D]=rl[D]=dO. But I’bAD---W, so xl=f 1. Similarly, because I’ k {BD -+ U,CD -+ U),

f2 and l3 are unique.

We define now a valuation y on T(v), N(d), N(e) and NV) by: y(T(v))=r,

yW(d))= 11, yWW= 12, and y(NCf))= t3. Obscrvc that y(dO)=dO, y(eO)=eO, and

y(fl)= &l). We have to show that in a similar manner we can define y on all tuples in K.

Thus, suppose for example that x = <d,g,h >E K, then there exist tuplcs y,y~,y2,~3~I’ satisfying

conditions analogous to the conditions above for I, tl, 12 and f3. But then,

P(d)=p(Wl)=pb[A]) so yl[A]=y[A]= ![A]= r,[A]. Also, yl[D] = tl[D] = do, so

tJAD]=yl[AD] and, since I’bAD-W, yl= 11. It follows that defining y(T(x))=y and

y(N(d))=y, is consistent with the definition y(T(v))=t and y(N(d))=fl. Defining y(s)=s

WC get that y(T(K))GI’. Let u =<d,e,f>. Since I’b<T(u),T(K)>, WC can cxtcnd y to T(u)

so that y(T(u))= zEI’.

Our aim is now to show that p(z[ARC])E1. Recall that {d,e}c VAL(K), so let

q=y(N(d))EI and .z2=y(N(e))EI’. We want to have some 23 that looks like y(Nv)), but

if f IEVAL(K) then WC don’t know whcthcr y(N(f))EI’. Now we have to use the fact that

I’j=q. Define a valuation 6 on IO so that 6(s)=s, 6(wl)=z, 6(,v2)=z1 and 6(~9)=22. 6 is

well-dcfincd because 6(al)=z[A]=zJA], 6(b2)=z[B]=z#?], o^(dO)=dO, S(eO)=eO a n d

Nfl)= a(l’l). S’mce I’ b CJ~, we can cxtcnd 8 to wo so that z3 = S(w&G I’. (Clearly, if

f f VAIL(K) then 23 is just y(N(f)). In particular, z3[C]=z[C]=6(c3), so p(z[MK])EI.

16

To complete the proof of the claim we show how to get that p(u) is p(z[ABC]). Now

dE VAL(K), so v =y(N(d))EI’. But

and @]=y(&=z[A], so p(z[A])=P(d). Similarly, p(z[B])=p(e). If f EVAL(K) then

p(z[C])=p(f). Otherwise, WC can define pu)=p(z[C]). In either case, P(u)=p(z[ABC]). q

Following Lemma 3, we are inclined to define T(C) as {T(B): BCZ)U&. But now we

see that Lemma 2 does not yet prove the correctness of the first direction of the reduction.

That is, given an untyped relation I such that I b C and I /# 0, Lemma 2 ensures that

T(I) VT(U) and T(I) k(T(8): KZ}. Also, Lemma 1 ensures that T(I) satisfies the fd’s in

X0. But does T(I) satis@ u o? Let a be a valuation such that a(l& T(I) and 1 a(/& 1 >O. If

a(s) = s, then, as in the proof of Lemma 2, we can show that for some <d,e,f XI we have

that a(wJ= T(<d,e,f >), a()vz)= N(d), and a&)=N(e). So we can extend a to wo to get

a(wo) = NCf)E T(I). But, unlike in the proof of Lemma 2, -we can not show that necessarily

a(s)= s, so we can not prove that T(1) k UO. However, given an additional constraint on I,

specifically, I k A ‘B ‘4 C’, WC can prove that T(I) /= uo.

Lemma 4. Let I be an untyped relation. If I b A ‘B ‘+C’ then T(I) b uo.

Proof. Preliminary to showing that T(I)b uo, let us show that T(I) 1 ABE-W. Let

u,vET(Z) and u[ABE]=v[ABE]. If ufv then u[E]=v[E]=eO. If u =s then v =s and vice

versa, because aOfa’ for all a EDOM’. It follows that u = T(p) and v = T(q) for some p,qEZ.

B u t u[AB]=v[AB] en ta i l s p[A’B’]=q[A’B’], bccausc ’ a n d 2 a r c o n e - t o - o n e , a n d

p[A’B’] = y[&1’] entails y = q because I /= /i’l? +C’. Ncccssarily, u = v.

Let us show that T(Z) b a~. Suppose that a is a valuation on IO such that a(l&T(I). If

a maps either WI, ~2, or w3 to s then a(fl)= f 0 so a([&= {s), and a can be extended to wo

SO that a(wg) = s. Consequently, we can assume that a(10 - (s))C T(I) - {s). Suppose that

a(s)=s. ‘l’hen a(eO)=eO, so a(wI)=T(f) f o r s o m e t =<d,e,f>EI. A l s o a(dO)=dO, s o

a(w2)= N(d) and a(wj)= N(e). WC can extend a to wg so that a(wo)= NCf)ET(I).

Suppose that a(s)= T(t) br some t EI. Then a(dO)= I, so a(wz)= a(w3)= T(t). Thus,

a(WdA I)= dw[A I)= T(l)EA I, a(y[B])= &@I>= TW[B] and

a(wJE])= a(eO)= eO= T(t)[E]; that is, a(wl)[ABE] = T(t)[ABE]. But T(I) /= ABE + U, S O

a(wl)= T(r). We have shown that a(Io)={T(t)), consequently, a can be extended to wg so

that a(wo)= T(r).

Finally, suppose tha t a (s)= N (a) f o r s o m e aE VAL(I). Then a(eO)=a, s o

a(wl)= N(a). Now a(w2[D])=a(w3[D])=dO= N(a)[D], a(wI[A])=a(wl[A])= N(a)[A] and

a(w,[B])= a(wJB])= N(a)[R]; that is a(wz)[AD]= N(a)[AD] and a(w$[BD]= N(a)[BD].

But T(l)~(AD+U,BD*U), so a(wz)=a(wj)=N(a). WC have shown that a(lg)={N(a)),

consequently, a can be extended to w. so that a(wo)= N(a). •I

There is another problem with our proposed T(X). It is not a set of td’s! Fortunately,

we know how to replace f&s by td’s. First, observe that an fd X+ Y is equivalent to the set of

fd’s (X-+A : A E Y -X}. Thus, WC can assume that all fd’s in C arc of the form X* A with

A&K We now define 8 X.+A as a U-total td <u,(u~,u~,u~)>, whcrc

(1) uJX] = u2[X] and ul[B]Su2[U] for B EX,

(2) u~[A]=u~[A] and ul[A]+u,[U]du2[A] for fiEn, and

(3) u[A]=uJA] and u[A]= 1(3[/1].

Example 3.

@AD-B is <u,b~Z~u3k

ABCDEF

U: a3 bl c3 d3 e3 f3

II- alI’ bl cl dl el P

u2: al 62 c2 dl e2 j2

1Q.* a3 b2 c3 d3 e3 f3

18

Lemma 5. [BV3] t Let .C be a set of typed td’s and fd’s. L,et 2 be the set obtained by replac-

ing each fd X+ A in x by 0X-A. Then Z b C’, and for all typed td’s u, C k u if and only if.

X’ku and C, kfa if and only if E’~Ju. •I

Thus, WC define T(Z) as ({T(B): KZ:>U X0)‘, with ’ defined as in the lemma. We are

now in position to prove the main result.

Theorem 2. The implication and the finite implication problem for typed td’s are unsolvable.

Proof. Let C and u be as in Theorem 1. We claim that C by)u iff T(E) bV,T(u). Since 7’

is an effcctivc translation, the claim follows.

Suppose first that C &,-,u, then by condition (3) of Theorem 1, XJ{A’B’+C’) &,-)a.

Thus, there is an untyped (finite) relation I such that I b C, I b A ‘B’+C’ and I p U. By

Lemmas 1 and 4, T(I) j= Zo, and by Lemma 2, T(I) b (T(8) : KC) and T(l) VT(U). It fol-

lows by Lemma 5 that T(I) b T(E), so T(C) pyjT(u).

Suppose now t h a t T(E) ~J$JIT(U). B y Lemma 5, we have that

{T(e): BEC)UCo~~>T(u). T h u s , t h e r e i s a typed (f i n i t e) relation I’, s u c h t h a t

rt=p(e): ec‘c), I+ z 0, and I’ pT(u). Note that by condition (1) in Theorem 1 we can

assume that u is U/-total. Let I = T-](I’) as in Lemma 3. By that lemma we know that

#Z andI/#u, so C~~)U.O

Let us make two observations. First, by Theorem 1, there is a fixed untyped u such that

deciding whether C bu,T(a) is unsolvable. Secondly, it is easy to see that the set

{@,a) : X pju] is recursively enumcrablc. It follows that the finite implication problem for

typed td’s is not even partially solvable. Thus, there is no sound and complctc formal system

for finite implication of typed td’s. In contrast, see [BV4, SU] for sound and complete systems

for implication of typed td’s.

1’r.Ihe same r-csult was :11so shown in [SU] l-01 ullrcstrictcd implication.

13

5. Some Consequences

Let q be a class of dependencies and CC9. The (finite) implication problem for 2 in

4~ is to decide, given aE\k, whether I: &Y Note that the unsolvability results of Theorems 1

and 2 does not say anything about the solvability of the (finite) implication problem for specific

C’s. For example, it is known that the (finite) implication problem for 0 in the class of

(typed) td’s is solvable [BVl, SU]. Also, in [FMUY] it is shown there is a typed td u that

implies all typed td’s. Thus, the (finite) implication problem for ((T) in the class of typed td’s

is trivially solvable. It is conceivable that for cvcry fixed C its (finite) implication problem in

the class of (typed) td’s is solvable, yet there is no effective way to find, when given a specific

C, the decision procedure for that 2:. In [BVl] a fixed set 2~1 of untyped td’s is presented,

whose implication problem in the class of untyped td’s is unsolvable. Using a result from

[GL2] WC can get a much stronger result involving recursive inseparability. Recall ([Ro]) that

two sets ,Y and Y are recursively inseparable if thcrc is no recursive set containing A’ and dis-

joint from Y.

Thcorcm 3. There is a set C2 of untyped A ‘B ‘-total td’s such that the set

and the set

(a : CJ is a U’-- total untyped td and &b a)

{a : u is a U’- total untyped td and Z&J {A ‘13 ‘+C’} PJu}

arc recursively inseparable.

Proof. An qualima impZic~r~ior~ for semigroups (abbr. ei) is a sentence of the form

vy1 * * * vy,*(s~=rl/\ * * - /\Sk =lps~+1=tk+1),

where k,tl>O and the Si’S and ti’s arc terms built from the Yi’S by means of the scmigroup mul-

tiplication symbol. In [GL2] it is shown that the set

and the set

{<p : cp is an ei that holds in all scmigroups)

20

are recursively

b--P is an ei that fails in some finite semigroup)

inseparable. Using thi! technique of [BVl] to reduce questions about ei’s in

groupoids to implication of untyped td’s, we can prove the claim, where 22 expresses the

axioms for semigroups. q

Corollary 1. The implication and the finite implication problem for C2 in the class of untyped

td’s are unsolvable.

Proof. Observe first that the theorem entails that the set

and the set

(u : u is an untyped td and I&b a)

(a : u is an untyped td and & ~JU}

are also recursively inseparable. The claim then follows because by definition a set that is

recursively inseparable from some other set can not be recursive. •I

We now note that the td’s in the statement of Theorem 3 satisfy the conditions of

Theorem 1, so by applying the reduction of the previous section we get inseparability results

for typed td’s.

Theorem 4. There is a set C3 of typed td’s such that the set

and the set

{a : u is a typed td and C3 b u)

{~:uisatypcdtdand~~/+u)

are recursively inseparable. III

Corollary 2. The implication and the finite implication problem for Ej in the class of typed

td’s are unsolvable. 0

An interesting question is whether WC can decide, given a set C of (typed) td’s, if its

(finite) implication problem in the class of (typed) td’s is solvable or not. Tn [Va2] it is shown

that for set C of untyped td’s and equality gcncrating dcpendcncics this problem is unsolvable,

By techniques similar to those employed in proving Lemma 5, it can be shown that the prob-

21

lcm is unsolvable also for sets Z: of untyped td’s. However, the proof method does not extend

to the typed case.

Corollary 2 has an interesting consequcncc. Let * be a class of dependencies and XQk

A finite relation I such that for all uE’k, we have that I b u if and only if Z FJ u is called a

j?nite Armstrong relation for E in + [Fag2].

‘Theorem 5. C3 does not have a finite Armstrong relation in the class of typed td’s.

Proof. Suppose to the contrary that I is a finite Armstrong relation for C3 in the class of typed

td’s. Let u be a typed td. Now & ~JU iff I b u. But the set {u : I b a) is recursive, which

means that the finite implication problem for C3 in the class typed td’s is solvable - contradic-

tion. Cl

We mention that in [FMUY] a set of two typed td’s is defined, which does not have a

finite Armstrong relation in the class of typed td’s.

6. Projected Join Dependencies

In this section we are dealing exclusively with the typed cast. Let U be a universe, and

let R=(R1, . . . , Rk) be a sequence without rcpctition of subsets of U, with 6 Ri = R CU.
i = l

The project-join mapping ntH maps U-relations to R -relations as follows:

m*(r)= (t : t is an R -value s.t. t[Ri]EI[Ri] for i =l, . . . , k).

Let XC R . A projected joitl dependency (abbr. pjd) [YP] is a statement *[RI,. It is

satisfied by a relation I if (jj~~~(Z))[Jk’]= I[X]. The interest in pjd’s comes from the question

whether we can compute I[X] when given the projections I [R J, . . . , I[RJ.

Several special cases of pjd’s have been investigated in the literature. If X = R, then we

drop the subscript X and call *[RI a joirl depeudetlcy [ABU, Ri]. If R = U, then *[ii] is called

total othcrwisc it is called embedded [MMS]. If we have above R=(R& then the join

dcpcndcncy is also called a multivalued depmfetrcy (abbr. mvd) [Fagl]. A total tnvd *[R l,R 21

22

is also denoted by RlnR2-R1- R2. According the definition of satisfaction for pjd’s,

I bX++Y exactly when, 4.r all u,vEI, if u[X]=v[X], then there is a WEI w i th.

w[XY]=u[XY] and w[~]=w[fi]. Clearly, if I bX+Y, then also I /=X--WY.

Even though pjd’s and t$s look on the surface complctcly different, we can in fact view

pjd’s as special td’s. A td <w,?> is called shallow [YP], if whenever u and v are two distinct

tuples in I and LC [A] = v [/I 1, then

(1) if s and t are two distinct tuplcs in I and s[,4]= t[A] then s[A]= t[A]=u[A]=v[A],

and

(2) either +I]= u[n]= v[A] or w[n]tzV~~(l).

Lemma 6. For every shallow td u there exist a pjd 8, and for every pjd 0 there exists a shal-

low td u, such that for all relations I, I b u if and only if I k 8.

Proof. The claim follows fi-om the connection between relational expressions and tableaux as

described in [ASU]. q

Thus, instead of talking about pjd’s we can talk about shallow td’s. Our aim in this sec-

tion is to show that the implication and the finite implication problem for td’s are reducible to

the corresponding problems for shallow td’s. The reduction is essentially due to Yannakakis

and Papadimitriou [YP]. However, they have dealt only with the implication problem, and

their proof-theoretic technique does not extend to finite implication. In contrast, our proof,

which is model-theoretic, shows that the reduction is conservative (i.e., preserve finiteness of

relations), and therefore proves simultaneously the corrcctncss of the reduction for both impli-

cation and finite implication.

We note that for a fixed universe U there are only finitely many U-pjd’s, so the (finite)

implication problem is solvable. Thus, unlike the cast with arbitrary td’s, we have to deal here

with arbitrary universes. In fact, the basic idea of the reduction is that given 22, u over a

universe U, WC translate them to shallow 2, 5 over a bigger univcrsc 0, whose size dcpcnds

23

on the size of the td’s in HJ{b}.

More specifically, let

m=max{k:<w,l>ECU{a)and Irl=k),

and let n = m (m -1)/2. Then we take

fi={Ai:AfU andOli<n).

‘I’hc intended interpretation is that the A0 * l . A,,-values in the new univelxe encode the A -

values in the old universe. For domain we take DOnd(Ai) = (ni} X N (N is the set of natural

numbers). HOWCVCI-, when describing /ii-values we’ll usually omit the first component of the

pair; i.e., we write w[Ai] = 1 instead of the more precise w[Ai] = </ii,l>. We assume without

loss of generality that DOAG?(U)CJ’V.

A U-td 8 is translated to a shallow o-td 8 as follows. Let 8 be <w,l>. We can assume

without loss of generality that I = {WI, . . . , w,& Let us fix some cnumcration of the set

{{i,j): l<i,j<-m and i Sj). By Ai,,- we mean Ak, where k is the ordinal number of {i,j} in

that enumeration. 8 is <u,?>, 7 = (1.4~~ . . . , u,}. r” is constructed SO that Ui[ni,i]=Uj[/fi,j] iff

tvj[/t] = wj[/l], so that the cqualitics between A -values in I arc spread over Al, . . . , /i, in I,

which makes 8 shallow.

More precisely, I” is dcfincd as follows.

(1) For AEU, l<k<vl: uk[AO]=k.- -

(2) F o r AEU, l<i,j,k<m, iSj: For k d i f f e r e n t f r o m i and j, let u,[Ai,j]=k. If-

~i[A]d~j[/f] tllcn uj[Ai,j]= i and uj[/Ii,j]=j. Othcrwisc, Ilj[/ii,j]=ui[/li,j]=I,lin (i,j).

u is defined as follows.

(1) For A EU: I f w[il]E V&(I) t h e n w[A]= w&f] f o r some l<k<m, s o

zl[no]= k = &[A()]. Otherwise, u[Ao]=m -l-l.

24

(2) For AEI, l<i<n: Let u[Ai]=m+l.
.

We leave it to the reader to show that 8 is indeed shallow.

Example 4. Let U = ABC, and let 8 bc a td over U, 8 =<w,Z>, I = {w1,w2,w33:

A B C
w: a b c3

I w: a bl ci

w2: al b cl

WY- al bl c2

N o w fi= /lo. + . AJBo. . . B&‘o * . . C3. Let A1,2= A,, A,,,= A2, and A,,,= AJ. 8

is <zr,I>, I =(u1,u2,u3):

u2: 2 2 2 2 2 2 2 2 2 I 2 2

u3: 3 3 3 2 3 3 2 3 3 3 3 3

The following lemma describes the relationship between U-relations and relations on

one hand and 8 and 8 on the other hand. We use Uo -to denote the set { A0 : A E U).

Lemma 7. Let I be a U-relation, and let ? be a c-relation such that

(1) There is a one-to-one mapping y : DOM(U)+11OM(U~) such that y(I)=r”[Uo].

(2) I” b/ij+/ij for all A EU and O<i,j<tl.

Then for all td’s 0 over U. I b 0 if and only if i b 8.

Proof. WC first show that for every s E1 thcrc is a unique I E r” such that y(s)= I[U,]. Clearly,

there is at least one such I bccausc y(s)Ef[U,]. Suppose that y(s)= t[Uo] = v[U,]. Now for

all A f U and 1 < i < tl , W C IKIVC z[A~]=v[A~] a n d I’b Ao+Ai, S O t[d,]= V[;li]. I t f0110ws

that I = v. WC say that I cvttws from s. Observe that if 11~2 come from ~1~2, rcspcctivcly, then

25

for all A E U and 05 i 5 n , we have sl[A] = s2[A] iff tl[Ai] = t2[Ai].

Let e=<w,J>, J={wl, . . . , w,), and 8=&b, j={ul,. . . ,u,).

If: Suppose that ? b 8. Let /? be a valuation on J such that /?(J)C I. Let tl, . . . , z,,, E? come

from p(wl), . . . , p(wJ, respectively. N O W if ui[Ai,j]=uj[/li,j], then w~[A]= wj[A], a n d

P(wj)[A]=P(vvj>[n]. Consequently li[Ai,j] = lj[Ai,j]s Thus, we can define a valuation LY on .T

so that a(uk)=&. Since we assumed that ? /= 8, ar can be extcndcd to u so that a(u)C ?. Let

a(u) come from sfl. We extend /3 to w so that /?(w)=s. If w[A]WAL(I), then we define

/?(w[A])=s[A]. Otherwise, w[A]=w~[A] f o r s o m e l < k < m . B u t i n t h a t c a s e ,- -

u[Ao]=uk[AO], so (-u(u)[A~]=/~[Ao] and /?(w[A])=/?(wk)[A]=s[A]. So we have that p(w)=s

as desired.

Only if: Suppose that I b 8. Let a be a valuation on J’ such that a(J’)GZ’. The tuples

&l), - l 6 , &,) come from some tuples ~1, . . . , s,Er, respectively. We claim that if

wi[A]=wj[A], then si[A]=sj[A]. Indeed, if wi[A]= wj[A] thCl1 ui[Ai,j]=Zlj[Ai,j], S O ncces-

sarily a(ui)[rZj,j] = a(ui)[Ai,j], and conscqucntly si[A] = sj[A 1. ‘Thus, we can define a valuation

p on J so that P(rvk)= Sk for I< k sm. Since WC assume that I /= 0, /? can be cxtcnded to w-

s o t h a t P(w)EI. L e t rE1’ come f r o m p(w). W e extend a to u s o t h a t a(u)=t. I f

u[Ai]EVAI,((‘), then we define a(u[Ai])=I[Ai]. Otherwise , u[Ao]=uk[AO] for some

l<k<m. But in that case w[Al= w,dA], So ,%d[A]=.s&‘f] and

(~(1([/f~])=(~(u~)[/lo]= t[Ao]. So WC have (Y(U)= t as desired. Cl

By means of Lemma 7 WC can show that the (finite) implication problem for td’s is redu-

cible to the (finite) implication problem for f’d’s and pjd’s. Let 2 be

(3: BEC)U{Aj+/tj : A EU and O<i,j<n).- -

Lcrmna 8. C, b (T if and only if % b 6 and C b,-‘~ if and only if 2 b/C.

Proof. As is Section 4, WC show that E ~v)‘T iff 2 pC (,$ by constructing countercxample rela-

t ions.

26

Suppose that C p~)a. Then there is a (finite) U-relation I such that I k X and I pC cr.

We construct a e-relation I” by duplicating I n + 1 times. That is,

I”=(s:s is a c-value and there is ICI s.t. for all AEU and O<i<n, s[Ai]=<Ai,t[A]>)

Observe that of I is finite then so is I”. Also, it is easy to verify that for all A EU and

O<i,j<n, WC have ? k Aj+Ajn By Lemma 7, r” b 2 and ? p 6. It follows that 2 /+,a.

Suppose that 2 &-$ Then there is a (finite) o-relation ? such that r” b 2 and r” p 5;.

Let I be a U-relation that is isomorphic to &TO]. That is, there is a one-to-one mapping

y : DOM(U)+DOM(Uo) such that y(1) = r”[U,]. Clearly, if r” is finite then so is I. By

Lemma 7, I b 2 and I j2 (T. It follows that C j2u)a. 0

It seems now that WC only need to apply Lemma 5 to get rid of the fd’s in Alas! A

brief inspection reveals that eAi.+Aj is not shallow. Fortunately, in our case it suffices to

replace Ai +Aj by Aj-t,Ajm

Lemma 9. Assume 3<n, O<i,j,k<n, i=tj, jSk, and i=#k. Then

CQ-++Aq :p.qEEi,j,k331=B,4i+,4j

Proof. Let U S describe a o-value w as (W[Aj],W[Aj],W[Ai],W[Ai Aink]). Then 8Ai3n i is

<i,{tc ,v,w)>:

Ai Ai Ak Ai AiAk
t: a2 bl c3 x3

u: al bl cl X l

v: al 62 c2 x2

w: a2 62 c3 x3

Suppose that

7 l=Up-++Aq : y,qWj,k33.

Let 01 bc a valuation such that .a(u),a(v),a(w)C?. OL@), (Y(V), and &v) look like 11, v and

27

w, except that we have additional equalities like a(al)=ar(a2). Since additional equalities do

not bother us we can assume that u ,;, w E ?. We now use the fact that f satisfies the mvd’s

above to infer that ? must contain certain tuples. E.g., from v and w we can infer by

Aj-WAk that (al,b2,c3,x2)Ej. The following figure shows a chain of such inferences.

Ai Ai Ak AiAiAk
u: al 61 cl xl

v: al 62 c2 x2

w: a2 62 c3 x3
s1 a2 b2 c2 x3 (From w and v by Aj * A,)

s2 al b2 c2 x3 (From s1 and v by Ak *Ai)

s3 al bl c2 x3 (From ~2 and II by Ai *A,)

s4 a2 bl c2 x3 (From ~3 and ~1 by /ik &A[)

t a2 bl _ c3 x3 (From ~4 and IV by Ai-t*Ak)

Thus, &r” and ? b OAi+.llj. (Essentially, what we have done here is proving the implication by

the chase proof procedure of [ABU, BV3, MMS, SU].) •I

Corollary. Assuming 3 5 12,

(q+A, : O<i,j<n) k $ (Ai*Aj : O<i,j<n).

Proof. The lemma gives us one direction of the implication. The second direction follows

from Lemma 5 together with the fact that X + A /= X-A . 0

Since thcrc is no loss of gcncrality in assuming that 35 ~1, WC get the desired reduction.

Thcorcnl 6. The implication and finite implication problems for pjd’s arc unsolvable.

Proof. Let &a over U be given. By Lemma 8, C, bu)a iff

(8 : OEC)U(Ai+Aj : O<i,j<n) t=u+$.- -

By Lemma 5, the last implication holds iff

. 28

By Lemma 9, this implication holds iff

{B : 8EZ)U(Ai*Aj : O<i,j<n) b($k

Since {a : 8EC)U{Ai-wAj : O<i,j+z} is a set of shallow td’s and pjd’s, and it can be con-

structed effectively, the claim follows. 0

Analogously to the observation in Section 4, unsolvability of the finite implication prob-

lcm for pjd’s entails that the problem is not even partially solvable, and conscqucntly there is

no sound and complete formal system for finite implication of pjd’s. In this observation, the

only thing we assume about formal systems is that having a formal system for a problem

renders it partially solvable.

We now make our notion of a formal system more precise. Most generally, what we

mean by having a formal system for implication is that having an effective way of checking

proofs. There is however a subtle point here. Unlike the case with td’s where the universe is

clear from the syntax, this is not the cast with pjd’s. In fact, pjd’s are oblivious to the universe

in a much stronger way. Let 8 be the pjd *[R,, . . . , Rk]X. We define m(8)= 6 Ri, and
i = l

for a set C of pjd’s we dcfinc attr(I:)= U m-(e). Now given a set I: of pjd’s and a pjd CT,

the only thing we know about the universe is that it contains attr(CU(a)). It follows that we

can have different notions of implication, depending on the universe. That is, I= (finitely) U-

implies CT, dcnotcd C(U)k (,-)a, if for all (finite) U-relations 1 WC have that I b 2 entails

Ib-La. Fortunately, all thcsc “diffcrcnt” notions of implication turn out to bc the same. We

leave the easy proof of the following lemma to the rcadcr.

Lemma 10. J,ct ZU (a> be a set of pjd’s. ‘Then for all 17 such that attr(C U (o))C_ u we have

.
29

Thus, we can go on using the notation C b (J without specifying the universe. However,

when it comes to formal system the question pops up again. Do we want our formal system to

handle proofs within fixed universes or not.7 We call a formal system of the first kind

universe- bounded.

More precisely, a formal system for implication of pjd’s is a recursive set II whose ele-

mcnts are pairs (Z,<al, . . . , Q>), where I= is a set of pjd’s, and ol, . . . , ak is a sequence

without repetition of pjd’s. The intended interpretation for II is that (X&Q, . . . , a&II

.whcn ~1, . . . , uk is a proof that 2 k uk. Thus, we say that II is sound i f

(T<Ul, * l * ,
uk>)En entails that c k (Jk, and we say that I-I is complete if whenever C is a set

of pjd’s and u is a pjd such that E b u then there is a pair (‘C,<ul, . . . , a,$)En with uk = u.

If the formal system IJ is universe-bounded then instead of pairs it consists of triples

W,mJl, * - * 9 ok>), where U is a universe, c iS a Set of U-pjd’s, and ul, . . . , ok is a

sequence without repetition of U-pjd’s. We say that n is solct?d if (U,‘C,<q, . . . , uk>)En

entails that C b ok, and we say that n is complete if whenever Z is a set of U-pjd’s and u is a

U-pjd such that C b u then thcrc is a triple (U,E,<ul, . . . , ak>)En with (Tk = C.

Thcorcm 7. There is no sound and complctc universe-bounded formal system for pjd’s.

Proof. The argument is essentially that of [BV3]. Suppose that II is a sound and complete for-

mal system for implication of pjd’s. Let ‘c be a set of pjd’s, and let u be a pjd. Take

U = uttr(XJ{a)). There arc only finitely many U-pjd’s, and therefore there arc only finitely

many triples (U,E,Gq, . . . , ok>), where ~1, . . . , ok is a sequence without repetition of U-

pjd’s with ok =u. W C can enumcratc all thcsc triples, and ‘c b u iR one of them is in 17. It

follows that the implication problem for pjd’s is solvable - contradiction. 0

The crucial point in the proof, and the only property of pjd’s used, is that there are only

finitely many U-pjd’s for any fixed U. Thus, the argument applies as well to any class of

dcpcndcncics with that property.

. 30

Let 8 =<w,Z> bc a U-td. For any A EU, we define REP(B,A) is the set of repeating

A -values in 8. That is,

REP(A)=(u[A]: uEI and either u[A]=w[A] or u[A]=v[A] for some vEl,vSu).

We say that 0 is k-simple if for all A E U we have that 1 REP@, A) 1 <k . Thus, the class of

shallow td’s is exactly the class of l-simple td’s. The gcncralized join dependencies of [SC] are

equivalent to 2-simple td’s.

Sciore [SC] has argued heuristically that one can not prove implication of k-simple td’s

without using k +1-simple td’s, and conjectured that this is really the case. Since for every

fixed U and k there are only finitely many k-simple U-td’s, the argument in the proof of

Theorem 7 shows that Sciore is right and there can be no sound and complete universe-

bounded formal system for k-simple td’s.

Two qualifications should bb made. First, the proof of Theorem 7 relics on the unsolva-

bility of the implication problem, and thercforc does not apply to classes of dcpendcncies for

which the implication problem is solvable. Indeed, Sciore’s conjecture that no class of td’s that

contain the class of total join depcndcncies but is properly contained in the class of td’s has a

sound and complctc formal system is false. In [IN51 a universe-bounded formal system for

total join dependencies is shown to be sound and complctc. Secondly, the proof of Theorem 7

applies only to universe-bounded formal systems. FurQlcrmore, since the reduction in this sec-

tion shows us how to transform arbitrary td’s to pjd’s, it is not difficult to take a formal system

for td’s (see [BV4, SU]) and to transform it to a formal system for pjd’s. The resulting system

is of course not ~lnivcrsc-bounded.

Theorem 8. There is a sound and complete formal system for pjd’s. q

Question. Is there a sound and complete formal system for embedded join dcpendcncics? For

embcddcd multivalucd dcpendcncics?

.
31

7. Concluding Remarks

The solvability of the (finite) implication problem for embedded multivalued dependen-

cies is one of the outstanding open question in dependency theory. One of the motivation to

studying larger and larger classes of dependencies was the hope the the regularity of the more

general classes, which in some smcs are more natural then the narrower classes, would enable

us to discover the elusive algorithm for deciding implication.

Unfortunatclyt a series of negative results shattered, more or less,’ that hope. First, in

[l<Vl,CI,Ml] it was shown that the (finite) implication problem for untyped td’s is unsolvable.

Then in [BV2, CLM2, Val] unsolvability was shown also for typed tuplc generating dependen-

cies. Finally, here and in jGI.21 unsolvability was extended to projected join dcpcndencies.

Projected join dependencies seem to be a very slight generalization of embedded join depen-

dcncies, and WC believe that the unsolvability screw can be tightened that further. What about

embedded multivalued dependencies.T? That question still haunts and baffles us.

RWERE’NCES

[ABU] Aho, A.V., Bccri, C., Ullman, J.D.: The theory of joins in relational databases. ACM

Trans. on Database Systems 4(1979), pp. 297-314.

[ASU] Aho, AX, Sagiv, Y., Ullman, J.D.: Equivalence among relational expressions.

STAM J. on Computing 8(1979), pp. 2 18-246.

[Bern] Bernstein, P.A.: Synthesizing third normal form relations from functional dcpcndcn-

tics. ACM Trans. on Ikntabase Systems 1(1976), pp. 277-298.

[BMSU] Bccri, C., Mcndclzon, LO., Sagiv, Y, Ullman, J.D.: IZquivalencc of relational data-

base scl~cmes. SIAM J. on Comput. 10(1981), pp. 647-656.

[BR] Beeri, C., Rissancn, J.: Faithful rcprcscntation of relational databnsc shccmes. IBM

Research Report, San Jose, 1980.

DGI

[BVll

w21

w31

w4

w51

.
32

Beeri, C., Bernstein, ‘EA., Goodman, N.: A sophisticates’ introduction to database

normalization theory. Pmt. Int’l Conf. on VLDB, Berlin, 1978, pp.113-124.

Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. Proc. XPl

Workshop on Relational Database Theory, Stony Brook, June 1980. Also, Technical

Report, Department of Computer Science, The Hebrew Univelxity of Jerusalem, May’

1980.

Beeri, C., Vardi, M.Y.: The implication problem for data dcpendcncies. Proc. 8th

ICALP, Acre, Israel, 1981, in Lecture Notes in Computer Science 115, Springer-

Verlag, 1981, pp. 73-85.

Beeri, C., Vardi, M.Y.: A proof procedure for data dependcncics. Technical Report,

Department of Computer Scicncc, The Hebrew University of Jerusalem, Dec. 1980.

Jsceri, C., Vardi, M.Y.: Formal systems for tuple and equality generating dependcn-

ties. Technical Report, Department of Computer Science, The Hebrew University of

Jerusalem, April 1981.

Beeri, C., Vardi, M.Y.: Formal systems for join dependencies. Technical Report,

Department of Computer Scicncc, The Hebrew University of Jerusalem, April 1981.

[CLMl] Chandra, A.K., Lewis, H.R., Makowsky, J.A.: Embedded implicational dependencies

and their inference problem. Proc. XPl Workshop on Relational Database Theory,

Stony Brook, June 1980.

[CLM2] Chandra, A.K., Lewis, H.R., Makowsky, J.A.: Embcddcd implicational dcpendcncies

and their infcrcncc problem. Proc. 13th ACM Ann. Symp. on Theory of Computing,

1981, pp. 342-354.

[Coddl] Codd, E.F.: A relational model for large shared data bases. Comm. of ACM

13(1970), pp. 377-387.

.
33

[Codd2] Codd, E.FI: Further normalization of the database relational model. In Data Base

Sysfems (R. Rustin, ed.), Prentice-Hall, 1972, pp. 33-64.

[Codd3] Codd, E.F.: Extending the database relational model to capture more meaning. ACM

Trans. on Database Systems 48(1980), pp. 397-434.

[Fagl] Fagin, R.: Multivalued dependencies and a new normal form for relational databases.

ACM Trans. on Database Systems 2(1977), pp. 262-278.

[Fag21 Fagin, R.: Horn clauses and database depcndencics. Proc. 12th ACM Ann. Symp. on

Theory of Computing, 1980, pp. 123-134. To appear in JACM.

[FMUY] Fagin, R., Maier, D., Ullman, J.D., Yannakakis, M.: Tools for template dependencies.

Ku

Ku

[MMSI

WI

[W

[SC1

WI

IBM Research Report RJ3033, May 1981. To appear in SIAM J. on Computing.

Gurcvich, X, Lewis, H.R.: The inference problem for template dcpendcncics. Proc.

ACM Symp. on Principles of Database Systems, Los Angeles, 1982, pp. 221-229.

Gurcvich, Y., L,ewis, H.R.: The word problem for cancellation scmigroups with zero.

Technical Report TR-08-82, Aiken Computation Lab, Harvard University, 1982.

Maier, D., Mend&on, A.O., Sagiv, Y.: Testing implications of data dcpcndcncies.

ACM Trans. on Database Systems 2(1977), pp. 201-222.

Rissanen, J.: Theory of relations for databases - a tutorial survey. Proc. 7th Symp. on

Math. Found. of Computer Science, 1978, pp. 537-551.

Rogers, H.: Theory of recursive functions and efTective computability. McGraw-Hill,

1967.

Sciorc, E.: A complete axiomatization for full join dcpendcncics. J. of ACM

29(1982), pp. 373-393.

Sadri, F., Ullman, J.D.: Template Depcndcncies - A large class of dependencies in

relational databases and its complctc axiomatization. J. of ACM 29(1982), pp. 363-

372.

.
34

[Val] Vardi, M.Y.: The implication problem for data dependencies in relational databases.

Ph.D. Thesis (in Hebrew), The Hcbrcw University of Jerusalem, Sep. 1981..

WI Vardi, M.Y.: Global decision problems for relational databases. Proc. 22nd IEEE

[Va3]

WI

Symp. on Foundation of Computer Science, Nashville, 1981, pp. 198-202.

Vardi, M.Y.: The implication and the finite implication problems for typed template

dependencies. Proc. ACM Symp. on Principles of Database Systems, Los Angeles,

1982, pp. 230-238.

Yannakakis, M., Papadimitriou, C.: algebraic dependencies. 21st IEEE Ann. Symp.

on Found. of Computer Scicncc, 1980, pp. 328-332. To appear in JCSS.

[Zan] Zaniolo, C.: Analysis and design of relational schemata for database systems. Techni-

cal Report UCLA-ENG-7769, UCLA, 1976.

