
June 1982 Report No. STAN-G-82-922

An Approach tb Verifying Completeness
and Consistency in a Rule-Based Expert System

bY

Motoi Suwa, A. Cwlislc Scott, Edward H. Shortliffe

Dcpartmcnt of Computer Science

Stanford llnivcrsity
Sianford, CA 94305

An Approach to Verifying Completeness and Consistency

in a Rule-Based Expert System

Motoi Suwa*

A. Carlisle Scott

Edward H. Shortliffe

Heuristic Programming Project

Departments of Computer Science and Medicine

Stanford University

Stanford, California 94305

This work was supported in part by the National Library of Medicine (Program
Pro&ject Grant LM-03395 and Research Career Development Award LM-000481, the
National Science Forlndation (Grant MC%7903753), and the Office of Naval
Research (Grant NOOOlQ-81-K-0004). It was carried out on the SUMEX-AIM
computer (NIH grant RR-00785).

*Present address: . Computer Vision Section
Electrotechnical Laboratory
l-l-4 Umezono, Sakura-mura
Niihari-gun, Ibaraki-ken 305
Japan

Abstract

Abstract

AAAI-82

We describe a program for verifying that a set of rules in an expert system

comprehensively spans the knowledge of a specialized domain. The program has

been devised and tested within the context of the ONCOCIN System, a rule-

based consultant for clinical oncology. The stylized format of ONCOCIN's

rules has allowed the automatic detection of a number of common errors as the

knowledge base has been developed. This capability suggests a general

mechanism for correcting many problems with knowledge base completeness and

consistency before they can cause performance errors.

-i-

Table of Contents AAAI-82

Table of Contents-w

Section

1. Introduction . .

2. Knowledge Acquisition . .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

3. Why an Automated Assistant for Knowledge-base Debugging? .

4. Knowledge-Base Debugging

4.1 Earlier Work

4.2 Systematic Checking of a Knowledge Base .

5.

6.

4.3 Debugging a Rule-Based System . . .

Rule-Checking in ONCOCIN

5.1 Description of ONCOCIN

5.2 Overview of the Rule-Checking Program

5.3 An Example

5.4 Effects of the Program

Concluding Remarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Abstract . .

Acknowledgments . .

References

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

l

Page

. i

. iii

.

l

.

.

.

.

.

.

.

.

.

.

.

.

1

1

. 2

3

3

4

5

8

8

10

12

17

18

19

-ii-

Acknowledgments

Acknowledments

AAAI-82

During the development of the program described here, the authors received

encouragement and useful suggestions from other members of the ONCOCIM

research project. We would like to thank all of those who helped to nake the

program possible. We are especially grateful to Craig Tovey, Miriam Bischoff,

and Bruce Buchanan for numerous valuable comments on earlier versions of this

paper.

-iii-

Introduction AAAI-82

1 Introduction

The builders of a knowledge-based expert system must ensure that the

system will give its users accurate advice or correct solutions to their

problems. The process of verifying that a system is accurate and reliable

has two distinct canponents: checking that the knowledge base contains all

necessary information, and verifying that the program can interpret and apply

this information correctly. The first of these ccmponents has been the focus

of the current research; the second corresponds to the familiar problem of

program "debugging IV and will not be discussed in this paper.

.
Knowledge-base debugging, the process of checking that a knowledge

base is correct and complete, is one component of the larger problem of

knowledge acquisition. This process involves testing and refining the

system's knowledge in order to discover and correct a variety of errors that

can arise during the process of transferring expertise from a human expert to

a computer system. In this paper, we discuss some common problems in

knowledge acquisition and debugging, and describe an automated assistant for

checking the completeness and consistency of the knowledge base in the

ONCOCIN system [33.

2 Knowledge Acquisition

Before knowledge can be embodied in a cunputer system, it must

undergo a nunber of transformations. First, a human acquires expertise in

some domain athrough study, research and experience. Next, the expert

-l-

Knowledge Acquisition AAAI-82

attempts to formalize this expertise and to express it in the internal

representation of an expert system, e.g. 9 production rules, frames, or

semantic nets. Finally, the knowledge, in a machine-readable form such as

LISP expressions, is added to the computer system's knowledge base.

Problems can arise at any stage in this process: the expert's

knowledge may be incomplete, inconsistent, or even partly erroneous.

Alternatively, accurate and complete knowledge may not be adequately

transferred to the computer-based representation. The latter problem

typically occurs when an expert who does not understand cmputers works with

a knowledge engineer who in unfamiliar with the problem domain;

misunderstandings that arise are often unrecognized until performance errors

occur. Finally, spelling or syntax mistakes that are made when the

knowledge-base is entered into the canputer are a frequent source of errors.

3 --Why an Automated Assistant for Knowledge-base Debugging?- - - -

The knowledge base of an expert system is generally constructed

through collaboration between experts in the problem domain and knowledge

engineers. The domain experts formulate their knowledge and the knowledge

engineers encode this knowledge for use by the system. This difficult and

time-consuming task can be facilitated by a program which:

(1) checks for inconsistencies and gaps in the knowledge base,

(2) helps the experts and knowledge engineers to communicate with each
l

other, and

-2-

Why an Automated Assistant for Knowledge-base Debugging? AAAI-82

(3) provides a clear and understandable display of the knowledge as the

system will use it.

An automated assistant for the system builders could rapidly identify

problems in the system's knowledge base and possibly allow the experts to

discover gaps in their knowledge or errors in their reasoning.

4 Knowledge-Base Debugging

4.1 Earlier Work

One goal of the TEIRESIAS program [l] was to automate knowledge-base

debugging in the context of the MYCIN infectious disease consultation system

El. TEIRESIAS allowed an expert to judge whether MYCIN's diagnosis was

correct, to track down the errors in the knowledge base that led to incorrect

conclusions, and to alter, delete or add rules in order to fix these errors.

The knowledge transfer occurred in the setting of a problem-solving session;

no formal assessment of rules occurred at the time they were initially

entered into the knowledge base.

In the EMYCIN system for building knowledge-based consultants [43,

the knowledge-acquisition program fixes spelling errors, checks that rules

are semantically and syntactically correct, and points out potential

erroneous interactions among rules. In addition, EMYCIN's knowledge-base

debugging facility includes the following options:

(1) a trace of the system's "reasoning process" during a consultation;

-3-

4.2 Systematic Checking of a Knowledge Basem-

The knowledge-base debugging tools mentioned above allow a system

builder to identify problems with the system's knowledge base by observing

errors in its performance on test cases. While thorough testing is an

essential part of verifying the consistency and canpleteness of a knowledge

base, it is rarely possible to guarantee that a knowledge-base is completely

debug@ 9 even after hundreds of test runs.

It is not always possible to test a growing knowledge base by running

sample cases. TEIRESIAS was developed after the MYCIN system was fully

functional and had an extensive rule set. EMYCIN is specifically designed

for the incremental growth of a knowledge base by allowing the system builder

to run consultations even when only a skeletal knowledge base has been

Knowledge-Base Debugging AAAI-82

(2) an interactive mechanism for reviewing and correcting the system's

conclusions (a generalization of the TEIRESIAS program);

(3) an interface to the system's explanation facility to produce

automatically, at the end of a consultation, explanations of how the

system reached its results;

(4) a verification mechanism which compares the system's results at the

end of a consult with the stored "'correct" results for the case that

were saved from a previous interaction with the TEIRESIAS-like

option. The canparison includes explanations of why the system made

its incorrect conclusions and why it did not make the correct ones.

-4-

Knowledge-Base Debugging AAAI-82

defined. The task of building an EMYCIN system is simply to encode and add

the knowledge. In contrast, building a new expert system typically starts

with the selection of knowledge representation formalisms and the design of a

program to use the knowledge. Only when this had been done it is possible to

encode the knowledge and write the program. The system may not be ready to

run tests, even on simple cases, until the entire knowledge base is encoded.

When an expert system is developed in this manner, it would be convenient if

system builders could run a preliminary check on the knowledge base before

the full reasoning mechanism is functioning and without gathering actual data

for a test run.

Knowledge-base testing tools, therefore, can be augmented by a

program which systematically checks a knowledge base for canpleteness and

consistency. This checking can be done during the system's development, even

without a fully functioning reasoning mechanism.

4.3 Debugging a Rule-Based System-

4.3.1 Logical Checks for Consistency

When knowledge is represented in production rules, inconsistencies in

the knowledge base appear as: 3

CONFLICT: two rules succeed in the same situation but with

conflicting results.

REDUNDANCY: two rules succeed in the same situation and have the same

results.

-5-

Knowledge-Base Debugging AAAI-82

SUBSUMPTION: two rules have the same results, but one contains

additional restrictions on the situations in which it will succeed. Whenever

the more restrictive rule succeeds, the less restrictive rule also succeeds,

resulting in redundancy.

Conflict, redundancy and subsmption are defined above as logical

conditions. These conditions can be detected if syntax allows one to examine

two rules and determine whether situations exist in which both can succeed,

and whether the results of applying the two rules are the same, conflicting,

or unrelated.

4.3.2 Logical Checks for Completeness

Incanpleteness of the knowledge base is the result of:

MISSING RULES: a situation exists in which a particular result is

required, but no rule can succeed in that situation to produce the desired

result.

Missing rules can be detected logically if it is possible to

enumerate all circumstances in which a given decision should be made or a

given action should be taken.

4.3.3 Pragmatic Considerations

It is often pragmatic conditions, not purely logical ones, that

determine whether there are true inconsistencies in a knowledge base. The

semantics of the domain nay modify syntactic analysis. Of the three types of

-6-

Knowledge-Base Debugging AAAI-82

inconsistency described above, only conflict is guaranteed to be a true

error.

In practice, logical redundancy may not cause problans. In a system

where the first successful rule is the only one to succeed, a problem will

arise only if one of two redundant rules is revised or deleted while the

other is left unchanged. On the other hand, in a system using a scoring

mechanism (such as certainty factors in EMYCIN systems), redundant rules

cause the same information to be counted twice, leading to erroneous

increases in the weight of their conclusion.

In a set of rules that accumulate evidence for a particular

hypothesis, one rule which subsumes another may cause an error by counting

the same evidence twice. Alternatively, the expert might have purposely

written the rules so that the more restrictive one adds a little more weight

to the conclusion nade by the less restrictive one.

An exhaustive syntactic approach for identifying missing rules would

assume that there should be a rule which applies in each situation defined by

all possible combinations of a number of domain variables. Some of these

canbinations, however, might not be meaningful. As with consistency,

checking for completeness generally requires some knowledge of the problem

domain.

Because of these pramatic considerations, an automated rule-checker

should display potential errors and allow an expert to indicate which ones

represent real problems. It should prompt the expert for domain-specific

-7-

Knowledge-Base Debugging AAAI-82

information to explain why apparent errors are, in fact, acceptable. This

information should be represented so that it can be used to make future

checking more accurate.

5 Rule-Checking in ONCOCIN

5.1 Description of ONCOCIN

ONCOCIN is a rule-based consultation system to advise physicians at

Stanford's Oncology Day Care Center on the management of patients who are on

experimental treatment protocols. These protocols serve to ensure that data

fran patients on various treatment regimens can be canpared to evaluate the

success of therapy and to assess the relative effectiveness of alternative

regimens. A protocol specifies when the patient should visit the clinic,

what chemotherapy and/or radiation therapy the patient should receive on each

visit, when laboratory tests should be performed, and under what

circumstances and in what ways the recanmended course of therapy should be

modified.

A rule in ONCOCIN is a production with an action part that concludes

a value for some parameter on the basis of values of other parameters in the

rule's condition part. Currently all parameter values can be determined with

certainty; there is no need to use weighted belief measures. When a rule

succeeds, its action parameter becanes known so no other rules with the same

action parameter will be tried.

-8-

Rule-Checking in ONCOCIN AAAI-82

Rules specify the context in which they apply. Examples of ONCOCIN

contexts are drugs, chmotherapies (i.e., drug combinations), and protocols.

A rule which determines the dose of a drug may be specific to the drug alone,

or to both the drug and the chemotherapy. In the latter case, the context of

the rule would be the list of pairs of drug and chemotherapy for which the

rule is valid. At any time during a consultation, the current context

represents the particular drug, chemotherapy, and protocol currently under

consideration.

In order to determine the value of a parameter, the system tries

rules which conclude about that parameter and which apply in the current

context. For example, Rule 75 shown below is invoked to determine the value

of the parameter "current attenuated dose" (point a), and when the current

context is a drug in the chemotherapy MOPP, or a drug in the chemotherapy

PAVe (point b).

RULE 75- -

[Action Parameter] (a> To determine the current attenuated dose
[Context] (b) for all drugs in MOPP, or for all drugs in PAVe:

[Condition] If: 1) This is the start of the first cycle
after a cycle was aborted, and

2) The blood counts do not warrant dose
attenuation

[Action] Then: Conclude that the current attenuated dose
is 75 percent of the previous dose.

Certain rules for determining the value of a parameter serve special

functions. Some give a '1definitional11 value in the specified context. These

are called initial rules and are tried first. Other rules provide a

(possibly context-dependent) lldefaultlt or Qsual" value in the event that no

-9-

Rule-Checking in ONCOCIN AAAI-82

other rule succeeded. These are called default rules and are applied last.

Rules which do not serve either of these special functions are called normal

rules. Concluding a parameter% value, then, consists of trying, in order,

three groups of rules: initial, then normal, then default. A rule's

classification tells which of these three groups it belongs to.

Internally in LISP, the context, condition, action, and

classification are properties of an atom representing the rule. The internal

form of rule 75 is shown below.

RULE075
CONTEXT: ((MOPP DRUG)(PAVE DRUG))
CONDITION: (AND ($IS POST.ARORT 1)

($IS NORMALCOUNTS YES))
ACTION: (CONCLUDEVALUE ATTmosE (PERCENTOF 75 (PREVIOUSDOSE))
CLASSIFICATION: NORMAL

The LISP functions which are used in conditions or actions have

tenplates indicating what role their arguments play. For example, both $IS

and CONCLUDEVALUE take a parameter as their first argunent and a value of

that parameter as their second argument. Each function also has a descriptor

representing its meaning. For example, the descriptor of $IS shows that the

function will succeed when the parameter value of its first argument is equal

to its second argunent.

5.2 Overview of the Rule-Checking Program- -

A rule's context and condition together describe the situations in

which it applies. The templates and descriptors of rule functions make it

-lO-

Rule-Checking in ONCOCIN AAAI-82

possible to determine the canbination of values of condition parameters which

will cause a rule to succeed. The rule's context property shows the

context(s) in which the rule applies. The context and condition of two rules

can therefore be examined to determine if there are situations in which both

can succeed. If so, and the rules conclude different values for the same

parameter, they are in conflict. If they conclude the same value for the

same parameter, they are redundant. If they are the same except that one

contains extra condition clauses, then one subsunes the other.

These definitions of inconsistencies simplify the task of checking

the knowledge base. The rules can be partitioned into disjoint sets, each of

which concludes about the same parameter in the same context. The resulting

rule sets can be checked independently. To check a set of rules, the

program:

(1) finds all parameters used in the conditions of these rules;

(2) makes a table, displaying all possible canbinations of condition

parameter values and the corresponding values which will be

concluded for the action parameter';

(3) checks the tables for conflict, redundancy, subsunption, and missing

rules; then displays the table with a sumnary of any potential

'Because a parameter's value is always known with certainty and the
possible values are mutually exclusive, the different canbinations of
condition parameter values are disjoint. If a rule corresponding to one
canbination succeeds, rules corresponding to other canbinations in the same
table will fail. This would not be true in an EMYCIN consultation system in
which the values of some parameters can be concluded with less than canplete
certainty. In such cases, the canbinations in a given table would not
necessarily be disjoint.

-ll-

Rule-Checking in ONCOCIN AAAI-82

errors that were found. The rule checker assumes that there should

be a rule for each possible combination of values of condition

parameters; 2it hypothesizes missing rules based on this assumption .

ONCOCIN's rule-checker dynamically exmines a rule set to determine

which condition parameters are currently used to conclude a given action

parameter. These parameters determine what columns should appear in the

table for the rule set. The program does not expect that each of the

parameters should be used in every rule in the set (as illustrated in by rule

76 in the exaple below). In contrast, TEIRESIAS examined the "nearly

canpleteU MYCIN knowledge base and built static rule models showing (among

other things) which condition parameters were used (in the existing knowledge

base) to conclude a given action parameter. When a new rule was added to

MYCIN, it was compared with the rule model for its action parameter.

TEIRESIAS proposed missing clauses if some condition parameters in the model

did not appear in the new rule.

5.3 An Example

ONCOCIN’s rule checking program can check the entire rule base, or

can interface with the system’s knowledge acquisition program and check only

those rules affected by recent changes to the knowledge base. This latter

mode is illustrated by the example in Fig. 1; the system builder is trying to

determine whether the recent addition of one rule and deletion of another

have introduced errors.

LWe plan to add a mechanism to acquire information about the meaning
of parameters and the relationships among them, and to use this information
to omit semantically impossible can binations from subsequent tables.

-12-

Rule-Checking in ONCOCIN AAAI-82

The rules checked in the example conclude the current attenuated dose

for the drug cytoxan in the chemotherapy CVP. There are three condition

parameters commonly used in those rules. Of these, NORMALCOUNTS takes "YES'

or "NO" as its value. CYCLE and SIGXRT take integer values. The only value

of CYCLE or SIGXRT which was mentioned explicitly in any rule is V1 ;

therefore, the table has rows for values Ollt and "OTHER" (i.e., other than

1).

The table shows that rule 80 concludes that "attenuated dose" should

have the value "250 milligrams per square meter" when the blood counts do not

warrant dose attenuation (NORMALCOUNTS = YES), the chemotherapy -cycle nunber

is 1 (CYCLE = 11, and this is the first cycle after significant radiation

(SIGXRT = 1). This canbination of values of the condition parameters is

labeled Cl.

Rule 76 can succeed in the same situation (Cl) as rule 80, but it

concludes a different dose. These rules do not conflict, however, because

rule 76 is a "'default" rule which will be invoked only if all lfnormal" rules

(including rule 80) fail. Note that NORMALCOUNTS is the only condition

parameter which appears explicitly in rule 76, as indicated by the

parentheses around values of the other two parameters. Rule 76 will succeed

in all combination which include NORMALCOUNTS = YES (namely Cl, C3, C5, and

c7).

Rules 667 and 67 are redundant because both use canbination c2 to

conclude the value labled V2 (250 mg/m' attenuated by the minimum count

attenuation).

-139

Rule-Checking in ONCOCIN AAAI-82

Rule 600 is in conflict with rule 69 because both use canbination ~6,

but they conclude different values (and both are categorized as %ormaP

rules).

No rules exist for combinations C4 and ~8, so the program

hypothesizes that rules are missing.

-14-

Rule-Checking In ONCOCIN AAAI-82

Rule set: 667 600 82 80 69 67 76

Context: the drug CYTOXAN in the chemotherapy CVP

Action Parameter: the current attenuated dose

Condition Parameters:
NORMALCOUNTS - the blood counts do not warrant dose attenuation
CYCLE - the current chemotherapy cycle number
SIGXRT - the nunber of cycles since significant radiation

Values too long to appear in the Value column:
Vl - the previous dose advanced by 50 mg/m2
v2 - 250 mg/m2 attenuated by the minimum count attenuation
v3 - the minimum of 250 mg/m2 and the previous dose
v4 - the minimum of 250 mg/m2 and the previous dose attenuated

by the minimum count attenuation

Evaluation Rule Value NORMALCOUNTS CYCLE SIGXRT Cmbination

80 250mg/m2
76 (D) vi

R 667 v2
R 67 v2

76 (D) v1
M

8; v3
76 (D) v1

C 600 v3
r._ 69 v4

76 (D) v1
M .

YES
YES
NO
NO
YES
NO
YES
YES
NO
NO
YES
NO

1
(1)

1

(:,

OTHER
(OTHER)
OTHER
OTHER
(OTHER)
OTHER

1 Cl
(1) Cl

1 c2

(~T:ER)
c2
c3

OTHER c4

(:,
c5
c5

1 c6

(~T;ER)
c6
c7

OTHER c8

SUMMARY OF COMPARISON
Conflict exists in canbination(s): c6 (RULE600 RULE069)

Redundancy exists in canbination(s):
Missing rules are in canbination(s):

"cz (;;LE667 RULE067)
9

NOTES

Evaluation: *
M - Missing; C - Conflict; R - Redundant.

Rules:
Default rule are indicated by (D).

Values of Condition Parameters:
A value in parentheses indicates that the parameter is not explicitly

used in the rule, but the rule will succeed when parameter has this value.

Figure 1. An Example of the Rule-Checking Program

-15-

Rule-Checking in ONCOCIN AAAI-82

The system builder can enter ONCOCIN's knowledge acquisition program

to correct any of the errors found by the rule-checker. A missing rule can

be displayed in either LISP or English (Fig. 2), and added to the system's

knowledge base after the expert has provided a value for its action

parameter.

Missing rule corresponding to combination C4:

To determine the current attenuated dose for Cytoxan in CVP:
If: 1) The blood counts do warrant dose attenuation,

2) The current chemotherapy cycle nunber is 1, and
3) This is not the start of the first cycle after

significant radiation
Then : Conclude that the current attenuated dose is

Figure 2. Proposed Missing Rule (English Translation)-

Note that no value is given for the action parameter; this could
be filled in by the systm builder if the rule looked appropriate for
addition to the knowledge base.

If a summary table is too big to display, it is divided into a nunber

of subtables by assigning constant values to some of the condition

parameters. If the conditions involve ranges of numeric values, the table

will displays these ranges graphically as illustrated in Fig. 3.

-16-

Rule-Checking in ONCOCIN AAAI-82

Rule set: 33 24

Context: the drug DTIC in the chemotherapy ABVD

Action Parameter: the dose attenuation due to low WBC

Default value: 100

Evaluation Rule Value WBC (in thousands) Canbination- -
(percentage)

0 1.5 2 3 5
33 25 ****() Cl
24 50 .* ***o.. . c2

SLMMARY OF COMPARISON
No p&lens were found.

NOTES
*'s appear beneath values included by the rule
O's appear beneath upper or lower bounds that

are not included.
E.g. 9 Rule 33 applies when 1.5 <= WBC < 2.0

3.Figure A Table of Rules with Ranges of Nunerical Values

5.4 Effects of the Program- -

The rule checking program described in this paper was developed at

the same time that ONCOCIN's knowledge base was being built. During this

time, periodic runs of the rule checker suggested missing rules that had been

overlooked by the oncology expert. It also detected conflicting and

redundant rules; these generally arose because a rule had the incorrect

context and therefore appeared in the wrong table.

A nunber of inconsistencies in the use of domain concepts were

-17-

Rule-Checking in ONCOCIN AAAI-82

revealed by the rule checker. For example, on one occasion the program

proposed a missing rule for a meaningless combination of condition parameter

values. In discussing the domain knowledge that expressed the

interrelationship among the values, it became clear that a nunber of

individual yes/ no valued parameters really could be represented more

logically as different values for the same parameter.

The knowledge engineers and oncology experts alike have found the

rule checker's tabular display of rule sets much easier to interpret than a

rule-by-rule display. Having tabular sunmaries of related rules has

facilitated the task of modifying the knowledge base.

6 Concluding Remarks

The program we have described assists a knowledge engineer in

ensuring the consistency and canpleteness of the rule set in the ONCOCIN

rule-based consultation system. The program has already proved useful in

development of that system. The program's design is general so that it could

be adapted to other rule-based systems.

-18-

References

References

AAAI-82

1. Davis, R. Applications of Meta-level Knowledge to the

Construction, Maintenance, and Use of Large Knowledge Bases. Doctoral- - -

dissertation, Computer Science Department, Stanford University, June

19%.

2. Shortliffe, E.H. Cunputer-Based Medical Consultations:

MYCIN. Elsevier/North Holland Publishing Canpany, New York, 1976.

3. Shortliffe, E.H., Scott, A.C., Bischoff, M.B., Campbell, A.B., van

Melle, W., and Jacobs, C.D. ONCOCIN: An expert system for oncology

protocol management. Proceedings of 7th IJCAI, pp. 876-

881, Vancouver, B.C., August 1981.

4. van Melle, W. A Domain-Independent System that Aids in

Constructing Knowledge-Based Consultation Programs. Doctoral

dissertation, Computer Science Department, Stanford University, June

1980.

-1g-

