
Ma rch 1983 Hcpott No. S’IXN-CS-83-963

A Hardware Semantics Based on
Temporal Intervals

Joseph I I;~lpcrn, %ohar Manna

and 1%~ Moszkowski

Department of Computer Science

Star~forcl Uriivcrsity
Stanford, CA 94305

--- --- . -

A Hardware Semantics Based on Temporal Intervals

Joseph Hslpernf Zohar Manna2j3 and Ben Moszkowski2

‘IBM Research Center, 5600 Cottle Road, San Jose, CA 95193, USA
2Department of Computer Science, Stanford University, Stanford, CA 94305, USA
3Applied Mathem atics Department, Weizmann Institute of Science, Rehovot, Israel

Abstract

We present an interval-based temporal logic that permits the rigorous specifica-
tion of a variety of hardware components and facilitates describing properties such
as correctness of implementation. Conceptual lcvcls of circuit opera&n ranging
from detailed quantitative timing and signal propagation up to functional behavior
are integrated in a unified way.

After giving some motivation for reasoning about hardware, we present the
propositional and first-order syntax and semantics of the temporal logic. In addition
we illustrate techniques for describing signal transitions as well as for formally
specifying and comparing a number of delay models. Throughout the discussion,
the formalism provides a means for examining such concepts as device equivalence
and internal states.

This work was supported in part by the National Science Foundation under a Gradu-
ate Fellowship, Grants MCS79-09,$95 tz(nd MCSSI-l-1586, by DARPA under Contract
NOOO39- 82- C- 0250, and by the United States Air Force Ofice of Scientific Research
under Grant AFOSR-81-0014.

This paper will appear in the Tenth International Colloquium on Automata, Lan-
guages and Programming, Barcelona, Spain, July, 1983. AJull version is in prepara-
tion.

1

5

51 Introduction

Computer systems continue to grow in complexity and the distinctions between
hardware and software keep on blurring. Out of this has come an increasing
awareness of the need for behavioral models suited for specifying and reasoning
about both digital devices and programs. Contemporary hardware description
languages (for example [1,22,29]) are not sufficient because of various conceptual
limitations:

l Most such tools are intended much more for simulation than for math-
ematically sound reasoning about digital systems.

l Difficulties arise in developing circuit specifications that out of necessity
must refer to different levels of behavioral abstraction.

l Existing formal tools for such languages are in general too restrictive to
deal with the inherent parallelism of circuits.

The logic presented in this paper overcomes these problems and unifies in a
single notation digital circus,‘+ behavior that is generally described by means of the
following techniques:

a Register transfer operations
e Flowgraphs and transition tables
l Tables of functions
l Timing diagrams
e Schematics and block diagrams

Using the formalism, we can describe and reason about qualitative and quantita-
tive properties of signal stability, delay and other fundamental aspects of circuit
operation.

We develop an extension of linear-time temporal logic [l&25] based on intervals.
The behavior of programs and hardware devices can often be decomposed into
successively smaller periods or intervals of activity. These intervals provide a
convenient framework for introducing quantitative timing details. State transitions
can be characterized by properties relating the initial and final values of variables
over intervals of time. In fact, we feel that interval-based temporal logic provides
a sufficient basis for directly describing a wide range of devices and programs. For
our purposes, the distinctions made in dynamic logic [10,24] and process logic [6]
between programs and propositions seem unnecessary.

2

5

The temporal logic’s applicability is not limited to the goals of computer-
assisted verification and synthesis of circuits. This type of notation, with ap-
propriate “syntactic sugar,” can provide a fundamental and rigorous basis for com-
municating, reasoning or teaching about the behavior of digital devices, computer
programs and other discrete systems. Moszkowski [20,21] has applied it to describ-
ing and comparing devices ranging from delay elements up to a clocked multiplier
and the Am2901 ALU bit slice developed by Advanced Micro Devices, Inc. Temporal
logic also provides a basic framework for exploring the computational complexity
of reasoning about time. Simulation-based languages can perhaps use such a for-
malism as a vehicle for describing the intended semantics of delays and other fea-
tures. Manna and Moszkowski [17] hs ow how temporal logic can itself serve as a
programming language.

$2 Propositional Temporal Logic with Intervals

,l logic; this provides aWe first present the propositional part of the tempora
basis for the first-order part.

Syntax

The propositional temporal logic consists of propositional logic with the addi-
tion of modal constructs to reason about intervals of time.

Formulas are built inductively out of the following:

l Propositional variables: P,&, . . .

0 Logical connectives: 7w and wr A ~12, where w, wr and w2 are formulas.

l Next: 0 w (read “next w”), where w is a formula.

l Semicolon: wr; w2 (read “~1 semicolon ~2’) or “~1 followed by wz”), where wr
and w2 are formulas.

Models

Our logic can be viewed as linear-time ternporal logic with the addition of
the “chop” operator of process logic [6,11]. The truth of variables depends not
on states but on intervals. A model is a pair (C, M) consisting of a set of states
c = s,t,... together with an interpretation J/l mapping each propositional variable

3

P and nonempty interval SO.. . So E C+ to a some truth value .M,,~..,,[P]. In what
follows, we assume C is fixed.

The length of an interval sb. . . s, is n. An interval consisting a single state has
length 0. It is possible to permit infinite intervals although for simplicity we will
omit them here. An interval can also be thought of as the sequence of states of a
computation. In the language of Chandra et al. [6], our logic is “non-local” with
intervals corresponding to “paths.”

Interpretation of Formulas

We now extend the meaning function .M to arbitrary formulas:

l MS0 . . .sn [Ilwn = true tt7 MS0 . . . sn (Iw] = false
The formula 120 is true in an interval iff w is false.

l M,,...,,[wl A w2I] = true $7 MSO...S, [win = true and Ms0...8, w2 = trueu n
The conjunction wr A w2 is true in so.. . s, iff wr and w2 are both true.

. J%g...S, [Own = true Z$ n 2 1 and MS1...,,[wl] = true
The formula 0 w is true in an interval so.. . s, iff w is true in the subinterval
Sl.. . s,. If the original interval has length 0, then 0 w is false.

l M sO...S,, ☯Iwl; w2n = tr ue $ 7 M so ...si☯wln = tr ue a nd M Si...+, ☯Iw2] = tr ue,

for some i, 0 L i 5 72.
Given an interval SO. . . s,, the formula wl; w2 is true if there is at least one way
to divide the interval into two adjacent subintervals se.. . s; and s;. . . s, such that
the formula wr is true in the first one, SO.. . s;, and the formula w2 is true in the
second, s;. . . s,.

A formula w is satisfied by a pair (M, so.. . s,,) iff

M SO... .Jwn = true
This is denoted as follows:

CM ,s()... sn) I=:.

If all pairs of M and SO. . . s, satisfy w then w is valid, written k w.

$3 Expressing Temporal Concepts in the Propositional Logic

We illustrate the temporal logic’s descriptive power by giving a variety of useful
temporal concepts. The connectives 7 and A clearly suffice to express other basic
logical operators such as v and =.

4

Examining Subintervals

.

For a formula w and an interval SO.. . s,, the construct @w is true if w is true
in at least one subinterval s;. . . sj contained within se.. . s, and possibly the entire
interval se. . . s, itself. Note that the “a” in @ simply stands for .“any” and is not
a variable.

Jd SO...Sn [S wn = true iff MSi...Sj uwn = true, for some 0 5 i 5 j 5 n

Similarly, the formula El w is true if the formula w itself is true in all subintervals
of s()...s,:

M SO... s,unWn = true iff M,,...,jnwn = true, for all 0 5 i 5 j 5 n

These constructs can be expressed as follows:

0aw E (true; w; true)

law =: 4bw

Because semicolon is associative, the definition of @ is unambiguous. Together,
@ and El fulfill all the axioms of the modal system S4 [12], with 0 interpreted as
possibly and El as necessarily.

Initial and Terminal Subintervals

For a given interva,l se. . . s, the operators 0 and III are similar to 0 and El
but only look at initial subintervals of the form so.. . s; for i 5 n. We can express
0 w and El w as shown below:

ow E (w; true)

For example, the formula El(P A Q) is true on an interval if P and Q are both true
in all initial subintervals. The connectives 0 and El refer to terminal subintervals
of the form s;. . . s, and are expressed as follows:

ow -= (true; w)

Ejw =: 1 0IW

Both pairs of operators satisfy the axioms of S4. The operators 0 and El correspond
directly to 0 and Cl in linear-time temporal logic [HI.

5

The Yields Operator
.

It is often desirable to say that within an interval SO.. . s, whenever some
formula wl is true in any initial subinterval SO.. . si, then another formula 202 is
true in the corresponding terminal interval si.. . s, for any i, 0 5 i i n. We say
that wr yields w2 and denote this by the formula wl + ‘~2:

MSO...S, 1~~ -+ w2n = true

iff MS,...Si Wlu n = true implies Ms,..,S, uw2n = true, for al.1 0 5 i L n

The yields operator can be viewed as ensuring that no counterexample of the form
Wl ; 7~2 exists in the interval:

(WI e 202) f ‘(WI; ‘202)

This is similar to interpreting the implication wr 1 w2 as the formula -(WI A 1~2).

Temporal Length

The construct empty checks whether an interval has length 0:

h SO...Sn [etnptyl] = t r u e iff n = 0

Similarly, the construct skip checks whether the interval’s length is exactly 1:

M SO... + [skip] = true iff n = 1

These operators are expressible as shown below:

empty = 10 true

skip = 0 empty

- Combinations of the operators skip and semicolon can be used to test for intervals
of some fixed length. For example, the formula

skip; skip; skip

is true exactly for intervals of length 3. Alternatively, the connective nest suffices:

0 0 0 empty

6

Initial and Final States

The construct beg w tests if a formula w is true in an interval’s starting state:

The connective beg can be expressed as follows:

b e g w E @(empty A w)

This checks that w holds for an initial subinterval of length 0, i.e., at the interval’s
first state. By analogy, the final state can be examined by the operator fin w:

fi?lW s @(empty A w)

This checks that w holds for a terminal subinterval of length 0, i.e., at the interval’s
final state.

54 Some Complexity Results

We prove that satisfiability for arbitrary propositional formulas is undecidable
but demonstrate the decidability of a useful subset.

’ Theorem: Satisfiability for propositional temporal logic with semicolon is undecid-
able.
Chandra et al. [6] hs ow that satisfiability for process logic with an operator called
chop is undecidable. Our semicolon construct acts like chop and therefore our
theorem strengthens their result since we do not require programs in order to obtain
undecidability.

If we restrict all propositional variables to be local (that is, each propositional
variable P is true of an interval SO.. . s, iff P is true of the first state SO), then we
get a decidable logic:

Theorem: Local temporal logic with semicolon has a decision procedure that is
elementary in the depth of the operators 1 and semicolon.

This is the best we can do since Kozen (private communication) has shown that
the validity problem for local temporal logic with semicolon is nonelementary. The
proofs of these theorems will appear in the full paper.

7

55 First-Order Temporal Logic with Intervals

We now give the syntax and semantics of the first-order temporal logic. Expressions
and formulas are built inductively as follows:

Syntax of Expressions

l Individual variables: U,V, . . .

l Functions: f(el,. . . , ek), where Ic 2 0 and el, . . . , ek are expressions. In practice,
we use functions such as + and v (bit-or). Constants like 0 and 1 are treated as
zero-place functions.

Syntax of Formulas

l Predicates: p(el, . . . , ek), where Ic 2 0 and el, . . . , ek are expressions. Predicates
include < and other basic relations.

l Equality: el=ea, where el and e2 are expressions.

0 Logical connectives: 7w and 201 A ~2, where w, w1 and w2 are formulas.

l Universal quantification: VV. w, where V is a variable and w is a formula.

8 Next: 0 w, where w is a formula.

o Semicolon: wl; ~2, where w1 and w2 are formulas.

Models

A model consists of a set of states C = s, t,. . . and domain D together with
an interpretation M mapping each variable V and interval so.. . S, to some value
JH SO... +,[IV~ in D. Furthermore, each function and predicate symbol is given some
meaning. Each k-place function symbol f has an interpretation M[fl which is a

-function mapping Ic elements in D to a single value:

MUfD E (Dk --) o>
,

Interpretations of predicate symbols are similar but map to truth values:

M[pn E (D” + {true, false})

The semantics given here keeps the interpretations of function and predicate sym-
bols independent of intervals and thus time-invariant. The semantics can however
be extended to take into account’the dynamic behavior of parameters.

8

Interpretation of Expressions and Formulas

We now extend the interpretation M to arbitrary expressions and formulas:

. &(&..s, [f (e1, l l .) ek>n = M[If&%o...&, (Ieln, . . . I k?o....%, [Iekb

The interpretation of the function symbol f is applied to the interpretations of
e1 ,...,ek.

l Mso-s, [Ph.. .) ek>n = M(IP&%o...s,, [Ielk.. .) Mso....%, [ekn>

0 MS,...,, [el=e2n = true iff hk?o...S, ueln = MS,...,, [Teal

. svlso...sn ulwn = true 27Mso...s, uwn = false

0 Mso...sn UW A w2n = true tt7 MSO...sn uwln = ~so...s,~w2~ = true

0 MS,...,, [VV. wn = true iff h4:o...,n uwn = true,
for every interpretation M’ that agrees with M on the assignments to all variables,
function and predicate symbols except possibly the variable V.

l & O...Sn ☯O wj = tr ue iff n > 1 and M,,...,, [wn = true

0 htso..,,, uwl; w2n = true $7 h4so...si~wl~ = true and hts,...S, uw2n = true,
for some i, 0 5 i 5 n.

Satisfiability and validity of formulas are as in the propositional case.

All the other temporal operators mentioned earlier are expressible as before.
In addition, existential quantification can be introduced as the dual of universal
quantification:

3 v . w = +v.~W

Values in the Data Domain

It is sufficient for our purposes that the data domain D contain natural numbers
and nested finite tuples. Both 0 and 1 serve as numbers and bits, with 0 standing
for low voltage and 1 standing for high voltage. The data domain does not contain
any intermediate voltages or “undefined” values?

The following are sample values:

0, 3, (o), (1,2), 0, (6,3,0,9>
*The approach taken in Moszkowski [20] includes undefined values. However, their omission results _

in no loss of generality and somewhat simplifies the underlying logic.

9

We adapt the convention that an n-element tuple has subscripts ranging from 0 on
the left to rt - 1 on the right.

It is assumed that M contains standard interpretations of function and predi-
cate symbols such as +, 5 and v (bit-or). We also include conditional expres-
sions and conventional operators for constructing, subscripting and determining the
length of tuples.

Naming Conventions of Variables

Within an interpretation JN, a variable’s values can differ from interval to
interval. For convenience, we will use naming conventions to distinguish certain
types of dynamic behavior.

l General variables: .cl, .A/, X, . . .
These can vary in value from interval to interval and are also known as non-local,
path or interval variables.

l Signal variables: A, N, X, . . .
The value of such a variable in an interval so.. . s, depends solely on the initial
state SO:

MS, . . .3,u4 = k,uAn
Thus, signals can change from state to state and are a special case of general
variables. Signals can also be referred to as local or staie variables.

l Static variables: a, n, z, . . .
A static variable a has a single interpretation .M [a], independent of any particular
interval:

MSO...S, [a] = Mto...t, uan
All static variables are signals and are often called global or frame variables.

In general, variables such as .cI, B and c range over all elements of the data
-domain D. On the other hand, J, K and n range over natural numbers. The
variables X, Y and x always equal one of the bit values 0 and 1. If desired, the
naming style suggested here can also be used in the propositional logic.

$6 Some First-Order Temporal Concepts

Within the framework of first-order temporal logic, we can explore a variety
of qualitative and quantitative timing issues. The constructs given below are useful
for describing and reasoning about circuits.

10

Temporal Assignment

.

The formula A + B is true for an interval if the signal A’s initial value equals
B’s final value:

A -+ B s&f Vc. [beg(A = c) 3 fin(B = c)]

We call this temporal assignment. Unlike in conventional programming languages,
it is perfectly acceptable to have an arbitrary expression on the receiving end of the
arrow.

Properties:

I= (A --) B) ’ [f(A) + f(B)]
If A is assigned to B, then any time-invariant function application f(A) is passed
to f(B)*

i= K‘z+z);(lz-z)] 1 (Z-4)
If a bit signal is twice complemented, it ends up with its original value.

Temporal Equality

Two signals A and B are temporally equal in an interval if they have the same
values in all states. This is written A z B and differs from constructs for initial
and terminal equality, which only examine signals’ values at the extremes of the
interval:

A = B -&f El(A = B)

Properties:

I= [A = B] ’ [f(A) = f(B)]
If A temporally equals B, then f(A) temporally equals f(B).

I= [(A, B) - (A’, B’)] = (A x A’ A B FZ B’)
The pair (A, B) temporally equals (A’, B’) exactly if the signal A temporally equals
A’ and .B temporally equals B’.

Temporal Stability.

A signal A is stable if it has a fixed value. The notation used is stbA and can
be expressed as shown below:

stb A =def 3b. (A z b)

It follows from this that every static variable is stable.

11

The Temporal Function len

Quantitative timing properties are handled by a O-place temporal function Zen
whose value for any interval so.. . s, equals the length n:

&3,...s, [Ilenn = n

hamples

Concept Formula
The signal A is stable and the interval has at least m + n units stbA A len L m + n
In some subinterval of length 2 m, X is stable @([Zen 2 m] A stb X

Blocking

It is useful to specify that as long as a signal A remains stable, so does another
signal B. We say that A blocks B and write this as A blk B. The predicate blk can
be expressed using the temporal formula

A blk B -&f ll(stb A 1 stb B)

The predicate A blk B can be extended to allow for quantitative timing. When
describing the behavior of digital circuits, it is o.ften useful to express that in any
initial interval where A remains stable up to within the last m units of time, B is
stable throughout:

A blkm B =&f El[(stbA; Zen i m) 1 stb B]

This modification has utility in situations where B is known to be slow in responding
to changes in A.

Initial and Terminal Stability

The predicate istb m A is true for an interval so. . . s, if the signal A is stable in
the initial states so. . . sm. The next definition has this meaning:

istb” A -ddef O(stbA A l en = m)

Note that the formula is false on an interval of length less than m. Ry analogy, _
tstbm A is true if A ends up stable for at least m units of time.

12

Rising and Falling Signals

,

A rising bit signal can be described by the predicate TX:

tx E&f [(;Iz = 0); skip; (X M I)]

This says that X is 0 for a while and then jumps to 1. The gap of quantum length
represented by the test skip is necessary here since a signal cannot be 0 and 1 at
the same instant. Falling signals are analogously described by the construct IX:

1x E&f [(;Y ei 1); skip; (X = (91
These operators can be extended to include quantitative information specifying

minimum periods of stability before and after the transitions. For example, timing
details can be added to the operator t:

tmynx s&f [(X E 0 A len 2 m); skip; (X z 1 A Zen 2 n)]

This can also be expressed as shown below:

I= tm+x E (tx A istb” X A tstbn X)

Thus, the extended form of t can be reduced to the original one with separate
details concerning initial and terminal stability.

A. negative pulse with quantitative information can be described as shown
below:

-It l,m,nx =-

[(x-25 1 A len 2 1); skip;
(X a 0 A len 2 m); skip; (X w 1 A len 2 n)]

These constructs can be further modified to provide for noninstantaneous rise
and fall times.

Smoothness

A bit signal X is smooth if it is either stable or has a single transition. The
following illustrates one way to express smoothness:

smX =def (stbX v TX v 1X)

Since digital devices generally require clock inputs to be smooth, it is sometimes
important to ensure that a signal has this property.

13

$7 Delays and Combinational Elements

Delay is a fundamental phenomenon in dynamic systems and an examination
of it touches upon basic issues ranging from feedback and parallelism to implemen-
tation and internal device states. Such concepts also come into play in descriptions
of more complicated devices. In addition, a key design decision in building any
hardware simulator centers around the treatment of delay (see, for example, Breuer
and Friedman [5]). For these and other reasons, it is worth taking a detailed look
at various models of signal propagation.

Unit Delay

One of the simplest and most important types of delay elements can modeled
as having the following structure:

IHere A is the input signal and B is the associated output. The following
statement uses intervals to characterize the desired behavior:

In every subinterval of length exactly one unit, the initial value of
the input A equals the final value of the output B.

The next predicate de1 formalizes this:

A de1 B =def El[(len = I) 1 (A ---) B)]

Property:

I= (AdelA) = stbA
A signal is fed back to itself iff it is stable.

Transport Delay

It is natural to extend the predicate de1 to cover delays over m-unit intervals:

A del” B r&f q (len = m 2 [A + B])

Breuer and Friedman [5] refer to this as transport delay.

14

Properties:

t = AdelOB f AzB
Zero delay is equivalent to temporal equality.

I= (A del” B A B del” C) 1 A delm+” C
Delay is cumulative.

b (Al,A2) del” (BS, B2) s (Al del” Bl A A2 delm B2)
Delay between pairs is equivalent to component-wise delay. This generalizes to
tuples of arbitrary length.

Functional Delay

Often, one signal receives a delayed function of another. The following ex-
amples illustrate this and are based on the predicate de1 although other delay models
can be used.

E x a m p l e s

Concept
X keeps on being complemented

. B either accepts A or itself, depending on X

Formula
(1X) de1 X
[if (X = 1) then A else B] de1 B

Properties:

I= A del” B 1 f (A) delm f (B)

If A has a delay to B then it follows that f(A) is delayed to f(B).

I= [f (A) del” B A g (B) del” C] 1 g(f(A)) del”+” C
Composition applies.

I= [()7X del” .Y A (1Y) del” Z] 1 X del”+” 2
Two inver tcrs cancel.

I= (I + 1) de1 I 1 [(I + Zen) --+ I]
If the variable I keeps incrementing by 1, its final value is greater than its initial
value by the length of the interv;il.

15

,

Delay Based on Shift Register

A shift register R storing m + 1 values can be specified as follows:

R[O] de1 R[l] A l i l A R[m - 1] de1 R[m]

Over each unit of time, the contents
the value of R[O] is passed to R[l] and
expressed by means of quantification:

of R shift right by one element. That is,
so forth. This description is more formally

Vi E [0, m - 1 I . (R[i] de1 R[i + I])

The next formula has the same meaning but is more concise:

RP to m - l] de1 R[1 tom]

The following property shows how to achieve an m-unit delay by means of such
a shift register:

I= RIO to m-l] delR[l t;o m] 1 R[O] del”R[m] (>*

This suggests an implementation of A’del” B of the form A shdelg B:

A shdel; B r&f (A z R[O] A R[m] = B A RIO tom - 1] de1 R[l tom])

Here, the yalue of A is fed into R[O] and B receives the value R[m]. The correctness
of this implementation is given by the following property:

I= A shdel; B 1 A del” B

We can localize R in the formula A shdel; B by defining a variant A shdel” B
which existentially quantifies over R:

A shdel” B E&f 3R. (A shdel; B)

The register is assumed to exist without being externally visible to an observer.
The quantifier’s effect on scoping is similar to that of a begin-block in a convcn-
tional block-structured programming language. We call A shdel” B an external

16

.

specification of the implementation. In fact, this is logically equivalent to the basic
delay predicate A del” B as the next property demonstrates:

t= A shdel” B L A del” B

The proof that shdel implies de1 follows from the implementation theorem (*)
given above. The converse requires demonstrating that some R exists. Perhaps the
easiest way to do this is by direct construction. At each instant of time, the values
of the m + 1 elements of R can be those of the next m + 1 values of B in appropriate
order:

R[Ii =Om--?B, forOIiLm

The output value R[m] always equals the expression OOB, which is defined to be
B’s current value. Similarly, R[O] always equals 0” B, that is, the value B will
have m units later. This technique works even if the interval has length less than
m.

I Variable Transport Delay

A batch of delay elements may have varying characteristics although each
individual device is rather fixed in its timing behavior. The predicate Avardelm)rL B
specifies that A’s value is propagated to B by transport delay with some uncertain
factor between m and n:

A vardelmjn B =def 3 E [m, n]. (A deli B)

Delay with Sampling

Digital circuits often require that inputs remain stable and be sampled for some
minimum amount of time in order to ensure proper device operation. The delay
model A sadel B has this characteristic:

A sadelm B -def El[(stbA A Zen 2 m) 2 jin(A = B)]

Here the input A must be stable at least m units of time for the output .B to equal
A. Behavior during changes in A is left unspecilied. The properties below illustrate
two other ways of expressing sadel. We present them to demonstrate other possible
styles:

k A sadelm B c El(tstb’“A 2 fm(A = B))

t= A sadelm B s [tstb”.A + beg(A = B)]

17

Properties:

I= A delm B 1 A sadelm B
Basic delay implements sampling delay.

I= A sadelm B ZG(tstbm A + [beg(A = B) A A blk B])
Once the device stabilizes, the input A blocks the output B.

The predicate sadel can be extended to associate some factor with the blocking
of B by A:

A sadelmtn B ‘=def (tstb”A + [beg(A = B) A A blk” B])

In a sense, m is the maximum delay and n is the minimum delay.

An Equivalent Delay Model with an Internal State

A related delay model AstdelFJn B is based on a bit flag X that is set to 1 after
the input A has been held stable m units. Whenever X is 1, the input A equals the
output B and blocks X, which in turn blocks B by the factor n:

A stdel;‘” B E&f

EI([stbA A l e n 1 m] 2 fin(X = 1))

A EI(beg(X = 1) 1 [beg(A = B) A A blk X A X blk” B])

In the manner described earlier, we internalize X by existentially quantifying over
it:

A stdel”,” B s 3X. (A stdel:‘” B)

This external form is in fact logically equivalent to A sudelmJn B:

I= A stdel”)” B EZ A sadelmjn B

The following construction for X can be used:

X z if [beg(A = B) A A blkn B] then 1 else 0

There arc a variety of specifications that use different internal signals such as
X and yet are externally equivalent.

18

Delay with Separate Propagation Times for 0 and 1

Sometimes it is important to distinguish between the propagation times for 0
and 1. The following variant of sadel does this by having separate timing values
fpr the two cases:

A sadelOlm’n B =def

El([A = 0 A Zen 2 m] 1 jin(A = B))

A El([A= 1 A Zen L n] 1 fin(A = B))

Smooth Delay Elements

It is possible to specify that between times when the delay element is stable, if
the input changes smoothly, then so does the output. We call such a device a smooth
delay element. This type of delay has utility in systems which must propagate clock
signals without distortion. Here is a predicate based on the earlier specification
stdel:

A smdelFjn B E&f

A stdelg’” B

A El([beq(X = 1) A jin(X = 1) A swb A] 1 s m B)

The external form quantifies over X:

A smdelmjn B -ddef 3X. (A smdel;‘” B)

Delay with Tolerance to Noise .

Sometimes it is important to consider the affects of transient noise during signal
changes. A signal A is almost smooth with factor I if A is continuously stable all
but at most 1 contiguous units of time:

stb A; (Zen I 1); stb A

The delay model toldel is similar to smdel but has an additionA timing cocff’cient 1
for showing how almost smooth input changes result in smooth output transitions:

m,dA toldel, B =def

A stdelz’” B

A El[(beg(X = 1) A fin(X = 1) A [stb A; (kn I I>; stb A]) 2 s& n]

19

From this we can obtain the external form

A toldelmd B

The predicate smdel is a special case of toldel with a noise tolerance of 1 time unit:

I= A smdelm)n B G A toldelmJn~’ B

Gates with Input and Output Delays

One might specify an and-gate with both input and output delays as follows:

(X,X’)~aand~~~Y -ddef 3Z,Z’.[Xsadel”Z A XrsadelmZf A (Z A Z’)sadel”Y]

Here a delay exists from the input X to an internal signal 2 and another delay
occurs from X’ to 2’. The bit-and of 2 and 2’ is propagated to Y. The input
delays are given by m and the output one by n. If we choose to ignore input delays,
the model reduces to a single occurrence of sadel:

I= (X , X ’) saandO’n G (X A Xl) sadeln Y

If the internal propagation is modeled by transport delay, things are even
simpler. I-Iere is an and-gate specified in this manner:

(X,X’) tandmjn Y =def 3%, Z’. [X del” Z A X’ del” Z’ A (Z A 2’) del” Y]

The predicate tand simplifies even if internal input delay is not ignored:

I= (X , X ’) tundm)n Y = (X A X ’) del”+” Y

58 Simple Latch

A latch is a simple memory element for storing and maintaining a single bit of
data. The two inputs S and R determine what value is stored with S standing for-
Set and R standing for Reset. When the latch is stable, the outputs & and & are
complements. Note that the bar in “Q” is part of the name and not an operator. _
Such elements are among the simplest storage devices that can be constructed

20

out of TTL gates and provide a basis for building counters and other sequential
components. Here is one way to specify such a latch:

(S, R) latch”‘” (Q,&) e&f

qsa =OAR= 1 A: Zen > m)
+(beg[Q = 0 A & = l] A S bW (&@)I

A q [(s = 1 A R z 0 A kn > ?+?I>

+(beg[& = 1 A & = 0] A R blkn (Q,&))]

For example, the specification states that after S is 1 and R is 0 for at least-
m units of time, & equals 1, & equals 0 and R blocks both with factor n. That
is, the outputs are stable as long as R remains “inactive” at 0, independent of S’s
behavior. A logically equivalent specification based on an internal state is given in
the full paper.

A latch can be constructed out of two nor-gates that feed back to one another:

I= [-(R v g) sadelmjn Q A l(S v Q) sadelmjn &’ A n L I]

1 [(S, R) latchzm+ (Q, g)]

The gates’ blocking factor n must be nonzero in order to achieve a feedback loop
that maintains a stored value.’

$9 Some Variants of Temporal Logic

There are a variety of operators and concepts that can be added to the temporal
logic. We discuss a few here.

Iteration

The logic can be generalized to include iteration. In the proposition case, this
involves adding the Kleene closure of semicolon. This does not affect our basic
complexity results. Loop operators such as while can be expressed by means of such
a construct.

Ignoring Intervals

The concepts presented here can generally be expressed in linear-time temporal
logic [18] with 0, Cl, 0 and 21. The satisfiability of propositional formulas for such
a logic is PSPACE-complete [%I. I-Iowever, the conciseness and clarity provided by
semicolon and other interval-dependent constructs are’ often lost.

21

Infinite Intervals

In the semantics already given, all intervals are restricted to being finite. It can
however be advantageous to consider infinite intervals arising out of nonterminating
computations. The inclusion of such intervals does not alter the complexity of
satisfiability.

Projection

Sometimes it is desirable to examine to behavior of a device at certain points
in time and ignore all intermediate states. This can be done using the notion
of temporal projection. The formula w1 II w2 in an interval forms a subinterval
consisting of those states where wr is true and then determines the value of w2 in
this subinterval:

M so...s, [Wl nw2j.j = &)...t,[W2~,

where to.. . t, is the sequence of the states in so.. . s, that satisfy ~1:

J&Jw~I] = true, for 0 5 i 5 m

Note that to.. . t, need not be a contiguous subsequence of so.. . s,. If no states
can be found, the projection is false. In the semantics given here, the formula wr
examines states, not intervals. For example, the formula

(X = 1) II stb A

is true is A has a constant value throughout the states where X equals 1. Variables
like X act as metrics for measuring time and facilitate different levels of atomicity.
If two parts of a system are running as different rates, metrics can be constructed
to project away the asynchrony. Other definitions of projection are also possible.

Additional Modifications

Further possible extensions include quantification over propositional variables
as well as interval-oriented temporal logics based on branching or probabilistic
models of time.

$10 Related Work

We now mention some related research on the semantics of hardware. Gordon’s
work [8] on register-transfer systems uses a denotational semantics with partial

2 2

values to provide a concise means for reasoning about clocking, feedback, in$ruction-
set implementation and bus communication. Talantsev [3O] as well as Betancourt
and McCluskey [3] examine qualitative signal transition concepts corresponding to
TX and 1X. Wagner [31] 1a so uses such constructs as TX in a semi-automated
proof development system for reasoning about signal transitions and register trans-
fer behavior. Malachi and Owicki [16] t’l’u 1 lze a temporal logic to model self-timed
digital systems by giving a set of axioms. Bochmann [4] uses a linear-time temporal
logic to describe and verify properties of an arbiter, a.device for regulating access
to shared resources.

Leinwand and Lamdan [14] present a type of Boolean algebra for modeling
signal transitions. Applications include systems with feedback and critical timing
constraints. Patterson [23] examines the verification of firmware from the standpoint
of sequential programming. Meinen [N] discusses a semantics of register transfer
behavior. McWilliams [IS] develops computational techniques for determining tim-
ing constraints in hardware. Eveking [7] uses predicate calculus with explicit time
variables to explore verification in the hardware specification language Conlan.

A number of people have used temporal logics to describe computer communica-
tion protocols [9,13,26]. Bernstein and Harter [2] augment linear-time temporal logic
with a construct for expressing that one event is followed by another within some
specified time range. This facilitates the treatment of various quantitative timing
issues. Recently Schwartz et al. [27] have introduced a temporal logic for reasoning
about intervals. They distinguish intervals from propositions.

For our purposes, much of this work either has difficulties in treating quantita-
tive timing, lacks rigor, is unintuitive or does not easily generalize. In particular, we
believe that in many papers on applications of temporal logic, various basic aspects
of discrete-time systems have be neglected in favor of more “glamorous” protocols
and distributed algorithms. Furthermore, the computational models used generally
interleave the executions of different processes. In the treatment of digital circuits,
this approach seems inappropriate.

It has been argued by some that temporal logic is simply a subset of dynamic
logic. However, once interval-dependent constructs are added, this is no longer the
case. Operators such as semicolon and yields are not directly expressible in dynamic
logic. Furthermore, the descriptive styles used in dynamic logic and temporal logic
differ rather greatly. Dynamic logic and process logic stress the interaction between
programs and propositions. Temporal logic is expressive enough to conveniently and
directly specify a variety of useful programs. Our current view is that the addition
of program variables would be redundant.

23

$11 Conclusion

Standard temporal logics and other such notations are not designed to con-
cisely handle the kinds of quantitative timing properties and signal transitions that
occur in the examples considered. Temporal intervals provide a unifying means for
presenting the various features. Even without intervals, some of the dynamic con-
cepts discussed here have utility in specifications and properties about discrete-time
systems.

.
Moszkowski [21] uses the logic for describing and comparing a variety of digi-

tal devices. Manna and Moszkowski [17] hs ow how to program directly in tem-
poral logic. Future work will explore microprocessors, buses and protocols, DMA,
firmware and instruction sets, as well as the combined semantics of hardware and
software. We also plan to examine compilers and other systems that transmit and
manipulate commands and programs.

References
1.

2.

3.

4.

5.

S.

7.

M. R. Barbacci. “Instruction Set Processor Specifications (ISPS): The notation
and its applications.” IEEE Transactions on Computers C-30, 1 (Jan. 1981),
24-40.

A. Bernstein and P. Harter. “Proving real-time properties of programs with
temporal logic.” Proceedings of the 8th Symposium on Operating Systems
Principles, Pacific Grove, California, Dec., 1981, pages l-11.

R. Betancourt and E. J. McCluskey. Analysis of sequential circuits using
clocked flip-flops. Technical Report 82, Digital Systems Laboratory, Stanford
University, Aug., 1975.

G. V. Bochmann. “Hardware specification with temporal logic: An example.”
IEEE Transactions on Computers C-31, 3 (March 1982), 223-231.

M. A. Breuer and A. D. Friedman. Diagnosis and Reliable Design of Digital
Systems. Computer Science Press, Inc., Woodland Hills, California, 1976.

A. Chandra, J. Ha pern, A. Meyer, and R. Parikh. Equations between regular1
terms and an application to process logic. Proceedings of the 13-th Annual
ACM Symposium on Theory of Computing, Milwaukee, Wisconsin, May,
1981, pages 384-390.

H. Eveking. The application of Conlan assertions to the correct description
of hardware. Proceedings of the IFIP 5-th International Conference on
Computer Hardware Description Languages and their Applications, Kaisers-
lautern, West Germany, Sept., 1981, pages 37-50.

24

8.

9.

10.

11.

12.

13.

14.

15.

j6.

17.

18.

19.

20.

M. Gordon. Register transfer systems and their behavior. Proceedings of
the IFIP 5-th International Conference on Computer Hardware Description
Languages and their Applications, Kaiserslautern, West Germany, Sept.,
1981, pages 23-36.

B. T. Hailpern and S. Owicki. Verifying network protocols using temporal logic.
Technical Report 192, Computer Systems Laboratory, Stanford University,
June, 1980.

D. Harel. First-Order Dynamic Logic. Springer-Verlag, Berlin, 1979. No. 68 of
Lecture Notes in Computer Science.

D. Harel, D. Kozen, and R. Parikh. Process logic: Expressiveness, decidability,
completeness. 21-th Annual Symposium on Foundations of Computer Science,
Syracuse, New York, Oct., 1980, pages 129-142.

G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen
and Co., Ltd., London, 1968.

L. Lamport. Specifying concurrent program modules. Opus 60, Computer
Science Laboratory, SRI International, June, 1981.

S. Leinwand and T. Lamdan. Algebraic analysis of nondeterministic behavior.
Proceedings of the 17-th Design Automation Conference, Minneapolis, June,
1980, pages 483-493.

T. M. McWilliams. Verification of timing constraints on large digital systems.
Proceedings of the 17-th Design Automation Conference, Minneapolis, June,
1980, pages 139-147.

Y. Malachi and S. S. Owicki. Temporal specifications of self-timed systems.
In H.T. Kung, B. Sproul, and G. Steele, editors, VLSI Systems and Compu-
tations, pages 203-212, Computer Science Press, Inc., Rockville, Maryland,
1981.

2. Manna and B. Moszkowski. Temporal logic as a programming language,
forthcoming.

2. Manna and A. Pnueli. Verification of concurrent programs: The temporal
framework. In R. S. Boyer and J. S. Moore, editors, The Correctness Problem
in Computer Science, pages 215-273, Academic Press, New York, 1981.

P.M lemen. Formal semantic description of register transfer language elements
and mechanized simulator construction. Proceedings of the IFIP 4-th In-
ternational Symposium on Computer Hardware Description Languages and
their Applications, Palo Alto, California, Oct., 1979, pages 69-74.

B. Moszkowski. A temporal logic for multi-level reasoning about hardware.
Proceedings of the IFIP 6- th International Symposium on Computer Hardware
Description Languages and their Applications, Pittsburgh, Pennsylvania,.
May, 1983.

25

21. 13. Moszkowski. Reasoning about Digital Circuits. Ph.D. Thesis, Department

22.

23.

of Computer Science, Stanford University, forthcoming.
A. C. Parker and J. J. Wallace. “SLIDE: An I/O hardware description lan-

guage.” IEEE Transactions on Computers C-30, 6 (June 1981)) 423-439.
D. A. Patterson. “Strum: Structured microprogram development system for

correct firmware.” IEEE Transactions on Computers C-25, 10 (Oct. 1976),
974-985.

24.

25.
26.

27.

28.

29.

30.

31.

V. R. Pratt. Semantical considerations on Floyd-Hoare logic. 17-th IEEE
Symposium on Foundations of Computer Science, Houston, Texas, Oct.,
1976, pages 109-121.

N. Rescher and A. Urquart. Temporal Logic. Springer-Verlag, New York, 1971.
R. L. Schwartz and P. M. Melliar-Smith. Temporal logic specification of

distributed systems. Proceedings of the 2-nd International Conference on
Distributed Computing Systems, Paris, France, April, 1981, pages 446-454.

R. L. Schwartz, P. M. Melliar-Smith, and F. H. Vogt. An interval logic for
higher-level temporal reasoning: language definition and examples. Technical
Report CSL-138, Computer Science Laboratory, SRI International, Feb.,
1983.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Proceedings of. the 14-th Annual ACM Symposium on Theory of
Computing, San Francisco, California, May, 1982, pages 159-168.

S. Y. H. Su, C. Huang, and P. Y. K. Fu. A new multi-level hardware design lan-
guage (LALSD II) and translator. Proceedings of the IFIP 5-th International
Conference on Computer Hardware Description Languages and their Appli-
cations, Kaiserslautern, West Germany, Sept., 1981, pages 1.55-169.

A. D. Talantsev, “On the analysis and synthesis of certain electrical circuits
by means of special logical operators.” Automation and Remote Control 20,
1959, pages 874-883.

T. Wagner. Hardware Verification. Ph.D. Thesis, Department of Computer
Science, Stanford University, 1977.

26

