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$1 Introduction

The r-Stirling numbers represent a certain generalization  of the regular Stirling numbers,
which, according Lo Tweedic [26],  were so named by Nielsen  [18]  in honor of James Stirling,
who computed them in his “Methodus Viflerentialis,” [24]  in 1730. In fact the Stirling nurnbcrs
of the first kind were known Lo Thornas  IIcrrioL [15]; in the Uritish Muscurn archive, there is a
manuscript [7] of his, daLing from around 1600, which contains lhc expansion of the polynomials
(i) for k 5 7. Good expositions of the properties of Stirling numbers arc found for example
in [4, chap. 51, [9, chap. 41, and [22].

In this paper the (signless) Stirling numbers of the first kind are denoted [z]; they are
defined  cornbinalorially  as the number of pcrrnutalions of lhc set { 1,. . . ,71}, having m cycles.
The Stirling numbers of the second kind, dcnolcd {z}, are equal to the number of parLiLions
of t;hc set (1,. . . , n} into m non-empty dis join1 sets. The notation [] and {} seems to be
well suited to formula manipulations. It was inlroduccd by Knuth in [lo, $1.2.61,  improving
a similar notational idea proposed by I. Marx [20]. l‘he r-Stirling numbers count, certain
restricted permutations and respectively restricted partitions and are dcfincd, for all positive
7, as follows:

T h e  number of pcrmulations of Lhc set {I,. . . ,n}
= having m cycles, such lhal the numbers 1,2,.  . . , T are

in distinct cycles,
(1)

and

The number of partitions of the set (1,. . . ,n} into
= m non-cmpLy disjoint subsets, such that the numbers (2)

r 1,2,..., T are in distinct subsets.

There exists a one- to-one correspondence bclwccn pcrrnu tations  of n numbers with m cycles,
and permutations of n numbers wiLh 7r1 IcfL-Lo-right minima. (This corcspondcncc is itnplicd in
122, chap. 81 and forrnaJizcd and gcncralizcd in [t;].)  ‘Io obtain Lhc image of a given permutation
wiLh m cycles put the minitnurn  nutnbcr wiLltin each cycle (called the cycle leader) as the
lirst clctncnt of lhc cycle, and list all cycles (irlcluding  singletons) in dccrcasittg order of their
minimum clcrncnL. AfLcr  rctnoving parcnlhcscs,  Lhc rcsull, is a pcrrnuL;~t;ion  wiLh m lcll-Lo-right
minima. If the nurnbcrs 1, . . . 7 T arc in distinct cycles in Lhc given pcrrnutation, then they
arc all cycle leaders ;md the last r left-to-right  rnittitna  in lhc itnagc pcrtnut~at~iott  iirC  exactly
r,r - l,..., 1. ‘I’hcrcforc WC have lhc alLcrn:~t,ivc  dcfinilion

The number of pcrrnutalions of the nurnbcrs 1,. . . , n
n[ 1 havi~tg  m Icl’t-t,o-righi,  tninirna  such Lhat the nutnbcrs
m r = 1,2,... 7 T arc all left-to-righl rninitna (or such that (3)I

Lhc tiutnbcrs  1, 2, . . . 7 7 occur in dccrcasittg order).

Each non-cmpLy subscl,  in ;‘I pcrtnutation  of an ordcrcd set has a tninirnal clerncnt;  a parlition
o f  the se t  {I , . . . , n} into m non-crttpty su bscts has m associaled minimal clcrncnts. This
tcrtrtirtology  allows the altcrnativc definition

n

0

The number of ways Lo parLiLion  the set (1’. . . 7 n}

7n
= into wl non-crnpty disjoint subscLs,  such that Lhc num- (4

r bcrs 1,2,..., T arc all tninirnal clctncnls.



Note that the regular Stirling numbers can be expressed as

[:]=[:]o) {l}$},

and also as

(5)

(6)

Another construction that turns out to be equivalent to the r-Stirling numbers was recently
discovered by Carlitz  [2],[3], who  began from an cntircly  different type of gcncralization,
weighted Stirling numbers. Also equivalent are the non-central Stirling numbers studied by
Koutrns [17]  starting from operator calculus definitions (see section 12). The simple approach to
be dcvclopcd here leads to further insights about thcsc  numbers that appear to be of importance
becalrsc of their rcmarkablc  properties.

$2 Basic recurrences--.

The r-Stirling numbers satisfy the same recurrence relation as the regular SLirling numbers,
except for the initial conditions.

Theorem 1. The r-Stirling numbers of the first kind obey the %iangulur”  recurrence

n

[I
= 0,m r

n

[I
= 6

m m,r)
r

n < r,

n = r, (7)

- Prool’: A pcrmul,aLion  of the numbers I, . . . , n with rr~ left-to-right rninima can be formed from
a pcrrnutation  of Lhc numbers 1, . . . , n - 1 wit,h VI Ieli-Lo-righI  minima by inscrling  t,he number
n after any number, or from a pcrrnlltation  of t,hc numbers 1,. . . , n - 1 with m - 1 left-to-right
minima by inserting the number n, before a11 the other nurnbcrs. For n > r this process does
not <:hangc the last T left-to-right  rninima. 1

Theorem 2. The r-Stirling numbers of the second kind obey the “triangulur”  recurrence

(8)



Proof: A partition of the set (1,. . ., n} into m non-empty subsets can be formed frorn a
partition of the set (1,. . . , n - 1) into m non-empty subsets, by adding the number n to any
of the 7rz subsets, or from a partition of the set { 1,. . . , n - 1) into m - 1 non-empty subsets,
by adding the subset {n}. Obviously, for n > r this process does not influence the distribution
of the numbers I,. . . , T into different subsets. H

The following special values can be easily computed:

[;]r={;}r=o, m>n; (10)

n

[I
= n > r;

5
(n-l)(n-2)...r=r”-‘, _ (1 L)

(12)

The r-Stirling numbers form a natural basis for all sets of numbers {a,+} that salisfy the
Stirling recurrence except for un,n. That is, the solution of the Stirling recurrence of the first
kind

%a,k  = 0, n < 0,

%,k = (n- 1)&a-l,k  + an-l,k-1, k # n, n 2 0,
( 13)

is

an,k = (14)

Sirni larly,  the sol u tion of

bn,k = 0, n < 0,

b = k/In--t,k  + bn-l,k--1, k # n, n > 0,
(1 15

n,k

is

b n,k = (b
r’r

- br-l,r-1  91 (16)

Vor concrctcncss, the following tables were compulcd using lhc rccurrcnccs (7) and (8).



n[ 1kl

n=l

?a=2

n=3

n=4

n=5

n=6

n[ 1kz

n=2

n=3

n=4

n’ = 5

n=6

n=7

kc1 k=2 k=3 k=4 k=5 k=6
n
0k 1

1

1

2

6

24

120

1 n=2

3 1 n=3

11 6 1 n=4

50 35 10 1 n=5

274 225 85 15 1 n=6

12= 1

Table 1. r = 1

kc2  kc3 k=4 k=5 k=6 k=7

1

2 1

n
0k 2

n=2

n= 3

6 5 1 n=4

24 26 9 1 n=5

120 154 71 14 1 n=6

720 1044 580 155 20 1 n=7

Table 2. r = 2

k=3 kc4 k=5 k=6 k=7 k=8
n
0

kc3 k=4 k=5 k=6 k=7 k=8
k 3

n=4

n=5

n=6

n =- 7

n=8

1 n=3 1

3 1 n=4 3 1

12 7 1 n=5 9 7 1

60 47 I.2 1 n = 6 27 37 12 1

360 342 119 18 I r1 = 7 81 175 97 18 I

2520 2754 1175 245 25 1 n=8 243 781 660 205 25 1

k=l k= 2 kc3 k=4 k=5 k=6

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

k=2 k=3 k=4 k=5 k=6 k=7

1

2 1

4 5 1

8 19 9 1

16 65 55 14 1

32 211 285 125 20 1

Table 3. T = 3

- 5 -



$3 “Cross” recurrences

The “cross” recurrences relate r-Stirling numbers with dif’kent  r.

Theorem 3. The r-Stirling numbers of the first kind satisfy

(17)

Proof: An alternative formulation is *

(r - l)[l],  = [m” llrel - [m” llr*
The right side cou’nts  the number of permutations having m - 1 cycles such that 1, . . . , r - 1
a r c  cycle leaders but r is not.  This is equal to (r - I>[:], since such permutations can be
obtained in r - 1 ‘ways from permutations having m cycles, with 1,. . . , r being cycle Icadcrs,
by appending the cycle led by T at the end of a cycle having a smaller cycle lcadcr. u

t Theorem 4 . The r-Stirling numbers of the second kind satisfy

{;} = {:)rw, - b- - l)(“m ‘> ’
r r-l

Proof: The above equation can be written as

7827-21.

710m l

r

P)

The right side of the cquat,ion  counts Lhc number of partitions of (1,. . . , n} into m non-empty
_ subsets such that 1, . . . ,

- t/o (7 - qniyr-l

r - 1 are rninirn~~.l  clc~rncnls  bul r is not. BuL this number is equal
bccauso such partitions can be oblaincd  in r - 1 ways from partitions of

(1 j”‘J n} - (7) into m non-crnpt,y su’bscts,  such that, 1, . . . , T - 1 arc minimal, by including r *
in tiny ol’  the r - I subscLs  conklining  a srnallcr  clcrrlcmt. 1

$4 Orthogonality

The orthogonality  rclat,ion between  Stirling nurnbcrs gcncralizes to similar relations for
r-Stirling nurnbcrs.



Theorem 5. The r-Stirling numbers satisfy [2, eq. 6.11

Proof: By induction on n. For n < r the equality is obvious. For n = r

c [ ;]
r
{A}

7
(-Qk = (-ly{;}  = (-pm,r*

r

For n > T, using Theorem 1 and the induction hypothesis

7 [;],G>,(-l,t  = in - ~)Ll,m(-qn-l  + F [; 1 :];{~}rwlk’

and (assuming in > r) by Theorem 2 applied to the right sum, and the induction hypothesis

F [J,{fj,(-1,*= (n - WL-I,~(-~)~-~  - m~-~,m(-l)n-l  - &--l,m-+l)n-l
= &J-l)“.  .

I

Thence for each T, the r-Stirling numbers form two infinite lower triangular matrices satis-
fying

1

1, i > j;
6.

-
a>j’ =

0, i < j.

Theorem 6.

‘I’hcsc 0rLhogon;~Iity rolx.lions gcnoralixc  as shown in section 11.

$5 Relations with symmetric functions

The Stirling nrrrnbcrs  of the first kind, [:I, for fixed n, are the clcrncn tary sy rn rnctric
functions of the numbers I, . . . ,7~ (see, e.g., [/f] or [5]). ‘I’hc r-Stirling numbers of the firs1  kind
art: the clcmcnt;~ry symrnctric  functions of the nurnbcrs  T, . . . , n.

-7-



Theorem 7. The r-Stirling numbers of the first kind satisfy

‘72

[ 1

=
n - m c iliz . . . i,, 72,  m > 0.

r r<il <iz---<i,  < n

(22)

Proof: Consider a permutation of the nurnbers 1, . . . , n having n - m left-to-right minima.
IIow many such permutations arc there that have a given set of minirna? Denote the numbers
that are not rninima by il, i2, . . . ,‘i,, where iI < i2 < l . l < i, < n. A perrnutation with-
the prcscribcd se1 of left-to-right minima can be constructed as follows: write all the minima
in decreasing order; insert  il after any of the il - 1 rninirna  less than il; insert i2 after any
of the ig - 2 minima less than iz, or afler i,; etc. Clearly  there arc il - 1 ways of inserting
il, is - 1 ways of inserting iz, and so on. Hence the total nurnber of permutations wiLh the
given minima is (il - l)(iz - 1). . . (i, - 1). If the numbers 1,. . . , r arc minima, then il > r.
Surnming over all possible sets of left-Lo-right minima we get

n[ 1 = il
n - m c ( - l)(ig - 1). . . (i, - 1)

r r <il  <ia.--<im  <n

=
c

n,m > 0-
iliz . . . i,.

I

The above thcorcrn can also be proved by induction, but, it is rnore interesting Lo see the
cornbinatorixl meaning of each term in the sum. Tts counterpart for r-Stirling numbers of the
second kind is

Theorem 8. The r-Stirling numbers of the second kind satisfy

7~ + m
{ >

=
n c iliz . . . i,, 72,771  > 0..-

r r<iI<-*-_<im<n

‘
W)I

Pfoof: CounL Lhc number of’ partilions of the set {I,. . . , n + 713) into n non-empty subsets, when
the 7~ minimal olcrncnt~s arc fixccl.  l)cnot,c  I,hc?  clcrnc!nt,s  Lhat arc n o t  minimal  b y  x1,. . . , z,,
whore zl < . . . < x,. I I ’  wc Ict ij ht? L~IC nrrrrlhr  01’  rrlinirnd  clcrtlc~nt8s  Icss l,hm  3:j, then
il 5 iz < v-m < i,, < n. Clearly xj GLII  belong only Lo su bsct,s  having a rninirnnl clcrmnt
less thanTL,  so tiat thcrc arc ij ways Lo pl:~c it. Ilcncc the total nrttnbcr of partitions with a
given set of minimal elcmcnts is iliz.. . i,. 11‘ the numbers I., . . . ,r arc all minimal clernents,
then il 2 r. Summing up over all possible sets of minimal elements completes Lhe proof. 1

‘I’hcreforc Lhc r-Stirling nurnbcrs of Lhc second kind, {“‘,“},, arc the monomial symrnctric
functions of tiogrcc m of the intkgcrs  T, . . . , n.

-8-



$6 Ordinary generating functions

Corollary 9. The r-Stirling numbers of the first kind have the “horizontal” generating
function

z’(z + r)(z + r + 1). . . (z + n - I),$P ={ 0, n>r>O;

otherwise,.
Corollary 10. The r-Stirling nqmbers of the second kind have the %ertical” generating
function [2, cq. 3.101

m>r>O;
- -

otherwise.
(25)

The above identities follow irnrncdiately  from equations (22) and (23).

$7 Combinatorial identities

Lemma 11.

[Jr = $yn;r)[n_PIB]ref, r>p>O.- - ,w

f’roof: To form a pcrrnutation  wiLh m cycles such that  1, . . . , r are cycle leaders first choose
-Cc numbers to bc in the cycles led by 1, . . . , p and cqnstruct these cycles; this can bc dono in
(“;‘>[“a”], ways. The rcmtining n-p-k ~lr~rrltxrs  must form m-p cycles such that p+ 1, . . . , r

arc cycle leaders, which can lx clone in [“;‘=,“I
1-P

ways. llsing cqualion ( 1 1) and summing for

all kI complctcs the proof. 0

ItI p;lrt,iclllnr for p = r we obt:lin  a, tlclinition of r-Stirling numbers of Lhc first kind in torrns
o f  regular SLirlitlg nurnbcrs  of Lhc lirst, k i n d  [2, cq. 5.31,

(27)

This shows that [zby7]1., f o r  m, n > 0 is a polynornid  of dcgrce n - m in r w i th  l ead ing

cocflicicnt  (2) and I,ernrna  1 t cm bc gc~ncr;~,lizctl  to a polynornid  idcrititity  in p arid r:



Theorem 12.

For p = r - 1 we get another “cross” recurrence

Recall that [z], = [z]n for n > 0, so that

[~]=$;(‘“;L)[n~~~k]k!,  n>O,

an identity that appears in Comtet [4, eq. 5.6~1, and also in Knuth [lo, eq. 1.2.6(52a)].

Lemma 13.

{:}r = &yn;r){n;:;k}re;k~ r>p>O.-
Proof: LIy combinatorial arguments analogous to the proof of Lemma 11. u

The counterpart  of equation (27) is [2, cq. 3.21

(28)

(29)

(30)

which shows that {ayr},, for m, n >_ O.is also a polynomial of dcgrcc n-m in r, whose leading

coclkient  is (z). A s I(, arc this implies a gcncralization  of Lemma 13:L xi’

Theorem 14.s

The counterparts of equations (29)  arid (30) are

and

‘
04),

which is a well known expansion.

- 10 --



$8 Exponential generating functions

Theorem 15. The r-Stirling numbers of the first kind have the following %ertical” exponen-
tial generating function

Proof: The above exponential generating function can be decomposed into the product of two
exponential generating functions, namely

_ (-+J=F(k+;-l)zk=~ri$.

-

Their product is

by equation (27). 1

The above theorem’irnplics the double generating function [2, eq. 5.31

Theorem 16. The r-Stirling numbers of the second kind have the following exponential
_ generating function [2, eq. 3.01

f’roof:  Similar to the the proof of Theorem 11, using the expansions

together with equation (32). 1

- 11 -



The double generating  function for r-Stirling numbers of the second kind is

z { iI:}f $tm = exp(t(el - 1) + rz).
,

$9 Identities from ordinary generating functions

Theorem 17. The r-Stirling numbers of the first kind satisfy

[iilf  = F[pE k&-n:  k ] ,
r<p<n.

(39)

(40)

Proof: From equation (24)

--_

%‘-‘(f + r). . . (z + p - 1) = F [p fJ k] .Ck.
r

Express the product

z f -P(z + r) . . . (2. + p - 1)z’-” (Z + p) . . . (z + n - 1) = C [n” k]E-k
k

as the convolution of the two generating functions and equate the coefficient of zm-” on both
sides. a

Theorem 18. The r-Stirling numbers of the second kind satisfy

- Proof: l?rorn  (25 )

(’ - 7%). . . (I - pz)(  I L (p + 1)z) . ..(CGj
= g:“J Zk*

f

Expressing this product as a convolution WC obtain

{n:m}f = F{p; k}f{n+:- k}p+lp
and Lhc thcorcm follows by suitable  chnngcs of variable.

-- 12 -



Theorem 19. The r-Stirling numbers of the first kind satisfy

(-l)‘[;] = c [m -“, + klp{;I :> (-I)“, n 2 ’ > p 2 O*r k P

Proof: From equation (24)

n

c[ 1
Xrn = .?(z + r). . . (z + n - 1) =

z+(z + p) . . . (z + n - 1)
m (z + p) . . . (z + r - 1) ’

n_>r>p>O.

L e t  t = - l / z .  Then

r-% p 1
(z + p) . . . (z + r - 1) = (1 - pt) . . . (I - (r - t)t)

= (-g-l c {r 1*} (-%y
i P

by equation (25). Hen&~

(-r)k*
Pm

1

In particular for p = 0 we leave  an a ltcrnative expression for the r-Stirling numbers of the
first kind in terms of regular Stirling numbers of both kirlds,

(42)

(-I)‘[;] = c[,-; + kj{f 1 :>,-l)k, n 2 ’ 2 I-
r k

(43)

This, combincd with (27), gives an identity involving only regular Stirling numbers

n > 0,r 2 1.- (44

The last equation is a polynomial identity in 7. For r = 1, we obtztin  equation (30) again.

Theorem 20. The r-Stirling numbers of the second kind satisfy

WY{ ib}r = T [ ;I,(” -,‘,+ “),(- l)k, * n 2 r 2 p > 0. (45)c

- I

- 13 -



Proof: The ordinary generating function of the r-Stirling numbers of the second kind can be
rewritten as

km
72).  . . (1 - mz) =

z”( 1 - pz) . . . (1 - (r - 1)~)

(1 (1 - pz) . . . (1 - mz) ’-

Putting t = -l/z

(1 - pz). . .(l - (r - 1)~)  = tP-‘(t  + p). . . (t + r - 1) = C :[I2P

(-z)‘-~,
i

so that

c{;}
n r

zn = c [:I (-z)r-i c {;) 2,
i P i P

and the result follows by equating the cocfhcient of .P on both sides. B

The counterpart of equations (43) and (44) is obtained by making p = 0 in (45). We get

-. (-I)‘oL}r = F [;I{” -A+ k}kl)k, 72 2 rr (46)

the alternate expression for r-Stirling numbers of the second kind in terms of regular Stirling
numbers of both kinds. This formula combined with (32), g ives an identity in regular Stirling
numbers only:

$){;}rn-k = T{n;;; k}[r 1 k](-l)k, n,r 2 ‘9 (47)

which is a polynomial identity in r. For r = 1, this is equation (35).

Theorem 21. The r-Stirling numbers of the first kind have the “horizontal” generating
function (2, eq. 5.81

(x + r)K =

Proof: Replacing in equation (24) n by n + r and x by x, we obtain

Xk = Xr(x  + r)F,

and the result follows. 0

Note the equivalent formulation of Theorem 48

(x-r)n= C n+r (-l)n-kxk,[ 1k k+rr

7L > 0 ._

w

(49)*

- 14 -



Theorem 22. The r-Stirling numbers of the second kind have the’ “horizontal” generating
function [2, cq. 3.41

(x+r)n  = T{TTi} x$ n > 0.
r

Proof: USC the identity

,b+rP = ert(l + (et - 1))” = ert C ( et - l)kxk
k!

k>O ’

and Theorem 12, to obtain .

etxfrlt
=go::{;;;} xk*r-

I
--.

The equivalent forrn of Theorem 50 is

(x-r)n = F(LI:) (-l)“-kxk, n > 0.
r

(50)

(51) .

iI0 Identities from exponential generating functions

The following two thcorcrns are an imrncdiatc  consequcncc of the generating functions (36)
and (38).

a
Theorem 23. The r-Stirling numbers of the first kind satisfy

Theorem 24. The r-Stirling numbers of the second kind satisfy [2, eq. 3.111

- 15 -



These theorems have also a combinatorial interpretation. For Theorem 23 consider per-
mutations of the set (1,. . . , n + r + s} such that I,. . . , r + s are in distinct cycles, each cycle is
colored  either  red or green, the cycles containing 1,. . . , r arc all green, and the cycles containing
r+l,... , T + s arc all red. The total number of such permutations with I+ r green cycles and
m + s red cycles is (‘+m”>Ir+“m+‘&].+, because each permutation with I+ m + r + s cycles can

be colored in (“m”> wiys. On the other hand, we can first decide which k elerncnts, besides
1 7 - - . , r, should be in the I + r green cycles; the remaining n - k + s elements must form the
m + s red cycles. Theorem 24 has a similar intcrprctation.

5 11 Generalized or thogonality

Theorem 25. The r-Stirling numbers satisfy [2, eq. 6.31

(55)

Proof: 13~ (48) and (51)

(x - p + T)K = F ; 1;[ 1 (x - p)” =r F [; ,‘:I, c {TfpPJpo*‘rii
Equation (54) is obtained by cornparirlg  the coeflicicnt of Z~ on bot,h  sides. Similarly, consider
the identity (from (50) and (49))

- and equate the coefficient of xrn on both sides to obtain (55). 1

5 12 The r-Stirling polynomials

We have seen that the r-Stirling numbers are polynomials in T. The r-Stirling polynomials
are defined for arbitrary x as

&(n,m, 2) = F (i)[“m k]z’ integer m,n 2 0,

- 16 -



R2(7%  m, x) = T(2){ni  k}zk integer m,n 2 0. (57)

In particular, by equations (27) and (32), when r is a positive integer, R,(n, m, r) = [zyr] and

n2(n,  m, r) = {z=).

The r-Stirling polynomials have a combinatorial significance given by the following two
theorerns.

Theorem 26. The polynomial RI (n, m, x) enumerates the permutations of the set

(1 9 l - - 7
n -I- 1) having m+ t left-to-right minima by the number of right-to-left minima dinerent

from I.

Proof: Expanding raising powers, we get

&(n, m, x) = F(‘;)[“i k]xx= $)[y “]gp

--. = Lpi ly (;)[n; “I[T]

All the left-to-right minima except 1 must occur at the left of 1, while all right-to-left minima
except 1 must occur at the right of 1. IIence the number of permutations having m + 1 left-

’ to-right minima, i + 1 right-to-left rninima, and k elements at the right of I is (~)[n~k][~].

Note that by Theorern 23 used in the above expansion we obtain

&(n,  m, x) = Ci (“,:: y[A ip* ( 8)5

Theorem 27. The polynomial &(n, m, x) enumerates the partitions of the set {I,. . . , n + 1)
into m non-empty subsets, by the number of elements diflerent from t, in the set containing 1.

Proof: Obvious, from definition (57). 1

The r-Stirling polynomials have rcrnarkably  simple  expressions
generalize the well known formulae for regular Stirling numbers.

Theorem 28.

1 0” -
/II (71, m, x) = a ;),m xn.

Proof: From (48)

in operator notation, which

( 05’,

am
m!R~(n,m,x)  = F~;(X + !/)n

d” z
=;j2m⌧ l

y = o

- 17 -



Theorem 29.

1
Rz(n, m, x) = Mlarnxn. (60).

Proof: Similar to the proof of Theorem 28. A direct proof is based on combining (8) and (18)
to obtain

which implies

and thcrcfore

Amxn  = Am&(n, 0, x) = m!Z&(n, m, x).

Corollary 30 [2, cq. 3.81

A&(n, 4 - 1, x) = m&(n, m, 2)

1
h(n, m, 2) = --J c (- l)m-k(~ + k)“.

’ k
(61)

Proof: Use the formal expansion

Am = (E - I)” =

whcrc E is the shilI  operator, E!(x)  = j(x + I). 1

13ccauso  of thcsc  properties the r-Stirling polynornials, especially the r-Stirling polynomials
of the second kind, were studied in the framework of the calculus of finite differences. .Niclsen
[19,  c h a p .  121 1( evcloppcd  a large nurnbcr of forrnulac  re la t ing &(n, m, x) to the 13crnoulli

_ and Euler polynomials. (Nielsen’s notation is A L(x) = m!R2(n,  m, x).) Carlitz  [3] showed
- by difl’crcnt  means that  the r-Stirling;  polynomials arc rclatcd to the Hcrnoulli  polynomials of

higher order and also studied  the rcprescntation  ol’  Rl(n, n - k, x) and of Iig(n,  n - k, x) as -
polyr~orr~ials  in n. ‘l’ho :~.syrr~ptotics  of’ t h e  r~urnhrs  {c+;T)T  wcrc clcrivcd in 181. Ilrodcr [t]
obhirlctl  s(!v(\r;ll  I’orrrlrlIi~s rchtirlg r-Sl,irIing polynorui;tls  of the xcond kirld t o  A  bclian sums

[23,  5 1.51, for cxarnplc

(x + k)“+“(y  + n - k)n-k = c
0
i k!(x -I- y + n)n-kRz(k  -I- P, k, X)1

k *

p 2 0. (82)

- 18 -



$13 T-Stirling numbers of the second kind and Q-series

Knuth defined. the Q-series as

Qn( al,a2,-. ) = C (;)k!n-‘a*. (63)
k>l

For a certain sequence al, a2, . . . , this function depends only on n. In particular, Q,(l, 1, 1, . . .)
is denoted Q(n).

Q-series arc relevant to many problems in the analysis of algorithms [13],  for instance
representation of equivalence relations [IB],  hashing [ 12, $6.41, interleaved memory [ 151,  labelled
trees counting [21],  optimal cacheing [13],  p ,crmutations in situ [25],  and random mappings [11,
$3.11.

It can be shown that the Q-series satisfy the recurrence

. Qn(a1,2a2,3a3,...  =1 nQ,(al,aa-aal,ag--CL:!,...  .)

Theorem 31.

Proof: Note that from (8)

for all k 2 0 if h > 0. Applying this together with (64) h - 1 times, we obtain

One more application of (64) for T > 0 results in

(65)

and for r = 0 results in

nhQn(  1, 0, 0, . . . ) = nh

- 19 -



Corollary 32. Let

where a, depends only on r. Then

Qn(.f(l), W(2),  3S(3),  l l -) = nh(Qn(al,  as,  w,. . .) + a&
(66)

In [13]  Knuth introduced the half integer Stirling numbers {n+k’/2}.  These numbers satisfy
the recurrence

n < 0,

(n,,,,>=k{nm>‘2}+{n[~!2},  k#n,n>O,

which has the form of (15) and therefore has the solution

{,,,,,> = z (;>,*
-

Hence, by Corollary 32

which is in fact the equation used to define the half-integer Stirling numbers in [13].
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