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§1 Introduction

The r-Stirling numbers represent a certain generalization of the regular Stirling numbers,
which, according Lo Tweedic [26], were so named by Nielsen [18] in honor of James Stirling,
who computed them in his “Methodus Differentialis,” [24] in 1730. In fact the Stirling nurnbcrs
of the first kind were known Lo Thomas Herriot [15]; in the British Muscurn archive, there is a
manuscript (7] of his, dating from around 1600, which contains Ihc expansion of the polynomials
(’,:) for k < 7. Good expositions of the properties of Stirling numbers arc found for example
in [4, chap. 5],[9, chap. 4], and [22].

In this paper the (signless) Stirling numbers of the first kind are denoted[]; they are
defined combinatorially as the number of perrnutaions of Ihc set { 1,...,n}, having m cycles.
The Stirling numbers of the second kind, dcnoled {7}, are equal to the number of partitions
of the set {1,...,n} into m non-empty disjoinl sets. The notation [] and {} seems to be
well suited to formula manipulations. It was introduced by Knuth in [10,§1.2.6], improving
a similar notational idea proposed by I. Marx [20]. The r-Stirling numbers count, certain
restricted permutations and respectively restricted partitions and are defined, for al positive
r, as follows:

= having m cycles, such that the numbers 1,2,...,r are (1)

{n} The number of permutations of Lhc set {1,...,n}
™l in distinct cycles,

and

= m non-empty disoint subsets, such that the numbers (2)

1,2,...,r are in distinct subsets.

{n} The number of partitions of the set (1,. . . ,n} into
m

There exists a one- to-one correspondence between permutations of n numbers with m cycles,
and permutations of n numbers withm lefl-to-right minima. (This corespondence is itnplicd in
[22, chap. 8] and formalized and generalized in [6].) ‘10 obtain the image of a given permutation
wilh m cycles put the minimum number within each cycle (called the cycle leader) as the
first element of lhc cycle, and list al cycles (including singletons) in decrcasing order of their
minimum clement. After removing parentheses, the resull is a permutation with m left-Lo-right
minima. If the nurnbers I, .. .,» arc in distinct cycles in Lhc given permutation, then they
arc all cycle leaders andthe last rleft-to-right minima in Ihc image permutationare exactly
r,r—1,..., 1 ‘I"hcrcforc wc have Ihc alternative definition

The number of perrnutalions of the nurnbers 1,. . ., n
[q‘ having m left-to-right, minima such that the numbers (3)
, = 1,2,...,7 arc al left-to-right minima (or such that
thenumbers 1, 2, ..., r occur in decreasing order).

Iach non-emply subscl in a permutation of an ordered set has a tninirnal clement; apartlition
of the set {I,...,n} into m non-einpty su bscts has m associated minimal clements. This
terminology alows thealternative definition

= into mnon-empty digoint subscts, such Lhat the num- (4)

{n} The number of ways Lo partition the set {1,..., n}
™lr bers 1,2,...,rarcall tninirna elements.
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Note that the regular Stirling numbers can be expressed as

W=l =1, 8
A P I B

Another construction that turns out to be eguivalent to the »-Stirling numbers was recently
discovered by Carlitz[2],[3], who began from an entirely different type of generalization,
weighted Stirling numbers. AlsO equivalent are the non-central Stirling numbers studied by
Koutrns [17] starting from operator caculus definitions (sec section 12). The simple approach to

be dcvclopcd here leads to further insights about these numbers that appear to be of importance
because of their remarkable properties.

and aso as

§2 Basic recurrences

The r-Stirling numbers satisfy the same recurrence relation asthe regular Stirling numbers,
except for the initial conditions.

Theorem 1. The r-Stirling numbers of the first kind obey the “triangular” recurrence

n
= 0, n<r,
-m_r
o
ml = Oom,rs n=r, (7)
L™ " dr
n] n—1 n—1
_——(n—l)[ ]—{-{ ], n>r.
m], . m | |m—1]
“Proof: A permulation of the numbers 1, . . ., n with m left-to-right rninima canbe formed from
apermutation of Lhc numbers 1, ..., n — 1 with m left-to-right minima by inserting the number
n after any number, or from apermutation of the numbers 1,. . . , n — 1 with m —1 left-to-right

minima by inserting the number n before all the other nurnbcrs. I'or n > 7 this process does
not change thelast r left-to-right rninima. R

Theorem 2. The r-Stirling numbers of the second kind obey the “¢riangular” recurrence

{n} =0, n<r,
m r

{n} z‘sm,r; n=r, (8)
m ,

=1m + , n>r.
mj, m ), m—1}J,



Proof: A partition of thesct{l,...,n} into m non-empty subsets can be formed frorn a

partition of theset (1,..., n— 1} into m non-empty subsets, by adding the number n to any
of the m subsets, or from a partition of theset{1,...,n—1}into m — 1 non-empty subsets,
by adding the subset {n}. Obvioudy, for n > r this process does not influence the distribution
of the numbers 1,...,r into different subsets. &

The following special vaues can be easily computed:

- e

AR
[’:] O e (1)
oo -

The r-Stirling numbers form a natural basis for al sets of numbers {a,x} that sdisfy the
Stirling recurrence except for a,,,. That is, the solution of the Stirling recurrence of the first
kind

A =10 n <0
kT ’ (13)
An,k = (" - 1)Gn—1,k + Gn1,k—1, k 7’5 n,n >0,
is
n
An k = Z [k:lr(a'r,r - ar~—l,r—l)' (14)
Sirni larly, the sol u tion of
bn =0 n < 0
k y ’ (l 5)

bn,k - kl)'n---—l,k + b'n—l,k~—l; k ?é n,n 2 0,

n
bn,k = Z{k} (br,r - br—-l,r—-l)- (16)

T

For concrcteness, the following tables were computed using Ihc recurrences (7) and (8).

_}’_.



[:IJ1 k=1k=2 k=3 k=4 k=5 k=6 {:}1 k=1k=2 k=3k=4k=5k=28

n=1 1 n=1 1

n= 1 1 n 2 1 1

n 3 2 3 1 n 3 1 3 1

n 4 6 11 6 1 n=4 1 7 6 1

n=2>5 24 50 35 10 1 n=>5 1 15 25 10 1

n 6 120 274 225 85 15 1 n 6 1 31 90 65 15 1
Table 1. r=1

[ZIJ k=2 k=3 k=4 k=5 k=6 k=1 {:} k=2 k=3 k=4 k=5 k=6 k=717

2 2

n=2 1 n =2 1

n 3 2 1 n= 2 1

n=4 6 5 1 P 4 5 1

n = 24 26 9 1 n = 8 19 9 1

n—6| 120 154 71 14 1 n=6| 16 65 55 14 1

n 7 720 1044 580 155 20 1 n 7 32 211 285 125 20 1
Table 2. r=2

[, k=3 k=1k=5 k=6 k=7 k—3 {3} [k=8 k=t k=5 k=6 k=7 k=38

n-—": 1 n=3 1

n=4 3 1 n=414 3 i

n=35 12 7 1 n=2>5 9 7 1

n=—=~6 60 47 12 1 n = 27 37 12 1

n=7 360 342 119 18 | n=7 81 175 97 18 |

n =28 2520 2754 1175 245 25 1 n=—38§8 243 781 660 205 25 1
Table 3. r=3



§3 “Cross’ recurrences

The “cross’ recurrences relate r-Stirling numbers with different r.

Theorem 3. The r-Stirling numbers of the first kind satisfy
n 1 n n
m], r—1\[m—1f, _, m—l‘r

Proof: An alternative formulation is -

et = bl

The right side counts the number of permutations having m —1 cycles such that 1,...,r—1
arc cycle leaders but r is not. This is equal to (T_J)[:.], since such permutations can be
obtained in r— 1 ‘ways from permutations having m cyeles, with 1,. . ., r being cycle leaders,
by appending the cycle led by » a the end of a cycle having a smaller cycleleader. &

.
r

Theorem 4. The r-Stirling numbers of the second kind satisfy

{:;}r - {::l}r——l —(r— 1){n;l l}r oo >r> 1 (18)

Proof: The above equation can be written as

e-of" ={ - nh

The right side of the equation counts the number of partitions of (1,. . ., n} into m non-empty
subsets such that 1, . . . ,7— 1 are minimal clements bul » is not. But this number is cqual
- to (r — l){";l‘}r_l because such partitions can be obtlained inr— 1 ways from partitions of

{t,...,n} —{r} into m non-emply subscts, such that, 1, . . . , r— L arc minimal, by including =
in any of the 7 — | subsecls containing a smaller clement. &

§4 Orthogonality

The orthogonality relation between Stirling numbers gencralizes to similar relations for
r-Stirling nurnbcers.



Theorem 5. The r-Stirling numbers satisfy [2,eq.6.1]

T i

& 0, otherwise.

Proof: By induction on n. For n < r the equality is obvious. Forn =r

] ) o - ol - e

For n > r, using Theorem 1 and the induction hypothesis

> [:],{:L},("”k EUCSIETEDS [Z - ﬂ{ £ }r(—n’z

k

and (assuming m >r) by Theorem 2 applied to the right sum, and the induction hypothesis

= On,m(—1)".
|

Ilence for each r,the r-Stirling numbers form two infinite lower triangular matrices satis-

fying
7 . (= :
H (—1y ] x {} . PRt | (20)
Jly 1),
where
1, i >
512] = . .
0, i< j

_and we also have

Theorem 6.

S - e

0, otherwise.

These orthogonality relations generalize as shown in scetion L1,

§6 Relations with symmetric functions
The Stirling numbers of the first kind, [:1], for fixed n, ae theclemen tary sy mmetric

functions of the numbers 1, ..., n(sce,e.g., [4] or [5]). The r-Stirling numbers of thefirst kind
arc the elementary symmetrie functions of the numbersr, ..., n.

o



Theorem 7. The r-Stirling numbers of the first kind satisfy

= E 1182 . . . i, n, m > 0. (22)
n- mlr r<t; <igzg-<tyy <n

Proof: Consider a permutation of the nurnbers 1, . . ., n having n — m left-to-right minima
How many such permutations arc there that have a given set of minirna? Denote the numbers
that are not rninima by 7,,1s,...,%,, Where 7, <iy <...< 1, < n. A perrnutation with
the preseribed set of left-to-right minima can be constructed as follows. write al the minima
in decreasing order; inscrt ¢, after any of the 7; — Lminima less than 7;; insert 75 after any
of the i3 — 2 minima less than 1q, or after 7;; etc. Clearly there arc 1, — 1 ways of inserting
i1, 19 — 1 ways of inserting ¢, and so on. Hence the total nurnber of permutations with the
given minima is (¢; —1)(zg— 1). . . (i, — 1). If the numbersl,...,r arc minima, then iy > r.
Surnming over al possible sets of left-Lo-right minima we get

[I"I _l = Z (’Ll—l)(’tg—l)...(l,—-l)
T r<i<iz-<im<n n,m>0
= > T

r<i <dz <t <n

The above theorem can aso be proved by induction, but, it iS more interesting Lo scc the
combinatorial meaning of each term in the sum. Tts counterpart for r-Stirling numbers of the
second kind is

Theorem 8. The r-Stirling numbers of the second kind satisfy

+ .
{n m} = Z 1112 . . Tom, n,m> 0. (23)
r

n
r<i < <im<n

Proof: Count the number of” partitions of theset {,..., n + m} into » non-empty subscts, when
the n minimal clements are (ixed. Denote Lhe elements that are not minimal by =,,. . ., Tn,
whore z;<...<uz,. |1’ weleti; be the number of minimal clements less than z;, then
1 g <o < pm < n. Clearly z;can belong only Lo subsels having a minimal clement
less than it, S0 that therc are 7; ways Lo placeit. [lence the total number of partitions with a
given sct of minimal elements iS2y7g.. . i,. If the numbersl, . . ., arc all minimal clements,
then ¢y >r. Summing up over al possible sets of minimal elements completes Lhe proof. §

Therefore Lhe r-Stirling numbers of the second kind, {"J;m}', arc the monomial symmetric
functions of degreem of theintegers T, ..., N

-8 -



§6 Ordinary generating functions

Corollary 9. The r-Stirling numbers of the first kind have the “horizontal” generating
function

Z(z+r)(z+r+1)...(z+n—1), n>r>0;

Sl | &

0, otherwise,

Corollary 10. The r-Stirling nymbers of the second kind have the “vertical” generating
function (2, eq. 3.10]

Zm
>r >0
E:{k} =0 (L=r2)(L=(r+1)z)...(1 —mz)’ m2r20; (25)
m
k. v 0, otherwise.

The above identities follow immediately from equations (22) and (23).

§7 Combinatorial identities

Lemma 11.

A\

3
A\
<o

(26)

[n} (n_r)[n_p—k] ‘
= E : D, r
m], p k m-p |,_,

Proof: To form a permutation with m cyeles such thatl, ..., r are cycle leaders first choose
"k numbers to be in theeyclesled by 1, . . ., p and construct these cycles; this can bc done in
(“;*>["a’], ways. The remaining n-p-k numbers must form m-p cycles such that p+1,. ..,

arc cycle leaders, which can be clone in [*~P 7%
m

- ] _, Ways. Using equation (11)and summing for

al & completesthe proof. @&

In particular for p = r we obtain a definition of r-Stirling numbers of the first kind interms
of regular Stirling numbers of the first kind [2, cq. 5.3],

m _y (n h r)[n;r_ - k]rz ~y (n - T)[mk— T]T;::_—k' (27)

k k

m-+r

This shows that [%7] , for m,n> 0 is a polynomial of degrecen —m in r with leading

cocflicient, (:L) and Lemma L L ean be generalized to @ polynomial identitity in p and 7:

~ 9 _



Theorem 12.

], ;(Z)[n;i;p],(’ -9 (28)
|

For p = r— 1 we get another “cross’ recurrence

[ZJ, =2 (n k )[n; o k],_l’”- (29)

k

Recall that [], =[], for n > 0, so that

[:1] =2 ("; l)["; 1—_1 k]k!’ n > 0, (30)

k

an identity that appears in Comtet [4, eqg. 5.6¢], and aso in Knuth [10, eq. 1.2.6(52a)).

Lemma 13.

Y S e

k

Proof: By combinatorial arguments analogous to the proof of Lemma 11. |

The counterpart of cquation (27) is {2, cq. 3.2

{Z}, > (n k r){mk_ r}f"_'""» (32)

which shows that {47} , for m, n>01is aso a polynomia of degrec n-m in r, whose leading

coclficient is (:;) Aslexre this implies a generalization of Lemma 13:

IS 51 AR TR -

Theorem 14.

The counterparts of cquations(29) and (30) are

AT 5 (g ity D o] (o Sy SR
S G 9

which is a well known expansion.

and

~ 10 --



§8 Exponential generating functions

Theorem 15. The r-Stirling numbers of the first kind have the following “vertical” exponen-
tial generating function

> [’C + T] 2 _ 'nl?(l . z)r('"(f“l";))m’ m 20 (36)

- m+r] k!

0, otherwise.

Proof: The above exponential generating function can be decomposed into the product of two
exponential generating functions, namely

() =l

and

Their product is

N

2™ n\| k ik 2" n+r
zn: n! 2,; (Ic)[m]’r B Z n! [m + T]r
by equation (27). &

The above theorem’irnplics the double generating function (2, eq. 5.3

’ k r+4t
3 k) Zm (LY (37)
m+r| k! 11—z

k,m

Theorem 16. The r-Stirling numbers of the second kind have the following exponential
. generating function [2, eq. 3.9]

|
k . Tz eZ — l m. m > 0,
IR A P (=17 =" (38)
m+rf, k! )
0, otherwise.

Proof: Similar to the the proof of Theoremll, using the expansions

k
rz __ k<
[ = s ’k—',
P :

and

1, ., m k) z*
m!(e - = zk: {m}?cT’
together with cquation (32). R

- 11 —




The double generating function for r-Stirling numbers of the second kind is

k+r) 2* m 2 '
’;n { m T}r Et = exp(t(e* — 1) + rz). (39)

§9 ldentities from ordinary generating functions

Theorem 17. The r-Stirling numbers of the first kind satisfy

[:;]=Z[pfk][m1 k], TSPsm™ (40)

k

Proof: From equation (24)

FP(z ). (24 p—1)= Z,c:[pfklz_k'

Express the product

2 P(z+7r). . (z+p—1)P " (z+p)... (2 + n—l):Z[ " ]z—*

n—k
k

as the convolution of the two generating functions and equate the coefficient of 2™~™ on both
sides. |

Theorem 18. The r-Stirling numbers of the second kind satisfy

o 1 i IR o

- Proof: From (25)

1 _ n+k o
(1 —r2)...0—=pz)(1—(+1)z). ..(1 —nz) ;{ k } '

Expressing this product as a convolution wc obtain

- st
n r k p r n p+l’

and the theorem follows by suitable changes of variable.

- 12 -



Theorem 19. The r-Stirling numbers of the first kind satisfy

(_1)'[;], -3 [m - . ’CL{f: ;}P(—.l)k, n>r>p >0 (42)

k

Proof: From equation (24)

N m_ r o Z(z+p) .. (2+n-1)
Z[mlz =2(z+71). .. (z+n-1) = GCop) . (arro1) n>r>p>0.

m

Lett = -1/z. Then

Zr = L — r—1 1’ —1
Gtp) . (rr—D (=py.. . (=(=Dy - (72 Z:{T_l}P(—Z)

by equation (25). Hence™

;L’;sz=2{ril},,<—z>'~‘-tzu
== IZ Z{r—l}[ —7'+l+/cl( n*

pu

In particular for p = 0 we have an alternative expression for the r-Stirling numbers of the
first kind in terms of regular Stirling numbers of both kinds,

(_1)7[::JT — ;[m U S Rt (13)

This, combined with (27), gives an identity involving only regular Stirling numbers

SRS S Piel S

'k
The last equation is a polynomial identity in r.For» == 1, we obtain equation (30) again.

Theorem 20. The r-Stirling numbers of the second kind satisfy

(‘”'{;},:; [0 _;Jrk}p(—l)", S n2rzp2>o0 (15)

- 13 -



Proof: The ordinary generating function of the r-Stirling numbers of the second kind can be
rewritten as

zm _2™(1-p2)...(1—(r—1)2)

(1—7r2)... (1 —mz2) (1—pz)...(1—mz)

Putting t = —1/z
(1=pz). (1= (r=1)2)=t?""(t+p).. (t+r=1)= Zm (=2,
i p
so that

L -l e

n J

and the result follows by equating the coeflicient of 2™ on both sides. §
The counterpart of equations (43) and (44) is obtained by making p = 0 in (45). We get

oSl e e

k

the alternate expression for r-Stirling numbers of the second kind in terms of regular Stirling
numbers of both kinds. This formula combined with (32),gives an identity in regular Stirling

numbers only:
S = e ez -

k k
which is a polynomial identity in ».Forr =1, this is equation (35).

Theorem 21. The r-Stirling numbers of the first kind have the “horizontal” generating
function (2, eqg. 5.8]

(x + )7 = Z["H]rz", n>0. (48)

- k+r

Proof: Replacing in equation (24) n by n +r and z by X, we obtain

n+r ’ -
Z[ k },xkz“‘(“f) ,

k

and the result follows. §

Note the equivalent formulation of Theorem 48

(z—7r)%= ;[:ﬂfjr(—l)"_kzk, n>o. (19)

-1} -



Theorem 22. The r-Stirling numbers of the second kind have the “horizontal” generating
function (2, CQ. 3.4]

(x+7)" = ;{:::}z&, n> 0. (50)

Proof: Usc the identity

t _ 1\k, .k
e(z+r)t — ert(l + (et—- 1)):1 — ertz (e 1) T

!
=0 k!

and Theorem 12, to obtain

xz r +
SRV D £

n>0

The equivaent forrn of Theorem 50 is

n __ n+r n—k_ k
z—7r) = —1 z", n 2 0. (51)
e =i T e

§10 ldentities from exponential generating functions

The following two theorems are an immediate consequence of the generating functions (36)
and (38).

Theorem 23. The r-Stirling numbers of the first kind satisfy

(l+m)[ n+r+s _Z w\[k+7] [n—Fk+s (52)
m l+m+r+sr+s_ EJIL+7],l m+s s'

k

Theorem 24. The r-Stirling numbers of the second kind satisfy [2, eq.3.11]
[+m n+r+s __Z n\[fk+7] [n—k+s (53)
m l+m+'r+sr+s_ —\kJU+r) L m+s .

- 15 -



These theorems have also a combinatorial interpretation. For Theorem 23 consider per-

mutations of the set (1,. . ., n + r+s} such that 1,...,r +s are in distinct cycles, each cycle is
colored either red or green, the cycles containing 1,. . . , r arc al green, and the cycles containing
r+1,...,r+s ac dl red. The total number of such permutations with I+ r green cycles and
m + sred cycles is (‘"h)[, 5 ELL),,, because each permutation with I+ m + 7 +s cycles can
be colored in (’tn"‘) ways. On the other hand, we can first decide which k elerncnts, besides
1,...,r, should be in the [ + r green cycles; the remaining N — k + s elements must form the

m + s red cycles. Theorem 24 has a similar intcrprctation.

§ 11 Generalized or thogonality

Theorem 25. The r-Stirling numbers satisfy [2, eq. 6.3]

Sl it eve=com (e - (54)

k

St e o= om0 e - (55)

k

Proof: By (48) and (51)

MRS ¢ S S IR 6 K

Equation (54) is obtained by comparing the coeflicient of z™ on both sides. Similarly, consider
the identity (from (50) and (49))

eorer =T et =2 Sl

k k T

- and equate the coefficient of z™ on both sides to obtain (55). &

§ 12 The r-Stirling polynomials

We have seen that the r-Stirling numbers are polynomias in r. The r-Stirling polynomials
are defined for arbitrary x as

Ry(n,m,z) =Y (Z)[n B k]zF integer m,n > 0, (56)
k

m

- 16 -



and

n\[n—k| & .
Ry(n, m, )= zk:(k){ . }z integer m,n > 0. (57)
In particular, by equations (27) and (32), when r is a positive integer, Ry(n, m, r)=["%"] and
Ra(n, m, r) = ;t_"}

The r-Stirling polynomials have a combinatorial significance given by the following two
theorerns.

Theorem 26. The polynomial Ry (n, m, x) enumerates the permutations of the set
{1, ..,n+1} having m+1 left-to-right minima by the number of right-to-left minima different
from 1.

Proof: Expanding raising powers, we get

wieerd= D)= S

il

All the left-to-right minima except 1 must occur a the left of 1, while al right-to-left minima
except 1 must occur a the right of 1. Hence the number of permutations having m + 1 left-
to-right minima, i +1 right-to-left minima, and k elements a the right of Lis(})["..*][¥]-

Note that by Theorern 23 used in the above expansion we obtain

Ry(n, m,z) = Z(m,: 1)[m"l i]x". (58)

B

Theorem 27. The polynomial Rs(n,m, x) enumerates the partitions of the set {l,. .., n+1}
into m non-empty subsets, by the number of elements different froml, in the set containing 1.

Proof: Obvious, from definition (57). 1

The r-Stirling polynomials have remarkably simple expressions in operator notation, which
generalize the well known formulae for regular Stirling numbers.

Theorem 28.
1 o™

Ri(n,m,z) = — ——- g™ (57)
m! dz™
Proof: From (48)
am - am
! = K/ n e "
m!Ry(n, m, ) (')ym(z +9) . :met

-1 -



Theorem 29.
1
Ry(n, m, x) = —A™z"™. (60)
m!

Proof: Similar to the proof of Theorem 28. A direct proof is based on combining (8) and (18)

to obtain
{n+r} =(m+l){n+r—‘1} ‘+{n+r—1} ,
m+r), m+r ) m+r—1) _,
which implies
ARy(n,m — 1, X) = mRy(n, m, z)

and therefore
A™z™ = A™Ry(n, 0, X) = m!Ry(n, m, X).

(2, cg. 3.8]

Ry(n, m, z) = Z( )(—lm k(z + k)™
g

Corollary 30
(61)

Proof: Use the formal expansion
Amz Z( ) m kEk,
k

where E is the shift operator, Ef(x) = f(z +1). 1

Because of these properties the r-Stirling polynornials, especialy the r-Stirling polynomials

of the second kind, were studied in the framework of the calculus of finite differences. Nielsen

[19, chap. [2]developped a large number of formulae relating RRo(n, m, Xx) to the Bernoulli

~and Euler polynomials. (Nielsen's notation is A 2 (x) = m!Ra(n, m, x).) Carlitz[3] showed

by different means that the »-Stirling polynomials are related to the Bernoulli polynomials of
— k, x) and of Ry(n,n — k, x) as -

higher order and aso studicd the representation ol 12y(n, n
polynomials in n. ‘The asymptotics of t h e numbers {"‘“} were derived in [8]. Broder [1]
oblained several formulas relating r-Stirling polynomials of Lh( sccond kind to A belian sums

[23,§1.5], for example

"kz+y + n)*Ry(k+p k),  p>o0. (82)

S (e e ner =2

k k k
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$13 T-Stirling numbers of the second kind and Q-series

Knuth defined' the Q-series as

n _
Qnlar,az,...) = (k)k!n kay. (63)
k>1
For a certain sequence al, ag, . . ., this function depends only on n. In paticular, @a(1,1, 1, ...)

is denoted Q(n).

Q-series arc relevant to many problems in the analysis of algorithms [13], for instance
representation of equivalence relations [16], hashing [ 12, §6.4], interleaved memory [ 15], labelled
trees counting [21], optimal cacheing[13], p grmutations in situ [25], and random mappings [11,
§3.1].

It can be shown that the Q-series satisfy the recurrence

Qn(a172a2;3a37“' ) = nQ’ﬂ(alra2 —a,03 —02,...)_ (64)

Theorem 31.
h h+1 ant
)= —_. 65
Qn({l}rﬂ{ ! } )= (65)

Proof: Note that from (8)

k+h k+h—1 k+h—1}
—_ =k
2 k—1 J, k ,

for dl k> 0if h > 0. Applying this together with (64) h — 1 times, we obtain

L el )

— nhthn((le” 2622,, .o )

One more application of (64) for » > 0 results in

'rz”(gn(§1,,,52,,, L )=at—

and for r = O results in

ntQ.(1,0,0,...)=n"

~ 19 -



Corollary 32. Let

s =af" 7,

r

where a, depends only on r. Then
Qn(f(l)y 2f(2)1 3f(3)7 e ) = nh(Qn(ah az,asg,. . ) aO)- (66)
]

In [13] Knuth introduced the half integer Stirling numbers {**!/2}. These numbers satisfy
the recurrence

{n +k1/2}
() e

which has the form of (15) and therefore has the solution

{n +k1/2} _ > {:}r (68)

r>1

1/2
{"+/}=0, n <0,

n, n >0, (67)

Hence, by Corollary 32

Qn({h +11/2}, 2{" f“23/2}, . ) — 1P Qu(1, 1,...) = nhQ(n), (69)

which is in fact the equation used to define the half-integer Stirling numbers in [13].

Acknowledgement

I wish to thank Don Knuth for his continuous support and encouragement and for his
thorough reading of the manuscript which resulted in numerous corrections and improvements.

References

(1] A.Z. Broder, (‘A general expression for Abclian identities,” CSD report, Stanford
University, to appear.

[2] L. Carlitz, “Weighted Stirling numbers of the first and second kind -- 1,” The Fibonacci
Quarterly, 18(1980), 147 162.

- 90 -



[3]
[4]

[6]
[7]
8]
[9]
[L0]
(11]
[12]

[13]
[14]

[15]
(16]

[17]

[18]

[19]
[20]

[21]
22]
23]

L. Carlitz, “Weighted Stirling numbers of the first and second kind -~ IT,” The Fibonacci
Quarterly, 18(1980), 242- 257.

L. Comtet, Analyse Combinutoire, Presses Universitaire de France, Paris, 1970.
Revised English trandation: Advanced Combinatorics, Reidel, Dordrecht/Boston, 1974,

F.N. David, M.G. Kendall, and D.E. Barton, Symmetric Functions and Allied Tables,
Cambridge University Press, Cambridge, 1966.

D. Foata, “Etude algébrique de certain problemes d'analyse combinatoirc et du calcul
dcs probabilités,” Publ. Inst. Statist. Univ. Paris, 14(1965),81--241.

T. Herriot, Manuscript Add6782.111F, British Museum Archive.

G.l. Ivchenko and Yu.l. Mcdvedev, “Asymptotic representations of fini tc differences of
a power function at an arbitrary point,” Theory of Probability and its Applications,
10(1965), 139-144.

C. Jordan, Calculus of Finite Difference, Chelsea, New York, 1947.

D.E. Knuth, The Art of Computer Programming, Vol. 1, Second edilion, Addison-
Wesley, Reading, Mass., 1973.

D.E. Knuth, The Art of Computer Programming, Vol. 2, Second edition, Addison-
Wesley, Reading, Mass., 1981.

D.E. Knuth, The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading,
Mass., 1973 .

D.E. Knu th, “The analysis of optimum cacheing,” to appear in Journal of Algorithms.

D.E .Knuth, Review of the book History of Binary and other Nondecimal Numeration
by Anton Glaser, to appear in Historiu Mathematica.

D.E. Knuth and G.S. Rao, “Activity in an in terlcaved memory,” IEEE Transac tions
on Computers, C-24( 1975),943- 944.

D.I5. Knuth and A. Schonhage, “The expected linearity of a simple equivalence algo-
rithm,” Theoretical Computer Science, 6(1978),281-315.

M. Kou tras, “Non-central Stirling numbers and some applications,” Discrete Mathe-
matics, 42( 1982), 73--89.

N. Nielsen, Handbuch der Theorie der Gummufunktion, B.G. Teubner, Leipzig, 1906.
Reprinted under the title: Die Gammufunktion, Chelsca, New York, 1965.
N. Niclsen, Traité Elémentaire des Nombres de Bernoulli, Gauthier-Villars, Paris, 1923,

[. Marx, “Transformation of series by a variant of Stirling’s nurmbers,” American
Muthemuticul Monthly, 69(1962), 530 -532.

J.W. Moon, Counting Labelled Trees, Canadian Mathematical Monographs, 1971.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.
J.Riordan, Combinatorial Identities, Wiley, New York, 1968.

21 -




[24] J. Stirling, Methodus Differentialis, Sive Tractatus De Summatione et Interpolazione
Serierum Infinitorum, London, 1730.

(25] Stanford Computer Science Department, Qualifying examination in the analysis of
algorithms, April 1981.

[26] C. Tweedic, James Stirling, A Sketch of his Life and Works, Clarcndon Press, Oxford,
1922.

- 22 -






