
May 1982 Hcport No. STAN-CS-82-915

Verification of Concurrent Programs: Proving
Eventualities by Well-Founded Ranking

bY

Zohar Mmw and A. Ynucli

Department of Computer Science

Stanford University
Stanford, CA 94305

.
VERIFICATION OF CONCURRENT PROGRAMS:

PROVING EVENTUALITIES BY WELL-FOUNDED RANKING

bY

ZOIIAR MANNA
Computer Science Department
Stanford University
Stanford, C A
and
Applied Mathematics Department
The Wcizmann Institute
Rchovot, Israel

AMIR PNUELI
Applied Mathematics Department
The Wcizmann Institute
Rehovot, Israel

ABSTRACT

In this paper, one of a series on verilication of concurrent programs, we present proof methods
for establishing eventuality and until properties. The m&hods are based on well-founded ranking
and a rc app l i cab le to bo th “ jus t” and “ fa i r” computalions. Thcsc rncthods do no t assume a
decrcasc of the rank at each cornpulation step. 11, is sufIicient lhat there exists one p rocess which
decreases the rank when activated. Fairness then ensures that the program will eventually attain
its goal.

In the finite state case the proofs can be represented by diagrams. Several examples are given.

This rcscarch was supported in part by the National Science Foundation under Grants MCS79-09495 and MCSSO-

06930, by DAItl’h under Contract NO0039-83-C-0250, by ttw United Statcs Air Vorcc Oflicc of Scientific Rcscarch

under Grant Al4’0S11-8l-OO14, and by the Ikwic Rcscxrch IGmndation of the Israeli Acadcrny of Sciences.

INTRODUCTION

In a previous report [MPl] we introduced the temporal framework for reasoning about pro-

grams. We described a model of concurrent programs which is based on inleraction via shared
variables and defined the concept of fair execution of such programs. WC then demonstrated the
application of temporal logic formalism for ezpressing properties of concurrent programs. Program
properties can be classified according to the syntactic form of the temporal formula expressing
them; we studied three classes of properties: invariance properties, eventuali ty properties and

precedence (“until”) properties. Most program properties that have been previously considered or
studied for sequential and concurrent programs fall into one of these three categories.

In a second report [MP2], we developed proof principles based on temporal logic for establishing
that concurrent programs possess properties of these classes. We presented a proof method for

each class of properties.

l A single invariance principle is adequate for establishing invariance properties.

0 For proving eventuality properties, we recommended a chain reasoning approach, in
which we follow the possible chains of events until the desired goal is realized. Several
proof principles were introduced for establishing the basic steps in the chain. A similar
approach is presented in [OL].

l Simple precedence properties may be proved by a combination of invariance proofs a n d
eventuality proofs. A forthcoming report ([MP3]) will discuss proof methods for general
precedence properties.

In this paper, we present an alternative method for proving eventuality and “until” properties
based on convergence functions (well-founded rankings).

In our exposition, we assume that the reader is familiar with the basic concepts and definitions
introduced in [MPl] and [MPB].

THE CONVERGENCE FUNCTION APPROACH

Unlike the chain reasoning approach, which displays a variety of strategies and rules, the
convergence function approach provides a single uniform principle for proving eventualities of the
form:

(i.e., if ‘p ever arises it must be followed by $J), as well as “until” properties of the form

(i.e., if cp ever arises it must bc followed by an instant at which $ is realized and between the
occurrences of cp and $, x must hold continuously).

. With respect to uniformity, the convcrgcncc function approach resembles the invariance
principle for proving invariance properties. Another common feature is that establishing the

premises to the proof rule requires only static (non-temporal) reasoning.

2

.

Convcrgcnce func t ions have been used successfully in proofs of termination of scqucntial
prograrns and of rewrit ing systems (e.g. , [MI, [DM]). T heir U S C is based on a mapping from
the execution states of a program into a well-founded set , such that states which appear later
in a computation correspond to lower values in the set. Conscqucntly, a complete computation
will correspond tc a descending sequence, and an infinite computation would correspond to an
infinitely descending scqucncc of well-founded elements, which is impossible. Such a mapping is
called a convergence function or a ranking function.

A well-founded structure (W, >) consists of a set W and a partial order + on W such tha t
any decreas ing sequence 200 > w1 > w2)- . . . , where w; E W is finite. A typical and frequently
used well-founded structure is (N, >), where N is the set of all nonnegative integers, and 5 is
the usual “greater than” ordering. Obviously we cannot have an infinitely decreasing sequence of
nonnegative integers, and therefore (N, >) is indeed a well-founded structure.

A general method for deriving composite well-founded structures from simpler ones is the
formation of lexicographical orderings. Let (WI,)- 1) and (W2, > 2) be two well-founded structures.
Then the structure given by (WI X W2, >.lez) where the lexicographic ordering >lez is defined by

(7731, m2) *fez (nl, n2) w (ml +I nl) or (ml =nl a n d m2 >2 4

is also well-founded.

Let us consider the application of the classical
concurrent program:

convergence function approach to the following

Example A (Program DGCD - distributed gcd computation)

(Yl,YZ) := (21, x2)

e, : while yl # y2 d o m0 : while yl # y2 d o

if ~1 > y2 t h e n yl := y1 - y2 if ~1 < y2 then y2 := y2 - y1
e, : halt ml : halt

- Pl - - P2 -

This program performs the distributed computation of the gcd (greatest common divisor)
of two positive integers inputs x1, x2. In the execution of this program, we assume each of the
labelled instructions to be atomic in the sense that testing and modification of the variables by one
process, say PI at to, arc completed before the other process may access them. Note that when
PI is activated in a state in which yl < y2 it dots not modify any of the var iables and returns
l o 10, t h u s replicating cxaclly lhc o r i g i n a l state. C o n s c q u c n t l y , the lcrmination, and hcncc the
corrcclncss of this program, depends very strongly on the basic assumption of fairness that we
assume throughout this work. Only under fairness would each of 1’1 and P2 bc activated as often
as needed until convergence is achieved.

Trying to prove the convcrgcncc of this program by well-founded ranking immediately runs
into diflicullics when WC fail to find a mapping into a well-found4 set that will dccrcatic at every
slcp of the computa t ion . No such func t ion can exist for the above p r o g r a m since, as obscrvcd
e a r l i e r , s o m e steps m a y preserve the state a n d lcavc the value of a state-dcpcndcnt convergcncc

3

function constant. This points out emphatically that any well-founded argument may succeed only
if it takes fairness into ‘account. ’

PROGRAMS AND COMPUTATIONS

For completeness we repeat some of the dclinitions of [MPL] and introduce some additional

notation required here. Let P be a program consisting of m parallel processes:

Each process P; may be represented as a transition graph with locations (nodes) labclled by clcrrlcnts
Of Li = {Pi, l l . ,1:}. The edges in the graph are labclled by guarded commands of the form
c(g) + [gj : = f(g)] whose meaning is that if c(g) is true the edge may bc traversed while replacing

I7 bY f(a)*

Let e,e’, . . . , P E L; bc locations in process Pi:

W e d e f i n e E,(y) = cl(S) V . . . V ck(?/) to be the ex i t c ond i t i on at node 45 Locations in the
program can bc classified according to their exit conditions.

l A location is regular if Et = true. This is the case with locations such that the set of
conditions labeling their outgoing transitions is exhaustive in the scnsc that for every
possible value of v at least one transition is enabled. The only irregular locations are
terminal locations and semaphore locations discussed next.

0 A location is t e r m i n a l if 13~ G fa lse . This is the cast with locations label ing halt
instructions which have no outgoing transitions. In our model W C usually label these

locations by &.

e Any location ! such that the exit condition Et(g) is nontrivial is called a semaphore loca-
tion. l3xamples of such locations arc those corresponding to the instruction requeut(y,)
whose transition diagram is:

(Yr > 0) -+ [yr := yr - 'I]

4

Note t h a t E&J) = (yr > 0). The r e q u e s t i n s t r u c t i o n i s used in order to reserve a
resource, where y7 may be considered as counting the number of units of this resource
currently available. Its symrnctric counterpart, the reZease(y,) instruction, is used to
release a reserved resource. Its transition diagram is:

tme ---) [yr := yr + 1)

The release instruction has as its exit condition El c true. Consequently its location
is a regular location.

A state o f t h e p r o g r a m P i s a tup le of the form s = (?;?Tj) w i t h 7 E f 1 X . . . X Lm - a n d

TED”, where D is the domain over which the program variables yl, . . . , yn range. The vector 2
is the scl of current locations which are next to be executed in each of the processes. The vector
7 is lhc set of current values assumed by the program variables g at state s.

With each process P; we associate a state transition function g; that represents the possible
outcomes of the activation of the process Pi on the slate s. If we denote by S the set of all possible
p r o g r a m states, g; is a function g; : S ---+ 2’.

Nolc that this definition allows for the possibility that Pi is nondcterministic, since it is possible
t h a t Iy;(s)l > 1 , i . e . , there is more t h a n o n e s u c c e s s o r t o s. Let s = (Z; $. If !i i s a t e r m i n a l
location, or a semaphore location with E,,(q) =f 1a se, then P; cannot bc activated on s. In such
a case g;(s) = 4 and we say that I-‘; is d i sab l ed o n s. If !i is a regular location, or a semaphore
location with Et,(q) = true then g;(s) # 4 and W C say that Pi is enab l ed on s.

A state s E S such that all processes are disabled on s is called t e rmina l . A terminal state
corresponds either to a situation in which all processes have terrninated or to a deadlock in which
all the nonterminated processes wait in a semaphore location with a false exit condition.

l An admissible computation is a labelled (possibly infinite) sequence:

pi, P;, P-*3
CT: a() - s1 - s2 - a3 . . .

s u c h t h a t every si E S a n d f o r e v e r y j >_ 0 , W C have si+l E gdj+l(sj). T h u s , s u c h a
computation could arise by an execution of the program starling from the initial state SO.
The computation will be finite only if it terminates in a terminal state s,. We can think
of such a computation as generated under t,hc guidance of an imaginary scheduler which
at each step selects one of the processes (called the activated or scheduled process) and lets
it execute a single instruction.

l A -initialized computation is an admissible computation in which so = (!A, . . . , CT;“; fo(<)).
I Icrc ai1 is the initial location in process I’; and f0 is the initial assignmcnl t.0 lhc program
variables.

0 A ‘ j -computation is a r-initialized computation or a suffix of a -initialized computation.
Allowing suflixes of initialized computations enables us to study program behavior which
may become observable only later in the computation.

0 A cp-computation is a ‘j-computation for any input values 3 satisfying a precondition (0.

The next definition embodies the basic assumption of fairness:

5

An admissible computation u is fair if lhcrc is no ~proccss Pi such Ihat Pi is enabled an infinite
number of times in B, and Pi is activated only finitely many times. Thus, fairness requires the
imaginary scheduler to monitor the number of times a process becomes enabled, and to ensure that
repeatedly enabled ones are not neglected forever. Any finite computation is necessarily fair.

In the absence of scmaphorc instr’ilctions, each process Pi is initially enabled and can become
disabled only by terminating. Ilcnce we can define the weaker notion of just computation, w h i c h
replaces the requirement of being enabled an infinite number of times by the rcquircmcnt of being
continuously enabled.

A computation 0 is just if there is no process Pi such that Pi is continuously enabled beyond
a certain state s in CT, and 1’. is activated only finitely many times. Any finite computation is by
definition just.

We denote the classes of all fair and just computations of a program P with precondition ‘p
by ?((p, P), J(cp, P) respectively, or F(v), J(P) w h e n tlle p recondition ~3 is implicitly understood.

For an arbitrary program P we have in general

3(p) c J(P),

i.e., every fair computation is also just, but there may exist just computations which are unfair.

To see that the first claim holds, let 0 be a fair computation. Let Pi be any process that is
continuously enabled beyond a certain state in 0. Thus, Pi is certainly enabled an infinite number
of times, and by fairness must be activated an infinite number of times. Hence Q is just.

To show that the inclusion between the sets 3(P) and J(P) may be strict consider the following
program which is the simplest program modclling mutual exclusion:

.-Y 1.-

e, : request(y) mf-j : Tequest(y)

e, : release(y) ml : release(y)

e2 : go to co m2 : go to mg

-PI - -P2 -

The following computation:

Pl Pl Pl
6: (to, mo; 1) --+ (4, m0; 0) -----+ (12, mo; 1) -

Pl Pl
(to, mo; 1) - (&, m0; 0) - (C2, mo; 1) - l l l

i s j u s t . The p r o c e s s PI is aclivatcd i n f i n i t e l y m a n y times. O n the other h a n d I’2 i s n e v e r
continuously enabled since it is disabled in the infinitely recurring state (!I, mo; 0), thercforc justice
dots not require it to be activated at all. Obviously 0 is unfair since 1’2 is also enabled infinitely
many times on all recurrences of (to, mo; l), but is never activated.

However when P contains no semaphore instructions W C may use the above observation that
a process is continuously enabled if and only if it is enabled inIinit,cly many times, to conclude:

For a program without semaphores: 3 (P) = J (P) .

6

Thus, in order to study programs without scmaphorcs, W C need only consider properties that hold
for the class of all just computations;

PROGRAMS WITIIOUT Sl3MAPIIORES - JUST COMPUTATIONS

In this section we present a proof principle enabling us to prove eventuality properties that
hold for the class of just computations J (P) .

The basic idea of the proof principle is to assign a convergence function u : S + W mapping
the program states into a well-founded structure 1/V. However, as shown in examples such as the
D G C D program above, we should not require the function to decrease at every step. 1nstc;)rl we
require that the function never increases and that for each slate there is always a process 1’i, ~~lsllcd
the helpful process for this state, such that the activation of this process guarantees a decrease
in the value of the function. By justice this helpful process will eventually bc scheduled, so that
any infini le. j ust computation will necessarily generate an infini lcly decreasing subsequence of well-
founded elements -~ a contradiction. In the general case, the idcnlily of the helpful process may
vary from state to state. We therefore introduce a helpfulness function h : S + {I, . . . , m} that
identifies one helpful process Phcs, for each state s E S.

W C suggest the following proof method for proving precedence and eventuality properties of
just computations.

Proof Method J:

For proving eventualities of the form cp 3 0 $, under all just computations of a
p r o g r a m p, find a state predicate Q = Q(s), a well-founded structure (W, +), a
convergence function u : S + W and a helpfulness function h : S + (1, . . . , m }
such that:

Jl. c ‘p = (+ v 9)

J2. i= Q(s) 1 (a+)(s) # 4)

J 3 . b [Q(s) A s’ E &)I = Mb’) v (Qb’) A (u(s) t u(s’)))l
fori=l,m

J4. F [Q(s) A s’ E gq&)] 1 [+(s’) V (u(s) + +‘))I

J5. b [Q (s) A s ’ E g&) A (u (s) = u(d))] I [$(s’) V (h (s) = h(d))]
for i = 1, . . . ,m.

‘rhen we may conclude that:

IIcrc E w means that UJ is true for all computations of P. The statcmcnt J(IJ) I= fu means tha t w
is lruc for all just computations of P.

7

In these, Q(.)s is an invariant which is cxpcctcd to rcmnin true from the time cp bccomcs t rue
until $ is realized, Rcquircmcnt Jl. states that if cp holds for a state then either $4 or Q must hold
in this slate. J2 requires that the process that is helpful for a state s bc enabled on s. 53 states
that each step in the computation either realizes $J or prcscrvcs Q and produces a value of u that
is not higher than the value before the step. J4 states that taking a helpful step actually dccrzascs
the value of u. J5 stales that a step which dots not decrease the value of u mus t p rese rve the
identity of lhc helpful process. The last condition is necessary in order to avoid an infinite sequence
with constant value of u and continuously changing h. Such a sequcncc may be just but yet avoid
realizing $.

Proof:

Let us justify this proof method by showing that if we succeed in finding Q, W, u and h a s
described above then indeed every just computation must satisfy cp > O$J.

Let us consider a just computation:
P;, pi,

u: so - s1 - 52 - . . . ,

such that (P(BO) is true and + is nowhere realized. By Jl and .J3, Q(si) must be true for every 5;
in the sequence. 13~ J2 the sequence must bc infinite since, for every si, Ph(s;~ is enabled. Again
by J 3 the sequence of u values u(sg) k U(RI) 2 . . . must bc a non-increasing sequence. 1.3~ the

well-foundedness of W there must be a k such that

+k) = u(t?k+l) = . . .

By J5, h also remains constant from Sk on, that is

h(Q) = h(sk+l) =

Let its constant value bc r = h(sk). In view of J 4 , P, w a s never a c t i v a t e d beyond 8k b e c a u s e
its activation would have caused u to decrease. In view of 52, Pt- is continuously cnablcd beyond
Sk since everywhere h(q) = r for i > k. This is obviously a blatant case of injustice - Pr b e i n g_
continuously enabled and never activated. Thus, just sequences failing to realize + cannot exist,
and any just scqucncc initialized with (o must eventually rcalizc $. 1

By looking at the proof for evcntualitics we observe that it guaranlccs the cvcntual realization
of $J and, by Jl and J3, as long as $ is not realized, Q holds. This is exactly the definition of the
until expression Q U $. We thercforc have:

Corollary: The proof method J also proves

J(P) I= P 3 (Q U $1.

T h e lrcatmcnl in [LPS] implies that this method is also complct,c, namely -that if cp > 0 + is
true for all just computations of P then thcrc always exist some Q, W, u, and h satisfying Jt - J5.

Related work dealing with similar methods for establishing fair termination, which is a special
case of eventuality, is contained in [GF’MI1], [AO] and [Pa]. Earlier work on the termination of
concurrent programs is described in [K], [Pn].

We wi l l now proceed to illuslratc the application of this mclhotl to proofs of eventuality
propcrlics of programs without semaphores.

8

Example A (Program Z>CCn --- distributed gcd computation):

Consider again the DGCD program. Let

‘p: atto A atm3 A (y1,y2) = (wza) A XI > 0 A x2 > 0

ti: at& A atmo A y1 = y2 = gcd(xl,x2).

We wish to prove

i.e.,

J(p) i= bteo A atmo A (~1, ~2) = (x1,4 A XI > 0 A x2 > 0]
1 O[atb A airno A y1 = y2 = gcd(xl,x2)].

That is , being at the start ing point of the program with (y1,92) = (xl, x2) and positive inputs
x1 > 0, x2 > 0, we are ,qarantced to eventually get back to that point with y1 being the greatest
common divisor of x1, x2.

We choose Q, W, u, and 11 as follows:

Q(s) : atto A atmo A ~1 > 0 A ~2 > 0 A gcd(yl,y2) = gcd(xl,xz) A y1 # YZ

W : (IV, >) - t h e nonnegative integers with the “greater than” relation

~(Yl~ ?j2) : Yl +y2

h(Yl,YfL) : if y1 > y2 t h e n PI else F’s

W C have intentionally displayed h as a function into {PI, 1’2) rather than {1,2} to stress Lhc fac t
that it selects processes. It is not dillicult to verify that rcquircmcnts Jl to ,/ 5 hold for this choice
of Q, W, u, and h . In pa r t i cu la r , we no te tha t Q impl ies tha t when yl > ~2, P1 is helpful in
d e c r e a s i n g y1 + y2 whi le for y1 < y~2 (by Q : y1 < ~2) 1>2 is helpful. N o t e t h a t o n c e w e a r c a t
(C,, mo) with y1 = y2 the program will immediately proceed to the termination state at (Cl,ml).

A N INDIXINC MXL’TIOD FOR J U S T COMPUTATTONS

A variant of the convcr~cncc function approach uses elements of wcl I-founded scls as indices to
predicates. As W C will show below the two variants arc essentially cquivalcnt, but certain problems
may admit, proofs that are easier to present in the indexed form than in the convergence function
forrn. As before, the method is based on finding a well-founded set (V , >). WC then cons ider
prcdicatcs n,(s) with v E V, s E S which are state predicates indexed by clcmcnts of V . S t a t e s
appearing later in the computation will satisfy IZ, with lower values of v. Convergence is thcrcfore
assurctl by the impossibility of having a sequence of fC,, with an infinitely decreasing v;ltlucs of v;.

IIowcvcr, as before WC cannot, guarantee a strict dccrcasc on cvcry step. We thcrcforc specify a
decrease function 6 : V -+ (1, . , . , ~1) which, similarly to the hclpfulncss function t1, idcntilics the

.
helpful process 1’6(,,) Chat corresponds Lo any stale 8 satisfying n,(s). Note that the identity of the
helpful or dccreas;ng process depends only on the index v and not on the state.

With this notation we now formulate the indexing method for just computations.

Proof Method IJ:

For proving eventualities of the form cp 3 0 $, under all just computations of a
program P, find a well-founded structure (V, +), an indexed family of predicates
R, = I&,(Y), v E V, and a decrease function 6 : V --) { 1, . . . , m} such that:

IJl. c p 3 [yb v (3v E V.R,)]
.

IJ2- c R(s) 1 (g+)(s) # 4)

IJ3. t [R,(s) A s’ E gi(s)] 1 [+(s’) v 3+ 5 v).R,(s’)] fori=l,m

IJ4. @ [R&J) A s’ E sa(v,(s)] 1 [$(s’) V 3u(u -(v).k(s’)]

Then we may conclude that

J(P)k p 3 O$.

A stronger conclusion is:

J(P) I= p > (3v.R,) U +.

Requirements IJl-IJ4 resemble very closely Jl-J4 and fulfill similar roles. There is no need
for a counterpart to J5 since if s satisfies f&,(s), s’ E gi(s) and also &(s’) then the dec reas ing
process for s, being determined by v alone, is also the decreasing process for s’. The proof method
IJ appcarcd first in a structured form, applied to nondcLcrministic programs ([CFMR]).

The similarity between the methods suggest that they are in fact equivalent. Indeed we make
the following claiti:

Method J is applicable if and only if method IJ is applicable.

Proof:

Assume first that method J is applicable. This means that we have found &, (W, >), ‘1~ and
h satisfying rcquircments Jl to J5. To show that this implies the applicability of 7J WC choose as
follows:

The well-founded structure (V, >.v) is given by V = W X [l, . . l ,m], where

(Wl,i) *v (w2,j) H Wl >w w2 or (Wl = w2 and i > d*

Thus , an c lement of V is a pair (w,i) with w E W and 1 5 i < m, and the ordering >v is the
lexicographic ordering induced by the ordering on W and on the natural numbers.

R(w,i)(s) is defined by Q(s) A [u(s) = W] A [h(s) = i]

10

and

6(w, i) = i.

It is an easy matter to verify the fulfilment of requirements IJl to IJ4. Consider for example
the verification of condition I J 3 .

Let s, s’ be two states such that n(,,,j)(s) hoId s and s’ E gi(s). By the definition of R we k n o w
that Q(s) is t rue and U(S) = w, h (s) = j . By J3 either +(s’) is true which immediately satisfies
I J3, or Q(s’) h o l d s a n d UI = U(S) >- u(s’) = w ’ . T h u s , b y the d e f i n i t i o n o f R , R(Wt,h(,t))(s’) i s
true. It rernains to show that (w, j) = (w, h(s)) > (w’, h(s’)). If w > w’ then this is certainly- the
case. Consider therefore the possibility that w = w’. But then by J5 also h(s) = h(s’) leading to
(~1, h(s)) = (w’, h(s’)) as required.

To go in the other direction assume that (V, >), R, and 6 as required for method IJ h a v e
been found. We will show how to select Q, (W, >), u and h that will satisfy the requirements of

method J .

For simplicity W C assume that the order > is a total (linear) order. We may then take the
w e l l - f o u n d e d s t r u c t u r e (V , +) to be (W, +). Q(s) is defined by 5.&,(s) and U(S) is given by
min{vlR,(s)} for an s which satisfies Q and arbitrarily otherwise. If W is a total well-founded
order every non empty subset of W has a minimal element which is smaller than any other element
of the set. The helpful function h(s) is defined as 6(u(s)).

It is an easy matter to verify that Q, u, and h satisfy requirements Jl to J 5 . a

DIAGRAM REPRESENTATION OF THE INDlXtNG METHOD

. In the case that the indexing set V is finite there is a convenient graph representation of the
indexing method. This is certainly the case when the program I’ has only finitely many possible
states.

In Lhe graph or diagram representation there is a node n, for each &,v E V. Without loss of
generality we may assume V to be an initial scgrncnt of the natural numbers V = {1,2, . . . , k}.
Thus we have nodes n;, i = 1, . . . , k. A special node no , reprcscnts $. For every s E &, s’ E &
(i . e . H;(s) = Rj(s’) = tr u e such tha t s’ E Se(s), we draw an edge e f rom n; to ni. The edge e is)
labellcd by Pe, the process effecting the transition. Similarly, for every s E 12i, s’ E $ such that
s’ E ye(s) we draw an edge from n; to no and label it by Pt.

In order for a diagram to rcprcsent a valid proof by method I,J the following conditions must
hold:

A. For every edge connecting n; to nj we must have i > j.

13. For every n;, i > 0, there must exist some I’l (the helpful process) such that all
edges l abc l lcd by Pe lead from n; to some nj w i t h i > j a n d s u c h t h a t Pt i s
enabled on all states s E R;.

In the diagram we represent edges corresponding to the helpful process by double arrows 3.

We illustrate diagram proofs by two additional examples.

11

Example B (The Peterson-Fischer Algorithm (PJ’) -- a distributed solution of the mutual exclusion
problem):

y1 := t1:= 92 := t2 := _L

e, : noncritical section 1 h

e, : t1 : = if y2 = F then F else T

e2 : y1 := t1

4!3 : if y2 # 1. t h e n tl := y2

t!4 : y1 := t1

e, : loop while yl = y2

/ criti;;A,;ti” (lL, I)1

l!, : go to to

mo : noncritical section 2

ml : t2 := if y1 = T then F e lse T

m2: yz:=t2

mg : ifyl # 1. t h e n t2 : = 1~1

m4 : y2 := t2

rn5 : loop while 1~2 = y1

critical section 2 I
1(Y2J2) := (I, I)]
m7 : go to mg

-PI - -43 -

This program provides a distributed solution for achieving mutual exclusion without sema-
phores; the boxed segments are the critical sections to which we wish to provide exclusive access.
It is assumed that both critical and noncritical sections do not modify the variables y1 and ~2.
Also, it is mandatory that the critical section itself must terminate. The program is distributed i n
the sense that each process P; has its-own memory y; which is readable by the other but writable
only by itself.

The basic idea of the protection mechanism of this program is that when competing for the
access r ights to their cri t ical sections, PI attempts to make y1 = y2 by the statements Cl to 14
w h i l e P2 a t t empts .to m a k e ‘1~2 = 1~1 in s ta tements ml to m4. The synchronization variables y1

and y2 range over the set {I, F, T}, where I signifies no interest in entering the critical section.
The partial operator 1 is defined by

11 =F, 1F = T, 11. is undefined.

Hence in wr i t ing 1~2 = ye we a l s o i m p l y t h a t yl # 1. a n d y2 # -I-. Protection i s a s s u r e d
essent ia l ly by the exc lus ion of the e n t r y c o n d i t i o n s y1 # y2 and 1y2 # y1 wherl both yl and y2

are different from -L, since ye; # -L when P; is waiting to enter its critical section.

A point unique to this algorithm is that although PI attempts to establish the condition y1 =
y2 in 1, to &, the condition for PI actually entering the crit ical section is the complementary
c o n d i t i o n y1 # ~2. Thus, if both processes actively compete for entry, PI sets yI equal to y2
a n d then waits for the other process to set y2 to a value diffcrcnt from 7~1. If P2 is not currently
interested in gaining access to the critical section, then y2 = _L which will cause the statements

i n 11 to 4!4 to set y1 to II’; t e s t i n g a t &, 1’1 w i l l f i n d t h a t i n d e e d y1 = T # y2 = _L a n d e n t e r
immediately.

By simple application of the invariance principle it is possible to derive the following invariants:

b (h # 1) = ate2..6

t (yl # 1) = ate3..6

12

c
cp2

4

- 5 :15,m, ,
PI PI

p2
.

* 4 2, ,m
PI Pi

4.
. #P2 PI

-* 3 :I, ,ms r & PI

Figure I.

Diogrom Proof for PF

13

b (Y2 # 1) = utm3..6,

w h e r e at&.6 stands for at& V at& V . - . V at&, fk.

The eventuality property we wish to show for this program is

In Figure 1 we present a diagram proof for this property. In constructing the diagram we have
freely used the four invariants derived above. Observe in particular node number 6

6 : e5,mo e

in which the helpful process (indicated by a double arrow =+) is PI since we know that ys = 1.
In this diagram we abbreviate at& A at mo to Cs, mu.

To illustrate the application of method IJ to the proof of wtil properties, consider the following
precedence property:

k [ate5 A - atm4..6] 1 [(- utm6) u (de,)).

It states that if PI arrived at es before P2 arrived at any location in {md, m5, m(j) then PI wi l l
be admitted first to its critical section. To prove this we only have to consider the subdiagram
consisting of nodes 0 to 7. Certainly,

[at& A - utm4..6] 3 [R, V Rs V l&j V R, V R3].

Therefore this is an admissible diagram in the sense that condition IJl is satisfied. It establishes
that ate6 will eventually be realized and all the intermediate states are covered by VI=, Ri which
i m p l i e s - utm6. a

E x a m p l e C (T h e Dekker p r o g r a m (DK) - a shared variable solution of the mutual exclusion
problem):

t .-.- 1, y1 := y2 := F

e, : noncritical section 1 mo i noncritical section 2

e, : y1 := T ml : y2:=T

e, : ifY2 = F then go to e7 m2 : ifY1 = F then go to m7

e3 : ift = 1 then go to l!, m3 : ift = 2 then go to rn2

e4 : y1 := F

e, : loop until t = 1

e6 : go to e,

m4: y2 := F

rng : loop until t = 2

m6 : go torn1

1:; 1 frT;ction 11

e, : go to e,

-Pi -

critical section 2t 1. -. -

y2 := F

mg : go to mg

-43 -

14

p2

p2
PI

I

1 p2 4
IIC 1 9 :t5qml ,t=2 p2

l

/3PI
e 18 :l,,m,,t=2

1 p2
A

- I6 :(S,m,,t=2q
PI

. P2

w 0:27 4
* .

Figure 2.

1 I

I I :t2,3rmT,t=

1 p2
4

5‘ A
+ IO :12,s.m,,t=S

P I
llp2

1 9 2, 9 s,m,,t
.

p2 t UP2

y 8 2, ,mo ,t=

4
UPI\

l 7 2, ,mo ,t=

4 I

p2
p2

I 3 22,s,m4,t=;?
PI

1 - I
1 p2

2 :I,
92

,m&=I

Diogrom Proof of the Program DK
15

The variable y1 in process 1’1 (and y~2 in 1’2 rcspcctivcly) is set to T at L’, to signal the intention
of PI to enter its critical section at e7. Next PI tests at & whether P2 has any interest in entering
its own critical section. This is tested by checking if y2 = 7’. If y2 = J’; PI proceeds immediately

to its critical section. If y2 = T we have a competition between the two processes on the access

right to their critical sections. This competition is resolved by using tho variable t (turn) that has
the value 1 if in case of conflict PI has the higher priority and the value 2 if P2 has the higher
priority. If PI finds that t = 1 it knows it is its turn to insist and it leaves y1 on and just loops
b e t w e e n e2 and & waiting for y2 to drop to F. If it finds that t = 2 it realizes it should yield to

P2 and consequently it turns y1 off and enters a waiting loop at Cg, waiting for t to change to I.
As soon as I-‘2 exits its critical section it will reset t to 1 so PI will not be waiting forever. Once t
has been detected to be 1, PI sets y1 to T and returns to the active competition at e2.

For the DK program we wish to show:

t utel 3 oute7.

In Figure 2 we prcscnt a diagram proof of this property. In constructing the proof we made use of
some invariants that arc easily derivable, namely:

b (Y1 = T) = (ate2..4 v ate,,,)

C (y2 = T) E @m2..4 v utm7,8)

t (ate3..6 A t= 2) > utml...7-

For example, we used the last invariant in order to decide that at node 23 the PI successors
to states in which at e4 A (t = 2) may be anywhere but at mo, m8 or mg.

Again W C may use the extension of the method in order to prove some precedence properties
of this program. First we can show:

t [de2,3 A (t = 1) A - atmy] ‘3 [(- utm7) U cute,)].

This is established by considering the subdiagram formed out of nodes no to nlo. It ensures that
o n c e PI is in t2,3 with t = 1, it will precede P2 in getting to the critical section. An almost trivial
observation is that

b utmg > [(t = 1) u (de7)].

In analyzing the amount of overtaking by which /$ can preccdc 1’1 in entering the critical
section we find the following:

O n c e Pl is in e, it will eventually get to e2. If currently t = 1, then the next process to enter

its critical section is PI. Otherwise, in the worst case 1’1 proceeds from e2 to es. Z’s cannot enter
i ts cri t ical section more than once without sct,ting t to 1. Once t = 1, PI returns to e2 e n s u r i n g
its priority on the entrance rights to the critical section. A certain amount of overtaking, i.e., P2
entering its critical section scvcral tirncs twroro 1’1, may take place during the transition of PI from
e5toe2. 0

16

.
PROC RAMS W IT11 SEMAPIIOR1~S -- FAIR COMl’UTATlONS

Next we will consider programs with semaphore instructions. For such programs the classes
of just and fair computations do not coincide and W C have to go back to consider the more general
concept o f fa i r computa t ions . Since a lways ?(P) C J (P) , any property that has been proved
correct by method J certainly holds for all fair computations. However, the complctcncss of
method J breaks down in the case of programs with semaphores; we are not always guaranteed
that method J is applicable.

Ilence, we propose a more general method for establishing eventuality properties under fair
computations:

Proof Method F :

For proving eventualities of the form P 1 w, under all fair computations of a
program P, find a state predicate Q, a well-founded structure (W, +), a convergence
function u : S -+ W and a helpfulness function h : S + (1, . . . , m} such that:

Fl. k P 1 (Icl v Q)

F2. F(p - {pk)) f= [Q(s) A h(s) = k] 3 o[‘@ v (gk(S) # d]
f o r k = l , m

F3. I= [Q(s) A s’ e g;(s)] = W(4 v (Q(4 A (44 >- 44))l
fori=l,m

F4. b [Q(s) A s’ E g/+)(S)] 1 [+(s’) v (u(s))- +‘))I

F5. E [Q(s) A s’ E g;(s) A (u(s) = +‘))I 3 [$(a’) V (h (s) = h(s’))]
fori=l,m.

Then we may conclude that

7(P)k p 3 o+*
A stronger conclusion is:

V) I= ‘p = (Q u $1.

The requ i rement imposed by F2 is that under all fair computations of P - {&}, i.e., the
program consisting of all processes excluding J)k, if Q(s) 110 Id s and the helpful process is k t h e n
eventually either 7) will bc realized or gk becomes enabled.

The dilTcrc?ncc botwccn m e t h o d I? and method J i s i n the second rcquiremcnt F2. While
J 2 requires that the helpful process is enabled noul, F2 only assures that it will bc e v e n t u a l l y
enabled. The apparent disadvantage of J’2 in comparison with J2 is that while J2 (and all the
other requirements) are static, requiring only classical reasoning for their cstablishmcnt, P’2 is a
temporal requirement, having the same form as the conclusion W C set out to prove: cp > 0 $. Two
obvious questions arise: how do W C prove P2, and is there a danger of circular reasoning?

The answer to both questions lies in the prclix to the l= sign. Since our goal predicate in If’2 is

$?k(s) # 46 1’ h 1w 1ic cx)rcsscs the fact that r’k is enabled, we may omit from our considerations any

17

action of pk, because such an action may bc taken only when I’k is enabled, i.e., from a goal state.
Thus we can consider fair computations in which all the processes but I’k participate and show
that they eventually get to a state in which pk is enabled. Consequently, we can study a s i m p l e r
program with one process less. The answer to the question of how to verify clause F2 is therefore
recursively by method F, but applied to a.sirnplcr program in which Pk is omitted.

To justify method E‘ consider a fair computation:

pi, RZ
U: so - s1 - 52 . . . ,

such that ‘p(so) is true and $J is never realized. By Fl and F3, Q(s;) must be true for every s; i r1 the
sequence. By F2 the sequence must be infinite, since it implies that either already gk(&) # $ and
the sequence cannot stop there, or that there exists a future state sj for which $ V (gk(sj) # 4).
Consequent ly s; cannot be terminal. B y 173 the sequence of values u(sl), u(s~), . . . satisfies

u(q) L: u(s2) k . . . and by being well-founded it must eveniually stabilize, let us say at s7, i.e.,

44 = u(s,+1) =

From F5 this implies a constant value of the h function as well, i.e.,

h(s,) = h(s,+l) = . . . = k .

Since the u value is constant beyond s,, Pk by F4 could not have been activated. Thus the
suffix sequence

is a fair computation of P - {Pk}. By F2, Pk must be enabled somewhere in i t . By considering
higher suffixes WC can establish that gk is enabled an infinite number of times but never activated.
Thus 0 must be unfair. m

In [1,1’S] it is proved that rncthod F is complete for proving eventuality properties for the class
of all fair computations of a program.

AN INDEXING METITOD FOR FAIR COMPUTATIONS

Similarly to the case of just computations we can present a well-founded indexing variation of
the pri nciplc proposed above.

18

Proof Method IF:
.

For proving eventualities of the form P 3 w, under all fair computations of a

prograrn P, find a well-founded structure (V, >), an indexed family of predicates

RV = R,(s) , v E V, and a decrease function 6 : V + (1, . . . ,m} such that

IFl. t cp > [$ v 3v(v E V).R,]

1172. 7(P - {Pqv)}) I= IL(s) 3 O[$ V (c+)(s) # 411

I F 3 . [R,(S) A s’ E g&)] 3 [$(s’) V 3+ 5 v).R,(s’)] for i= 1,m

IF4. [R , (s) A s’ E g+)(s)] 3 [$+‘) V ~U(U 4 v).&(s’)].

Then we may conclude that

A stronger conclusion is:

?(P) k cp > (3v.R,) U $0

Sirnilarly to the previous case we can establish the equivalence between this method and the
one based on convergence functions. This variation lends itself easily to a diagram representation

in the finite state case.

We will proceed to illustrate the application of method F to proofs of eventuality properties
of programs with sernaphores.

Example D (Program CP - consumer-producer):

b := A, s := 1, cf := 0, ce := N

co : compute y1 mo : request(cf)

e, : request(ce) ml : request(s)

t6 : reZease(cf) m6 : release(ce)

t+ : go to co my : compute using &J

mg : go tom0

-PI : Producer - -P2 : Consumer -

The producer 1’1 cornputcs at to a value into yr without modifying any other shared program
variables. I t then adds 7~1 to the end of the buffer b. The consumer t3 removes the first clement
of the bulTcr into y2 and then uses this value for its own purposes (at rn,) without modifying any
o ther shared program var i ab le The maximal capacity of the buffer b is N > 0.

19

.

In order to ensure the correct synchronization between the processes we U S C three semaphore
variables: The variable s ensures that the accesses to the bufIcr are protected and provides exclusion
between the critical sections [a..~ and rn2..5. The variable ce (“count of empties”) counts the number
of free available slots in the buffer b. It protects b from overflowing. The variable cf (“count of
fulls”) counts how many items the blr*ffer currently holds. It ensures that the consumer does not

attempt to remove an item from an empty buffer.

Here we wish to show that

I= ati!, 3 0 at&.

We start by presenting a top-level diagram proof:

Figure 3.

This diagram proof is certainly trivial. Everywhere, Pr is the helpful process and leads
immediately to the next step. However, we now have to establish clause IF2 in method IF. T h i s
calls for the consideration of fair computations of P - {PI} = 13. WC thus have to conduct two

. su bproofs:

3(P2) k at!1 3 o(ce > 0)

3(f$) I= at& 3 O(s > 0) .

The first statement ensures that if PI is at J!,, 13 will eventually cause ce to become positive which
is the enabling condition for Pr to be activated at Cr. Similarly, in the second statcmcnt 15 will
eventua l ly cause s to become pos i t ive , making PI enabled at 45. I?or bo th s t a tements W C w i l l
present diagram proofs.

Consider first the diagram proof for the at Cl case:

20

v I I) 4 b

8: m+f>O + 7: mg(Cf>O -W 6: mo,cf>O -W X’m, q s>O -
. /

L . , , .

+ 4: m2 IIC 3: m3 lll~ 2: m4 -b 1: rns + 0: rn.6 + Jrke>O
c - _

. ,
l 4 , t

Figure 4.

In the construction of this diagram we use some invariants which are easy to derive. For
example, we used

in order to derive that being at Cr and at ml implies s > 0. In an expression such as the above
we arithmetize propositions by interpreting false as 0 and true as 1. As another invariant we use

cf -k ce + at&..6 + atrq.6 = N

in order to deduce that being at 4!r and at mT,s,u implies that either ce > 0 or cf > 0 .

The diagram proof for 4 is even simpler:

I 4 9 .

3:m2) 2: m3)I Cm,, c 0:m5 . * q: PO
w . \ . .

. Figure 5.

Exampl e E (P r o g r a m UC .- a dislributcd,cornputation of the binornir4 ctocllicicnt):

y1 :=n, y2 :=Q, y3 :=l, y4 : = 1

if y i = (n - k) then go to L,

i!l : request(y4)
.

____--.- - __- --

c5 : Yl := y1--1 ’

43 : go to e,

e, : halt

mo : ifY2 = k then go to m,

ml : Y2 :=y2+ 1

m2 : loop unti l yl + y2 < n

7323 : reques t(y4)

m7 : go to mo

m, : halt

-PJ. - 43 -

This program computes the binomial coeficient (i) for integers n and k such that 0 5 k 5 n.
Based on the formula

n

0

n l (n - 1) l . . . + - k + 1) ’
=

k 1*2+ . . . l k

process PI successively multiplies 39 by n, (n- I), . . . , while F’2 successively divides y3 by 1,2,

Tn order for the division at m4 to come out evenly, W C divide y3 by y2 only when at least y2 factors
have been multiplied into y3 by 1’1. The waiting loop at rn2 ensures this.

Without loss of generality we can relabel the instructions in the program, as follows:

Program BC” - A relabelled version of the Binomial Coeficient Program;

Yl := 71, y2 := 0, y3 := 1, y4 :=1

t7 : if yt = (n - k) then go to Cl mg : ifY2 = k then go to ml

m2 : y2 :=y2+ 1

7139 : loop unti l yl + y2 < n

rng : request(y4)

-

44 : go tot7

e, : hult m,i : 90 to m3

ml.: halt

-42 -

Here we wish to prove:

t [a@7,m3> A (YI,Y~,Y~,Y~) = (0, 4 l)] 1 0 a@uw).

22

W C apply method F wi1,h the following:

Q : [aQ3..5 + atm5..7 + y4 = 11

A run - k) + ate2..6)< Yl I n]

.A [O 2 y2 2 (k - atmz)]

A [at& > (yl = n - k)]

(W, >I: (N x N, hz)
the lexicographically ordered domain of pairs of nonnegative integers

u(&, mj; ~1, ~2) : (YI + k - ~2, i + j) .

h(T, g) : if at!1 then P2 else PI

Obviously the label sequence was designed in such a way that every step that moves to the next
instruction will necessarily decrement u. This is so because the label sequence is always decreasing
except for the instructions which decrement yl and increment 92. Changes in the y’s have been
given the highest, priority in the lcxicpgraphical ordering.

There arc only two situations to be checked. First, when PI is at !I and P2 is at rng we h a v e
to show that the next step indeed decrements u. This is so because in such a situation we arc
a s s u r e d b y Q that both 92 5 k a.nd y1 = n- k hold, leading to y1 + y2 < n, which means that the
next st,ep leads to mu. Another point is to show that being at &j guarantees that cvcntually y4 will
become posit ive, by the :\ctions of P2 alone. This is easily established by the following diagram,
supported by Q.

L 4

2: ml c Km6 t 0:m5 l . q: Y4)O

Figure 6.t.

CONCLUDING ItEMARKS

When c:ornp;tred with the chain reasoning a p p r o a c h , the convcrgcncc function approach ap-
pears to provide a more concise rcprcscntat,ion 01’ a finished prool’ of an eventuality property.
llowcvcr it may at l,irnc?s reveal less intuitive insight into the reasons the prograrn is correct and
certainly offers vory litlle guidance for the design of correct programs. According to whether one
is interested in a post analysis or a proof-guided synthesis of programs, one approach should be
preferred to the other.

The methods described here extend and elaborate the methods for proving convergence sug-
gested in [I,l’S]. 11 is possible to prove cornplctcricss of the methods proposed here by an appropriate
extension of 1,110 cornplctcr~css proof prescntcd in [LL’S].

23

.

Closely r e l a t ed approaches but concentrating on nondc tc rmin i s t i c ra the r than concur ren t
programs are described in [RO] and [GFME].

ACKNOWI,l!XXXMENT

We wish to thank Ed Ashcroft, Rndrci Broder, Chris Goad, Cabi Kupcr, Yoni Malachi, Yoram
M O S C S, Ben Moszkowski, Tmima Olshanski-Koren, ltivi Sherman, Pierre Wolper, and Prank Yellin
for careful and critical reading of the manuscript.

REFERENCES

[AO] Apt, K. R., and E. R. Oldcrog, “Proof rules dealing with fairness,” in Logics of Programs
(I). Kozen, cd.), Lecture Notes in Computer Science 131, Springer Verlag, 1982, pp. 1-8.

[DM] Dcrshowitz, N., and %. Manna, “Proving termination with multisct orderings,” CACM,
Vol. 22, No. 8 (August 1979), pp. 465-476.

[GFMR] G r u m b e r g , O . , N. Francez, J. A. Makowsky, and W. P. deRoevcr, “A proof rule
for fair termination of guarded commands ,” Compute r Science Report, Technion, Haifa,
1981.

[K] Keller, R. M., “Formal verification of parallel programs,” CACM, Vol. 19, No. 7 (July
1976), p p . 371-384.

[ZIPS] I,ehmann, D. , A . Pnue l i , and ,J. S t a v i , “Impartiality, justice and fairness: the ethics
of concurrent termination,” in Automata Languages and Programming, Lecture Notes in
Computer Science 115, Springer Vcrlag, 1981, pp. 264-277.

[M] Manna, Z., Mathematical Theory of Computation, McGraw Hill, 1974.

[MPl] Manna , %. and A. Pnucli, “Verification of concurrent programs: The temporal framc-
work,” in The Correctness Problem in Computer Science (It. S. Doycr and J S. Moore,
eds.), International Lecture Series in Computer Science, Academic Press, London, 1982,
pp. 215-273. Also, Computer Science Report, Stanford University, Stanford, CA (June
1981).

[MP2] M a n n a , Z. a n d A . P n u e l i , “Verification of concurrent programs: Temporal proof
principles,” in Logic of Programs, (D. Kozcn, ed.), Lecture Notes in Cornputcr Science 131,
Springer Verlag, 1982, pp. 200-252. Also, Computer Science Report, Stanford IJnivcrsity,
Stanford, CA (Scptcmbcr 1981).

[MP3] Manna, Z. and A. Pnucli, “Verilication of concurrcn t programs: Prcccdencc proper ties,”
Computer Science Report, Stanford University, Stanford, CA (forthcoming).

[OG] Owicki, S. and D. Grits, “An axiomatic proof technique for parallel programs,” Acta
Informatica, Vol. 6, No. 4 (1976)) pp. 319--340.

[Ol,] Owicki, S. and 1,. Lamport, “Proving liveness properties of concurrent programs,” SRI
lntcrnational, unpublished report (October 1980).

!I 24.

[Pa] Park, D., “On tlle scrnnntics of fail: parallclisrn,” in Abstract Software Specifications (I>.
Bjorner, cd.), Lecture Notes in Computer Science 86, Springer Vcrlag, 1980, pp. 504.--526.

[Pn] Pnueli, A., “The temporal logic of programs,” Proc. 18th Syrnposium on Foundations
of Computer Science, I’rovidencc, RI (November 1977), pp. 46-57.

25

