September 1982 Report No. STAN-CS-82-927

Corn bining State Machines
and Regular Expressions for Automatic
Synthesis of VLSI Circuits

by

Jeffrey D. Ullman

Department of Computer Science

Stanford University
Stanford, CA 94305

COMBINING STATE MACHINES AND REGULAR EXPRESSIONS
FOR AUTOMATIC SYNTHESISOI' vLSI CIRCUITS¢
Jeffrey D. Ullman

Stanford Univ.

ABSTRACT

We discuss a system for translating regular expressions into logic equations or PLA’s, with particular
attention to how we can obtain both the benefits of regular expressions and state machines as input
languages. An extended example of the method is given, and the results of our approach is compared
with hand design; in this cxamplc we use less than twice the area of a hand-designed, machine

optimized PLA.

I. The Regular Expression Compiler

A collection of routines have been written by Il. Trickey and J. Ullman to translate regular expressions into
circuits. At present, we first compile regular expressions into a language that describes nondeterministic
finite automata (NTFA’s). These NFA’'s arc then compiled into either PLA’s or S. C. Johnson’s Igen logic
language.

A description of the regular expression language appears in [TU]. The language is quite standard, with
perhaps the following exceptions.

1. Input symbols are not “disjoint,” in the sense that at any time only one can be seen on the input.
Rather, input symbols are defined in terms of some set of wires being on or off. Since not all wires must
be specified for each symbol, there is the possibility that two or more symbols are on at a time. This
has the consequence that apparently deterministic processes can in fact have nondcterminism in them.

2. Output signals are represented by ordinary-looking symbols in regular expressions. When the input is
such that an output symbol is reached in the expression, we emit that signal, and proceed to recognize

any continuation of the expression that the input allows us to recognize.

Example 1: In Fig. 1 we sece an input to the regular expression compiler that forms a running example
for this report. Without dealing now with the issue of what this program docs, let us observe a few salient
features. The first line says that there are seven input wires, z[1], ..., z[7]. Next come the definitions of the
input symbols. For example, we see signal in0 on the input whenever the first wire is on and the second off.

Note, for example, that wc could sce symbol zn0 and also acka, if the firsl three wires were 1, 0, and 1.

t Work supported by DARPA contract MDA 90% 80-C-0107.

Following this comethe declaration of output signals, and then three subcxpressions, somein, which is
recognized when either tn0 or :nl is seen, wattin which is recognized when neither input is seen, or both
wires z[1] and z[2] are on simultaneously (which represents a “bad input,” the symbol badin), and allbut01,
which stands for the union of all signals but in0 and inl. After the declaration portion is a semicolon and
the expression itself.

As an example of how the expression is to be interpreted, consider the seventh line of the expression,
beginning stateza-... It says that if we get a signal telling us wc are in state a, and then receive any number
of symbol noacka (noacka* means “any number of noacka’s”), we emit the signal OUTA. We regard z(3]
as a wire that “acknowledges” the fact that signal OUTA was received, so symbol noacka,defined by z{3]
being ‘off, is scen until the acka symbol, z[3] = 1, is seen. In effect, we emit the output signal OUTA until *
it is acknowledged.

When OUTA is acknowledged by acka appearing on the input, the process of recognizing the expression
proceeds to waitin*, which is recognized for as long as the first two wires remain at 0, or both become 1
simultaneously (a bad input). Then, when in0 or inl is seen, a signal to change to state b or ¢ is made. If

any of the symbols represented by allbut01 is received after the acka, an error is declared. [J

II. Coxnbining States and Expressions

The motivation for using regular expressions as a source language is twofold. First, they are a succinct and
nonprocedural description of a large class of sequential processes. Thus they can provide some simplification
in the design process for the right problem. Second, being structured descriptions of patterns, they are
appropriate for proofs of correctness, and even if a formal proof is not attempted, they provide' useful
intuition that helps the reader convince himself of the correctness of the expression. In comparison, transition
functions for automata are analogous to programs with goto’s; they are inherently hard to understand and
verify, either formally or intuitively.

On the other side of the coin, there are distinct advantages to process descriptions involving states.
Often, it is natural to view a process as being in one of several states; for example, counting is especially
casy when you have states available and very hard to do with regular expressions. It is the purpose of this
report to descibc a simnple modification to the regular expression compiler that allows us, in effect, to declare
states and then decfinc transitions among states in regular expression terms. As a result, wc get the best
of both worlds; states are available when they are more succinct than regular expressions or when they
help us organize our design, and regular expressions are available when patterns of symbols are useful as a

desceription of events.

line x([7})
symbol in0(x([1] -x{2])
in1(x[2] -x[1]})
badin(x[1] x[2])
acka(x[3])
ackb(x[4])
acke(x[5])
stateia(x[6] x[7])
“stateib(x[6] -x[7])’
stateic(-x[6] x[7])
start(-x[6) -x[7])
noin(-x(1] -x[2])
noacka(-x[3])
noackb(-x[4])
noackce(-x(5])
output OUTA
OouTB
OouTC
stateoa
stateob
stateoc
ERROR '
su bexp somein==in0 + inl + badin
subcxp waitin=noin + badin
subexp allbutOl=acka + ackb + ackc + badin

’

start waitin* (
allbut0l ERROR +
in0 stateoa +
in 1 stateob

+
stateia noacka* OUTA (
(ackb+ackc+somein) ERROR +
acka waitin* (
allbut0l ERROR +
in0 stateob +
inl stateoc

)
)
+
stateib noackb* OUTB (
(acka+ackc+somcin) ERROR +
ackb waitin* (
allbut0l ERROR +
in0 stateoc +
in 1 stateoa

+
stateic noackc* OUTC (
(acka+ackb+somcin) ERROR +
ackc waitin* (
allbut0i ERROR +
in0 stateoa +
inl statecob

)

Fig. 1. Input to regular expression compiler.

To introduce stales into the regular expression language, we make the following modifications.

1. The names statei X for any X are input symbols that represent the fact that wc have just entered state
X. Symbol start serves as the initial state. To indicate that these states are disjoint, i.e., we can be
in only one of them at a time, we can use imaginary wires, such as z[ﬁ] and z{7} in Fig. 1, to make it
appear to the compiler that at most one of these input symbols can be present on the input at any time.
Of course, if the states were not disjoint in this sense, we could express the legal subscts by another
combination of dummy wires.

2. Output symbols stateoX for any X are used as goto’s. If we emit the symbol stateoX, we shall in effect
turn on the input symbol state:X and enter state X.

The complete regular expression consists of the sum of cxpressions that begin start and state: X for the
various X's. The portion of the regular expression associated with each state is recognized, if possible, each
time wc enter that state, and we make whatever outputs the regular expression tells us to make in response
to what inputs we see.

After the regular expression compiler converts the expression into a nondeterministic finite automaton,
an edit script is used to identify the input symbol stateiX with the output symbol stateoX and make certain

other changes so things work properly.

Example 2: A case in point is the problem to which the regular expression program of Fig. 1 is a solution, .
This program implements the transmitter from [AUY] that sends bits reliably over a channel that has a high
probability of losing bits, but does not change O’s into I's or vice-versa. This view of a channel is plausible if
we assume that any noise or other error causes the system to fail to detect a bit. This strategy, of assuming
no signal whencver something goes wrong, is modeled after the Datakit protocol [F].

The general idea is that when the transmitter is given a bit to send, it sends one of three signals
OUTA, OUTB, or OUTC, chosen by a method to be described. It keeps sending the signal until it receives
an acknowledgement of the signal sent. Then, it stops sending the signal until the next input, O or 1, is
received, whereupon it sends the next signal (in the sense that c follows b, which follows a, which follows c)
if 0 is input, and it sends the previous signal in this cyclic order if 1 is input.

The purpose of this arrangement is so that whencver the transmitter sends a new input, it changes the
signal sent; that change serves to acknowledge the acknowlcdgecment. If we did not always make a signal
change, the receiver could not tell, say upon recciving two O’s, whether these were two different inputs, or
the acknowledgement of the first had been lost, and the second 0 was a retransmission of the first.

Another way to look at the signal selection algorithm, is that wc count one for an input 0 and two for

an input 1, and transmit OUTA,OUTB, or OUTC depending on whether the sum of inputs rcccived so
4

far is congruent to 1, 2, or 0, modulo 3. Counting, even counting modulo 3, is very diflicult to express in
the regular expression language. Thus it is natural to introduce three states, a, b, and c, that are entered

whenever we receive an input that makes this running modular sum 1, 2, or 0, respectively.

We already discussed briefly in Example 1 what happens in one of these states, say a. After receiving the
stateia signal to say we have entered state a, we emit QU.T'A for as long as the input matches noacka®, that
is, the acka acknowledgement is not received. A sequence of noacka's can be followed by either of two events
that cause special outputs. First, the acka signal can be received, and then, after any scquence of waitin’s,
i.e., no input, an in0 or nl triggers a signal that causes a jump to another state, b or c, respectively. After
receiving acka, any input but inO or tnl causes an error signal. Note that allbut01 and waitin can be seen

at the same time, so we can continue waiting for a good input even while signaling when errors occur.

‘Now let us return to the point in the cxprcssion where we are recognizing noacka* and waiting for acka.
At the same time we are waiting for acka, if we receive ackb, ackc, or sornein, we have an error condition;
in the first two cases, the wrong acknowledgement was received, in the last, we received either a bad input,
or a good input before we are ready to transmit it. In this case, we emit the output signal ERROR. Note
that all of these error conditions are seen on the input at the same time noacka is seen, so emitting ERROR
does not prevent us from continuing to see noacka* and eventually to sec acka and another input. However,
inputs received erroneously do not cause a change of state, because we cannot reach a term like inO stateob

in the regular expression until after the acka has been received.

The portions of the expression following stateib and stateic are analogous to what we have described.
The portion following start differs only in that we are not waiting for an acknowledgement, and if any is

received it is an error.

The result of compiling Fig. 1 is shown in Fig. 2. This figure illustrates the NFA language used. Each
type of statement begins with a unique letter. For example, D is a declaration of an input symbol, much
like in the regular expression compiler. However, note that the input symbol stateiX and the output symbol
stateoX have both become stateX, and this input symbol is dcclarcd (in lines 6——8,e.g.) to be present when

the wire of the same name is on; that wire is the corresponding output signal.

Theletler N indicates the name of the NIFA, and I indicates the name of the final signal, if any (there
is none in Fig. 2), and the states that cause the final signal to bc ernittcd. Letter 1 introduces the name of
the initial signal, nit in this case, and a list of the initial states, st2,st3, and so on.

A state is dcclarcd by the letter S, followed by the state name, and the input symbol that it recognizes.
The NTA langauge is restricted in that each statc recognizes only one input symbol. However, this restriction

is not hothersome for NFA’s that arc output by theregular cxpression compiler, and in general, we can create

5

D in0 (inO -inl)

D in1 (-in0 inl)

D badin (in0 inl)

D acka (acka)

D ackb (ackb)

D ackc (acke)

D statca (statca)

D stateb (stateb)

D statec (statec) .

D noin (-in0 -inl)

D noacka (-acka)

D noackb (-ackb)

D noackc {-acke)

N nfal
F;
| init; st2 st3 st4 st5 st6 st9stll

S st2 noin

T st2 st3 st4 st5 st6 st9 stll

S st3 badin
T st2 st3 st4sth st6 st8 st9 stll
Sst4 acka

T st8

S std ackb

T st8

S st6 ackc

T st8

S st7 0 stateb

S st8 0 error

S st9in0

T st10

S st10 O state8

S stll inl

T st7

S st12 O statec

S st13 statca X

T st5 st6 st14st15 st17 st18 st19 st22
S st14 noacka .

T st5 st6 st14 st15 st17 st18 st19 st22
S st15 0 outa

S st16 badin

T std sth st6 st8 st9stll stl6 st29

S stl7 badin.

T st8

S st18in0

T st8

S st19in1

T st8

S st20 badin

T std st§ st6 stl7 st20 st27 st31 st33
S st21 statec X

T st4stHst17 sL18 st19 st25 st26 st37
S st22 acka

T st4 st.5 st6 st17 sL23 st24 st30 st32
S st23 noin

T st4 st5 st6 stl7 st23 st24 st30 st32
S st24 badin

T st4 st5 st6 st17 st23 st24 st30 st32

Fig. 2(a). Beginning of NFA description.

S st25 ackc

T st4 st5 st6 st stll st16 st29

S st26 noackc)

T st4 st5 st17 st18st19 st25 st26 st37

S st27 noin

T st4 st5 st6 st17 su20 st27 st31 st33

S st28 ackb

T st4 st5 st6 st17 st20 st27 st31 st33

S st29 noin }

T std st5 st6 st9 stll st16 st29

S st30in0

T 8t7

S st31in0

T stl12

S st32inl

T stl12

S st33 inl

T st10

S st34 stateb X

T st4 st6 stl17 st18 'st19 st28 st35 st36

S st35 noackb

T st4 st6 stl7 st18 st19 st28 st35 st36

S st36 0 outb

s st37 0 oute

C st2; st3 st4 st5 st6 st8st9stll

C st3; st4 st5 st6 st8 st9 stll

C st4; sL5 St6 st8 st9 stll stl16 st1l7 st18 st19 st20 st23 st24 st25 st26 st27 st28 st29 st30 st31 st32 st33
st35 st36 st37 . .

C st5; st6 st8 st9 stll st14 st15 st16st17 st18 st19 st20 st22 st23 st24 st25 st26 st27 st29 st30 st31
st32 st33 st37

Cst6; st8 st9 stll st14 stl5 stl6 stl7 st18 st19 st20 st22 st23 st24 st27 st28 st29 st30 st31 st32 st33 st35 st36

C st7; st8

Cst8;st9st10st11 st12 st14 stl5 st16 stl7 stl18 st19 st20 st22 st23 st24 st25 st26 st27 st28 st29 -
st30 st31 st32 st33 st35 st36 st37

C st9; stll st16 st29

C stll; stl6 st29

Cst13; st21 st34

C st14; st15 st17 st18 st19 st22

C stl5; st17 st18 st19 st22

C st16; st29

C st17;s:18 st19 st20 st22 st23 st24 st25 st26 st27 st28 st30 st31 st32 st33 st35 st36 st37

C st18;st19 st.22 st25st26 st28 st35 at36 st37

C st19; st22 st25 st26 st28 st35 st36 st37

¢ st20; st27 st31 st33

c st21; st34

c st23; st24 st30 st32

¢ st24; st30 st32

C st25; st26 st37

C st26; st37

¢ st27; st31 st33

C st28; st35 st36

¢ st30; st32

c sl31;5t33

C st35; st36

B

Fig. 2(b). End of NI'A description.

several states with the same predecessors to simulate one state with transitions on several inputs.t

An 0 preceding the symbol associated with a state means that the symbol is an output symbol, rather
than an input symbol. The letter X following the symbol, as in st13, means that the state is external; it is
always on and waiting to sce its input symbol.} It is exactly the states of the NFA that represent the states

used in the regular expression specification that become external states of the NFA.

All states are followed by the letter T and a list of their transitions, that is, their successors. Finally
there are conflict statements introduced by the letter C. The state following the C is declared to conflict with
all the states after the semicolon. Conflicting states are those that can be on at thesame time, a result not
only of the nondctcrminism but of the fact that several input symbols may be recognizable at once. Conflicts

among states are taken into account when we find a coding of the NFA’s states for an implementation. [J

I1l1. Logic Generation

The NFA is converted to the logic language Igen by an algorithm described in [U]. Briefly, the nondeter-
ministic states must'rcceive representations that will enable us to identify that each state is on, regardless of
what other states are also on at the same time. Here is where knowing the state conflicts may help, because
when state 7 is on, that fact can only be obscured by states that conflict with 7 also being on. For example,
if the NFA were really deterministic, there would be no conflicts, and we could use a binary coding of the

states.

One way to code states is to give each a private signal. Then we can tell the state is on independent of
any other states. The actual approach taken by the logic generator used is slightly more sophisticated. It
attempts to identify groups, which are sets of mutually nonconflicting states.tt Within a group, binary codes
are selected so that any conflicting states ‘from other groups will receive the same code. To do so, a minimal
number of states that would make this coding impossible are expelled from groups and given private signals.

Groups of a single state are similarly given private signals.

The result is that in addition to private signals, there are code bits and group bits. A state without a

private signal is recognized by the bit of its group being on, and the code bits being on or off as appropriate

t{T) describes a more general NI'A language that allows, multiple transitions, c-transitions, and a variety of options not
available in the NFA language described here.

t There is another kind of slate like external states, that does not appear in Fig. 2. These states, called advance states and
designated by A, arc like external states, but when they see their input, they cnable their suceessors Lo recognize their own
inputs at the same time unit. Advance states are needed Lo implement correctly networks of NFA’s that together recognize
one large regular expression. Large expressions need to be broken into pieces implcmcntcd by separate NKA's for two reasons.
First, processing large expressions is Loo time consuming, especially minimizing the states of the NFA and computing conflicts.
Second, the circuits implementing the NFA’s such as PLA’s or Wcinbergcr arrays, will be Loo large and badly shaped if the
NFA has Loo many states.

ttHowever, before looking at conflicts, states that have exactly the same predecessors (and therefore arc really just different
transitions from the “same” state) arc combined into one.

ost2 = -inlt * =in0 * est2

ost3 =inl * in0 * est.2

ostd = acka #*est4

ostS = ackb * estb

ost6 = ackc =est6

ost9 = —inl * in0 * est9

ostll = inl * —in0 * est9

ostl3 = statea

ost1l4 = —acka * cel ¥ -ce2 *x —ce3

ostl7 = inlx in0 * estl7

ost18 = —inl * iNO # est18

ost19 = inl * =in0 * ¢st18

0st22 = acka =*cel * ~ce2 * —ce3

0stl6 = inl * in0 * —cel=* ce2 * —~celd

0st29 = —=inl*-in0 * —cel * ce2 * —ced

ost20 = inl* in0 * celx ce2 * —ced

0st27 = ~inl#*-inQ * cet * ce2 * —ced

ost3dl = -inl * in0 * cel * ce2 * —ced

0st33 = inl * =in0 * cel * ce2 * —ced

ost21 = statee

0st25 = ackc *-cel *~ce2* ce3

0st26 = —acke * ~cel x ~ce2~ ce3

0st23 = =inl * =in0 * cel * —ce2 * ced

ost24 = inl * in0 * cel* —ce2s ce3

ost30 = —-in1 * in0 * ccl * —ce2x ce3

o0st32 = inl % ~in0 * cel * —ce2* ce3 -

0st28 = ackb x-cel* ce2 *ced

osL34 = stateb

0st35 = -ackb * ~cel* ce2 * ce3

est2 = LAST fst2 CLEAR globalinit + init

fst2 = osL2 + ost3

cst4 = LAST fst4 CLEAR globalinit + init

fst4 = ost2 + ost3 + 0st22 + ost16 + ‘ost29 + ost20 + ost27 + ost2l1 + ost25 + ost26 + ost23 + ost24 +
ost28 + ost34 + ost35

estd = LAST fst5 CLEAR globalinit + init

fstd = ost2 + ost3 + 0stl3 +ostl4 + ost22 + ostl6 + ost29 + ost20 + ost27 + ost21 + ost25 + 0st26 +
ost23 + ost24 + ost28

est6 = LAST fst6 CLEAR globalinit + init

fst6 = ost2 + ost3 + ost13 + 0stld + ost22 + ost1l6 + 0st29 + ost20 + ost27 + ost25 + 0st23 + ost24 +
ost28 + ost34 + ost35

est§ = LAST fst9 CLEAR globalinit + init

fst9 = ost2 + ost3 + ost16 + 0st29 + ost25

estl7 = LAST [st17 CLEAR globalinit

fst17 = ostl3 + ostl14 + 0ost22 + 0st20 + ost27 + ost21 + 0st26 + 0st23 + ost24 + ost28 + ost34 + ost35

est18 = LAST [st18 CLEAR globalinit

fst18 = ostl3 + ostl4 + ost21 + ost26 + ost34 + ost35

error = ost3 + ost4 + ostS + ost6 + 0ostl7 + ost18 + ost19 + ost1$

stateb = ostll + o0st30

statea = ost9 + 0st33

statec = 0st31 + o0st32

outa - ost13 + ostl4

oute = ost21 + ost26

oulb = ost34 + ost35

ccl = LAST cfl CLIZAR globalinit

cf1 = ost13 + ost14 + ost22 + ost20 + ost27 + o0st23 + ost24 + ost28

ce2 = LAST cf2 CLEAR globalinit

cf2 = ost16 + 0sL29 + 0st20 + ost27 + ost25 -+ 0st28 + 0st34 + o0st35

cc3 = LAST cf3CLIEAR globalinit

cf3 = 0s122 + ost21 + ost26 + ost23 + ost24 + ost34 + ost35

Fig. 3. Logic implementing communication protocol.

to its code.

Example 3: In Fig. 3 we see the output of the NFA-to-logic compiler, with certain header information,
indicating clocking and the borders on which signals appear, omitted. Because it turns out that there is only
one nontrivial group, and that group does not have exactly a power of two states, we were able to eliminate
the group bit, and, by not using the all-zeros code for any state in the group, detect the presence of a state

in the group by one or more of the code bits being on.

The overall organization of the logic in Fig. 3 is not unlike that of a PLA. The variables are in three
groups, designated by the letters e, f, and o. The first group, e, corresponds to columns in the and-plane of
a PLA and represents the fact that a certain state is “enabled”; if its input symbol is now seen it can enable
its successors for thenext input cycle. Some states have private enablers, like est2 for state 2. Other states
are coded, and in Fig. 3 there are three coded enabler variables cel, ce2, and ce3, combinations of which
represent the enablers for various states. Note that not every state has an enabler, either private or coded.
States without enablers have the same entering transitions as some other state that does have an enabler,

and the same enabler serves for both.

The f group of variables are “feedback”; they correspond to columns in the or-plane. State fX at one
time unit becomes eX at the next time unit by means of lgen statements such as

est2 = LAST fst2 CLEAR glob&nit + znit

which says that state 2 is enabled either by the initial signal init, or by fst2 being on at the previous time

unit. The output signals, such as statea or OUTA, also correspond to columns of the or-plane.

The o group of variables correspond to the terms of the PLA. For each state there is an o variable that
is turned on when the state is enabled, and the proper input is seen. For example, line 1 of Fig. 3 says oat2
is on whenever state 2 is enabled (est2 is on) and noin is seen on the input (detected by both wires inQ
and inl being off). Line 9 says that ost14 is turned on when input noacka is secn and state 14 is enabled

(represented by the coded enabler bits being 100).

The only difference between a PLA structure and the organization of the variables in Fig. 3 is that the
statea, stateb and statec variables do not fit into the scheme. Rather, we can view them as fed back from the
or-plane, where they arc generated, to the and-plane, where they arc used, with no declay due to clocking.
Thus, Fig. 3 can be used almost directly as input to a PLA generator that permits unclocked signals as an
option.

10

IV. Evaluation of Results

It is difficult to compare the logic of Fig. 3 with the “best possible” logical description of an equivalent
circuit. It appears that, when the ability of the lgen compiler to eliminate common subexpressions and
perform other optimizations is taken into account, the resulting logic will be very close to that found in the
hand designed PLA described below. Thus, we are optim'istic that our automatic synthesis method behaves
very well when amount of logic generated is the criterion used.

We can obtain a more concrete estimate of the quality of the circuit designed if we view it as a PLA
specification and compare it with a PLA designed carcfully by hand. In our hand design, we used three
feedback wires. Two were used to binary code the “state,” i.e., whether we were in the start condition, or
in what we have called states a, b, and c. The third feedback wire indicated whether we were waiting for an
acknowlcgcment or had received the acknowledgement and were waiting for the next input. Terms based on
this encoding were written down and optimized using the gry PLA optimizer [Il). The resulting PLA had:
1. 32 terms.

2. 17 columns in the and-plane, representing an initializing signal, the three feedback wires, and the five
input wires (in0, inl, acka, ackb, and uckc), each of which except the initializer requires inversion.
3. 7 columns in the or-plane, representing thc three feedback wires and four outputs (ERROR,OUTA,

OUTB, and OUTC).

The resulting area is 32 * (17 + 7) = 768.

In comparison, the PLA constructed directly from Fig. 3 requires the following:

1. 30 terms (the o variables plus one term to carry the initial signal to the or-plane).}
2. 27 columns in the and-plane, consisting of

a) 10 columns for the inputs and their complements.

b) 7 columns for the private state enablers; these do not have to bc inverted.

c) 3 columns for statea, stuteb, and statec; these also do not require inversion.

d) 6 columns for the three coded enablers, which do require inversion.

e) 1 column for the initial signal.

3. 17 columns in the or-plane, consisting of four output signals and 13 feedback wires.
The resulting size is 30 * (27 + 17) = 1320. This figure is 72% grcater than the hand-designed one. The
overhead of the I'LA borders will tend to reduce this figure somewhat, as will the fact that clocking is not

nccded on six of the columns of the machine-generated PLA. But the fact that space is required for 13

t It is not unusual for PLA’s generated from regular expressions to have fewer terms than hand-designed ones, because the
former PLA’s Lend to usc one-hot codes (private cnablers) for states, and that sort of code costs columns, but may save terms.

11

line x151
symbol in0(x[1]-x[2])
in1(x[2] -x{1])
badin(x[1] x[2]}
ack(x[3])
stateia(x[4] x(5])
stateib(x[4] -x[5])
stateic(-x[1] x[5])
start(-x[4] -x[5])
noin(-x[1)} -x[2])
noack(-x|3])
output OUTA
ouTB
ouTC
stateoa
stateob
stateoc
ERROR
su bcxp somein==in0 + inl + badin
subcxp waltin=noin + badin
su bexp allbut0l=ack + badin
b
start waitin* (
allbut0l ERROR +
in0 stateoa +
inl stateob -

+
stateia noack* QUTA (
somcin ERROR +
ack waitin* (
allbut0l ERROR +
in0 stateob +
in 1 stateoc

)
)
+
stateib noack* OUTB (
somcin ERROR +
ack waitin* (
allbut0l ERROR +
in0 statcoc +
in 1 state08

+
stateic noack* OUTC (
somein ERROR +
ack waitin* (
allbut0l ERROR +
in0 statcoa +
in 1 statcob

Fig. 4. Revised input to regular expression compiler.

12

feedback wires for the machine-gcncratcd PLA will serve to increase the ratio.

V. Correction of Errors

One important advantage of the regular expression approach to design, as with high-level descriptions in

general, is that modifications arc easier to make, and make reliably, than with ad-hoc designs.

Example 4: It turns out that our design of Fig. 1 is not the simplest that meets the specifications of [AUY].
Rather, since the channel is assumed never to make a mutation error, only to lose signals, there is no need
to distinguish between the three acknowledgements; whenever we receive an acknowledgement, wc know it
was actually sent by the receiver, and we know that if the receiver is not broken, then it was sent in response
to the receipt of the correct signal.
Thus, we should modify Fig. 1 in the following two ways.
1. acka, uckb, and uckc should be identified as the signal ack; similarly, their complements, noacka, etc.,
are identified as noack.
2. While waiting for an acknowledgement, there are no “wrong acknowledgements” to receive, so terms
like
(ackb + ackc + somein) ERROR
should be replaced by

somein ERROR

The resulting revision is shown in Fig. 4.

VI. Conclusions

Regular expressions, in conjunction with conventional state machine dcfinitions of processes, is a promis-
ing way to design circuits at a very high level. The use of optimizing logic compilers to do the actual
implementation may be superior to PLA implementation of regular expressions, but the evidence of the case
described in this paper, and other cases we have analyzed by hand, is that even PLA implementation of
regular expressions comes within a factor of two of thearcauscd by hand-designed PLLA’s. E'urther, the
problem of coding nondeterministic states is not yct fully resolved, and therc is hope that better I'LA and/or

logic implementations of regular expressions will be developed in the future.

References

{AUY] Aho, A. V., J. D. Ullman, and M. Yannakakis, “Modcling communications protocols by automata,”

13

(F]

(H]

[TU]

v

Proc. Twentieth Annual IEEL Sympbsium on Foundations of Computer Science, pp. 267-273, 1979.

Fraser, A. G., “Datakit-a modular network for synchronous and asynchronous traffic,” Proc.IEEE

Intl. Conf. on Communications, 1979.

Hemachandra, L. A., “GRY, a PLA minimizer,, unpublished memorandum, Dept. of C. S., Stanford

Univ., 1982.

Trickey, H., “Regular expressions and NFAs,” unpublished memorandum, Dept. of C. S., Stanford

Univ., 1982.
Trickey, H. and J. D. Ullman, “A regular expression compiler,” Proc. IEEE COMPCON, 1982.

Ullman, J. D.‘, “Description of NFA-to-logic compiler,” unpublished memorandum, Dept. of C. S.,

Stanford Univ., 1982.

14

