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ABSTRACT

In this paper, one of a series on verilication  of concurrent programs, we present proof methods
for establishing eventuality and until properties. The m&hods  are based on well-founded ranking
and  a rc  app l i cab le  to  bo th  “ jus t”  and  “ fa i r”  computalions.  Thcsc  rncthods  do  no t  assume a
decrcasc  of the rank at each  cornpulation  step. 11, is sufIicient  lhat there exists one p rocess  which
decreases the rank when activated. Fairness then ensures that the program will eventually  attain
its goal.

In the finite state case the proofs can be represented by diagrams. Several examples are given.
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INTRODUCTION

In a previous report [MPl] we introduced the temporal framework for reasoning about pro-

grams. We described a model of concurrent programs which is based on inleraction  via shared
variables and defined the concept  of fair execution of such programs. WC then demonstrated the
application of temporal logic formalism for ezpressing  properties of concurrent programs. Program
properties can be classified according to the syntactic form of the temporal formula expressing
them;  we studied three classes of properties: invariance properties, eventuali ty properties and

precedence (“until”) properties. Most program properties  that have been previously considered or
studied for sequential and concurrent programs fall into one of these three categories.

In a second report [MP2], we developed proof principles based on temporal logic for establishing
that concurrent programs possess properties of these classes. We presented a proof method for

each class of properties.

l A single invariance principle is adequate for establishing invariance properties.

0 For proving eventuality properties, we recommended a chain reasoning approach, in
which we follow the possible chains of events until the desired goal is realized. Several
proof principles were introduced for establishing the basic steps in the chain. A similar
approach is presented in [OL].

l Simple precedence properties may be proved by a combination of invariance proofs a n d
eventuality proofs. A forthcoming report ([MP3])  will discuss  proof methods for general
precedence properties.

In this paper, we present an alternative method for proving eventuality and “until” properties
based on convergence functions (well-founded rankings).

In our exposition, we assume that the reader is familiar with the basic concepts and definitions
introduced in [MPl]  and [MPB].

THE CONVERGENCE FUNCTION APPROACH

Unlike the chain reasoning approach, which displays a variety of strategies and rules, the
convergence function approach provides a single uniform principle for proving eventualities of the
form:

( i.e., if ‘p ever arises it must be followed by $J), as well  as “until” properties of the form

( i.e., if cp ever arises it must bc followed by an instant at which $ is realized and between the
occurrences of cp and $, x must hold continuously).

. With respect to uniformity, the convcrgcncc function approach resembles the invariance
principle  for proving invariance properties. Another  common feature is that establishing the

premises to the proof rule requires only static (non-temporal) reasoning.
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Convcrgcnce  func t ions  have  been  used successfully  in proofs of termination of scqucntial
prograrns and of rewrit ing systems (e.g. ,  [MI, [DM]). T heir U S C  is  based on a mapping from
the execution states of a program into a well-founded  set ,  such that states which appear later
in a computation correspond to lower values in the set. Conscqucntly, a complete  computation
will correspond tc a descending sequence, and an infinite computation would correspond to an
infinitely descending scqucncc of well-founded  elements, which is impossible. Such a mapping is
called a convergence function or a ranking function.

A well-founded structure (W, >) consists of a set W and a partial order + on W such  tha t
any  decreas ing  sequence  200 > w1 > w2 )- . . . , where w; E W is finite. A typical and frequently
used  well-founded  structure is (N, >), where N is the set of all nonnegative integers, and 5 is
the usual “greater than” ordering. Obviously we cannot have an infinitely decreasing sequence of
nonnegative integers, and therefore (N, >) is indeed a well-founded structure.

A general  method for deriving composite well-founded  structures from simpler ones is the
formation of lexicographical  orderings. Let (WI, )- 1) and (W2,  > 2) be two well-founded structures.
Then the structure given by (WI X W2, >.lez)  where the lexicographic ordering >lez is defined by

(7731,  m2) *fez (nl,  n2) w (ml +I nl) or (ml =nl a n d  m2 >2 4

is also well-founded.

Let us consider the application of the classical
concurrent program:

convergence function approach to the following

Example A (Program DGCD - distributed gcd computation)

(Yl,YZ)  := (21, x2)

e, : while  yl # y2 d o m0 : while  yl # y2 d o

if ~1 > y2 t h e n  yl := y1 - y2 if ~1 < y2 then y2 := y2 - y1
e, : halt ml : halt

- Pl - - P2 -

This program performs the distributed computation of the gcd (greatest  common divisor)
of two positive integers inputs x1, x2. In the execution of this program, we assume each of the
labelled  instructions to be atomic in the sense  that testing and modification of the variables by one
process,  say PI at to, arc completed  before the other process may access them. Note that when
PI is activated  in a state in  which  yl < y2 it dots not  modify  any of  the  var iables  and returns
l o  10, t h u s  replicating  cxaclly lhc o r i g i n a l  state. C o n s c q u c n t l y ,  the lcrmination,  and hcncc the
corrcclncss of this program, depends  very strongly on the basic assumption of fairness that we
assume throughout this work. Only under fairness would each of 1’1 and P2 bc activated as often
as needed until convergence is achieved.

Trying to prove the convcrgcncc of this program by well-founded  ranking immediately runs
into diflicullics  when  WC fail to find a mapping into a well-found4 set that will dccrcatic  at every
slcp of the computa t ion . No such  func t ion  can  exist for the above  p r o g r a m  since, as obscrvcd
e a r l i e r ,  s o m e  steps m a y  preserve  the state a n d  lcavc  the value of a state-dcpcndcnt  convergcncc
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function constant. This points out emphatically  that any well-founded  argument may succeed only
if it takes fairness into ‘account. ’

PROGRAMS AND COMPUTATIONS

For completeness  we repeat some of the dclinitions of [MPL] and introduce some additional

notation required here. Let P be a program consisting of m parallel processes:

Each process P; may be represented as a transition graph with locations (nodes) labclled by clcrrlcnts
Of Li = {Pi, l l . ,1:}. The edges in the graph are labclled by guarded commands of the form
c(g) + [gj : = f(g)]  whose meaning is that if c(g) is true the edge may bc traversed while replacing

I7 bY f(a)*

Let  e,e’, . . . , P E L; bc locations in process Pi:

W e  d e f i n e  E,(y) = cl(S) V . . . V ck(?/)  to be the ex i t  c ond i t i on  at node 45 Locations in the
program can bc classified according to their exit conditions.

l A location is regular if Et = true. This is the case with locations such that the set of
conditions labeling their outgoing transitions is exhaustive in the scnsc that for every
possible value of v at least one transition is enabled. The only irregular locations are
terminal locations and semaphore locations discussed next.

0 A location is t e r m i n a l  if 13~ G fa lse . This is the cast with locations label ing halt
instructions which have no outgoing transitions. In our model W C  usually label these

locations by &.

e Any location ! such that the exit condition Et(g) is nontrivial is called a semaphore  loca-
tion. l3xamples of such locations arc those corresponding to the instruction requeut(y,)
whose transition diagram is:

(Yr > 0 )  -+ [yr := yr - 'I]
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Note t h a t  E&J) = (yr > 0). The r e q u e s t  i n s t r u c t i o n  i s  used in order  to reserve  a
resource, where y7 may be considered as counting the number  of units of this resource
currently available. Its symrnctric counterpart, the reZease(y,) instruction, is used to
release a reserved resource. Its transition diagram is:

tme ---) [yr :=  yr + 1)

The release instruction has as its exit condition El c true. Consequently its location
is a regular location.

A state o f  t h e  p r o g r a m  P i s  a  tup le  of  the  form s = (?;?Tj) w i t h  7 E f 1 X . . . X Lm - a n d

TED”, where D is the domain over which the program variables yl, . . . , yn range. The vector  2
is the scl of current locations which are next to be executed in each of the processes. The vector
7 is lhc set of current  values assumed by the program variables g at state s.

With each process P; we associate a state transition function g; that represents  the possible
outcomes of the activation of the process Pi on the slate s. If we denote by S the set of all possible
p r o g r a m  states, g; is a function g; : S ---+ 2’.

Nolc that this definition allows for the possibility that Pi is nondcterministic,  since it is possible
t h a t  Iy;(s)l >  1 ,  i . e . , there is more t h a n  o n e  s u c c e s s o r  t o  s. Let  s = (Z; $. If !i i s  a  t e r m i n a l
location, or a semaphore location with E,,(q) =f 1a se, then P; cannot bc activated on s. In such
a case g;(s) = 4 and we say that I-‘; is d i sab l ed  o n  s. If !i is a regular location, or a semaphore
location with Et,(q) = true  then g;(s) # 4 and W C  say that Pi is enab l ed  on s.

A state s E S such that all processes are disabled on s is called t e rmina l .  A terminal state
corresponds either to a situation in which all processes have terrninated or to a deadlock in which
all the nonterminated processes wait in a semaphore location with a false exit condition.

l An admissible computation is a labelled  (possibly infinite) sequence:

pi, P;, P-*3
CT: a() - s1 - s2 - a3 . . .

s u c h  t h a t  every si E S  a n d  f o r  e v e r y  j  >_ 0 ,  W C  have  si+l E gdj+l(sj).  T h u s ,  s u c h  a
computation could arise by an execution  of the program starling from the initial state SO.
The computation  will be finite only if it terminates in a terminal state s,. We can think
of such a computation as generated under t,hc guidance of an imaginary scheduler which
at each step selects one of the processes (called the activated or scheduled process) and lets
it execute a single instruction.

l A -initialized computation is an admissible computation in which so = (!A, . . . , CT;“; fo(<)).
I Icrc ai1 is the initial location in process I’; and f0 is the initial assignmcnl  t.0 lhc program
variables.

0 A ‘ j -computation is a r-initialized  computation or a suffix of a -initialized computation.
Allowing suflixes  of initialized computations enables  us to study program behavior which
may become  observable only later  in the computation.

0 A cp-computation  is a ‘j-computation for any input values 3 satisfying a precondition (0.

The next definition  embodies the basic assumption of fairness:
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An admissible computation u is fair if lhcrc  is no ~proccss  Pi such Ihat Pi is enabled an infinite
number  of  times  in B, and Pi is activated only finitely many times. Thus, fairness requires the
imaginary scheduler to monitor the number of times a process becomes enabled, and to ensure that
repeatedly enabled ones are not neglected forever. Any finite computation is necessarily fair.

In the absence of scmaphorc instr’ilctions, each process Pi is initially enabled and can become
disabled only by terminating.  Ilcnce we can define the weaker notion of just computation, w h i c h
replaces the requirement of being enabled an infinite number of times by the rcquircmcnt of being
continuously enabled.

A computation 0 is just if there is no process Pi such that Pi is continuously enabled beyond
a certain state s in CT, and 1’. is activated only finitely many times. Any finite computation is  by
definition just.

We denote the classes of all fair and just computations of a program P with precondition ‘p
by ?((p, P), J(cp, P) respectively, or F(v),  J(P) w h e n tlle p recondition ~3 is implicitly understood.

For an arbitrary program P we have in general

3(p) c J(P),

i.e., every fair computation is also just, but there may exist just computations which are unfair.

To see that the first claim holds, let 0 be a fair computation. Let Pi be any process that is
continuously enabled beyond a certain  state in 0. Thus, Pi is certainly enabled an infinite number
of times, and by fairness must be activated an infinite number of times. Hence Q is just.

To show that the inclusion between the sets 3(P) and J(P) may be strict consider the following
program which is the simplest program modclling mutual exclusion:

.-Y 1.-

e, : request(y) mf-j : Tequest(y)

e, : release(y) ml : release(y)

e2 : go to co m2 : go to mg

-PI - -P2 -

The following computation:

Pl Pl Pl
6: (to, mo; 1) --+ (4, m0; 0) -----+ (12,  mo; 1) -

Pl Pl
(to, mo; 1) - (&, m0; 0) - (C2, mo; 1) - l l l

i s  j u s t .  The p r o c e s s  PI is aclivatcd  i n f i n i t e l y  m a n y  times.  O n  the other h a n d  I’2 i s  n e v e r
continuously enabled since it is disabled in the infinitely recurring state (!I, mo; 0), thercforc  justice
dots not require it to be activated at all. Obviously 0 is unfair since 1’2  is also enabled infinitely
many times on all recurrences  of (to, mo; l), but is never activated.

However  when P contains no semaphore instructions W C  may use the above observation that
a process is continuously enabled if and only if it is enabled  inIinit,cly  many times,  to conclude:

For a program without semaphores: 3 ( P )  =  J ( P ) .
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Thus, in order to study programs without scmaphorcs, W C  need  only consider properties that hold
for the class of all just computations;

PROGRAMS WITIIOUT Sl3MAPIIORES  - JUST COMPUTATIONS

In this section we present a proof principle enabling us to prove eventuality properties that
hold for the class of just computations J ( P ) .

The basic idea of the proof principle  is to assign a convergence function u : S + W mapping
the program states into a well-founded structure 1/V. However, as shown in examples such as the
D G C D  program above, we should not require the function to decrease at every step. 1nstc;)rl we
require  that the function never  increases and that for each slate there is always a process 1’i,  ~~lsllcd
the helpful  process for this state, such that the activation of this process guarantees a decrease
in the value of the function. By justice this helpful process will eventually bc scheduled, so that
any infini le. j ust computation will necessarily generate an infini lcly decreasing subsequence of well-
founded elements -~ a contradiction. In the general case, the idcnlily of the helpful process may
vary from state to state. We therefore introduce a helpfulness function h : S + {I, . . . , m} that
identifies one helpful process Phcs, for each state s E S.

W C suggest the following proof method for proving precedence and eventuality properties of
just computations.

Proof Method J:

For proving eventualities of the form cp 3 0 $, under all just computations of a
p r o g r a m  p, find a state predicate Q = Q(s), a well-founded structure (W, +), a
convergence function u : S + W and a helpfulness function h : S + (1, . . . , m }
such that:

Jl. c ‘p = (+ v 9)

J2. i= Q(s)  1 (a+)(s)  # 4)

J 3 . b [Q(s) A s’ E &)I = Mb’)  v (Qb’)  A (u(s)  t u(s’)))l
fori=l, . . ..m

J4. F [Q(s) A s’ E gq&)]  1 [+(s’) V (u(s)  + +‘))I

J5. b [ Q ( s )  A  s ’  E g&)  A  ( u ( s )  =  u(d))] I [$(s’) V  ( h ( s )  =  h(d))]
for i = 1, . . . ,m.

‘rhen we may conclude that:

IIcrc  E w means that UJ is  true for all  computations of P. The statcmcnt J(IJ) I= fu means  tha t  w
is lruc for all just computations of P.
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In these, Q(. )s is  an invariant which is cxpcctcd  to rcmnin true from the time  cp bccomcs t rue
until $ is realized, Rcquircmcnt Jl. states  that if cp holds for a state then either $4 or Q must hold
in this slate. J2 requires that the process that is helpful for a state s bc enabled on  s. 53 states
that each step in the computation either realizes $J or prcscrvcs Q and produces a value of u that
is not higher than the value before the step.  J4  states that taking a helpful step actually dccrzascs
the value of u. J5 stales that a step which dots not decrease  the value of u mus t  p rese rve  the
identity of lhc helpful  process. The last condition is necessary in order to avoid an infinite sequence
with constant value of u and continuously changing h. Such a sequcncc may be just but yet avoid
realizing $.

Proof:

Let us justify this proof method by showing that if we succeed in finding Q, W, u and h a s
described above then indeed  every just computation must satisfy cp > O$J.

Let us consider a just computation:
P;, pi,

u: so - s1 - 52 - . . . ,

such that (P(BO) is true and + is nowhere realized. By Jl and .J3, Q(si)  must be true for every 5;
in the sequence. 13~  J2 the sequence  must bc infinite since, for every si, Ph(s;~ is  enabled.  Again
by  J 3  the sequence of u values u(sg) k U(RI)  2 . . . must bc a non-increasing sequence. 1.3~ the

well-foundedness of W there must be a k such that

+k) = u(t?k+l)  = . . .

By J5, h also remains constant from Sk on, that is

h(Q)  = h(sk+l)  = . . . .

Let its constant value bc r = h(sk).  In view of J 4 ,  P, w a s  never a c t i v a t e d  beyond  8k b e c a u s e
its activation would have caused u to decrease. In view of 52, Pt- is continuously cnablcd  beyond
Sk since everywhere h(q) = r for i > k. This is obviously a blatant case  of injustice - Pr b e i n g_
continuously enabled and never activated. Thus, just sequences failing to realize + cannot exist,
and any just scqucncc initialized  with (o must eventually rcalizc $. 1

By looking at the proof for evcntualitics  we observe that it guaranlccs the cvcntual realization
of $J and, by Jl and J3, as long as $ is not realized,  Q holds. This is exactly the definition of the
until expression  Q U $. We thercforc have:

Corollary: The proof method J also proves

J(P) I= P 3 (Q U $1.

T h e  lrcatmcnl in [LPS] implies that  this method is also complct,c,  namely -that  if cp > 0 + is
true for all just computations of P then thcrc always exist some Q, W, u, and h satisfying Jt - J5.

Related work dealing with similar methods for establishing fair termination,  which is a special
case of eventuality, is contained in [GF’MI1],  [AO] and [Pa]. Earlier work on the termination of
concurrent  programs is described in [K], [Pn].

We wi l l  now proceed  to illuslratc  the  application of this mclhotl  to proofs of eventuality
propcrlics of programs without semaphores.
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Example A (Program Z>CCn --- distributed gcd computation):

Consider again the DGCD program. Let

‘p: atto A atm3 A (y1,y2) = (wza)  A XI > 0 A x2 > 0

ti: at& A atmo A y1 = y2 = gcd(xl,x2).

We wish to prove

i.e.,

J(p) i= bteo A atmo A (~1, ~2) = (x1,4 A XI > 0 A x2 > 0]
1 O[atb A airno A y1 = y2 = gcd(xl,x2)].

That is ,  being at  the start ing point of the program with (y1,92) = (xl, x2) and positive inputs
x1 > 0, x2 > 0, we are ,qarantced to eventually get back to that point with y1 being the greatest
common divisor of x1, x2.

We choose Q, W, u, and 11 as follows:

Q(s) : atto A atmo A ~1 > 0 A ~2 > 0 A gcd(yl,y2)  = gcd(xl,xz) A y1 # YZ

W : (IV, > )  - t h e nonnegative  integers with the “greater than” relation

~(Yl~  ?j2) : Yl +y2

h(Yl,YfL)  : if y1 > y2 t h e n  PI else F’s

W C have intentionally  displayed h as a function into {PI,  1’2) rather  than {1,2} to stress Lhc  fac t
that it selects processes. It is not dillicult  to verify that rcquircmcnts  Jl to ,/ 5 hold for this choice
of Q, W, u, and h . In  pa r t i cu la r ,  we  no te  tha t  Q impl ies  tha t  when  yl > ~2, P1 is helpful in
d e c r e a s i n g  y1 + y2 whi le  for  y1 < y~2 (by Q : y1 < ~2) 1>2 is helpful. N o t e  t h a t  o n c e  w e  a r c  a t
(C,, mo) with y1 = y2 the program will immediately proceed to the termination state at (Cl,ml).

A N  INDIXINC  MXL’TIOD FOR J U S T  COMPUTATTONS

A variant of the convcr~cncc function approach uses elements of wcl I-founded scls as indices to
predicates. As W C  will show below the two variants arc essentially cquivalcnt,  but certain  problems
may admit, proofs that are easier to present in the indexed  form than in the convergence function
forrn. As before, the method is based on finding a well-founded set ( V ,  >). WC then  cons ider
prcdicatcs  n,(s) with v E V, s E S which are state predicates indexed  by clcmcnts  of V .  S t a t e s
appearing later  in the computation will satisfy IZ, with lower values of v. Convergence is thcrcfore
assurctl by the impossibility of having a sequence  of fC,, with an infinitely  decreasing v;ltlucs  of v;.

IIowcvcr, as before WC cannot,  guarantee  a strict dccrcasc on cvcry step.  We thcrcforc  specify a
decrease function 6 : V -+ (1, . , . , ~1) which, similarly to the hclpfulncss  function t1, idcntilics  the



.
helpful  process  1’6(,,)  Chat corresponds Lo any stale 8 satisfying n,(s). Note that the identity of the
helpful or dccreas;ng  process depends  only on the index  v and not on the state.

With this notation we now formulate the indexing method for just computations.

Proof Method IJ:

For proving eventualities of the form cp 3 0 $, under all just computations of a
program P, find a well-founded structure (V, +), an indexed  family of predicates
R, = I&,( Y), v E V, and a decrease function  6 : V --)  { 1, . . . , m} such that:

IJl. c p 3 [yb v (3v E V.R,)]
.

IJ2- c R(s) 1 (g+)(s)  # 4)

IJ3. t [R,(s) A s’ E gi(s)]  1 [+(s’) v 3+ 5 v).R,(s’)] fori=l, . . ..m

IJ4. @ [R&J)  A s’ E sa(v,(s)]  1 [$(s’)  V 3u(u -( v).k(s’)]

Then we may conclude that

J(P)k  p 3 O$.

A stronger conclusion is:

J(P)  I= p > (3v.R,)  U +.

Requirements IJl-IJ4  resemble very closely Jl-J4 and fulfill similar roles. There is no need
for a counterpart  to J5  since if s satisfies f&,(s), s’ E gi( s) and also &(s’)  then the dec reas ing
process for s, being determined by v alone, is also the decreasing process for s’. The proof method
IJ appcarcd first in a structured form, applied to nondcLcrministic  programs ([CFMR]).

The similarity between  the methods suggest that they are in fact equivalent. Indeed  we make
the following claiti:

Method J is applicable if and only if method IJ is applicable.

Proof:

Assume first that method J is applicable. This means that we have found &, (W, >), ‘1~  and
h satisfying rcquircments  Jl to J5. To show that this implies  the applicability of 7J WC choose as
follows:

The well-founded structure (V,  >.v) is given by V = W X [l, . . l ,m], where

(Wl,i)  *v (w2,j)  H Wl  >w w2 or (Wl = w2 and i > d*

Thus ,  an  c lement  of  V is a pair (w,i)  with w E W and 1 5 i < m, and  the  ordering  >v is the
lexicographic ordering induced by the ordering  on W and on the natural numbers.

R(w,i)(s) is defined by Q(s)  A [u(s) = W] A [h(s)  = i]
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and

6(w, i) = i.

It is an easy matter to verify the fulfilment  of requirements IJl to IJ4. Consider for example
the verification of condition I J 3 .

Let s, s’ be two states such that n(,,,j)(s) hoId s and s’ E gi(s).  By the definition of R we k n o w
that  Q(s)  is  t rue and U(S)  = w, h ( s )  = j .  By J3 either +(s’) is true which immediately satisfies
I J3, or Q(s’) h o l d s  a n d  UI = U(S)  >- u(s’)  =  w ’ .  T h u s ,  b y  the d e f i n i t i o n  o f  R ,  R(Wt,h(,t))(s’)  i s
true. It rernains to show that (w, j) = (w, h(s)) > (w’, h(s’)). If w > w’ then this is certainly- the
case. Consider therefore the possibility that w = w’. But then by J5 also h(s) = h(s’) leading to
(~1, h(s)) = (w’, h(s’)) as required.

To go in the other direction assume that (V,  >), R, and  6 as required for method IJ h a v e
been found. We will show how to select Q, (W, >), u and h that will satisfy the requirements of

method J .

For  simplicity  W C  assume that  the order > is a total (linear) order. We may then take the
w e l l - f o u n d e d  s t r u c t u r e  ( V ,  +) to be (W, +). Q(s)  is defined by 5.&,(s) and U(S)  is  given by
min{vlR,(s)} for an s which satisfies Q and arbitrarily otherwise. If W is a total well-founded
order every non empty subset of W has a minimal element which is smaller than any other element
of the set. The helpful function h(s) is defined as 6(u(s)).

It is an easy matter to verify that Q, u, and h satisfy requirements  Jl to J 5 . a

DIAGRAM REPRESENTATION OF THE INDlXtNG METHOD

. In the case that the indexing set V is finite there is a convenient graph representation of the
indexing method. This is certainly the case when the program I’ has only finitely many possible
states.

In Lhe graph or diagram representation  there is a node n, for each &,v E V. Without loss of
generality we may assume V to be an initial scgrncnt of the natural numbers V = {1,2, . . . , k}.
Thus we have nodes n;, i = 1, . . . , k. A special  node no ,  reprcscnts  $. For every s E &, s’ E &
( i . e .  H;(s)  = Rj(s’)  = tr u e  such  tha t  s’ E Se(s),  we  draw an  edge  e f rom n; to ni. The  edge  e is)
labellcd by Pe, the process effecting the transition. Similarly, for every s E 12i, s’ E $ such that
s’ E ye(s) we draw an edge from n; to no and label it by Pt.

In order  for a diagram to rcprcsent  a valid proof by method I,J the following conditions must
hold:

A. For every edge  connecting n; to nj we must have i > j.

13. For every n;, i > 0, there must exist some I’l (the helpful process)  such that all
edges  l abc l lcd  by  Pe lead from n; to some  nj w i t h  i >  j  a n d  s u c h  t h a t  Pt i s
enabled on all states s E R;.

In the diagram we represent edges  corresponding to the helpful process by double arrows 3.

We illustrate diagram proofs by two additional examples.

11



Example  B (The Peterson-Fischer Algorithm (PJ’)  -- a distributed solution of the mutual exclusion
problem):

y1 := t1:= 92 := t2 := _L

e, : noncritical section 1 h

e, : t1 : =  if y2 = F then F else T

e2 : y1 := t1

4!3 : if y2 # 1. t h e n  tl := y2

t!4  : y1 := t1

e, : loop while  yl = y2

/ criti;;A,;ti”  (lL, I)1

l!, : go to to

mo : noncritical section 2

ml : t2 := if y1 = T then F e lse  T

m2: yz:=t2

mg : ifyl # 1. t h e n  t2 : =  1~1

m4 : y2 := t2

rn5  : loop while  1~2  = y1

critical section 2 I
1(Y2J2) := (I, I) ]
m7 : go to mg

-PI - -43 -

This program provides a distributed  solution for achieving mutual exclusion without sema-
phores; the boxed segments are the critical sections to which we wish to provide exclusive access.
It is assumed that both critical and noncritical sections do not modify the variables y1 and ~2.
Also, it is mandatory that the critical section itself must terminate. The program is distributed i n
the sense  that each process P; has its-own memory y; which is readable by the other but writable
only by itself.

The basic idea of the protection mechanism of this program is that when competing for the
access r ights to their  cri t ical  sections,  PI attempts to make y1 = y2 by the statements Cl to 14
w h i l e  P2 a t t empts  .to m a k e  ‘1~2  = 1~1 in  s ta tements  ml to m4. The synchronization variables y1

and y2 range over the set {I, F, T}, where  I signifies no interest in entering the critical section.
The partial operator 1 is defined by

11 =F, 1F = T, 11. is undefined.

Hence  in  wr i t ing  1~2 = ye we a l s o  i m p l y  t h a t  yl # 1. a n d  y2 # -I-.  Protection  i s  a s s u r e d
essent ia l ly  by  the  exc lus ion  of  the  e n t r y  c o n d i t i o n s  y1 # y2 and 1y2 # y1 wherl both  yl and y2

are different from -L, since ye; # -L when P; is waiting to enter its critical section.

A point unique to this algorithm is that although PI attempts to establish the condition y1 =
y2 in 1, to &, the condition for PI actually entering the crit ical  section is the complementary
c o n d i t i o n  y1 # ~2. Thus, if  both processes actively compete for entry,  PI sets yI equal to y2
a n d  then waits for the other process to set y2 to a value diffcrcnt from 7~1. If P2 is  not currently
interested in gaining access to the critical section,  then y2 = _L which will cause the statements

i n  11 to 4!4 to set  y1 to II’;  t e s t i n g  a t  &, 1’1 w i l l  f i n d  t h a t  i n d e e d  y1 = T # y2 = _L a n d  e n t e r
immediately.

By simple application of the invariance principle it is possible to derive the following invariants:

b (h # 1) = ate2..6

t (yl # 1) = ate3..6

12
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b (Y2 # 1) = utm3..6,

w h e r e  at&.6 stands for at& V at& V . - . V at&, fk.

The eventuality property we wish to show for this program is

In Figure 1 we present a diagram proof for this property. In constructing the diagram we have
freely used the four invariants derived above. Observe in particular node number 6

6 : e5,mo e

in which the helpful process (indicated by a double arrow =+) is PI since we know that ys = 1.
In this diagram we abbreviate at& A at mo to Cs, mu.

To illustrate the application of method IJ to the proof of wtil  properties, consider the following
precedence property:

k [ate5  A - atm4..6]  1 [(- utm6) u (de,)).

It states that if PI arrived at es before P2  arrived at any location in {md,  m5, m(j) then PI wi l l
be admitted first to its critical section. To prove this we only have to consider the subdiagram
consisting of nodes 0 to 7. Certainly,

[at& A - utm4..6]  3 [R, V Rs V l&j V R, V R3].

Therefore this is an admissible diagram in the sense that condition IJl is satisfied. It establishes
that ate6 will eventually be realized and all the intermediate states  are covered by VI=,  Ri which
i m p l i e s  - utm6. a

E x a m p l e  C  ( T h e  Dekker  p r o g r a m  (DK) - a shared variable solution of the mutual exclusion
problem):

t .-.- 1, y1 := y2 := F

e, : noncritical section 1 mo i noncritical section 2

e, : y1 := T ml : y2:=T

e, : ifY2 = F then go to e7 m2 : ifY1 = F then go to m7

e3 : ift = 1 then go to l!, m3 : ift = 2 then go to rn2

e4 : y1 := F

e, : loop until t = 1

e6 : go to e,

m4: y2 := F

rng : loop until t = 2

m6 : go torn1

1:; 1 frT;ction 11

e, : go to e,

-Pi -

critical section 2t 1. -. -

y2 := F

mg : go to mg

-43 -

14
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The variable y1 in process 1’1  (and y~2 in 1’2  rcspcctivcly) is set to T at L’, to signal the intention
of PI to enter  its critical section at e7. Next PI tests at & whether P2 has any interest in entering
its own critical section.  This is tested by checking if y2 = 7’. If y2 = J’; PI proceeds immediately

to its critical section. If y2 = T we have a competition between the two processes on the access

right to their critical sections. This competition is resolved by using tho variable t (turn) that has
the value 1 if in case of conflict PI has the higher priority and the value 2 if P2 has the higher
priority. If PI finds that t = 1 it knows it is its turn to insist and it leaves y1 on and just loops
b e t w e e n  e2 and & waiting for y2 to drop to F.  If it finds that t = 2 it realizes it should yield to

P2 and consequently it turns y1 off and enters  a waiting loop at Cg, waiting for t to change to I.
As soon as I-‘2  exits its critical section it will reset  t to 1 so PI will not be waiting forever.  Once t
has been detected to be 1, PI sets y1 to T and returns to the active competition at e2.

For the DK program we wish to show:

t utel 3 oute7.

In Figure 2 we prcscnt a diagram proof of this property. In constructing the proof we made use of
some invariants that arc easily derivable, namely:

b (Y1 = T) = (ate2..4  v ate,,,)

C (y2 =  T )  E @m2..4  v utm7,8)

t (ate3..6  A t= 2) > utml...7-

For example, we used the last invariant in order to decide that at node 23 the PI successors
to states in which at e4 A (t = 2) may be anywhere but at mo, m8 or mg.

Again W C  may use the extension of the method in order to prove some precedence properties
of this program. First we can show:

t [de2,3  A ( t  =  1 )  A - atmy] ‘3 [(- utm7) U cute,)].

This is established by considering the subdiagram formed out of nodes no to nlo. It ensures that
o n c e  PI is in t2,3 with t = 1, it will precede P2 in getting to the critical section. An almost trivial
observation is that

b utmg > [ ( t  = 1) u (de7)].

In analyzing the amount of overtaking by which /$ can preccdc  1’1  in entering  the critical
section we find the following:

O n c e  Pl is in e, it will eventually get to e2. If currently t = 1, then the next process to enter

its critical section is PI. Otherwise, in the worst case 1’1 proceeds from e2 to es. Z’s cannot enter
i ts  cri t ical  section  more than once without sct,ting  t to 1.  Once t = 1, PI returns to e2 e n s u r i n g
its priority on the entrance rights to the critical section. A certain amount of overtaking, i.e., P2
entering its critical section scvcral  tirncs  twroro  1’1, may take place during the transition of PI from
e5toe2. 0
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PROC RAMS W IT11 SEMAPIIOR1~S  -- FAIR COMl’UTATlONS

Next  we will consider programs with semaphore instructions. For such programs the classes
of just and fair computations do not coincide and W C  have to go back to consider the more general
concept  o f  fa i r  computa t ions .  Since  a lways  ?(P) C J ( P ) , any property that has been proved
correct by method J certainly holds for all  fair computations. However,  the complctcncss of
method J breaks down in the case of programs with semaphores; we are not always guaranteed
that method J is applicable.

Ilence,  we propose a more general method for establishing eventuality properties under fair
computations:

Proof Method F :

For proving eventualities of the form P 1 w, under all fair computations of a
program P, find a state predicate Q, a well-founded structure (W, +), a convergence
function u : S -+ W and a helpfulness function h : S + (1, . . . , m} such that:

Fl. k P 1 (Icl  v Q)

F2. F(p - {pk)) f= [Q(s) A h(s) = k] 3 o[‘@ v (gk(S)  # d]
f o r  k = l ,  .  .  . . m

F3. I= [Q(s) A s’ e g;(s)] = W(4 v (Q(4  A (44 >- 44))l
fori=l, . . ..m

F4. b [Q(s)  A s’ E g/+)(S)]  1 [+(s’) v (u(s) )- +‘))I

F5. E [Q(s)  A s’ E g;(s) A (u(s) = +‘))I 3 [$(a’)  V  ( h ( s )  =  h(s’))]
fori=l, . . ..m.

Then  we may conclude that

7(P)k p 3 o+*
A stronger conclusion is:

V) I= ‘p = (Q u $1.

The  requ i rement  imposed  by  F2 is that under  all  fair  computations of P - {&}, i.e., the
program consisting of all processes excluding J)k, if Q(s) 110 Id s and the helpful process is k t h e n
eventually either 7) will bc realized or gk becomes enabled.

The dilTcrc?ncc  botwccn  m e t h o d  I? and method  J i s  i n  the second rcquiremcnt F2. While
J 2  requires that  the helpful process is enabled  noul,  F2 only assures that it will bc e v e n t u a l l y
enabled.  The apparent disadvantage of J’2 in comparison with J2  is that while  J2 (and all the
other requirements) are static, requiring only classical reasoning for their  cstablishmcnt, P’2 is a
temporal requirement, having the same form as the conclusion W C  set out to prove: cp > 0 $. Two
obvious questions arise: how do W C  prove P2, and is there a danger of circular reasoning?

The answer to both questions lies in the prclix to the l= sign. Since  our goal predicate in If’2 is

$?k(s) # 46 1’ h 1w 1ic cx )rcsscs  the fact that r’k is enabled, we may omit from our considerations any
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action of pk, because such an action may bc taken only when  I’k is enabled, i.e., from a goal state.
Thus we can consider fair computations in which all the processes but I’k participate and show
that they eventually get to a state in which pk is enabled. Consequently,  we can study a s i m p l e r
program with one process less. The answer to the question of how to verify clause F2 is therefore
recursively by method F, but applied  to a.sirnplcr  program in which Pk is omitted.

To justify method E‘ consider a fair computation:

pi, RZ
U: so - s1 - 52 . . . ,

such that ‘p( so) is true and $J is never realized. By Fl and F3, Q( s;) must be true for every s; i r1 the
sequence. By F2 the sequence must be infinite, since it implies that either already gk(&)  # $ and
the sequence cannot stop there, or that there exists a future state sj for which $ V (gk(sj)  # 4).
Consequent ly  s; cannot be terminal. B y  173 the sequence of values u( sl), u(s~), . . . satisfies

u(q) L: u(s2)  k . . . and by being well-founded it must eveniually  stabilize, let us say at s7, i.e.,

44 = u(s,+1)  = . . . .

From F5 this implies a constant value of the h function as well, i.e.,

h(s,) = h(s,+l) =  .  .  .  =  k .

Since the u value is constant beyond s,, Pk by F4 could not have been activated. Thus the
suffix sequence

is a fair computation of P - {Pk}. By F2, Pk must be enabled somewhere in i t .  By considering
higher suffixes  WC can establish that gk is enabled an infinite number of times but never activated.
Thus 0 must be unfair. m

In [1,1’S]  it is proved  that rncthod  F is complete for proving eventuality properties for the class
of all fair computations of a program.

AN INDEXING METITOD  FOR FAIR COMPUTATIONS

Similarly to the case of just computations we can present a well-founded indexing variation of
the pri nciplc proposed above.

18



Proof Method IF:
.

For proving eventualities of the form P 3 w, under all fair computations of a

prograrn P, find a well-founded structure (V, >), an indexed family of predicates

RV = R,(s) ,  v E V, and a decrease  function 6 : V + (1, . . . ,m} such that

IFl. t cp > [$ v 3v(v  E V).R,]

1172. 7(P - {Pqv)})  I= IL(s) 3 O[$ V (c+)(s) # 411

I F 3 .  [R,(S)  A s’ E g&)] 3 [$(s’)  V 3+ 5 v).R,(s’)] for i= 1, . . ..m

IF4. [ R , ( s )  A s’ E g+)(s)]  3 [$+‘) V ~U(U 4 v).&(s’)].

Then we may conclude that

A stronger conclusion is:

?(P)  k cp > (3v.R,)  U $0

Sirnilarly to the previous case we can establish the equivalence between this method and the
one based on convergence functions. This variation lends itself easily to a diagram representation

in the finite state case.

We will proceed to illustrate the application of method F to proofs of eventuality properties
of programs with sernaphores.

Example D (Program CP - consumer-producer):

b := A, s := 1, cf := 0, ce := N

co : compute y1 mo : request(cf)

e, : request(ce) ml : request(s)

t6 : reZease(cf) m6 : release(ce)

t+ : go to co my : compute using &J

mg : go tom0

-PI : Producer  - -P2 : Consumer -

The producer 1’1 cornputcs  at to a value into yr without modifying any other shared program
variables.  I t  then adds 7~1 to the end of the buffer  b. The consumer  t3 removes the first  clement
of the bulTcr into y2 and then uses this value for its own purposes (at rn,) without modifying any
o ther  shared program var i ab le The maximal capacity of the buffer  b is N > 0.
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In order  to ensure the correct synchronization between  the processes we U S C  three semaphore
variables: The variable s ensures  that the accesses to the bufIcr  are protected and provides exclusion
between the critical sections [a..~ and rn2..5. The variable ce (“count of empties”) counts the number
of free available slots in the buffer b. It protects b from overflowing. The variable cf (“count of
fulls”) counts how many items the blr*ffer  currently holds. It ensures  that the consumer does not

attempt to remove an item from an empty buffer.

Here we wish to show that

I= ati!, 3 0 at&.

We start by presenting a top-level diagram proof:

Figure 3.

This diagram proof is certainly trivial.  Everywhere, Pr is the helpful process and leads
immediately to the next step. However, we now have to establish clause IF2 in method IF. T h i s
calls for the consideration of fair computations  of P - {PI}  = 13. WC thus  have to  conduct  two

. su bproofs:

3(P2)  k at!1 3 o(ce > 0 )

3(f$) I= at& 3 O(s > 0 ) .

The first statement ensures that if PI is at J!,, 13 will eventually cause ce to become  positive which
is the enabling condition for Pr to be activated at Cr. Similarly, in the second statcmcnt 15 will
eventua l ly  cause  s to become pos i t ive ,  making  PI enabled at  45. I?or  bo th  s t a tements  W C  w i l l
present diagram proofs.

Consider first the diagram proof for the at Cl case:
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v I I) 4 b

8: m+f>O + 7: mg(Cf>O -W 6: mo,cf>O -W X’m, q s>O -
. /

L . , , .

+ 4: m2 IIC 3: m3 lll~ 2: m4 -b 1: rns + 0: rn.6 + Jrke>O
c - _

. ,
l 4 , t

Figure 4.

In the construction of this diagram we use some invariants which are easy to derive. For
example, we used

in order to derive that being at Cr and at ml implies s > 0. In an expression such as the above
we arithmetize propositions by interpreting false as 0 and true as 1. As another invariant we use

cf -k ce + at&..6  + atrq.6  = N

in order to deduce that being at 4!r and at mT,s,u  implies that either ce > 0 or cf > 0 .

The diagram proof for 4 is even simpler:

I 4 9 .

3:m2 ) 2: m3 )I Cm,, c 0:m5 . * q: PO
w . \ . .

. Figure 5.



Exampl e  E  ( P r o g r a m  UC .- a dislributcd,cornputation  of the binornir4  ctocllicicnt):

y1 :=n, y2 :=Q, y3 :=l, y4 : = 1

if y i = (n - k) then go to L,

i!l : request( y4)
.

____--.-  - __- --

c5 : Yl := y1--1  ’

43 : go to e,

e, : halt

mo : ifY2 = k then go to m,

ml : Y2 :=y2+  1

m2 : loop unti l  yl + y2 < n

7323  : reques  t( y4)

m7 : go to mo

m, : halt

-PJ. - 43 -

This program computes the binomial coeficient  (i) for integers  n and k such that 0 5 k 5 n.
Based on the formula

n

0

n l (n - 1) l . . . + - k + 1) ’
=

k 1*2+  . . . l k

process PI successively  multiplies 39 by n, (n- I), . . . , while F’2 successively divides y3 by 1,2, . . . .

Tn order for the division at m4 to come out evenly, W C  divide y3 by y2 only when at least y2 factors
have been  multiplied into y3 by 1’1. The waiting loop at rn2 ensures this.

Without loss of generality we can relabel the instructions in the program, as follows:

Program BC” - A relabelled version of the Binomial Coeficient  Program;

Yl := 71, y2 := 0, y3 := 1, y4 :=1

t7 : if yt = (n - k) then go to Cl mg : ifY2 = k then go to ml

m2 : y2 :=y2+  1

7139  : loop unti l  yl + y2 < n

rng : request(y4)

-

44 : go tot7

e, : hult m,i : 90 to m3

ml.: halt

-42 -

Here we wish to prove:

t [a@7,m3>  A (YI,Y~,Y~,Y~)  = (0, 4 l)] 1 0 a@uw).
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W C apply method  F wi1,h the following:

Q : [ aQ3..5  + atm5..7  + y4 = 11

A run - k) + ate2..6)<  Yl I n]

.A [O 2 y2 2 (k - atmz)]

A [at& > (yl = n - k)]

(W, >I: (N x N, hz)
the lexicographically ordered domain of pairs of nonnegative integers

u(&, mj; ~1, ~2) : (YI + k - ~2, i + j) .

h(T, g) : if at!1  then P2 else PI

Obviously the label sequence was designed in such a way that every step that moves to the next
instruction will necessarily decrement u. This is so because the label sequence is always decreasing
except for the instructions which decrement yl and increment 92. Changes in the y’s have been
given the highest,  priority in the lcxicpgraphical  ordering.

There arc only two situations to be checked. First, when PI is at !I and P2 is at rng  we h a v e
to show that the next step indeed decrements u. This is so because in such a situation we arc
a s s u r e d  b y  Q that both 92 5 k a.nd y1 = n- k hold, leading to y1 + y2 < n, which means that the
next st,ep leads to mu.  Another point is to show that being at &j guarantees that cvcntually  y4 will
become posit ive,  by the :\ctions of P2  alone. This is easily established by the following diagram,
supported by Q.

L 4

2: ml c Km6 t 0:m5 l . q: Y4)O

Figure 6.t.

CONCLUDING ItEMARKS

When c:ornp;tred  with the chain reasoning  a p p r o a c h , the convcrgcncc  function approach ap-
pears to provide a more concise rcprcscntat,ion  01’ a finished prool’  of an eventuality property.
llowcvcr  it may at l,irnc?s  reveal  less intuitive insight into the reasons the prograrn is  correct  and
certainly offers vory litlle  guidance for the design of correct programs. According to whether one
is interested in a post analysis or a proof-guided synthesis of programs, one approach should be
preferred to the other.

The methods described here  extend and elaborate the methods for proving convergence sug-
gested in [I,l’S].  11 is possible to prove cornplctcricss  of the methods proposed here by an appropriate
extension of 1,110  cornplctcr~css  proof prescntcd  in [LL’S].
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Closely r e l a t ed  approaches  but concentrating  on  nondc tc rmin i s t i c  ra the r  than  concur ren t
programs are described in [RO] and [GFME].
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