
Scptcmbcr 1982 J&port No. S’J’AN-CS-112-927

Corn bining State Machines
and Regular Expressions for Automatic

Synthesis of VLSI Circuits

Jcffrcy I). Ullm;in

Department of Computer Science

Stanford University
Stanford, CA 94305

COMBINING STATE MACIIINIG3 AND REGULAR EXI’Rl3SSIONS

FOR AUTOMATIC SYNTIIESIS OF VLSI CIRCUITSt

JefI’rey D. Ullman

Stanford Univ.

ABSTRACT

We discuss a system for translating regular expressions into logic equations or PLA’s, with particular

attention to how we can obtain both the benefits of regular expressions and state machines m input

languages. An extended example of the method is given, and the results of our approach is compared

with hand design; in this cxamplc we use less than twice the area of a hand-desigucd, machine

o p t i m i z e d P L A .

I. The Regular Expression Compiler

A collection of routines have been written by II. Trickey and J. Ullman to translate regular expressions into

circuits. At present, we first compile regular expressions into a language that describes nondeterministic

finite automata (NFA’s). These NFA’s arc then compiled into either PLA’s or S. C. Johnson’s Igen logic

language.

A description of the regular expression language appears in [TU]. The language is quite standard, with

perhaps the following exceptions.

1. Input symbols are not “disjoint,” in the sense that at any time only one can be seen on the input.

Rather, input symbols are defined in terms of some set of wires being on or off. Since not all wires must

be specified for each symbol, there is the possibility that two or more symbols are on at a time. This

has the consequence that apparently deterministic processes can in fact have nondcterrninism in them.

2. Output signals are represented by ordinary-looking symbols in regular expressions. When the input is

such that an output symbol is reached in the expression, we emit that signal, and proceed to recognize

any continuation of the expression that the input allows us to recognize.

Example 1: In Fig. 1 we see an input to the regular expression compiler tliat forms a ruuriirig example

for this report. Without dealing now with the issue of what this program does, let us observe a few salient

features. The first line says that there are seven input wires, ~[l], . . . , 2[7]. Nest come the definitions of the

input symbols. For example, we see signal i710 on the input whcncver the first wire is on and the second off.

Note, for cxamplc, that WC could see symbol i7~0 and also acka, if the lirst three wires were 1, 0, and 1.

by DhltPA corrlract MDA 90% 80-C-0107.

1

.

.

.
Following this come the declaration of output signals, and then three subcxpressions, Yornein, which is

recognized when either in0 or in1 is seen, waitin which is recognized when neither input is seen, or both

wires ~[l] and 2[2] are on simultaneously (which represents a “bad input,” the symbol badin), and aZZbut01,

which stands for the union of all signals but in0 and inl. After the declaration portion is a semicolon and

the expression itself. .

As an example of how the expression is to be interpreted, consider the seventh line of the expression,

beginning atateiae . . . It says that if we get a signal telling us WC are in state a, and then receive any number

of symbol noacka (noacku* means “any number of noacka’s”), we emit the signal OUTA. We regard 2[3]

as a wire that “acknowledges” the fact that signal OUTA was received, so symbol nom/-a, defined by 2[3]

being ‘off, is seen until the acka symbol, s[3] = 1, is seen. In effect, we emit the output signal OUTA until *

it is acknowledged.

When OUTA is acknowledged by acka appearing on the input, the process of recognizing the expression

proceeds to waitin*, which is recognized for as long as the first two wires remain at 0, or both become 1

simultaneously (a bad input). Then, when in0 or in1 is seen, a signal to change to state 6 or c is made. If

any of the symbols represented by allbut is received after the acka, an error is declared. 0

Ii. Coxnbining States and Expressions

The motivation for using regular expressions as a source language is twofold. First, they are a succinct and

nonprocedural description of a large class of sequential processes. Thus they can provide some simplification

in the design process for the right problem. Second, being structured descriptions of patterns, they are

appropriate for proofs of correctness, and even if a formal proof’ is not attempted, they provide’ useful

intuition that helps the reader convince himself of the correctness of the expression. In comparison, transition

functions for automata are analogous to programs with goto’s; they are inherently hard to understand and

verify, either formally or intuitively.

Qn the other side of the coin, there are distinct advantages to process descriptions involving states.

Often, it is natural to view a process as being in one of several states; for example, counting is especially

easy when you have states available and very hard to do with regular expressions. It is lhe purpose of lhis

report to descibc a simple modification to the regular expression cornpilcr that allows us, in eff’cct, to declare

states and then dcfinc transitions among states in regular expression terms. As a result, WC get the best

of both worlds; states are available when they are more succinct than regular expressions or when they

help us organize our design, and regular expressions are available when patterns of symbols are useful as a

dcscriptiorl of events.

2

line 471
symbol inO(x[l] -x12]) ’

inl(x[2] -x(1])
badin(x[l] x(2])
acka(x[3])

acWx[4)
ackc(x[5])
stateia(x[6] x(7])
‘statcib(x[6] -x[7])’
stateic(-x[6] x(7])
start(-x16] -x(7])
no+-x(1] -x(2])
noacka(-x[3])
noackb(-x[4])
noackc(-x(5])

output OUTA
OUTB
OUTC
stateoa
stateob
stateoc
E R R O R ’

su bexp somein=inO + in1 + badin
subcxp waitin=noin + badin
subexp allbutOl=acka + ackb + ackc + badin
;
start waitin* (

allbut ERROR +
in0 stateoa +
in 1 stateob

+
stateia noacka* OUTA (

(ackb+ackc+somein) ERROR +
acka waitin* (

allbut ERROR +
in0 stateob +
in1 stateoc

+
stateib noackb* OUTB (

(acka+ackc+somcin) ERROR +
ackb waitin* (

allbut ERROR +
in0 stateoc +
in 1 stateoa

+
stateic noackc* OUTC (

(acka+ackb+ somcin) ERROR +
ackc waitin* (

allbut. ERROR +
in0 stateoa +
in1 statcob

Fig. 1. Input to regular cxprcssion compiler.

3

.
To introduce states into the regular expression language, we make the following modifications.

1. The names statei/X for any X are input symbols that represent the fact that WC have just cntcred state

X. Symbol start serves as the initial state. To indicate that these states are disjoint, i.e., we can be

in only one of them at a time, we can use imaginary wires, such as s[G] and s[7] in Fig. 1, to make it

appear to the compiler that at most one of these input symbols can be present on the input at any time.

Of course, if the states were not disjoint in this sense, we could express the legal subsets by another

combination of dummy wires.

2. Output symbols stateoX for any X are used as goto’s. If we emit the symbol dateoX, we shall in effect

turn on the input symbol stateiX and enter state X.

The complete regular expression consists of the sum of expressions that begin start and stateiX for the

various X’s. The portion of the regular expression associated with each state is recognized, if possible, each

time WC enter that state, and we make whatever outputs the regular expression tells us to make in response

to what inputs we see.

After the regular expression compiler converts the expression into a nondeterministic finite automaton,

an edit script is used to identify the input symbol stateiX with the output symbol stateoX and make certain

other changes so t,hings work properly.

I Example 2: A case in point is the problem to which the regular expression program of Fig. 1 is a solution, .

This program implements the transmitter from [AUY] that sends bits reliably over a channel that has a high .

probability of losing bits, but does not change O’s into l’s or vice-versa. This view of a channel is plausible if

we assume that any noise or other error causes the system to fail to detect a bit. This strategy, of assuming

no signal whenever something goes wrong, is modeled after the Datakit protocol [F].

The general idea is that when the transmitter is given a bit to send, it sends one of three signals

OUTA, OUTB, or OUTC, chosen by a method to be described. It keeps sending the signal until it receives

an acknowledgement of the signal sent. Then, it stops sending the signal until the next input, 0 or 1, is

received, whereupon it sends the next signal (in the scnsc that c follows 6, which follows a, which follows c)

if 0 is input, and it sends the previous signal in this cyclic order if 1 is input.

‘I‘hc purpose of this arrangcrncnt is so that whcncvcr the transmitter sends a new input, it changes the

signal sent; that change serves to acknowledge the acknowlcdgcmcnt. If WC did not always make a signal

change, the receiver could not tell, say upon rccciving two O’s, whcthcr these were two different inputs, or

the acknowlcdgemcnt of the first had been lost, and the second 0 was a retransmission of the first.

Another way to look at the signal selection algorithm, is that WC count one for an input 0 and two for

an input 1, and transmit OUTA, OUl’i!I, or OU7’C dcpcnding on wl!ethcr the WIII~ of inputs rcccivcd so

4

far is congruent to 1, 2, or 0, modulo 3. Counting, cvcn counting modulo 3, is very dificult to express in

the regular expression language. Thus it is natural to introduce three states, a, b, and c, that are entered

whenever we receive an input that makes this running modular sum 1, 2, or 0, respectively.

We already discussed briefly in Example 1 what happens in one of these states, say a. After receiving the

state&z signal to say we have entered state a, we emit OU.TA for as long as the input matches noacka*, that

is, the acka acknowledgement is not received. A sequence of noacka’s can be followed by either of two events

that cause special outputs. First, the acka signal can be received, and then, after any scqucnce of w&tin’s,

i.e., no input, an in0 or inl triggers a signal that causes a jump to another state, b or c, respectively. After

receiving acka, any input but in0 or in1 causes an error signal. Note that allbut01 and waitin can be seen

at the same time, so we can continue waiting for a good input even while signaling when errors occur. *

.Now let us return to the point in the cxprcssion where we are recognizing noacka* and waiting for acka.

At the same time we are waiting for acka, if we receive ackb, ackc, or sornein, we have an error condition;

in the first two cases, the wrong acknowledgcmcnt was received, in the last, we received either a bad input,

or a good input before we are ready to transmit it. In this case, we emit the output signal ERROR. Note

that all of these error conditions are seen on the input at the same time noacka is seen, so emitting ERROR

does not prevent us from continuing to see noacka* and eventually to see acka and another input. However,
.

inputs received erroneously do not cause a change of state, because we cannot reach a term like in0 stateob

in the regular expression until after the acka has been received.

The portions of the expression following stateib and stateic are analogous to what we have described.

The portion following start differs only in that we are not .waiting for an acknowledgement, and if any is

received it is an error.

The result of comjpiling Fig. 1 is shown in Fig. 2. This figure illustrates the NFA language used. Each

type of statement begins with a unique letter. For example, D is a declaration of an input symbol, much

like in the regular expression compiler. However, note that the input symbol atnteilX and the output symbol

stateoX have both become atateX, and this input symbol is dcclarcd (in lines 6-8, e.g.) to be prcscnt when

the wire of the same name is on; that wire is the corresponding output signal.

The lcttcr N indicates the name of the NPA, and 17 indicates tire n;tnrc of tllc Tinal signal, if any (there

is none in Fig. 2), and the states that cause the Iinal signal to bc ernittcd. Letter I introduces the name of

the initial signal, init in this case, and a list of the initial states, st2, yt3, and so on.

A state is dcclarcd by the letter S, followed by the state name, and the input symbol that it recognizes.

The NFA langaugc is restricted in that each state recognizes only one input symbol. IIowevcr, this restriction

is not bothcrsornc for NITA’s th:lt arc output by the regular cxprcssion compiler, and in gcncral, wc can create

5

D in0 (in0 -inl)
D in1 (-inO inl)
D badin (in0 inl)
D acka (acka)
D ackb (ackb)
D ackc (ackc)
D statca (statca)
D stateb (stateb)
D statec (statec) .
D noin (-inO -inl)
D noacka (-acka)
D noackb (-ackb) .
D noackc (-ackc)
N nfal
F;
I init; st2 st3 st4 st5 st6 st9 St11
S st2 noin
T st2 st3 st4 st5 st6 st9 stll
S st3 badin

T st2 st3 st4 stS.st6 st8 st9 stll -
S st4 acka .
T st8
S st5 ackb
T st8
S st6 ackc
T st8
S st7 0 stateb
S st8 0 error
S st9 in0
T stl0
S stl0 0 state8
S stll in1
T st7
S st12 0 statec
S st13 statca X
T st5 st6 stl4 St15 st17 st18 St19 qt22
S st14 noacka .
T st5 st6 stl4 stl5 st17 st18 St.19 st22
S St15 0 outa ’
S st16 badin
T stA st5 st6 st8 st9 stll st16 st29
S st17 badin -
T st8
S st18 in0
T st8
S stl9 in1
T st8
S st20 badin
T st4 st5 st6 st17 st20 st27 st31 st33
S st21 statec X
T ~1.4 st5 stl7 sL18 st19 st25 st26 st37
S sL22 acka
1‘ ~14 ~1.5 slG st17 sL23 st24 sL30 st32
S st23 noin
T st4 st5 SLG st17 st23 st24 sL30 st32
S st24 badin
T sL4 St5 st6 sLl7 st23 st24 St30 st32

Fig. 2(a). Beginning of NFA description.

S st25 ackc
T cd.4 st5 st6 st9 stll st16 st29
S st26 noackc
T st4 st5 st17 St18 St19 st25 st26 it37
S st27 noin
T st4 st5 st6 st17 ~~20 st27 st31 st33
S st28 ackb
T st4 st5 st6 st17 st20 st27 st31 st33
S st29 noin .
T st4 st5 st6 st9 stll st16 st29
S st30 in0
T st7
S st31 in0
T st12
S st32 in1
T st12
S st33 in1
T St10
S st34 stateb X
T st4 st6 st17 st18 ‘St19 st28 st35 st36
S st35 noackb
T st4 st6 st17 st18 St19 st28 st35 st36
S st36 0 outb
s st37 0 outc
C st2; st3 st4 st5 st6 st8 st9 stall *
C st3; St.4 st5 st6 st8 st9 stll
C st4; st5 st6 st8 st9 stll st16 st17 st18 St19 st20 st23 st24 st25 st26 st27 st28 st29 st30 st31 st32 st33

st35 st36 st37
C st5; st6 st8 st9 stll st14 st15 St16 sti7 st18 St19 st20 st22 st23 st24 st25 st26 st27 st29’st30 St31

st32 st33 st37
C st6; st8 st9 stll St14 st15 st16 st17 st18 St19 st20 st22 st23 st24 st27 st28 st29 st30 st31 st32 st33 st35 st36
C st7; st8
C st8; st9 St10 stll st12 St14 st15 st16 st17 st18 St19 st20 st22 st23 st24 st25 st26 st27 st28 st29 -

st30 st31 st32 st33 st35 st36 st37
C st9; stll st16 st29
C stll; st16 st29
c st13; st21 st34
C stl4; st15 st17 st18 St19 st22
C st15; st17 st18 st19 st22 .

C st16; st29
C ~17; s,18 St19 st20 st22 st23 st24 st25 st26 st27 st28 St30 st31 St32 st33 st35 at36 st37
C st18; St19 st.22 sL25 ~126 st28 st35 at36 st37
C st19; st22 st25 st26 st28 st35 st36 st37
c st20; st27 st31 st33 .
c st21; st34
c st23; st24 st30 st32
c st24; st30 st32
C st25; st26 st37
C st26; st37
c st27; st31 st33
C st28; st35 st36
c sL30; st32
c sL31; st33

C st35; st36
E

Fig. 2 (b) . End of NFA description.

I .

several states with the same predecessors to simulate one state with transitions on several inputs.t

An 0 preceding the symbol associated with a state means that the symbol is an output symbol, rather

than an input symbol. The letter X following the symbol, as in att3, means that the state is external; it is

always on and waiting to see its input symbo1.S It is exactly the states of the NFA that represent the states

used in the regular expression specification that become external states of the NFA.

All states are followed by the letter T and a list of their transitions, that is, their successors. Finally

there are conflict statements introduced by the letter C. The state following the C is declared to conflict with

all the states after the semicolon. Conflicting states are those that can be on at the same time, a result not

only of the nondctcrminism but of the fact that several input symbols may be recognizable at once. Conflicts

among states are taken into account when we find a coding of the NFA’s states for an implementation. 0 ’

III. Logic Generation

The NFA is convcrtcd to the logic language lgen by an algorithm described in [U]. Briefly, the nondeter-

ministic states must’rcceive representations that will enable us to identify that each state is on, regardless of

what other states are also on at the same%ime. Here is where knowing the state conflicts may help, because

when state i is on, that fact can only be obscured by states that conflict with i also being on. For example,

if the NFA were really deterministic, there would be no conflicts, and we could use a binary coding of the

states.

One way to code states is to give each a private signal. Then we can tell the state is on independent of

any other states. The actual approach taken by the logic generator used is slightly more sophisticated. It

attempts to identify groups, which are sets of mutually nonconflicting states.tt Within a group, binary codes

are selected so that any conflicting states ‘from other groups will receive the same code. To do so, a minimal

number of states that would make this coding impossible are expelled from groups and given private signals.

Groups of a single state are similarly given private signals.

The result is that in addition to private signals, there are code bits and group bits. A state without a

private signal is recognized by the bit of its group being on, and the code bits being on or off as appropriate

t [‘l’] describes a more general NPA language that allows, multiple transitions, c-transitions, and a variety of options not
available in the NFA language described here.
$ Thcrc is another kind of slate like external states, that does not appear in Fig. 2. These states, called advance states and
dcsignalcd by A, arc like cxtcrnal states, but when they see their input, they enable their successors Lo recognize their own
inputs at the same time unit. Advance states are needed Lo implement correctly trttworks of NFA’s that together recognize
one large regular expression. Large expressions need to be broken into pieces implcmcntcd by separate NVA’s for two re,asons.
First, processing large expressions is Loo time consuming, especially minimizing the states of the NINA and computing conflicts.
Second, the circuits inlplcmcnting the NFA’s such as PLh’s or Wcinbergcr arrays, will be Loo large and badly shaped if the
NFA has Loo many states.
tt Ilowcvcr, before looking at conflicts, stales that have exactly the same predecessors (and therefore arc really just different
transitions from the %amc” state) arc combined into one.

8

ost2 = yin1 * yin0 * est2
ost3 = in1 * in0 * est.2
ost4 = acka * est4
ost5 = ackb * est5
ost6 = ackc * est6
ost9 = Tin1 * in0 * est9
o&l 1 = in1 * -inO * est9
ost13 = statea
ost14 = Tacka + ccl * --rce2 * -rce3
ost17 = in1 * in0 * est17
ostl8 = yin1 * i n 0 * estl8
ostl9 = in1 * -inO * estl8
ost22 = acka + ccl * xe2 * xe3
ost16 = in1 * in0 * -ml * ce2 * Tce3
ost29 = Tin1 t Tin0 * we1 * ce2 * xe3
ost20 = in1 * in0 * ccl * ce2 * Tce3
ost27 = Tin1 * yin0 * cet * ce2 * xe3
ost31 = Tin1 * in0 * ccl * ce2 * lce3
ost33 = in1 * Tin0 * ccl * ce2 * xe3
ost21 = statec
ost25 = ackc * lcel * Tce2 * c e3
ost26 = Tackc * ycel * xe2 4. c e 3
ost23 = yin1 * -inO * ccl * yce2 * ce3
OS124 = in1 * in0 * ccl * vze2 * c e3
osL30 = yin1 * in0 * ccl * -uze2 * ce3
osL32 = in1 * Tin0 * ccl * lce2 * c e 3 -
ost28 = ackb + xel * ce2 * cc3
osL34 = stateb
ost35 = Tackb + lcel * ce2 * ce3
est2 = LAST fst2 CLEAR globalinit + init
rst2 = osL2 + ost3
cst4 = LAST fst4 CLEAR globalinit + init
fst4 = ost2 + ost3 + osL22 + ost16 + ‘ost29 + ost20 + ost27 + ost21 + ost25 + ost26 + ost23 + ost24 +

ost28 + ost34 + ost35
est5 = LAST fst5 CLEAR globalinit + init
rst5 = ost2 + ost3 + ost13 + ostlp + ost22 + ostl6 + ost29 + ost20 + ost27 + ost21 + ost25 + ost26 +

ost23 + ost24 + ost28
est6 = LAST fst6 CLEAR globalinit + init
fst6 = ost2 + ost3 + ost13 + ost14 + ost22 + ostl6 + ost29 + ost20 + ost27 + ost25 + ost23 + ost24 +

ost28 + ost34 + ost35
est9 = LAST fst9 CLEAR globalinit + init
rst9 = ost2 + ost3 + odl6 + ost29 + ost25
est17 = LAST Ml7 CLEAR globalinit
rst17 = ost13 + ostl4 + ost22 + ost20 + ost27 + ost21 + ost26 + ost23 + ost24 + ost28 + ost34 + ost35
estl8 = LAST ht18 CLEAR globalinit
fst18 = ost13 + ostl4 + ost21 -F ost26 + out34 + ost35
error = ost3 + ost4 + ost5 + ost6 + ost17 + ostl8 + ostl9 + o&l6
stateb = ostll + ost30
statea = ost9 + ost33
stalcc = ost31 + ost32
011ta = ost13 + ostl4
outc = OS121 + ost26
ouLb = osL34 + o s t 3 5
ccl = LAST cfl CLNAIl globalinit
cfl = o&l3 + ostl4 + ost22 + ost20 + ost27 + ost23 + ost24 + ost28
ce2 = LAST cf2 CI,lMR globalinit
cf-2 = ostl6 + osL29 + ost20 + ost27 + ost25 -I- ost28 + ost34 + ost35
cc3 = LAST cl3 CLEAR globalinit
cl’3 = 0~1.22 + ost21 + ost26 + ost23 + ost24 + ost34 + ost35

Fig. 3. Logic iwplcrncnting corlrrrrunication protocol.

9

to its code.

Example 3: In Fig. 3 we see the output of the NFA-to-logic compiler, with certain header information,

indicating clocking and the borders on which signals appear, omitted. Because it turns out that there is only

one nontrivial group, and that group does not have exactly a power of two states, we were able to eliminate

the group bit, and, by not using the all-zeros code for any state in the group, detect the presence of a state

in the group by one or more of the code bits being on.

The overall organization of the logic in Fig. 3 is not unlike that of a PLA. The variables are in three

groups, designated by the letters e, f, and o. The Iirst group, e, corresponds to columns in the and-plane of

a PLA and represents the fact that a certain state is “enabled”; if its input symbol is now seen it can enable

its successors for the next input cycle. Some states have private enablers, like est2 for state 2. Other states

are coded, and in Fig. 3 there are three coded enabler variables ccl, ce2, and ce3, combinations of which

represent the enablers for various states. Note that not every state has an enabler, either private or coded.

States without enablers have the same entering transitions as some other state that does have an enabler,

and the same enabler serves for both. :

The f group of variables are “feedback”; they correspond to columns in the or-plane. State fX at one

time unit becomes eX at the next time unit by means of Zgen statements such as

est2 = LAST f st2 CLEAR glob&nit + init

.
which says that state 2 is enabled either by the initial signal init, or by fst2 being on at the previous time

unit. The output signals, such as statea or OUTA, also correspond to columns of the or-plane.

The o group of variables correspond to the terms of the PLA. For each state there is an o variable that

is turned on when the state is enabled, and the proper input is seen. For example, line 1 of Fig. 3 says oat2

is on whenever state 2 is enabled (e&2 is on) and noin is seen on the input (detected by both wires in0

and in1 being err>. Line 9 says that ostl4 is turned on when input noacka is seen and state 14 is enabled

(represented by the coded enabler bits being 100).

The only difference between a PLA structure and the organization of the variables in Fig. 3 is that the

statea, stateb and statec variables do not fit into the scheme. Rather, we can view them as fed back from the

or-plane, where they arc generated, to the and-plane, where they arc used, with no delay due to clocking.

Thus, Fig. 3 can be used almost directly as input to a PLA generator that permits unclocked signals as an

option. a.

10

Iv. Evaluation of Results

It is difIicult to compare the logic of Fig. 3 with the “best possible” logical description of an equivalent

circuit. It appears that, when the ability of the lgen compiler to eliminate common subexpressions and

perform other optimizations is taken into account, the resulting logic will be very close to that found in the

hand designed PLA described below. Thus, we are optim’istic that our automatic synthesis method behaves

.

very well when amount of logic generated is the criterion used.

We can obtain a more concrete estimate of the quality of the circuit designed if we view it as a PLA

specification and compare it with a PLA designed carefully by hand. In our hand design, we used three

feedback wires. Two were used to binary code the “state,” i.e., whcthcr we were in the start condition, or
.

in w*hat we have called states a, b, and c. The third feedback wire indicated whether we were waiting for an

acknowlcgcment or had received the acknowledgement and were waiting for the next input. Terms based on

this encoding were written down and optimized using the gry PLA optimizer [II). The resulting PLA had:

1. 32 terms.

2. 17 columns in the and-plane, representing an initializing signal, the three feedback wires, and the five

input wires (inO, inl, acka, ackb, and uckc), each of which except the initializer requires inversion.

3. 7 columns in the or-plane, representing the three feedback wires and four outputs (ERROR, OUTA,

OUTB, and OUTC).

The resulting area is 32 * (17 + 7) = 768.

In comparison, the PLA constructed directly from Fig. 3 requires the following:

1. 30 terms (the o variables plus one term to carry the initial signal to the or-plane).i

2. 27 columns in the and-plane, consisting of

a) 10 columns for the inputs and their complements.

b) 7 columns for the private state enablers; these do not have to bc inverted.

c) 3 columns for statea, stuteb, and statec; these also do not require inversion.

d) 6 columns for the three coded enablers, which do require inversion.

4 1 column for the initial signal.

3. 17 columns in the or-plane, consisting of four output signals and 13 feedback wires.

The resulting size is 30 * (27 + 17) = 1320. This figure is 72% greater than the hand-designed one. The

overhead of the I’LA borders will tend to reduce this figure somewhat, as will the fact that clocking is not

nccdcd on six of the colur~~~~s of the machine-gcneralcd I’LA. But the fact that sp;~c is required for 13

t It is not unusual for PLA’s gc,ncralcd from regular expressions to have fewer terms than hand-drsigncd ones, bccausc the
former PI,h’s tend to USC one-hot codes (private cnablcrs) for states, and that sort of code costs columns, but may save terms.

11

line
symbol

output

x151
inO(x[l] -x[2])
inl(x[2] -x[lJ)
badin(x[l] x(2])
acW31)
statcia(x(41 x[S])
stateib(x[4] -x[5])
stateic(-x[4] x[5])
start(-x[4] -x[5])
noin(-x[l] -x[2])
noack(-‘x[S])
OUTA
OUTB
OUTC

su bcxp
subcxp
su bexp

stateoa
stateob
stateoc
ERROR
somein=inO + in1 + badin
waitin=noin + badin
allbutOl=ack + badin

.
i
start waitin* (

allbut ERROR +
in0 stateoa +
in1 stateob -

+
stateia noack* OUTA (

somcin ERROR + .
ack waitin* (

allbut. ERROR +
in0 stateob +
in 1 stateoc

+
stateib noack* OUTB (

somcin ERROR +
ack waitin* (

allbut ERrlOR +
in0 statcoc +
in 1 state08

+
stateic noack* OUTC (

somein ERROR +
ack waitin* (

allbut ERROR +
in0 statcoa +
in 1 statcob

Fig. 4. Revised input to regular cxprcssion compiler.

12

feedback wires for the machine-gcncratcd PLA will serve to increase the ratio.

V. Correction of Errors

One important advantage of the regular expression approach to design, as with high-level descriptions in

general, is that modifications arc easier to make, and make reliably, than with ad-hoc designs.

Example 4: It turns out that our design.of Fig. 1 is not the simplest that meets the specifications of [AUY].

Rather, since the channel is assumed never to make a mutation error, only to lose signals, there is no need

to distinguish between the three acknowledgements; whenever we receive an acknowledgement, WC know it

was actually sent by the receiver, and we know that if the receiver is not broken, then it was sent in response

to the receipt of the correct signal.

Thus, we should modify Fig. 1 in the following two ways.

1. acka, uckb, and uckc should be identified as the signal ack; similarly, their complements, noacka, etc.,

are identified as noack.

2. While waiting for an acknowledgement, there are no “wrong acknowledgements” to receive, so terms

like

(ackb + ackc + somein) ERROR

should be replaced by

somein ERROR

The resulting revision is shown in Fig. 4. .

VI. Conclusions

Regular expressions, in conjunction with conventional state machine dcfmitions of processes, is a promis-

ing way to design circuits at a very high level. The use of optimizing logic compilers to do the actual

implementation may be superior to PLA implementation of regular expressions, but the evidence of the case

described in this paper, and other cases we have analyzed by hand, is that cvcn PLA implementation of

regular expressions comes within a factor of two of the arca used by baud-dcsigncd 1’1,h’s. E’urthcr, the

problem of coding nondeterministic states is not yet fully resolved, and there is hope that better I’LA and/or

logic implementations of regular expressions will be developed in the future.

i

References

JYI Aho, A. V., J. D. Ullman, and M. Yannakakis, “Modcling communications protocols by automata,”_

13

Proc. Twentieth Annual Ii!%!3 Sympkium on Foundations of Computer Science, pp. 267-273, 1979.

Fraser, A. G., “Datakit-a modular network for synchronous and asynchronous traffic,” Proc. IEEE

Intl. Conf. on Communications, 1979.

Hemachandra, L. A., “GRY, a PLA minimizer,“, unpublished memorandum, Dept. of C. S., Stanford

Univ., 1982.

Trickey, H., “Regular expressions and NFAs,” unpublished memorandum, Dept. of C. S., Stanford

Univ., 1982.

Trickey, H. and J. D. Ullman-, “A regular expression compiler,” Proc. IEEE COMPCON, 1982. .

Ullman, J. D., “Description of NFA-to-logic compiler,” unpublished memorandum, Dept. of C. S.,

Stanford Univ., 1982.

14

