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1. Introduction

Percolation Theory originated in problems of fluid flow in random media, e.g. molecules
penetrating a porous solid or a disease infecting a population. The applications in Statistical
Mechanics brought the main developments in percolation theory. How does a drastic
phase-transition of a system occur across a narrow band of the system parameters (e.g.
temperature, density)? The mathematical explanation goes as follows: A physical sys-
tem is a probability space of microscopic configuration (say N particles occupying sites
in a certain lattice). The space is parametrized by a certain controllable quantity p (or

Pl,P2,.  . l )* The PhYsically observable phase is determined by some intrinsic property Q
of the configuration. One show that

Prob {Q} = Prob {Configuration has property Q},

which is a function of p, undergoes a drastic increase from e to 1 - E across a narrow band
of p-values. Usually E depends on N, the number of particles, and c(N) = o(N).

It was noticed that the situation here is the precise analog of random-graph properties
having a sharp threshold, where the parameter p measures edge-density. Moreover, the
phase-determining properties are usually size, number and shape of particle-clusters. These
are essentially like connectivity components in graphs, for which sharp thresholds apply.
Here we argue that methods from one area will be useful for the other.

Our main contribution is that a certain configuration-dependent quantity, the boundary-
body density ratio of “giant” clusters, is sharply determined by the parameter p (a full-site
frequency) of the system. Therefore, as physicists also argue from microscopic considera-
tions, it has a physical significance (related to energy). The way we prove it is useful in
studying random-graph algorithms [Sh 821.  A random procedure ALG gives an intertwined
construction of the configurations and giant clusters in them. Following ALG we are able
to compute the required ratio.

. We believe this approach, and percolation theory in general, is useful in the study of

a large technologically designed systems, e.g. networks of communicating processors with a
suitable geometry.

2. Percolation Models and Clusters

We consider an interaction-f&e model. The underlying medium is an infinite lattice
‘L of some finite dimension d. The lattice L consists of a countable set of vertices, called
sites, linked by edges, called bonds.

In the site-percolation model, all the bonds represent fixed (open) connections, while
each site is assigned, independently of the others, values “I;‘”  or “E” with probabilities

p for “F” (full), 1 - p for “E” (empty).

This results in a probability space fz = st(L, p), its elements are called configurations.



In the bond perculation  model, the sites represent fixed (open) vertices while the bonds,
like edges in a random graph, occur independently with probability p. By the line-graph
construction, i.e. passing to a lattice L’ whose sites are the (midpoints of the) bonds of L,
we see that it suffices to consider the site-percolation model, which is more general. For a
fluid model, “F” represents open, “E” represents closed to the flow. This leads naturally
to the next definition.

A connection between “F’‘-marked  sites a and b is a path of (alternating) bonds and
“F”-marked sites, leading from a to b (so along a path the fluid can flow). A cluster C is
a maximally connected set of “F”-sites, the size ICI is the number of sites in C.

Denote by R,(p) the probability that a particular site belongs to a cluster of size at
least n. Clearly Rn(p) > R,+l(p).  So

R(P) = JLrnm G(P) exists for each p.

This R(p) is the probability of any particular site b to belong to an infinite (“giant”) cluster
(the fluid in b can flow to an unbounded distance).

It can bc shown that R(p) is a non-decreasing function of p. Clearly R(0) = 0,
R(1) = I. Let

PC = P,(L)  = gWR(p) > 0)

p, is called the critical percolation value. Again it is easy to show that for p > p, an
infinite cluster exists in w, with probability 1 in R(L,p).

The numerical values of R(p) and p, depend on the dimension and the geometry of the’
lattice. Deriving them from theoretical calculation is usually hard. One can estimate them .

by experiments (physical simulations) or by Monte Carlo methods (computer simulations).

3. The Number of Infin’te Clusters

Let N,(w) denote the number of infinite clusters in the configuration W. It was sh6wn
- [NS 811 that No0 has a constant value with probability 1. This value can be 0 if (p < pc)

or 1 or oc>. The uniqueness conjecture is:

-p>pc*N, = 1 with probability 1.

The general belief is that this must be true, some even speak about “the” infinite cluster
without noticing that %he” is a problem. In fact, uniqueness was proved only for planar
lattices, and is wide open in higher dimensions.

Naturally, the aspect of shape of infinite clusters is related to that of number and size.
To discuss it, we need a structure of a monotone increasing sequence of bounded domains
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which exhaust the lattice L. Usually some regularity is required. The typical sequence for
the cubic grid (in any dimension) is Q(n) = the cube of edge length 272 + 1 centered at

( 3'
1. . ..ij.)

The density of a set of sites C .is

dens(C) =
Ziminf lCnQ(n)l

n + 60 IQ(n)1

Clusters with dens(C) > 0 are called called dense, those with density 0 are filamentary.
It was shown in [NS 821 that, with probability 1 there is at most one dense cluster. We
can further show [KS 811

existence of a dense cluster implies uniqueness,
.

i.e. No0 = 00 --I all clusters are filamentary.

,
Our main result here will show that all infinite clusters have a similar “shape.” Intuitively
this adds credibility to the uniqueness conjecture because such regimented behavior of a
configuration seems to have vanishing probability.

4. The Boundary-Body (BB) density quotient

The boundary of a cluster C, denoted by dC, is the set of sites such that ~14 but
z is adjacent to some site yeC. Let

sn = lCnQ(n)l, L = lacn Q(n)1

We want to study tn/Sn. An asymptotic relation

tn = 1-P
-s(n>+WJ  ( < 1, n + 00
P

will be proved for infinite clusters where c is essentially $. This means that C is a highly
iamified set, unlike an expanding ball or cube, its surface grows linearly with its volume.

A lively history of this BB density quotient is related in [St 79). In [ADS 801 it is
1-Pproved that .F + - as s + 00, where < t, > is the cxpccted boundary size for

finite clusters of size s. [I? 791 gave a rather obscure argument why the asymptotic limit for
clusters of finite size should be equal to the BB density quotient of ‘(the”  infinite cluster.

Our proof, along the lines described below, was found in 1980, following a lecture of
Professor C. Domb in Jerusalem. It was commuicated to Newman  and Schulman, who
then gave another proof [NS ] under the assumption of uniqueness, using ergodicity of the
translations in regular lattices. The claims about the remainder term SC are quite confused
in the literature [St 791. I-Iow were the simulations made? Is < claimed to depend on the
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lattice, the dimension, or on p - pC? Our result gives s = & for the infinite cluster, which
suggests that the same should hold for the finite cluster asymptotics.

THEOREM 1. Let p > pc. with probability one in a(L,p), the following relation
holds for any infinite cluster C

t, = -’ - ‘s(n) + O(s,)(log  log s=)t, n -+ 00.
P

The computation of the boundary-body density quotient for an infinite cluster is based
on a probabilistic procedure to construct w, which we call ALG. Each w& is determined
by a choice of marlcing (“F” with probability p or “E” with probability Q = 1 - p) for the
random variable associated to each site. The order in which the marking is carried out
is immaterial, and we can use it to our advantage; in particular we first “construct” an
infinite cluster and its boundary, and complete then (in any order) the marking of those
sites unmarked by ALG.

For simplicity, we treat a cubic lattice in Rd. Let Q(n) be the system of cubes
exhausting L and Q’(n) = Q(n) \ Q(n - 1) the shell of outermost sites of Q(n).

The procedure ALG consists of steps numbered 1,2,..  . . Up to step i, we mark sites
only in Q(i).  Step i is concluded when we have marked all the sites in Q(i) which are
adjacent to sites marked “F.” Now if the external shell Q’(i) has no site marked “F,”  then
we know that the current cluster we follow is completely enveloped by its boundary, and
-we pick an innermost unmarked site for marking, attempting to start a new cluster.

Else, there is a site x marked “F” in Q’(i), we enter step i+l by marking the neighbors
of x in Q’(z’ + 1) and continue, by a sequence of sub-steps, to mark all remaining sites in
Q(; + 1) until step i + 1 is concluded.



The MARKING procedure ALG
i - index of steps
j - index of sub-steps .
K - integer satisfying that all the finite clusters are included in Q(K)
h - index of cluster being enlarged
Mark (h,S) - is a routine, assigning to each of the elements of the set (of sites) S,

the value h with probability p, or 0 with probabiity q = 1 - p

(A) [Initialization]
A.1 i := 0; k := 0 ; h := 1;
A.2 Mark (1, Q(0));

(B) [Next step]
B.1  if there, is a site marked h in Q’(i)
B.2 then [continue to enlarge cluster h]
B.3 i := i+l; j := 0;
B.4 !PqD);

(C) [No site was marked h in Q’(i), hence  cluster h is finite; search for next cluster]
’C.1 h : =  h + l ;

Repeat
c.2 i’ :=largest integer satisfying that all the sites in Q(i’) have been marked;
c.3 i := i’ + 1;
c.4 x :=random unmarked site in Q(i);
C.5 Mark (h, {x});
C.6 until one site has been marked h;
C.7 j := 0; K := max(K,  i - 1);

(D) [next sub-step]
D.1 j : =  j+l;
D.2 R(i, j, h) := set of unmarked sites in Q(i),

having at least one neighbor in cluster h;
D.3 if IR(i, j, h)l > 0
D.4 then Mark (h, R(i, j, h)) .
D.5 goto
D.6 else goto  (B);
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5. Analysis of ALG

CLAIM: If there is an infinite cluster, ALG will lock on it after a finite number of steps.

PROOF: Let Ch denote the cluster, an element of which is chosen in the h-th passage
through block (C), in C.4.

After the execution of block (C), we shall return to this block if and only if Ch happens
to be finite, for if Ch is infinite, then

jno(n 2  nO * ch f-) Q’(n) # 0

An < no =k ch n Q ’ ( n )  = 0 )
0*

(Q( no - 1) is the largest cube centered in (i, . . . , %) not intersecting Ch); denote the value
of i after the h-th execution of (C) by i,, then

.

Ch f--j Q’(io)  # 0

hence (*) implies i, >- no and
,

if’i 2 i, Ch n Q’(i) # 8

. so that the condition in B.1 remains true in all the subsequent steps, thus (C) will not be
executed again.

If Ch is finite, there is a minimal cube Q(h,) w IC contains the entire cluster, we geth’ h
a negative answer in B.1 for i = ho + 1 and ALG passes to (C).

Suppose that there is an infinite cluster A; once ALG starts marking sites of A, there
will be no further passage through (C), and since only in this block h is increased (i.e. we
choose a new cluster), ALG will not leave A any more. Thus it is enough to show that
after a finite number of executed statements, some site in A has been marked.

Let no be the smallest integer for which Q(n,) n A # 8, then after at most IQ(n,)l
passages through block (C) a site of A will be marked, as implied by the conditions in ‘C.2

- and C.6. Knowing that between two consecutive executions of (C) ALG enlarges a finite
cluster Ch, the number of statements up to the first marking in A is bounded by

o(lQhJl  l h <“;;;q (lchl>)*

Thus ALG finds the infinite cluster, if there is one, and we obtain a correct generation
of all the configurations in St by marking afterwards the sites which remained unmarked.
If in some w constructed, no infinite cluster is obtained, then the whole lattice is already
marked by ALG itself; for p > p,, the set of such w has probability 0. This concludes the
proof of the CLAIM. We proceed to the computation of the BB density quotient.

ALG scans the lattice in a certain order, which yields for a fixed configuration w, a
sequence U1, U2, . . . where each U; is a pair of random variables (S(U;),  V(Ui)). S( U;)cRd
is the i-th site marked. by ALG, V( Ui) the value (“E” or “F”) which S(Ui>  was assigned.
By the definition of ALG, {V(Ui)}g,  is a Bernoulli sequence.

6



But in order to prove the theorem about the infinite cluster’s boundary-to-body ratio,
we need a rearrangement of our r.v.‘s. Since this is a density quotient of two infinite
sets, we have to exhaust the lattice with the sequence of domains Q(n), to assure that the
quotient value is indeed a property. of the infinite cluster, and is not a consequence of a
perhaps sophisticated  way of counting the sites.

The easiest way of rearranging the marked sites is to enumerate them shell by shell
and in each shell to proceed in a simple geometric order, e.g. passing over the shell by a
sequence of adjacent sites. This will not do, since randomness is destroyed. For example,
if Yr denotes the first element of the above sequence (Yr is one of the {U..}), then if we
started scanning the first shell on an unmarked site, the first site we encounter is in dC
and is certainly marked “E”, so that

P(V(Yl)  =  “E” ) = (l-p)R+(l-RR)  # l - p

where R is the probability of a site being marked by ALG.
What happens’here is that the index of a variable of this rearrangement carries more

information than a random sequence should, e.g. the event {S(Yi) = S(Uk)} depends on
the whole sequence {V;} since it includes the event: “after all the sites have been marked,
there are exactly ‘i - 1 marked sites preceeding  (in the given order) the one marked by
Uk”,  whereas we are interested in having this event depend only on U1,  . . . , Uk-1.

Therefore we choose a rearrangement which is a compromise between the geometric
and random generation order: we form the blocks Yk, k = 1, 2, . . . , of marked sites
belonging to the same shell Q’(k) and arrange them by increasing superscript, but keep
inside each block the original generation order induced by ALG.

Thus we introduce an infinite sequence of finite sequences {(Yf;,  Y!J,  . . . , Y!!(k)) kzr, V
r(k) = r( k, w) is a random variable which counts the number of sites marked (“E” or “F”) _
in Q’(k). For every w and every k, Yf is an element, Uji’ of the sequence {U’}, with
S(Uji)EQ’(k) and U’ji being the i-th element in the sequence having this property. Let.us
consider the infinite sequence.

Y =(Y,‘,Yh  )...) Y~~,),Y:,...,Y~~,),Y~,...,...,Y~~,),..*) .

The next lemma is the crucial one to our result.-

REARRANGEMENT LEMMA: The sequence ( ( V(Yg , b = 1,. . . , r(a) ) , a = 1,2,. . .)
is a Bernoulli sequence of independent trials, with probability p for success.

* PROOF. The intuitive reason is that our rearrangement did not infringe or “ill-conditioned”
the basic rights of any sequence element to get to this position and mark it “F” or “E” in-
dependently with the correct probability. The proof is cast in an elementary form, similar
to the prt;:)f  of Doob’s result [Do 361 on the “futility” of gambling system, the way it is
presented in Feller [Fe 681. The situation here is much more general and we carry the proof

in detail.

We have to prove that for any s > 0 and 21,.  . . , z,eY

P(V(&)  = a1  A  l  l  l  A V(&) = CYJ =’ I-I paj.,
3-‘-1
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where CY~ is 0 (for “empty”) or 1 (for (‘full”) and

Pai = c&p + (1 - w>(l - P)*

The r(a)‘s  being random variables, we have to make sure, every time we use the symbol
Yi, that there is indeed a b-th element in block Y”, this is achieved by conditioning any
event containing the symbol Yi on the event {b 5 r(a)}. We introduced the following
abbreviations for denoting events:

A;’ denotes the event {S(YF) = S(&)}

”

”

{v(uk) = a}

{r(a) 2 b)
1 )  f o r  s = 1: we prove that for any a and b and for ~(0, 1)

P(*) =de j P(V(Yz) = alb < r(a)) = pa.

The event {V(Yi)  =-AA b < r(a)} is th- e union of the disjoint events AfbB& k = 1,2,. . . ,
thus

P(*) = &p(v(y;) = c~ A c:)
a

1=- 2 P(AEbB; Ci)
p(c:) k 1

00

p(;b)  ;: (
=- P AEbB;)

a k = l

The last transition is due to the fact that Agb C Cg and therefore AgbCi = Afb. . .
By definition, BE depends uniquely on the outcome of the k-th trial (uk), whereas

Agb  depends only on 771, . . . , u&r, since the site where the k-th marking is executed is
determined by the k - 1 preceeding  ones. Therefore BE and Agb are independent, and

P(*) -

The series is exactly the probability that the b-th marking in Q’(u) will eventually occur,
i.e. P(r(u) > b), and we get-

P(*) = -1 pcxP(c;)  =  p , .
pw

2) s = 2: We denote

P(**) =&j P(V(Yz)  = CY A V(Yz) = Plb 5 r(a), d < r(c)).
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Let E = E(ab,cd) denote the event that Y% prcceeds  Yz in ALG, i.e. if Y;(w) = U&)
and Yi(w) = Uj(w)  then k < j.

Clearly, if a = c, only one of the events E or E = E(cd, ab) can occur and we could
assume without loss of generality that b > d. For the general case, we have to split P(*t)
in two sums:

P(**) = p(C;Cd)[e 2 P(A;bB;b;A;dB;CzE)+  2 2 P(wE)]. .
a c k = l  j=l k = l  j=l

Let us denote the first sum P(**  1) and the second P(**2).  Like in 1) we use the facts that
Agb  C Ck and A;d C C$ For j 5 k AibAS,dE  = 8 and since for j > kAEbAE,d  C E, we
have for such j k j - kAabAcdE  - AabAcd  thusi f

P(**l)  = c c P(A;bB;A;dBf)
k=l  j = k + l

Like above, BP is independent of the other events, which are determined by the outcome
of the j - 1 first trials, thus we obtain

P(-1) = P(Bja)  c c P(A;bB;,I;:d)
k = l  j = k + l

= pp c P(A”kbB;)  c P(A;dlA;bB;)
k = l j = k + l

Now whenever the b-th site in Q’( )a is marked and whatever its value, the d-th site
in Q’(c) wi;f be marked sooner or later, if and only if T(C) 2 d and E is true. Thus for a
given AibBg,  the conditional probabilities of A;d for j > k add up to P( {r(c) 2 d)EICt).

’- Hence we get

P(4) =pp 2 P(A;bB;)P(C:‘CbE)&
k = l a

= P(C:C:E)papp,

by part 1) of this proof.
Similarly one proves that (Pi*2) = P(C~C~l?)p,pp,

hence

P(**) = lp(@, @)papfl  ['('tci E) + p(C,dCiFl = PaPP
a c

The identities for combinations of m variables are proved by induction on their number
by precisely the same arguments. We have to consider m! different sums, each of which
corresponds to one of the m! possible permutations giving the order in which the m
variables appear in the sequence {uk}.  This concludes the proof of the Lemma.
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To proceed to the BB density quotient, we want to omit a finite prefix (within a finite
cube) and re-index the rest of the sequence Y;(w) and

(CUX)n(L\K(w))={&i=  1,2,3...},

Where K(w) < oo is
from C U aC, where
72 > K(w)

the smallest w such that 'L\K( )w contains marked sites coming only
C(w) is the infinite cluster which ALG produces in w. Now for each

C(w) n[Qk4 \ Q(K(w))l  = c VP3 (1)
i=l

N&)
Ww> n[Q(4 \ QWh41 = c (1- V(K)) ’(1)i = 1

where
Nn(w) = number of sites marked in Q(n) \ Q(K(w)). (2)

The idea is that the perturbation of the finite cube Q(K(w))  is negligible for the infinite
C and dC. So studying (l),(l)) and their quotient is equivalent to studying t,Jw)/s,.Jw).
Our goal is to show that there exists a set of configurations 0” of measure 1 such that
pointwise  for we(n)”  .

3n(w)Vn  > n(w) 542 = l- ppm
log log GJJJ) 3

sn(w> sn(w> > (3)

(The big 0 represents a constant independent of w).

Let us first drop all those configurations w for which ALG does not find an infinite
cluster. The set of such w has measure 0 and we denote its complement in R by R’.-

The sequence {V(Y;)}& is a sequence of Bernoulli variables, thus for large enough
h(h depending on w), the h first variables of this sequence verify the strong law of large
numbers with a remainder term given by the law of the iterated logarithm, i.e., noting
that.E(V(x))  = p for all i, the foilowing inequality holds with probability 1:

< (2p(l-  p) log log h)I
2- h

Thus if we drop another O-probability set from R’, denoting what remains by a”, we have

VW&” 3h(w)Vh (h > h(w) =+ (4)).

Let WEP’ be given. This yields a finite value to the random variable. I< = K(w). The cube

QW-4) * 1 dmc u es all the finite clusters marked by ALG and their boundaries; any marked
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site not belonging to Q(K(w))  is in C(w) UX’(w).  Denote AK(W ) = IC(w)n Q(K(w))(.
Clearly, for n > K(w)

Nn (4
lC(-) Q(n)1 = AK(W) + c V(K) (6)

i= 1

We choose n(w) = 2 max(K(w),  h(w)). Then for n > n(w), Nn(w) > n/2 and therefore
Nn(w) > h(w). Dividing both sides of (6) by N,(w)  and using (4))  we get

p-R < lCnQb)l 5 AdW) +p+Rn- N4w) N,(w) n (7)
.

where Rn = [(2P(l- P) log log Nn(w))/Nn(w)]  8
As n increases, N,

sorbed by Rn' since A,
we have

(w) + co and AK(w) is 0(1/N,(w))  which for large n is ab-
> O(I/Nn(w))’ l Similarly, denoting BK(w)  = laC(w)  (I Q(K(w))l,

N&J)
ac(w)~Qb)l = BKb) + c (I- V(X))

i= 1

so that for large enough n .

I-p-O(Rn)<  'ac"Q(nJ!  <I-p+O(R,),-
Nn(W) -

Combining (7) and (8) and setting Q = 1 i p, R = O(R,)  for the ease of description, we’
get for large n

q--R < t, < q+R

But

p+R - Sn - p-R’ (9)

Q-R=
P+R

(
q-R 1- -

P
3(
I+;

>

= q--R( )(I R+R2 1 Q R- -  - -
P

.p p2 l .** =yp2- + O(R2)

-and
q+R

= z + R + O(R2).
P-R P p2

As R -+ O’with n + 00, O(R2) may be neglected, hence

I:-?1 <O(R)=o(n,)

Knowing  that  Nn(w),tn(w)  and ( )sn w are of the sadme size up to a factor, this is
equivalent to (3). Our proof is concluded.
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6. Concluding Remarks

If the infinite cluster is unique, then the function Rn(w), which counts how many sites
are marked by ALG in Q(n), has a sharply determined positive density (and as we have
noted, the proof of the BB-density-quotient is obtained by a simple application of the
Ergodic Theorem [NS]. Conversely, proving or assuming certain facts about R,(w) will
imply uniqueness [KS].

By taking the quotient of densities of ad and C the factor R,(w) is cancelled and
we proved (using ALG) Th eorem 1 for any cluster, without uniqueness. The importance
of studying the properties of infinite clusters is that in doing simulation and experiments
with finite lattices one never knows whether he measures a large finite cluster or part
of an infinite cluster. This does not matter provided one proves that the asymptotics of

*size-n-clusters [ADS 801 coincides with that of the expanding “cubic” sections of infinite
clusters. The connection with the formulation of the ergodic theorem is clear, but the
theorem itself cannot be applied, because of a random behavior of R,(w) or irregularities
of the lattice L, while the algorithmic method and the rearrangement Lemma do apply,
here and perhaps in similar situations.
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