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ABSTRACT

In this paper, one of a series on verification of concurrent programs, we present proof methods
for establishing eventuality and until properties. The methods are based on well-founded ranking
and arc applicable to both “just” and “fair” computations. Thcsc methods do not assume a
decrease of the rank at cach compulation step. Il is suflicient that there exists one process which
decreases the rank when activated. Fairness then ensures that the program will eventually attain
its goal.

In the finite state case the proofs can be represented by diagrams. Several examples are given.
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INTRODUCTION

In a previous report [MPl] we introduced the temporal framework for reasoning about pro-
grams. We described a model of concurrent programs which is based on interaction via shared
variables and defined the concept of fair execution of such programs. Wc then demonstrated the
application of temporal logic formalism for ezxpressing properties of concurrent programs. Program
properties can be classified according to the syntactic form of the temporal formula expressing
them; we studied three classes of properties: invariance properties, eventuality properties and
precedence (“until”) properties. Most program properties that have been previously considered or
studied for sequential and concurrent programs fall into one of these three categories.

In a second report [MP2], we developed proof principles based on tempora logic for establishing
that concurrent programs possess properties of these classes. We presented a proof method for
each class of properties.

e« A single invariance principle is adequate for establishing invariance properties.

e For proving eventuality properties, we recommended a chain reasoning approach, in
which we follow the possible chains of events until the desired goal is realized. Several
proof principles were introduced for establishing the basic steps in the chain. A similar
approach is presented in [OL].

e Simple precedence properties may be proved by a combination of invariance proofs and
eventuality proofs. A forthcoming report ([MP3]) will discuss proof methods for general
precedence properties.

In this paper, we present an alternative method for proving eventuality and “until” properties
based on convergence functions (well-founded rankings).

In our exposition, we assume that the reader is familiar with the basic concepts and definitions
introduced in [MP1] and [MP2].

THEE CONVERGENCE FUNCTION APPROACH

Unlike the chain reasoning approach, which displays a variety of strategies and rules, the
convergence function approach provides a single uniform principle for proving eventualities of the
form:

E pD O,
(i.e, if p ever arises it must be followed by ), as well as “until” properties of the form
E 9D (xUd)

(i.e., if ¢ ever arises it must bc followed by an instant at which % is realized and between the
occurrences of ¢ and v, x must hold continuously).

With respect to uniformity, the convcrgcncc function approach resembles the invariance
principle for proving invariance properties. Another common feature is that establishing the
premises to the proof rule requires only static (non-temporal) reasoning.
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Convcrgence functions have been used successfully in proofs of termination of sequential
prograrns and of rewriting systems (e.g., [M],[DM]). Their uscis based on a mapping from
the execution states of a program into a well-founded set, such that states which appear later
in a computation correspond to lower values in the set. Conscqucntly, a complete computation
will correspond tc a descending sequence, and an infinite computation would correspond to an
infinitely descending scqucncc of well-founded elements, which is impossible. Such a mapping is
caled a convergence function or aranking function.

A well-founded structure (W, >) consists of a set W and a partial order > on W such that
any decreasing sequence wg > wy> wg > ..., Where w; &€ W is finite. A typical and frequently
used well-founded structure is (N, >}, where N is the set of all nonnegative integers, and > is
the usual “greater than” ordering. Obviously we cannot have an infinitely decreasing sequence of
nonnegative integers, and therefore (N, >) is indeed a well-founded structure.

A general method for deriving composite well-founded structures from simpler ones is the
formation of lexicographical orderings. Let (Wi, > 1) and (Ws,>2) be two well-founded structures.
Then the structure given by (W3 X Wa, > 1.z) Where the lexicographic ordering > ez is defined by

(my1, m2) ez (R, n2) & (mp>1m1) or (my=mn; andmg>zng)

is also well-founded.

Let us consider the application of the classical convergence function approach to the following
concurrent program:

Example A (Program DGCD — distributed gcd computation)

(yl’y2) = (wl, 932)

bo: whileyy 7% ys do mo: whileyy 7 ya do

f y1>y2 then y1 = y1 — ya f Y1 < y2 then yg 1= y, — y,
£,: halt my: halt
_ P — P —

This program performs the distributed computation of the gcd (greatest common divisor)
of two positive integers inputs z1,z9. In the execution of this program, we assume each of the
labelled instructions to be atomic in the sense that testing and modification of the variables by one
process, say I’y a £y, arc completed before the other process may access them. Note that when
Py is aclivaled in a state in which yy < ye it does not modify any of the variables and rcturns
o £y, thus replicaling exactly the original state. Conscqucently, the termination, and hence the
corrcclncss of this program, depends very strongly on the basic assumption of fairness that we
assume throughout this work. Only under fairness would each of /’; and Py bc activated as often
as needed until convergence is achieved.

Trying to prove the convergence of this program by well-founded ranking immediately runs
into difficullics when we fail to find a mapping into a well-founded set that will decrease at every
step of the computation. No such function can cxist for the above program since, as observed
earlier, some steps may preserve the state and leave the value of a state-dependent convergence
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function constant. This points out emphatically that any well-founded argument may succeed only
if it takes fairness into ‘account. '

PROGRAMS AND COMPUTATIONS

For complcteness we repeat some of the dclinitions of [MP1] and introduce some additional
notation required here. Let P be a program consisting of m parallel processes:

P: g:=fo(@);[Prll.- - ||Pm]-

Each process P; may be represented as a transition graph with locations (nodes) labclled by clements
of L;=1{&, .. .,&.}. The edges in the graph are labclled by guarded commands of the form
c(7) = [7 : = f(7)] whose meaning is that if ¢(g) is true the edge may bc traversed while replacing

7 by f(7).

Let £,£',...,¢k€L; bc locations in process Pj:

ci(7) = [7:= H(7)] @

k(@) = [7 = Ji(7)] @

We define Ey(7) = ¢y () V . .. Vck(y) to be the exit condition at node £. Locations in the
program can bc classified according to their exit conditions.

e A location is regular if Eg= true. This is the case with locations such that the sct of
conditions labeling their outgoing transitions is exhaustive in the sensc that for every
possible value of 7 at least one transition is enabled. The only irregular locations are
terminal locations and semaphore locations discussed next.

e A location is terminal if I?, = false. This is the case with locations labeling halt
instructions which have no outgoing transitions. In our model wc usually label these
locations by £..

e Any location £ such that the exit condition I74(y) is nontrivial is called a semaphore loca-
tion. Examples of such locations arc those corresponding to the instruction request(y,)
whose transition diagram is:

@ (yr>0)—)[yr:=y7_1]—-)@
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Note that E(g) = (y, > 0). The request instruction is used in order to reserve a
resource, where y, may be considered as counting the number of units of this resource
currently available. Its symmetric counterpart, the release(y,) instruction, is used to
release a reserved resource. Its transition diagram is:

(&) frue 2l = yo 4] )

The release instruction has as its exit condition IZ, = true. Consequently its location
is a regular location.

A statc of the program P is a tuple of the form s = (&%) with £€L;X ... X Ly -and
7 € D™, where D is the domain over which the program variables ¥y, ..., y» range. The veetor £
is the set. of current locations which are next to be executed in each of the processes. The vector
7 isthe set of current values assumed by the program variables § at state s.

With each process P; we associate a state transition function g¢; that represents the possible
outcomes of the activation of the process F; on the state s. If we denote by S the set of al possible
program states, g; is a function g; : S — 25.

Nolc that this definition allows for the possibility that P; is nondeterministic, since it is possible
that |g;(s)] > 1, i.e., there is more than one successor to s. Let s = (7). If ¢ is a terminal
location, or a semaphore location with I, (77) =false, then P; cannot bc activated on s. In such
a case g;(s) = ¢ and we say that P; isdisabled on s. If £; is a regular location, or a semaphore
location with Eg,(7) = true then g;(s) 7% ¢ and wc say that P; isenabled on s.

A state s€ S such that all processes are disabled on s is called terminal. A terminal state
corresponds either to a situation in which all processes have terrninated or to a deadlock in which
all the nonterminated processes wait in a semaphore location with a false exit condition.

e An admissible computation is alabelled (possibly infinite) sequence:

P; P; P;
o S - 8y —> 8 - a3

such that everys; € S and for every j > 0, w c have s; 41 € g;,,,(s;). Thus, such a
computation could arise by an exccution of the program starling from the initial state sq.
The computation will be finite only if it terminates in a terminal state s,. We can think
of such a computation as generated under the guidance of an imaginary scheduler which
at each step selects one of the processes (called the activated or scheduled process) and lets
it execute a single instruction.

e A -initialized computation is an admissible computation in which 8g = ([(1), ..., CT"; fo(z:))
IHere £ is the initial location in process /% and fq is the initial assignmentto lhc program
variables.

e A ‘j-computation is a {-initialized computation or a suffix of a -initialized computation.
Allowing suflixes of initialized computations enables us to study program behavior which
may become observable only later in the computation.

o A p-computation is a ‘j-computation for any input values € satisfying a precondition .
The next definilion embodies the basic assumption of fairness:
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An admissible computation o is fatr if there is no process P such Lthat P; is enabled an infinite
number of times in o, and P; is activated only finitely many times. Thus, fairness requires the
imaginary scheduler to monitor the number of times a process becomes enabled, and to ensure that
repeatedly enabled ones are not neglected forever. Any finite computation is necessarily fair.

In the absence of semaphoreinstructions, cach process P; is initially enabled and can become
disabled only by terminating. Ilence we can dcfine the weaker notion of just computation, which
replaces the requirement of being enabled an infinite number of times by the rcquircment of being
continuously enabled.

A computation o is just if there is no process P; such that P; is continuously enabled beyond
a certain state s in o, and F; is activated only finitely many times. Any finite computation is by
definition just.

We denote the classes of all fair and just computations of a program P with precondition ¢
by (e, P), J(p, P) respectively, or ¥(P), J(P) when the precondition ¢ is implicitly understood.

For an arbitrary program P we have in genecral
F(P) C J(P),

i.e., every fair computation is also just, but there may exist just computations which are unfair.

To see that the first claim holds, let o be a fair computation. Let P; be any process that is
continuously enabled beyond a certain state in o. Thus, P; is certainly enabled an infinite number
of times, and by fairness must be activated an infinite number of times. Hence o is just.

To show that the inclusion between the sets 3(P) and J(P) may be strict consider the following
program which is the simplest program modclling mutual exclusion:

y:=1

£y : request(y) mo: request(y)
£y release(y) my . release(y)
£2: gotofy mg . Qo to mp

—-P; — —Py —

The following computation:
P1 P1 1
o: (Lo, mo; 1) — (£1, mo; 0) —> (&g, mo; 1) —

1 Py
(Lo, mo; 1) — (€1, mo; 0) — (€5, mg;1)—> .

is just. The process Py is activated infinitely many times. O n the other hand 2 is never
continuously enabled since it is disabled in the infinitely recurring state (£, mg; 0), thercfore justice
does not require it to be activated at all. Obviously ¢ is unfair since I’; is also enabled infinitely
many times on all recurrences of (Zo,mo;l), but is never activated.

However when P contains no semaphore instructions wc may use the above observation that
a process is continuously enabled if and only if it is enabled infinitely many times, to conclude:

For a program without semaphores: 3(P) = J(P).
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Thus, in order to study programs without scmaphorcs, wc need only consider properties that hold
for the class of all just computations;

PROGRAMS WITIIOUT SEMAPHORLES - JUST COMPUTATIONS

In this section we present a proof principle enabling us to prove eventuality properties that
hold for the class of just computations J(P).

The basic idea of the proof principle is to assign a convergence function u : S =W mapping
the program states into a well-founded structure W. However, as shown in examples such as the
DGCD program above, we should not require the function to decrease at every step. Instead we
require that the function never increases and that for each slate there is always a process £, «illed
the helpful process for this state, such that the activation of this process guarantees a decrease
in the value of the function. By justice this helpful process will eventually bc scheduled, so that
any infinite j ust computation will necessarily generate an infinitely decreasing subsequence of well-
founded elements - a contradiction. In the general case, the idenlily of the helpful process may
vary from state to state. We therefore introduce a helpfulness function h:S—{1,..., m} that
identifies one helpful process Pjs) for each state s € S.

W c suggest the following proof method for proving precedence and eventuality properties of
just computations.

Proof Method J:

For proving eventualities of the form ¢ D 0 4, under all just computations of a
program P, find a state predicate Q = Q(s), a well-founded structure (W, >), a
convergence function u : S — W and a helpfulness function h: S —={1,...,m}
such that:

JI. Epe D@V Q)
J2. E Q(s) 2 (gns)(s) # 9¢)
13. E[Q(s) a & € gis) D [#(s') v (Q(s") A (u(s) > u(s"))]

for:=1,...,m
J1. B [Q(s) A s € grs(s)] D [W(s) Vv (u(s) > u(s))

J5. E[Q(s) A s’ €gis) A (u(s) = ()] 2[(s)) V (h(s) = h(s"))]

for 2 =1,...,m.
Then we may conclude that:

JP)E p D O

HereE w means that w is true for all computations of P.Thestatement J(I’)F w means that w
is true for all just computations of P.



In these, Q(s)is an invariant which is expected to remain true from the time ¢ becomes true
until 9 is realized, Rcquircment J1states that if ¢ holds for a state then either 3 or Q must hold
in this slate. J2 requires that the process that is helpful for a state s bc enabled on s. J3 states
that each step in the computation either realizes % or prcscrves Q and produces a value of u that
is not higher than the value before the step. J4 states that taking a helpful step actually decreases
the value of u. J5 stales that a step which does not decrease the value of w must preserve the
identity of Ihc helpful process. The last condition is necessary in order to avoid an infinite sequence
with constant value of u and continuously changing h. Such a sequence may be just but yet avoid
realizing .

Proof:

Let us justify this proof method by showing that if we succeed in finding Q, W, u and h as
described above then indeed every just computation must satisfy ¢ 2 <.

Let us consider a just computation:
i 12
[/ 8g —> 81 —> 89 —>

such that ¢(sg) is true and 9 is nowhere realized. By Jl and J3,Q(s;) must be true for every s;
in the sequence. By J2 thesequence must be infinite since, for every s;, Ph(s,) is enabled. Again
by J3 the sequence of u values u(sg) > u(s1)> . must bc a non-increasing sequence. By the

well-foundedness of W there must be a k such that
u(sk) = u(8k41) = . . .

By J5, h also remains constant from s on, that is
h(sk) = h(sk41) = . . . .

Let its constant value bc r = h(sk). In view of J4, P, was never activated beyond sx because
its activation would have caused u to decrease. In view of J2,P, is continuously cnabled beyond
sk since everywhere h(s;) = r for 2 > k. This is obviously a blatant case of injustice — P, being
continuously enabled and never activated. Thus, just sequences failing to realize ¥ cannot exist,
and any just sequence initialized with ¢ must eventually realize . 1

By looking at the proof for eventualities we observe that it guaraniccs the eventual realization

of ¥ and, by J1 and J3, as long as % is not realized, Q holds. This is exactly the definition of the
until expression Q Y ¥. We therefore have:

Corollary:  The proof method J also proves

JP)E o2 (QU ).

The treatment in [LPS] implies that this method is also complele, namely that if ¢ 2 09 is
true for all just computations of # then there always exist some Q, W, u, and h satisfying J1— J5.

Related work dealing with similar methods for establishing fair termination, which is a specia
case of eventuality, is contained in [GFMR],[AO] and [Pa]. Earlier work on the termination of
concurrent programs is described in [K], [Pn].

We will now procced to illustrate the application of this mclhotl to proofs of eventuality
propcrlics of programs without semaphores.



Example A (Program DGCD --- distributed gcd computation):

Consider again the DGCD program. Let

p: atly A atmg A (y1,y2) = (z1,22) A 21 > 0 A 22 > 0
and

Y: atly A atmg A Y1 = y2 = ged(zy,Te).
We wish to prove

E o D O,

J(P)F[atfo/\atmg A (yl,yg) - (:L’l,mz) Az >0 A g > 0]
DO[ateo A atmg A Yy = Yo = gcd(:l:l,tvg)l.

That is, being at the starting point of the program with (y,y2) = (z1,z2) and positive inputs
zy >0, g > 0, we are guaraniced to eventually get back to that point with y; being the greatest
common divisor of z,zq.

We choose @, W, u, and h as follows:

Q(s): atly A atmg A y1>0 A y2>0 A ged(yi,y2) = ged(z1,72) A Y17 Y2

W : (N, >) - thenonncgative integers with the “greater than” relation
u(yi, y2): Y1 +y2

h(y1,y2): if y; > ya then Py else P

W c have intentionally displayed h as a function into {P;, P;} rather than {1,2} to stress Lhc fact
that it selects processes. It is not diflicult to verify that requirements J1to J 5 hold for this choice
of @,W, u, and h. In particular, we note that ¢ implies that when y; > yq2, P is helpful in
decreasing yi + y2 while for y;<ys (by Q : y1 < y2) P2 is helpful. Note that once we arc at
(C,, mg) with y1 = yo the program will immediately proceed to the termination state at (£;,my).

AN INDEXING METHOD IFOR JUuST COMPUTATIONS

A variant of theconvergence function approach uses elements of wel I-founded scls as indices to
predicates. As wc will show below the two variants arc essentially equivalent, but certainproblems
may admit, proofs that are easier to present in the indexed form than in the convergence function
forrn. As before, the method is based on finding a well-founded set (V, >). Wc then consider
predicates 2,(s) with v € V, s€S which are state predicates indexed by clements of V. States
appearing later in the computation will satisfy I2, with lower values of v. Convergence is therclore
assured by the impossibility of having a sequence of I2,, with an infinitcly decreasing values of v;.
[lowever, as before we cannot, guarantee a strict decrease on every step. We therefore specify a
decrease function §:V —{1,.,.,m} which, similarly to the helpfulness function k,identifies the
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helplul process I%(,) Chat corresponds Lo any stale s satisfying R,(s). Note that the identity of the
helpful or decreasing process depends only on the index v and not on the state.

With this notation we now formulate the indexing method for just computations.

Proof Method IJ:

For proving eventualities of the form @ 2 0 %, under all just computations of a
program P, find a well-founded structure (V, >), an indexed family of predicates
R, = R,(Y), v EV, and a decrease functiond:V —{1,..., m} such that:

IJ1. E p D[ v (3v € V.R))]

IJ2. B R,(s) D (gsw)(s) # &)

3. E [RG) A & € gls)] () v Fu(u <X v).Ru(s')] fori=1,...m

IJ4. B [Ry(3) A & € gsw)(s)] D [¥(s') V Fu(u < v).Ry(s')]

Then we may conclude that

JP)E ¢ D O

A stronger conclusion is:

JP) E p D (3v.R) U 9.

Requirements IJ1-1J4 resemble very closely JI-J4 and fulfill similar roles. There is no need
for a counterpart to J5 since if s satisfies 2,(s), s €¢:i( s) and also Ry(s’) then the decreasing
process for s, being determined by v alone, is also the decreasing process for s'. The proof method
I appeared first in a structured form, applied to nondeterministic programs ([GFMRY]).

The similarity between the methods suggest that they are in fact equivalent. Indeed we make
the following claim:

Method J is applicable if and only if method IJ is applicable.

Proof:

Assume first that method J is applicable. This means that we have found @, (W, >),u and
h satisfying requirements J1to J5. To show that this implies the applicability of I.J wc choose as
follows:

The well-founded structure (V, >v) is given by V. = W X [, ..., m], where
(wy,i) v (ws,7) & wi >w waor (wy = wzandi> j)

Thus, an clement of V is a pair (w,z) with w €W and 1<7< m, and the ordcring >y is the
lexicographic ordering induced by theordering on W and on the natural numbers.

R(w,,-)(s) is defined by  Q(s) A [us) = w] A [h(s)=1]
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and

8w, i) = 1.

It is an easy matter to verify thefulfilment of requirements IJ1 to 1J4. Consider for example
the verification of condition 1J3.

Let s, s be two states such that R(y,;)(s) holds and s € gi(s). By the definition of R we know
that Q(s) is true and u(s) = w, h(s) = j. By J3 either 9(s') is true which immediately satisfies
1J3, or Q(s') holds and w = u(s) > u(s’) = w’. Thus, by the definition of R, Riw n)(s) is
true. It rernains to show that (w, j) = (w, h(s)) > (W, h(s’)). If w >w’' then this is certainly- the
case. Consider therefore the possibility that w = w’. But then by J5 also h(s) = h(s’) leading to
(w, h(s)) = (W', h(s’)) as required.

To go in the other direction assume that (V, >),R, and § as required for method 1) have
been found. We will show how to select Q, (W, >), u and h that will satisfy the requirements of
method J.

For simplicity wc assume that the order > is a total (linear) order. We may then take the
well-founded structure (V, >) to be (W, >).Q(s) is defined by 3v.R,(s) and u(s) is given by
min{v|R,(s)} for an s which salisfies Q and arbitrarily otherwise. If W is a total well-founded
order every non empty subset of W has a minimal element which is smaller than any other element
of the set. The helpful function h(s) is defined as &(u(s)).

It is an easy matter to verify that Q, u, and h satisfy requirements J to J5. 1
DIAGRAM REPRESENTATION OF THE INDEXING METHOD

In the case that the indexing set V is finite there is a convenient graph representation of the
indexing method. This is certainly the case when the program P has only finitely many possible
states.

In the graph or diagram representation there is a noden, for each IR,,v € V. Without loss of
generality we may assume V to be an initial scgment of the natural numbers V = {1,2, ..., k}.
Thus we have nodes n;,t =1, ...,k A special node no, represents . For every s €R;, s €R;
(i.e. Ri(s) = R;(s') = trug such that s’ € g¢(s), we draw an edgee from n; to n;. The cdge e is
labelled by P, the process effecting the transition. Similarly, for every s € R;, s € such that
S € ges) we draw an edge from n; to ng and label it by Pe.

In order for a diagram to represent a valid proof by method IJ the following conditions must
hold:

A. For every edge connecting n; to n; we must have ¢ > j.

13. Ifor every n;, 1 > 0, there must exist some P, (the helpful process) such that all
edges labcllcd by P, lead from n; to somen; with < > j and such that Py is
enabled on all states s € R;.

In the diagram we represent edges corresponding to the helpful process by double arrows =.

We illustrate diagram proofs by two additional examples.
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Example B (The Peterson-Fischer Algorithm (PF) -- a distributed solution of the mutual exclusion
problem):

V=i =y =ty = 1

£g : noncritical section 1 - mg . noncritical section 2
£ : ty: =1 yo =F then Foelse T my: ty:=ify; = T then Felse T
L yri=1 me: Y2 :i=1lz
£3: if yo7# L then t; := yg m3: ify;F# L then tg := -yy
by = 4y my : yp = tg
g5 loop while yy = yq ms . loop while ~y2 = ¥1
critical section 1 critical section 2 i
(y1,t1) :== (L, 1) ya,t2) = (L, 1) |
f7 : gotofp mq: Qo to mg
—Py — —P; —

This program provides a distributed solution for achieving mutual exclusion without sema-
phores; the boxed segments are the critical sections to which we wish to provide exclusive access.
It is assumed that both critical and noncritical sections do not modify the variables y; and ys.
Also, it is mandatory that the critical section itself must terminate. The program is distributed in
the sensc that each process F; has its-own memory y; which is readable by the other but writable
only by itself.

The basic idea of the protection mechanism of this program is that when competing for the
access rights to their critical sections, P; attempts to make y; = ye by the statements £; to ¢4
while Py attempts to make y3 = -y, in statements m; to m4. The synchronization variables y,
and yg range over the set {I, F, T}, where L signifies no interest in entering the critical section.
The partial operator = is defined by

-1 =F, -F =T, -1 is undefined.

Hence in writing -y2 = y; we also imply that y17# L and ys 5 L. Protection is assured
essentially by the exclusion of the entry conditions y; 5 yg and —y2 7 y1 when both y; and y»
are different from L, since y; % L when P; is waiting to enter its critical section.

A point unique to this algorithm is that although P; attempts to establish the condition y, =
y2 in £y to £4, the condition for P; actually entering the critical section is the complementary
condition yy % y2. Thus, if both processes actively compete for entry, Pjsctsy, equal to ya
and then waits for the other process to set yg to a value different from yy. If Pp is not currently
interested in gaining access to the critical scction,thenye = L which will cause the statements
in € to {4 to set yy to T'; testing at £s, I, will find that indeed y;3 = T 5%y = L and enter
immediately.

By simple application of the invariance principle it is possible to derive the following invariants:

E (tl 7—‘- _L) = atly g

E (y1 ié ..L) = atfgus
12
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Diogrom Proof for PF
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E (t25# L) = atmg g
E (y2 # 1) = atmg_s,
where atfly g Stands for atly V atlz V ...V atlg, etc.
The eventuality property we wish to show for this program is
E atly O Oatlg.
In Figure 1 we present a diagram proof for this property. In constructing the diagram we have
freely used the four invariants derived above. Observe in particular node number 6
6: fs5,mg .

in which the helpful process (indicated by a double arrow =) is Py since we know that yg = L.
In this diagram we abbreviate atfs A at mq to €5, mp.

To illustrate the application of method 1) to the proof of w2:til properties, consider the following
precedence property:

E [at£5 A ~ atm4,_6] o] [(N atmg) u (atls)].

It states that if Py arrived at €5 before Pp arrived at any location in {m4, ms, mg} then Py will
be admitted first to its critical section. To prove this we only have to consider the subdiagram
consisting of nodes 0 to 7. Certainly,

[ates AN~ atm4,_6] D [R7 VRgVRsV R4V R3].

Therefore this is an admissible diagram in the sense that condition IJ1 is satisfied. It establishes
that at£g will eventually be realized and all the intermediate states are covered by VZ=1R.- which
implies ~ atmg. §

Example C (The Dekker program (DK)- a shared variable solution of the mutual exclusion
problem):

t:=1 y1 = y2 = F

£y : noncritical section 1 mg ¢ noncritical section 2

£y = T my . yp:=T

£y: tfys = F then go to £ mg: ifyy = F then go to mq

£3: ift =1 then go to £o mg: ift = 2 then go to mg

by: y1:= F my:ys = F

£5: loop untilt=1 mg . loop until t = 2

Lg: goto &y mg : to m,

£y : critical section 1 mq : [Jritical section 2
t:=2 *1

bg: y:=F mg: Yg:= F

£y : goto g mg: Qo0 to mg

—-P, — —Py —
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Diagram Proof of the Program DK
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The variable y; in process I’y (and yg in I, rcspectively) is set to T at £; to signal the intention
of P, to enter its critical section at £7. Next I; tests at £» whether P; has any interest in entering
its own critical scction. This is tested by checking if y2 = T. If y2 = I'; Py proceeds immediately
to its critical section. If yo = T we have a competition between the two processes on the access
right to their critical sections. This competition is resolved by using tho variable t (turn) that has
the value 1 if in case of conflict Py has the higher priority and the value 2 if P2 has the higher
priority. If I’ finds that ¢ = 1 it knows it is its turn to insist and it leaves y1 on and just loops
between £z and £3 waiting for ¥ to drop to F. If it finds that ¢ = 2 it realizes it should yield to
P; and consequently it turns y; off and cnters a waiting loop at £5, waiting for ¢ to change to 1.
As soon as P, exits its critical section it will resett to 1 so Py will not be waiting forever. Once ¢
has been detected to be 1, P; sets y; to T and returns to the active competition at £g.

For the DK program we wish to show:
E atly D Oatty.

In Figure 2 we present a diagram proof of this property. In constructing the proof we made use of
some invariants that arc easily derivable, namely:

E (y1 = T) = (atfg,A Vv at€7,3)

E (y2= T) = (atmaa V atmqg)

E (atzs‘_s A t= 2) D atmy .. .7.

For example, we used the last invariant in order to decide that at node 23 the P; successors
to states in which at 4 (t = 2) may be anywhere but at mg, mg or mq.

Again wc may use the extension of the method in order to prove some precedence properties
of this program. First we can show:

Elatles A (t =1 ) A~ atmy] D [(~ atmq) U (atly)].

This is established by considering the subdiagram formed out of nodes ng to myg. It ensures that
once Py isin €g,3 with t = 1, it will precede I’ in getting to the critical section. An almost trivial
observation is that

E atmgD [(t = 1)U (atty)).

In analyzing the amount of overtaking by which [’ can precede Py in entering the critical
section we find the following:

Once Py isin £y it will eventually get to £2. If currently t = 1, thenthe next process to enter
its critical section is P;. Otherwise, in the worst case I’y proceeds from {3 to £5. % cannot enter
its critical scction more than once without setting t to 1. Once t = 1, P; returns to £2 ensuring
its priority on the entrance rights to the critical section. A certain amount of overtaking, i.e., Ps

enlering its critical scction scveral Limes before 7, may take place during the transition of £; from
fs to 82. I
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PROG RAMS W ITH SEMAPIIORES -- FAIR COMPUTATIONS

Next we will consider programs with semaphore instructions. For such programs the classes
of just and fair computations do not coincide and wc have to go back to consider the more general
concept of fair computations. Since always F(P)C J(P), any property that has been proved
correct by method J certainly holds for all fair computations. However, the complctcncss of
method J breaks down in the case of programs with semaphores; we are not always guaranteed
that method J is applicable.

Hence, we propose a more general method for establishing eventuality properties under fair
computations:

Proof Method F :

For proving eventualities of the form ¢ D ¢+, under all fair computations of a
program P, find a state predicate Q, a well-founded structure (W, >), a convergence
function u : S — W and a helpfulness function h : S— (1, . . . , m} such that:

Fl1. E o D2 (¥ V Q)

F2. F(P = {P}) £ [Q(s) A h(s) = k]2 Op V (gk(s) 7# ¢)]

for k=I, . . ..m

F3.E [Q6) a8 € g® 2V () a (uls) = uls)))]

fori=1,...,m
F4. kB [Q(s) A 8" € gu(s)]l 2 [#(s) Vv (u(s) > u(s))]

F5. E[Q(s) A s €gi(s) A (u(s) = w(sNI2W(s) v (h(s) =h(s)

forz=1,...m.

Then we may conclude that
FP)E p D O

A stronger conclusion is:

FP)r e 2 (QUY).

The requirement imposed by I'2 is that under all fair computations of P —{Px}, i.e., the
program consisting of all processes excluding Py, if Q(s) Liolds and the helpful process is k then
eventually cither 4 will bc realized or g, becomes cnabled.

The difference between m et h o d I' and method J i's i n the scecond requirement I72. While
J2 requires that the helpful process is enabled now, #'2 only assures that it will bc eventually
enabled. The apparent disadvantage of /2 in comparison with J2 is that while J2 (and all the
other requirements) are static, requiring only classical reasoning for their cstablishment, 172 is a
temporal requirement, having the same form as the conclusion wc set out to prove: ¢ D 01. Two
obvious questions arise: how do wc prove I'2, and is there a danger of circular reasoning?

The answer to both questions lies in the prefix to the E sign. Sinee our goal predicate in I'2 is
gi(s) # dvlic hexpresses the fact that £ is enabled, we may omit from our considerations any

17



action of P, because such an action may bc taken only when Py is enabled, i.e.,, from a goal state.
Thus we can consider fair computations in which all the processes but /% participate and show
that they eventually get to a state in which Py is enabled. Consequently, we can study a simpler
program with one process less. The answer to the question of how to verify clause I'2 is therefore
recursively by method F, but applied to a.sitnpler program in which Py is omitted.

To justify method F' consider a fair computation:
F; P;

g Sg —> 81 —>82 . . .

such that ¢( so) is true and ¥ is never realized. By F'1 and F3, Q( s;) must be true for every s;ia the
sequence. By [F'2 the sequence must be infinite, since it implies that either already gx(s;)% ¢ and
the sequence cannot stop there, or that there exists a future state s; for which ¥V (gk(s;) # ¢).
Consequently s; cannot be terminal. By I'3 the sequence of values u(sq),u(s2), . .. satisfies
u(s1) > u(s2) > . . . and by being well-founded it must eveniually stabilize, let us say at s,, i.e,

u(sy) = u(spq1) = .. ..
From F5 this implies a constant value of the h function as well, i.e,

h(s,) = B(sys1) = . . . = k.

Since the u value is constant beyond s8,, P by F'4 could not have been activated. Thus the
suffix sequence

Sry Sr+1,

is a fair computation of P — {Px}. By F'2, P, must be enabled somewhere in it. By considering
higher suffixes wc can establish that gx is enabled an infinite number of times but ncver activated.
Thus o must be unfair. §

In [LPS] it is proved that method I is complete for proving eventuality properties for the class
of all fair computations of a program.

AN INDEXING METHOD FOR FAIR COMPUTATIONS

Similarly to the casc of just computations we can present a well-founded indexing variation of
the pri nciplc proposed above.
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Proof Method IF:

For proving eventualities of the form @ D <1, under all fair computations of a
prograrn P, find a well-founded structure (V, >), an indexed family of predicates
R, = R,(s), vE€V, and a decrease function 6:V — (1, . . ., m} such that

IF1. e o D [ V (v € V).R,]

IF2. (P — {Ps)}) £ Ru(s) D Ol V (g5)(s) # ¢)]

I F 3. [Ry(s) A ¢ €gis)) D(s') v Fu(u < v).Ry(s") fori=1...,m

IFA. [R,(s) A § € gsw)(8)] 2 [¥(8) v Fu(u < v).Ru(s'))-

Then we may conclude that

7(P)'= p D O,

A stronger conclusion is:

2(P) B » D (Fv.R,) U 9.

Sirnilarly to the previous case we can establish the equivalence between this method and the
one based on convergence functions. This variation lends itself easily to a diagram representation
in the finite state case.

We will proceed to illustrate the application of method F to proofs of eventuality properties
of programs with sernaphores.

Example D (Program CP — consumer-producer):
b= A 8 :=1,¢fi= 0, ce = N
fy : compute y; mg . request(cf)
¢ request(ce) my . request(s)
£y 1 request(s) mg : yg := head(b)
l3: ty:=b-1n mg: ty := tail(b)
£y b:=1t, . my: b:i=1y
l5: release(s) ) ms : release(s)
ls: release(cf) me : release(ce)
¢7: gotoly my . compute using Yg
mg . 00 tomg
—P;: Producer — —Py: Consumer —

The producer F’icompules a £5 a value into y; without modifying any other shared program
variables. It then adds y; to the end of the buflfer b. The consumer P, removes the first clement
of thebuffer into yo and then uses this value for its own purposes (at m7) without modifying any
other shared program variable The maximal capacity of thebuflferbis N > 0.
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In order to ensure the correct synchronization between the processes we usc three semaphore
variables: The variable scnsures that the accesses to the bufler are protected and provides exclusion
between the critical sections £3. 5 and mg_ 5. The variable ce (“count of empties’) counts the number
of free available slots in the buffer b. It protects b from overflowing. The variable ¢f (“count of
fulls”) counts how many items the bufler currently holds. It ensures that the consumer does not
attempt to remove an item from an empty buffer.

Here we wish to show that

E atly O 0 atl3.

We start by presenting a top-level diagram proof:

Figure 3.

This diagram proof is certainly trivial. Everywhere, P; is the helpful process and leads
immediately to the next step. However, we now have to establish clause IF2 in method IF. This
calls for the consideration of fair computations of P — {1} = 5. Wc thus have to conduct two
. Su bproofs:

F(P2) E atly D Oce > 0 )
F(P)Eatle D O(s > 0) .

The first statement ensures that if Py is at €, P, will eventually cause ce to become positive which
is the enabling condition for P; to be activated at Cr. Similarly, in the second statecment Po will
eventually cause s to become positive, making P; enabled at 3. For both statements wc will
present diagram proofs.

Consider first the diagram proof for the at £{ case:
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8. mp,cf>0 [—{7: mg,cf>0 |6 mg,cf>0

L »[5:m,,s>0 -

»4ng—>3:m3——r2:m4-:-—'1:

m5-|-—0.

Figure 4.

me J'—-> y.ce>0

In the construction of this diagram we use some invariants which are easy to derive. For

example, we used

atl3 5 +atmy g+ s =1

in order to derive that being at £; and at m; implies s > 0. In an expression such as the above
we arithmetize propositions by interpreting false as 0 and true as 1. As another invariant we use

cf +ce+atly g+atmy g=N

in order to deduce that being at £; and at my g implies that either ce > 0 or cf > 0.

The diagram proof for £2 is even simpler:

O.mg

Y. s>0

Figure 5.



Example E (Program BC - adistributed computation of the binomial coellicient):

Yy :=mn, y2 =0, y3 =1, y4:=1

&: ifyi=(n— k) then go to &, mg: tfye = k then go to m,
£y : request(y,) ' my: Yy =y2+1
by : t) :=y3 -1y mg: loop until y1+y2<n
ly3: y3z:i=1t m3 . request(y,)
y: release(ys) | ma: t2:=y3/y2
by = yi—1 ms: y3:= i3
g: gotoly mg: release(y,)
£.: halt mq:. g0 to mg
m.: halt
-P, - —P; -

This program computes the binomial coefficient (Z) for integersn and k such that 0 <k < n.
Based on the formula )
n _n.n-=1.....(n-k+1’
ok M d 4k

process P successively multiplies y3 by n, (n- 1), . .., while P, successively divides y3 by 1,2,....
In order for the division at m4 to come out evenly, wc divide y3 by ys only when a least y2 factors
have been multiplied into y3 by ;. The waiting loop a mg ensures this.

Without loss of generality we can relabel the instructions in the program, as follows:

Program BC¥*- A relabelled version of the Binomial Coefficient Program;

Yy1:= n, y2 1= 0, Y3 :=1 y4:=1

f; . ify = (n — k) then go to ¢; mg: fye = k then go to m,
ls: request(ya) mg: yo =Yg +1
l5: ti:=y3 N mg: loop until yy+y2<n
Ly y3 =1 mg: request(ya)
€3 : release(ys) 7 my: tg = yg—/yg
ly: yp:=19y—1 mg: Y3 = g
gy go toflq mg _1»'ﬂ(:lcasc(y4)
£ :  hall my: go to mg
my : halt
—P; — —Py —

Here we wish to prove:

E[at{l;,m3} A (vi,92,3591) = (20,1, 1)] D O at{€;,m}.
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W c apply mecthod F withthe following:
Q:atls.s + atms.y + ya = 1]
Al((n— k) + atls )< y1 < n]
A [0 <y < (k- atmg)]
A [atl;D(y1 = n—k)]

(W? >)' (N X N) >lc:z:)
the lexicographically ordered domain of pairs of nonnegative integers

w(ls, mi;ys,ye): (v + k—y2, 0 4 )
h(7, ) : if atf; then Py else Py

Obviously the label sequence was designed in such a way that every step that moves to the next
instruction will necessarily decrement u. This is so because the label sequence is always decreasing
except for the instructions which decrement y, and increment y2. Changes in the y’s have been
given the highest priority in the lexicographical ordering.

There arc only two situations to be checked. First, when Py is a £, and P; is a mg we have
to show that the next step indeed decrements u. This is so because in such a situation we arc
assured by @ that both yo < k and y; = n— k hold, leading to y1 + yo <n, which means that the
next step leads to mg. Another point is to show that being at £g guarantees that eventually y4 will
become positive, by theactions of /% alone. This is easily established by the following diagram,
supported by Q.

2. m7 . 1:m6 > 0. m5 — \p: Y4>0

Figure 6.

CONCLUDING REMARKS

When compared with the chain reasoning approach, the convergence function approach ap-
pears to provide a more concise representationol a finished prool of an eventuality property.
Iowever it may at Limes reveal less intuitive insight into the reasons the prograrn is correct and
certainly offers vory little guidance for the design of correct programs. According to whether one
is interested in a post analysis or a proof-guided synthesis of programs, one approach should be
preferred to the other.

The methods described here extend and elaborate the methods for proving convergence sug-
gested in [L.I’S]. It is possible to prove completeness of the methods proposed here by an appropriate
extension of the completeness proof presented in [LPS].
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Closcly related approaches but ¢oncentrating on nondctcrministic rather than concurrent
programs are described in [RO] and [GI'MR].

ACKNOWLEDGEMENT

We wish to thank IEd Ashcroft, Andrei Broder, Chris Goad, Gabi Kupcr, Yoni Malachi, Yoram
M oscs, Ben Moszkowski, Tmima Olshanski-Koren, Itivi Sherman, Pierre Wolper, and Frank Yellin
for careful and critical reading of the manuscript.

REFERENCES

[AO] Apt, K. R, and E. R. Oldcrog, “Proof rules dealing with fairness,” in Logics of Programs
(D. Kozen, cd.), Lecture Notes in Computer Science 131, Springer Verlag, 1982, pp. 1-8.

[DM] Decrshowitz, N., and Z. Manna, “Proving termination with multisct orderings,” CACM,
Vol. 22, No. 8 (August 1979), pp. 465-476.

[GIMR] Grumberg, O., N. IFrancez, J. A. Makowsky, and W. P. deRocver, “A proof rule
for fair termination of guarded commands,” Computer Science Report, Technion, Haifa,
1981.

[K] Keller, R. M., “Formal verification of parallel programs,” CACM, Vol. 19, No. 7 (July
1976), pp. 371-384.

[LPS]Lehmann, D., A. Pnueli, and J. Stavi, “Impartiality, justice and fairness: the ethics
of concurrent termination,” in Automata Languages and Programming, Lecture Notes in
Computer Science 115, Springer Vcrlag, 1981, pp. 264-277.

[M] Manna, Z.,, Mathematical Theory of Computation, McGraw Hill, 1974.

[MP1] Manna, Z. and A. Pnucli, “Verification of concurrent programs: The temporal framec-
work,” in The Correctness Problem in Computer Science (R. S. Boyer and J S. Moore,
eds.), International Lecture Series in Computer Science, Academic Press, London, 1982,
pp. 215-273. Also, Computer Science Report, Stanford University, Stanford, CA (June
1981).

[MP2] Manna, Z. and A. Pnueli, “Verification of concurrent programs: Temporal proof
principles,” in Logic of Programs, (D. Kozcn, ed.), Lecture Notes in Cornputcr Science 131,
Springer Verlag, 1982, pp. 200-252. Also, Computer Science Report, Stanford University,
Stanford, CA (Scptember 1981).

anna, Z. and A. Pnucli, “Verification of concurrcn t programs: Precedencee proper ties,
MP3} M Z. and A. Pnucli, “Verilicati f P | ies,”
Computer Science Report, Stanford University, Stanford, CA (forthcoming).

[OG] Owicki, S. and D. Gries, “An axiomatic proof technique for parallel programs,” Acta
Informatica, Vol. 6, No. 4 (1976), pp. 319-340.

[OL} Owicki, S. and 1,. Lamport, “Proving liveness properties of concurrent programs,” SRI
Intcrnational, unpublished report (October 1980).

24



[Pa] Park, D., “On the scrnnntics of fair parallelism,” in Abstract Software Specifications (D.
Bjorner, cd.), Lecture Notes in Computer Science 86, Springer Vcrlag, 1980, pp. 504-526.

[Pn] Pnueli, A., “The temporal logic of programs,” Proc. 18th Syrnposium on Foundations
of Computer Science, I'rovidencc, RI (November 1977), pp. 46-57.

~

25



